Kinetics of the cellular decomposition of supersaturated solid solutions
NASA Astrophysics Data System (ADS)
Ivanov, M. A.; Naumuk, A. Yu.
2014-09-01
A consistent description of the kinetics of the cellular decomposition of supersaturated solid solutions with the development of a spatially periodic structure of lamellar (platelike) type, which consists of alternating phases of precipitates on the basis of the impurity component and depleted initial solid solution, is given. One of the equations, which determines the relationship between the parameters that describe the process of decomposition, has been obtained from a comparison of two approaches in order to determine the rate of change in the free energy of the system. The other kinetic parameters can be described with the use of a variational method, namely, by the maximum velocity of motion of the decomposition boundary at a given temperature. It is shown that the mutual directions of growth of the lamellae of different phases are determined by the minimum value of the interphase surface energy. To determine the parameters of the decomposition, a simple thermodynamic model of states with a parabolic dependence of the free energy on the concentrations has been used. As a result, expressions that describe the decomposition rate, interlamellar distance, and the concentration of impurities in the phase that remain after the decomposition have been derived. This concentration proves to be equal to the half-sum of the initial concentration and the equilibrium concentration corresponding to the decomposition temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lizhong; Ouyang, Shuxin; Ren, Bofan
2015-10-01
Macroporous GaN/ZnO solid solution photocatalyst is synthesized through a novel sol-gel method under mild conditions. The performance of as-synthesized solid solution photocatalyst is evaluated for decomposition of gaseous 2-propanol (IPA). It is found that due to enhancement in both the adsorption to gaseous IPA and the absorbance to visible light, the porous GaN/ZnO solid solution exhibits a good photocatalytic performance for IPA decomposition. Moreover, the mechanism for photocatalytic degradation IPA over porous GaN/ZnO solid solution is also investigated in comparison with those for the two end materials ZnO and GaN. The trapping effects with different scavengers prove that both themore » photoexcited electrons and holes affect the IPA photodegradation process, simultaneously.« less
Solid solutions of platinum(II) and palladium(II) oxalato-complex salt as precursors of nanoalloys
NASA Astrophysics Data System (ADS)
Zadesenets, A. V.; Asanova, T. I.; Vikulova, E. S.; Filatov, E. Yu.; Plyusnin, P. E.; Baidina, I. A.; Asanov, I. P.; Korenev, S. V.
2013-03-01
A solid solution of platinum (II) and palladium (II) oxalato-complex salt, (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O, has been synthesized and studied as a precursor for preparing bimetallic PtPd nanoparticles through its thermal decomposition. The smallest homogenous bimetallic PtPd nanoparticles were found to form in hydrogen and helium atmospheres. The annealing temperature and time have low effect on the bimetallic particles size. Comparative analysis of structural and thermal properties of the solid solution and individual Pt, Pd oxalato-complex salts was performed to investigate a mechanism of thermal decomposition of (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O. Based on in situ X-ray photoemission spectroscopy investigation it was proposed a mechanism of formation of bimetallic PtPd nanoparticles from the solid-solution oxalato-complex salt during thermal decomposition.
Solid-solution thermodynamics in Al-Li alloys
NASA Astrophysics Data System (ADS)
Alekseev, A. A.; Lukina, E. A.
2016-05-01
The relative equilibrium concentrations of lithium atoms distributed over different electron-structural states has been estimated. The possibility of the existence of various nonequilibrium electron-structural states of Li atoms in the solid solution in Al has been substantiated thermodynamically. Upon the decomposition of the supersaturated solid solution, the supersaturation on three electron-structural states of Li atoms that arises upon the quenching of the alloy can lead to the formation of lithium-containing phases in which the lithium atoms enter in one electron-structural state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masui, Toshiyuki; Nagai, Ryosuke; Imanaka, Nobuhito, E-mail: imanaka@chem.eng.osaka-u.ac.jp
2014-12-15
Cubic fluorite-type solid solutions based on Pr{sub 6}O{sub 11} and CeO{sub 2} were synthesized and oxide anion vacancies were intentionally introduced into the cubic fluorite-type lattice through the charge compensating mechanism by Mg{sup 2+} and/or Ca{sup 2+} doping into their lattices. The oxide anion vacancies bring about positive effect on NO decomposition catalysis. The reason for the increase in the catalytic activity was attributed to defect fluorite-type structures close to the C-type cubic one, because C-type cubic rare earth oxides, in which one-quarter of the oxygen atoms in the fluorite-type structure are removed, show high NO decomposition activity. In particular,more » the positive effect of the formation of oxide anion vacancies was significant for Pr{sub 6}O{sub 11} and its solid solutions, because the molar volume of Pr{sub 6}O{sub 11} is larger than that of CeO{sub 2}, and Pr{sub 6}O{sub 11} contains Pr{sup 3+} as well as Pr{sup 4+} and thereby a small amount of oxide anion vacancies exist inherently in the lattice. - Graphical abstract: Oxide anion vacancies intentionally introduced into the cubic fluorite-type lattice bring about positive effect on NO decomposition catalysis. - Highlights: • Cubic fluorite-type solid solutions were synthesized. • Oxide anion vacancies were intentionally introduced into the cubic fluorite-type lattice. • The oxide anion vacancies bring about positive effect on NO decomposition catalysis. • The activity was enhanced by making the structure close to the C-type cubic one.« less
Heo, Tae Wook; Chen, Long-Qing; Wood, Brandon C.
2015-04-08
In this paper, we present a comprehensive phase-field model for simulating diffusion-mediated kinetic phase behaviors near the surface of a solid particle. The model incorporates elastic inhomogeneity and anisotropy, diffusion mobility anisotropy, interfacial energy anisotropy, and Cahn–Hilliard diffusion kinetics. The free energy density function is formulated based on the regular solution model taking into account the possible solute-surface interaction near the surface. The coherency strain energy is computed using the Fourier-spectral iterative-perturbation method due to the strong elastic inhomogeneity with a zero surface traction boundary condition. Employing a phase-separating Li XFePO 4 electrode particle for Li-ion batteries as a modelmore » system, we perform parametric three-dimensional computer simulations. The model permits the observation of surface phase behaviors that are different from the bulk counterpart. For instance, it reproduces the theoretically well-established surface modes of spinodal decomposition of an unstable solid solution: the surface mode of coherent spinodal decomposition and the surface-directed spinodal decomposition mode. We systematically investigate the influences of major factors on the kinetic surface phase behaviors during the diffusional process. Finally, our simulation study provides insights for tailoring the internal phase microstructure of a particle by controlling the surface phase morphology.« less
Influence of high-pressure torsion on formation/destruction of nano-sized spinodal structures
NASA Astrophysics Data System (ADS)
Alhamidi, Ali; Edalati, Kaveh; Horita, Zenji
2018-04-01
The microstructures and hardness of Al - 30 mol.% Zn are investigated after processing by high-pressure torsion (HPT) for different numbers of revolutions, N = 1, 3, 10 or 25, as well as after post-HPT annealing at different temperatures, T = 373 K, 473 K, 573 K and 673 K. It was found that a work softening occurs by decreasing the grain size to the submicrometer level and increasing the fraction of high-angle boundaries. As a result of HPT processing, a complete decomposition of supersaturated solid solution of Zn in Al occurs and the spinodal structure is destroyed. This suggests that softening of the Al-Zn alloys after HPT is due to the decomposition of the supersaturated solid solution and destruction of spinodal decomposition. After post-HPT annealing, ultrafine-grained Al-Zn alloys show an unusual mechanical properties and its hardness increased to 187 HV. Microstructural analysis showed that the high hardness after post-HPT annealing is due to the formation of spinodal structures.
FAST TRACK COMMUNICATION: A closer look at arrested spinodal decomposition in protein solutions
NASA Astrophysics Data System (ADS)
Gibaud, Thomas; Schurtenberger, Peter
2009-08-01
Concentrated aqueous solutions of the protein lysozyme undergo a liquid-solid transition upon a temperature quench into the unstable spinodal region below a characteristic arrest temperature of Tf = 15 °C. We use video microscopy and ultra-small angle light scattering in order to investigate the arrested structures as a function of initial concentration, quench temperature and rate of the temperature quench. We find that the solid-like samples show all the features of a bicontinuous network that is formed through an arrested spinodal decomposition process. We determine the correlation length ξ and demonstrate that ξ exhibits a temperature dependence that closely follows the critical scaling expected for density fluctuations during the early stages of spinodal decomposition. These findings are in agreement with an arrest scenario based on a state diagram where the arrest or gel line extends far into the unstable region below the spinodal line. Arrest then occurs when during the early stage of spinodal decomposition the volume fraction phi2 of the dense phase intersects the dynamical arrest threshold phi2,Glass, upon which phase separation gets pinned into a space-spanning gel network with a characteristic length ξ.
ENHANCED CHEMICAL CLEANING: EFFECTIVENESS OF THE UV LAMP TO DECOMPOSE OXALATES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ketusky, E.; Huff, T.; Sudduth, C.
2010-01-19
Enhanced Chemical Cleaning is a new process scheduled to begin cleaning Savannah River Site High Level Waste Tanks in 2012. It is an improvement over the current chemical cleaning method, in that it minimizes downstream impacts on the High Level Waste System. It is based on a state of the art scale removal process used on the secondary side of nuclear power plants, with modifications to accommodate the unique constraints created by the tanks. Both Enhanced Chemical Cleaning and the scale removal process are founded on dissolving metal oxides/hydroxides using oxalic acid, with subsequent oxalate decomposition via hydroxylation using ozonemore » or peroxide, and UV light as a catalyst. A divergence Enhanced Chemical Cleaning has from nuclear power scale removal is the significantly increased solids concentration during oxalate decomposition. These solids can limit the ability of the UV light to create hydroxyl radicals, either by limiting the ability of the light to penetrate through the solution, or by increasing the fouling rate on the UV light. Both will decrease the overall catalytic effectiveness, thereby decreasing the concentration of formed hydroxyl radicals. The hydroxyl radicals are the driving force behind the oxalate decomposition. To understand the impact of increased solids, testing was performed using a medium pressure UV light inside an ozone supplied Oxalate Decomposition Reactor. Using a dissolved metal sludge simulant with an initial oxalate concentration greater than 12,000 ppm, and an initial pH of about 2.0, the spent acid solution was recirculated through the reactor, while the UV light was allowed to foul. For the first few hours, the oxalate decomposition rate was about 1,300 ppm/hour. After about 3 hours, enough time for the UV lamp to foul, the oxalate decomposition rate decreased to about 500 ppm/hour. The decomposition rate then remained roughly constant for the next 16 hours. Overall, testing showed that the oxalate destruction rate decreased by about 2.8. Results from very similartests with similar chemistry suggest that the impact should be about 10. Based on the limited reaction pathwayfor the creation of hydroxyl radicals with iron, ozone, and no UV, the discrepancy suggests that initially, at 'time zero' the UV light failed to perform up to expectations. It is therefore concluded that regardless of the fouling rate, either the increased solids concentration is impacting the initial penetrability (i.e. to many solids), or the light is not adequately sized/configured to have the appropriate flux.« less
1998-06-19
heated at temperatures higher than 720 K. The decomposition is complete at temperatures as high as 800 K as one can see in figure 3. This fact concours...treatment. Instead, a gradual decomposition into tetragonal Gd3Al2 and cubic GdAI takes place within the temperature range 720 K - 800 K. CONCLUSION...to 1000 K results in the increase of the Ni(Mo) crystallites size only. The decomposition of the fee Ni(Mo) solid solution and formation of the
Al-Nimry, Suhair S; Alkhamis, Khouloud A; Alzarieni, Kawthar Z
2017-02-01
Chitin-metal silicates are multifunctional excipients used in tablets. Previously, a correlation between the surface acidity of chitin-calcium and chitin-magnesium silicate and the chemical decomposition of cefotaxime sodium was found but not with chitin-aluminum silicate. This lack of correlation could be due to the catalytic effect of silica alumina or the difference in surface area of the excipients. The objective of this study was to investigate the effect of the specific surface area of the excipient on the chemical decomposition of cefotaxime sodium in the solid state. Chitin was purified and coprocessed with different metal silicates to prepare the excipients. The specific surface area was determined using gas adsorption. The chemical decomposition was studied at constant temperature and relative humidity. Also, the degradation in solution was studied. A correlation was found between the degradation rate constant and the surface area of chitin-aluminum and chitin-calcium silicate but not with chitin-magnesium silicate. This was due to the small average pore diameter of this excipient. Also, the degradation in solution was slower than in solid state. In conclusion, the stability of cefotaxime sodium was dependent on the surface area of the excipient in contact with the drug. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lukyanova, E. A.; Martynenko, N. S.; Serebryany, V. N.; Belyakov, A. N.; Rokhlin, L. L.; Dobatkin, S. V.; Estrin, Yu. Z.
2017-11-01
The structure and the properties of an Mg-Y-Nd-Zr alloy (WE43) are studied after high pressure torsion (HPT) in the temperature range 20-300°C. Structure refinement proceeds mainly by deformation twinning with the formation of a partial nanocrystalline structure with a grain size of 30-100 nm inside deformation twins. The WE43 alloy is shown to be aged during heating after HPT due to the decomposition of a magnesium solid solution. HPT at room temperature and subsequent aging causes maximum hardening. It is shown that HPT significantly accelerates the decomposition of a magnesium solid solution. HPT at all temperatures considerably increases the tensile strength and the yield strength upon tensile tests and significantly decreases plasticity. Subsequent aging additionally hardens the WE43 alloy. A potentiodynamic study shows that the corrosion resistance of this alloy after HPT increases. However, subsequent aging degrades the corrosion properties of the alloy.
NASA Astrophysics Data System (ADS)
Iida, K.; Babu, N. H.; Shi, Y. H.; Cardwell, D. A.; Murakami, M.
2006-06-01
Single-grain Gd-Ba-Cu-O (GdBCO) bulk superconductors have been grown by a seeded infiltration and growth (SIG) technique under a 1% O2+N2 atmosphere using a generic MgO-doped Nd-Ba-Cu-O (MgO-NdBCO) seed placed on the sample surface at room temperature (the so-called the cold-seeding method). Partial melting of the MgO-NdBCO seeds fabricated in air under notionally identical thermal processing conditions, however, limited the reliability of this bulk GdBCO single-grain process. The observed seed decomposition is attributed to the dependence of the peritectic temperature Tp of MgO-doped Nd1+xBa2-xCu3Oy solid solution (MgO-doped Nd-123ss, where ss indicates solid solution) compounds on both oxygen partial pressure during the melt process and the level of solid solution (x). The peritectic decomposition temperature of MgO-doped Nd-123ss, with x ranging from 0 to 0.5 under p(O2) = 1.00 atm, was observed to remain constant at 1120 °C. Tp was observed to decrease linearly as a function of solid solution level, on the other hand, under oxygen partial pressures of both p(O2) = 0.21 and 0.01 atm. Based on these results, MgO-doped NdBCO seed crystals should be grown under reduced oxygen partial pressure in order to obtain a stable MgO-doped NdBCO seed crystal suitable for cold-seeding processes of large-grain (RE)BCO bulk superconductors (where RE is a rare earth element).
Thermal decomposition and isomerization of cis-permethrin and beta-cypermethrin in the solid phase.
González Audino, Paola; Licastro, Susana A; Zerba, Eduardo
2002-02-01
The stability to heart of cis-permethrin and beta-cypermethrin in the solid phase was studied and the decomposition products identified. Samples heated at 210 degrees C in an oven in the dark showed that, in the absence of potassium chlorate (the salt present in smoke-generating formulations of these pyrethroids), cis-permethrin was not isomerized, although in the presence of that salt, decomposition was greater and thermal isomerization occurred. Other salts of the type KXO3 or NaXO3, with X being halogen or nitrogen, also led to a considerable thermal isomerization. Heating the insecticides in solution in the presence of potassium chlorate did not produce isomerization in any of the solvents assayed. Salt-catalysed thermal cis-trans isomerization was also found for other pyrethroids derived from permethrinic or deltamethrinic acid but not for those derived from chrysanthemic acid. The main thermal degradation processes of cis-permethrin and beta-cypermethrin decomposition when potassium chlorate was present were cyclopropane isomerization, ester cleavage and subsequent oxidation of the resulting products. Permethrinic acid, 3-phenoxybenzyle chloride, alcohol, aldehyde and acid were identified in both cases, as well as 3-phenoxybenzyl cyanide from beta-cypermethrin. A similar decomposition pattern occurred after combustion of pyrethroid fumigant formulations.
Activities of the components in a spinel solid solution of the Fe-Al-O system
NASA Astrophysics Data System (ADS)
Lykasov, A. A.; Kimyashev, A. A.
2011-09-01
The conditions of the equilibrium between the Fe3O4-FeAl2O4 solution and wustite are determined by measuring the EMF of galvanic cells containing a solid electrolyte, and the activities of the components in the Fe3O4-FeAl2O4 solution are calculated by treating the results of the experiment on the equilibrium between the spinel solution and wustite. Their properties are found to be different from those of ideal solutions at temperatures of 1000-1300 K. A significant positive deviation from the Raoult's law is believed to indicate the tendency of the solution to decompose. The experimental data are treated in terms of the theory of regular solutions, assuming the energy of mixing to be a function of temperature only. The critical temperature of decomposition for the Fe3O4-FeAl2O4 solution is found to be 1084 K.
Large-scale fluctuations in the diffusive decomposition of solid solutions
NASA Astrophysics Data System (ADS)
Karpov, V. G.; Grimsditch, M.
1995-04-01
The concept of an instability in the classic Ostwald ripening theory with respect to compositional fluctuations is suggested. We show that small statistical fluctuations in the precipitate phase lead to gigantic Coulomb-like fluctuations in the solute concentration which in turn affect the ripening. As a result large-scale fluctuations in both the precipitate and solute concentrations appear. These fluctuations are characterized by amplitudes of the order of the average values of the corresponding quantities and by a space scale L~(na)-1/2 which is considerably greater than both the average nuclear radius and internuclear distance. The Lifshitz-Slyozov theory of ripening is shown to remain locally applicable, over length scales much less than L. The implications of these findings for elastic light scattering in solid solutions that have undergone Ostwald ripening are considered.
NASA Technical Reports Server (NTRS)
Kraeutle, K. J.
1980-01-01
The decomposition of cyclotramethylenetetranitramine (HMX) in the solid and liquid phase was studied by isothermal and nonisothermal heating at atmospheric pressure. Decomposition rates of solid HMX changed with sample size and gaseous environment. Kinetic parameters were obtained from weight loss measurements in the temperature range 229 C - 269 C. These tests also yielded highly porous solid residues. Qualitative aspects of solid and liquid phase decomposition of HMX with additives were also investigated in isothermal and nonisothermal tests.
NASA Astrophysics Data System (ADS)
Smith, Nathan; Provatas, Nikolas
Recent experimental work has shown that gold nanoparticles can precipitate from an aqueous solution through a non-classical, multi-step nucleation process. This multi-step process begins with spinodal decomposition into solute-rich and solute-poor liquid domains followed by nucleation from within the solute-rich domains. We present a binary phase-field crystal theory that shows the same phenomology and examine various cross-over regimes in the growth and coarsening of liquid and solid domains. We'd like to the thank Canada Research Chairs (CRC) program for funding this work.
Large scale synthesis of nanostructured zirconia-based compounds from freeze-dried precursors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, A.; Villanueva, R.; Vie, D.
2013-01-15
Nanocrystalline zirconia powders have been obtained at the multigram scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous acetic solutions. This technique has equally made possible to synthesize a variety of nanostructured yttria or scandia doped zirconia compositions. SEM images, as well as the analysis of the XRD patterns, show the nanoparticulated character of those solids obtained at low temperature, with typical particle size in the 10-15 nm range when prepared at 673 K. The presence of the monoclinic, the tetragonal or both phases depends on the temperature of the thermal treatment, the doping concentration and themore » nature of the dopant. In addition, Rietveld refinement of the XRD profiles of selected samples allows detecting the coexistence of the tetragonal and the cubic phases for high doping concentration and high thermal treatment temperatures. Raman experiments suggest the presence of both phases also at relatively low treatment temperatures. - Graphical abstract: Zr{sub 1-x}A{sub x}O{sub 2-x/2} (A=Y, Sc; 0{<=}x{<=}0.12) solid solutions have been prepared as nanostructured powders by thermal decomposition of precursors obtained by freeze-drying, and this synthetic procedure has been scaled up to the 100 g scale. Highlights: Black-Right-Pointing-Pointer Zr{sub 1-x}A{sub x}O{sub 2-x/2} (A=Y, Sc; 0{<=}x{<=}0.12) solid solutions have been prepared as nanostructured powders. Black-Right-Pointing-Pointer The synthetic method involves the thermal decomposition of precursors obtained by freeze-drying. Black-Right-Pointing-Pointer The temperature of the thermal treatment controls particle sizes. Black-Right-Pointing-Pointer The preparation procedure has been scaled up to the 100 g scale. Black-Right-Pointing-Pointer This method is appropriate for the large-scale industrial preparation of multimetallic systems.« less
Calculation of the solvus temperature of metastable phases in the Al-Mg-Si alloys
NASA Astrophysics Data System (ADS)
Vasilyev, A. A.; Gruzdev, A. S.; Kuz'min, N. L.
2011-09-01
A procedure has been proposed for the self-consistent calculation of the solvus temperatures of metastable phase precipitates in Al-Mg-Si alloys and the specific energy of their interface with the aluminum matrix. The procedure is based on the results of experimental studies on the kinetics of formation of these precipitates during decomposition of supersaturated solid solutions of quenched Al-Mg-Si alloys, which were carried out by measuring the Young's modulus and electrical resistivity. On the basis of the obtained set of solvus temperatures of the β″-phase, an empirical formula has been proposed for calculating this temperature as a function of the chemical composition of the initial solid solution.
Thermal effects of carbonated hydroxyapatite modified by glycine and albumin
NASA Astrophysics Data System (ADS)
Gerk, S. A.; Golovanova, O. A.; Kuimova, M. V.
2017-01-01
In this work calcium phosphate powders were obtained by precipitation method from simulated solutions of synovial fluid containing glycine and albumin. X-ray diffraction and IR spectroscopy determined that all samples are single-phase and are presented by carbonate containing hydroxyapatite (CHA). The thermograms of solid phases of CHA were obtained and analyzed; five stages of transformation in the temperature range of 25-1000°C were marked. It is shown that in this temperature range dehydration, decarboxylation and thermal degradation of amino acid and protein connected to the surface of solid phase occur. The tendency of temperature lowering of the decomposition of powders synthesized from a medium containing organic substances was determined. Results demonstrate a direct dependence between the concentration of the amino acid in a model solution and its content in the solid phase.
Effect of scandium on the phase composition and mechanical properties of ABM alloys
NASA Astrophysics Data System (ADS)
Molchanova, L. V.
2010-09-01
The effect of scandium on the composition and mechanical properties of ABM-1 alloys (Al-30% Be-5% Mg) is studied. The scandium content is varied from 0.1 to 0.5 wt %. It is established that, in the studied part of the Al-Be-Mg-Sc system, an aluminum solid solution (Al) and the ScBe13 compound are in equilibrium with a beryllium solid solution (Be). Magnesium dissolves in both the aluminum component and the ScBe13 compound. The strengthening effect related to the decomposition of the solid solution and the precipitation of Al3Sc cannot be extended to the strengthening of ABM-type alloys. Additions of 0.1-0.15 wt % Sc only weakly improve the mechanical properties of the alloys due to the refinement of beryllium-component grains. At high scandium contents, the strength increases insignificantly due to primary precipitation of ScBe13 and the plasticity decreases simultaneously.
Thermal decomposition behavior of nano/micro bimodal feedstock with different solids loading
NASA Astrophysics Data System (ADS)
Oh, Joo Won; Lee, Won Sik; Park, Seong Jin
2018-01-01
Debinding is one of the most critical processes for powder injection molding. The parts in debinding process are vulnerable to defect formation, and long processing time of debinding decreases production rate of whole process. In order to determine the optimal condition for debinding process, decomposition behavior of feedstock should be understood. Since nano powder affects the decomposition behavior of feedstock, nano powder effect needs to be investigated for nano/micro bimodal feedstock. In this research, nano powder effect on decomposition behavior of nano/micro bimodal feedstock has been studied. Bimodal powders were fabricated with different ratios of nano powder, and the critical solids loading of each powder was measured by torque rheometer. Three different feedstocks were fabricated for each powder depending on solids loading condition. Thermogravimetric analysis (TGA) experiment was carried out to analyze the thermal decomposition behavior of the feedstocks, and decomposition activation energy was calculated. The result indicated nano powder showed limited effect on feedstocks in lower solids loading condition than optimal range. Whereas, it highly influenced the decomposition behavior in optimal solids loading condition by causing polymer chain scission with high viscosity.
Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition
NASA Astrophysics Data System (ADS)
Alavi, Saman; Ripmeester, J. A.
2010-04-01
Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.
Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition.
Alavi, Saman; Ripmeester, J A
2010-04-14
Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.
NASA Astrophysics Data System (ADS)
Petrishcheva, E.; Abart, R.
2012-04-01
We address mathematical modeling and computer simulations of phase decomposition in a multicomponent system. As opposed to binary alloys with one common diffusion parameter, our main concern is phase decomposition in real geological systems under influence of strongly different interdiffusion coefficients, as it is frequently encountered in mineral solid solutions with coupled diffusion on different sub-lattices. Our goal is to explain deviations from equilibrium element partitioning which are often observed in nature, e.g., in a cooled ternary feldspar. To this end we first adopt the standard Cahn-Hilliard model to the multicomponent diffusion problem and account for arbitrary diffusion coefficients. This is done by using Onsager's approach such that flux of each component results from the combined action of chemical potentials of all components. In a second step the generalized Cahn-Hilliard equation is solved numerically using finite-elements approach. We introduce and investigate several decomposition scenarios that may produce systematic deviations from the equilibrium element partitioning. Both ideal solutions and ternary feldspar are considered. Typically, the slowest component is initially "frozen" and the decomposition effectively takes place only for two "fast" components. At this stage the deviations from the equilibrium element partitioning are indeed observed. These deviations may became "frozen" under conditions of cooling. The final equilibration of the system occurs on a considerably slower time scale. Therefore the system may indeed remain unaccomplished at the observation point. Our approach reveals the intrinsic reasons for the specific phase separation path and rigorously describes it by direct numerical solution of the generalized Cahn-Hilliard equation.
Properties of solid solutions, doped film, and nanocomposite structures based on zinc oxide
NASA Astrophysics Data System (ADS)
Lashkarev, G. V.; Shtepliuk, I. I.; Ievtushenko, A. I.; Khyzhun, O. Y.; Kartuzov, V. V.; Ovsiannikova, L. I.; Karpyna, V. A.; Myroniuk, D. V.; Khomyak, V. V.; Tkach, V. N.; Timofeeva, I. I.; Popovich, V. I.; Dranchuk, N. V.; Khranovskyy, V. D.; Demydiuk, P. V.
2015-02-01
A study of the properties of materials based on the wide bandgap zinc oxide semiconductor, which are promising for application in optoelectronics, photovoltaics and nanoplasmonics. The structural and optical properties of solid solution Zn1-xCdxO films with different cadmium content, are studied. The samples are grown using magnetron sputtering on sapphire backing. Low-temperature photoluminescence spectra revealed emission peaks associated with radiative recombination processes in those areas of the film that have varying amounts of cadmium. X-ray phase analysis showed the presence of a cadmium oxide cubic phase in these films. Theoretical studies of the solid solution thermodynamic properties allowed for a qualitative interpretation of the observed experimental phenomena. It is established that the growth of the homogeneous solid solution film is possible only at high temperatures, whereas regions of inhomogeneous composition can be narrowed through elastic deformation, caused by the mismatch of the film-backing lattice constants. The driving forces of the spinodal decomposition of the Zn1-xCdxO system are identified. Fullerene-like clusters of Znn-xCdxOn are used to calculate the bandgap and the cohesive energy of ZnCdO solid solutions. The properties of transparent conductive ZnO films, doped with Group III donor impurities (Al, Ga, In), are examined. It is shown that oxygen vacancies are responsible for the hole trap centers in the zinc oxide photoconductivity process. We also examine the photoluminescence properties of metal-ZnO nanocomposite structures, caused by surface plasmons.
Fu, Guang-Liang; Pan, Hong; Zhao, Yi-Hong; Zhao, Cui-Hua
2011-12-07
We disclose two novel BODIPY dyes, which contain the bulky substituent, [(4-dimesitylboryl)phenyl]ethynyl at 2- and 2,6-positions. The steric bulkiness of the boryl group is effective to suppress the intermolecular interaction in the solid state and thus these two compounds display intense fluorescence not only in solution but also in the solid state. In addition, the BODIPY dyes display sensitive fluorescence responses to fluoride and cyanide anions through the complexation with the boron center of the boryl group and the subsequent decomposition of the BODIPY core, illustrating their potential uses for the fluorescence sensing of fluoride and cyanide ions.
Fine structure of Fe-Co-Ga and Fe-Cr-Ga alloys with low Ga content
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinerman, Nadezhda M., E-mail: kleinerman@imp.uran.ru; Serikov, Vadim V., E-mail: kleinerman@imp.uran.ru; Vershinin, Aleksandr V., E-mail: kleinerman@imp.uran.ru
2014-10-27
Investigation of Ga influence on the structure of Fe-Cr and Fe-Co alloys was performed with the use of {sup 57}Fe Mössbauer spectroscopy and X-ray diffraction methods. In the alloys of the Fe-Cr system, doping with Ga handicaps the decomposition of solid solutions, observed in the binary alloys, and increases its stability. In the alloys with Co, Ga also favors the uniformity of solid solutions. The analysis of Mössbauer experiments gives some grounds to conclude that if, owing to liquation, clusterization, or initial stages of phase separation, there exist regions enriched in iron, some amount of Ga atoms prefer to entermore » the nearest surroundings of iron atoms, thus forming binary Fe-Ga regions (or phases)« less
Zhu, Yizhou; He, Xingfeng; Mo, Yifei
2015-10-06
First-principles calculations were performed to investigate the electrochemical stability of lithium solid electrolyte materials in all-solid-state Li-ion batteries. The common solid electrolytes were found to have a limited electrochemical window. Our results suggest that the outstanding stability of the solid electrolyte materials is not thermodynamically intrinsic but is originated from kinetic stabilizations. The sluggish kinetics of the decomposition reactions cause a high overpotential leading to a nominally wide electrochemical window observed in many experiments. The decomposition products, similar to the solid-electrolyte-interphases, mitigate the extreme chemical potential from the electrodes and protect the solid electrolyte from further decompositions. With the aidmore » of the first-principles calculations, we revealed the passivation mechanism of these decomposition interphases and quantified the extensions of the electrochemical window from the interphases. We also found that the artificial coating layers applied at the solid electrolyte and electrode interfaces have a similar effect of passivating the solid electrolyte. Our newly gained understanding provided general principles for developing solid electrolyte materials with enhanced stability and for engineering interfaces in all-solid-state Li-ion batteries.« less
Phase composition and microstructure of WC-Co alloys obtained by selective laser melting
NASA Astrophysics Data System (ADS)
Khmyrov, Roman S.; Shevchukov, Alexandr P.; Gusarov, Andrey V.; Tarasova, Tatyana V.
2018-03-01
Phase composition and microstructure of initial WC, BK8 (powder alloy 92 wt.% WC-8 wt.% Co), Co powders, ball-milled powders with four different compositions (1) 25 wt.% WC-75 wt.% Co, (2) 30 wt.% BK8-70 wt.% Co, (3) 50 wt.% WC-50 wt.% Co, (4) 94 wt.% WC-6 wt.% Co, and bulk alloys obtained by selective laser melting (SLM) from as-milled powders in as-melted state and after heat treatment were investigated by scanning electron microscopy and X-ray diffraction analysis. Initial and ball-milled powders consist of WC, hexagonal α-Co and face-centered cubic β-Co. The SLM leads to the formation of major new phases W3Co3C, W4Co2C and face-centered cubic β-Co-based solid solution. During the heat treatment, there occurs partial decomposition of the face-centered cubic β-Co-based solid solution with the formation of W2C and hexagonal α-Co solid solution. The microstructure of obtained bulk samples, in general, corresponds to the observed phase composition.
Baral, Susil; Green, Andrew J; Livshits, Maksim Y; Govorov, Alexander O; Richardson, Hugh H
2014-02-25
The phase transformation properties of liquid water to vapor is characterized by optical excitation of the lithographically fabricated single gold nanowrenches and contrasted to the phase transformation properties of gold nanoparticles located and optically excited in a bulk solution system [two and three dimensions]. The 532 nm continuous wave excitation of a single gold nanowrench results in superheating of the water to the spinodal decomposition temperature of 580 ± 20 K with bubble formation below the spinodal decomposition temperature being a rare event. Between the spinodal decomposition temperature and the boiling point liquid water is trapped into a metastable state because a barrier to vapor nucleation exists that must be overcome before the thermodynamically stable state is realized. The phase transformation for an optically heated single gold nanowrench is different from the phase transformation of optically excited colloidal gold nanoparticles solution where collective heating effects dominates and leads to the boiling of the solution exactly at the boiling point. In the solution case, the optically excited ensemble of nanoparticles collectively raises the ambient temperature of water to the boiling point where liquid is converted into vapor. The striking difference in the boiling properties of the single gold nanowrench and the nanoparticle solution system can be explained in terms of the vapor-nucleation mechanism, the volume of the overheated liquid, and the collective heating effect. The interpretation of the observed regimes of heating and vaporization is consistent with our theoretical modeling. In particular, we explain with our theory why the boiling with the collective heating in a solution requires 3 orders of magnitude less intensity compared to the case of optically driven single nanowrench.
ON THE DECOMPOSITION OF STRESS AND STRAIN TENSORS INTO SPHERICAL AND DEVIATORIC PARTS
Augusti, G.; Martin, J. B.; Prager, W.
1969-01-01
It is well known that Hooke's law for a linearly elastic, isotropic solid may be written in the form of two relations that involve only the spherical or only the deviatoric parts of the tensors of stress and strain. The example of the linearly elastic, transversely isotropic solid is used to show that this decomposition is not, in general, feasible for linearly elastic, anisotropic solids. The discussion is extended to a large class of work-hardening rigid, plastic solids, and it is shown that the considered decomposition can only be achieved for the incompressible solids of this class. PMID:16591754
He, Mo-Rigen; Wang, Shuai; Shi, Shi; ...
2016-12-31
Single-phase concentrated solid solution alloys have attracted wide interest due to their superior mechanical properties and enhanced radiation tolerance, which make them promising candidates for the structural applications in next-generation nuclear reactors. However, little has been understood about the intrinsic stability of their as-synthesized, high-entropy configurations against radiation damage. In this paper, we report the element segregation in CrFeCoNi, CrFeCoNiMn, and CrFeCoNiPd equiatomic alloys when subjected to 1250 kV electron irradiations at 400 °C up to a damage level of 1 displacement per atom. Cr/Fe/Mn/Pd can deplete and Co/Ni can accumulate at radiation-induced dislocation loops, while the actively segregating elementsmore » are alloy-specific. Moreover, electron-irradiated matrix of CrFeCoNiMn and CrFeCoNiPd shows L1 0 (NiMn)-type ordering decomposition and <001>-oriented spinodal decomposition between Co/Ni and Pd, respectively. Finally, these findings are rationalized based on the atomic size difference and enthalpy of mixing between the alloying elements, and identify a new important requirement to the design of radiation-tolerant alloys through modification of the composition.« less
Zhang, Haitao; Yang, Jen-Hsien; Shpanchenko, Roman V; Abakumov, Artem M; Hadermann, Joke; Clérac, Rodolphe; Dikarev, Evgeny V
2009-09-07
Heterometallic lead-manganese beta-diketonates have been isolated in pure form by several synthetic methods that include solid-state and solution techniques. Two compounds with different Pb/Mn ratios, PbMn(2)(hfac)(6) (1) and PbMn(hfac)(4) (2) (hfac = hexafluoroacetylacetonate), can be obtained in quantitative yield by using different starting materials. Single crystal X-ray investigation revealed that the solid-state structure of 1 contains trinuclear molecules in which lead metal center is sandwiched between two [Mn(hfac)(3)] units, while 2 consists of infinite chains of alternating [Pb(hfac)(2)] and [Mn(hfac)(2)] fragments. The heterometallic structures are held together by strong Lewis acid-base interactions between metal atoms and diketonate ligands acting in chelating-bridging fashion. Spectroscopic investigation confirmed the retention of heterometallic structures in solutions of non-coordinating solvents as well as upon sublimation-deposition procedure. Thermal decomposition of heterometallic diketonates has been systematically investigated in a wide range of temperatures and annealing times. For the first time, it has been shown that thermal decomposition of heterometallic diketonates results in mixed-metal oxides, while both the structure of precursors and the thermolysis conditions have a significant influence on the nature of the resulting oxides. Five different Pb-Mn oxides have been detected by X-ray powder diffraction when studying the decomposition of 1 and 2 in the temperature range 500-800 degrees C. The phase that has been previously reported as "Pb(0.43)MnO(2.18)" was synthesized in the pure form by decomposition of 1, and crystallographically characterized. The orthorhombic unit cell parameters of this oxide, obtained by electron diffraction technique, have been subsequently refined using X-ray powder diffraction data. Besides that, a previously unknown lead-manganese oxide has been obtained at low temperature decomposition and short annealing times. The parameters of its monoclinically distorted unit cell have been determined. The EDX analysis revealed that this compound has a Pb/Mn ratio close to 1:4 and contains no appreciable amount of fluorine.
NASA Technical Reports Server (NTRS)
Farhat, Charbel; Lesoinne, Michel
1993-01-01
Most of the recently proposed computational methods for solving partial differential equations on multiprocessor architectures stem from the 'divide and conquer' paradigm and involve some form of domain decomposition. For those methods which also require grids of points or patches of elements, it is often necessary to explicitly partition the underlying mesh, especially when working with local memory parallel processors. In this paper, a family of cost-effective algorithms for the automatic partitioning of arbitrary two- and three-dimensional finite element and finite difference meshes is presented and discussed in view of a domain decomposed solution procedure and parallel processing. The influence of the algorithmic aspects of a solution method (implicit/explicit computations), and the architectural specifics of a multiprocessor (SIMD/MIMD, startup/transmission time), on the design of a mesh partitioning algorithm are discussed. The impact of the partitioning strategy on load balancing, operation count, operator conditioning, rate of convergence and processor mapping is also addressed. Finally, the proposed mesh decomposition algorithms are demonstrated with realistic examples of finite element, finite volume, and finite difference meshes associated with the parallel solution of solid and fluid mechanics problems on the iPSC/2 and iPSC/860 multiprocessors.
Supramolecular intermediates in the synthesis of polymeric carbon nitride from melamine cyanurate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dante, Roberto C., E-mail: rcdante@yahoo.com; Sánchez-Arévalo, Francisco M.; Chamorro-Posada, Pedro
The adduct of melamine and cyanuric acid (MCA) was used in past research to produce polymeric carbon nitride and precursors. The reaction yield was considerably incremented by the addition of sulfuric acid. The polymeric carbon nitride formation occurs around 450 °C at temperatures above the sublimation of the adduct components, which occurs around 400 °C. In this report the effect of sulfuric acid on MCA was investigated. It was found that the MCA rosette supramolecular channel structures behave as a solid solvent able to host small molecules, such as sulfuric acid, inside these channels and interact with them. Therefore, themore » sulfuric acid effect was found to be close to that of a solute that causes a temperature increment of the “solvent sublimation” enough to allowing the formation of polymeric carbon nitride to occur. Sulfate ions are presumably hosted in the rosette channels of MCA as shown by simulations. - Graphical abstract: The blend of melamine cyanurate and sulfuric acid behaves like a solution so that melamine cyanurate decomposition is shifted to temperatures high enough to react and form polymeric carbon nitride. - Highlights: • The adduct of melamine and cyanuric acid behaves as a solid solvent. • The blend of sulfuric acid and melamine cyanurate behaves like a solution. • Melamine cyanurate decomposition is shifted to higher temperatures by sulfuric acid. • The formation of polymeric carbon nitride occurs for these higher temperatures.« less
Properties of ZnO nanocrystals prepared by radiation method
NASA Astrophysics Data System (ADS)
Čuba, Václav; Gbur, Tomáš; Múčka, Viliam; Nikl, Martin; Kučerková, Romana; Pospíšil, Milan; Jakubec, Ivo
2010-01-01
Zinc oxide nanoparticles were prepared by irradiation of aqueous solutions containing zinc(II) ions, propan-2-ol, polyvinyl alcohol, and hydrogen peroxide. Zinc oxide was found in solid phase either directly after irradiation, or after additional heat treatment. Various physicochemical parameters, including scintillation properties of prepared materials, were studied. After decomposition of impurities and annealing of oxygen vacancies, the samples showed intensive emission in visible spectral range and well-shaped exciton luminescence at 390-400 nm. The best scintillating properties had zinc oxide prepared from aqueous solutions containing zinc formate as initial precursor and hydrogen peroxide. Size of the crystalline particles ranged from tens to hundreds nm, depending on type of irradiated solution and post-irradiation thermal treatment.
NASA Astrophysics Data System (ADS)
Rendtorff, N. M.; Suárez, G.; Sakka, Y.; Aglietti, E. F.
2011-10-01
The mechanochemical activation processing has proved to be an effective technique to enhance a solid-state reaction at relatively low temperatures. In such a process, the mechanical effects of milling, such as reduction of particle size and mixture homogenization, are accompanied by chemical effects, such as partial decomposition of salts or hydroxides resulting in very active reactants. The objective of the present work is to obtain (ZrO2)0.97(Y2O3)0.03 nanocrystalline tetragonal solid solution powders directly using a high energy milling on a mixture of the pure oxides. A second objective is to evaluate the efficiency of the processing proposed and to characterize both textural and structural evolution of the mixtures during the milling processes and throughout posterior low temperature treatments. The Textural and structural evolution were studied by XRD analysis, specific area measurements (BET) and SEM. Firstly a decrease of the crystallinity of the reactants was observed, followed by the disappearance of Y2O3 diffraction peaks and the partial appearance of the tetragonal phase at room temperature. The solid solution proportion was increased with the high energy milling time, obtaining complete stabilization of the tetragonal solid solution with long milling treatments (60 min).The obtained powders were uniaxially pressed and sintered at different temperatures (600-1400°C) the influence of the milling time was correlated with the sinterization degree and final crystalline composition of the materials. Finally, fully stabilized nanocrystalline zirconia materials were obtained satisfactorily by the proposed method.
NASA Technical Reports Server (NTRS)
Zhang, Yiqiang; Alexander, J. I. D.; Ouazzani, J.
1994-01-01
Free and moving boundary problems require the simultaneous solution of unknown field variables and the boundaries of the domains on which these variables are defined. There are many technologically important processes that lead to moving boundary problems associated with fluid surfaces and solid-fluid boundaries. These include crystal growth, metal alloy and glass solidification, melting and name propagation. The directional solidification of semi-conductor crystals by the Bridgman-Stockbarger method is a typical example of such a complex process. A numerical model of this growth method must solve the appropriate heat, mass and momentum transfer equations and determine the location of the melt-solid interface. In this work, a Chebyshev pseudospectra collocation method is adapted to the problem of directional solidification. Implementation involves a solution algorithm that combines domain decomposition, finite-difference preconditioned conjugate minimum residual method and a Picard type iterative scheme.
Tasaki, Ken
2005-02-24
The density functional theory (DFT) calculations have been performed for the reduction decompositions of solvents widely used in Li-ion secondary battery electrolytes, ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonates (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC), including a typical electrolyte additive, vinylene carbonate (VC), at the level of B3LYP/6-311+G(2d,p), both in the gas phase and solution using the polarizable conductor calculation model. In the gas phase, the first electron reduction for the cyclic carbonates and for the linear carbonates is found to be exothermic and endothermic, respectively, while the second electron reduction is endothermic for all the compounds examined. On the contrary, in solution both first and second electron reductions are exothermic for all the compounds. Among the solvents and the additive examined, the likelihood of undergoing the first electron reduction in solution was found in the order of EC > PC > VC > DMC > EMC > DEC with EC being the most likely reduced. VC, on the other hand, is most likely to undergo the second electron reduction among the compounds, in the order of VC > EC > PC. Based on the results, the experimentally demonstrated effectiveness of VC as an excellent electrolyte additive was discussed. The bulk thermodynamic properties of two dilithium alkylene glycol dicarbonates, dilithium ethylene glycol dicarbonate (Li-EDC) and dilithium 1,2-propylene glycol dicarbonate (Li-PDC), as the major component of solid-electrolyte interface (SEI) films were also examined through molecular dynamics (MD) simulations in order to understand the stability of the SEI film. It was found that film produced from a decomposition of EC, modeled by Li-EDC, has a higher density, more cohesive energy, and less solubility to the solvent than the film produced from decomposition of PC, Li-PDC. Further, MD simulations of the interface between the decomposition compound and graphite suggested that Li-EDC has more favorable interactions with the graphite surface than Li-PDC. The difference in the SEI film stability and the behavior of Li-ion battery cycling among the solvents were discussed in terms of the molecular structures.
Reaction behaviors of decomposition of monocrotophos in aqueous solution by UV and UV/O processes.
Ku, Y; Wang, W; Shen, Y S
2000-02-01
The decomposition of monocrotophos (cis-3-dimethoxyphosphinyloxy-N-methyl-crotonamide) in aqueous solution by UV and UV/O(3) processes was studied. The experiments were carried out under various solution pH values to investigate the decomposition efficiencies of the reactant and organic intermediates in order to determine the completeness of decomposition. The photolytic decomposition rate of monocrotophos was increased with increasing solution pH because the solution pH affects the distribution and light absorbance of monocrotophos species. The combination of O(3) with UV light apparently promoted the decomposition and mineralization of monocrotophos in aqueous solution. For the UV/O(3) process, the breakage of the >C=C< bond of monocrotophos by ozone molecules was found to occur first, followed by mineralization by hydroxyl radicals to generate CO(3)(2-), PO4(3-), and NO(3)(-) anions in sequence. The quasi-global kinetics based on a simplified consecutive-parallel reaction scheme was developed to describe the temporal behavior of monocrotophos decomposition in aqueous solution by the UV/O(3) process.
Thermal decomposition of sodium amide, NaNH2, and sodium amide hydroxide composites, NaNH2-NaOH.
Jepsen, Lars H; Wang, Peikun; Wu, Guotao; Xiong, Zhitao; Besenbacher, Flemming; Chen, Ping; Jensen, Torben R
2016-09-14
Sodium amide, NaNH 2 , has recently been shown to be a useful catalyst to decompose NH 3 into H 2 and N 2 , however, sodium hydroxide is omnipresent and commercially available NaNH 2 usually contains impurities of NaOH (<2%). The thermal decomposition of NaNH 2 and NaNH 2 -NaOH composites is systematically investigated and discussed. NaNH 2 is partially dissolved in NaOH at T > 100 °C, forming a non-stoichiometric solid solution of Na(OH) 1-x (NH 2 ) x (0 < x < ∼0.30), which crystallizes in an orthorhombic unit cell with the space group P2 1 2 1 2 1 determined by synchrotron powder X-ray diffraction. The composite xNaNH 2 -(1 - x)NaOH (∼0.70 < x < 0.72) shows a lowered melting point, ∼160 °C, compared to 200 and 318 °C for neat NaNH 2 and NaOH, respectively. We report that 0.36 mol of NH 3 per mol of NaNH 2 is released below 400 °C during heating in an argon atmosphere, initiated at its melting point, T = 200 °C, possibly due to the formation of the mixed sodium amide imide solid solution. Furthermore, NaOH reacts with NaNH 2 at elevated temperatures and provides the release of additional NH 3 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langbein, Hubert; Mayer-Uhma, Tobias
2009-03-05
An X-ray powder diffraction study of the phase formation in the system V{sub 2}O{sub 5}/Nb{sub 2}O{sub 5} is performed. Freeze-dried ammonium vanadate and ammonium oxalato niobate, alkoxide-derived xerogels and a mixture of active oxides are used as precursors to compare the resulting phase composition. Thermal decomposition of the freeze-dried precursor is monitored with DTA/TG and mass spectrometry. In the quasi-binary system V{sub 2}O{sub 5}-Nb{sub 2}O{sub 5} metastable VNbO{sub 5}, V{sub 4}Nb{sub 18}O{sub 55}, VNb{sub 9}O{sub 25} and solid solutions of V{sub 2}O{sub 5} in TT-Nb{sub 2}O{sub 5} as also thermodynamically stable VNb{sub 9}O{sub 25} exist. The thermal decomposition of freeze-driedmore » vanadate-oxalatoniobate solution allows the synthesis of all these phases in a relative simple manner. Structural relationships between an intermediate phase and the product, or, in the case of solid-state reactions, between one of the starting oxide and the product, favour the desired reaction. Therefore, the structure of a former phase influences or directs the structure of the product similar to a topotactic reaction.« less
Assessing the effect of different treatments on decomposition rate of dairy manure.
Khalil, Tariq M; Higgins, Stewart S; Ndegwa, Pius M; Frear, Craig S; Stöckle, Claudio O
2016-11-01
Confined animal feeding operations (CAFOs) contribute to greenhouse gas emission, but the magnitude of these emissions as a function of operation size, infrastructure, and manure management are difficult to assess. Modeling is a viable option to estimate gaseous emission and nutrient flows from CAFOs. These models use a decomposition rate constant for carbon mineralization. However, this constant is usually determined assuming a homogenous mix of manure, ignoring the effects of emerging manure treatments. The aim of this study was to measure and compare the decomposition rate constants of dairy manure in single and three-pool decomposition models, and to develop an empirical model based on chemical composition of manure for prediction of a decomposition rate constant. Decomposition rate constants of manure before and after an anaerobic digester (AD), following coarse fiber separation, and fine solids removal were determined under anaerobic conditions for single and three-pool decomposition models. The decomposition rates of treated manure effluents differed significantly from untreated manure for both single and three-pool decomposition models. In the single-pool decomposition model, AD effluent containing only suspended solids had a relatively high decomposition rate of 0.060 d(-1), while liquid with coarse fiber and fine solids removed had the lowest rate of 0.013 d(-1). In the three-pool decomposition model, fast and slow decomposition rate constants (0.25 d(-1) and 0.016 d(-1) respectively) of untreated AD influent were also significantly different from treated manure fractions. A regression model to predict the decomposition rate of treated dairy manure fitted well (R(2) = 0.83) to observed data. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Asanova, Tatyana I.; Asanov, Igor P.; Kim, Min-Gyu; Gerasimov, Evgeny Yu.; Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V.
2013-10-01
The formation mechanism of Pd-Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH3)4][IrCl6] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 °C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd-Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10-200 nm) and dendrite Ir-rich (10-50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd-Ir nanoparticles, were found to occur.
Irmak Aslan, Dilan; Parthasarathy, Prakash; Goldfarb, Jillian L; Ceylan, Selim
2017-10-01
Land applied disposal of waste tires has far-reaching environmental, economic, and human health consequences. Pyrolysis represents a potential waste management solution, whereby the solid carbonaceous residue is heated in the absence of oxygen to produce liquid and gaseous fuels, and a solid char. The design of an efficient conversion unit requires information on the reaction kinetics of pyrolysis. This work is the first to probe the appropriate reaction model of waste tire pyrolysis. The average activation energy of pyrolysis was determined via iso-conversional methods over a mass fraction conversion range between 0.20 and 0.80 to be 162.8±23.2kJmol -1 . Using the Master Plots method, a reaction order of three was found to be the most suitable model to describe the pyrolytic decomposition. This suggests that the chemical reactions themselves (cracking, depolymerization, etc.), not diffusion or boundary layer interactions common with carbonaceous biomasses, are the rate-limiting steps in the pyrolytic decomposition of waste tires. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thermal Decomposition of the Solid Phase of Nitromethane: Ab Initio Molecular Dynamics Simulations
NASA Astrophysics Data System (ADS)
Chang, Jing; Lian, Peng; Wei, Dong-Qing; Chen, Xiang-Rong; Zhang, Qing-Ming; Gong, Zi-Zheng
2010-10-01
The Car-Parrinello molecular dynamics simulations were employed to investigate thermal decomposition of the solid nitromethane. It is found that it undergoes chemical decomposition at about 2200 K under ambient pressure. The initiation of reactions involves both proton transfer and commonly known C-N bond cleavage. About 75 species and 100 elementary reactions were observed with the final products being H2O, CO2, N2, and CNCNC. It represents the first complete simulation of solid-phase explosive reactions reported to date, which is of far-reaching implication for design and development of new energetic materials.
Growth of Single Crystals and Fabrication of GaN and AlN Wafers
2006-03-01
Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Synthesis and Decomposition of Ammonia ", 4, Elsevier Scientific Publishing Company...Solid Surfaces and Heterogeneous Catalysis, Synthesis and Decomposition of Ammonia ", 4, Elsevier Scientific Publishing Company, Amsterdam (1982). 119...GaN(s), (2) Ga(g) + _ N2(g) = GaN(s) 93 APPENDIX C: AMMONIA DECOMPOSITION Despite the apparent simplicity of the GaN synthesis from elemental Ga and
Surfactant process for promoting gas hydrate formation and application of the same
Rogers, Rudy E.; Zhong, Yu
2002-01-01
This invention relates to a method of storing gas using gas hydrates comprising forming gas hydrates in the presence of a water-surfactant solution that comprises water and surfactant. The addition of minor amounts of surfactant increases the gas hydrate formation rate, increases packing density of the solid hydrate mass and simplifies the formation-storage-decomposition process of gas hydrates. The minor amounts of surfactant also enhance the potential of gas hydrates for industrial storage applications.
NASA Technical Reports Server (NTRS)
McKay, D.S.; Gibson, E.K.; Thomas-Keprta, K.L.; Clemett, S.J.; Wentworth, S.J.
2009-01-01
The question of the origin of nanophase magnetite in Martian meteorite ALH84001 has been widely debated for nearly a decade. Golden et al. have reported producing nearly chemically pure magnetite from thermal decomposition of chemically impure siderite [(Fe, Mg, Mn)CO3]. This claim is significant for three reasons: first, it has been argued that chemically pure magnetite present in the carbonate disks in Martian meteorite ALH84001 could have formed by the thermal decomposition of the impure carbonate matrix in which they are embedded; second, the chemical purity of magnetite has been previously used to identify biogenic magnetite; and, third, previous studies of thermal decomposition of impure (Mg,Ca,Mn)-siderites, which have been investigated under a wide variety of conditions by numerous researchers, invariably yields a mixed metal oxide phase as the product and not chemically pure magnetite. The explanation for this observation is that these siderites all possess the same crystallographic structure (Calcite; R3c) so solid solutions between these carbonates are readily formed and can be viewed on an atomic scale as two chemically different but structurally similar lattices.
Thermal decomposition of the solid phase of nitromethane: ab initio molecular dynamics simulations.
Chang, Jing; Lian, Peng; Wei, Dong-Qing; Chen, Xiang-Rong; Zhang, Qing-Ming; Gong, Zi-Zheng
2010-10-29
The Car-Parrinello molecular dynamics simulations were employed to investigate thermal decomposition of the solid nitromethane. It is found that it undergoes chemical decomposition at about 2200 K under ambient pressure. The initiation of reactions involves both proton transfer and commonly known C-N bond cleavage. About 75 species and 100 elementary reactions were observed with the final products being H2O, CO2, N2, and CNCNC. It represents the first complete simulation of solid-phase explosive reactions reported to date, which is of far-reaching implication for design and development of new energetic materials.
ERIC Educational Resources Information Center
Koga, Nobuyoshi; Goshi, Yuri; Yoshikawa, Masahiro; Tatsuoka, Tomoyuki
2014-01-01
An undergraduate kinetic experiment of the thermal decomposition of solids by microscopic observation and thermal analysis was developed by investigating a suitable reaction, applicable techniques of thermal analysis and microscopic observation, and a reliable kinetic calculation method. The thermal decomposition of sodium hydrogen carbonate is…
Effects of High and Low Salt Concentration in Electrolytes at Lithium–Metal Anode Surfaces
Camacho-Forero, Luis E.; Smith, Taylor W.; Balbuena, Perla B.
2016-12-16
The use of high concentration salts in electrolyte solutions of lithium-sulfur (Li-S) batteries has been shown beneficial for mitigating some effects such as polysulfide shuttle and dendrite growth at the Li metal anode. Such complex solutions have structural, dynamical, and reactivity associated issues that need to be analyzed for a better understanding of the reasons behind such beneficial effects. A passivation interfacial layer known as solid-electrolyte interphase (SEI) is generated during battery cycling as a result of electron transfer from the metal anode causing electrolyte decomposition. Here in this work, we investigate using density functional theory and ab initio molecularmore » dynamics simulations the salt decomposition, solvation effects, interactions among intermediate products and other species, and potential components of the SEI layer as a function of chemical nature and concentration of the salt, for lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(fluorosulfonyl)imide (LiFSI) at 1M and 4M concentrations in dimethoxyethane. It is found that LiTFSI undergoes a less complete reduction and facilitates charge transfer from the anode, whereas LiFSI shows a more complete decomposition forming LiF as one of the main SEI products. In addition, the specific decomposition mechanisms of each salt clearly point to the initial SEI components and the potential main products derived from them. Finally, very complex networks are found among the salt and solvent molecules in their attempt to maximize Li ion solvation that is quantified through the determination of coordination numbers.« less
Spectroscopic and Thermal Behavior of Chromium Soaps
NASA Astrophysics Data System (ADS)
Mehrotra, K. N.; Jain, Mamta
1996-02-01
The physicochemical characteristics of chromium soaps (myristate and stearate) were investigated in the solid state (thermal, X-ray, and IR measurements) and in solutions (spectrophotometric measurements). The thermal measurements showed that the decomposition of chromium soaps is a two-step process. The soap decomposed into chromium oxycarboxylate, ketone, and carbon dioxide in the first step and the intermediate oxycarboxylate underwent further decomposition to chromium trioxide in the second step. The results showed that the second step is kinetically of zero order and the values of energy of activation for the first and second steps lie in the ranges 6-7 and 17-18 kcal mol-1, respectively. The X-ray diffraction results showed that these soaps possess double-layer structure with molecular axes slightly inclined to the basal plane. The infrared results revealed that the fatty acids exist with dimeric structure through hydrogen bonding between two molecules of fatty acids whereas the metal-to-oxygen bonds in chromium soaps are not purely ionic but possess considerable covalent character. The results of spectrophotometric measurements also confirmed the somewhat covalent nature of chromium soaps in solutions in dichloromethane.
Nano and micro U1-xThxO2 solid solutions: From powders to pellets
NASA Astrophysics Data System (ADS)
Balice, Luca; Bouëxière, Daniel; Cologna, Marco; Cambriani, Andrea; Vigier, Jean-François; De Bona, Emanuele; Sorarù, Gian Domenico; Kübel, Christian; Walter, Olaf; Popa, Karin
2018-01-01
Nuclear fuels production, structural materials, separation techniques, and waste management, all may benefit from an extensive knowledge in the nano-nuclear technology. In this line, we present here the production of U1-xThxO2 (x = 0 to 1) mixed oxides nanocrystals (NC's) through the hydrothermal decomposition of the oxalates in hot compressed water at 250 °C. Particles of spherical shape and size of about 5.5-6 nm are obtained during the hydrothermal decomposition process. The powdery nanocrystalline products were consolidated by spark plasma sintering into homogeneous mixed oxides pellets with grain sizes in the 0.4 to 5.5 μm range. Grain growth and mechanical properties were studied as a function of composition and size. No grain size effect was observed on the hardness or elastic modulus.
High-resolution EPMA X-ray images of mother liquid inclusions in a Pd2Ga single crystal
NASA Astrophysics Data System (ADS)
Müller, D.; Schwerin, J.; Gille, P.; Fehr, K. T.
2014-03-01
During crystal growth from solution inclusions of different compositions were trapped at the rim of a Pd2Ga single crystal. Their fine-grained (< 5 μm) internal structure demands special requirements for electron microprobe analysis, realized by low-voltage (5 keV) element mapping applying a step size of 0.138 μm for each pixel. It can be shown, that these inclusions represent an isolated chemical system, and that crystallisation upon cooling follows the expected thermodynamic phase relations. Thus the final composition in the centre of the inclusion consists of a small-scale mixture of PdGa and Pd5Ga3 evolved out of a solid-solid decomposition of Pd5Ga4.
Sample Results From Tank 48H Samples HTF-48-14-158, -159, -169, and -170
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, T.; Hang, T.
2015-04-28
Savannah River National Laboratory (SRNL) analyzed samples from Tank 48H in support of determining the cause for the unusually high dose rates at the sampling points for this tank. A set of two samples was taken from the quiescent tank, and two additional samples were taken after the contents of the tank were mixed. The results of the analyses of all the samples show that the contents of the tank have changed very little since the analysis of the previous sample in 2012. The solids are almost exclusively composed of tetraphenylborate (TPB) salts, and there is no indication of accelerationmore » in the TPB decomposition. The filtrate composition shows a moderate increase in salt concentration and density, which is attributable to the addition of NaOH for the purposes of corrosion control. An older modeling simulation of the TPB degradation was updated, and the supernate results from a 2012 sample were run in the model. This result was compared to the results from the 2014 recent sample results reported in this document. The model indicates there is no change in the TPB degradation from 2012 to 2014. SRNL measured the buoyancy of the TPB solids in Tank 48H simulant solutions. It was determined that a solution of density 1.279 g/mL (~6.5M sodium) was capable of indefinitely suspending the TPB solids evenly throughout the solution. A solution of density 1.296 g/mL (~7M sodium) caused a significant fraction of the solids to float on the solution surface. As the experiments could not include the effect of additional buoyancy elements such as benzene or hydrogen generation, the buoyancy measurements provide an upper bound estimate of the density in Tank 48H required to float the solids.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, Dwayne; Dulikravich, George; Cizmas, Paul
2017-11-27
This report summarizes the objectives, tasks and accomplishments made during the three year duration of this research project. The report presents the results obtained by applying advanced computational techniques to develop reduced-order models (ROMs) in the case of reacting multiphase flows based on high fidelity numerical simulation of gas-solids flow structures in risers and vertical columns obtained by the Multiphase Flow with Interphase eXchanges (MFIX) software. The research includes a numerical investigation of reacting and non-reacting gas-solids flow systems and computational analysis that will involve model development to accelerate the scale-up process for the design of fluidization systems by providingmore » accurate solutions that match the full-scale models. The computational work contributes to the development of a methodology for obtaining ROMs that is applicable to the system of gas-solid flows. Finally, the validity of the developed ROMs is evaluated by comparing the results against those obtained using the MFIX code. Additionally, the robustness of existing POD-based ROMs for multiphase flows is improved by avoiding non-physical solutions of the gas void fraction and ensuring that the reduced kinetics models used for reactive flows in fluidized beds are thermodynamically consistent.« less
Viard, Antoine; Fonblanc, Diane; Schmidt, Marion; Lale, Abhijeet; Salameh, Chrystelle; Soleilhavoup, Anne; Wynn, Mélanie; Champagne, Philippe; Cerneaux, Sophie; Babonneau, Florence; Chollon, Georges; Rossignol, Fabrice; Gervais, Christel; Bernard, Samuel
2017-07-06
A series of boron-modified polyorganosilazanes was synthesized from a poly(vinylmethyl-co-methyl)silazane and controlled amounts of borane dimethyl sulfide. The role of the chemistry behind their synthesis has been studied in detail by using solid-state NMR spectroscopy, FTIR spectroscopy, and elemental analysis. The intimate relationship between the chemistry and the processability of these polymers is discussed. Polymers with low boron contents displayed appropriate requirements for facile processing in solution, such as impregnation of host carbon materials, which resulted in the design of mesoporous monoliths with a high specific surface area after pyrolysis. Polymers with high boron content are more appropriate for solid-state processing to design mechanically robust monolith-type macroporous and dense structures after pyrolysis. Boron acts as a crosslinking element, which offers the possibility to extend the processability of polyorganosilazanes and suppress the distillation of oligomeric fragments in the low-temperature region of their thermal decomposition (i.e., pyrolysis) at 1000 °C under nitrogen. Polymers with controlled and high ceramic yields were generated. We provide a comprehensive mechanistic study of the two-step thermal decomposition based on a combination of thermogravimetric experiments coupled with elemental analysis, solid-state NMR spectroscopy, and FTIR spectroscopy. Selected characterization tools allowed the investigation of specific properties of the monolith-type SiBCN materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunkel, Nathalie, E-mail: nathalie.kunkel@chimie-paristech.fr; FR 8.1 Universität des Saarlandes, Postach 151150, 66041 Saarbrücken; Reichert, Christian
2015-01-15
In-situ neutron powder diffraction studies of the Half-Heusler phase LiAlSi under high deuterium pressures and first principle calculations of solid solutions of Li{sub x}Sr{sub 1−x}AlSi and their hydrides Li{sub x}Sr{sub 1−x}AlSiH were carried out. In contrast to an earlier study, there is no experimental evidence for hydrogen (deuterium) uptake up to gas pressures of 15 MPa and temperatures of 550 °C. Instead a slow decomposition reaction according to LiAlSi+1/2H{sub 2}=LiH+Al+Si was found by in-situ neutron powder diffraction. Theoretical calculations by DFT methods on hypothetical solid solutions of Li{sub x}Sr{sub 1−x}AlSi show the LiAlSi type to be the energetically most stablemore » structure for 0.7« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behrens, R.; Minier, L.; Bulusu, S.
1998-12-31
The time-dependent, solid-phase thermal decomposition behavior of 2,4-dinitroimidazole (2,4-DNI) has been measured utilizing simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) methods. The decomposition products consist of gaseous and non-volatile polymeric products. The temporal behavior of the gas formation rates of the identified products indicate that the overall thermal decomposition process is complex. In isothermal experiments with 2,4-DNI in the solid phase, four distinguishing features are observed: (1) elevated rates of gas formation are observed during the early stages of the decomposition, which appear to be correlated to the presence of exogenous water in the sample; (2) this is followed bymore » a period of relatively constant rates of gas formation; (3) next, the rates of gas formation accelerate, characteristic of an autocatalytic reaction; (4) finally, the 2,4-DNI is depleted and gaseous decomposition products continue to evolve at a decreasing rate. A physicochemical and mathematical model of the decomposition of 2,4-DNI has been developed and applied to the experimental results. The first generation of this model is described in this paper. Differences between the first generation of the model and the experimental data collected under different conditions suggest refinements for the next generation of the model.« less
Preliminary Results of Solid Gas Generator Micropropulsion
NASA Technical Reports Server (NTRS)
deGroot, Wilhelmus A.; Reed, Brian D.; Brenizer, Marshall
1999-01-01
A decomposing solid thruster concept, which creates a more benign thermal and chemical environment than solid propellant combustion, while maintaining, performance similar to solid combustion, is described. A Micro-Electro-Mechanical (MEMS) thruster concept with diode laser and fiber-optic initiation is proposed, and thruster components fabricated with MEMS technology are presented. A high nitrogen content solid gas generator compound is evaluated and tested in a conventional axisymmetric thrust chamber with nozzle throat area ratio of 100. Results show incomplete decomposition of this compound in both low pressure (1 kPa) and high pressure (1 MPa) environments, with decomposition of up to 80% of the original mass. Chamber pressures of 1.1 MPa were obtained, with maximum calculated thrust of approximately 2.7 N. Resistively heated wires and resistively heated walls were used to initiate decomposition. Initiation tests using available lasers were unsuccessful, but infrared spectra of the compound show that the laser initiation tests used inappropriate wavelengths for optimal propellant absorption. Optimal wavelengths for laser ignition were identified. Data presented are from tests currently in progress. Alternative solid gas generator compounds are being evaluated for future tests.
Reactions of CW Agents HD And GD with the Polymer Fabrics PVAM and CHEMCAT 41
2015-09-01
analyses of the rates of G agent decomposition were followed by the methods of solids NMR (high resolution magic angle spinning, HR-MAS). A P-31...molecular weight copolymer of 30-35 kDa. The Erkol copolymer forms a pH 12 solution in water and functions as Lewis base when hydrated .6 GD and DFP...Reactions The hydrated PVAm film, containing 20% glycerol, was found to completely deplete and decompose a two-fold excess of DFP vapor (peaks -8 and
Thermal shock resistance ceramic insulator
Morgan, Chester S.; Johnson, William R.
1980-01-01
Thermal shock resistant cermet insulators containing 0.1-20 volume % metal present as a dispersed phase. The insulators are prepared by a process comprising the steps of (a) providing a first solid phase mixture of a ceramic powder and a metal precursor; (b) heating the first solid phase mixture above the minimum decomposition temperature of the metal precursor for no longer than 30 minutes and to a temperature sufficiently above the decomposition temperature to cause the selective decomposition of the metal precursor to the metal to provide a second solid phase mixture comprising particles of ceramic having discrete metal particles adhering to their surfaces, said metal particles having a mean diameter no more than 1/2 the mean diameter of the ceramic particles, and (c) densifying the second solid phase mixture to provide a cermet insulator having 0.1-20 volume % metal present as a dispersed phase.
Physicochemical properties and solubility of alkyl-(2-hydroxyethyl)-dimethylammonium bromide.
Domańska, Urszula; Bogel-Łukasik, Rafał
2005-06-23
Quaternary ammonium salts, which are precursors of ionic liquids, have been prepared from N,N-dimethylethanolamine as a substrate. The paper includes specific basic characterization of synthesized compounds via the following procedures: nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectra, water content, mass spectroscopy (MS) spectra, temperatures of decompositions, basic thermodynamic properties of pure ionic liquids (the melting point, enthalpy of fusion, enthalpy of solid-solid phase transition, glass transition), and the difference in the solute heat capacity between the liquid and solid at the melting temperature determined by differential scanning calorimetry (DSC). The (solid + liquid) phase equilibria of binary mixtures containing (quaternary ammonium salt + water, or + 1-octanol) has been measured by a dynamic method over wide range of temperatures, from 230 K to 560 K. These data were correlated by means of the UNIQUAC ASM and modified nonrandom two-liquid NRTL1 equations utilizing parameters derived from the (solid + liquid) equilibrium. The partition coefficient of ionic liquid in the 1-octanol/water binary system has been calculated from the solubility results. Experimental partition coefficients (log P) were negative at three temperatures.
Hoaglund Hyzer, Cherokee S; Williamson, Michele L; Jansen, Patrick J; Kopach, Michael E; Scherer, R Brian; Baertschi, Steven W
2017-05-01
Edivoxetine (LY2216684 HCl), although a chemically stable drug substance, has shown the tendency to degrade in the presence of carbohydrates that are commonly used tablet excipients, especially at high excipient:drug ratios. The major degradation product has been identified as N-formyl edivoxetine. Experimental evidence including solution and solid-state investigations, is consistent with the N-formylation degradation pathway resulting from a direct reaction of edivoxetine with (1) formic acid (generated from decomposition of microcrystalline cellulose or residual glucose) and (2) the reducing sugar ends (aldehydic carbons) of either residual glucose or the microcrystalline cellulose polymer. Results of labeling experiments indicate that the primary source of the formyl group is the C1 position from reducing sugars. Presence of water or moisture accelerates this degradation pathway. Investigations in solid and solution states support that the glucose Amadori Rearrangement Product does not appear to be a direct intermediate leading to N-formyl degradation of edivoxetine, and oxygen does not appear to play a significant role. Solution-phase studies, developed to rapidly assess propensity of amines toward Maillard reactivity and formylation, were extended to show comparative behavior with example systems. The cyclic amine systems, such as edivoxetine, showed the highest propensity toward these side reactions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Nitrosonium-Catalyzed Decomposition of S-Nitrosothiols in Solution
Zhao, Yi-Lei; McCarren, Patrick R.; Houk, K. N.; Choi, Bo Yoon; Toone, Eric J.
2008-01-01
The decomposition of S-nitrosothiols (RSNO) in solution under oxidative conditions is significantly faster than can be accounted for by homolysis of the S-N bond. Here we propose a cationic chain mechanism in which nitrosylation of nitrosothiol produces a nitrosylated cation that, in turn, reacts with a second nitrosothiol to produce disulfide and the NO dimer. Nitrosylated dimer acts as a source of nitrosonium for nitrosothiol nitrosylation, completing the catalytic cycle. The mechanism accounts for several unexplained facets of nitrosothiol chemistry in solution, including the observation that the decomposition of an RSNO is accelerated by O2, mixtures of O2 and NO, and other oxidants, that decomposition is inhibited by thiols and other antioxidants, that decomposition is dependent on sulfur substitution, and that decomposition often shows non-integral kinetic orders. PMID:16076198
Shahid, Muhammad; Xue, Xinkai; Fan, Chao; Ninham, Barry W; Pashley, Richard M
2015-06-25
An enhanced thermal decomposition of chemical compounds in aqueous solution has been achieved at reduced solution temperatures. The technique exploits hitherto unrecognized properties of a bubble column evaporator (BCE). It offers better heat transfer efficiency than conventional heat transfer equipment. This is obtained via a continuous flow of hot, dry air bubbles of optimal (1-3 mm) size. Optimal bubble size is maintained by using the bubble coalescence inhibition property of some salts. This novel method is illustrated by a study of thermal decomposition of ammonium bicarbonate (NH4HCO3) and potassium persulfate (K2S2O8) in aqueous solutions. The decomposition occurs at significantly lower temperatures than those needed in bulk solution. The process appears to work via the continuous production of hot (e.g., 150 °C) dry air bubbles, which do not heat the solution significantly but produce a transient hot surface layer around each rising bubble. This causes the thermal decomposition of the solute. The decomposition occurs due to the effective collision of the solute with the surface of the hot bubbles. The new process could, for example, be applied to the regeneration of the ammonium bicarbonate draw solution used in forward osmosis.
NASA Astrophysics Data System (ADS)
Verma, Madhu; Gupta, Rashmi; Singh, Harjinder; Bamzai, K. K.
2018-04-01
The growth of cadmium doped magnesium hydrogen phosphate was successfully carried out by using room temperature solution technique i.e., gel encapsulation technique. Grown crystals were confirmed by single crystal X-ray diffraction (XRD). The structure of the grown crystal belongs to orthorhombic crystal system and crystallizes in centrosymmetric space group. Kinetics of the decomposition of the grown crystals were studied by non-isothermal analysis. Thermo gravimetric / differential thermo analytical (TG/DTA) studies revealed that the grown crystal is stable upto 119 °C. The various steps involved in the thermal decomposition of the material have been analysed using Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova equations for evaluating various kinetic parameters. The optical studies shows that the grown crystals possess wide transmittance in the visible region and significant optical band gap of 5.5ev with cut off wavelength of 260 nm.
Structured grid technology to enable flow simulation in an integrated system environment
NASA Astrophysics Data System (ADS)
Remotigue, Michael Gerard
An application-driven Computational Fluid Dynamics (CFD) environment needs flexible and general tools to effectively solve complex problems in a timely manner. In addition, reusable, portable, and maintainable specialized libraries will aid in rapidly developing integrated systems or procedures. The presented structured grid technology enables the flow simulation for complex geometries by addressing grid generation, grid decomposition/solver setup, solution, and interpretation. Grid generation is accomplished with the graphical, arbitrarily-connected, multi-block structured grid generation software system (GUM-B) developed and presented here. GUM-B is an integrated system comprised of specialized libraries for the graphical user interface and graphical display coupled with a solid-modeling data structure that utilizes a structured grid generation library and a geometric library based on Non-Uniform Rational B-Splines (NURBS). A presented modification of the solid-modeling data structure provides the capability for arbitrarily-connected regions between the grid blocks. The presented grid generation library provides algorithms that are reliable and accurate. GUM-B has been utilized to generate numerous structured grids for complex geometries in hydrodynamics, propulsors, and aerodynamics. The versatility of the libraries that compose GUM-B is also displayed in a prototype to automatically regenerate a grid for a free-surface solution. Grid decomposition and solver setup is accomplished with the graphical grid manipulation and repartition software system (GUMBO) developed and presented here. GUMBO is an integrated system comprised of specialized libraries for the graphical user interface and graphical display coupled with a structured grid-tools library. The described functions within the grid-tools library reduce the possibility of human error during decomposition and setup for the numerical solver by accounting for boundary conditions and connectivity. GUMBO is linked with a flow solver interface, to the parallel UNCLE code, to provide load balancing tools and solver setup. Weeks of boundary condition and connectivity specification and validation has been reduced to hours. The UNCLE flow solver is utilized for the solution of the flow field. To accelerate convergence toward a quick engineering answer, a full multigrid (FMG) approach coupled with UNCLE, which is a full approximation scheme (FAS), is presented. The prolongation operators used in the FMG-FAS method are compared. The procedure is demonstrated on a marine propeller in incompressible flow. Interpretation of the solution is accomplished by vortex feature detection. Regions of "Intrinsic Swirl" are located by interrogating the velocity gradient tensor for complex eigenvalues. The "Intrinsic Swirl" parameter is visualized on a solution of a marine propeller to determine if any vortical features are captured. The libraries and the structured grid technology presented herein are flexible and general enough to tackle a variety of complex applications. This technology has significantly enabled the capability of the ERC personnel to effectively calculate solutions for complex geometries.
Preparation and storage of isotopically labeled reduced nicotinamide adenine dinucleotide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Northrop, D.B.; Duggleby, R.G.
1987-09-01
A method for obtaining highly purified NADH in a dry, solid, and stable form is described. The method involves improvements of the ion-exchange and reversed-phase chromatographic procedures of C. J. Newton and S. M. Faynor, and D. B. Northrop. The necessary time to prepare pure NADH has been reduced to a few hours. The final product, obtained by drying the nucleotide from absolute ethanol, shows no detectable decomposition either during the drying procedure or during storage under nitrogen gas at -20 degrees C for several months. Using dry product prepared from fixed volumes of ethanolic solution, standardized solutions of knownmore » amounts of the highly purified and stored NADH can be obtained in a few seconds.« less
Erping, Li; Haoyun, Chen; Yanyang, Shang; Jun, Pan; Qing, Hu
2017-11-01
In this paper, the pyrolysis characteristics of six typical components in municipal solid waste (MSW) were investigated through a TG-FTIR combined technique and it was concluded that the main pyrolysis process of the biomass components (including food residues, sawdust and paper) occurred at 150-600°C. The main volatiles were multi-component gas including H 2 O, CO 2 , and CO. The main pyrolysis temperatures of three artificial products (PP, PVC and leather) was ranged from 200to 500°C. The wavelength of small molecule gases (CH 4 , CO 2 and CO) and the the chemical bonds (CO and CC) were observed in the infrared spectrum Based on the pyrolysis temperature interval and volatile constituent, a new "double-solution" process of pyrolysis and oxygen-enrichment decomposition MSW was designed. To achieve this process, a double-solution project was built for the direct treatment of MSW (10t/d). The complete setup of equipment and analysis of the byproducts has been reported in this paper to indicate the performance of this process. Energy balance and economic benefits were analysed for the process supporting. It was successfully demonstrated that the double-solution process was the environmentally friendly alternative method for MSW treatment in Chinese rural areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simulation of municipal solid waste degradation in aerobic and anaerobic bioreactor landfills.
Patil, Bhagwan Shamrao; C, Agnes Anto; Singh, Devendra Narain
2017-03-01
Municipal solid waste generation is huge in growing cities of developing nations such as India, owing to the rapid industrial and population growth. In addition to various methods for treatment and disposal of municipal solid waste (landfills, composting, bio-methanation, incineration and pyrolysis), aerobic/anaerobic bioreactor landfills are gaining popularity for economical and effective disposal of municipal solid waste. However, efficiency of municipal solid waste bioreactor landfills primarily depends on the municipal solid waste decomposition rate, which can be accelerated through monitoring moisture content and temperature by using the frequency domain reflectometry probe and thermocouples, respectively. The present study demonstrates that these landfill physical properties of the heterogeneous municipal solid waste mass can be monitored using these instruments, which facilitates proper scheduling of the leachate recirculation for accelerating the decomposition rate of municipal solid waste.
Sugiyama, Kazuo; Suzuki, Katsunori; Kuwasima, Shusuke; Aoki, Yosuke; Yajima, Tatsuhiko
2009-01-01
The decomposition of a poly(amide-imide) thin film coated on a solid copper wire was attempted using atmospheric pressure non-equilibrium plasma. The plasma was produced by applying microwave power to an electrically conductive material in a gas mixture of argon, oxygen, and hydrogen. The poly(amide-imide) thin film was easily decomposed by argon-oxygen mixed gas plasma and an oxidized copper surface was obtained. The reduction of the oxidized surface with argon-hydrogen mixed gas plasma rapidly yielded a metallic copper surface. A continuous plasma heat-treatment process using a combination of both the argon-oxygen plasma and argon-hydrogen plasma was found to be suitable for the decomposition of the poly(amide-imide) thin film coated on the solid copper wire.
Influences of operational practices on municipal solid waste landfill storage capacity.
Li, Yu-Chao; Liu, Hai-Long; Cleall, Peter John; Ke, Han; Bian, Xue-Cheng
2013-03-01
The quantitative effects of three operational factors, that is initial compaction, decomposition condition and leachate level, on municipal solid waste (MSW) landfill settlement and storage capacity are investigated in this article via consideration of a hypothetical case. The implemented model for calculating landfill compression displacement is able to consider decreases in compressibility induced by biological decomposition and load dependence of decomposition compression for the MSW. According to the investigation, a significant increase in storage capacity can be achieved by intensive initial compaction, adjustment of decomposition condition and lowering of leachate levels. The quantitative investigation presented aims to encourage landfill operators to improve management to enhance storage capacity. Furthermore, improving initial compaction and creating a preferential decomposition condition can also significantly reduce operational and post-closure settlements, respectively, which helps protect leachate and gas management infrastructure and monitoring equipment in modern landfills.
Zhao, Yi-Lei; McCarren, Patrick R; Houk, K N; Choi, Bo Yoon; Toone, Eric J
2005-08-10
The decomposition of S-nitrosothiols (RSNO) in solution under oxidative conditions is significantly faster than can be accounted for by homolysis of the S-N bond. Here we propose a cationic chain mechanism in which nitrosation of nitrosothiol produces a nitrosated cation that, in turn, reacts with a second nitrosothiol to produce nitrosated disulfide and the NO dimer. The nitrosated disulfide acts as a source of nitrosonium for nitrosothiol nitrosation, completing the catalytic cycle. The mechanism accounts for several unexplained facets of nitrosothiol chemistry in solution, including the observation that the decomposition of an RSNO is accelerated by O(2), mixtures of O(2) and NO, and other oxidants, that decomposition is inhibited by thiols and other antioxidants, that decomposition is dependent on sulfur substitution, and that decomposition often shows nonintegral kinetic orders.
NASA Astrophysics Data System (ADS)
Li, Ji-Guang; Ikegami, Takayasu; Wang, Yarong; Mori, Toshiyuki
2002-10-01
A novel carbonate (co)precipitation method, employing nitrates as the starting salts and ammonium carbonate as the precipitant, has been used to synthesize nanocrystalline CeO 2 and Ce 1- xY xO 2- x/2 ( x≤0.35) solid-solutions. The resultant powders are characterized by elemental analysis, differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffractometry (XRD), Brunauer-Emmett-Teller (BET) analysis, and high-resolution scanning electron microscopy (HRSEM). Due to the direct formation of carbonate solid-solutions during precipitation, Ce 1- xY xO 2- x/2 solid-solution oxides are formed directly during calcination at a very low temperature of ˜300°C for 2 h. The thus-produced oxide nanopowders are essentially non-agglomerated, as revealed by BET in conjunction with XRD analysis. The solubility of YO 1.5 in CeO 2 is determined via XRD to be somewhere in the range from 27 to 35 mol%, from which a Y 2O 3-related type-C phase appears in the final product. Y 3+-doping promotes the formation of spherical nanoparticles, retards thermal decomposition of the precursors, and suppresses significantly crystallite coarsening of the oxides during calcination. The activation energy for crystallite coarsening increases gradually from 68.7 kJ mol -1 for pure CeO 2 to 138.6 kJ mol -1 for CeO 2 doped with 35 mol% YO 1.5. The dopant effects on crystallite coarsening is elaborated from the view point of solid-state chemistry.
Thermal stability of LiPF 6 salt and Li-ion battery electrolytes containing LiPF 6
NASA Astrophysics Data System (ADS)
Yang, Hui; Zhuang, Guorong V.; Ross, Philip N.
The thermal stability of the neat lithium hexafluorophosphate (LiPF 6) salt and of 1 molal (m) solutions of LiPF 6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line Fourier transform infrared (FTIR). Pure LiPF 6 salt is thermally stable up to 107 °C in a dry inert atmosphere, and its decomposition path is a simple dissociation producing lithium fluoride (LiF) as solid and PF 5 as gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct thermal reaction between LiPF 6 and water vapor to form phosphorous oxyfluoride (POF 3) and hydrofluoric acid (HF). No new products were observed in 1 m solutions of LiPF 6 in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) by on-line TGA-FTIR analysis. The storage of the same solutions in sealed containers at 85 °C for 300-420 h did not produce any significant quantity of new products as well. In particular, no alkylflurophosphates were found in the solutions after storage at elevated temperature. In the absence of either an impurity like alcohol or cathode active material that may (or may not) act as a catalyst, there is no evidence of thermally induced reaction between LiPF 6 and the prototypical Li-ion battery solvents EC, PC, DMC or EMC.
NASA Technical Reports Server (NTRS)
Chavez, Patrick F.
1987-01-01
The effort at Sandia National Labs. on the methodologies and techniques being used to generate strict hexahedral finite element meshes from a solid model is described. The functionality of the modeler is used to decompose the solid into a set of nonintersecting meshable finite element primitives. The description of the decomposition is exported, via a Boundary Representative format, to the meshing program which uses the information for complete finite element model specification. Particular features of the program are discussed in some detail along with future plans for development which includes automation of the decomposition using artificial intelligence techniques.
Radiolysis of aqueous solutions of thiamine
NASA Astrophysics Data System (ADS)
Chijate, C.; Albarran, G.; Negron-Mendoza, A.
1998-06-01
The results of the radiolysis of aqueous solutions of thiamine (vitamin B 1) are presented. The yields for decomposition of thiamine and the product of radiolytic products were determined. The G values decrease as the dose increases. Some radiolytic products were identified. Decomposition of thiamine was slightly dependent on the presence of oxygen and on the pH of the solution. At pH 4.4 with a concentration of 2.5 × 10 -4 mol L -1 of thiamine in an oxygen free aqueous solution, the G 0 value for decomposition is 5.0.
Decomposition mechanism of chromite in sulfuric acid-dichromic acid solution
NASA Astrophysics Data System (ADS)
Zhao, Qing; Liu, Cheng-jun; Li, Bao-kuan; Jiang, Mao-fa
2017-12-01
The sulfuric acid leaching process is regarded as a promising, cleaner method to prepare trivalent chromium products from chromite; however, the decomposition mechanism of the ore is poorly understood. In this work, binary spinels of Mg-Al, Mg-Fe, and Mg-Cr in the powdered and lump states were synthesized and used as raw materials to investigate the decomposition mechanism of chromite in sulfuric acid-dichromic acid solution. The leaching yields of metallic elements and the changes in morphology of the spinel were studied. The experimental results showed that the three spinels were stable in sulfuric acid solution and that dichromic acid had little influence on the decomposition behavior of the Mg-Al spinel and Mg-Fe spinel because Mg2+, Al3+, and Fe3+ in spinels cannot be oxidized by Cr6+. However, in the case of the Mg-Cr spinel, dichromic acid substantially promoted the decomposition efficiency and functioned as a catalyst. The decomposition mechanism of chromite in sulfuric acid-dichromic acid solution was illustrated on the basis of the findings of this study.
Some aspects of the thermodynamic behaviour of the lead-doped Bi-2223 system
NASA Astrophysics Data System (ADS)
Tetenbaum, M.; Maroni, V. A.
1996-02-01
A thermodynamic assessment of lead-doped Bi-2223 with emphasis on compositions and oxygen partial pressures within the homogeneity region prior to solid-state decomposition is presented. Equations for the variation of oxygen partial pressure with composition and temperature have been derived from our EMF measurements. Long-term metastability was indicated during cycling over a temperature range of ∼ 700-815°C of a lead-doped Bi-2223 sample having an oxygen-deficient stoichiometry of 9.64 prior to solid-state decomposition corresponding to the diphasic CuOCu 2O system. A trend of increasing negative values of the partial molar enthalpy Δ overlineH( O 2) and entropy Δ overlineS( O2 with increasing oxygen deficiency of the condensed phase indicated an increase in ordering of the cuprate structure prior to solid-state decomposition.
Chen, Jin; He, Simin; Huang, Bing; Wu, Peng; Qiao, Zhiqiang; Wang, Jun; Zhang, Liyuan; Yang, Guangcheng; Huang, Hui
2017-03-29
High energy and low signature properties are the future trend of solid propellant development. As a new and promising oxidizer, hexanitrohexaazaisowurtzitane (CL-20) is expected to replace the conventional oxidizer ammonium perchlorate to reach above goals. However, the high pressure exponent of CL-20 hinders its application in solid propellants so that the development of effective catalysts to improve the thermal decomposition properties of CL-20 still remains challenging. Here, 3D hierarchically ordered porous carbon (3D HOPC) is presented as a catalyst for the thermal decomposition of CL-20 via synthesizing a series of nanostructured CL-20/HOPC composites. In these nanocomposites, CL-20 is homogeneously space-confined into the 3D HOPC scaffold as nanocrystals 9.2-26.5 nm in diameter. The effect of the pore textural parameters and surface modification of 3D HOPC as well as CL-20 loading amount on the thermal decomposition of CL-20 is discussed. A significant improvement of the thermal decomposition properties of CL-20 is achieved with remarkable decrease in decomposition peak temperature (from 247.0 to 174.8 °C) and activation energy (from 165.5 to 115.3 kJ/mol). The exceptional performance of 3D HOPC could be attributed to its well-connected 3D hierarchically ordered porous structure, high surface area, and the confined CL-20 nanocrystals. This work clearly demonstrates that 3D HOPC is a superior catalyst for CL-20 thermal decomposition and opens new potential for further applications of CL-20 in solid propellants.
High temperature decomposition of hydrogen peroxide
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor)
2005-01-01
Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.
High Temperature Decomposition of Hydrogen Peroxide
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor)
2004-01-01
Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydropemxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.
Massively Parallel Dantzig-Wolfe Decomposition Applied to Traffic Flow Scheduling
NASA Technical Reports Server (NTRS)
Rios, Joseph Lucio; Ross, Kevin
2009-01-01
Optimal scheduling of air traffic over the entire National Airspace System is a computationally difficult task. To speed computation, Dantzig-Wolfe decomposition is applied to a known linear integer programming approach for assigning delays to flights. The optimization model is proven to have the block-angular structure necessary for Dantzig-Wolfe decomposition. The subproblems for this decomposition are solved in parallel via independent computation threads. Experimental evidence suggests that as the number of subproblems/threads increases (and their respective sizes decrease), the solution quality, convergence, and runtime improve. A demonstration of this is provided by using one flight per subproblem, which is the finest possible decomposition. This results in thousands of subproblems and associated computation threads. This massively parallel approach is compared to one with few threads and to standard (non-decomposed) approaches in terms of solution quality and runtime. Since this method generally provides a non-integral (relaxed) solution to the original optimization problem, two heuristics are developed to generate an integral solution. Dantzig-Wolfe followed by these heuristics can provide a near-optimal (sometimes optimal) solution to the original problem hundreds of times faster than standard (non-decomposed) approaches. In addition, when massive decomposition is employed, the solution is shown to be more likely integral, which obviates the need for an integerization step. These results indicate that nationwide, real-time, high fidelity, optimal traffic flow scheduling is achievable for (at least) 3 hour planning horizons.
2007-10-01
established assuming first order kinetics weighted via an inputted catalyst mass, Mcat (equation 2). catrxn MCk *−=22OHr (2) The...H2O2 (0-50%w/w) solution heat capacity(J/kg*K) M cat Mcat 0.03 Mass of Catalyst (g) Deffhh2o 7.85E-10 Average effective diffusivity of H2O2 into... Mcat *c Rate Law for Elementary 1st Order Irreversible Reaction (mol/((s*m^3)) r H2O rtb -rt Rate Law for Elementary 1st Order Irreversible Reaction
Metallographic study of metallic fragment of lunar surface material
NASA Technical Reports Server (NTRS)
Mints, R. I.; Petukhova, T. M.; Ivanov, A. V.
1974-01-01
A high precision investigation of a metallic fragment from the lunar material returned by the Soviet Luna 16 automatic station revealed three characteristic temperature intervals with different kinetics of solid solution decomposition. The following were found in the structure of the iron-nickel-cobalt alloy: (1) delta-phase and alpha-ferrite of diffusional, displacement origin in the grain boundary and acicular forms; and (2) martensite of isothermal and athermal nature, acicular, lamellar, massive, and dendritic. The diversity of the shapes of structural constituents is associated with the effect on their formation of elastic distortions and various mechanisms of deformation relaxation processes.
Duemichen, E; Braun, U; Senz, R; Fabian, G; Sturm, H
2014-08-08
For analysis of the gaseous thermal decomposition products of polymers, the common techniques are thermogravimetry, combined with Fourier transformed infrared spectroscopy (TGA-FTIR) and mass spectrometry (TGA-MS). These methods offer a simple approach to the decomposition mechanism, especially for small decomposition molecules. Complex spectra of gaseous mixtures are very often hard to identify because of overlapping signals. In this paper a new method is described to adsorb the decomposition products during controlled conditions in TGA on solid-phase extraction (SPE) material: twisters. Subsequently the twisters were analysed with thermal desorption gas chromatography mass spectrometry (TDS-GC-MS), which allows the decomposition products to be separated and identified using an MS library. The thermoplastics polyamide 66 (PA 66) and polybutylene terephthalate (PBT) were used as example polymers. The influence of the sample mass and of the purge gas flow during the decomposition process was investigated in TGA. The advantages and limitations of the method were presented in comparison to the common analysis techniques, TGA-FTIR and TGA-MS. Copyright © 2014 Elsevier B.V. All rights reserved.
Structure and Electronic Spectra of Purine-Methyl Viologen Charge Transfer Complexes
Jalilov, Almaz S.; Patwardhan, Sameer; Singh, Arunoday; Simeon, Tomekia; Sarjeant, Amy A.; Schatz, George C.; Lewis, Frederick D.
2014-01-01
The structure and properties of the electron donor-acceptor complexes formed between methyl viologen (MV) and purine nucleosides and nucleotides in water and the solid state have been investigated using a combination of experimental and theoretical methods. Solution studies were performed using UV-vis and 1H NMR spectroscopy. Theoretical calculations were performed within the framework of density functional theory (DFT). Energy decomposition analysis indicates that dispersion and induction (charge-transfer) interactions dominate the total binding energy, whereas electrostatic interactions are largely repulsive. The appearance of charge transfer bands in the absorption spectra of the complexes are well described by time-dependent (TD) DFT and are further explained in terms of the redox properties of purine monomers and solvation effects. Crystal structures are reported for complexes of methyl viologen with the purines 2′-deoxyguanosine 3′-monophosphate GMP (DAD′DAD′ type) and 7-deazaguanosine zG (DAD′ADAD′ type). Comparison of the structures determined in the solid state and by theoretical methods in solution provides valuable insights into the nature of charge-transfer interactions involving purine bases as electron donors. PMID:24294996
NASA Technical Reports Server (NTRS)
Minier, L.; Behrens, R.; Burkey, T. J.
1997-01-01
The solid phase thermal reaction chemistry of NTO between 190 and 250 C is presently being evaluated by utilizing STMBMS, a technique that enables the authors to measure the vapor pressure of NTO and to explore the reaction mechanisms and chemical kinetics associated with the NTO thermal decomposition process. The vapor pressure of NTO is expressed as Log(sub 10) p(torr) = 12.5137 + 6,296.553(1/t(k)) and the Delta-H(sub subl) = 28.71 +/- 0.07 kcal/mol (120.01 +/- 0.29 kJ/mol). The pyrolysis of NTO results in the formation of gaseous products and a condensed-phase residue. The identity of the major gaseous products and their origin from within the NTO molecules are determined based on the results from pyrolysis of NTO, NTO-3-C-13, NTO-1,2- (15)N2 and NTO-(2)H2. Identification of the products show the major gaseous products to be N2, CO2, NO, HNCO, H2O and some N2O, CO, HCN and NH3. The N2 is mostly derived from the N-1 and N-2 positions with some being from the N-4 and N-1 or N-2 positions. The CO2 is derived from both carbons in the NTO molecule in comparable amounts. The residue has an elemental formula of C(2.1)H(.26)N(2.9)O and FTIR analysis suggests that the residue is polyurea- and polycarbamate- like in nature. The temporal behaviors of the rates of formation of the gaseous products indicate that the overall thermal decomposition of NTO in the temperature range evaluated involves four major processes: (1) NTO sublimation; (2) an apparent solid-solid phase transition between 190 and 195 C; (3) a decomposition regime induced by the presence of exogenous H2O at the onset of decomposition; and (4) a decomposition regime that occurs at the onset of decomposition and continues until the depletion of NTO. Decomposition pathways that are consistent with the data are presented.
NASA Astrophysics Data System (ADS)
Patel, Vinay Kumar; Bhattacharya, Shantanu
2017-09-01
The present study reports a facile solid state green synthesis process using the leaf extracts of Hibiscus rosa-sinensis to synthesize CuO nanorods with average diameters of 15-20 nm and lengths up to 100 nm. The as-synthesized CuO nanorods were characterized by x-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and selected area electron diffraction. The formation mechanism of CuO nanorods has been explained by involving the individual role of amide I (amino groups) and carboxylate groups under excess hydroxyl ions released from NaOH. The catalytic activity of CuO nanorods in thermal decomposition of potassium periodate microparticles (µ-KIO4) microparticles was studied by thermo gravimetric analysis measurement. The original size (~100 µm) of commercially procured potassium periodate was reduced to microscale length scale to about one-tenth by PEG200 assisted emulsion process. The CuO nanorods prepared by solid state green route were found to catalyze the thermal decomposition of µ-KIO4 with a reduction of 18 °C in the final thermal decomposition temperature of potassium periodate.
Optimal mapping of irregular finite element domains to parallel processors
NASA Technical Reports Server (NTRS)
Flower, J.; Otto, S.; Salama, M.
1987-01-01
Mapping the solution domain of n-finite elements into N-subdomains that may be processed in parallel by N-processors is an optimal one if the subdomain decomposition results in a well-balanced workload distribution among the processors. The problem is discussed in the context of irregular finite element domains as an important aspect of the efficient utilization of the capabilities of emerging multiprocessor computers. Finding the optimal mapping is an intractable combinatorial optimization problem, for which a satisfactory approximate solution is obtained here by analogy to a method used in statistical mechanics for simulating the annealing process in solids. The simulated annealing analogy and algorithm are described, and numerical results are given for mapping an irregular two-dimensional finite element domain containing a singularity onto the Hypercube computer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Young Joon; Xu, Yimin; Shaw, Wendy J.
2012-04-19
Ammonia borane (AB = NH3BH3) is one of the most attractive materials for chemical hydrogen storage due to its high hydrogen contents of 19.6 wt.%, however, impurity levels of borazine, ammonia and diborane in conjunction with foaming and exothermic hydrogen release calls for finding ways to mitigate the decomposition reactions. In this paper we present a solution by mixing AB with metal hydrides (TiH2, ZrH2, MgH2 and CaH2) which have endothermic hydrogen release in order to control the heat release and impurity levels from AB upon decomposition. The composite materials were prepared by mechanical ball milling, and their H2 releasemore » properties were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The formation of volatile products from decomposition side reactions, such as borazine (N3B3H6) was determined by mass spectrometry (MS). Sieverts type pressure-composition-temperature (PCT) gas-solid reaction instrument was adopted to observe the kinetics of the H2 release reactions of the combined systems and neat AB. In situ 11B MAS-NMR revealed a destabilized decomposition pathway. We found that by adding specific metal hydrides to AB we can eliminate the impurities and mitigate the heat release.« less
Microstructural Evolution and Phase Formation in 2nd-Generation Refractory-Based High Entropy Alloys
Eshed, Eyal; Larianovsky, Natalya; Kovalevsky, Alexey; Popov, Vladimir; Gorbachev, Igor; Popov, Vladimir; Katz-Demyanetz, Alexander
2018-01-01
Refractory-based high entropy alloys (HEAs) of the 2nd-generation type are new intensively-studied materials with a high potential for structural high-temperature applications. This paper presents investigation results on microstructural evolution and phase formation in as-cast and subsequently heat-treated HEAs at various temperature-time regimes. Microstructural examination was performed by means of scanning electron microscopy (SEM) combined with the energy dispersive spectroscopy (EDS) mode of electron probe microanalysis (EPMA) and qualitative X-ray diffraction (XRD). The primary evolutionary trend observed was the tendency of Zr to gradually segregate as the temperature rises, while all the other elements eventually dissolve in the BCC solid solution phase once the onset of Laves phase complex decomposition is reached. The performed thermodynamic modelling was based on the Calculation of Phase Diagrams method (CALPHAD). The BCC A2 solid solution phase is predicted by the model to contain increasing amounts of Cr as the temperature rises, which is in perfect agreement with the actual results obtained by SEM. However, the model was not able to predict the existence of the Zr-rich phase or the tendency of Zr to segregate and form its own solid solution—most likely as a result of the Zr segregation trend not being an equilibrium phenomenon. PMID:29360763
LLNL demonstration of liquid gun propellant destruction in a 0.1 gallon per minute scale reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cena, R.J.; Thorsness, C.B.; Coburn, T.T.
1994-06-01
The Lawrence Livermore National Laboratory (LLNL) has built and operated a pilot plant for processing oil shale using recirculating hot solids. This pilot plant, was adapted in 1993 to demonstrate the feasibility of decomposing a liquid gun propellant (LGP), LP XM46, a mixture of 76% HAN (NH{sub 3}OHNO{sub 3}) and 24% TEAN (HOCH{sub 2}CH{sub 2}){sub 3} NHNO{sub 3} diluted 1:3 in water. In the Livermore process, the LPG is thermally treated in a moving packed bed of ceramic spheres, where TEAN and HAN decompose, forming a suite of gases including: methane, carbon monoxide, oxygen, nitrogen oxides, ammonia and molecular nitrogen.more » The ceramic spheres are circulated and heated, providing the energy required for thermal decomposition. The authors performed an extended one day (8 hour) test of the solids recirculation system, with continuous injection of approximately 0.1 gal/min of LGP, diluted 1:3 in water, for a period of eight hours. The apparatus operated smoothly over the course of the eight hour run during which 144 kg of solution was processed, containing 36 kg of LGP. Continuous on-line gas analysis was invaluable in tracking the progress of the experiment and quantifying the decomposition products. The reactor was operated in two modes, a {open_quotes}Pyrolysis{close_quotes} mode, where decomposition products were removed from the moving bed reactor exit, passing through condensers to a flare, and in a {open_quotes}Combustion{close_quotes} mode, where the products were oxidized in air lift pipe prior to exiting the system. In the {open_quotes}Pyrolysis{close_quotes} mode, driver gases were recycled producing a small, concentrated stream of decomposition products. In the {open_quotes}Combustion mode{close_quotes}, the driver gases were not recycled, resulting in 40 times higher gas flow rates and correspondingly lower concentrations of nitrogen bearing gases.« less
NASA Astrophysics Data System (ADS)
Al-Kamal, Ahmed Kamal
Nanostructured powders of TiO2 and Ag-doped TiO2 are synthesized by a novel pulsed-laser process that combines laser ablation of a silver (Ag) disc with laser decomposition of a titanium tetra-isopropoxide (TTIP) solution. Nanoparticles are formed by rapid condensation of vaporized species in the plasma plume generated by the high power laser, resulting in the formation of rapidly quenched Ag-doped TiO2 nanoparticles that have far-from-equilibrium or metastable structures. The uniqueness of the new ablation process is that it is a one-step process, in contrast to the two-step process developed by previous researchers in the field. Moreover, its ability to synthesize an extended-solid solution phase of Ag in TiO 2 may also be unique. The present work implies that other oxide phases, such as Al2O3, MgO and MgAl2O4, can be doped with normally insoluble metals, such as Pt and Ir, thus opening new opportunities for catalytic applications. Again, there is the prospect of being able to synthesize nanopowders of diamond, c-BN, and mixtures thereof, which are of interest for applications in machine tools, rock-drill bits, and lightweight armor. A wet-chemistry method is also investigated, which has much in common with that adopted by previous workers in the field. However, photo-voltaic properties do not measure up to expectations based on published data. A possible explanation is that the selected Ag concentrations are too high, so that recombination of holes and electrons occurs via a quantum-tunneling mechanism reduces photo-activity. Future work, therefore, will investigate lower concentrations of Ag dopant in TiO2, while also examining the effects of metastable states, including extended solid solution, amorphous, and semi-crystalline structures.
High temperature decomposition of hydrogen peroxide
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor)
2004-01-01
Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.
High temperature decomposition of hydrogen peroxide
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor)
2011-01-01
Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.
Acid and alkali effects on the decomposition of HMX molecule: a computational study.
Zhang, Chaoyang; Li, Yuzhen; Xiong, Ying; Wang, Xiaolin; Zhou, Mingfei
2011-11-03
The stored and wasted explosives are usually in an acid or alkali environment, leading to the importance of exploring the acid and alkali effects on the decomposition mechanism of explosives. The acid and alkali effects on the decomposition of HMX molecule in gaseous state and in aqueous solution at 298 K are studied using quantum chemistry and molecular force field calculations. The results show that both H(+) and OH(-) make the decomposition in gaseous state energetically favorable. However, the effect of H(+) is much different from that of OH(-) in aqueous solution: OH(-) can accelerate the decomposition but H(+) cannot. The difference is mainly caused by the large aqueous solvation energy difference between H(+) and OH(-). The results confirm that the dissociation of HMX is energetically favored only in the base solutions, in good agreement with previous HMX base hydrolysis experimental observations. The different acid and alkali effects on the HMX decomposition are dominated by the large aqueous solvation energy difference between H(+) and OH(-).
In situ Low-temperature Pair Distribution Function (PDF) Analysis of CH4 and CO2 Hydrates
NASA Astrophysics Data System (ADS)
Cladek, B.; Everett, M.; McDonnell, M.; Tucker, M.; Keffer, D.; Rawn, C.
2017-12-01
Gas hydrates occur in ocean floor and sub-surface permafrost deposits and are stable at moderate to high pressures and low temperatures. They are a clathrate structure composed of hydrogen bonded water cages that accommodate a wide variety of guest molecules. CO2 and CH4 hydrates both crystallize as the cubic sI hydrate and can form a solid solution. Natural gas hydrates are interesting as a potential methane source and for CO2 sequestration. Long-range diffraction studies on gas hydrates give valuable structural information but do not provide a detailed understanding of the disordered gas molecule interactions with the host lattice. In-situ low temperature total scattering experiments combined with pair distribution function (PDF) analysis are used to investigate the gas molecule motions and guest-cage interactions. CO2 and methane hydrates exhibit different decomposition behavior, and CO2 hydrate has a smaller lattice parameter despite it being a relatively larger molecule. Total scattering studies characterizing both the short- and long-range order simultaneously help to elucidate the structural source of these phenomena. Low temperature neutron total scattering data were collected using the Nanoscale Ordered MAterials Diffractometer (NOMAD) beamline at the Spallation Neutron Source (SNS) on CO2 and CH4 hydrates synthesized with D2O. Guest molecule motion within cages and interactions between gases and cages are investigated through the hydrate stability and decomposition regions. Data were collected from 2-80 K at a pressure of 55 mbar on CO2 and CH4 hydrates, and from 80-270 K at 25 bar on CH4 hydrate. The hydrate systems were modeled with classical molecular dynamic (MD) simulations to provide an analysis of the total energy into guest-guest, guest-host and host-host contributions. Combined Reitveld and Reverse Monte Carlo (RMC) structure refinement were used to fit models of the data. This combined modeling and simulation characterizes the effects of CO2 and CH4 as guest molecules on the structure and decomposition of gas hydrates. Structure and thermodynamic studies will provide a more comprehensive understanding of CO2-CH4 solid solutions, exchange kinetics, and implications on hydrate structure.
BIOLEACH: Coupled modeling of leachate and biogas production on solid waste landfills
NASA Astrophysics Data System (ADS)
Rodrigo-Clavero, Maria-Elena; Rodrigo-Ilarri, Javier
2015-04-01
One of the most important factors to address when performing the environmental impact assessment of urban solid waste landfills is to evaluate the leachate production. Leachate management (collection and treatment) is also one of the most relevant economical aspects to take into account during the landfill life. Leachate is formed as a solution of biological and chemical components during operational and post-operational phases on urban solid waste landfills as a combination of different processes that involve water gains and looses inside the solid waste mass. Infiltration of external water coming from precipitation is the most important component on this water balance. However, anaerobic waste decomposition and biogas formation processes play also a role on the balance as water-consuming processes. The production of leachate one biogas is therefore a coupled process. Biogas production models usually consider optimal conditions of water content on the solid waste mass. However, real conditions during the operational phase of the landfill may greatly differ from these optimal conditions. In this work, the first results obtained to predict both the leachate and the biogas production as a single coupled phenomenon on real solid waste landfills are shown. The model is applied on a synthetic case considering typical climatological conditions of Mediterranean catchments.
Spatial, temporal, and hybrid decompositions for large-scale vehicle routing with time windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, Russell W
This paper studies the use of decomposition techniques to quickly find high-quality solutions to large-scale vehicle routing problems with time windows. It considers an adaptive decomposition scheme which iteratively decouples a routing problem based on the current solution. Earlier work considered vehicle-based decompositions that partitions the vehicles across the subproblems. The subproblems can then be optimized independently and merged easily. This paper argues that vehicle-based decompositions, although very effective on various problem classes also have limitations. In particular, they do not accommodate temporal decompositions and may produce spatial decompositions that are not focused enough. This paper then proposes customer-based decompositionsmore » which generalize vehicle-based decouplings and allows for focused spatial and temporal decompositions. Experimental results on class R2 of the extended Solomon benchmarks demonstrates the benefits of the customer-based adaptive decomposition scheme and its spatial, temporal, and hybrid instantiations. In particular, they show that customer-based decompositions bring significant benefits over large neighborhood search in contrast to vehicle-based decompositions.« less
Generalized decompositions of dynamic systems and vector Lyapunov functions
NASA Astrophysics Data System (ADS)
Ikeda, M.; Siljak, D. D.
1981-10-01
The notion of decomposition is generalized to provide more freedom in constructing vector Lyapunov functions for stability analysis of nonlinear dynamic systems. A generalized decomposition is defined as a disjoint decomposition of a system which is obtained by expanding the state-space of a given system. An inclusion principle is formulated for the solutions of the expansion to include the solutions of the original system, so that stability of the expansion implies stability of the original system. Stability of the expansion can then be established by standard disjoint decompositions and vector Lyapunov functions. The applicability of the new approach is demonstrated using the Lotka-Volterra equations.
Li, Juchuan; Dudney, Nancy J; Nanda, Jagjit; Liang, Chengdu
2014-07-09
Electrochemical degradation on silicon (Si) anodes prevents them from being successfully used in lithium (Li)-ion battery full cells. Unlike the case of graphite anodes, the natural solid electrolyte interphase (SEI) films generated from carbonate electrolytes do not self-passivate on Si, causing continuous electrolyte decomposition and loss of Li ions. In this work, we aim at solving the issue of electrochemical degradation by fabricating artificial SEI films using a solid electrolyte material, lithium phosphorus oxynitride (Lipon), which conducts Li ions and blocks electrons. For Si anodes coated with Lipon of 50 nm or thicker, a significant effect is observed in suppressing electrolyte decomposition, while Lipon of thinner than 40 nm has a limited effect. Ionic and electronic conductivity measurements reveal that the artificial SEI is effective when it is a pure ionic conductor, but electrolyte decomposition is only partially suppressed when the artificial SEI is a mixed electronic-ionic conductor. The critical thickness for this transition in conducting behavior is found to be 40-50 nm. This work provides guidance for designing artificial SEI films for high-capacity Li-ion battery electrodes using solid electrolyte materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudney, Nancy J; Nanda, Jagjit; Liang, Chengdu
2014-01-01
Electrochemical degradation on Si anodes prevents them from being successfully used in lithium-ion full cells. Unlike the case of graphite anodes, natural solid electrolyte interphase (SEI) films generated from carbonate electrolyte do not self-passivate on Si and causes continuous electrolyte decomposition. In this work we aim at solving the issue of electrochemical degradation by fabricating artificial SEI films using a solid electrolyte material, lithium phosphor oxynitride (Lipon), that conducts Li ions and blocks electrons. For Si anodes coated with Lipon of 50 nm or thicker, significant effect is observed in suppressing the electrolyte decomposition, while Lipon of thinner than 40more » nm has little effect. Ionic and electronic conductivity measurement reveals that the artificial SEI is effective when it is a pure ionic conductor, and the electrolyte decomposition is not suppressed when the artificial SEI is a mixed electronic-ionic conductor. The critical thickness for this transition in conducting behavior is found to be 40~50 nm. This work provides guidance for designing artificial SEI for high capacity lithium-ion battery electrodes using solid electrolyte materials.« less
NASA Technical Reports Server (NTRS)
Kuo, Kenneth K.; Lu, Yeu-Cherng; Chiaverini, Martin J.; Johnson, David K.; Serin, Nadir; Risha, Grant A.; Merkle, Charles L.; Venkateswaran, Sankaran
1996-01-01
This final report summarizes the major findings on the subject of 'Fundamental Phenomena on Fuel Decomposition and Boundary-Layer Combustion Processes with Applications to Hybrid Rocket Motors', performed from 1 April 1994 to 30 June 1996. Both experimental results from Task 1 and theoretical/numerical results from Task 2 are reported here in two parts. Part 1 covers the experimental work performed and describes the test facility setup, data reduction techniques employed, and results of the test firings, including effects of operating conditions and fuel additives on solid fuel regression rate and thermal profiles of the condensed phase. Part 2 concerns the theoretical/numerical work. It covers physical modeling of the combustion processes including gas/surface coupling, and radiation effect on regression rate. The numerical solution of the flowfield structure and condensed phase regression behavior are presented. Experimental data from the test firings were used for numerical model validation.
Dhyani, Vaibhav; Kumar Awasthi, Mukesh; Wang, Quan; Kumar, Jitendra; Ren, Xiuna; Zhao, Junchao; Chen, Hongyu; Wang, Meijing; Bhaskar, Thallada; Zhang, Zengqiang
2018-03-01
In this work, the influence of composting on the thermal decomposition behavior and decomposition kinetics of pig manure-derived solid wastes was analyzed using thermogravimetry. Wheat straw, biochar, zeolite, and wood vinegar were added to pig manure during composting. The composting was done in the 130 L PVC reactors with 100 L effective volume for 50 days. The activation energy of pyrolysis of samples before and after composting was calculated using Friedman's method, while the pre-exponential factor was calculated using Kissinger's equation. It was observed that composting decreased the volatile content of all the samples. The additives when added together in pig manure lead to a reduction in the activation energy of decomposition, advocating the presence of simpler compounds in the compost material in comparison with the complex feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.
Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode.
Camacho-Forero, Luis E; Balbuena, Perla B
2017-11-22
The lithium metal anode is one of the key components of the lithium-sulfur (Li-S) batteries, which are considered one of the most promising candidates for the next generation of battery systems. However, one of the main challenges that have prevented Li-metal anodes from becoming feasible to be used in commercial batteries is the continuous decomposition of the electrolyte due to its high reactivity, which leads to the formation of solid-electrolyte interphase (SEI) layers. The properties of the SEI can dramatically affect the performance of the batteries. Thus, a rigorous understanding of the electrolyte decomposition is crucial to elucidate improvements in performance of the Li-S technology. In this work, using density functional theory (DFT) and ab initio molecular dynamics simulations (AIMD), we investigate the effect of electron-rich environments on the decomposition mechanism of electrolyte species in pure 1,2-dimethoxyethane (DME) solvent and 1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(fluorosulfonyl)imide (LiFSI) salt solutions. It is found that systems with pure DME require an average environment of at least ∼0.9 |e| per molecule for a DME to decompose into CH 3 O - and C 2 H 4 2- via a 4-electron transfer. In the case of mixtures, the salts are very prone to react with any excess of electrons. In addition, DME dehydrogenation due to reactions with fragments coming from the salt decompositions was detected. Formation of oligomer anionic species from DME and salt fragments were also identified from the AIMD simulations. Finally, the thermodynamics and kinetics of the most relevant electrolyte decomposition reactions were characterized. DME decomposition reactions predicted from the AIMD simulations were found to be thermodynamically favorable under exposure to Li atoms and/or by reactions with salt fragments. In most cases, these reactions were shown to have low to moderate activation barriers.
Microbial ecological succession during municipal solid waste decomposition.
Staley, Bryan F; de Los Reyes, Francis L; Wang, Ling; Barlaz, Morton A
2018-04-28
The decomposition of landfilled refuse proceeds through distinct phases, each defined by varying environmental factors such as volatile fatty acid concentration, pH, and substrate quality. The succession of microbial communities in response to these changing conditions was monitored in a laboratory-scale simulated landfill to minimize measurement difficulties experienced at field scale. 16S rRNA gene sequences retrieved at separate stages of decomposition showed significant succession in both Bacteria and methanogenic Archaea. A majority of Bacteria sequences in landfilled refuse belong to members of the phylum Firmicutes, while Proteobacteria levels fluctuated and Bacteroidetes levels increased as decomposition proceeded. Roughly 44% of archaeal sequences retrieved under conditions of low pH and high acetate were strictly hydrogenotrophic (Methanomicrobiales, Methanobacteriales). Methanosarcina was present at all stages of decomposition. Correspondence analysis showed bacterial population shifts were attributed to carboxylic acid concentration and solids hydrolysis, while archaeal populations were affected to a higher degree by pH. T-RFLP analysis showed specific taxonomic groups responded differently and exhibited unique responses during decomposition, suggesting that species composition and abundance within Bacteria and Archaea are highly dynamic. This study shows landfill microbial demographics are highly variable across both spatial and temporal transects.
NASA Astrophysics Data System (ADS)
Benner, Ronald; Hatcher, Patrick G.; Hedges, John I.
1990-07-01
Changes in the chemical composition of mangrove ( Rhizophora mangle) leaves during decomposition in tropical estuarine waters were characterized using solid-state 13C nuclear magnetic resonance (NMR) and elemental (CHNO) analysis. Carbohydrates were the most abundant components of the leaves accounting for about 50 wt% of senescent tissues. Tannins were estimated to account for about 20 wt% of leaf tissues, and lipid components, cutin, and possibly other aliphatic biopolymers in leaf cuticles accounted for about 15 wt%. Carbohydrates were generally less resistant to decomposition than the other constituents and decreased in relative concentration during decomposition. Tannins were of intermediate resistance to decomposition and remained in fairly constant proportion during decomposition. Paraffinic components were very resistant to decomposition and increased in relative concentration as decomposition progressed. Lignin was a minor component of all leaf tissues. Standard methods for the colorimetric determination of tannins (Folin-Dennis reagent) and the gravimetric determination of lignin (Klason lignin) were highly inaccurate when applied to mangrove leaves. The N content of the leaves was particularly dynamic with values ranging from 1.27 wt% in green leaves to 0.65 wt% in senescent yellow leaves attached to trees. During decomposition in the water the N content initially decreased to 0.51 wt% due to leaching, but values steadily increased thereafter to 1.07 wt% in the most degraded leaf samples. The absolute mass of N in the leaves increased during decomposition indicating that N immobilization was occurring as decomposition progressed.
Benner, R.; Hatcher, P.G.; Hedges, J.I.
1990-01-01
Changes in the chemical composition of mangrove (Rhizophora mangle) leaves during decomposition in tropical estuarine waters were characterized using solid-state 13C nuclear magnetic resonance (NMR) and elemental (CHNO) analysis. Carbohydrates were the most abundant components of the leaves accounting for about 50 wt% of senescent tissues. Tannins were estimated to account for about 20 wt% of leaf tissues, and lipid components, cutin, and possibly other aliphatic biopolymers in leaf cuticles accounted for about 15 wt%. Carbohydrates were generally less resistant to decomposition than the other constituents and decreased in relative concentration during decomposition. Tannins were of intermediate resistance to decomposition and remained in fairly constant proportion during decomposition. Paraffinic components were very resistant to decomposition and increased in relative concentration as decomposition progressed. Lignin was a minor component of all leaf tissues. Standard methods for the colorimetric determination of tannins (Folin-Dennis reagent) and the gravimetric determination of lignin (Klason lignin) were highly inaccurate when applied to mangrove leaves. The N content of the leaves was particularly dynamic with values ranging from 1.27 wt% in green leaves to 0.65 wt% in senescent yellow leaves attached to trees. During decomposition in the water the N content initially decreased to 0.51 wt% due to leaching, but values steadily increased thereafter to 1.07 wt% in the most degraded leaf samples. The absolute mass of N in the leaves increased during decomposition indicating that N immobilization was occurring as decomposition progressed. ?? 1990.
NASA Technical Reports Server (NTRS)
DeSilva, J .H. S. R.; Udinwe, V.; Sideris, P. J.; Smart, M. C.; Krause, F. C.; Hwang, C.; Smith, K. A.; Greenbaum, S. G.
2012-01-01
Solid electrolyte interphase (SEI) formation in lithium ion cells prepared with advanced electrolytes is investigated by solid state multinuclear (7Li, 19F, 31P) magnetic resonance (NMR) measurements of electrode materials harvested from cycled cells subjected to an accelerated aging protocol. The electrolyte composition is varied to include the addition of fluorinated carbonates and triphenyl phosphate (TPP, a flame retardant). In addition to species associated with LiPF6 decomposition, cathode NMR spectra are characterized by the presence of compounds originating from the TPP additive. Substantial amounts of LiF are observed in the anodes as well as compounds originating from the fluorinated carbonates.
Methods and systems for producing syngas
Hawkes, Grant L; O& #x27; Brien, James E; Stoots, Carl M; Herring, J. Stephen; McKellar, Michael G; Wood, Richard A; Carrington, Robert A; Boardman, Richard D
2013-02-05
Methods and systems are provided for producing syngas utilizing heat from thermochemical conversion of a carbonaceous fuel to support decomposition of at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells. Simultaneous decomposition of carbon dioxide and water or steam by one or more solid-oxide electrolysis cells may be employed to produce hydrogen and carbon monoxide. A portion of oxygen produced from at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells is fed at a controlled flow rate in a gasifier or combustor to oxidize the carbonaceous fuel to control the carbon dioxide to carbon monoxide ratio produced.
NASA Astrophysics Data System (ADS)
Owens, F. J.; Sharma, J.
1980-03-01
Solid samples of 1,3,5, trinitro 1,3,5, triazacyclohexane (RDX), trinitrotoluene (TNT), and ammonium nitrate were subjected to shock pulses of strength and duration less than the threshold to cause detonation. The recovered shocked samples were studied by x-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). The results of these measurements indicate that the shock pulse either broke or altered the internal bonds of the molecules of the solid. The results of the shock decomposition are compared with measurements of the uv and slow thermal decomposition of these materials using the same experimental techniques.
Dialysis system. [using ion exchange resin membranes permeable to urea molecules
NASA Technical Reports Server (NTRS)
Mueller, W. A. (Inventor)
1978-01-01
The improved hemodialysis system utilizes a second polymeric membrane having dialyzate in contact with one surface and a urea decomposition solution in contact with the other surface. The membrane selectively passes urea from the dialyzate into the decomposition solution, while preventing passage of positively charged metal ions from the dialyzate into the solution and ammonium ions from the solution into the dialyzate.
Zhou, Chao; Zhao, Yufei; Bian, Tong; Shang, Lu; Yu, Huijun; Wu, Li-Zhu; Tung, Chen-Ho; Zhang, Tierui
2013-10-28
Hierarchical Sn2Nb2O7 hollow spheres were prepared for the first time via a facile hydrothermal route using bubbles generated in situ from the decomposition of urea as soft templates. The as-obtained hollow spheres with a large specific surface area of 58.3 m(2) g(-1) show improved visible-light-driven photocatalytic H2 production activity in lactic acid aqueous solutions, about 4 times higher than that of the bulk Sn2Nb2O7 sample prepared by a conventional high temperature solid state reaction method.
Study on Kinetic Mechanism of Bastnaesite Concentrates Decomposition Using Calcium Hydroxide
NASA Astrophysics Data System (ADS)
Cen, Peng; Wu, Wenyuan; Bian, Xue
2018-06-01
The thermal decomposition of bastnaesite concentrates using calcium hydroxide was studied. Calcium hydroxide can effectively inhibit the emission of fluorine during roasting by transforming it to calcium fluoride. The decomposition rate increased with increasing reaction temperature and amount of calcium hydroxide. The decomposition kinetics were investigated. The decomposition reaction was determined to be a heterogeneous gas-solid reaction, and it followed an unreacted shrinking core model. By means of the integrated rate equation method, the reaction was proven to be kinetically first order. Different reaction models were fit to the experimental data to determine the reaction control process. The chemical reaction at the phase interface controlled the reaction rate in the temperatures ranging from 673 K to 773 K (400 °C to 500 °C) with an apparent activation energy of 82.044 kJ·mol-1. From 773 K to 973 K (500 °C to 700 °C), diffusion through the solid product's layer became the determining step, with a lower activation energy of 15.841 kJ·mol-1.
Episodic Tremor and Slip (ETS) as a chaotic multiphysics spring
NASA Astrophysics Data System (ADS)
Veveakis, E.; Alevizos, S.; Poulet, T.
2017-03-01
Episodic Tremor and Slip (ETS) events display a rich behaviour of slow and accelerated slip with simple oscillatory to complicated chaotic time series. It is commonly believed that the fast events appearing as non volcanic tremors are signatures of deep fluid injection. The fluid source is suggested to be related to the breakdown of hydrous phyllosilicates, mainly the serpentinite group minerals such as antigorite or lizardite that are widespread in the top of the slab in subduction environments. Similar ETS sequences are recorded in different lithologies in exhumed crustal carbonate-rich thrusts where the fluid source is suggested to be the more vigorous carbonate decomposition reaction. If indeed both types of events can be understood and modelled by the same generic fluid release reaction AB(solid) ⇌A(solid) +B(fluid) , the data from ETS sequences in subduction zones reveal a geophysically tractable temporal evolution with no access to the fault zone. This work reviews recent advances in modelling ETS events considering the multiphysics instabilities triggered by the fluid release reaction and develops a thermal-hydraulic-mechanical-chemical oscillator (THMC spring) model for such mineral reactions (like dehydration and decomposition) in Megathrusts. We describe advanced computational methods for THMC instabilities and discuss spectral element and finite element solutions. We apply the presented numerical methods to field examples of this important mechanism and reproduce the temporal signature of the Cascadia and Hikurangi trench with a serpentinite oscillator.
NASA Astrophysics Data System (ADS)
Ee, Tang Zo; Lim, Steven; Ling, Pang Yean; Huei, Wong Kam; Chyuan, Ong Hwai
2017-04-01
Experiment was carried out to study the feasibility of biomass derived solid acid catalyst for the production of biodiesel using Palm Fatty Acid Distillate (PFAD). Malaysia indigenous seaweed was selected as the biomass to be carbonized as the catalyst support. Sulfonation of seaweed based carbon material was carried out by thermal decomposition of ammonium sulfate, (NH4)2SO4. The effects of carbonization temperature at 200 to 600°C on the catalyst physical and chemical properties were studied. The effect of reaction parameters on the fatty acid methyl ester (FAME) yield was studied by varying the concentration of ammonium sulfate (5.0 to 40.0 w/v%) and thermal decomposition time (15 to 90 min). Characterizations of catalyst were carried out to study the catalyst surface morphology with Scanning Electron Microscope (SEM), acid density with back titration and functional group attached with FT-IR. Results showed that when the catalyst sulfonated with 10.0 w/v% ammonium sulfate solution and heated to 235°C for 30 min, the highest FAME yield achieved was 23.7% at the reaction condition of 5.0 wt.% catalyst loading, esterification time of 4 h, methanol to PFAD molar ratio of 20:1 at 100°C reaction temperature.
Indefinitely stable iron(IV) cage complexes formed in water by air oxidation
NASA Astrophysics Data System (ADS)
Tomyn, Stefania; Shylin, Sergii I.; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O.
2017-01-01
In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge.
Indefinitely stable iron(IV) cage complexes formed in water by air oxidation.
Tomyn, Stefania; Shylin, Sergii I; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O
2017-01-19
In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge.
Indefinitely stable iron(IV) cage complexes formed in water by air oxidation
Tomyn, Stefania; Shylin, Sergii I.; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O.
2017-01-01
In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge. PMID:28102364
Concentration Waves in High-Entropy Alloys - a new alloy design approach
NASA Astrophysics Data System (ADS)
Singh, Prashant; Johnson, Duane D.
2015-03-01
Chemical short-range order (SRO) in solid solutions can be interpreted as a ``concentration wave'' - a Fourier decomposition of nascent order - identified experimentally via Warren-Cowley SRO parameters. We present a rigorous thermodynamic theory to predict and uniquely interpret the SRO in N -component alloys. Based on KKR-CPA electronic structure, we implemented this method using thermodynamic linear-response to include all alloying effects, e.g., band-filling, hybridization, Fermi -surface nesting and van Hove instabilities. We apply this first-principles method to high-entropy alloys (HEAs), i.e., solid solutions with N >4 that inhibit small-cell order due to large entropy competing against ordering enthalpy, as their properties are sensitive to SRO. We validated theory with comparison to experiments in A2 Nb-Al-Ti and A1 Cu-Ni-Zn . We then predict and analyze SRO and mechanical trends in Ni-Ti-Zr-Cu-Al and Co-Cr-Fe-Mn-Ni systems - showcasing this new first-principles-based alloy design method. Work was supported by the USDoE, Office of Sci., Basic Energy Sci., Materials Sci. and Eng. Division for `Materials Discovery.' Research was performed at Ames Lab, operated by Iowa State University under Contract #DE-AC02-07CH11358.
Energy recovery from solid waste. Volume 2: Technical report. [pyrolysis and biodegradation
NASA Technical Reports Server (NTRS)
Huang, C. J.; Dalton, C.
1975-01-01
A systems analysis of energy recovery from solid waste demonstrates the feasibility of several current processes for converting solid waste to an energy form. The social, legal, environmental, and political factors are considered in depth with recommendations made in regard to new legislation and policy. Biodegradation and thermal decomposition are the two areas of disposal that are considered with emphasis on thermal decomposition. A technical and economic evaluation of a number of available and developing energy-recovery processes is given. Based on present technical capabilities, use of prepared solid waste as a fuel supplemental to coal seems to be the most economic process by which to recover energy from solid waste. Markets are considered in detail with suggestions given for improving market conditions and for developing market stability. A decision procedure is given to aid a community in deciding on its options in dealing with solid waste, and a new pyrolysis process is suggested. An application of the methods of this study are applied to Houston, Texas.
NASA Astrophysics Data System (ADS)
Xie, Dexuan
2014-10-01
The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model in the calculation of electrostatic potential energy for biomolecules in ionic solvent, but its numerical solution remains a challenge due to its strong singularity and nonlinearity caused by its singular distribution source terms and exponential nonlinear terms. To effectively deal with such a challenge, in this paper, new solution decomposition and minimization schemes are proposed, together with a new PBE analysis on solution existence and uniqueness. Moreover, a PBE finite element program package is developed in Python based on the FEniCS program library and GAMer, a molecular surface and volumetric mesh generation program package. Numerical tests on proteins and a nonlinear Born ball model with an analytical solution validate the new solution decomposition and minimization schemes, and demonstrate the effectiveness and efficiency of the new PBE finite element program package.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Eirin, E-mail: esulliv@ilstu.edu; Avdeev, Maxim; Blom, Douglas A.
2015-10-15
Single-phase ordered oxyfluorides Na{sub 3}WO{sub 4}F, Na{sub 3}MoO{sub 4}F and their mixed members Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F can be prepared via facile solid state reaction of Na{sub 2}MO{sub 4}·2H{sub 2}O (M=W, Mo) and NaF. Phases produced from incongruent melts are metastable, but lower temperatures allow for a facile one-step synthesis. In polycrystalline samples of Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F, the presence of Mo stabilizes the structure against decomposition to spinel phases. Photoluminescence studies show that upon excitation with λ=254 nm and λ=365 nm, Na{sub 3}WO{sub 4}F and Na{sub 3}MoO{sub 4}F exhibit broad emission maxima centered around 485 nm. Thesemore » materials constitute new members of the family of self-activating ordered oxyfluoride phosphors with anti-perovskite structures which are amenable to doping with emitters such as Eu{sup 3+}. - Graphical abstract: Directed synthesis of the ordered oxyfluorides Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F (0≤x≤1) has shown that a complete solid solution is attainable and provides the first example of photoluminescence in these materials. - Highlights: • Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F is a complete solid solution with hexagonal anti-perovskite structure. • The presence of even small amounts of Mo stabilizes the structure against decomposition. • Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F has broad emissions centered ≈485 nm (λ{sub ex}=254 nm and λ{sub ex}=365 nm). • These materials constitute a new family of self-activated oxyfluoride phosphors. • Na{sub 3}W{sub 1−x}Mo{sub x}O{sub 4}F materials are amenable to doping with emitters such as Eu{sup 3+}.« less
Laboratory studies of 2H evaporator scale dissolution in dilute nitric acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oji, L.
The rate of 2H evaporator scale solids dissolution in dilute nitric acid has been experimentally evaluated under laboratory conditions in the SRNL shielded cells. The 2H scale sample used for the dissolution study came from the bottom of the evaporator cone section and the wall section of the evaporator cone. The accumulation rate of aluminum and silicon, assumed to be the two principal elemental constituents of the 2H evaporator scale aluminosilicate mineral, were monitored in solution. Aluminum and silicon concentration changes, with heating time at a constant oven temperature of 90 deg C, were used to ascertain the extent ofmore » dissolution of the 2H evaporator scale mineral. The 2H evaporator scale solids, assumed to be composed of mostly aluminosilicate mineral, readily dissolves in 1.5 and 1.25 M dilute nitric acid solutions yielding principal elemental components of aluminum and silicon in solution. The 2H scale dissolution rate constant, based on aluminum accumulation in 1.5 and 1.25 M dilute nitric acid solution are, respectively, 9.21E-04 ± 6.39E-04 min{sup -1} and 1.07E-03 ± 7.51E-05 min{sup -1}. Silicon accumulation rate in solution does track the aluminum accumulation profile during the first few minutes of scale dissolution. It however diverges towards the end of the scale dissolution. This divergence therefore means the aluminum-to-silicon ratio in the first phase of the scale dissolution (non-steady state conditions) is different from the ratio towards the end of the scale dissolution. Possible causes of this change in silicon accumulation in solution as the scale dissolution progresses may include silicon precipitation from solution or the 2H evaporator scale is a heterogeneous mixture of aluminosilicate minerals with several impurities. The average half-life for the decomposition of the 2H evaporator scale mineral in 1.5 M nitric acid is 12.5 hours, while the half-life for the decomposition of the 2H evaporator scale in 1.25 M nitric acid is 10.8 hours. Based on averaging the two half-lives from the 2H scale acid dissolution in 1.25 and 1.5 M nitric acid solutions, a reasonable half-live for the dissolution of 2H scales in dilute nitric acid is 11.7 ± 1.3 hours. The plant operational time for chemically cleaning (soaking) the 2H evaporator with dilute nitric acid is 32 hours. It therefore may require about 3 half-lives or less to completely dissolve most of the scales in the Evaporator pot which come into contact with the dilute nitric acid solution. On a mass basis, the Al-to-Si ratio for the scale dissolution in 1.5 M nitric acid averaged 1.30 ± 0.20 and averaged 1.18 ± 0.10 for the 2H scale dissolution in 1.25 M nitric acid. These aluminum-to-silicon ratios are in fairly good agreement with ratios from previous studies. Therefore, there is still more aluminum in the 2H evaporator scales than silicon which implies that there are no significant changes in scale properties which will exclude nitric acid as a viable protic solvent for aluminosilicate scale buildup dissolution from the 2H evaporator. Overall, the monitoring of the scale decomposition reaction in 1.25 and 1.5 M nitric acid may be better ascertained through the determination of aluminum concentration in solution than monitoring silicon in solution. Silicon solution chemistry may lead to partial precipitating of silicon with time as the scale and acid solution is heated.« less
NASA Astrophysics Data System (ADS)
L'vov, Boris V.
2008-02-01
This paper sums up the evolution of thermochemical approach to the interpretation of solid decompositions for the past 25 years. This period includes two stages related to decomposition studies by different techniques: by ET AAS and QMS in 1981-2001 and by TG in 2002-2007. As a result of ET AAS and QMS investigations, the method for determination of absolute rates of solid decompositions was developed and the mechanism of decompositions through the congruent dissociative vaporization was discovered. On this basis, in the period from 1997 to 2001, the decomposition mechanisms of several classes of reactants were interpreted and some unusual effects observed in TA were explained. However, the thermochemical approach has not received any support by other TA researchers. One of the potential reasons of this distrust was the unreliability of the E values measured by the traditional Arrhenius plot method. The theoretical analysis and comparison of metrological features of different methods used in the determinations of thermochemical quantities permitted to conclude that in comparison with the Arrhenius plot and second-law methods, the third-law method is to be very much preferred. However, this method cannot be used in the kinetic studies by the Arrhenius approach because its use suggests the measuring of the equilibrium pressures of decomposition products. On the contrary, the method of absolute rates is ideally suitable for this purpose. As a result of much higher precision of the third-law method, some quantitative conclusions that follow from the theory were confirmed, and several new effects, which were invisible in the framework of the Arrhenius approach, have been revealed. In spite of great progress reached in the development of reliable methodology, based on the third-law method, the thermochemical approach remains unclaimed as before.
Stability of chromium (III) sulfate in atmospheres containing oxygen and sulfur
NASA Technical Reports Server (NTRS)
Jacob, K. T.; Rao, B. D.; Nelson, H. G.
1978-01-01
The stability of chromium sulfate in the temperature range from 880 K to 1040 K was determined by employing a dynamic gas-solid equilibration technique. The solid chromium sulfate was equilibrated in a gas stream of controlled SO3 potential. Thermogravimetric and differential thermal analyses were used to follow the decomposition of chromium sulfate. X-ray diffraction analysis indicated that the decomposition product was crystalline Cr2O3 and that the mutual solubility between Cr2(SO4)3 and Cr2O3 was negligible. Over the temperature range investigated, the decomposition pressure were significantly high so that chromium sulfate is not expected to form on commercial alloys containing chromium when exposed to gaseous environments containing oxygen and sulfur (such as those encountered in coal gasification).
Leung, Kevin; Budzien, Joanne L
2010-07-07
The decomposition of ethylene carbonate (EC) during the initial growth of solid-electrolyte interphase (SEI) films at the solvent-graphitic anode interface is critical to lithium ion battery operations. Ab initio molecular dynamics simulations of explicit liquid EC/graphite interfaces are conducted to study these electrochemical reactions. We show that carbon edge terminations are crucial at this stage, and that achievable experimental conditions can lead to surprisingly fast EC breakdown mechanisms, yielding decomposition products seen in experiments but not previously predicted.
Chen, Wen-Fan; Mofarah, Sajjad S; Hanaor, Dorian Amir Henry; Koshy, Pramod; Chen, Hsin-Kai; Jiang, Yue; Sorrell, Charles Christopher
2018-06-18
Ce/Cr codoped TiO 2 nanoparticles were synthesized using sol-gel and Pechini methods with heat treatment at 400 °C for 4 h. A conventional sol-gel process produced well-crystallized anatase, while Pechini synthesis yielded less-ordered mixed-phase anatase + rutile; this suggests that the latter method enhances Ce solubility and increases chemical homogeneity but destabilizes the TiO 2 lattice. Greater structural disruption from the decomposition of the Pechini precursor formed more open agglomerated morphologies, while the lower levels of structural disruption from pyrolysis of the dried sol-gel precursor resulted in denser agglomerates of lower surface areas. Codoping and associated destabilization of the lattice reduced the binding energies in both powders. Cr 4+ formation in sol-gel powders and Cr 6+ formation in Pechini powders suggest that these valence changes derive from synergistic electron exchange from intervalence and/or multivalence charge transfer. Since Ce is too large to allow either substitutional or interstitial solid solubility, the concept of integrated solubility is introduced, in which the Ti site and an adjacent interstice are occupied by the large Ce ion. The photocatalytic performance data show that codoping was detrimental owing to the effects of reduced crystallinity from lattice destabilization and surface area. Two regimes of mechanistic behavior are seen, which are attributed to the unsaturated solid solutions at lower codopant levels and supersaturated solid solutions at higher levels. The present work demonstrates that the Pechini method offers a processing technique that is superior to sol-gel because the former facilitates solid solubility and consequent chemical homogeneity.
Lithium-ion conducting electrolyte salts for lithium batteries.
Aravindan, Vanchiappan; Gnanaraj, Joe; Madhavi, Srinivasan; Liu, Hua-Kun
2011-12-16
This paper presents an overview of the various types of lithium salts used to conduct Li(+) ions in electrolyte solutions for lithium rechargeable batteries. More emphasis is paid towards lithium salts and their ionic conductivity in conventional solutions, solid-electrolyte interface (SEI) formation towards carbonaceous anodes and the effect of anions on the aluminium current collector. The physicochemical and functional parameters relevant to electrochemical properties, that is, electrochemical stabilities, are also presented. The new types of lithium salts, such as the bis(oxalato)borate (LiBOB), oxalyldifluoroborate (LiODFB) and fluoroalkylphosphate (LiFAP), are described in detail with their appropriate synthesis procedures, possible decomposition mechanism for SEI formation and prospect of using them in future generation lithium-ion batteries. Finally, the state-of-the-art of the system is given and some interesting strategies for the future developments are illustrated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hughey, Justin R; DiNunzio, James C; Bennett, Ryan C; Brough, Chris; Miller, Dave A; Ma, Hua; Williams, Robert O; McGinity, James W
2010-06-01
In this study, hot melt extrusion (HME) and KinetiSol Dispersing (KSD) were utilized to prepare dissolution-enhanced solid dispersions of Roche Research Compound A (ROA), a BCS class II drug. Preformulation characterization studies showed that ROA was chemically unstable at elevated temperatures and acidic pH values. Eudragit L100-55 and AQOAT LF (HPMCAS) were evaluated as carrier polymers. Dispersions were characterized for ROA recovery, crystallinity, homogeneity, and non-sink dissolution. Eudragit L100-55 dispersions prepared by HME required the use of micronized ROA and reduced residence times in order to become substantially amorphous. Compositions containing HPMCAS were also prepared by HME, but an amorphous dispersion could not be obtained. All HME compositions contained ROA-related impurities. KSD was investigated as a method to reduce the decomposition of ROA while rendering compositions amorphous. Substantially amorphous, plasticizer free compositions were processed successfully by KSD with significantly higher ROA recovery values and amorphous character than those achieved by HME. A near-infrared chemical imaging analysis was conducted on the solid dispersions as a measure of homogeneity. A statistical analysis showed similar levels of homogeneity in compositions containing Eudragit L100-55, while differences were observed in those containing HMPCAS. Non-sink dissolution analysis of all compositions showed rapid supersaturation after pH adjustment to approximately two to three times the equilibrium solubility of ROA, which was maintained for at least 24 h. The results of the study demonstrated that KSD is an effective method of forming dissolution-enhanced amorphous solid solutions in cases where HME is not a feasible technique.
Liu, Leili; Li, Jie; Zhang, Lingyao; Tian, Siyu
2018-01-15
MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 were prepared, and their structure and hydrogen storage properties were determined through X-ray photoelectron spectroscopy and thermal analyzer. The effects of MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant were subsequently studied. Results indicated that MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 can decrease the thermal decomposition peak temperature and increase the total released heat of decomposition. These compounds can improve the effect of thermal decomposition of the propellant. The burning rates of the propellant increased using Mg-based hydrogen storage materials as promoter. The burning rates of the propellant also increased using MgH 2 instead of Al in the propellant, but its explosive heat was not enlarged. Nonetheless, the combustion heat of MgH 2 was higher than that of Al. A possible mechanism was thus proposed. Copyright © 2017. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Thompson, James M.; Daniel, Janice D.
1989-01-01
The development of a mass spectrometer/thermal analyzer/computer (MS/TA/Computer) system capable of providing simultaneous thermogravimetry (TG), differential thermal analysis (DTA), derivative thermogravimetry (DTG) and evolved gas detection and analysis (EGD and EGA) under both atmospheric and high pressure conditions is described. The combined system was used to study the thermal decomposition of the nozzle material that constitutes the throat of the solid rocket boosters (SRB).
Isayev, Olexandr; Gorb, Leonid; Qasim, Mo; Leszczynski, Jerzy
2008-09-04
CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane or HNIW) is a high-energy nitramine explosive. To improve atomistic understanding of the thermal decomposition of CL-20 gas and solid phases, we performed a series of ab initio molecular dynamics simulations. We found that during unimolecular decomposition, unlike other nitramines (e.g., RDX, HMX), CL-20 has only one distinct initial reaction channelhomolysis of the N-NO2 bond. We did not observe any HONO elimination reaction during unimolecular decomposition, whereas the ring-breaking reaction was followed by NO 2 fission. Therefore, in spite of limited sampling, that provides a mostly qualitative picture, we proposed here a scheme of unimolecular decomposition of CL-20. The averaged product population over all trajectories was estimated at four HCN, two to four NO2, two to four NO, one CO, and one OH molecule per one CL-20 molecule. Our simulations provide a detailed description of the chemical processes in the initial stages of thermal decomposition of condensed CL-20, allowing elucidation of key features of such processes as composition of primary reaction products, reaction timing, and Arrhenius behavior of the system. The primary reactions leading to NO2, NO, N 2O, and N2 occur at very early stages. We also estimated potential activation barriers for the formation of NO2, which essentially determines overall decomposition kinetics and effective rate constants for NO2 and N2. The calculated solid-phase decomposition pathways correlate with available condensed-phase experimental data.
Method for improved decomposition of metal nitrate solutions
Haas, P.A.; Stines, W.B.
1981-01-21
A method for co-conversion of aqueous solutions of one or more heavy metal nitrates is described, wherein thermal decomposition within a temperature range of about 300 to 800/sup 0/C is carried out in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal.
Method for improved decomposition of metal nitrate solutions
Haas, Paul A.; Stines, William B.
1983-10-11
A method for co-conversion of aqueous solutions of one or more heavy metal nitrates wherein thermal decomposition within a temperature range of about 300.degree. to 800.degree. C. is carried out in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal.
NASA Technical Reports Server (NTRS)
Walker, R. D., Jr.
1973-01-01
Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhn, M., E-mail: kuhnm@mit.edu; Hashimoto, S.; Sato, K.
The oxygen nonstoichiometry of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} has been the topic of various reports in the literature, but has been exclusively measured at high oxygen partial pressures, pO{sub 2}, and/or elevated temperatures. For applications of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}}, such as solid oxide fuel cell cathodes or oxygen permeation membranes, knowledge of the oxygen nonstoichiometry and thermo-chemical stability over a wide range of pO{sub 2} is crucial, as localized low pO{sub 2} could trigger failure of the material and device. By employing coulometric titration combined with thermogravimetry, the oxygen nonstoichiometry of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} was measured at highmore » and intermediate pO{sub 2} until the material decomposed (at log(pO{sub 2}/bar) Almost-Equal-To -4.5 at 1073 K). For a gradually reduced sample, an offset in oxygen content suggests that La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} forms a 'super-reduced' solid solution before decomposing. When the sample underwent alternate reduction-oxidation, a hysteresis-like pO{sub 2} dependence of the oxygen content in the decomposition pO{sub 2} range was attributed to the reversible formation of ABO{sub 3} and A{sub 2}BO{sub 4} phases. Reduction enthalpy and entropy were determined for the single-phase region and confirmed interpolated values from the literature. - Graphical abstract: Oxygen nonstoichiometry (shown as 3-{delta}) of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} as a function of pO{sub 2} at 773-1173 K. The experimental data were obtained by thermogravimetric analysis (TG) and coulometric titration (measured either by a simple reduction (CT1) or a 'two-step-forward one-step-back' reduction-oxidation (CT2) procedure). D1 and D2 denote the decomposition pO{sub 2}. The solid lines are the fit to the thermogravimetry and CT1 data. The dashed lines represent the non-equilibrium region where the sample shows a super-reduced state. Highlights: Black-Right-Pointing-Pointer Oxygen nonstoichiometry of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} at intermediate temperatures and p(O2). Black-Right-Pointing-Pointer Experimental confirmation of previously interpolated reduction enthalpy. Black-Right-Pointing-Pointer Decomposition p(O2) assessed by coulometric titration. Black-Right-Pointing-Pointer Hysteresis-like p(O2) dependence of oxygen content at decomposition p(O2).« less
Homotopy decomposition method for solving one-dimensional time-fractional diffusion equation
NASA Astrophysics Data System (ADS)
Abuasad, Salah; Hashim, Ishak
2018-04-01
In this paper, we present the homotopy decomposition method with a modified definition of beta fractional derivative for the first time to find exact solution of one-dimensional time-fractional diffusion equation. In this method, the solution takes the form of a convergent series with easily computable terms. The exact solution obtained by the proposed method is compared with the exact solution obtained by using fractional variational homotopy perturbation iteration method via a modified Riemann-Liouville derivative.
Habila, Mohamed A; ALOthman, Zeid A; El-Toni, Ahmed Mohamed; Labis, Joselito Puzon; Soylak, Mustafa
2016-07-01
Interference of organic compounds in the matrix of heavy metal solution could suppress their pre-concentration and detection processes. Therefore, this work aimed to develop simple and facile methods for separation of heavy metals before ICP-MS analysis. Fe3O4@SiO2@TiO2 core-double shell magnetic adsorbent was prepared and characterized by TEM, SEM, FTIR, XRD and surface area, and tested for Magnetic Solid Phase Extraction (MSPE) of Cu(II), Zn(II), Cd(II) and Pb(II). TEM micrograph of Fe3O4@SiO2@TiO2 reveals the uniform coating of TiO2 layer of about 20nm onto the Fe3O4@SiO2 nanoparticles and indicates that all nanoparticles are monodispersed and uniform. The saturation magnetization from the room-temperature hysteresis loops of Fe3O4 and Fe3O4@SiO2@TiO2 was found to be 72 and 40emug(-1), respectively, suggesting good separability of the nanoparticles. The Fe3O4@SiO2@TiO2 showed maximum adsorption capacity of 125, 137, 148 and 160mgg(-1) for Cu(II), Zn(II), Cd(II) and Pb(II) respectively, and the process was found to fit with the second order kinetic model and Langmuir isotherm. Fe3O4@SiO2@TiO2 showed efficient photocatalytic decomposition for tartrazine and sunset yellow (consider as Interfering organic compounds) in aqueous solution under the irradiation of UV light. The maximum recovery% was achieved at pH 5, by elution with 10mL of 2M nitric acid solution. The LODs were found to be 0.066, 0.049, 0.041 and 0.082µgL(-1) for Cu(II), Zn(II), Cd(II) and Pb(II), respectively while the LOQs were found to be 0.20, 0.15, 0.12 and 0.25µgL(-1) for Cu(II), Zn(II), Cd(II) and Pb(II), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Han, Haixiang; Wei, Zheng; Barry, Matthew C; Filatov, Alexander S; Dikarev, Evgeny V
2017-05-02
Three heterometallic single-source precursors with a Li : Fe = 1 : 1 ratio for a LiFeO 2 oxide material are reported. Heterometallic compounds LiFeL 3 (L = tbaoac (1), ptac (2), and acac(3)) have been obtained on a large scale, in nearly quantitative yields by one-step reactions that employ readily available reagents. The heterometallic precursor LiFe(acac) 3 (3) with small, symmetric substituents on the ligand (acac = pentane-2,4-dionate), maintains a 1D polymeric structure in the solid state that limits its volatility and prevents solubility in non-coordinating solvents. The application of the unsymmetrical ligands, tbaoac (tert-butyl acetoacetate) and ptac (1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedionate), that exhibit different bridging properties at the two ends of the ligand, allowed us to change the connectivity pattern within the heterometallic assembly. The latter was demonstrated by structural characterization of heterometallic complexes LiFe(tbaoac) 3 (1) and LiFe(ptac) 3 (2) that consist of discrete heterocyclic tetranuclear molecules Li 2 Fe 2 L 6 . The compounds are highly volatile and exhibit a congruent sublimation character. DART mass spectrometric investigation revealed the presence of heterometallic molecules in the gas phase. The positive mode spectra are dominated by the presence of [M - L] + peaks (M = Li 2 Fe 2 L 6 ). In accord with their discrete molecular structure, complexes 1 and 2 are highly soluble in nearly all common solvents. In order to test the retention of the heterometallic structure in solution, the diamagnetic analog of 1, LiMg(tbaoac) 3 (4), has been isolated. Its tetranuclear molecular structure was found to be isomorphous to that of the iron counterpart. 1 H and 7 Li NMR spectroscopy unambiguously confirmed the presence of heterometallic molecules in solutions of non-coordinating solvents. The heterometallic precursor 1 was shown to exhibit clean thermal decomposition in air that results in phase-pure α-modification of layered oxide LiFeO 2 , the prospective cathode material for lithium ion batteries.
A prototype hybrid 7π quinone-fused 1,3,2-dithiazolyl radical.
Decken, A; Mailman, A; Passmore, J; Rautiainen, J M; Scherer, W; Scheidt, E-W
2011-01-28
Reaction of 1,4-naphthoquinone and SNSMF(6) (M = As, Sb) in SO(2) solution in a 1 : 2 molar ratio led to the naphthoquinone fused 1,3,2-dithiazolylium salts, 3MF(6) quantitatively by multinuclear NMR (87% isolated yield of 3SbF(6)) via the cycloaddition and oxidative dehydrogenation chemistry of SNS(+) with formation of NH(4)SbF(6) and S(8). The product 3SbF(6) was fully characterized by IR, Raman, multinuclear {(1)H, (13)C, (14)N} NMR, elemental analysis, cyclic voltammetry and single crystal X-ray crystallography. The reduction of 3SbF(6) with ferrocene (Cp(2)Fe) in refluxing acetonitrile (CH(3)CN) led to the first isolation of a fused quinone-thiazyl radical, 3˙ in 73% yield. The prototype hybrid quinone-thiazyl radical 3˙ was fully characterized by IR, Raman microscopy, EI-MS, elemental analysis, solution and solid state EPR, magnetic susceptibility (2-370 K) and was found to form π*-π* dimers in the solid state as determined by single crystal X-ray crystallography. Furthermore, the thermal decomposition of 3˙ led to a novel quinone-fused 1,2,3,4-tetrathiine, 10 (x = 2) and the known 1,2,5-thiadiazole, 11. The energetics of the cycloadditon and oxidative dehydrogenation chemistry of SNS(+) and 1,4-naphthoquinone leading to 3SbF(6) were estimated in the gas phase and SO(2) solution by DFT calculations (PBE0/6-311G(d)) and lattice enthalpies obtained by the volume based thermodynamic (VBT) approach in the solid state. The gas phase ion energetics (ionization potential (IP) and electron affinity (EA)) of 3˙ are compared to related 1,3,2- and 1,2,3-dithiazolyl radicals.
1993-02-01
HMX , 1) and hexahydro- 1,3,5-trinitro-s-triazine decomposition of H MX show that the identity and rates of release ( RDX , 11) are energetic ingredients...quadruple scission pathway Reviews$ of the literature on RDX and HMX have discussed HMX -- 4H2C=N-NO2 (R2) the roles of unimolecular decomposition and...N-NO2 -- CH 2O + NO (R3) lavior otCyclotrimethylene-trinitraminr ( RDX ) and Cycloteiramethylene- tctranitramine ( HMX ). In Fundamentals of Solid
Process for remediation of plastic waste
Pol, Vilas G [Westmont, IL; Thiyagarajan, Pappannan [Germantown, MD
2012-04-10
A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.
2011-05-04
pubs.acs.org/JPCB Thermal Decomposition of Condensed-Phase Nitromethane from Molecular Dynamics from ReaxFF Reactive Dynamics Si-ping Han,†,‡ Adri C. T. van...ABSTRACT: We studied the thermal decomposition and subsequent reaction of the energetic material nitromethane (CH3NO2) using molec- ular dynamics...with ReaxFF, a first principles-based reactive force field. We characterize the chemistry of liquid and solid nitromethane at high temperatures (2000
1974-06-17
10-1 I1. Burning Rate Modifiers, D.R. Dillehay ............................. 11-1 12. Spectroscopic Analysis of Azide Decomposition Products for use...solid, and Pit that they ignite a short distance from the surface. Further- more, decomposition of sodium nitrate, which produces the gas to blow the...decreasing U the thermal conductivity of the basic binary. Class 2 compounds, con- sisting of nanganese oxides, catalyze the normal decomposition of
Yan, Yingjie; Liao, Qi-Nan; Ji, Feng; Wang, Wei; Yuan, Shoujun; Hu, Zhen-Hu
2017-02-01
3,5-Dinitrobenzamide has been widely used as a feed additive to control coccidiosis in poultry, and part of the added 3,5-dinitrobenzamide is excreted into wastewater and surface water. The removal of 3,5-dinitrobenzamide from wastewater and surface water has not been reported in previous studies. Highly reactive hydroxyl radicals from UV/hydrogen peroxide (H 2 O 2 ) and UV/titanium dioxide (TiO 2 ) advanced oxidation processes (AOPs) can decompose organic contaminants efficiently. In this study, the decomposition of 3,5-dinitrobenzamide in aqueous solution during UV/H 2 O 2 and UV/TiO 2 oxidation processes was investigated. The decomposition of 3,5-dinitrobenzamide fits well with a fluence-based pseudo-first-order kinetics model. The decomposition in both two oxidation processes was affected by solution pH, and was inhibited under alkaline conditions. Inorganic anions such as NO 3 - , Cl - , SO 4 2- , HCO 3 - , and CO 3 2- inhibited the degradation of 3,5-dinitrobenzamide during the UV/H 2 O 2 and UV/TiO 2 oxidation processes. After complete decomposition in both oxidation processes, approximately 50% of 3,5-dinitrobenzamide was decomposed into organic intermediates, and the rest was mineralized to CO 2 , H 2 O, and other inorganic anions. Ions such as NH 4 + , NO 3 - , and NO 2 - were released into aqueous solution during the degradation. The primary decomposition products of 3,5-dinitrobenzamide were identified using time-of-flight mass spectrometry (LCMS-IT-TOF). Based on these products and ions release, a possible decomposition pathway of 3,5-dinitrobenzamide in both UV/H 2 O 2 and UV/TiO 2 processes was proposed.
The report gives results of a materials flow analysis performed for composting municipal solid waste (MSW) and specific biodegradable organic components of MSW. (NOTE: This work is part of an overall U.S. EPA project providing cost, energy, and materials flow information on diffe...
Melting relations in the system FeCO3-MgCO3 and thermodynamic modelling of Fe-Mg carbonate melts
NASA Astrophysics Data System (ADS)
Kang, Nathan; Schmidt, Max W.; Poli, Stefano; Connolly, James A. D.; Franzolin, Ettore
2016-09-01
To constrain the thermodynamics and melting relations of the siderite-magnesite (FeCO3-MgCO3) system, 27 piston cylinder experiments were conducted at 3.5 GPa and 1170-1575 °C. Fe-rich compositions were also investigated with 13 multi-anvil experiments at 10, 13.6 and 20 GPa, 1500-1890 °C. At 3.5 GPa, the solid solution siderite-magnesite coexists with melt over a compositional range of X Mg (=Mg/(Mg + Fetot)) = 0.38-1.0, while at ≥10 GPa solid solution appears to be complete. At 3.5 GPa, the system is pseudo-binary because of the limited stability of siderite or liquid FeCO3, Fe-rich carbonates decomposing at subsolidus conditions to magnetite-magnesioferrite solid solution, graphite and CO2. Similar reactions also occur with liquid FeCO3 resulting in melt species with ferric iron components, but the decomposition of the liquid decreases in importance with pressure. At 3.5 GPa, the metastable melting temperature of pure siderite is located at 1264 °C, whereas pure magnesite melts at 1629 °C. The melting loop is non-ideal on the Fe side where the dissociation reaction resulting in Fe3+ in the melt depresses melting temperatures and causes a minimum. Over the pressure range of 3.5-20 GPa, this minimum is 20-35 °C lower than the (metastable) siderite melting temperature. By merging all present and previous experimental data, standard state (298.15 K, 1 bar) thermodynamic properties of the magnesite melt (MgCO3L) end member are calculated and the properties of (Fe,Mg)CO3 melt fit by a regular solution model with an interaction parameter of -7600 J/mol. The solution model reproduces the asymmetric melting loop and predicts the thermal minimum at 1240 °C near the siderite side at X Mg = 0.2 (3.5 GPa). The solution model is applicable to pressures reaching to the bottom of the upper mantle and allows calculation of phase relations in the FeO-MgO-O2-C system.
NASA Astrophysics Data System (ADS)
Denisov, E. A.; Kompaniets, T. N.; Voyt, A. P.
2018-05-01
The hydrogen permeation technique in the surface-limited regime (SLR) was first used to study the isothermal decomposition of zirconium hydride. It is shown that under isothermal conditions, the hydrogen terminal solid solubility in the α-phase for hydride precipitation (TSSp) and dissolution (TSSd) differ only by 6%, in contrast to the 20-30% indicated in the available literature. It is demonstrated that even the minimum heating/cooling rate (1 C/min) used in the traditional methods of studying TSSp and TSSd is too high to exclude the effect of kinetics on the results obtained.
Fukuzumi, Shunichi; Kobayashi, Takeshi; Suenobu, Tomoyoshi
2008-01-01
Formic acid (HCOOH) decomposes efficiently to afford H2 and CO2 selectively in the presence of a catalytic amount of a water-soluble rhodium aqua complex, [Rh(III)(Cp*)(bpy)(H2O)]2+ (Cp*=pentamethylcyclopentadienyl, bpy=2,2'-bipyridine) in aqueous solution at 298 K. No CO was produced in this catalytic decomposition of HCOOH. The decomposition rate reached a maximum value at pH 3.8. No deterioration of the catalyst was observed during the catalytic decomposition of HCOOH, and the catalytic activity remained the same for the repeated addition of HCOOH. The rhodium-hydride complex was detected as the catalytic active species that undergoes efficient H/D exchange with water. When the catalytic decomposition of HCOOH was performed in D2O, D2 was produced selectively. Such an efficient H/D exchange and the observation of a deuterium kinetic isotope effect in the catalytic decomposition of DCOOH in H2O provide valuable mechanistic insight into this efficient and selective decomposition process.
REDUCTION OF ACIDITY OF NITRIC ACID SOLUTIONS BY USE OF FORMALDEHYDE
Healy, T.V.
1958-05-20
A continuous method is described of concentrating by evaporation and reducing the nitrate ion content of an aqueous solution of metallic salts containing nitric acid not in excess of 8N. It consists of heating the solution and then passing formaldehyde into the heated solution to bring about decomposition of the nitric acid. The evolved gases containing NO are contacted countercurrently with an aqueous metal salt solution containing nitric acid in excess of 8N so as to bring about decomposition of the nitric acid and lower the normality to at least 8N, whereupon it is passed into the body of heated solution.
NASA Technical Reports Server (NTRS)
Amar, Adam J.; Blackwell, Ben F.; Edwards, Jack R.
2007-01-01
The development and verification of a one-dimensional material thermal response code with ablation is presented. The implicit time integrator, control volume finite element spatial discretization, and Newton's method for nonlinear iteration on the entire system of residual equations have been implemented and verified for the thermochemical ablation of internally decomposing materials. This study is a continuation of the work presented in "One-Dimensional Ablation with Pyrolysis Gas Flow Using a Full Newton's Method and Finite Control Volume Procedure" (AIAA-2006-2910), which described the derivation, implementation, and verification of the constant density solid energy equation terms and boundary conditions. The present study extends the model to decomposing materials including decomposition kinetics, pyrolysis gas flow through the porous char layer, and a mixture (solid and gas) energy equation. Verification results are presented for the thermochemical ablation of a carbon-phenolic ablator which involves the solution of the entire system of governing equations.
Li, C; Li, X Z
2007-01-01
In this study, the degradation of bisphenol A in aqueous suspension by interaction of photocatalytic oxidation and ferrate(VI) oxidation was investigated under different conditions. The results indicate that the formation of Fe(V) and Fe(IV) is in the photocatalytic reduction of Fe(VI) by electron (ecb-) on the surface of TiO2. The oxidation efficiency of the photocatalytic oxidation in the presence of Fe(VI) was much greater than that without. In addition, the decomposition of Fe(VI) under different conditions was also investigated. The results indicate that the Fe(VI) reduction was accelerated by photocatalytic reaction and the adsorption capacity of Fe(VI) on TiO2 surface decreased as pH increased. The characteristics of solid potassium ferrate prepared were investigated by X-ray diffraction. It was found that the potassium ferrate solid has a tetrahedral structure with a space group of D2h (Pnma) and a = 7.705 A, b = 5.863 A, and c = 10.36 A.
Synthesis of Antimalarial Agents from 2,3-Dihydro-1,6-Diazaphenalene Derivatives.
1982-03-01
ago; however, conversion of this stable salt to the free base (2) resulted in decomposition of 2 prohibiting simple alkyla- tion of the material; a...however, Mr. Musallam pointed out it was a black gummy solid on arrival, hence the lack of activity may be due to decomposition which occurred in transit...16 decomposition , there is special interest with regard to the oxidation of 4. In particular, the similarities between the properties of 4 2a,b and
1987-10-01
34 Proceedings of the 16th JANNAF Com- bustion Meeting, Sept. 1979, Vol. II, pp. 13-34. 44. Schroeder , M. A., " Critical Analysis of Nitramine Decomposition...34 Proceedings of the 19th JANNAF Combustion Meeting, Oct. 1982. 47. Schroeder , M. A., " Critical Analysis of Nitramine Decomposition Data: Ac- tivation...the surface of the propellant. This is consis- tent with the decomposition mechanism considered by Boggs[48] and Schroeder [43J. They concluded that the
Okuno, Yukihiro; Ushirogata, Keisuke; Sodeyama, Keitaro; Tateyama, Yoshitaka
2016-03-28
Additives in the electrolyte solution of lithium-ion batteries (LIBs) have a large impact on the performance of the solid electrolyte interphase (SEI) that forms on the anode and is a key to the stability and durability of LIBs. We theoretically investigated effects of fluoroethylene carbonate (FEC), a representative additive, that has recently attracted considerable attention for the enhancement of cycling stability of silicon electrodes and the improvement of reversibility of sodium-ion batteries. First, we intensively examined the reductive decompositions by ring-opening, hydrogen fluoride (HF) elimination to form a vinylene carbonate (VC) additive and intermolecular chemical reactions of FEC in the ethylene carbonate (EC) electrolyte, by using density functional theory (DFT) based molecular dynamics and the blue-moon ensemble technique for the free energy profile. The results show that the most plausible product of the FEC reductive decomposition is lithium fluoride (LiF), and that the reactivity of FEC to anion radicals is found to be inert compared to the VC additive. We also investigated the effects of the generated LiF on the SEI by using two model systems; (1) LiF molecules distributed in a model aggregate of organic SEI film components (SFCs) and (2) a LiF aggregate interfaced with the SFC aggregate. DFT calculations of the former system show that F atoms form strong bindings with the Li atoms of multiple organic SFC molecules and play as a joint connecting them. In the latter interface system, the LiF aggregate adsorbs the organic SFCs through the F-Li bindings. These results suggest that LiF moieties play the role of glue in the organic SFC within the SEI film. We also examined the interface structure between a LiF aggregate and a lithiated silicon anode, and found that they are strongly bound. This strong binding is likely to be related to the effectiveness of the FEC additive in the electrolyte for the silicon anode.
Liu, Haizhou; Bruton, Thomas A; Doyle, Fiona M; Sedlak, David L
2014-09-02
Persulfate (S2O8(2-)) is being used increasingly for in situ chemical oxidation (ISCO) of organic contaminants in groundwater, despite an incomplete understanding of the mechanism through which it is converted into reactive species. In particular, the decomposition of persulfate by naturally occurring mineral surfaces has not been studied in detail. To gain insight into the reaction rates and mechanism of persulfate decomposition in the subsurface, and to identify possible approaches for improving its efficacy, the decomposition of persulfate was investigated in the presence of pure metal oxides, clays, and representative aquifer solids collected from field sites in the presence and absence of benzene. Under conditions typical of groundwater, Fe(III)- and Mn(IV)-oxides catalytically converted persulfate into sulfate radical (SO4(•-)) and hydroxyl radical (HO(•)) over time scales of several weeks at rates that were 2-20 times faster than those observed in metal-free systems. Amorphous ferrihydrite was the most reactive iron mineral with respect to persulfate decomposition, with reaction rates proportional to solid mass and surface area. As a result of radical chain reactions, the rate of persulfate decomposition increased by as much as 100 times when benzene concentrations exceeded 0.1 mM. Due to its relatively slow rate of decomposition in the subsurface, it can be advantageous to inject persulfate into groundwater, allowing it to migrate to zones of low hydraulic conductivity where clays, metal oxides, and contaminants will accelerate its conversion into reactive oxidants.
2015-01-01
Persulfate (S2O82–) is being used increasingly for in situ chemical oxidation (ISCO) of organic contaminants in groundwater, despite an incomplete understanding of the mechanism through which it is converted into reactive species. In particular, the decomposition of persulfate by naturally occurring mineral surfaces has not been studied in detail. To gain insight into the reaction rates and mechanism of persulfate decomposition in the subsurface, and to identify possible approaches for improving its efficacy, the decomposition of persulfate was investigated in the presence of pure metal oxides, clays, and representative aquifer solids collected from field sites in the presence and absence of benzene. Under conditions typical of groundwater, Fe(III)- and Mn(IV)-oxides catalytically converted persulfate into sulfate radical (SO4•–) and hydroxyl radical (HO•) over time scales of several weeks at rates that were 2–20 times faster than those observed in metal-free systems. Amorphous ferrihydrite was the most reactive iron mineral with respect to persulfate decomposition, with reaction rates proportional to solid mass and surface area. As a result of radical chain reactions, the rate of persulfate decomposition increased by as much as 100 times when benzene concentrations exceeded 0.1 mM. Due to its relatively slow rate of decomposition in the subsurface, it can be advantageous to inject persulfate into groundwater, allowing it to migrate to zones of low hydraulic conductivity where clays, metal oxides, and contaminants will accelerate its conversion into reactive oxidants. PMID:25133603
Takenaka, Norimichi; Tanaka, Masayuki; Okitsu, Kenji; Bandow, Hiroshi
2006-09-14
Oxidative decomposition of gallic acid occurs in alkaline solutions but hardly arises in acidic solutions. We have found that the addition of sodium chloride promotes the decomposition of gallic acid caused by freezing even under neutral and acidic conditions. Even at pH 4.5, gallic acid was decomposed by freezing in the presence of NaCl; however, in the absence of NaCl, it was hardly decomposed by freezing at pH lower than 7. Chloride ions are more easily incorporated in ice than sodium ions when the NaCl solution is frozen. The unfrozen solution in ice becomes positively charged, and as a result, protons transfer from the unfrozen solution to the ice. We measured the pH in the unfrozen solution which coexists with single-crystal ice formed from a 5 mmol dm(-3) NaCl solution and determined the pH to be 8.6 at equilibrium with CO(2) of 380 ppm or 11.3 in the absence of CO(2) compared to pH 5.6 in the original solution. From the model calculation performed for gallic acid solution in the presence of 5 mmol dm(-3) NaCl, it can be estimated that the amount of OH(-) transferred from the ice to the solution corresponds to 1.26 x 10(-5) mol dm(-3). The amount of OH(-) transferred is concentrated into the unfrozen solution and affects the pH of the unfrozen solution. Therefore, the pH in an unfrozen gallic acid solution in ice becomes alkaline, and the decomposition of gallic acid proceeds. It is expected that other base-catalyzed reactions in weakly acidic solutions also proceed by freezing in the presence of NaCl without the need for any alkaline reagents.
NASA Astrophysics Data System (ADS)
Chae, Seulki; Lee, Jeong Beom; Lee, Jae Gil; Lee, Tae-jin; Soon, Jiyong; Ryu, Ji Heon; Lee, Jin Seok; Oh, Seung M.
2017-12-01
Vinylene carbonate (VC) is attached in a ring-opened form on a graphite surface by molecular layer deposition (MLD) method, and its role as a solid electrolyte interphase (SEI) former is studied. When VC is added into the electrolyte solution of a graphite/LiNi0.5Mn1.5O4 (LNMO) full-cell, it is reductively decomposed to form an effective SEI on the graphite electrode. However, VC in the electrolyte solution has serious adverse effects due to its poor stability against electrochemical oxidation on the LNMO positive electrode. A excessive acid generation as a result of VC oxidation is observed, causing metal dissolution from the LNMO electrode. The dissolved metal ions are plated on the graphite electrode to destroy the SEI layer, eventually causing serious capacity fading and poor Coulombic efficiency. The VC derivative on the graphite surface also forms an effective SEI layer on the graphite negative electrode via reductive decomposition. The detrimental effects on the LNMO positive electrode, however, can be avoided because the bonded VC derivative on the graphite surface cannot move to the LNMO electrode. Consequently, the graphite/LNMO full-cell fabricated with the VC-attached graphite outperforms the cells without VC or with VC in the electrolyte, in terms of Coulombic efficiency and capacity retention.
Gao, Jing; Liu, Yutang; Xia, Xinnian; Wang, Longlu; Dong, Wanyue
2018-07-05
Heterogeneous Fenton-like system has been proved to be an promising alternative to Fenton system due to its easy separation. However, it's a challenge to design heterogeneous Fenton-like catalysts with high activity and great durability. Here, ternary solid solution Fe 1-x Zn x S were prepared via hydrothermal synthesis as heterogeneous Fenton-like catalysts. The Fe 0.7 Zn 0.3 S sample exhibited state of the art activity for yielding OH by H 2 O 2 decomposition, and the ultrafast degradation of phenol was achieved in 4 min at initial acidic condition under room temperature. The phenol degradation rate constant of Fe 0.7 Zn 0.3 S was 99 and 70 times of ZnS and FeS, respectively. Further, we show that the unique structural configuration of iron atoms, the formation of FeS 2 -pyrite with (200) plane, are responsible for the excellent activity. The intermediate products were identified by LC-MS and a possible pathway was accordingly proposed to elucidate the mechanism of phenol degradation by OH. Overall, this work provides an idea for the rational design of the relevant heterogeneous Fenton-like catalysts. Copyright © 2018 Elsevier B.V. All rights reserved.
Ferrate treatment for removing chromium from high-level radioactive tank waste.
Sylvester, P; Rutherford, L A; Gonzalez-Martin, A; Kim, J; Rapko, B M; Lumetta, G J
2001-01-01
A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. This method could be generally applicable to removing chromium from chromium-contaminated solids, when coupled with a subsequent reduction of the separated chromate back to chromium(III). The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(II) molar ratio, but the chromium removal tends to level out for Fe(VI)/ Cr(III) greaterthan 10. Increasingtemperature leadsto better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be disposed as low-activity waste.
The Outer Loop bioreactor: a case study of settlement monitoring and solids decomposition.
Abichou, Tarek; Barlaz, Morton A; Green, Roger; Hater, Gary
2013-10-01
The Outer Loop landfill bioreactor (OLLB) located in Louisville, KY, USA has been in operation since 2000 and represents an opportunity to evaluate long-term bioreactor monitoring data at a full-scale operational landfill. Three types of landfill units were studied including a Control cell, a new landfill area that had a piping network installed as waste was being placed to support leachate recirculation (As-Built cell), and a conventional landfill that was modified to allow for liquid recirculation (Retrofit cell). The objective of this study is to summarize the results of settlement data and assess how these data relate to solids decomposition monitoring at the OLLB. The Retrofit cells started to settle as soon as liquids were introduced. The cumulative settlement during the 8years of monitoring varied from 60 to 100cm. These results suggest that liquid recirculation in the Retrofit cells caused a 5-8% reduction in the thickness of the waste column. The average long-term settlement in the As-Built and Control Cells was about 37% and 19%, respectively. The modified compression index (Cα(')) was 0.17 for the Control cells and 0.2-0.48 for the As-Built cells. While the As-Built cells exhibited greater settlement than the Control cells, the data do not support biodegradation as the only explanation. The increased settlement in the As-Built bioreactor cell appeared to be associated with liquid movement and not with biodegradation because both chemical (biochemical methane potential) and physical (moisture content) indicators of decomposition were similar in the Control and As-Built cells. The solids data are consistent with the concept that bioreactor operations accelerate the rate of decomposition, but not necessarily the cumulative loss of anaerobically degradable solids. Copyright © 2013 Elsevier Ltd. All rights reserved.
Method for the decontamination of soil containing solid organic explosives therein
Radtke, Corey W.; Roberto, Francisco F.
2000-01-01
An efficient method for decontaminating soil containing organic explosives ("TNT" and others) in the form of solid portions or chunks which are not ordinarily subject to effective bacterial degradation. The contaminated soil is treated by delivering an organic solvent to the soil which is capable of dissolving the explosives. This process makes the explosives more bioavailable to natural bacteria in the soil which can decompose the explosives. An organic nutrient composition is also preferably added to facilitate decomposition and yield a compost product. After dissolution, the explosives are allowed to remain in the soil until they are decomposed by the bacteria. Decomposition occurs directly in the soil which avoids the need to remove both the explosives and the solvents (which either evaporate or are decomposed by the bacteria). Decomposition is directly facilitated by the solvent pre-treatment process described above which enables rapid bacterial remediation of the soil.
Balakrishnan, Vimal K; Buncel, Erwin; Vanloon, Gary W
2005-08-01
We report on a study of the decomposition of fenitrothion (an organophosphorus pesticide that is a persistent contaminant in soils and groundwater) as catalyzed by cetyltrimethylammonium (CTA+) micelles. The CTA micelles were associated with two types of counterions: (1) inert counterions (e.g. CTABr) and (2) reactive counterions (e.g. CTAOH). The reactive counterion surfactants used were hydroxide anion (HO-) as a normal nucleophile and hydroperoxide anion (HOO-) and the anion of pyruvaldehyde oxime (MINA-) as two alpha-nucleophiles. The reactivity order followed: CTABr < CTAOH < CTAMINA < CTAOOH. Treatment of the rate data using the Pseudo-Phase Ion Exchange (PPIE) model of micellar catalysis showed the ratio k2M/k2w to be less than unity for all the surfactants employed. Rather than arising from a "true catalysis", we attributed the observed rate enhancements to a "concentration effect", where both pesticide and nucleophile were incorporated into the small micellar phase volume. Furthermore, the CTAOOH/CTAOH pair gave an alpha-effect of 57, showing that the alpha-effect can play an important role in micellar systems. We further investigated the effectiveness of reactive counterion surfactants in decontaminating selected environmental solids that were spiked with 27 ppb fenitrothion. The solids were as follows: the clay mineral montmorillonite and SO-1 and S0-2 soils (obtained from the Canadian Certified Reference Materials Project). The reactive counterion surfactant solutions significantly enhanced the rate of fenitrothion degradation in the spiked solids over that obtained when the spiked solid was placed in contact with either 0.02 M KOH or water. The rate enhancements followed the order CTAOOH > CTAMINA approximately CTAOH > KOH > water. We conclude that reactive counterion surfactants, especially with alpha-nucleophiles, hold great potential in terms of remediating soils contaminated by toxic organophosphorus esters.
Krylov-Subspace Recycling via the POD-Augmented Conjugate-Gradient Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlberg, Kevin; Forstall, Virginia; Tuminaro, Ray
This paper presents a new Krylov-subspace-recycling method for efficiently solving sequences of linear systems of equations characterized by varying right-hand sides and symmetric-positive-definite matrices. As opposed to typical truncation strategies used in recycling such as deflation, we propose a truncation method inspired by goal-oriented proper orthogonal decomposition (POD) from model reduction. This idea is based on the observation that model reduction aims to compute a low-dimensional subspace that contains an accurate solution; as such, we expect the proposed method to generate a low-dimensional subspace that is well suited for computing solutions that can satisfy inexact tolerances. In particular, we proposemore » specific goal-oriented POD `ingredients' that align the optimality properties of POD with the objective of Krylov-subspace recycling. To compute solutions in the resulting 'augmented' POD subspace, we propose a hybrid direct/iterative three-stage method that leverages 1) the optimal ordering of POD basis vectors, and 2) well-conditioned reduced matrices. Numerical experiments performed on solid-mechanics problems highlight the benefits of the proposed method over existing approaches for Krylov-subspace recycling.« less
Krylov-Subspace Recycling via the POD-Augmented Conjugate-Gradient Method
Carlberg, Kevin; Forstall, Virginia; Tuminaro, Ray
2016-01-01
This paper presents a new Krylov-subspace-recycling method for efficiently solving sequences of linear systems of equations characterized by varying right-hand sides and symmetric-positive-definite matrices. As opposed to typical truncation strategies used in recycling such as deflation, we propose a truncation method inspired by goal-oriented proper orthogonal decomposition (POD) from model reduction. This idea is based on the observation that model reduction aims to compute a low-dimensional subspace that contains an accurate solution; as such, we expect the proposed method to generate a low-dimensional subspace that is well suited for computing solutions that can satisfy inexact tolerances. In particular, we proposemore » specific goal-oriented POD `ingredients' that align the optimality properties of POD with the objective of Krylov-subspace recycling. To compute solutions in the resulting 'augmented' POD subspace, we propose a hybrid direct/iterative three-stage method that leverages 1) the optimal ordering of POD basis vectors, and 2) well-conditioned reduced matrices. Numerical experiments performed on solid-mechanics problems highlight the benefits of the proposed method over existing approaches for Krylov-subspace recycling.« less
Experimental thermochemistry of neptunium oxides: Np2O5 and NpO2
NASA Astrophysics Data System (ADS)
Zhang, Lei; Dzik, Ewa A.; Sigmon, Ginger E.; Szymanowski, Jennifer E. S.; Navrotsky, Alexandra; Burns, Peter C.
2018-04-01
Neptunium (Np) compounds are important in the nuclear fuel cycle because of the buildup and long half-life (2.14 Ma) of Np-237 in nuclear waste, especially during long-term disposal in a geological repository. Neptunium in environmental conditions exists mainly in two oxidation states (+5 and + 4) and can substitute for uranium and/or rare earths in solid phases. Yet thermochemical data for solid neptunium compounds are scarce, despite being critical for evaluating the environmental transport of this radioactive and toxic element. Although high temperature oxide melt solution calorimetry has proven very useful in obtaining thermodynamic data for the formation of uranium and thorium oxide materials, it has not yet been applied to transuranium compounds. Continuing a program at Notre Dame to study the thermodynamics of transuranium compounds, we report the first determination of the enthalpies of drop solution of well-characterized neptunium oxides (Np2O5 and NpO2) using oxide melt solution calorimetry in molten sodium molybdate solvent at 973 K. The enthalpy of the decomposition reaction, Np2O5(cr) = 2NpO2(cr) + 1/2O2(g) at 298 K, is determined to be 7.70 ± 5.86 kJ/mol, and this direct measurement is consistent with existing thermodynamic data. The calorimetric methodology is straightforward and produces reliable data using milligram quantities of radioactive materials, and can be applied to many other transuranium compounds.
NASA Astrophysics Data System (ADS)
Luo, Li; Wang, Xiao-Ping; Cai, Xiao-Chuan
2017-11-01
We study numerically the dynamics of a three-dimensional droplet spreading on a rough solid surface using a phase-field model consisting of the coupled Cahn-Hilliard and Navier-Stokes equations with a generalized Navier boundary condition (GNBC). An efficient finite element method on unstructured meshes is introduced to cope with the complex geometry of the solid surfaces. We extend the GNBC to surfaces with complex geometry by including its weak form along different normal and tangential directions in the finite element formulation. The semi-implicit time discretization scheme results in a decoupled system for the phase function, the velocity, and the pressure. In addition, a mass compensation algorithm is introduced to preserve the mass of the droplet. To efficiently solve the decoupled systems, we present a highly parallel solution strategy based on domain decomposition techniques. We validate the newly developed solution method through extensive numerical experiments, particularly for those phenomena that can not be achieved by two-dimensional simulations. On a surface with circular posts, we study how wettability of the rough surface depends on the geometry of the posts. The contact line motion for a droplet spreading over some periodic rough surfaces are also efficiently computed. Moreover, we study the spreading process of an impacting droplet on a microstructured surface, a qualitative agreement is achieved between the numerical and experimental results. The parallel performance suggests that the proposed solution algorithm is scalable with over 4,000 processors cores with tens of millions of unknowns.
Kim, Kwang-Wook; Lee, Keun-Young; Chung, Dong-Yong; Lee, Eil-Hee; Moon, Jei-Kwon; Shin, Dong-Woo
2012-09-30
This work studied the stability of peroxide in uranyl peroxo carbonato complex ions in a carbonate solution with hydrogen peroxide using absorption and Raman spectroscopies, and evaluated the temperature dependence of the decomposition characteristics of uranyl peroxo carbonato complex ions in the solution. The uranyl peroxo carbonato complex ions self-decomposed more rapidly into uranyl tris-carbonato complex ions in higher temperature carbonate solutions. The concentration of peroxide in the solution without free hydrogen peroxide represents the concentration of uranyl peroxo carbonato complex ions in a mixture of uranyl peroxo carbonato complex and uranyl tris-carbonato complex ions. The self-decomposition of the uranyl peroxo carbonato complex ions was a first order reaction, and its activation energy was evaluated to be 7.144×10(3) J mol(-1). The precipitation of sodium uranium oxide hydroxide occurred when the amount of uranyl tris-carbonato complex ions generated from the decomposition of the uranyl peroxo carbonato complex ions exceeded the solubility of uranyl tris-carbonato ions in the solution at the solution temperature. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamamoto, Takanori; Bannai, Hideo; Nagasaki, Masao; Miyano, Satoru
We present new decomposition heuristics for finding the optimal solution for the maximum-weight connected graph problem, which is known to be NP-hard. Previous optimal algorithms for solving the problem decompose the input graph into subgraphs using heuristics based on node degree. We propose new heuristics based on betweenness centrality measures, and show through computational experiments that our new heuristics tend to reduce the number of subgraphs in the decomposition, and therefore could lead to the reduction in computational time for finding the optimal solution. The method is further applied to analysis of biological pathway data.
Circular Mixture Modeling of Color Distribution for Blind Stain Separation in Pathology Images.
Li, Xingyu; Plataniotis, Konstantinos N
2017-01-01
In digital pathology, to address color variation and histological component colocalization in pathology images, stain decomposition is usually performed preceding spectral normalization and tissue component segmentation. This paper examines the problem of stain decomposition, which is a naturally nonnegative matrix factorization (NMF) problem in algebra, and introduces a systematical and analytical solution consisting of a circular color analysis module and an NMF-based computation module. Unlike the paradigm of existing stain decomposition algorithms where stain proportions are computed from estimated stain spectra using a matrix inverse operation directly, the introduced solution estimates stain spectra and stain depths via probabilistic reasoning individually. Since the proposed method pays extra attentions to achromatic pixels in color analysis and stain co-occurrence in pixel clustering, it achieves consistent and reliable stain decomposition with minimum decomposition residue. Particularly, aware of the periodic and angular nature of hue, we propose the use of a circular von Mises mixture model to analyze the hue distribution, and provide a complete color-based pixel soft-clustering solution to address color mixing introduced by stain overlap. This innovation combined with saturation-weighted computation makes our study effective for weak stains and broad-spectrum stains. Extensive experimentation on multiple public pathology datasets suggests that our approach outperforms state-of-the-art blind stain separation methods in terms of decomposition effectiveness.
NASA Astrophysics Data System (ADS)
Goudarzi, Mojgan; Mir, Noshin; Mousavi-Kamazani, Mehdi; Bagheri, Samira; Salavati-Niasari, Masoud
2016-09-01
In this work, two natural sources, including pomegranate peel extract and cochineal dye were employed for the synthesis of silver nanoparticles. The natural silver complex from pomegranate peel extract resulted in nano-sized structures through solution-phase method, but this method was not efficient for cochineal dye-silver precursor and the as-formed products were highly agglomerated. Therefore, an alternative facile solid-state approach was investigated as for both natural precursors and the results showed successful production of well-dispersed nanoparticles with narrow size distribution for cochineal dye-silver precursor. The products were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray microanalysis (EDX), and Transmission Electron Microscopy (TEM).
Adomian decomposition method used to solve the one-dimensional acoustic equations
NASA Astrophysics Data System (ADS)
Dispini, Meta; Mungkasi, Sudi
2017-05-01
In this paper we propose the use of Adomian decomposition method to solve one-dimensional acoustic equations. This recursive method can be calculated easily and the result is an approximation of the exact solution. We use the Maple software to compute the series in the Adomian decomposition. We obtain that the Adomian decomposition method is able to solve the acoustic equations with the physically correct behavior.
Solid Aluminum Borohydrides for Prospective Hydrogen Storage.
Dovgaliuk, Iurii; Safin, Damir A; Tumanov, Nikolay A; Morelle, Fabrice; Moulai, Adel; Černý, Radovan; Łodziana, Zbigniew; Devillers, Michel; Filinchuk, Yaroslav
2017-12-08
Metal borohydrides are intensively researched as high-capacity hydrogen storage materials. Aluminum is a cheap, light, and abundant element and Al 3+ can serve as a template for reversible dehydrogenation. However, Al(BH 4 ) 3 , containing 16.9 wt % of hydrogen, has a low boiling point, is explosive on air and has poor storage stability. A new family of mixed-cation borohydrides M[Al(BH 4 ) 4 ], which are all solid under ambient conditions, show diverse thermal decomposition behaviors: Al(BH 4 ) 3 is released for M=Li + or Na + , whereas heavier derivatives evolve hydrogen and diborane. NH 4 [Al(BH 4 ) 4 ], containing both protic and hydridic hydrogen, has the lowest decomposition temperature of 35 °C and yields Al(BH 4 ) 3 ⋅NHBH and hydrogen. The decomposition temperatures, correlated with the cations' ionic potential, show that M[Al(BH 4 ) 4 ] species are in the most practical stability window. This family of solids, with convenient and versatile properties, puts aluminum borohydride chemistry in the mainstream of hydrogen storage research, for example, for the development of reactive hydride composites with increased hydrogen content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Schroeder, M. A.
1980-01-01
A summary of a literature review on thermal decomposition of HMX and RDX is presented. The decomposition apparently fits first order kinetics. Recommended values for Arrhenius parameters for HMX and RDX decomposition in the gaseous and liquid phases and for decomposition of RDX in solution in TNT are given. The apparent importance of autocatalysis is pointed out, as are some possible complications that may be encountered in interpreting extending or extrapolating kinetic data for these compounds from measurements carried out below their melting points to the higher temperatures and pressure characteristic of combustion.
A comparative study on pyrolysis characteristic Indonesia biomassa and low grade coal
NASA Astrophysics Data System (ADS)
Adhityatama, G. I.; Hanif, F.; Cahyono, R. B.; Hidayat, M.; Akiyama, T.
2017-05-01
A comparative study on pyrolysis of biomass and low grade coal was conducted using a thermogravimetric analyzer. Each kind of biomass and coal has a characteristic pyrolysis behavior which is explained based on its individual component characteristics. All fuels experienced a small weight loss as temperatures approached 450K because of moisture evaporation. The coal had smallest total weight loss compared to biomass due to its high content of fixed carbon, suggesting that coal would produce high amounts of char and small amounts of volatile matter (e.g., tar and gas). The biomass exhibits similar tendency regarding the decomposition process which is the hemicelluloses break down first at temperatures of 470 to 530K, cellulose follows in the temperature range 510 to 620K, and lignin is the last component to pyrolyzer at temperatures of 550 to 770K. The thermal decomposition of biomass consisted of two predominant peaks corresponding first to the decomposition of cellulose and, second, to the decomposition of lignin. Meanwhile, the coal exhibited only single peak because these fuels were predominantly composed of carbon. Based on the kinetic analysis, coal have the smaller activation energy (55.32kJ/mol) compared to biomass (range from 89.80-172.86 kJ/mol). Pyrolysis process also created more pore material in the solid product. These results were important for the optimization of energy conversion from those solid fuels. Biomass resulted lower solid product and higher tar product, thus would be suitable for liquid and gas energy production.
Variable diffusion rates during exsolution coarsening in the presence of fluids.
NASA Astrophysics Data System (ADS)
Putnis, Andrew; Prent, Alexander
2017-04-01
The scale of exsolution textures in mineral solid solutions has long been used as an indicator of thermal history during cooling. The theory of spinodal decomposition in an anisotropic solid and subsequent coarsening of exsolution textures as a function of temperature and cooling rate is well developed (see Petrishcheva et al., 2009 and Abart et al., 2009 for a review of the Cahn-Hilliard theory). For the case of exsolution in the alkali feldspar solid solution [(Na,K)AlSi3O8] the characteristic texture shows compositional fluctuations in Na,K with a wavelength that depends on the cooling rate. The cooling rate is determined from knowledge of the Na-K interdiffusion coefficient, assuming that the unmixing is simply due to the interdiffusion of Na and K in an otherwise fixed tetrahedral Al,Si framework. Cryptoperthites and mesoperthites with a periodic lamellar microstructure are considered to be the end-result of such a solid-state exsolution process. Later-stage fluid infiltration results in patch perthites that are formed at a sharp replacement front by a dissolution-precipitation mechanism (Parsons et al., 2015). Patch perthites have an easily recognizable texture and are clear indicators of a reaction with an aqueous solution. The distinction is thus drawn between crypto- and meso-perthite showing periodic lamellae, associated with a solid-state exsolution process, and the patch perthite showing irregular domains of Na-rich and K-rich feldspars associated with a fluid mediated reprecipitation process. However, the presence of fluids can also enhance the coarsening of lamellar exsolution textures, retaining an apparently solid-state microstructure but with a length scale that is dependent on local recrystallization driven by fluid infiltration. Examples will be given from alkali feldspars in granitic rocks where it is clearly demonstrable that cooling rates cannot be inferred from such exsolution textures. The variability in Na,K diffusion rates and thus different length scales of exsolution are likely to be due to the efficiency of diffusional transport through a fluid phase, which is influenced by differences in fluid-induced micro- and nano-porosity. Abart R. et al. (2009) Am. J. Sci. 309, 450-475. Petrishcheva E. and Abart R. (2009) Am. J. Sci, 309, 431-449. Parsons I. et al., (2015) Am. Min. 100, 1277-1303.
NASA Technical Reports Server (NTRS)
Kuo, Kenneth K.; Lu, Y. C.; Chiaverini, Martin J.; Harting, George C.
1994-01-01
An experimental study on the fundamental processes involved in fuel decomposition and boundary layer combustion in hybrid rocket motors is being conducted at the High Pressure Combustion Laboratory of the Pennsylvania State University. This research should provide an engineering technology base for development of large scale hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high pressure slab motor has been designed for conducting experimental investigations. Oxidizer (LOX or GOX) is injected through the head-end over a solid fuel (HTPB) surface. Experiments using fuels supplied by NASA designated industrial companies will also be conducted. The study focuses on the following areas: measurement and observation of solid fuel burning with LOX or GOX, correlation of solid fuel regression rate with operating conditions, measurement of flame temperature and radical species concentrations, determination of the solid fuel subsurface temperature profile, and utilization of experimental data for validation of a companion theoretical study also being conducted at PSU.
Decomposition of forest products buried in landfills.
Wang, Xiaoming; Padgett, Jennifer M; Powell, John S; Barlaz, Morton A
2013-11-01
The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C+H) loss of up to 38%, while loss for the other wood types was 0-10% in most samples. The C+H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27gOCg(-1) dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than previously reported. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Svozil, K.
1995-11-01
Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) in chaos theory, (ii) for paradoxical decompositions of solid three-dimensional objects, (iii) in the theory of effective computability (Church-Turing thesis) related to the possible “solution of supertasks,” and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvatages for physical applications are discussed: Canlorian “naive” (i.e., nonaxiomatic) set theory, contructivism, and operationalism. In the author's opinion, an attitude of “suspended attention” (a term borrowed from psychoanalysis) seems most promising for progress. Physical and set theoretical entities must be operationalized wherever possible. At the same time, physicists should be open to “bizarre” or “mindboggling” new formalisms, which need not be operationalizable or testable at the lime of their creation, but which may successfully lead to novel fields of phenomenology and technology.
Zhang, Jinzhi; Chen, Tianju; Wu, Jingli; Wu, Jinhu
2015-09-01
Thermal decomposition of six representative components of municipal solid waste (MSW, including lignin, printing paper, cotton, rubber, polyvinyl chloride (PVC) and cabbage) was investigated by thermogravimetric-mass spectroscopy (TG-MS) under steam atmosphere. Compared with TG and derivative thermogravimetric (DTG) curves under N2 atmosphere, thermal decomposition of MSW components under steam atmosphere was divided into pyrolysis and gasification stages. In the pyrolysis stage, the shapes of TG and DTG curves under steam atmosphere were almost the same with those under N2 atmosphere. In the gasification stage, the presence of steam led to a greater mass loss because of the steam partial oxidation of char residue. The evolution profiles of H2, CH4, CO and CO2 were well consistent with DTG curves in terms of appearance of peaks and relevant stages in the whole temperature range, and the steam partial oxidation of char residue promoted the generation of more gas products in high temperature range. The multi-Gaussian distributed activation energy model (DAEM) was proved plausible to describe thermal decomposition behaviours of MSW components under steam atmosphere. Copyright © 2015 Elsevier Ltd. All rights reserved.
The decomposition of peroxynitrite to nitroxyl anion (NO−) and singlet oxygen in aqueous solution
Khan, Ahsan Ullah; Kovacic, Dianne; Kolbanovskiy, Alexander; Desai, Mehul; Frenkel, Krystyna; Geacintov, Nicholas E.
2000-01-01
The mechanism of decomposition of peroxynitrite (OONO−) in aqueous sodium phosphate buffer solution at neutral pH was investigated. The OONO− was synthesized by directly reacting nitric oxide with superoxide anion at pH 13. The hypothesis was explored that OONO−, after protonation at pH 7.0 to HOONO, decomposes into 1O2 and HNO according to a spin-conserved unimolecular mechanism. Small aliquots of the concentrated alkaline OONO− solution were added to a buffer solution (final pH 7.0–7.2), and the formation of 1O2 and NO− in high yields was observed. The 1O2 generated was trapped as the transannular peroxide (DPAO2) of 9,10-diphenylanthracene (DPA) dissolved in carbon tetrachloride. The nitroxyl anion (NO−) formed from HNO (pKa 4.5) was trapped as nitrosylhemoglobin (HbNO) in an aqueous methemoglobin (MetHb) solution. In the presence of 25 mM sodium bicarbonate, which is known to accelerate the rate of decomposition of OONO−, the amount of singlet oxygen trapped was reduced by a factor of ≈2 whereas the yield of trapping of NO− by methemoglobin remained unaffected. Because NO3− is known to be the ultimate decomposition product of OONO−, these results suggest that the nitrate anion is not formed by a direct isomerization of OONO−, but by an indirect route originating from NO−. PMID:10716721
NASA Astrophysics Data System (ADS)
Alshaery, Aisha; Ebaid, Abdelhalim
2017-11-01
Kepler's equation is one of the fundamental equations in orbital mechanics. It is a transcendental equation in terms of the eccentric anomaly of a planet which orbits the Sun. Determining the position of a planet in its orbit around the Sun at a given time depends upon the solution of Kepler's equation, which we will solve in this paper by the Adomian decomposition method (ADM). Several properties of the periodicity of the obtained approximate solutions have been proved in lemmas. Our calculations demonstrated a rapid convergence of the obtained approximate solutions which are displayed in tables and graphs. Also, it has been shown in this paper that only a few terms of the Adomian decomposition series are sufficient to achieve highly accurate numerical results for any number of revolutions of the Earth around the Sun as a consequence of the periodicity property. Numerically, the four-term approximate solution coincides with the Bessel-Fourier series solution in the literature up to seven decimal places at some values of the time parameter and nine decimal places at other values. Moreover, the absolute error approaches zero using the nine term approximate Adomian solution. In addition, the approximate Adomian solutions for the eccentric anomaly have been used to show the convergence of the approximate radial distances of the Earth from the Sun for any number of revolutions. The minimal distance (perihelion) and maximal distance (aphelion) approach 147 million kilometers and 152.505 million kilometers, respectively, and these coincide with the well known results in astronomical physics. Therefore, the Adomian decomposition method is validated as an effective tool to solve Kepler's equation for elliptical orbits.
Persistent dopants and phase segregation in organolead mixed-halide perovskites
Rosales, Bryan A.; Men, Long; Cady, Sarah D.; ...
2016-07-25
Organolead mixed-halide perovskites such as CH 3NH 3PbX 3–aX' a (X, X' = I, Br, Cl) are interesting semiconductors because of their low cost, high photovoltaic power conversion efficiencies, enhanced moisture stability, and band gap tunability. Using a combination of optical absorption spectroscopy, powder X-ray diffraction (XRD), and, for the first time, 207Pb solid state nuclear magnetic resonance (ssNMR), we probe the extent of alloying and phase segregation in these materials. Because 207Pb ssNMR chemical shifts are highly sensitive to local coordination and electronic structure, and vary linearly with halogen electronegativity and band gap, this technique can provide the truemore » chemical speciation and composition of organolead mixed-halide perovskites. We specifically investigate samples made by three different preparative methods: solution phase synthesis, thermal annealing, and solid phase synthesis. 207Pb ssNMR reveals that nonstoichiometric dopants and semicrystalline phases are prevalent in samples made by solution phase synthesis. We show that these nanodomains are persistent after thermal annealing up to 200 °C. Further, a novel solid phase synthesis that starts from the parent, single-halide perovskites can suppress phase segregation but not the formation of dopants. Our observations are consistent with the presence of miscibility gaps and spontaneous spinodal decomposition of the mixed-halide perovskites at room temperature. This underscores how strongly different synthetic procedures impact the nanostructuring and composition of organolead halide perovskites. In conclusion, better optoelectronic properties and improved device stability and performance may be achieved through careful manipulation of the different phases and nanodomains present in these materials.« less
Persistent dopants and phase segregation in organolead mixed-halide perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosales, Bryan A.; Men, Long; Cady, Sarah D.
Organolead mixed-halide perovskites such as CH 3NH 3PbX 3–aX' a (X, X' = I, Br, Cl) are interesting semiconductors because of their low cost, high photovoltaic power conversion efficiencies, enhanced moisture stability, and band gap tunability. Using a combination of optical absorption spectroscopy, powder X-ray diffraction (XRD), and, for the first time, 207Pb solid state nuclear magnetic resonance (ssNMR), we probe the extent of alloying and phase segregation in these materials. Because 207Pb ssNMR chemical shifts are highly sensitive to local coordination and electronic structure, and vary linearly with halogen electronegativity and band gap, this technique can provide the truemore » chemical speciation and composition of organolead mixed-halide perovskites. We specifically investigate samples made by three different preparative methods: solution phase synthesis, thermal annealing, and solid phase synthesis. 207Pb ssNMR reveals that nonstoichiometric dopants and semicrystalline phases are prevalent in samples made by solution phase synthesis. We show that these nanodomains are persistent after thermal annealing up to 200 °C. Further, a novel solid phase synthesis that starts from the parent, single-halide perovskites can suppress phase segregation but not the formation of dopants. Our observations are consistent with the presence of miscibility gaps and spontaneous spinodal decomposition of the mixed-halide perovskites at room temperature. This underscores how strongly different synthetic procedures impact the nanostructuring and composition of organolead halide perovskites. In conclusion, better optoelectronic properties and improved device stability and performance may be achieved through careful manipulation of the different phases and nanodomains present in these materials.« less
Thermal decomposition pathways of hydroxylamine: theoretical investigation on the initial steps.
Wang, Qingsheng; Wei, Chunyang; Pérez, Lisa M; Rogers, William J; Hall, Michael B; Mannan, M Sam
2010-09-02
Hydroxylamine (NH(2)OH) is an unstable compound at room temperature, and it has been involved in two tragic industrial incidents. Although experimental studies have been carried out to study the thermal stability of hydroxylamine, the detailed decomposition mechanism is still in debate. In this work, several density functional and ab initio methods were used in conjunction with several basis sets to investigate the initial thermal decomposition steps of hydroxylamine, including both unimolecular and bimolecular reaction pathways. The theoretical investigation shows that simple bond dissociations and unimolecular reactions are unlikely to occur. The energetically favorable initial step of decomposition pathways was determined as a bimolecular isomerization of hydroxylamine into ammonia oxide with an activation barrier of approximately 25 kcal/mol at the MPW1K level of theory. Because hydroxylamine is available only in aqueous solutions, solvent effects on the initial decomposition pathways were also studied using water cluster methods and the polarizable continuum model (PCM). In water, the activation barrier of the bimolecular isomerization reaction decreases to approximately 16 kcal/mol. The results indicate that the bimolecular isomerization pathway of hydroxylamine is more favorable in aqueous solutions. However, the bimolecular nature of this reaction means that more dilute aqueous solution will be more stable.
Synthesis of tin (II) oxide from tin (II) oxohydroxide
NASA Astrophysics Data System (ADS)
Kuznetsova, Svetlana; Lisitsa, Konstantin
2017-11-01
Sufficiently limited use of tin (II) oxide is associated with the difficulties of its preparation without impurities of tin (IV) oxide. Understanding the cause of the oxidation process will make it possible to develop methods for obtaining SnO without impurities. The influence of ammonium chloride concentration in the suspension on the oxide composition was investigated. The temperature of oxidation (400 °C) on the air and temperature decomposition in the argon (350 °C) of Sn6O4(OH)4 in the solid phase were determined by the thermal analysis method. The decomposition temperature of the oxyhydroxide in the suspension of ammonium chloride does not exceed 100 °C. An increase in the content of ammonium chloride in an aqueous solution leads to an increase i n the solubility of oxohydroxide and leads to an increase in pH. The suspensions of Sn6O4(OH)4 were subjected to heat treatment on a sand bath and under microwave irradiation. Samples of tin oxide were obtained. The quantitative composition of the mixture of tin oxides was determined. The research also highlights emphasizes that the oxidation of tin (II) to tin (IV) is associated with the dissolved oxygen content in the suspension.
Yu, Qiang; Zhuang, Xinshu; Yuan, Zhenhong; Qi, Wei; Wang, Qiong; Tan, Xuesong
2011-02-01
The impact of the metal salts NaCl, KCl, CaCl(2), MgCl(2), FeCl(3), FeCl(2), and CuCl(2), particularly the latter, on the decomposition of hemicellulose and lignin from sweet sorghum bagasse in liquid hot water pretreatment processing was studied in an attempt to enhance the recovery of sugars. Transition metal chlorides significantly enhanced the hemicellulose removal compared to the alkaline earth metal chlorides and alkaline metal chlorides, contributing to the formation of a saccharide-metal cation intermediate complex. FeCl(2) greatly increased xylose degradation and about 60% xylan was converted into non-saccharide products. In contrast, an excellent total and monomeric xylose recovery was obtained after the CuCl(2) pretreatment. Most of the lignin was deposited on the surface of the residual solid with droplet morphologies after this pretreatment, and about 20% was degraded into monomeric products. The total recovery of sugars from sweet sorghum bagasse with 0.1% CuCl(2) solution pretreatment and 48 h enzymatic digestibility, reached 90.4%, which is superior to the recovery using hot water pretreatment only. Copyright © 2010 Elsevier Ltd. All rights reserved.
Three geographic decomposition approaches in transportation network analysis
DOT National Transportation Integrated Search
1980-03-01
This document describes the results of research into the application of geographic decomposition techniques to practical transportation network problems. Three approaches are described for the solution of the traffic assignment problem. One approach ...
Transportation Network Analysis and Decomposition Methods
DOT National Transportation Integrated Search
1978-03-01
The report outlines research in transportation network analysis using decomposition techniques as a basis for problem solutions. Two transportation network problems were considered in detail: a freight network flow problem and a scheduling problem fo...
May, I.; Rowe, J.J.
1965-01-01
A modified Morey bomb was designed which contains a removable nichromecased 3.5-ml platinium crucible. This bomb is particularly useful for decompositions of refractory samples for micro- and semimicro-analysis. Temperatures of 400-450?? and pressures estimated as great as 6000 p.s.i. were maintained in the bomb for periods as long as 24 h. Complete decompositions of rocks, garnet, beryl, chrysoberyl, phenacite, sapphirine, and kyanite were obtained with hydrofluoric acid or a mixture of hydrofluoric and sulfuric acids; the decomposition of chrome refractory was made with hydrochloric acid. Aluminum-rich samples formed difficultly soluble aluminum fluoride precipitates. Because no volatilization losses occur, silica can be determined on sample solutions by a molybdenum-blue procedure using aluminum(III) to complex interfering fluoride. ?? 1965.
NASA Technical Reports Server (NTRS)
Shaykhian, Gholam Ali; Baggs, Rhoda
2007-01-01
In the early problem-solution era of software programming, functional decompositions were mainly used to design and implement software solutions. In functional decompositions, functions and data are introduced as two separate entities during the design phase, and are followed as such in the implementation phase. Functional decompositions make use of refactoring through optimizing the algorithms, grouping similar functionalities into common reusable functions, and using abstract representations of data where possible; all these are done during the implementation phase. This paper advocates the usage of object-oriented methodologies and design patterns as the centerpieces of refactoring software solutions. Refactoring software is a method of changing software design while explicitly preserving its external functionalities. The combined usage of object-oriented methodologies and design patterns to refactor should also benefit the overall software life cycle cost with improved software.
Decomposition of forest products buried in landfills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoming, E-mail: xwang25@ncsu.edu; Padgett, Jennifer M.; Powell, John S.
Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal wastemore » components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g{sup −1} dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than previously reported.« less
NASA Astrophysics Data System (ADS)
Bertrand, G.; Comperat, M.; Lallemant, M.
1980-09-01
Copper sulfate pentahydrate dehydration into trihydrate was investigated using monocrystalline platelets with (110) crystallographic orientation. Temperature and pressure conditions were selected so as to obtain elliptical trihydrate domains. The study deals with the evolution, vs time, of elliptical domain dimensions and the evolution, vs water vapor pressure, of the {D}/{d} ratio of ellipse axes and on the other hand of the interface displacement rate along a given direction. The phenomena observed are not basically different from those yielded by the overall kinetic study of the solid sample. Their magnitude, however, is modulated depending on displacement direction. The results are analyzed within the scope of our study of endothermic decomposition of solids.
Metastable Phase Evolution in Oxide Systems
NASA Astrophysics Data System (ADS)
Levi, Carlos G.
2005-03-01
Multi-component ceramics are often synthesized by routes that facilitate mixing at the molecular scale and subsequently generate a solid product at low homologous temperatures. Examples include chemical and physical vapor deposition, thermal spray, and pyrolytic decomposition of precursor solutions. In these processes the solid evolves rapidly from a highly energized state, typically in a temperature regime wherein long-range diffusion is largely constrained and the equilibrium configuration can be kinetically suppressed. The resulting product may exhibit various forms of metastability such as amorphization, nanocrystallinity, extended solid solubility and alternate crystalline forms. The approach allows access to novel combinations of structure and composition with unprecedented defect structures that, if reasonably durable, could have properties of potential technological interest. Understanding phase selection and evolution is facilitated by having a suitable reference framework depicting the thermodynamic hierarchy of the phases available to the system under the relevant processing conditions. When transformations are partitionless the phase menu and hierarchy can be readily derived from the relative position of the T0 curves/surfaces for the different pairs of phases. The result is a phase hierarchy map, which is an analog of the phase diagram for partitionless equilibrium. Such maps can then be used to assess the kinetic effects on the selection of metastable states and their subsequent evolution. This presentation will discuss the evolution of metastable phases in oxides, with emphasis on systems involving fluorite phases and their ordered or distorted derivatives. The concepts will be illustrated primarily with zirconia-based systems, notably those of interest in thermal barrier coatings, fuel cells and ferroelectrics (ZrO2-MO3/2, where M = Y, Sc, the lanthanides and combinations thereof, as well as ZrO2-YO3/2-TiO2, ZrO2-TiO2-PbO, etc.). Of particular interest are the durabilities of metastable phases in systems that operate at high temperature, their decomposition paths and the implications to their functionality.
Integrated Network Decompositions and Dynamic Programming for Graph Optimization (INDDGO)
DOE Office of Scientific and Technical Information (OSTI.GOV)
The INDDGO software package offers a set of tools for finding exact solutions to graph optimization problems via tree decompositions and dynamic programming algorithms. Currently the framework offers serial and parallel (distributed memory) algorithms for finding tree decompositions and solving the maximum weighted independent set problem. The parallel dynamic programming algorithm is implemented on top of the MADNESS task-based runtime.
Demonstration of the Catalytic Decomposition of Hydrogen Peroxide
NASA Astrophysics Data System (ADS)
Conklin, Alfred R., Jr.; Kessinger, Angela
1996-09-01
Catalytic decomposition is demonstrated by placing hydrogen peroxide solutions in a one liter graduated cylinder and adding soap, food coloring, and potassium iodide. Released oxygen is trapped by the soap producing bubbles. The volume of bubbles is proportional to the concentration of hydrogen peroxide. Chloride and bromide do not cause decomposition. Increased reactant temperature increases the volume of bubbles formed.
Xu, Kai; Wei, Dong-Qing; Chen, Xiang-Rong; Ji, Guang-Fu
2014-10-01
The Car-Parrinello molecular dynamics simulation was applied to study the thermal decomposition of solid phase nitromethane under gradual heating and fast annealing conditions. In gradual heating simulations, we found that, rather than C-N bond cleavage, intermolecular proton transfer is more likely to be the first reaction in the decomposition process. At high temperature, the first reaction in fast annealing simulation is intermolecular proton transfer leading to CH3NOOH and CH2NO2, whereas the initial chemical event at low temperature tends to be a unimolecular C-N bond cleavage, producing CH3 and NO2 fragments. It is the first time to date that the direct rupture of a C-N bond has been reported as the first reaction in solid phase nitromethane. In addition, the fast annealing simulations on a supercell at different temperatures are conducted to validate the effect of simulation cell size on initial reaction mechanisms. The results are in qualitative agreement with the simulations on a unit cell. By analyzing the time evolution of some molecules, we also found that the time of first water molecule formation is clearly sensitive to heating rates and target temperatures when the first reaction is an intermolecular proton transfer.
Kadobayashi, Hirokazu; Hirai, Hisako; Ohfuji, Hiroaki; Ohtake, Michika; Yamamoto, Yoshitaka
2018-04-28
High-temperature and high-pressure experiments were performed under 2-55 GPa and 298-653 K using in situ Raman spectroscopy and X-ray diffraction combined with externally heated diamond anvil cells to investigate the stability of methane hydrate. Prior to in situ experiments, the typical C-H vibration modes of methane hydrate and their pressure dependence were measured at room temperature using Raman spectroscopy to make a clear discrimination between methane hydrate and solid methane which forms through the decomposition of methane hydrate at high temperature. The sequential in situ Raman spectroscopy and X-ray diffraction revealed that methane hydrate survives up to 633 K and 40.3 GPa and then decomposes into solid methane and ice VII above the conditions. The decomposition curve of methane hydrate estimated by the present experiments is >200 K lower than the melting curves of solid methane and ice VII, and moderately increases with increasing pressure. Our result suggests that although methane hydrate may be an important candidate for major constituents of cool exoplanets and other icy bodies, it is unlikely to be present in the ice mantle of Neptune and Uranus, where the temperature is expected to be far beyond the decomposition temperatures.
NASA Astrophysics Data System (ADS)
Kadobayashi, Hirokazu; Hirai, Hisako; Ohfuji, Hiroaki; Ohtake, Michika; Yamamoto, Yoshitaka
2018-04-01
High-temperature and high-pressure experiments were performed under 2-55 GPa and 298-653 K using in situ Raman spectroscopy and X-ray diffraction combined with externally heated diamond anvil cells to investigate the stability of methane hydrate. Prior to in situ experiments, the typical C-H vibration modes of methane hydrate and their pressure dependence were measured at room temperature using Raman spectroscopy to make a clear discrimination between methane hydrate and solid methane which forms through the decomposition of methane hydrate at high temperature. The sequential in situ Raman spectroscopy and X-ray diffraction revealed that methane hydrate survives up to 633 K and 40.3 GPa and then decomposes into solid methane and ice VII above the conditions. The decomposition curve of methane hydrate estimated by the present experiments is >200 K lower than the melting curves of solid methane and ice VII, and moderately increases with increasing pressure. Our result suggests that although methane hydrate may be an important candidate for major constituents of cool exoplanets and other icy bodies, it is unlikely to be present in the ice mantle of Neptune and Uranus, where the temperature is expected to be far beyond the decomposition temperatures.
Interface conditions for domain decomposition with radical grid refinement
NASA Technical Reports Server (NTRS)
Scroggs, Jeffrey S.
1991-01-01
Interface conditions for coupling the domains in a physically motivated domain decomposition method are discussed. The domain decomposition is based on an asymptotic-induced method for the numerical solution of hyperbolic conservation laws with small viscosity. The method consists of multiple stages. The first stage is to obtain a first approximation using a first-order method, such as the Godunov scheme. Subsequent stages of the method involve solving internal-layer problem via a domain decomposition. The method is derived and justified via singular perturbation techniques.
Isothermal Decomposition of Hydrogen Peroxide Dihydrate
NASA Technical Reports Server (NTRS)
Loeffler, M. J.; Baragiola, R. A.
2011-01-01
We present a new method of growing pure solid hydrogen peroxide in an ultra high vacuum environment and apply it to determine thermal stability of the dihydrate compound that forms when water and hydrogen peroxide are mixed at low temperatures. Using infrared spectroscopy and thermogravimetric analysis, we quantified the isothermal decomposition of the metastable dihydrate at 151.6 K. This decomposition occurs by fractional distillation through the preferential sublimation of water, which leads to the formation of pure hydrogen peroxide. The results imply that in an astronomical environment where condensed mixtures of H2O2 and H2O are shielded from radiolytic decomposition and warmed to temperatures where sublimation is significant, highly concentrated or even pure hydrogen peroxide may form.
Patchett, Ruth; Knighton, Richard C; Mattock, James D; Vargas, Alfredo; Chaplin, Adrian B
2017-11-20
The synthesis of cationic rhodium and iridium complexes of a bis(imidazole-2-thione)-functionalized calix[4]arene ligand and their surprising capacity for potassium binding are described. In both cases, uptake of the alkali metal into the calix[4]arene cavity occurs despite adverse electrostatic interactions associated with close proximity to the transition-metal fragment [Rh + ···K + = 3.715(1) Å; Ir + ···K + = 3.690(1) Å]. The formation and constituent bonding of these unusual heterobimetallic adducts have been interrogated through extensive solution and solid-state characterization, examination of the host-guest chemistry of the ligand and its upper-rim unfunctionalized calix[4]arene analogue, and use of density functional theory based energy decomposition analysis.
Low temperature synthesis of Ru-Cu alloy nanoparticles with the compositions in the miscibility gap
NASA Astrophysics Data System (ADS)
Martynova, S. A.; Filatov, E. Yu.; Korenev, S. V.; Kuratieva, N. V.; Sheludyakova, L. A.; Plusnin, P. E.; Shubin, Yu. V.; Slavinskaya, E. M.; Boronin, A. I.
2014-04-01
A complex salt [Ru(NH3)5Cl][Cu(C2O4)2H2O]-the precursor of nanoalloys combining ruthenium and copper was prepared. It crystallizes in the monoclinic space group P21/n. Thermal properties of the prepared salt were examined in different atmospheres (helium, hydrogen, oxygen). Thermal decomposition of the precursor in inert atmosphere was thoroughly examined and the intermediate products were characterized. Experimental conditions for preparation of copper-rich (up to 12 at% of copper) metastable solid solution CuxRu1-x (based on Ru structure) were optimized, what is in sharp contrast to the bimetallic miscibility gap known for the bulk counterparts in a wide composition range. Catalytic properties of copper-ruthenium oxide composite were tested in catalytic oxidation of CO.
NASA Astrophysics Data System (ADS)
Ionin, A. A.; Ivanova, A. K.; Khmel'nitskii, R. A.; Klevkov, Yu V.; Kudryashov, S. I.; Levchenko, A. O.; Nastulyavichus, A. A.; Rudenko, A. A.; Saraeva, I. N.; Smirnov, N. A.; Zayarny, D. A.; Gonchukov, S. A.; Tolordava, E. R.
2018-01-01
The antibacterial properties of selenium nanoparticles (Se NPs) were successfully demonstrated in vitro for Staphylococcus aureus and Pseudomonas aeruginosa biofilms. The possible mechanisms of antibacterial impact included the emergence of reactive oxygen species, induced by free radicals on the NP surface and accompanied by subsequent oxidative stress, as well as mechanical decomposition of the mitochondrial membrane. Se nanocoatings were deposited on bare and silver-coated silica glass substrates via inkjet printing with concentrated nanoinks, prepared by infrared laser-ablative processing of a solid Se target in a 50%-isopropyl solution. The resulted porous nanofilms with high-percentage surface coverage, consisting of spherical Se NPs and Se nanorods, were characterized by means of standard microscopy techniques (optical, scanning electron, transmission), UV-vis-IR and EDX spectroscopy.
The nature of temper brittleness of high-chromium ferrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarrak, V.I.; Suvorova, S.O.; Golovin, I.S.
The reasons for development of {open_quotes}475{degrees}C brittleness{close_quotes} of high-chromium ferritic steels are considered from the standpoint of fracture mechanics. It is shown that the general rise in the curve of temperature-dependent local flow stress has the decisive influence on the position of the ductile-to-brittle transformation temperature and the increase in it as the result of a hold at temperatures of development of brittleness. The established effect is related to the change in the parameters determining dislocation mobility, that is, the activation energy of dislocation movement in high-chromium ferrite and the resistance to microplastic deformation, both caused by processes of separationmore » into layers of high-chromium ferrite and decomposition of the interstitial solid solution.« less
NASA Astrophysics Data System (ADS)
Shvets, Karina; Khalikova, Gulnara; Korznikova, Elena; Trifonov, Vadim
2015-10-01
The effect of severe plastic deformation by high-pressure torsion (HPT) and subsequent annealing on the microstructure and microhardness of squeeze casting Al-22%Si-3%Cu-1.7%Ni alloy was investigated. HPT was performed at room temperature with 5 rotations under the pressure of 4 GPa. Annealing temperature range varied from 300 to 500°C for 5 min. HPT resulted in refinement and partial dissolution of the primary silicon and intermetallic particles in aluminum matrix and structure fragmentation that caused the microhardness increase. Subsequent annealing lead to the decomposition of the supersaturated solid solution that took place simultaneously with recovery and recrystallization of the fragmented structure. Increase of annealing temperature resulted in decrease of microhardness values.
Ahmad, N H; Isa, M I N
2016-02-10
Two solid biopolymer electrolytes (SBEs) systems of carboxymethyl cellulose doped ammonium chloride (CMC-AC) and propylene carbonate plasticized (CMC-AC-PC) were prepared via solution casting technique. The ionic conductivity of SBEs were analyzed using electrical impedance spectroscopy (EIS) in the frequency range of 50 Hz-1 MHz at ambient temperature (303K). The highest ionic conductivity of CMC-AC SBE is 1.43 × 10(-3)S/cm for 16 wt.% of AC while the highest conductivity of plasticized SBE system is 1.01 × 10(-2)S/cm when added with 8 wt.% of PC. TGA/DSC showed that the addition of PC had increased the decomposition temperature compared of CMC-AC SBE. Fourier transform infrared (FTIR) spectra showed the occurrence of complexation between the SBE components and it is proved successfully executed by Gaussian software. X-ray diffraction (XRD) indicated that amorphous nature of SBEs. It is believed that the PC is one of the most promising plasticizer to enhance the ionic conductivity and performance for SBE system. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chagas, L.H., E-mail: lhchagas-prometro@inmetro.gov.br; Instituto Nacional de Metrologia Qualidade e Tecnologia, Divisão de Metrologia de Materiais, 25250-020 Duque de Caxias, RJ; De Carvalho, G.S.G.
Highlights: • We synthesized MgCoAl and NiCoAl LDHs by the urea hydrolysis method. • Aluminum rich and crystalline materials have been formed. • The calcination of the LDHs generated mixed oxides with high surface areas. - Abstract: Layered double hydroxides (LDHs) with Mg/Co/Al and Ni/Co/Al were synthesized for the first time by the urea hydrolysis method. The experimental conditions promoted aluminum rich and crystalline materials. The formation of LDHs was investigated by powder X-ray diffraction (XRD), chemical analysis, solid state nuclear magnetic resonance with magic angle spinning ({sup 27}Al-MAS-NMR), simultaneous thermogravimetric/differential thermal analysis (TGA/DTA), FTIR spectroscopy, scanning electron microscopy (SEM),more » and N{sub 2} adsorption–desorption experiments. A single phase corresponding to LDH could be obtained in all the investigated compositions. Thermal calcination of these LDHs at 500 °C resulted in the formation of solid solutions in which Al{sup 3+} was dissolved. All the calcined materials have rock-salt like structures and high surface areas.« less
NASA Astrophysics Data System (ADS)
Ford, Neville J.; Connolly, Joseph A.
2009-07-01
We give a comparison of the efficiency of three alternative decomposition schemes for the approximate solution of multi-term fractional differential equations using the Caputo form of the fractional derivative. The schemes we compare are based on conversion of the original problem into a system of equations. We review alternative approaches and consider how the most appropriate numerical scheme may be chosen to solve a particular equation.
Preparation and Stoichiometry Effects on Microstructure and Properties of High Purity BaTiO3.
1986-03-27
oxalate , citrate) salt solutions, from mixed alkoxide precursors or from hydrothermal solutions. Typical starting materials and reaction sequences...decomposition and calcination reactions to form the BaTiO compound. Both the oxalate and 3 hydrothermal processes show commnercial promise and are briefly...thermal decomposition of oxalates and by hydrothermal synthesis. As-received lots of mixed oxide and oxalate -derived powders had Ba:TI ratios of 0.997 and
NASA Astrophysics Data System (ADS)
Na, Suok-Min; Yoo, Jin-Hyeong; Lambert, Paul K.; Jones, Nicholas J.
2018-05-01
High-entropy alloys (HEAs) containing multiple principle alloying elements exhibit unique properties so they are currently receiving great attention for developing innovative alloy designs. In FeCoNi-based HEAs, magnetic behaviors strongly depend on the addition of alloying elements, usually accompanied by structural changes. In this work, the effect of non-magnetic components on the ferromagnetic transition and magnetic behaviors in equiatomic FeCoNiCrX (X=Al, Ga, Mn and Sn) HEAs was investigated. Alloy ingots of nominal compositions of HEAs were prepared by arc melting and the button ingots were cut into discs for magnetic measurements as functions of magnetic field and temperature. The HEAs of FeCoNiCrMn and FeCoNiCrSn show typical paramagnetic behaviors, composed of solid solution FCC matrix, while the additions of Ga and Al in FeCoNiCr exhibit ferromagnetic behaviors, along with the coexistence of FCC and BCC phases due to spinodal decomposition. The partial phase transition in both HEAs with the additions of Ga and Al would enhance ferromagnetic properties due to the addition of the BCC phase. The saturation magnetization for the base alloy FeCoNiCr is 0.5 emu/g at the applied field of 20 kOe (TC = 104 K). For the HEAs of FeCoNiCrGa and FeCoNiCrAl, the saturation magnetization significantly increased to 38 emu/g (TC = 703 K) and 25 emu/g (TC = 277 K), respectively. To evaluate the possibility of solid solution FCC and BCC phases in FeCoNiCr-type HEAs, we introduced a parameter of valence electron concentration (VEC). The proposed rule for solid solution formation by the VEC was matched with FeCoNiCr-type HEAs.
NASA Astrophysics Data System (ADS)
Vargeese, Anuj A.; Mija, S. J.; Muralidharan, Krishnamurthi
2014-07-01
Ammonium nitrate (AN) is crystallized along with copper oxide, titanium dioxide, and lithium fluoride. Thermal kinetic constants for the decomposition reaction of the samples were calculated by model-free (Friedman's differential and Vyzovkins nonlinear integral) and model-fitting (Coats-Redfern) methods. To determine the decomposition mechanisms, 12 solid-state mechanisms were tested using the Coats-Redfern method. The results of the Coats-Redfern method show that the decomposition mechanism for all samples is the contracting cylinder mechanism. The phase behavior of the obtained samples was evaluated by differential scanning calorimetry (DSC), and structural properties were determined by X-ray powder diffraction (XRPD). The results indicate that copper oxide modifies the phase transition behavior and can catalyze AN decomposition, whereas LiF inhibits AN decomposition, and TiO2 shows no influence on the rate of decomposition. Possible explanations for these results are discussed. Supplementary materials are available for this article. Go to the publisher's online edition of the Journal of Energetic Materials to view the free supplemental file.
NASA Astrophysics Data System (ADS)
Huang, Yan; Wang, Zhihui
2015-12-01
With the development of FPGA, DSP Builder is widely applied to design system-level algorithms. The algorithm of CL multi-wavelet is more advanced and effective than scalar wavelets in processing signal decomposition. Thus, a system of CL multi-wavelet based on DSP Builder is designed for the first time in this paper. The system mainly contains three parts: a pre-filtering subsystem, a one-level decomposition subsystem and a two-level decomposition subsystem. It can be converted into hardware language VHDL by the Signal Complier block that can be used in Quartus II. After analyzing the energy indicator, it shows that this system outperforms Daubenchies wavelet in signal decomposition. Furthermore, it has proved to be suitable for the implementation of signal fusion based on SoPC hardware, and it will become a solid foundation in this new field.
The Thermal Decomposition of Basic Copper(II) Sulfate.
ERIC Educational Resources Information Center
Tanaka, Haruhiko; Koga, Nobuyoshi
1990-01-01
Discussed is the preparation of synthetic brochantite from solution and a thermogravimetric-differential thermal analysis study of the thermal decomposition of this compound. Other analyses included are chemical analysis and IR spectroscopy. Experimental procedures and results are presented. (CW)
Nucleation and Spinodal Decomposition in Ternary-Component Alloys
2009-07-30
at a high temperature and then rapidly quenching or cooling the mixture to form a solid. During the process of quenching , the components undergo a...Barbara Stoth, and Thomas Wanner, Spinodal Decomposition for Multicomponent Cahn-Hilliard Systems, Journal of Statistical Physics 98 (1999), 871–895...Avenue, New York, New York, 1988. 12 C. ACKERMANN AND W. HARDESTY Department of Mathematics, Virgina Tech Department of Mathematics and Statistics
Developing Battery Computer Aided Engineering Tools for Military Vehicles
2013-12-01
Task 1.b Modeling Bullet penetration. The purpose of Task 1.a was to extend the chemical kinetics models of CoO2 cathodes developed under CAEBAT to...lithium- ion batteries. The new finite element model captures swelling/shrinking in cathodes /anodes due to thermal expansion and lithium intercalation...Solid Electrolyte Interphase (SEI) layer decomposition 80 2 Anode — electrolyte 100 3 Cathode — electrolyte 130 4 Electrolyte decomposition 180
Analysis of HEMCL Railgun Insulator Damage
2006-06-01
pyrolytic epoxy degradation and glass fiber softening and liquification in the insulator, it is determined that rail-to-rail plasmas are present behind...produces epoxy decomposition products in the form of gases, oils , waxes and chars solid (heavily cross-linked residues) [4]. The nature of the... pyrolytic decomposition product (wax) of the epoxy as in the fired specimens. Figures 6 and 7 are typical examples of glass fiber softening and
NASA Astrophysics Data System (ADS)
Li, Yongfu; Chen, Na; Harmon, Mark E.; Li, Yuan; Cao, Xiaoyan; Chappell, Mark A.; Mao, Jingdong
2015-10-01
A feedback between decomposition and litter chemical composition occurs with decomposition altering composition that in turn influences the decomposition rate. Elucidating the temporal pattern of chemical composition is vital to understand this feedback, but the effects of plant species and climate on chemical changes remain poorly understood, especially over multiple years. In a 10-year decomposition experiment with litter of four species (Acer saccharum, Drypetes glauca, Pinus resinosa, and Thuja plicata) from four sites that range from the arctic to tropics, we determined the abundance of 11 litter chemical constituents that were grouped into waxes, carbohydrates, lignin/tannins, and proteins/peptides using advanced 13C solid-state NMR techniques. Decomposition generally led to an enrichment of waxes and a depletion of carbohydrates, whereas the changes of other chemical constituents were inconsistent. Inconsistent convergence in chemical compositions during decomposition was observed among different litter species across a range of site conditions, whereas one litter species converged under different climate conditions. Our data clearly demonstrate that plant species rather than climate greatly alters the temporal pattern of litter chemical composition, suggesting the decomposition-chemistry feedback varies among different plant species.
Li, Yongfu; Chen, Na; Harmon, Mark E.; Li, Yuan; Cao, Xiaoyan; Chappell, Mark A.; Mao, Jingdong
2015-01-01
A feedback between decomposition and litter chemical composition occurs with decomposition altering composition that in turn influences the decomposition rate. Elucidating the temporal pattern of chemical composition is vital to understand this feedback, but the effects of plant species and climate on chemical changes remain poorly understood, especially over multiple years. In a 10-year decomposition experiment with litter of four species (Acer saccharum, Drypetes glauca, Pinus resinosa, and Thuja plicata) from four sites that range from the arctic to tropics, we determined the abundance of 11 litter chemical constituents that were grouped into waxes, carbohydrates, lignin/tannins, and proteins/peptides using advanced 13C solid-state NMR techniques. Decomposition generally led to an enrichment of waxes and a depletion of carbohydrates, whereas the changes of other chemical constituents were inconsistent. Inconsistent convergence in chemical compositions during decomposition was observed among different litter species across a range of site conditions, whereas one litter species converged under different climate conditions. Our data clearly demonstrate that plant species rather than climate greatly alters the temporal pattern of litter chemical composition, suggesting the decomposition-chemistry feedback varies among different plant species. PMID:26515033
Decomposition Behavior of Curcumin during Solar Irradiation when Contact with Inorganic Particles
NASA Astrophysics Data System (ADS)
Nandiyanto, A. B. D.; Wiryani, A. S.; Rusli, A.; Purnamasari, A.; Abdullah, A. G.; Riza, L. S.
2017-03-01
Curcumin is one of materials which have been widely used in medicine, Asian cuisine, and traditional cosmetic. Therefore, understanding the stability of curcumin has been widely studied. The purpose of this study was to investigate the stability of curcumin solution against solar irradiation when making contact with inorganic material. As a model for the inorganic material, titanium dioxide (TiO2) was used. In the experimental method, the curcumin solution was irradiated using a solar irradiation. To confirm the stability of curcumin when contact with inorganic material, we added TiO2 micro particles with different concentrations. The results showed that the concentration of curcumin decreased during solar irradiation. The less concentration of curcumin affected the more decomposition rate obtained. The decomposition rate was increased greatly when TiO2 was added, in which the more TiO2 concentration added allowed the faster decomposition rate. Based on the result, we conclude that the curcumin is relatively stable as long as using higher concentration of curcumin and is no inorganic material existed. Then, the decomposition can be minimized by avoiding contact with inorganic material.
Oil shale combustor model developed by Greek researchers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-09-01
Work carried out in the Department of Chemical Engineering at the University of Thessaloniki, Thessaloniki, Greece has resulted in a model for the combustion of retorted oil shale in a fluidized bed combustor. The model is generally applicable to any hot-solids retorting process, whereby raw oil shale is retorted by mixing with a hot solids stream (usually combusted spent shale), and then the residual carbon is burned off the spent shale in a fluidized bed. Based on their modelling work, the following conclusions were drawn by the researchers. (1) For the retorted particle size distribution selected (average particle diameter 1600more » microns) complete carbon conversion is feasible at high pressures (2.7 atmosphere) and over the entire temperature range studied (894 to 978 K). (2) Bubble size was found to have an important effect, especially at conditions where reaction rates are high (high temperature and pressure). (3) Carbonate decomposition increases with combustor temperature and residence time. Complete carbon conversion is feasible at high pressures (2.7 atmosphere) with less than 20 percent carbonate decomposition. (4) At the preferred combustor operating conditions (high pressure, low temperature) the main reaction is dolomite decomposition while calcite decomposition is negligible. (5) Recombination of CO/sub 2/ with MgO occurs at low temperatures, high pressures, and long particle residence times.« less
NASA Astrophysics Data System (ADS)
Mao, J.; Chen, N.; Harmon, M. E.; Li, Y.; Cao, X.; Chappell, M.
2012-12-01
Advanced 13C solid-state NMR techniques were employed to study the chemical structural changes of litter decomposition across broad spatial and long time scales. The fresh and decomposed litter samples of four species (Acer saccharum (ACSA), Drypetes glauca (DRGL), Pinus resinosa (PIRE), and Thuja plicata (THPL)) incubated for up to 10 years at four sites under different climatic conditions (from Arctic to tropical forest) were examined. Decomposition generally led to an enrichment of cutin and surface wax materials, and a depletion of carbohydrates causing overall composition to become more similar compared with original litters. However, the changes of main constituents in the four litters were inconsistent with the four litters following different pathways of decomposition at the same site. As decomposition proceeded, waxy materials decreased at the early stage and then gradually increased in PIRE; DRGL showed a significant depletion of lignin and tannin while the changes of lignin and tannin were relative small and inconsistent for ACSA and THPL. In addition, the NCH groups, which could be associated with either fungal cell wall chitin or bacterial wall petidoglycan, were enriched in all litters except THPL. Contrary to the classic lignin-enrichment hypothesis, DRGL with low-quality C substrate had the highest degree of composition changes. Furthermore, some samples had more "advanced" compositional changes in the intermediate stage of decomposition than in the highly-decomposed stage. This pattern might be attributed to the formation of new cross-linking structures, that rendered substrates more complex and difficult for enzymes to attack. Finally, litter quality overrode climate and time factors as a control of long-term changes of chemical composition.
Zhu, Junli; Jia, Jia; Li, Xuepeng; Dong, Liangliang; Li, Jianrong
2013-12-15
The effects of ferrous iron, heating temperature and different additives on the decomposition of trimethylamine oxide (TMAO) to formaldehyde (FA) and dimethylamine (DMA) and generation of free radicals in jumbo squid (Dosidicus gigas) extract during heating were evaluated by electron spin resonance (ESR). The thermal decomposition of TMAO to TMA, DMA and FA and free radical signals was observed in squid extract, whereas no DMA, FA and free radical signals were detected in cod extract or in aqueous TMAO solution in vitro at high temperatures. Significant increase in levels of DMA, FA and radicals intensity were observed in squid extract and TMAO solution in the presence of ferrous iron with increasing temperature. Hydrogen peroxide stimulated the production of DMA, FA and ESR signals in squid extract, while citric acid, trisodium citrate, calcium chloride, tea polyphenols and resveratrol had the opposite effect. Similar ESR spectra of six peaks regarded as amminium radical were detected in the squid extract and TMAO-iron(II) solution, suggesting that the amminium radical was involved in the decomposition of TMAO. Copyright © 2013 Elsevier Ltd. All rights reserved.
Batch-type microreactors (about 1/40 milliliter of reactants) were used to measure furfural yields from acidified xylose solutions containing sodium...It was found that presence of the salt did not affect the quantity of furfural produced, but greatly increased the rate of formation. The regular...increase in rate of furfural formation was directly related to the increase in the rate xylose decomposition, and furfural yields for all salt and acid
About decomposition approach for solving the classification problem
NASA Astrophysics Data System (ADS)
Andrianova, A. A.
2016-11-01
This article describes the features of the application of an algorithm with using of decomposition methods for solving the binary classification problem of constructing a linear classifier based on Support Vector Machine method. Application of decomposition reduces the volume of calculations, in particular, due to the emerging possibilities to build parallel versions of the algorithm, which is a very important advantage for the solution of problems with big data. The analysis of the results of computational experiments conducted using the decomposition approach. The experiment use known data set for binary classification problem.
Polar decomposition for attitude determination from vector observations
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.
1993-01-01
This work treats the problem of weighted least squares fitting of a 3D Euclidean-coordinate transformation matrix to a set of unit vectors measured in the reference and transformed coordinates. A closed-form analytic solution to the problem is re-derived. The fact that the solution is the closest orthogonal matrix to some matrix defined on the measured vectors and their weights is clearly demonstrated. Several known algorithms for computing the analytic closed form solution are considered. An algorithm is discussed which is based on the polar decomposition of matrices into the closest unitary matrix to the decomposed matrix and a Hermitian matrix. A somewhat longer improved algorithm is suggested too. A comparison of several algorithms is carried out using simulated data as well as real data from the Upper Atmosphere Research Satellite. The comparison is based on accuracy and time consumption. It is concluded that the algorithms based on polar decomposition yield a simple although somewhat less accurate solution. The precision of the latter algorithms increase with the number of the measured vectors and with the accuracy of their measurement.
Zheng, Dalong; Ma, Liping; Wang, Rongmou; Yang, Jie; Dai, Quxiu
2018-02-01
Phosphogypsum is a solid industry by-product generated when sulphuric acid is used to process phosphate ore into fertiliser. Phosphogypsum stacks without pretreatment are often piled on the land surface or dumped in the sea, causing significant environmental damage. This study examined the reaction characteristics of phosphogypsum, when decomposed in a multi-atmosphere fluidised bed. Phosphogypsum was first dried, sieved and mixed proportionally with lignite at the mass ratio of 10:1, it was then immersed in 0.8 [Formula: see text] with a solid-liquid ratio of 8:25. The study included a two-step cycle of multi-atmosphere control. First, a reducing atmosphere was provided to allow phosphogypsum decomposition through partial lignite combustion. After the reduction stage reaction was completed, the reducing atmosphere was changed into an air-support oxidising atmosphere at the constant temperature. Each atmosphere cycle had a conversion time of 30 min to ensure a sufficient reaction. The decomposing properties of phosphogypsum were obtained in different atmosphere cycles, at different reaction temperatures, different heating rates and different fluidised gas velocities, using experimental results combined with a theoretical analysis using FactSage 7.0 Reaction module. The study revealed that the optimum reaction condition was to circulate the atmosphere twice at a temperature of 1100 °C. The heating rate above 800 °C was 5 [Formula: see text], and the fluidised gas velocity was 0.40 [Formula: see text]. The procedure proposed in this article can serve as a phosphogypsum decomposition solution, and can support the future management of this by-product, resulting in more sustainable production.
Ramírez-Rigo, María V; Olivera, María E; Rubio, Modesto; Manzo, Ruben H
2014-05-13
The low bioavailability of enalapril maleate associated to its instability in solid state motivated the development of a polyelectrolyte-drug complex between enalapril maleate and the cationic polymethacrylate Eudragit E100. The solid complexes were characterized by DSC-TG, FT-IR and X-ray diffraction. Their aqueous dispersions were evaluated for drug delivery in bicompartimental Franz cells and electrokinetic potentials. Stability in solid state was also evaluated using an HPLC-UV stability indicating method. Absorption of enalapril maleate was assessed thorough the rat everted gut sac model. In addition, urinary recovery after oral administration in rats was used as an indicator of systemic exposition. The solid materials are stable amorphous solids in which both moieties of enalapril maleate are ionically bonded to the polymer. Their aqueous dispersions exhibited controlled release over more than 7h in physiologic saline solution, being ionic exchange the fundamental mechanism that modified the extent and rate of drug release. Intestinal permeation of enalapril maleate was 1.7 times higher in the presence of the cationic polymer. This increase can be related with the capacity to adhere the mucosa due to the positive zeta potential of the complexes. As a consequence bioavailability was significantly improved (1.39 times) after oral administration of the complexes. In addition, no signs of chemical decomposition were observed after a 14months period. The results indicated that the products are new chemical entities that improve unfavorable properties of a useful drug. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ladriere, J.
1992-04-01
The thermal decompositions of K3Fe(ox)3 3 H2O and K2Fe(ox)2 2 H2O in nitrogen have been studied using Mössbauer spectroscopy, X-ray diffraction and thermal analysis methods in order to determine the nature of the solid residues obtained after each stage of decomposition. Particularly, after dehydration at 113°C, the ferric complex is reduced into a ferrous compound, with a quadrupole splitting of 3.89 mm/s, which corresponds to the anhydrous form of K2Fe(ox)2 2 H2O.
Schwartz, Michael; White, James H.; Sammells, Anthony F.
2005-09-27
This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.
Schwartz, Michael; White, James H.; Sammels, Anthony F.
2000-01-01
This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.
End-Member Formulation of Solid Solutions and Reactive Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lichtner, Peter C.
2015-09-01
A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed tomore » correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.« less
NASA Astrophysics Data System (ADS)
Daftardar-Gejji, Varsha; Jafari, Hossein
2005-01-01
Adomian decomposition method has been employed to obtain solutions of a system of fractional differential equations. Convergence of the method has been discussed with some illustrative examples. In particular, for the initial value problem: where A=[aij] is a real square matrix, the solution turns out to be , where E([alpha]1,...,[alpha]n),1 denotes multivariate Mittag-Leffler function defined for matrix arguments and Ai is the matrix having ith row as [ai1...ain], and all other entries are zero. Fractional oscillation and Bagley-Torvik equations are solved as illustrative examples.
Control of NO concentration in solutions of nitrosothiol compounds by light.
Zhelyaskov, V R; Gee, K R; Godwin, D W
1998-03-01
We studied the thermal and photolytic decomposition of two S-nitrosothiols, S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylpenicillamine (SNAP), in water or propanol solutions. A "concentration clamp" (relatively constant concentration of NO as a function of time) could be implemented in a closed volume by varying the pH, concentration of nitrovasodilator and intensity of the light source. Depending on the conditions, the light either stimulated NO release or sharply decreased NO concentration in the test solutions. Changes in the absorption spectra of GSNO solutions were monitored as a function of light exposure. Generation of superoxide as a product of a photolytic decomposition reaction of S-nitrosothiols and further oxidation of NO is the most likely mechanism for light suppression of NO concentration.
Sparse Solution of Fiber Orientation Distribution Function by Diffusion Decomposition
Yeh, Fang-Cheng; Tseng, Wen-Yih Isaac
2013-01-01
Fiber orientation is the key information in diffusion tractography. Several deconvolution methods have been proposed to obtain fiber orientations by estimating a fiber orientation distribution function (ODF). However, the L 2 regularization used in deconvolution often leads to false fibers that compromise the specificity of the results. To address this problem, we propose a method called diffusion decomposition, which obtains a sparse solution of fiber ODF by decomposing the diffusion ODF obtained from q-ball imaging (QBI), diffusion spectrum imaging (DSI), or generalized q-sampling imaging (GQI). A simulation study, a phantom study, and an in-vivo study were conducted to examine the performance of diffusion decomposition. The simulation study showed that diffusion decomposition was more accurate than both constrained spherical deconvolution and ball-and-sticks model. The phantom study showed that the angular error of diffusion decomposition was significantly lower than those of constrained spherical deconvolution at 30° crossing and ball-and-sticks model at 60° crossing. The in-vivo study showed that diffusion decomposition can be applied to QBI, DSI, or GQI, and the resolved fiber orientations were consistent regardless of the diffusion sampling schemes and diffusion reconstruction methods. The performance of diffusion decomposition was further demonstrated by resolving crossing fibers on a 30-direction QBI dataset and a 40-direction DSI dataset. In conclusion, diffusion decomposition can improve angular resolution and resolve crossing fibers in datasets with low SNR and substantially reduced number of diffusion encoding directions. These advantages may be valuable for human connectome studies and clinical research. PMID:24146772
ADM For Solving Linear Second-Order Fredholm Integro-Differential Equations
NASA Astrophysics Data System (ADS)
Karim, Mohd F.; Mohamad, Mahathir; Saifullah Rusiman, Mohd; Che-Him, Norziha; Roslan, Rozaini; Khalid, Kamil
2018-04-01
In this paper, we apply Adomian Decomposition Method (ADM) as numerically analyse linear second-order Fredholm Integro-differential Equations. The approximate solutions of the problems are calculated by Maple package. Some numerical examples have been considered to illustrate the ADM for solving this equation. The results are compared with the existing exact solution. Thus, the Adomian decomposition method can be the best alternative method for solving linear second-order Fredholm Integro-Differential equation. It converges to the exact solution quickly and in the same time reduces computational work for solving the equation. The result obtained by ADM shows the ability and efficiency for solving these equations.
Distributed Prognostics based on Structural Model Decomposition
NASA Technical Reports Server (NTRS)
Daigle, Matthew J.; Bregon, Anibal; Roychoudhury, I.
2014-01-01
Within systems health management, prognostics focuses on predicting the remaining useful life of a system. In the model-based prognostics paradigm, physics-based models are constructed that describe the operation of a system and how it fails. Such approaches consist of an estimation phase, in which the health state of the system is first identified, and a prediction phase, in which the health state is projected forward in time to determine the end of life. Centralized solutions to these problems are often computationally expensive, do not scale well as the size of the system grows, and introduce a single point of failure. In this paper, we propose a novel distributed model-based prognostics scheme that formally describes how to decompose both the estimation and prediction problems into independent local subproblems whose solutions may be easily composed into a global solution. The decomposition of the prognostics problem is achieved through structural decomposition of the underlying models. The decomposition algorithm creates from the global system model a set of local submodels suitable for prognostics. Independent local estimation and prediction problems are formed based on these local submodels, resulting in a scalable distributed prognostics approach that allows the local subproblems to be solved in parallel, thus offering increases in computational efficiency. Using a centrifugal pump as a case study, we perform a number of simulation-based experiments to demonstrate the distributed approach, compare the performance with a centralized approach, and establish its scalability. Index Terms-model-based prognostics, distributed prognostics, structural model decomposition ABBREVIATIONS
Santodonato, Louis J.; Zhang, Yang; Feygenson, Mikhail; ...
2015-01-20
The alloy-design strategy of combining multiple elements in near-equimolar ratios has shown great potential for producing exceptional engineering materials, often known as “high-entropy alloys”. Understanding the elemental distribution, and, thus, the evolution of the configurational entropy during solidification, is undertaken in the present study using the Al 1.3CoCrCuFeNi model alloy. Here we show that even when the material undergoes elemental segregation, precipitation, chemical ordering, and spinodal decomposition, a significant amount of disorder remains, due to the distributions of multiple elements in the major phases. In addition, the results suggest that the high-entropy-alloy-design strategy may be applied to a wide rangemore » of complex materials, and should not be limited to the goal of creating single-phase solid solutions.« less
Numerical solutions of incompressible Navier-Stokes equations using modified Bernoulli's law
NASA Astrophysics Data System (ADS)
Shatalov, A.; Hafez, M.
2003-11-01
Simulations of incompressible flows are important for many practical applications in aeronautics and beyond, particularly in the high Reynolds number regime. The present formulation is based on Helmholtz velocity decomposition where the velocity is presented as the gradient of a potential plus a rotational component. Substituting in the continuity equation yields a Poisson equation for the potential which is solved with a zero normal derivative at solid surfaces. The momentum equation is used to update the rotational component with no slip/no penetration surface boundary conditions. The pressure is related to the potential function through a special relation which is a generalization of Bernoulli's law, with a viscous term included. Results of calculations for two- and three-dimensional problems prove that the present formulation is a valid approach, with some possible benefits compared to existing methods.
Composition distributions in FePt(Au) nanoparticles
NASA Astrophysics Data System (ADS)
Srivastava, C.; Nikles, D. E.; Harrell, J. W.; Thompson, G. B.
2010-08-01
Ternary alloy FePt(Au) nanoparticles were prepared by the co-reduction of platinum(II) acetylacetonate and gold(III) acetate and the thermal decomposition of iron pentacarbonyl in hot phenyl ether in the presence of oleic acid and oleylamine ligands. This gave spherical particles with an average diameter of 4.4 nm with a range of diameters from approximately 1.6-9 nm. The as-synthesized particles had a solid solution, face-centered-cubic structure. Though the average composition of the particles was Fe44Pt45Au11, individual particle analysis by Scanning Transmission Electron Microscopy-X-ray Energy Dispersive Spectroscopy showed a broad distribution in composition. In general, smaller-sized particles tended to have a lower amount of Au as compared to larger-sized particles. As the Au content increased, the ratio of Fe/Pt widened.
Domain decomposition for aerodynamic and aeroacoustic analyses, and optimization
NASA Technical Reports Server (NTRS)
Baysal, Oktay
1995-01-01
The overarching theme was the domain decomposition, which intended to improve the numerical solution technique for the partial differential equations at hand; in the present study, those that governed either the fluid flow, or the aeroacoustic wave propagation, or the sensitivity analysis for a gradient-based optimization. The role of the domain decomposition extended beyond the original impetus of discretizing geometrical complex regions or writing modular software for distributed-hardware computers. It induced function-space decompositions and operator decompositions that offered the valuable property of near independence of operator evaluation tasks. The objectives have gravitated about the extensions and implementations of either the previously developed or concurrently being developed methodologies: (1) aerodynamic sensitivity analysis with domain decomposition (SADD); (2) computational aeroacoustics of cavities; and (3) dynamic, multibody computational fluid dynamics using unstructured meshes.
NASA Astrophysics Data System (ADS)
Roul, Pradip; Warbhe, Ujwal
2017-08-01
The classical homotopy perturbation method proposed by J. H. He, Comput. Methods Appl. Mech. Eng. 178, 257 (1999) is useful for obtaining the approximate solutions for a wide class of nonlinear problems in terms of series with easily calculable components. However, in some cases, it has been found that this method results in slowly convergent series. To overcome the shortcoming, we present a new reliable algorithm called the domain decomposition homotopy perturbation method (DDHPM) to solve a class of singular two-point boundary value problems with Neumann and Robin-type boundary conditions arising in various physical models. Five numerical examples are presented to demonstrate the accuracy and applicability of our method, including thermal explosion, oxygen-diffusion in a spherical cell and heat conduction through a solid with heat generation. A comparison is made between the proposed technique and other existing seminumerical or numerical techniques. Numerical results reveal that only two or three iterations lead to high accuracy of the solution and this newly improved technique introduces a powerful improvement for solving nonlinear singular boundary value problems (SBVPs).
NASA Astrophysics Data System (ADS)
Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei
2016-05-01
Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition.
Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei
2016-01-01
Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition. PMID:27222322
Synthesis of Er-doped Lu2O3 nanoparticles and transparent ceramics
NASA Astrophysics Data System (ADS)
Serivalsatit, K.; Wasanapiarnpong, T.; Kucera, C.; Ballato, J.
2013-05-01
Transparent rare earth-doped Lu2O3 ceramics have received much attention for use in solid-state scintillator and laser applications. The fabrication of these ceramics, however, requires ultrafine and uniform powders as precursors. Presented here is the synthesis of Er-doped Lu2O3 nanopowders by a solution precipitation method using Er-doped lutetium sulfate solution and hexamethylenetetramine as a precipitant and the fabrication of Er-doped Lu2O3 transparent ceramics from these nanopowders. The precipitated precursors were calcined at 1100 °C for 4 h in order to convert the precursors into Lu2O3 nanoparticles with an average particle size of 60 nm. Thermal decomposition and phase evolution of the precursors were studied by simultaneous thermal analysis (STA), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Er-doped Lu2O3 transparent ceramics were fabricated from these nanopowders using vacuum sintering followed by hot isostatic pressing at 1700 °C for 8 h. The transparent ceramics exhibit an optical transmittance of 78% at a wavelength of 1.55 μm.
Scalable Nonlinear Solvers for Fully Implicit Coupled Nuclear Fuel Modeling. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Xiao-Chuan; Keyes, David; Yang, Chao
2014-09-29
The focus of the project is on the development and customization of some highly scalable domain decomposition based preconditioning techniques for the numerical solution of nonlinear, coupled systems of partial differential equations (PDEs) arising from nuclear fuel simulations. These high-order PDEs represent multiple interacting physical fields (for example, heat conduction, oxygen transport, solid deformation), each is modeled by a certain type of Cahn-Hilliard and/or Allen-Cahn equations. Most existing approaches involve a careful splitting of the fields and the use of field-by-field iterations to obtain a solution of the coupled problem. Such approaches have many advantages such as ease of implementationmore » since only single field solvers are needed, but also exhibit disadvantages. For example, certain nonlinear interactions between the fields may not be fully captured, and for unsteady problems, stable time integration schemes are difficult to design. In addition, when implemented on large scale parallel computers, the sequential nature of the field-by-field iterations substantially reduces the parallel efficiency. To overcome the disadvantages, fully coupled approaches have been investigated in order to obtain full physics simulations.« less
Synthesis and optoelectronic properties of new polyarylates with 2-naphthyldiphenylamine units
NASA Astrophysics Data System (ADS)
Cai, Wanan; Wu, Xiaotong; Xiao, Tiandi; Niu, Haijun; Bai, Xuduo; Wang, Cheng; Wang, Wen; Zhang, Yanhong
2018-02-01
Herein, five kinds of soluble electrochromic polyarylates were synthesized from the reaction of N,N'-bis(4-carboxyphenyl)-N,N'-di-2-naphthyl-1,4-phenylenediamine with five bisphenols via direct polycondensation process, respectively. These new materials showed no significant decomposition below 400 °C in nitrogen atmosphere. The maximum UV-vis absorption bands of these polyarylates located at 328-348 nm and 327-353 nm for solid films and DMSO solution, respectively. The polyarylate 6a, as an example, exhibited not only aggregation-induced emission (AIE) effect in different fraction tetrahydrofuran/water solution, but also solvatochromism in various polar solvents, markedly. Two reversible pairs of distinct redox peaks were associated with noticeable color changed from original colorless to yellowish orange and green for polymeric film could be observed in the cyclic voltammetry (CV) test. New absorption peaks emerged in near-infrared (NIR) region with increasing voltage in the UV-vis spectra, which indicates these polyarylates can be used as NIR electrochromic materials. These polyarylates performed high contrast of optical transmittance change around 42-53% with the highest coloration efficiency up to 236 cm2C-1.
Integral representations of solutions of the wave equation based on relativistic wavelets
NASA Astrophysics Data System (ADS)
Perel, Maria; Gorodnitskiy, Evgeny
2012-09-01
A representation of solutions of the wave equation with two spatial coordinates in terms of localized elementary ones is presented. Elementary solutions are constructed from four solutions with the help of transformations of the affine Poincaré group, i.e. with the help of translations, dilations in space and time and Lorentz transformations. The representation can be interpreted in terms of the initial-boundary value problem for the wave equation in a half-plane. It gives the solution as an integral representation of two types of solutions: propagating localized solutions running away from the boundary under different angles and packet-like surface waves running along the boundary and exponentially decreasing away from the boundary. Properties of elementary solutions are discussed. A numerical investigation of coefficients of the decomposition is carried out. An example of the decomposition of the field created by sources moving along a line with different speeds is considered, and the dependence of coefficients on speeds of sources is discussed.
NASA Astrophysics Data System (ADS)
Kou, Jiaqing; Le Clainche, Soledad; Zhang, Weiwei
2018-01-01
This study proposes an improvement in the performance of reduced-order models (ROMs) based on dynamic mode decomposition to model the flow dynamics of the attractor from a transient solution. By combining higher order dynamic mode decomposition (HODMD) with an efficient mode selection criterion, the HODMD with criterion (HODMDc) ROM is able to identify dominant flow patterns with high accuracy. This helps us to develop a more parsimonious ROM structure, allowing better predictions of the attractor dynamics. The method is tested in the solution of a NACA0012 airfoil buffeting in a transonic flow, and its good performance in both the reconstruction of the original solution and the prediction of the permanent dynamics is shown. In addition, the robustness of the method has been successfully tested using different types of parameters, indicating that the proposed ROM approach is a tool promising for using in both numerical simulations and experimental data.
NASA Astrophysics Data System (ADS)
Braunstein, G.; Paz-Pujalt, G. R.; Mason, M. G.; Blanton, T.; Barnes, C. L.; Margevich, D.
1993-01-01
The processes of formation and crystallization of thin films of SrTiO3 prepared by the method of metallo-organic decomposition have been studied with particular emphasis on the relationship between the thermal decomposition of the metallo-organic precursors and the eventual epitaxial alignment of the crystallized films. The films are deposited by spin coating onto single-crystalline silicon and SrTiO3 substrates, pyrolyzed on a hot plate at temperatures ranging from 200 to 450 °C, and subsequently heat treated in a quartz tube furnace at temperatures ranging from 300 to 1200 °C. Heat treatment at temperatures up to 450-500 °C results in the evaporation of solvents and other organic addenda, thermal decomposition of the metallo-organic (primarily metal-carboxylates) precursors, and formation of a carbonate species. This carbonate appears to be an intermediate phase in the reaction of SrCO3 and TiO2 to form SrTiO3. Relevant to this work is the fact that the carbonate species exhibits diffraction lines, indicating the formation of grains that can serve as seeds for the nucleation and growth of randomly oriented SrTiO3 crystallites, thereby leading to a polycrystalline film. Deposition on silicon substrates indeed results in the formation of polycrystalline SrTiO3. However, when the precursor solution is deposited on single-crystalline SrTiO3 substrates, the crystallization process involves a competition between two mechanisms: the random nucleation and growth of crystallites just described, and layer-by-layer solid phase epitaxy. Epitaxial alignment on SrTiO3 substrates can be achieved when the samples are heat treated at temperatures of 1100-1200 °C or at temperatures as low as 600-650 °C when the substrate is heated to about 1100 °C before spin coating.
Control of Effluent Gases from Solid Waste Processing using Impregnated Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Li, Jing; Fisher, John; Wignarajah, Kanapathipillai
2005-01-01
One of the major problems associated with solid waste processing technologies is effluent contaminants that are released in gaseous forms from the processes. This is a concern in both biological as well as physicochemical solid waste processing. Carbon dioxide (CO2), the major gas released, does not present a serious problem and there are currently in place a number of flight-qualified technologies for CO2 removal. However, a number of other gases, in particular NOx, SO2, NH3, and various hydrocarbons (e.g. CH4) do present health hazards to the crew members in space habitats. In the present configuration of solid waste processing in the International Space Station (ISS), some of these gases are removed by the Trace Contaminant Control System (TCCS), demands a major resupply. Reduction of the resupply can be effective by using catalyst impregnated carbon nanotubes. For example, NO decomposition to N2 and O2 is thermodynamically favored. Data showing decomposition of NO on metal impregnated carbon nanotubes is presented. Comparisons are made of the existing TCCS systems with the carbon nanotube based technology for removing NOx based on mass/energy penalties.
THE INFLUENCE OF DOM CHARACTER ON OZONE DECOMPOSITION RATES AND RCT
The effects of DOM character on ozonation of natural waters and solutions of DOM isolates were investigated. Batch kinetic investigations measured O3 decomposition rate constants and Rct values. Rct describes the ratio of ?OH concentration to O3 concentration, and thus provides...
NASA Technical Reports Server (NTRS)
Herley, P. J.; Levy, P. W.
1972-01-01
The X-ray and gamma-ray induced decomposition of ammonium perchlorate was studied by optical, transmission, and scanning electron microscopy. This material is a commonly used oxidizer in solid propellents which could be employed in deep-space probes, and where they will be subjected to a variety of radiations for as long as ten years. In some respects the radiation-induced damage closely resembles the effects produced by thermal decomposition, but in other respects the results differ markedly. Similar radiation and thermal effects include the following: (1) irregular or ill-defined circular etch pits are formed in both cases; (2) approximately the same size pits are produced; (3) the pit density is similar; (4) the c face is considerably more reactive than the m face; and (5) most importantly, many of the etch pits are aligned in crystallographic directions which are the same for thermal or radiolytic decomposition. Thus, dislocations play an important role in the radiolytic decomposition process.
Lesniewska, Monika A; Dereziński, Paweł; Klupczyńska, Agnieszka; Kokot, Zenon J; Ostrowski, Tomasz; Zeidler, Joanna; Muszalska, Izabela
2015-01-01
The degradation behavior of a tricyclic analog of acyclovir [6-(4-MeOPh)-TACV] was determined in accordance with International Conference on Harmonization guidelines for good clinical practice under different stress conditions (neutral hydrolysis, strong acid/base degradation, oxidative decomposition, photodegradation, and thermal degradation). Accelerated [40±2°C/75%±5% relative humidity (RH)] and intermediate (30±2°C/65%±5% RH) stability tests were also performed. For observation of the degradation of the tested compound the RP-HPLC was used, whereas for the analysis of its degradation products HPLC/MS/MS was used. Degradation of the tested substance allowed its classification as unstable in neutral environment, acidic/alkaline medium, and in the presence of oxidizing agent. The tested compound was also light sensitive and was classified as photolabile both in solution and in the solid phase. However, the observed photodegradation in the solid phase was at a much lower level than in the case of photodegradation in solution. The study showed that both air temperature and RH had no significant effect on the stability of the tested substance during storage for 1 month at 100°C (dry heat) as well as during accelerated and intermediate tests. Based on the HPLC/MS/MS analysis, it can be concluded that acyclovir was formed as a degradation product of 6-(4-MeOPh)-TACV.
NASA Astrophysics Data System (ADS)
Trisakti, B.; Irvan, Mahdalena; Taslim; Turmuzi, M.
2017-06-01
This study aimed to determine the effect of temperature on methanogenesis stage of conversion of palm oil mill effluent into biogas. Methanogenesis is the second stage of methanogenic anaerobic digestion. Improved performance of the methanogenesis process was determined by measuring the growth of microorganisms, degradation of organic materials, biogas production and composition. Initially, the suitable loading up was determined by varying the HRT 100, 40, 6, and 4.0 days in the continuous stirred tank reactor (CSTR) with mixing rate 100 rpm, pH 6.7-7.5 at room temperature. Next, effect of temperature on the process was determined by varying temperature at mesophilic range (30-42°C) and thermophilic range (43-55°C). Analysis of total solids (TS), volatile solids (VS), total suspended solids (TSS), volatile suspended solids (VSS), and chemical oxygen demand (COD) were conducted in order to study the growth of microorganisms and their abilities in converting organic compound to produce biogas. Degradation of organic content i.e. VS decomposition and COD removal increased with the increasing of temperature. At mesophilic range, VS decomposition and COD removal were 51.56 ± 8.30 and 79.82 ± 6.03, respectively. Meanwhile at thermopilic range, VS decomposition and COD removal were 67.44 ± 3.59 and 79.16 ± 1.75, respectively. Biogas production and its methane content also increased with the increasing of temperature, but CO2 content also increased. Biogas production at mesophilic range was 31.77 ± 3.46 L/kg-ΔVS and methane content was 75 . Meanwhile, biogas production at thermopilic range was 37.03 ± 5.16 L/kg-ΔVS and methane content was 62.25 ± 5.50 .
Optimal domain decomposition strategies
NASA Technical Reports Server (NTRS)
Yoon, Yonghyun; Soni, Bharat K.
1995-01-01
The primary interest of the authors is in the area of grid generation, in particular, optimal domain decomposition about realistic configurations. A grid generation procedure with optimal blocking strategies has been developed to generate multi-block grids for a circular-to-rectangular transition duct. The focus of this study is the domain decomposition which optimizes solution algorithm/block compatibility based on geometrical complexities as well as the physical characteristics of flow field. The progress realized in this study is summarized in this paper.
Solid-state reaction kinetics of neodymium doped magnesium hydrogen phosphate system
NASA Astrophysics Data System (ADS)
Gupta, Rashmi; Slathia, Goldy; Bamzai, K. K.
2018-05-01
Neodymium doped magnesium hydrogen phosphate (NdMHP) crystals were grown by using gel encapsulation technique. Structural characterization of the grown crystals has been carried out by single crystal X-ray diffraction (XRD) and it revealed that NdMHP crystals crystallize in orthorhombic crystal system with space group Pbca. Kinetics of the decomposition of the grown crystals has been studied by non-isothermal analysis. The estimation of decomposition temperatures and weight loss has been made from the thermogravimetric/differential thermo analytical (TG/DTA) in conjuncture with DSC studies. The various steps involved in the thermal decomposition of the material have been analysed using Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova equations for evaluating various kinetic parameters.
NASA Astrophysics Data System (ADS)
Shimonishi, Y.; Zhang, T.; Johnson, P.; Imanishi, N.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Sammes, N.
The stability of a NASICON-type lithium ion conducting solid electrolyte, Li 1+ x+ yTi 2- xAl xP 3- ySi yO 12 (LTAP), in acetic acid and formic acid solutions was examined. XRD patterns of the LTAP powders immersed in 100% acetic acid and formic acid at 50 °C for 4 months showed no change as compared to the pristine LTAP. However, the electrical conductivity of LTAP drastically decreased. On the other hand, no significant electrical conductivity change of LTAP immersed in lithium formate saturated formic acid-water solution was observed, and the electrical conductivity of LTAP immersed in lithium acetate saturated acetic acid-water increased. Cyclic voltammogram tests suggested that acetic acid was stable up to a high potential, but formic acid decomposed under the decomposition potential of water. The acetic acid solution was considered to be a candidate for the active material in the air electrode of lithium-air rechargeable batteries. The cell reaction was considered as 2Li + 2 CH 3COOH + 1/2O 2 = 2CH 3COOLi + H 2O. The energy density of this lithium-air system is calculated to be 1477 Wh kg -1 from the weights of Li and CH 3COOH, and an observed open-circuit voltage of 3.69 V.
Dynamics of Potassium Release and Adsorption on Rice Straw Residue
Li, Jifu; Lu, Jianwei; Li, Xiaokun; Ren, Tao; Cong, Rihuan; Zhou, Li
2014-01-01
Straw application can not only increase crop yields, improve soil structure and enrich soil fertility, but can also enhance water and nutrient retention. The aim of this study was to ascertain the relationships between straw decomposition and the release-adsorption processes of K+. This study increases the understanding of the roles played by agricultural crop residues in the soil environment, informs more effective straw recycling and provides a method for reducing potassium loss. The influence of straw decomposition on the K+ release rate in paddy soil under flooded condition was studied using incubation experiments, which indicated the decomposition process of rice straw could be divided into two main stages: (a) a rapid decomposition stage from 0 to 60 d and (b) a slow decomposition stage from 60 to 110 d. However, the characteristics of the straw potassium release were different from those of the overall straw decomposition, as 90% of total K was released by the third day of the study. The batches of the K sorption experiments showed that crop residues could adsorb K+ from the ambient environment, which was subject to decomposition periods and extra K+ concentration. In addition, a number of materials or binding sites were observed on straw residues using IR analysis, indicating possible coupling sites for K+ ions. The aqueous solution experiments indicated that raw straw could absorb water at 3.88 g g−1, and this rate rose to its maximum 15 d after incubation. All of the experiments demonstrated that crop residues could absorb large amount of aqueous solution to preserve K+ indirectly during the initial decomposition period. These crop residues could also directly adsorb K+ via physical and chemical adsorption in the later period, allowing part of this K+ to be absorbed by plants for the next growing season. PMID:24587364
Dynamics of potassium release and adsorption on rice straw residue.
Li, Jifu; Lu, Jianwei; Li, Xiaokun; Ren, Tao; Cong, Rihuan; Zhou, Li
2014-01-01
Straw application can not only increase crop yields, improve soil structure and enrich soil fertility, but can also enhance water and nutrient retention. The aim of this study was to ascertain the relationships between straw decomposition and the release-adsorption processes of K(+). This study increases the understanding of the roles played by agricultural crop residues in the soil environment, informs more effective straw recycling and provides a method for reducing potassium loss. The influence of straw decomposition on the K(+) release rate in paddy soil under flooded condition was studied using incubation experiments, which indicated the decomposition process of rice straw could be divided into two main stages: (a) a rapid decomposition stage from 0 to 60 d and (b) a slow decomposition stage from 60 to 110 d. However, the characteristics of the straw potassium release were different from those of the overall straw decomposition, as 90% of total K was released by the third day of the study. The batches of the K sorption experiments showed that crop residues could adsorb K(+) from the ambient environment, which was subject to decomposition periods and extra K(+) concentration. In addition, a number of materials or binding sites were observed on straw residues using IR analysis, indicating possible coupling sites for K(+) ions. The aqueous solution experiments indicated that raw straw could absorb water at 3.88 g g(-1), and this rate rose to its maximum 15 d after incubation. All of the experiments demonstrated that crop residues could absorb large amount of aqueous solution to preserve K(+) indirectly during the initial decomposition period. These crop residues could also directly adsorb K(+) via physical and chemical adsorption in the later period, allowing part of this K(+) to be absorbed by plants for the next growing season.
Study on US/O3 mechanism in p-chlorophenol decomposition
Xu, Xian-wen; Xu, Xin-hua; Shi, Hui-xiang; Wang, Da-hui
2005-01-01
Study on the effects of sonolysis, ozonolysis and US/O3 system on the decomposition of p-chlorophenol in aqueous solutions indicated that in the cases of US/O3 system, individual ozonolysis and sonolysis, the decomposition rate of p-chlorophenol reached 78.78%, 56.20%, 2.79% after a 16-min reaction while its CODcr (chemical oxygen demand) removal rate was 97.02%, 62.17%, 3.67% after a 120-min reaction. The decomposition reaction of p-chlorophenol follows pseudo-first-order kinetics. The enhancement factors of p-chlorophenol and its CODcr under US/O3 system reached 63% and 237% respectively. The main intermediates during the decomposition include catechol, hydroquinone, p-benzoquinone, phenol, fumaric acid, maleic acid, oxalic acid and formic acid. The decomposition mechanism of p-chlorophenol was also discussed. PMID:15909343
NASA Astrophysics Data System (ADS)
Pechenegov, Yu. Ya.; Mrakin, A. N.
2017-09-01
Recommendations are presented on calculating interphase heat transfer in gas-disperse systems of plants for thermochemical conversion of ground solid fuel. An analysis is made of the influence of the gas release of fuel particles on the heat transfer during their heating. It is shown that in the processes of thermal treatment of oil shales, the presence of gas release reduces substantially the intensity of interphase heat transfer compared to the heat transfer in the absence of thermochemical decomposition of the solid phase.
On the solutions of fractional order of evolution equations
NASA Astrophysics Data System (ADS)
Morales-Delgado, V. F.; Taneco-Hernández, M. A.; Gómez-Aguilar, J. F.
2017-01-01
In this paper we present a discussion of generalized Cauchy problems in a diffusion wave process, we consider bi-fractional-order evolution equations in the Riemann-Liouville, Liouville-Caputo, and Caputo-Fabrizio sense. Through Fourier transforms and Laplace transform we derive closed-form solutions to the Cauchy problems mentioned above. Similarly, we establish fundamental solutions. Finally, we give an application of the above results to the determination of decompositions of Dirac type for bi-fractional-order equations and write a formula for the moments for the fractional vibration of a beam equation. This type of decomposition allows us to speak of internal degrees of freedom in the vibration of a beam equation.
NASA Astrophysics Data System (ADS)
Laleian, A.; Valocchi, A. J.; Werth, C. J.
2017-12-01
Multiscale models of reactive transport in porous media are capable of capturing complex pore-scale processes while leveraging the efficiency of continuum-scale models. In particular, porosity changes caused by biofilm development yield complex feedbacks between transport and reaction that are difficult to quantify at the continuum scale. Pore-scale models, needed to accurately resolve these dynamics, are often impractical for applications due to their computational cost. To address this challenge, we are developing a multiscale model of biofilm growth in which non-overlapping regions at pore and continuum spatial scales are coupled with a mortar method providing continuity at interfaces. We explore two decompositions of coupled pore-scale and continuum-scale regions to study biofilm growth in a transverse mixing zone. In the first decomposition, all reaction is confined to a pore-scale region extending the transverse mixing zone length. Only solute transport occurs in the surrounding continuum-scale regions. Relative to a fully pore-scale result, we find the multiscale model with this decomposition has a reduced run time and consistent result in terms of biofilm growth and solute utilization. In the second decomposition, reaction occurs in both an up-gradient pore-scale region and a down-gradient continuum-scale region. To quantify clogging, the continuum-scale model implements empirical relations between porosity and continuum-scale parameters, such as permeability and the transverse dispersion coefficient. Solutes are sufficiently mixed at the end of the pore-scale region, such that the initial reaction rate is accurately computed using averaged concentrations in the continuum-scale region. Relative to a fully pore-scale result, we find accuracy of biomass growth in the multiscale model with this decomposition improves as the interface between pore-scale and continuum-scale regions moves downgradient where transverse mixing is more fully developed. Also, this decomposition poses additional challenges with respect to mortar coupling. We explore these challenges and potential solutions. While recent work has demonstrated growing interest in multiscale models, further development is needed for their application to field-scale subsurface contaminant transport and remediation.
Tailoring the properties of ammine metal borohydrides for solid-state hydrogen storage.
Jepsen, Lars H; Ley, Morten B; Filinchuk, Yaroslav; Besenbacher, Flemming; Jensen, Torben R
2015-04-24
A series of halide-free ammine manganese borohydrides, Mn(BH4 )2 ⋅nNH3 , n=1, 2, 3, and 6, a new bimetallic compound Li2 Mn(BH4 )4 ⋅6NH3 , and the first ammine metal borohydride solid solution Mg1-x Mnx (BH4 )2 ⋅6NH3 are presented. Four new crystal structures have been determined by synchrotron radiation powder X-ray diffraction and the thermal decomposition is systematically investigated for all the new compounds. The solid-gas reaction between Mn(BH4 )2 and NH3 provides Mn(BH4 )2 ⋅6NH3 . The number of NH3 per Mn has been varied by mechanochemical treatment of Mn(BH4 )2 ⋅6NH3 -Mn(BH4 )2 mixtures giving rise to increased hydrogen purity for n/m≤1 for M(BH4 )m ⋅nNH3 . The structures of Mg(BH4 )2 ⋅3NH3 and Li2 Mg(BH4 )4 ⋅6NH3 have been revisited and new structural models are presented. Finally, we demonstrate that ammonia destabilizes metal borohydrides with low electronegativity of the metal (χp <∼1.6), while metal borohydrides with high electronegativity (χp >∼1.6) are generally stabilized. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Infrared Spectroscopy as a Chemical Fingerprinting Tool
NASA Technical Reports Server (NTRS)
Huff, Tim; Munafo, Paul M. (Technical Monitor)
2002-01-01
Infrared (IR) spectroscopy is a powerful analytical tool in the chemical fingerprinting of materials. The technique is rapid, reproducible and usually non-invasive. With the appropriate accessories, the technique can be used to examine samples in either a solid, liquid or gas phase. Solid samples of varying sizes and shapes may be used, and with the addition of microscopic IR (microspectroscopy) capabilities, minute materials such as single fibers and threads may be examined. With the addition of appropriate software, microspectroscopy can be used for automated discrete point or compositional surface area mapping, with the latter providing a means to record changes in the chemical composition of a material surface over a defined area. Both aqueous and non-aqueous free-flowing solutions can be analyzed using appropriate IR techniques, as can viscous liquids such as heavy oils and greases. Due to the ability to characterize gaseous samples, IR spectroscopy can also be coupled with thermal processes such as thermogravimetric (TG) analyses to provide both thermal and chemical data in a single run. In this configuration, solids (or liquids) heated in a TG analyzer undergo decomposition, with the evolving gases directed into the IR spectrometer. Thus, information is provided on the thermal properties of a material and the order in which its chemical constituents are broken down during incremental heating. Specific examples of these varied applications will be cited, with data interpretation and method limitations further discussed.
Scenario Decomposition for 0-1 Stochastic Programs: Improvements and Asynchronous Implementation
Ryan, Kevin; Rajan, Deepak; Ahmed, Shabbir
2016-05-01
We recently proposed scenario decomposition algorithm for stochastic 0-1 programs finds an optimal solution by evaluating and removing individual solutions that are discovered by solving scenario subproblems. In our work, we develop an asynchronous, distributed implementation of the algorithm which has computational advantages over existing synchronous implementations of the algorithm. Improvements to both the synchronous and asynchronous algorithm are proposed. We also test the results on well known stochastic 0-1 programs from the SIPLIB test library and is able to solve one previously unsolved instance from the test set.
Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.
2017-09-04
In this paper, we present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support ourmore » construction with numerical experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Lastly, our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.
We present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support our construction with numericalmore » experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.« less
Ozonation-based decolorization of food dyes for recovery of fruit leather wastes.
Zhu, Wenda; Koziel, Jacek A; Cai, Lingshuang; Brehm-Stecher, Byron F; Ozsoy, H Duygu; van Leeuwen, J Hans
2013-08-28
Commercial manufacture of fruit leathers (FL) usually results in a portion of the product that is out of specification. The disposition of this material poses special challenges in the food industry. Because the material remains edible and contains valuable ingredients (fruit pulp, sugars, acidulates, etc.), an ideal solution would be to recover this material for product rework. A key practical obstacle to such recovery is that compositing of differently colored wastes results in an unsalable gray product. Therefore, a safe and scalable method for decolorization of FL prior to product rework is needed. This research introduces a novel approach utilizing ozonation for color removal. To explore the use of ozonation as a decolorization step, we first applied it to simple solutions of the commonly used food colorants 2-naphthalenesulfonic acid (Red 40), tartrazine (Yellow 5), and erioglaucine (Blue 1). Decolorization was measured by UV/vis spectrometry at visible wavelengths and with a Hunter colorimeter. Volatile and semivolatile byproducts from ozone-based colorant decomposition were identified and quantified with solid phase microextraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS). Removal of Yellow 5, Red 40 and Blue 1 of about 65%, 80%, and 90%, respectively, was accomplished with 70 g of ozone applied per 1 kg of redissolved and resuspended FL. Carbonyl compounds were identified as major byproducts from ozone-induced decomposition of the food colorants. A conservative risk assessment based on quantification results and published toxicity information of potentially toxic byproducts, determined that ozone-based decolorization of FL before recycling is acceptable from a safety standpoint. A preliminary cost estimate based on recycling of 1000 tons of FL annually suggests a potential of $275,000 annual profit from this practice at one production facility alone.
Lieberman, Craig M; Navulla, Anantharamulu; Zhang, Haitao; Filatov, Alexander S; Dikarev, Evgeny V
2014-05-05
Heterometallic single-source precursors for the Pb/Fe = 1:1 oxide materials, PbFe(β-dik)4 (β-dik = hexafluoroacetylacetonate (hfac, 1), acetylacetonate (acac, 2), and trifluoroacetylacetonate (tfac, 4)), have been isolated by three different solid-state synthetic methods. The crystal structures of heterometallic diketonates 1, 2, and 4 were found to contain polymeric chains built on alternating [Fe(β-dik)2] and [Pb(β-dik)2] units that are held together by bridging M-O interactions. Heterometallic precursors are highly volatile, but soluble only in coordinating solvents, in which they dissociate into solvated homometallic fragments. In order to design the heterometallic precursor with a proper metal/metal ratio and with a discrete molecular structure, we used a combination of two different diketonate ligands. Heteroleptic complex Pb2Fe2(hfac)6(acac)2 (5) has been obtained by optimized stoichiometric reaction of an addition of homo-Fe(acac)2 to heterometallic Pb2Fe(hfac)6 (3) diketonate that can be run in solution on a high scale. The combination of two ligands with electron-withdrawing and electron-donating groups allows changing the connectivity pattern within the heterometallic assembly and yields the precursor with a discrete tetranuclear structure. In accord with its molecular structure, heteroleptic complex 5 is soluble even in noncoordinating solvents and was found to retain its heterometallic structure in solution. Thermal decomposition of heterometallic precursors in air at 750 °C resulted in the target Pb2Fe2O5 oxide, a prospective multiferroic material. Prolonging the annealing time or increasing the decomposition temperature leads to another phase-pure lead-iron oxide PbFe12O19 that is a representative of the important family of magnetic hexaferrites.
Thompson, Helen; Soper, Alan K; Buchanan, Piers; Aldiwan, Nawaf; Creek, Jefferson L; Koh, Carolyn A
2006-04-28
Neutron diffraction studies with hydrogen/deuterium isotope substitution measurements are performed to investigate the water structure at the early, medium, and late periods of methane clathrate hydrate formation and decomposition. These measurements are coupled with simultaneous gas consumption measurements to track the formation of methane hydrate from a gas/water mixture, and then the complete decomposition of hydrate. Empirical potential structure refinement computer simulations are used to analyze the neutron diffraction data and extract from the data the water structure in the bulk methane hydrate solution. The results highlight the significant changes in the water structure of the remaining liquid at various stages of hydrate formation and decomposition, and give further insight into the way in which hydrates form. The results also have important implications on the memory effect, suggesting that the water structure in the presence of hydrate crystallites is significantly different at equivalent stages of forming compared to decomposing. These results are in sharp contrast to the previously reported cases when all remaining hydrate crystallites are absent from the solution. For these systems there is no detectable change in the water structure or the methane hydration shell before hydrate formation and after decomposition. Based on the new results presented in this paper, it is clear that the local water structure is affected by the presence of hydrate crystallites, which may in turn be responsible for the "history" or "memory" effect where the production of hydrate from a solution of formed and then subsequently melted hydrate is reportedly much quicker than producing hydrate from a fresh water/gas mixture.
Electrochemical Protection of Thin Film Electrodes in Solid State Nanopores
Harrer, Stefan; Waggoner, Philip S.; Luan, Binquan; Afzali-Ardakani, Ali; Goldfarb, Dario L.; Peng, Hongbo; Martyna, Glenn; Rossnagel, Stephen M.; Stolovitzky, Gustavo A.
2011-01-01
We have eliminated electrochemical surface oxidation and reduction as well as water decomposition inside sub-5-nm wide nanopores in conducting TiN membranes using a surface passivation technique. Nanopore ionic conductances, and therefore pore diameters, were unchanged in passivated pores after applying potentials of ±4.5 V for as long as 24 h. Water decomposition was eliminated by using aqueous 90% glycerol solvent. The use of a protective self-assembled monolayer of hexadecylphosphonic acid was also investigated. PMID:21597142
Development of a computerized analysis for solid propellant combustion instability with turbulence
NASA Technical Reports Server (NTRS)
Chung, T. J.; Park, O. Y.
1988-01-01
A multi-dimensional numerical model has been developed for the unsteady state oscillatory combustion of solid propellants subject to acoustic pressure disturbances. Including the gas phase unsteady effects, the assumption of uniform pressure across the flame zone, which has been conventionally used, is relaxed so that a higher frequency response in the long flame of a double-base propellant can be calculated. The formulation is based on a premixed, laminar flame with a one-step overall chemical reaction and the Arrhenius law of decomposition with no condensed phase reaction. In a given geometry, the Galerkin finite element solution shows the strong resonance and damping effect at the lower frequencies, similar to the result of Denison and Baum. Extended studies deal with the higher frequency region where the pressure varies in the flame thickness. The nonlinear system behavior is investigated by carrying out the second order expansion in wave amplitude when the acoustic pressure oscillations are finite in amplitude. Offset in the burning rate shows a negative sign in the whole frequency region considered, and it verifies the experimental results of Price. Finally, the velocity coupling in the two-dimensional model is discussed.
Chi, Xiaowei; Liang, Yanliang; Hao, Fang; Zhang, Ye; Whiteley, Justin; Dong, Hui; Hu, Pu; Lee, Sehee; Yao, Yan
2018-03-01
All-solid-state sodium batteries (ASSSBs) with nonflammable electrolytes and ubiquitous sodium resource are a promising solution to the safety and cost concerns for lithium-ion batteries. However, the intrinsic mismatch between low anodic decomposition potential of superionic sulfide electrolytes and high operating potentials of sodium-ion cathodes leads to a volatile cathode-electrolyte interface and undesirable cell performance. Here we report a high-capacity organic cathode, Na 4 C 6 O 6 , that is chemically and electrochemically compatible with sulfide electrolytes. A bulk-type ASSSB shows high specific capacity (184 mAh g -1 ) and one of the highest specific energies (395 Wh kg -1 ) among intercalation compound-based ASSSBs. The capacity retentions of 76 % after 100 cycles at 0.1 C and 70 % after 400 cycles at 0.2 C represent the record stability for ASSSBs. Additionally, Na 4 C 6 O 6 functions as a capable anode material, enabling a symmetric all-organic ASSSB with Na 4 C 6 O 6 as both cathode and anode materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The thermal stability of sodium beta'-Alumina solid electrolyte ceramic in AMTEC cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Roger M.; Ryan, Margaret A.; Homer, Margie L.
1999-01-22
A critical component of alkali metal thermal-to electric converter (AMTEC) devices for long duration space missions is the beta'-alumina solid electrolyte ceramic (BASE), for which there exists no substitute. The temperature and environmental conditions under which BASE remains stable control operational parameters of AMTEC devices. We have used mass loss experiments in vacuum to 1573K to characterize the kinetics of BASE decomposition, and conductivity and exchange current measurements in sodium vapor filled exposure cells to 1223K to investigate changes in the BASE which affect its ionic conductivity. There is no clear evidence of direct thermal decomposition of BASE below 1273K,more » although limited soda loss may occur. Reactive metals such as Mn or Cr can react with BASE at temperatures at least as low as 1223K.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aviles-Ramos, Cuauhtemoc
A thermal decomposition model for PBX 9501 (95% HMX, 2.5% Estane® binder, 2.5% BDNPA/F nitro-plasticizer) was implemented by Dickson, et. al. The objective in this study is to estimate parameters associated with this kinetics model so it can be applied to carry out thermal ignition predictions for LX-07 (90% HMX, 10% Viton binder). LX-07 thermal ignition experiments have been carried out using the “Sandia Instrumented Thermal Ignition Apparatus”, SITI. The SITI design consists of solid cylinders (1” diameter × 1” height) of high explosive (HE) confined by a cylindrical aluminum case. An electric heater is wrapped around the outer surfacemore » of the case. This heater produces a temperature heating ramp on the outer surface of the case. Internal thermocouples measure the HE temperature rise from the center to locations close to the HE-aluminum interface. The energetic material is heated until thermal ignition occurs. A two–dimensional axisymmetric heat conduction finite element model is used to simulate these experiments. The HE thermal decomposition kinetics is coupled to a heat conduction model trough the definition of an energy source term. The parameters used to define the HE thermal decomposition model are optimized to obtain a good agreement with the experimental time to thermal ignition and temperatures. Also, heat capacity and thermal conductivity of the LX-07 mixture were estimated using temperatures measured at the center of the HE before the solid to solid HMX phase transition occurred.« less
Formation of titanium phosphate composites during phosphoric acid decomposition of natural sphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maslova, Marina V.; Rusanova, Daniela; Naydenov, Valeri
2008-12-15
Decomposition of mineral sphene, CaTiOSiO{sub 4}, by H{sub 3}PO{sub 4} is investigated in detail. During the dissolution process, simultaneous calcium leaching and formation of titanium phosphate (TiP) take place. The main product of decomposition is a solid titanium phosphate-silica composite. The XRD, solid-sate NMR, IR, TGA, SEM and BET data were used to identify and characterize the composite as a mixture of crystalline Ti(HPO{sub 4}){sub 2}.H{sub 2}O and silica. When 80% phosphoric acid is used the decomposition degree is higher than 98% and calcium is completely transferred into the liquid phase. Formation of Ti(HPO{sub 4}){sub 2}.H{sub 2}O proceeds via formationmore » of meta-stable titanium phosphate phases, Ti(H{sub 2}PO{sub 4})(PO{sub 4}).2H{sub 2}O and Ti(H{sub 2}PO{sub 4})(PO{sub 4}). The sorption affinities of TiP composites were examined in relation to caesium and strontium ions. A decrease of H{sub 3}PO{sub 4} concentration leads to formation of composites with greater sorption properties. The maximum sorption capacity of TiP is observed when 60% H{sub 3}PO{sub 4} is used in sphene decomposition. The work demonstrates a valuable option within the Ti(HPO{sub 4}){sub 2}.H{sub 2}O-SiO{sub 2} composite synthesis scheme, to use phosphoric acid flows for isolation of CaHPO{sub 4}.2H{sub 2}O fertilizer. - Graphical abstract: A new synthesis scheme for preparation of composite titanium phosphate (TiP) ion-exchangers upon one-stage decomposition process of natural sphene with phosphoric acid is presented. Syntheses of {alpha}-TiP-silica composites proceed via formation of meta-stable titanium phosphate phases. The concentration of H{sub 3}PO{sub 4} determines the porosity of final products and their sorption affinities.« less
Decomposition of timed automata for solving scheduling problems
NASA Astrophysics Data System (ADS)
Nishi, Tatsushi; Wakatake, Masato
2014-03-01
A decomposition algorithm for scheduling problems based on timed automata (TA) model is proposed. The problem is represented as an optimal state transition problem for TA. The model comprises of the parallel composition of submodels such as jobs and resources. The procedure of the proposed methodology can be divided into two steps. The first step is to decompose the TA model into several submodels by using decomposable condition. The second step is to combine individual solution of subproblems for the decomposed submodels by the penalty function method. A feasible solution for the entire model is derived through the iterated computation of solving the subproblem for each submodel. The proposed methodology is applied to solve flowshop and jobshop scheduling problems. Computational experiments demonstrate the effectiveness of the proposed algorithm compared with a conventional TA scheduling algorithm without decomposition.
Kinetic Studies of the Thermal Decomposition of 2-Chloroethylphosphonic Acid in Aqueous Solution
Biddle, Eric; Kerfoot, Douglas G. S.; Kho, Yioe Hwa; Russell, Kenneth E.
1976-01-01
The decomposition of 2-chloroethylphosphonic acid in aqueous solution has been studied at pH values from 6 to 9 and at temperatures in the 30 to 55 C range. The rate of decomposition is estimated from the rate of formation of ethylene. The rate is proportional to the concentration of the phosphonate dianion and is independent of the hydroxyl ion concentration. The rate constant at 40 C is 1.9 × 10−4 sec−1 and the activation energy is 29.8 kcal mol−1. The rate of reaction is not affected significantly by the presence of potassium iodide or urea (substances which increase the rate of leaf abscission in trees sprayed by 2-chloroethylphosphonic acid). The rate decreases slightly in the presence of low concentrations of magnesium and calcium ions. PMID:16659748
Maksyutenko, Pavlo; Muzangwa, Lloyd G; Jones, Brant M; Kaiser, Ralf I
2015-03-21
Solid nitromethane (CH3NO2) along with its isotopically labelled counterpart D3-nitromethane (CD3NO2) ices were exposed to Lyman α photons to investigate the mechanism involved in the decomposition of energetic materials in the condensed phase. The chemical processes in the ices were monitored online and in situ via infrared spectroscopy complimented by temperature programmed desorption studies utilizing highly sensitive reflectron time-of-flight mass spectrometry coupled with pulsed photoionization (ReTOF-PI) at 10.49 eV. The infrared data revealed the formation of cis-methylnitrite (CH3ONO), formaldehyde (H2CO), water (H2O), carbon monoxide (CO), and carbon dioxide (CO2). Upon sublimation of the irradiated samples, three classes of higher molecular weight products, which are uniquely formed in the condensed phase, were identified via ReTOF-PI: (i) nitroso compounds [nitrosomethane (CH3NO), nitrosoethane (C2H5NO), nitrosopropane (C3H7NO)], (ii) nitrite compounds [methylnitrite (CH3ONO), ethylnitrite (C2H5ONO), propylnitrite (C3H7ONO)], and (iii) higher molecular weight molecules [CH3NONOCH3, CH3NONO2CH3, CH3OCH2NO2, ONCH2CH2NO2]. The mechanistical information obtained in the present study suggest that the decomposition of nitromethane in the condensed phase is more complex compared to the gas phase under collision-free conditions opening up not only hitherto unobserved decomposition pathways of nitromethane (hydrogen atom loss, oxygen atom loss, retro carbene insertion), but also the blocking of several initial decomposition steps due to the 'matrix cage effect'.
Catalyst Development for Hydrogen Peroxide Rocket Engines
NASA Technical Reports Server (NTRS)
Morlan, P. W.; Wu, P.-K.; Ruttle, D. W.; Fuller, R. P.; Nejad, A. S.; Anderson, W. E.
1999-01-01
The development of various catalysts of hydrogen peroxide was conducted for the applications of liquid rocket engines. The catalyst development includes silver screen technology, solid catalyst technology, and homogeneous catalyst technology. The silver screen technology development was performed with 85% (by weight) hydrogen peroxide. The results of this investigation were used as the basis for the catalyst design of a pressure-fed liquid-fueled upper stage engine. Both silver-plated nickel 200 screens and pure silver screens were used as the active metal catalyst during the investigation, The data indicate that a high decomposition efficiency (greater than 90%) of 85% hydrogen peroxide can be achieved at a bed loading of 0.5 lbm/sq in/sec with both pure silver and silver plated screens. Samarium oxide coating, however, was found to retard the decomposition process and the catalyst bed was flooded at lower bed loading. A throughput of 200 lbm of hydrogen peroxide (1000 second run time) was tested to evaluate the catalyst aging issue and performance degradation was observed starting at approximately 400 seconds. Catalyst beds of 3.5 inch in diameter was fabricated using the same configuration for a 1,000-lbf rocket engine. High decomposition efficiency was obtained with a low pressure drop across the bed. Solid catalyst using precious metal was also developed for the decomposition of hydrogen peroxide from 85% to 98% by weight. Preliminary results show that the catalyst has a strong reactivity even after 15 minutes of peroxide decomposition. The development effort also includes the homogeneous catalyst technology. Various non-toxic catalysts were evaluated with 98% peroxide and hydrocarbon fuels. The results of open cup drop tests indicate an ignition delay around 11 ms.
Yoon, Kyungho; Kim, Jung-Joon; Seong, Won Mo; Lee, Myeong Hwan; Kang, Kisuk
2018-05-23
All-solid-state batteries are considered as one of the attractive alternatives to conventional lithium-ion batteries, due to their intrinsic safe properties benefiting from the use of non-flammable solid electrolytes in ASSBs. However, one of the issues in employing the solid-state electrolyte is the sluggish ion transport kinetics arising from the chemical and physical instability of the interfaces among solid components including electrode material, electrolyte and additive agents. In this work, we investigate the stability of the interface between carbon conductive agents and Li 10 GeP 2 S 12 in a composite cathode and its effect on the electrochemical performance of ASSBs. It is found that the inclusion of various carbon conductive agents in composite cathode leads to inferior kinetic performance of the cathode despite expectedly enhanced electrical conductivity of the composite. We observe that the poor kinetic performance is attributed to a large interfacial impedance which is gradually developed upon the inclusions of the various carbon conductive agents regardless of their physical differences. The analysis through X-ray Photoelectron Spectroscopy suggests that the carbon additives in the composite cathode stimulate the electrochemical decomposition of LGPS electrolyte degrading its surface during cycling, indicating the large interfacial resistance stems from the undesirable decomposition of the electrolyte at the interface.
Chokshi, Rina J; Zia, Hossein; Sandhu, Harpreet K; Shah, Navnit H; Malick, Waseem A
2007-01-01
The solid dispersions with poloxamer 188 (P188) and solid solutions with polyvinylpyrrolidone K30 (PVPK30) were evaluated and compared in an effort to improve aqueous solubility and bioavailability of a model hydrophobic drug. All preparations were characterized by differential scanning calorimetry, powder X-ray diffraction, intrinsic dissolution rates, and contact angle measurements. Accelerated stability studies also were conducted to determine the effects of aging on the stability of various formulations. The selected solid dispersion and solid solution formulations were further evaluated in beagle dogs for in vivo testing. Solid dispersions were characterized to show that the drug retains its crystallinity and forms a two-phase system. Solid solutions were characterized to be an amorphous monophasic system with transition of crystalline drug to amorphous state. The evaluation of the intrinsic dissolution rates of various preparations indicated that the solid solutions have higher initial dissolution rates compared with solid dispersions. However, after storage at accelerated conditions, the dissolution rates of solid solutions were lower due to partial reversion to crystalline form. The drug in solid dispersion showed better bioavailability in comparison to solid solution. Therefore, considering physical stability and in vivo study results, the solid dispersion was the most suitable choice to improve dissolution rates and hence the bioavailability of the poorly water soluble drug.
Treatment for hydrazine-containing waste water solution
NASA Technical Reports Server (NTRS)
Yade, N.
1986-01-01
The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.
NASA Technical Reports Server (NTRS)
Podhorodeski, R. P.; Fenton, R. G.; Goldenberg, A. A.
1989-01-01
Using a method based upon resolving joint velocities using reciprocal screw quantities, compact analytical expressions are generated for the inverse solution of the joint rates of a seven revolute (spherical-revolute-spherical) manipulator. The method uses a sequential decomposition of screw coordinates to identify reciprocal screw quantities used in the resolution of a particular joint rate solution, and also to identify a Jacobian null-space basis used for the direct solution of optimal joint rates. The results of the screw decomposition are used to study special configurations of the manipulator, generating expressions for the inverse velocity solution for all non-singular configurations of the manipulator, and identifying singular configurations and their characteristics. Two functions are therefore served: a new general method for the solution of the inverse velocity problem is presented; and complete analytical expressions are derived for the resolution of the joint rates of a seven degree of freedom manipulator useful for telerobotic and industrial robotic application.
NASA Technical Reports Server (NTRS)
Kuo, Kenneth K.; Lu, Yeu-Cherng; Chiaverini, Martin J.; Harting, George C.; Johnson, David K.; Serin, Nadir
1995-01-01
The experimental study on the fundamental processes involved in fuel decomposition and boundary-layer combustion in hybrid rocket motors is continuously being conducted at the High Pressure Combustion Laboratory of The Pennsylvania State University. This research will provide a useful engineering technology base in the development of hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high-pressure, 2-D slab motor has been designed, manufactured, and utilized for conducting seven test firings using HTPB fuel processed at PSU. A total of 20 fuel slabs have been received from the Mcdonnell Douglas Aerospace Corporation. Ten of these fuel slabs contain an array of fine-wire thermocouples for measuring solid fuel surface and subsurface temperatures. Diagnostic instrumentation used in the test include high-frequency pressure transducers for measuring static and dynamic motor pressures and fine-wire thermocouples for measuring solid fuel surface and subsurface temperatures. The ultrasonic pulse-echo technique as well as a real-time x-ray radiography system have been used to obtain independent measurements of instantaneous solid fuel regression rates.
NASA Astrophysics Data System (ADS)
Smilowitz, L.; Henson, B. F.; Romero, J. J.; Asay, B. W.; Saunders, A.; Merrill, F. E.; Morris, C. L.; Kwiatkowski, K.; Grim, G.; Mariam, F.; Schwartz, C. L.; Hogan, G.; Nedrow, P.; Murray, M. M.; Thompson, T. N.; Espinoza, C.; Lewis, D.; Bainbridge, J.; McNeil, W.; Rightley, P.; Marr-Lyon, M.
2012-05-01
We report proton transmission images obtained during direct heating of a sample of PBX 9501 (a plastic bonded formulation of the explosive nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)) prior to the ignition of a thermal explosion. We describe the application of proton radiography using the 800 MeV proton accelerator at Los Alamos National Laboratory to obtain transmission images in these thermal explosion experiments. We have obtained images at two spatial magnifications and viewing both the radial and the transverse axes of a solid cylindrical sample encased in aluminum. During heating we observe the slow evolution of proton transmission through the samples, with particular detail during material flow associated with the HMX β-δ phase transition. We also directly observe the loss of solid density to decomposition associated with elevated temperatures in the volume defining the ignition location in these experiments. We measure a diameter associated with this volume of 1-2 mm, in agreement with previous estimations of the diameter using spatially resolved fast thermocouples.
NASA Astrophysics Data System (ADS)
Kuo, Kenneth K.; Lu, Yeu-Cherng; Chiaverini, Martin J.; Harting, George C.; Johnson, David K.; Serin, Nadir
The experimental study on the fundamental processes involved in fuel decomposition and boundary-layer combustion in hybrid rocket motors is continuously being conducted at the High Pressure Combustion Laboratory of The Pennsylvania State University. This research will provide a useful engineering technology base in the development of hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high-pressure, 2-D slab motor has been designed, manufactured, and utilized for conducting seven test firings using HTPB fuel processed at PSU. A total of 20 fuel slabs have been received from the Mcdonnell Douglas Aerospace Corporation. Ten of these fuel slabs contain an array of fine-wire thermocouples for measuring solid fuel surface and subsurface temperatures. Diagnostic instrumentation used in the test include high-frequency pressure transducers for measuring static and dynamic motor pressures and fine-wire thermocouples for measuring solid fuel surface and subsurface temperatures. The ultrasonic pulse-echo technique as well as a real-time x-ray radiography system have been used to obtain independent measurements of instantaneous solid fuel regression rates.
USDA-ARS?s Scientific Manuscript database
To improve stand establishment in high crop residue situations, the utility of fertilizer to stimulate microbial decomposition of residue has been debated. Field experiments assessed winter wheat (Triticum aestivum) straw decomposition under different fertilizer rates and application timings at thre...
Watterson, James H; Donohue, Joseph P
2011-09-01
Skeletal tissues (rat) were analyzed for ketamine (KET) and norketamine (NKET) following acute ketamine exposure (75 mg/kg i.p.) to examine the influence of bone type and decomposition period on drug levels. Following euthanasia, drug-free (n = 6) and drug-positive (n = 20) animals decomposed outdoors in rural Ontario for 0, 1, or 2 weeks. Skeletal remains were recovered and ground samples of various bones underwent passive methanolic extraction and analysis by GC-MS after solid-phase extraction. Drug levels, expressed as mass normalized response ratios, were compared across tissue types and decomposition periods. Bone type was a main effect (p < 0.05) for drug level and drug/metabolite level ratio (DMLR) for all decomposition times, except for DMLR after 2 weeks of decomposition. Mean drug level (KET and NKET) and DMLR varied by up to 23-fold, 18-fold, and 5-fold, respectively, between tissue types. Decomposition time was significantly related to DMLR, KET level, and NKET level in 3/7, 4/7, and 1/7 tissue types, respectively. Although substantial sitedependence may exist in measured bone drug levels, ratios of drug and metabolite levels should be investigated for utility in discrimination of drug administration patterns in forensic work.
Large scale synthesis of nanostructured zirconia-based compounds from freeze-dried precursors
NASA Astrophysics Data System (ADS)
Gómez, A.; Villanueva, R.; Vie, D.; Murcia-Mascaros, S.; Martínez, E.; Beltrán, A.; Sapiña, F.; Vicent, M.; Sánchez, E.
2013-01-01
Nanocrystalline zirconia powders have been obtained at the multigram scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous acetic solutions. This technique has equally made possible to synthesize a variety of nanostructured yttria or scandia doped zirconia compositions. SEM images, as well as the analysis of the XRD patterns, show the nanoparticulated character of those solids obtained at low temperature, with typical particle size in the 10-15 nm range when prepared at 673 K. The presence of the monoclinic, the tetragonal or both phases depends on the temperature of the thermal treatment, the doping concentration and the nature of the dopant. In addition, Rietveld refinement of the XRD profiles of selected samples allows detecting the coexistence of the tetragonal and the cubic phases for high doping concentration and high thermal treatment temperatures. Raman experiments suggest the presence of both phases also at relatively low treatment temperatures.
NASA Astrophysics Data System (ADS)
Kaigorodova, L. I.; Rasposienko, D. Yu.; Pushin, V. G.; Pilyugin, V. P.; Smirnov, S. V.
2015-04-01
The structural and phase transformations have been studied in aging commercial aluminum-lithium alloy Al-1.2 Li-3.2 Cu-0.09 Zr-0.11 Sc-0.4 Ag-0.3 Mg in the as-delivered state and after severe plastic deformation by torsion for 1, 5 and 10 revolutions under a high pressure of 4 GPa. Deformation-induced nanofragmentation and dynamic recrystallization have been found to occur in the alloy. The degree of recrystallization increases with deformation. Nanofragmentation and recrystallization processes are accompanied by the deformation-induced decomposition of solid solution and changes in both the nucleation mechanism of precipitation and the phase composition of the alloy. The influence of a nanostructured nanophase state of the alloy on its mechanical properties (microhardness, plasticity, elastic modulus, and stiffness) is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leisinger, Sabine M., E-mail: sabine.leisinger@eawag.ch; Institute of Biogeochemistry and Pollutant Dynamics, ETH, CH-8092 Zurich; Lothenbach, Barbara
2012-01-15
In hydrated cement paste AFm-phases are regarded to play an important role in the binding of the toxic contaminant chromate through isomorphic substitution with sulfate. Solid solutions formation can lower the solubility of the solids, thus reducing chromate leaching concentrations. Solid solutions between monosulfate and monochromate were synthesized and characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX) and inductive coupled plasma optical emission spectroscopy (ICP-OES). Based on the measured ion concentrations in solution total solubility products of the solid solution series were determined. For pure monochromate a logK = - 28.4more » {+-} 0.7 was determined. Results from solid and solution analysis showed that limited solid solutions exist. Based on XRD diffractograms a solid solution with a miscibility gap 0.15 < Crx < 0.85 with a dimensionless Guggenheim parameter of 2.43 was proposed.« less
Structure of peat soils and implications for biogeochemical processes and hydrological flow
NASA Astrophysics Data System (ADS)
Rezanezhad, F.; McCarter, C. P. R.; Gharedaghloo, B.; Kleimeier, C.; Milojevic, T.; Liu, H.; Weber, T. K. D.; Price, J. S.; Quinton, W. L.; Lenartz, B.; Van Cappellen, P.
2017-12-01
Permafrost peatlands contain globally important amounts of soil organic carbon and play major roles in global water, nutrient and biogeochemical cycles. The structure of peatland soils (i.e., peat) are highly complex with unique physical and hydraulic properties; where significant, and only partially reversible, shrinkage occurs during dewatering (including water table fluctuations), compression and/or decomposition. These distinct physical and hydraulic properties controls water flow, which in turn affect reactive and non-reactive solute transport (such as, sorption or degradation) and biogeochemical functions. Additionally, peat further attenuates solute migration through molecular diffusion into the inactive pores of Sphagnum dominated peat. These slow, diffusion-limited solute exchanges between the pore regions may give rise to pore-scale chemical gradients and heterogeneous distributions of microbial habitats and activity in peat soils. Permafrost peat plateaus have the same essential subsurface characteristics as other widely organic soil-covered peatlands, where the hydraulic conductivity is related to the degree of decomposition and soil compression. Increasing levels of decomposition correspond with a reduction of effective pore diameter and consequently restrict water and solute flow (by several orders of magnitude in hydraulic conductivity between the ground surface and a depth of 50 cm). In this presentation, we present the current knowledge of key physical and hydraulic properties related to the structure of globally available peat soils and discuss their implications for water storage, flow and the migration of solutes.
NASA Astrophysics Data System (ADS)
Ray, Nathan J.; Styrov, Vladislav V.; Karpov, Eduard G.
2017-12-01
We report on conversion of energy released due to chemical reactions into current for the decomposition of aqueous hydrogen peroxide solution on single phases Pt and TiO2, in addition to Pt and TiO2 simultaneously. We observe that H2O2 decomposition-induced current on TiO2 drastically overshadows the current generated by H2O2 decomposition on Pt. Photo-effects avoided, H2O2 decomposition was found to yield a conversion efficiency of 10-3 electrons generated per H2O2 molecule. Further understanding of chemical reaction-induced current shows promise as a metric with which the surface reaction may be monitored and could be greatly extended into the field of analytical chemistry.
Zhao, Zong-Yan; Liu, Qing-Lu; Dai, Wen-Wu
2016-08-23
Six BiOX1-xYx (X, Y = F, Cl, Br, and I) solid solutions have been systematically investigated by density functional theory calculations. BiOCl1-xBrx, BiOBr1-xIx, and BiOCl1-xIx solid solutions have very small bowing parameters; as such, some of their properties increase almost linearly with increasing x. For BiOF1-xYx solid solutions, the bowing parameters are very large and it is extremely difficult to fit the related calculated data by a single equation. Consequently, BiOX1-xYx (X, Y = Cl, Br, and I) solid solutions are highly miscible, while BiOF1-xYx (Y = Cl, Br, and I) solid solutions are partially miscible. In other words, BiOF1-xYx solid solutions have miscibility gaps or high miscibility temperature, resulting in phase separation and F/Y inhomogeneity. Comparison and analysis of the calculated results and the related physical-chemical properties with different halogen compositions indicates that the parameters of BiOX1-xYx solid solutions are determined by the differences of the physical-chemical properties of the two halogen compositions. In this way, the large deviation of some BiOX1-xYx solid solutions from Vegard's law observed in experiments can be explained. Moreover, the composition ratio of BiOX1-xYx solid solutions can be measured or monitored using optical measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piper, L G; Taylor, R L
This report summarizes progress during the second quarterly period of the subject contract. The methods available for the production of excited electronic states following azide decomposition are summarized. It is concluded that an experiment designed to study the kinetics of and branching ratios for electronically excited products from azide radicals reactions will be most productive in elucidating excitation mechanisms for potential chemical lasers. A flow reactor is described in which these studies may be undertaken. The major feature of this apparatus is a clean azide radical source based upon the thermal decomposition of solid, ionic azides. The contruction of themore » experimental apparatus has been started.« less
Shock Induced Phase Changes in Forsterite and Iron Silicide
NASA Astrophysics Data System (ADS)
Newman, M.; Asimow, P.; Kraus, R. G.; Smith, R.; Coppari, F.; Eggert, J. H.; Wicks, J.; Tracy, S.; Duffy, T.
2017-06-01
The equation of state of magnesium silicates and iron alloys at the pressures and temperatures near the melt curve is important for understanding the thermal evolution and interior structure of rocky planets. Here, we present a series of laser driven shock experiments on single crystal Mg2SiO4 and textured polycrystalline iron silicide (Fe-15Si), conducted at LLE. In situ x-ray diffraction measurements were used to probe the melting transition and investigate the potential decomposition of forsterite into solid MgO and silica rich liquid and Fe-15Si in to silicon rich B2 and iron rich hcp structures. This work examines kinetic effects of chemical decomposition due to the short time scale of laser-shock experiments. Preliminary results demonstrate solid-solid and solid-liquid phase transitions on both the forsterite and Fe-15Si Hugoniots. For Fe-15Si, we observe a texture preserving martensitic transformation of D03 Fe-15Si into an hcp structure and melting at 318 GPa. For forsterite, we observe diffraction consistent with B1 MgO and melting at 215 GPa. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Silicon Nitride Equation of State
NASA Astrophysics Data System (ADS)
Swaminathan, Pazhayannur; Brown, Robert
2015-06-01
This report presents the development a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4) . Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonalβ-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products and then combined with the single component solid models to study the global phase diagram. Sponsored by the NASA Goddard Space Flight Center Living With a Star program office.
NASA Astrophysics Data System (ADS)
Jezierski, Jacek; Migacz, Szymon
2015-02-01
The ‘fully charged’ spin-2 field solution is presented. This is an analog of the Coulomb solution in electrodynamics and represents the ‘non-waving’ part of the spin-2 field theory. Basic facts and definitions of the spin-2 field and conformal Yano-Killing tensors are introduced. Application of those two objects provides a precise definition of quasi-local gravitational charge. Next, the 3 + 1 decomposition leads to the construction of the momentary gravitational charges on the initial surface, which is applicable for Schwarzschild-like spacetimes.
Constrained reduced-order models based on proper orthogonal decomposition
Reddy, Sohail R.; Freno, Brian Andrew; Cizmas, Paul G. A.; ...
2017-04-09
A novel approach is presented to constrain reduced-order models (ROM) based on proper orthogonal decomposition (POD). The Karush–Kuhn–Tucker (KKT) conditions were applied to the traditional reduced-order model to constrain the solution to user-defined bounds. The constrained reduced-order model (C-ROM) was applied and validated against the analytical solution to the first-order wave equation. C-ROM was also applied to the analysis of fluidized beds. Lastly, it was shown that the ROM and C-ROM produced accurate results and that C-ROM was less sensitive to error propagation through time than the ROM.
Some Remarks on Space-Time Decompositions, and Degenerate Metrics, in General Relativity
NASA Astrophysics Data System (ADS)
Bengtsson, Ingemar
Space-time decomposition of the Hilbert-Palatini action, written in a form which admits degenerate metrics, is considered. Simple numerology shows why D = 3 and 4 are singled out as admitting a simple phase space. The canonical structure of the degenerate sector turns out to be awkward. However, the real degenerate metrics obtained as solutions are the same as those that occur in Ashtekar's formulation of complex general relativity. An exact solution of Ashtekar's equations, with degenerate metric, shows that the manifestly four-dimensional form of the action, and its 3 + 1 form, are not quite equivalent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavakoli, Rouhollah, E-mail: rtavakoli@sharif.ir
An unconditionally energy stable time stepping scheme is introduced to solve Cahn–Morral-like equations in the present study. It is constructed based on the combination of David Eyre's time stepping scheme and Schur complement approach. Although the presented method is general and independent of the choice of homogeneous free energy density function term, logarithmic and polynomial energy functions are specifically considered in this paper. The method is applied to study the spinodal decomposition in multi-component systems and optimal space tiling problems. A penalization strategy is developed, in the case of later problem, to avoid trivial solutions. Extensive numerical experiments demonstrate themore » success and performance of the presented method. According to the numerical results, the method is convergent and energy stable, independent of the choice of time stepsize. Its MATLAB implementation is included in the appendix for the numerical evaluation of algorithm and reproduction of the presented results. -- Highlights: •Extension of Eyre's convex–concave splitting scheme to multiphase systems. •Efficient solution of spinodal decomposition in multi-component systems. •Efficient solution of least perimeter periodic space partitioning problem. •Developing a penalization strategy to avoid trivial solutions. •Presentation of MATLAB implementation of the introduced algorithm.« less
Analysis of benzoquinone decomposition in solution plasma process
NASA Astrophysics Data System (ADS)
Bratescu, M. A.; Saito, N.
2016-01-01
The decomposition of p-benzoquinone (p-BQ) in Solution Plasma Processing (SPP) was analyzed by Coherent Anti-Stokes Raman Spectroscopy (CARS) by monitoring the change of the anti-Stokes signal intensity of the vibrational transitions of the molecule, during and after SPP. Just in the beginning of the SPP treatment, the CARS signal intensities of the ring vibrational molecular transitions increased under the influence of the electric field of plasma. The results show that plasma influences the p-BQ molecules in two ways: (i) plasma produces a polarization and an orientation of the molecules in the local electric field of plasma and (ii) the gas phase plasma supplies, in the liquid phase, hydrogen and hydroxyl radicals, which reduce or oxidize the molecules, respectively, generating different carboxylic acids. The decomposition of p-BQ after SPP was confirmed by UV-visible absorption spectroscopy and liquid chromatography.
NASA Technical Reports Server (NTRS)
Morino, L.
1986-01-01
Using the decomposition for the infinite-space, the issue of the nonuniqueness of the Helmholtz decomposition for the problem of the three-dimensional unsteady incompressible flow around a body is considered. A representation for the velocity that is valid for both the fluid region and the region inside the boundary surface is employed, and the motion of the boundary is described as the limiting case of a sequence of impulsive accelerations. At each instant of velocity discontinuity, vorticity is shown to be generated by the boundary condition on the normal component of the velocity, for both inviscid and viscous flows. In viscous flows, the vorticity is shown to diffuse into the surroundings, and the no-slip conditions are automatically satisfied. A trailing edge condition must be satisfied for the solution to the Euler equations to be the limit of the solution of the Navier-Stokes equations.
NASA Astrophysics Data System (ADS)
Divekar, Sandesh K.; Achary, S. Nagabhusan; Ajgaonkar, Vishnu R.
2018-06-01
A series of double selenates, as (CH3)4NLn(SeO4)2rad 4H2O (Ln = Rare earth ion like La, Pr, Nd, Sm, Gd, Tb, Dy) was crystallized from mixed solution and characterized in detail for their structure, vibrational and optical properties as well as thermal stabilities. The crystal structure of the praseodymium compound was obtained by single crystal X-ray diffraction (XRD) and revealed a monoclinic (C2/c) lattice with chains formed by PrO8 and SeO4 units. The chains with compositions [Pr(SeO4)4(H2O)4]- are stacked in three dimensions and the (CH3)4N+ ions located in between them provide charge neutrality to the structure. The characterization of other compounds were carried out from powder XRD data and revealed that they all are isostructural to Pr-compound. All the functional groups were identified by Raman and IR spectroscopic studies. Solid state 77Se NMR revealed noticeable changes in selenium environment in these compounds. The optical absorption studies on the compounds show strong band edge absorptions in UV region. Thermal stabilities of the compounds, as investigated by simultaneous TG-DTA techniques indicate their sequential decompositions due to loss of H2O, (CH3)4N+ group, SeO2 and finally leaving their corresponding rare earth oxides.
NASA Astrophysics Data System (ADS)
Yamashita, K.; Yoshiasa, A.; Miyazaki, H.; Tokuda, M.; Tobase, T.; Isobe, H.; Nishiyama, T.; Sugiyama, K.; Miyawaki, R.
2017-12-01
Jisyakuyama skarn deposit, Fukuchi, Fukuoka, Japan, shows a simple occurrenceformed by penetration of hot water into limestone cracks. A unique occurrence of scheelite-powellite CaW1-xMoxO4 minerals is observed in the skarn deposit. Many syntheticexperiments for scheelite-powellite solid solutions have been reported as research onfluorescent materials. In this system it is known that a complete continuous solid solution isformed even at room temperature. In this study, we have carried out the chemical analyses,crystal structural refinements and detail description of occurrence on scheelite-powelliteminerals. We have also attempted synthesis of single crystal of solid solution in a widecomposition range. The chemical compositions were determined by JEOL scanningelectron microscope and EDS, INCA system. We have performed the crystal structurerefinements of the scheelite-powellite CaW1-xMoxO4 solid solutions (x=0.0-1.0) byRIGAKU single-crystal structure analysis system RAPID. The R and S values are around0.0s and 1.03. As the result of structural refinements of natural products and many solidsolutions, we confirm that most large natural single crystals have compositions at bothendmembers, and large solid solution crystals are rare. The lattice constants, interatomicdistances and other crystallographic parameters for the solid solution change uniquely withcomposition and it was confirmed as a continuous solid solution. Single crystals of scheeliteendmember + powellite endmember + solid solution with various compositions form anaggregate in the deposit (Figure 1). Crystal shapes of powellite and scheelite arehypidiomorphic and allotriomorphic, respectively. Many solid solution crystals areaccompanied by scheelite endmember and a compositional gap is observed betweenpowellite and solid-solution crystals. The presence of several penetration solutions withsignificantly different W and Mo contents may be assumed. This research can be expectedto lead to giving restrictive conditions to elucidate the mineralization process. Figure1. Scheelite + Powellite + solid solution aggregate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caballero, F.G.; Yen, Hung-Wei; Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006
2014-02-15
Interphase carbide precipitation due to austenite decomposition was investigated by high resolution transmission electron microscopy and atom probe tomography in tempered nanostructured bainitic steels. Results showed that cementite (θ) forms by a paraequilibrium transformation mechanism at the bainitic ferrite–austenite interface with a simultaneous three phase crystallographic orientation relationship. - Highlights: • Interphase carbide precipitation due to austenite decomposition • Tempered nanostructured bainitic steels • High resolution transmission electron microscopy and atom probe tomography • Paraequilibrium θ with three phase crystallographic orientation relationship.
A New Domain Decomposition Approach for the Gust Response Problem
NASA Technical Reports Server (NTRS)
Scott, James R.; Atassi, Hafiz M.; Susan-Resiga, Romeo F.
2002-01-01
A domain decomposition method is developed for solving the aerodynamic/aeroacoustic problem of an airfoil in a vortical gust. The computational domain is divided into inner and outer regions wherein the governing equations are cast in different forms suitable for accurate computations in each region. Boundary conditions which ensure continuity of pressure and velocity are imposed along the interface separating the two regions. A numerical study is presented for reduced frequencies ranging from 0.1 to 3.0. It is seen that the domain decomposition approach in providing robust and grid independent solutions.
Energy recovery from solid waste. Volume 1: Summary report
NASA Technical Reports Server (NTRS)
1975-01-01
A systems analysis of energy recovery from solid waste which demonstrates the feasibility of several processes for converting solid waste to an energy form is presented. The social, legal, environmental, and political factors are considered and recommendations made in regard to legislation and policy. A technical and economic evaluation of available and developing energy-recovery processes is given with emphasis on thermal decomposition and biodegradation. A pyrolysis process is suggested. The use of prepared solid waste as a fuel supplemental to coal is considered to be the most economic process for recovery of energy from solid waste. Markets are discussed with suggestions for improving market conditions and for developing market stability. A decision procedure is given to aid a community in deciding on its options in dealing with solid waste.
Magno, Scott; Wang, Ruiping; Derouane, Eric
2003-01-01
The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.
Dai, Quanqin; Wang, Yingnan; Zhang, Yu; Li, Xinbi; Li, Ruowang; Zou, Bo; Seo, JaeTae; Wang, Yiding; Liu, Manhong; Yu, William W
2009-10-20
Infrared-emitting PbSe nanocrystals are of increasing interest in both fundamental research and technical application. However, the practical applications are greatly limited by their poor stability. In this work, absorption and photoluminescence spectra of PbSe nanocrystals were utilized to observe the stability of PbSe nanocrystals over several conventional factors, that is, particle concentration, particle size, temperature, light exposure, contacting atmosphere, and storage forms (solution or solid powder). Both absorption and luminescence spectra of PbSe nanocrystals exposed to air showed dependence on particle concentration, size, and light exposure, which caused large and quick blue-shifts in the optical spectra. This air-contacted instability arising from the destructive oxidation and subsequent collision-induced decomposition was kinetically dominated and differed from the traditional thought that smaller particles with lower concentrations shrank fast. The photoluminescence emission intensity of the PbSe nanocrystal solution under ultraviolet (UV) exposure in air increased first and then decreased slowly; without UV irradiation, the emission intensity monotonously decreased over time. However, if stored under nitrogen, no obvious changes in absorption and photoluminescence spectra of the PbSe nanocrystals were observed even under UV exposure or upon being heated up to 100 degrees C.
FERRATE TREATMENT FOR REMOVING CHROMIUM FROM HIGH-LEVEL RADIOACTIVE TANK WASTE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylvester, Paul; Rutherford, Andy; Gonzalez-Martin, Anuncia
2000-12-01
A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(III) molar ratio, but the chromium removal tends to level out for Fe(VI)/Cr(III) greater than 10.more » Increasing temperature leads to better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be handled as low-activity waste.« less
Kinetics and Catalysis Demonstrations.
ERIC Educational Resources Information Center
Falconer, John L.; Britten, Jerald A.
1984-01-01
Eleven videotaped kinetics and catalysis demonstrations are described. Demonstrations include the clock reaction, oscillating reaction, hydrogen oxidation in air, hydrogen-oxygen explosion, acid-base properties of solids, high- and low-temperature zeolite reactivity, copper catalysis of ammonia oxidation and sodium peroxide decomposition, ammonia…
Continuous catalytic decomposition of methane
NASA Technical Reports Server (NTRS)
Clifford, J. E.; Hillenbrand, L. J.; Kim, B. C.; Kolic, E. S.; Zupan, J.
1973-01-01
Water is conserved by employing sequence of reactions whereby 75 percent of methane from Sabatier reaction is decomposed to solid carbon and hydrogen; hydrogen is then separated from residual methane and utilized in usual Sabatier reaction to reduce remaining metabolic carbon dioxide.
Accelerated decomposition techniques for large discounted Markov decision processes
NASA Astrophysics Data System (ADS)
Larach, Abdelhadi; Chafik, S.; Daoui, C.
2017-12-01
Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorithm, which is a variant of Tarjan's algorithm that simultaneously finds the SCCs and their belonging levels. Second, a new definition of the restricted MDPs is presented to ameliorate some hierarchical solutions in discounted MDPs using value iteration (VI) algorithm based on a list of state-action successors. Finally, a robotic motion-planning example and the experiment results are presented to illustrate the benefit of the proposed decomposition algorithms.
Optical systolic solutions of linear algebraic equations
NASA Technical Reports Server (NTRS)
Neuman, C. P.; Casasent, D.
1984-01-01
The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.
METHOD AND APPARATUS FOR DETERMINING AMALGAM DECOMPOSITION RATE
Johnson, R.W.; Wright, C.C.
1962-04-24
A method and apparatus for measuring the rate at which an amalgam decomposes in contact with aqueous solutions are described. The amalgam and an aqueous hydroxide solution are disposed in an electrolytic cell. The amalgam is used as the cathode of the cell, and an electrode and anode are disposed in the aqueous solution. A variable source of plating potential is connected across the cell. The difference in voltage between the amalgam cathode and a calibrated source of reference potential is used to control the variable source to null the difference in voltage and at the same time to maintain the concentration of the amalgam at some predetermined constant value. The value of the current required to maintain this concentration constant is indicative of the decomposition rate of the amalgam. (AEC)
Calla-Choque, D; Nava-Alonso, F; Fuentes-Aceituno, J C
2016-11-05
The recovery of silver from hazardous jarosite residues was studied employing thiourea as leaching agent at acid pH and 90°C. The stability of the thiourea in synthetic solutions was evaluated in the presence of some cations that can be present in this leaching system: cupric and ferric ions as oxidant species, and zinc, lead and iron as divalent ions. Two silver leaching methods were studied: the simultaneous jarosite decomposition-silver leaching, and the jarosite decomposition followed by the silver leaching. The study with synthetic solutions demonstrated that cupric and ferric ions have a negative effect on thiourea stability due to their oxidant properties. The effect of cupric ions is more significant than the effect of ferric ions; other studied cations (Fe(2+), Zn(2+), Pb(2+)) had no effect on the stability of thiourea. When the decomposition of jarosite and the silver leaching are carried out simultaneously, 70% of the silver can be recovered. When the acid decomposition was performed at pH 0.5 followed by the leaching step at pH 1, total silver recovery increased up to 90%. The zinc is completely dissolved with any of these processes while the lead is practically insoluble with these systems producing a lead-rich residue. Copyright © 2016 Elsevier B.V. All rights reserved.
Shan, Tzu-Ray; van Duin, Adri C T; Thompson, Aidan P
2014-02-27
We have developed a new ReaxFF reactive force field parametrization for ammonium nitrate. Starting with an existing nitramine/TATB ReaxFF parametrization, we optimized it to reproduce electronic structure calculations for dissociation barriers, heats of formation, and crystal structure properties of ammonium nitrate phases. We have used it to predict the isothermal pressure-volume curve and the unreacted principal Hugoniot states. The predicted isothermal pressure-volume curve for phase IV solid ammonium nitrate agreed with electronic structure calculations and experimental data within 10% error for the considered range of compression. The predicted unreacted principal Hugoniot states were approximately 17% stiffer than experimental measurements. We then simulated thermal decomposition during heating to 2500 K. Thermal decomposition pathways agreed with experimental findings.
Influence of trace elements on stabilization of aqueous solutions of ascorbic acid.
Dolińska, Barbara; Ostróżka-Cieślik, Aneta; Caban, Artur; Rimantas, Klimas; Leszczyńska, Lucyna; Ryszka, Florian
2012-12-01
Together with vitamin C, zinc, selenium, manganese, and magnesium play a vital role in the preservation of organs scheduled for transplantation. In the present study, it is shown that addition of 1 mg/l of these elements influences the stability of 0.3 mM ascorbic acid solutions. The solution's stability was estimated using an accelerated stability test. The concentration of vitamin C was measured using a validated spectrophotometric method, which uses the reduction of 2,6-dichlorophenoloindophenol by ascorbic acid. Elevated temperatures, the factor accelerating substances' decomposition reaction rate, were used in the tests. The research was conducted at two temperatures at intervals of 10 °C: 80 ± 0.1 and 90 ± 0.1 °C. It was stated that the studied substances' decomposition occurred in accordance with the equation for first-order reactions. The function of the logarithmic concentration (log%C) over time was revealed to be rectilinear. This dependence was used to determine the kinetics of decomposition reaction rate parameters. The stabilization of vitamin C solutions was measured as the time in which 10 % of the substance decomposed at 20 and 0 °C. Addition of Se(IV) or Mg(II) ions significantly increase the stability of ascorbic acid solution (∼34 and ∼16 %, respectively), but Zn(II) causes a significant decrease in stability by ∼23 %. Addition of Mn(II) has no significant influence on vitamin C stability.
NASA Astrophysics Data System (ADS)
Pee, J. H.; Kim, Y. J.; Kim, J. Y.; Seong, N. E.; Cho, W. S.; Kim, K. J.
2011-10-01
Decomposition promoting factors and decomposition mechanism in the zinc decomposition process of waste hard metals which are composed mostly of tungsten carbide and cobalt were evaluated. Zinc volatility amount was suppressed and zinc steam pressure was produced in the reaction graphite crucible inside an electric furnace for ZDP. Reaction was done for 2 hrs at 650 °C, which 100 % decomposed the waste hard metals that were over 30 mm thick. As for the separation-decomposition of waste hard metals, zinc melted alloy formed a liquid composed of a mixture of γ-β1 phase from the cobalt binder layer (reaction interface). The volume of reacted zone was expanded and the waste hard metal layer was decomposed-separated horizontally from the hard metal. Zinc used in the ZDP process was almost completely removed-collected by decantation and volatilization-collection process at 1000 °C. The small amount of zinc remaining in the tungsten carbide-cobalt powder which was completely decomposed was fully removed by using phosphate solution which had a slow cobalt dissolution speed.
Experimental and modeling study on decomposition kinetics of methane hydrates in different media.
Liang, Minyan; Chen, Guangjin; Sun, Changyu; Yan, Lijun; Liu, Jiang; Ma, Qinglan
2005-10-13
The decomposition kinetic behaviors of methane hydrates formed in 5 cm3 porous wet activated carbon were studied experimentally in a closed system in the temperature range of 275.8-264.4 K. The decomposition rates of methane hydrates formed from 5 cm3 of pure free water and an aqueous solution of 650 g x m(-3) sodium dodecyl sulfate (SDS) were also measured for comparison. The decomposition rates of methane hydrates in seven different cases were compared. The results showed that the methane hydrates dissociate more rapidly in porous activated carbon than in free systems. A mathematical model was developed for describing the decomposition kinetic behavior of methane hydrates below ice point based on an ice-shielding mechanism in which a porous ice layer was assumed to be formed during the decomposition of hydrate, and the diffusion of methane molecules through it was assumed to be one of the control steps. The parameters of the model were determined by correlating the decomposition rate data, and the activation energies were further determined with respect to three different media. The model was found to well describe the decomposition kinetic behavior of methane hydrate in different media.
Hybrid Nested Partitions and Math Programming Framework for Large-scale Combinatorial Optimization
2010-03-31
optimization problems: 1) exact algorithms and 2) metaheuristic algorithms . This project will integrate concepts from these two technologies to develop...optimal solutions within an acceptable amount of computation time, and 2) metaheuristic algorithms such as genetic algorithms , tabu search, and the...integer programming decomposition approaches, such as Dantzig Wolfe decomposition and Lagrangian relaxation, and metaheuristics such as the Nested
Influence of gamma-irradiation on the non-isothermal decomposition of calcium-gadolinium oxalate
NASA Astrophysics Data System (ADS)
Moharana, S. C.; Praharaj, J.; Bhatta, D.
Thermal decomposition of co-precipitated unirradiated and irradiated Ca-Gd oxalate has been studied by adopting differential thermal analysis (DTA) and thermogravimetric (TG) techniques. The reaction occurs through two stages corresponding to the decomposition of gadolinium oxalate (Gd-Ox) followed by that of calcium oxalate (Ca-Ox). The kinetic parameters for both the stages are calculated by using solid state reaction models and Coats-Redfern's equation. The co-precipitation as well as irradiation alter the DTA peak temperatures and the kinetic parameters of Ca-Ox. The decomposition of Gd-Ox follows the two dimensional Contracting area (R-2) mechanism, while that of Ca-Ox follows the Avrami-Erofeev (A(2)) mechanism (n =2), which are also exhibited by the co-precipitated and irradiated samples. Co-precipitation decreases the energy of activation and the pre-exponential factor of the individual components but the reverse phenomenon takes place upon irradiation of the co-precipitate. The mechanisms underlying the phenomena are explored.
Hydrogen and carbon nanotube production via catalytic decomposition of methane
NASA Astrophysics Data System (ADS)
Deniz, Cansu; Karatepe, Nilgün
2013-09-01
The future energy demand is expected to increase significantly due to an increasing world population and demands for higher standards of living and better air quality. Hydrogen is considered as an energy carrier because of its high conversion efficiency and low pollutant emissions. It can be produced from various sources and transformed into electricity and other energy forms with a low pollution. The catalytic decomposition of hydrocarbon has been seen as a really useful method for production of pure hydrogen and for the environmental concern. The objective of this study was to assess the impact of catalyst composition and processing parameters on COx-free hydrogen production and to produce an available solid form of co-product carbon as carbon nanotubes via catalytic decomposition of methane. The optimum experimental conditions for methane decomposition have been investigated. Fe, Co and Ni are used as catalysts (nano materials) over different substrates as SiO2 and MgO to produce hydrogen at optimum temperatures.
NASA Astrophysics Data System (ADS)
De Waal, D.; Heyns, A. M.; Range, K.-J.
1989-06-01
Raman spectroscopy was used as a method in the kinetic investigation of the thermal decomposition of solid (NH 4) 2CrO 4. Time-dependent measurements of the intensity of the totally symmetric stretching CrO mode of (NH 4) 2CrO 4 have been made between 343 and 363 K. A short initial acceleratory period is observed at lower temperatures and the decomposition reaction decelerates after the maximum decomposition rate has been reached at all temperatures. These results can be interpreted in terms of the Avrami-Erofe'ev law 1 - (χ r) {1}/{2} = kt , where χr is the fraction of reactant at time t. At 358 K, k is equal to 1.76 ± 0.01 × 10 -3 sec -1 for microcrystals and for powdered samples. Activation energies of 97 ± 10 and 49 ± 0.9 kJ mole -1 have been calculated for microcrystalline and powdered samples, respectively.
Guo, Feng; Cheng, Xin-lu; Zhang, Hong
2012-04-12
Which is the first step in the decomposition process of nitromethane is a controversial issue, proton dissociation or C-N bond scission. We applied reactive force field (ReaxFF) molecular dynamics to probe the initial decomposition mechanisms of nitromethane. By comparing the impact on (010) surfaces and without impact (only heating) for nitromethane simulations, we found that proton dissociation is the first step of the pyrolysis of nitromethane, and the C-N bond decomposes in the same time scale as in impact simulations, but in the nonimpact simulation, C-N bond dissociation takes place at a later time. At the end of these simulations, a large number of clusters are formed. By analyzing the trajectories, we discussed the role of the hydrogen bond in the initial process of nitromethane decompositions, the intermediates observed in the early time of the simulations, and the formation of clusters that consisted of C-N-C-N chain/ring structures.
Surface-Accelerated Decomposition of δ-HMX.
Sharia, Onise; Tsyshevsky, Roman; Kuklja, Maija M
2013-03-07
Despite extensive efforts to study the explosive decomposition of HMX, a cyclic nitramine widely used as a solid fuel, explosive, and propellant, an understanding of the physicochemical processes, governing the sensitivity of condensed HMX to detonation initiation is not yet achieved. Experimental and theoretical explorations of the initiation of chemistry are equally challenging because of many complex parallel processes, including the β-δ phase transition and the decomposition from both phases. Among four known polymorphs, HMX is produced in the most stable β-phase, which transforms into the most reactive δ-phase under heat or pressure. In this study, the homolytic NO2 loss and HONO elimination precursor reactions of the gas-phase, ideal crystal, and the (100) surface of δ-HMX are explored by first principles modeling. Our calculations revealed that the high sensitivity of δ-HMX is attributed to interactions of surfaces and molecular dipole moments. While both decomposition reactions coexist, the exothermic HONO-isomer formation catalyzes the N-NO2 homolysis, leading to fast violent explosions.
An investigation on the modelling of kinetics of thermal decomposition of hazardous mercury wastes.
Busto, Yailen; M G Tack, Filip; Peralta, Luis M; Cabrera, Xiomara; Arteaga-Pérez, Luis E
2013-09-15
The kinetics of mercury removal from solid wastes generated by chlor-alkali plants were studied. The reaction order and model-free method with an isoconversional approach were used to estimate the kinetic parameters and reaction mechanism that apply to the thermal decomposition of hazardous mercury wastes. As a first approach to the understanding of thermal decomposition for this type of systems (poly-disperse and multi-component), a novel scheme of six reactions was proposed to represent the behaviour of mercury compounds in the solid matrix during the treatment. An integration-optimization algorithm was used in the screening of nine mechanistic models to develop kinetic expressions that best describe the process. The kinetic parameters were calculated by fitting each of these models to the experimental data. It was demonstrated that the D₁-diffusion mechanism appeared to govern the process at 250°C and high residence times, whereas at 450°C a combination of the diffusion mechanism (D₁) and the third order reaction mechanism (F3) fitted the kinetics of the conversions. The developed models can be applied in engineering calculations to dimension the installations and determine the optimal conditions to treat a mercury containing sludge. Copyright © 2013 Elsevier B.V. All rights reserved.
Agrawal, S; Panchagnula, R
2004-10-01
The chemical stability of rifampicin both in solid state and various media has widely been investigated. While rifampicin is appreciably stable in solid-state, its decomposition rate is very high in acidic as well as in alkaline medium and a variety of decomposition products were identified. The literature reports on highly variable rifampicin decomposition in acidic medium. Hence, the objective of this investigation was to study possible reasons responsible for this variability. For this purpose, filter validation and correlation between rifampicin and its degradation products were developed to account for the loss of rifampicin in acidic media. For analysis of rifampicin with or without the presence of isoniazid, a simple and accurate method was developed using high performance chromatography recommended in FDC monographs of the United States Pharmacopoeia. Using the equations developed in this investigation, the amount of rifampicin degraded in the acidic media was calculated from the area under curve of the degradation products. Further, it was proved that in a dissolution study, the colorimetric method of analysis recommended in the United States Pharmacopoeia provides accurate results regarding rifampicin release. Filter type, time of injection as well as interpretation of data are important factors that affect analysis results of rifampicin in in vitro studies and quality control.
NASA Technical Reports Server (NTRS)
Atwater, James E.; Akse, James R.; Wheeler, Richard R., Jr.; Jovanovic, Goran N.; Pinto-Espinoza, Joaquin; Reed, Brian; Sornchamni, Thana
2003-01-01
This report summarizes a three-year collaborative effort between researchers at UMPQUA Research Company (URC) and the Chemical Engineering Department at Oregon State University (OSU). The Magnetically Assisted Gasification (MAG) concept was originally conceived as a microgravity and hypogravity compatible means for the decomposition of solid waste materials generated aboard spacecraft, lunar and planetary habitations, and for the recovery of potentially valuable resources. While a number of methods such as supercritical water oxidation (SCW0), fluidized bed incineration, pyrolysis , composting and related biological processes have been demonstrated for the decomposition of solid wastes, none of these methods are particularly well- suited for employment under microgravity or hypogravity conditions. For example, fluidized bed incineration relies upon a balance between drag forces which the flowing gas stream exerts upon the fluidization particles and the opposing force of gravity. In the absence of gravity, conventional fluidization cannot take place. Hypogravity operation can also be problematic for conventional fluidized bed reactors, because the various factors which govern fluidization phenomena do not all scale linearly with gravity. For this reason it may be difficult to design and test fluidized bed reactors in lg, which are intended to operate under different gravitational conditions. However, fluidization can be achieved in microgravity (and hypogravity) if a suitable replacement force to counteract the forces between fluid and particles can be found. Possible alternatives include: centripetal force, electric fields, or magnetic fields. Of these, magnetic forces created by the action of magnetic fields and magnetic field gradients upon ferromagnetic media offer the most practical approach. The goal of this URC-OSU collaborative effort was to develop magnetic hardware and methods to control the degree of fluidization (or conversely consolidation) of granular ferromagnetic media and to employ these innovations in sequential filtration and fluidized bed processes for the segregation and decomposition of solid waste materials, and for the concentration and collection of inorganic residue (ash). This required the development of numerous enabling technologies and tools.
Shock Melting of Iron Silicide as Determined by In Situ X-ray Diffraction.
NASA Astrophysics Data System (ADS)
Newman, M.; Kraus, R. G.; Wicks, J. K.; Smith, R.; Duffy, T. S.
2016-12-01
The equation of state of core alloys at pressures and temperatures near the solid-liquid coexistence curve is important for understanding the dynamics at the inner core boundary of the Earth and super-Earths. Here, we present a series of laser driven shock experiments on textured polycrystalline Fe-15Si. These experiments were conducted at the Omega and Omega EP laser facilities. Particle velocities in the Fe-15Si samples were measured using a line VISAR and were used to infer the thermodynamic state of the shocked samples. In situ x-ray diffraction measurements were used to probe the melting transition and investigate the potential decomposition of Fe-15Si in to hcp and B2 structures. This work examines the kinetic effects of decomposition due to the short time scale of dynamic compression experiments. In addition, the thermodynamic data collected in these experiments adds to a limited body of information regarding the equation of state of Fe-15Si, which is a candidate for the composition in Earth's outer core. Our experimental results show a highly textured solid phase upon shock compression to pressures ranging from 170 to 300 GPa. Below 320 GPa, we observe diffraction peaks consistent with decomposition of the D03 starting material in to an hcp and a cubic (potentially B2) structure. Upon shock compression above 320 GPa, the intense and textured solid diffraction peaks give way to diffuse scattering and loss of texture, consistent with melting along the Hugoniot. When comparing these results to that of pure iron, we can ascertain that addition of 15 wt% silicon increases the equilibrium melting temperature significantly, or that the addition of silicon significantly increases the metastability of the solid phase, relative to the liquid. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Efficient implementation of a 3-dimensional ADI method on the iPSC/860
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van der Wijngaart, R.F.
1993-12-31
A comparison is made between several domain decomposition strategies for the solution of three-dimensional partial differential equations on a MIMD distributed memory parallel computer. The grids used are structured, and the numerical algorithm is ADI. Important implementation issues regarding load balancing, storage requirements, network latency, and overlap of computations and communications are discussed. Results of the solution of the three-dimensional heat equation on the Intel iPSC/860 are presented for the three most viable methods. It is found that the Bruno-Cappello decomposition delivers optimal computational speed through an almost complete elimination of processor idle time, while providing good memory efficiency.
Ushirogata, Keisuke; Sodeyama, Keitaro; Okuno, Yukihiro; Tateyama, Yoshitaka
2013-08-14
The solid-electrolyte interphase (SEI) formed through the reductive decomposition of solvent molecules plays a crucial role in the stability and capability of a lithium-ion battery (LIB). Here we investigated the effects of adding vinylene carbonate (VC) to ethylene carbonate (EC) solvent, a typical electrolyte in LIBs, on the reductive decomposition. We focused on both thermodynamics and kinetics of the possible processes and used density functional theory-based molecular dynamics with explicit solvent and Blue-moon ensemble technique for the free energy change. We considered Li(+) in only EC solvent (EC system) and in EC solvent with a VC additive (EC/VC system) to elucidate the additive effects. In addition to clarifying the equilibrium properties, we evaluated the free energy changes along several EC or VC decomposition pathways under one-electron (1e) reduction condition. Two-electron (2e) reduction and attacks of anion radicals to intact molecules were also examined. The present results completely reproduce the gaseous products observed in the experiments. We also found a new mechanism involving the VC additive: the VC additive preferentially reacts with the EC anion radical to suppress the 2e reduction of EC and enhance the initial SEI formation, contrary to the conventional scenario in which VC additive is sacrificially reduced and its radical oligomerization becomes the source of SEI. Because our mechanism needs only 1e reduction, the irreversible capacity at the SEI formation will decrease, which is also consistent with the experimental observations. These results reveal the primary role of VC additive in the EC solvent.
Mason, H. E.; Uribe, E. C.; Shusterman, J. A.
2018-01-01
Tensor-rank decomposition methods have been applied to variable contact time 29 Si{ 1 H} CP/CPMG NMR data sets to extract NMR dynamics information and dramatically decrease conventional NMR acquisition times.
Synthesis of sustainable lubricant enhancer from wet hydrolyzed solids
USDA-ARS?s Scientific Manuscript database
Lignocellulosic ethanol biorefineries offer a sustainable way to produce alternative transportation fuel and provide fiber and biomaterial. However, the lignin fraction remains underutilized in the absence of the development of high value products. Despite its resilience to decomposition, thermochem...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, H. E.; Uribe, E. C.; Shusterman, J. A.
Tensor-rank decomposition methods have been applied to variable contact time 29 Si{ 1 H} CP/CPMG NMR data sets to extract NMR dynamics information and dramatically decrease conventional NMR acquisition times.
NASA Astrophysics Data System (ADS)
Muoto, Chigozie Kenechukwu
This research aims to identify the key feedstock characteristics and processing conditions to produce Y2O3-MgO composite coatings with high density and hardness using solution precursor plasma spray (SPPS) and suspension plasma spray (SPS) processes, and also, to explore the phenomena involved in the production of homogenized nano-composite powders of this material system by thermal decomposition of solution precursor mixtures. The material system would find potential application in the fabrication of components for optical applications such as transparent windows. It was shown that a lack of major endothermic events during precursor decomposition and the resultant formation of highly dense particles upon pyrolysis are critical precursor characteristics for the deposition of dense and hard Y2O3-MgO coatings by SPPS. Using these principles, a new Y2O3-MgO precursor solution was developed, which yielded a coating with Vickers hardness of 560 Hv. This was a considerable improvement over the hardness of the coatings obtained using conventional solution precursors, which was as low as 110 Hv. In the thermal decomposition synthesis process, binary solution precursor mixtures of: yttrium nitrate (Y[n]) or yttrium acetate (Y[a]), with magnesium nitrate (Mg[n]) or magnesium acetate (Mg[a]) were used in order to study the effects of precursor chemistry on the structural characteristics of the resultant Y2O3-MgO powders. The phase domains were coarse and distributed rather inhomogeneously in the materials obtained from the Y[n]Mg[n] and Y[a]Mg[a] mixtures; finer and more homogeneously-distributed phase domains were obtained for ceramics produced from the Y[a]Mg[n] and Y[n]Mg[a] mixtures. It was established that these phenomena were related to the thermal characteristics for the decomposition of the precursors and their effect on phase separation during oxide crystallization. Addition of ammonium acetate to the Y[n[Mg[n] mixture changed the endothermic process to exothermic and improved the dispersion of the component phases. Two suspension types, made with powders synthesized from the Y[n]Mg[n] and Y[n]Mg[a] precursor mixtures were sprayed by SPS. The densities and hardnesses of the coatings deposited using the two powder types were similar. However, the microstructure of coatings deposited using the Y[n]Mg[a]-synthesized powder exhibited some eutectic configuration which was not observed in the coatings deposited using the Y[n]Mg[n]-synthesized powder.
CO2 decomposition using electrochemical process in molten salts
NASA Astrophysics Data System (ADS)
Otake, Koya; Kinoshita, Hiroshi; Kikuchi, Tatsuya; Suzuki, Ryosuke O.
2012-08-01
The electrochemical decomposition of CO2 gas to carbon and oxygen gas in LiCl-Li2O and CaCl2-CaO molten salts was studied. This process consists of electrochemical reduction of Li2O and CaO, as well as the thermal reduction of CO2 gas by the respective metallic Li and Ca. Two kinds of ZrO2 solid electrolytes were tested as an oxygen ion conductor, and the electrolytes removed oxygen ions from the molten salts to the outside of the reactor. After electrolysis in both salts, the aggregations of nanometer-scale amorphous carbon and rod-like graphite crystals were observed by transmission electron microscopy. When 9.7 %CO2-Ar mixed gas was blown into LiCl-Li2O and CaCl2-CaO molten salts, the current efficiency was evaluated to be 89.7 % and 78.5 %, respectively, by the exhaust gas analysis and the supplied charge. When a solid electrolyte with higher ionic conductivity was used, the current and carbon production became larger. It was found that the rate determining step is the diffusion of oxygen ions into the ZrO2 solid electrolyte.
Structural, thermodynamic, and mechanical properties of WCu solid solutions
NASA Astrophysics Data System (ADS)
Liang, C. P.; Wu, C. Y.; Fan, J. L.; Gong, H. R.
2017-11-01
Various properties of Wsbnd Cu solid solutions are systematically investigated through a combined use of first-principles calculation, cluster expansion, special quasirandom structures (SQS), and lattice dynamics. It is shown that SQS are effective to unravel the intrinsic nature of solid solutions, and that BCC and FCC W100-xCux solid solutions are energetically more stable when 0 ≤ x ≤ 70 and 70 < x ≤ 100, respectively. Calculations also reveal that the Debye model should be appropriate to derive thermodynamic properties of Wsbnd Cu, and that the coefficients of thermal expansion of W100-xCux solid solutions are much lower than those of corresponding mechanical mixtures. In addition, the G/B values of W100-xCux solid solutions reach a minimum at x = 50, which is fundamentally due to the softening of phonons as well as strong chemical bonding between W and Cu with a mainly metallic feature.
Conversion of depleted uranium hexafluoride to a solid uranium compound
Rothman, Alan B.; Graczyk, Donald G.; Essling, Alice M.; Horwitz, E. Philip
2001-01-01
A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.
Model-based multiple patterning layout decomposition
NASA Astrophysics Data System (ADS)
Guo, Daifeng; Tian, Haitong; Du, Yuelin; Wong, Martin D. F.
2015-10-01
As one of the most promising next generation lithography technologies, multiple patterning lithography (MPL) plays an important role in the attempts to keep in pace with 10 nm technology node and beyond. With feature size keeps shrinking, it has become impossible to print dense layouts within one single exposure. As a result, MPL such as double patterning lithography (DPL) and triple patterning lithography (TPL) has been widely adopted. There is a large volume of literature on DPL/TPL layout decomposition, and the current approach is to formulate the problem as a classical graph-coloring problem: Layout features (polygons) are represented by vertices in a graph G and there is an edge between two vertices if and only if the distance between the two corresponding features are less than a minimum distance threshold value dmin. The problem is to color the vertices of G using k colors (k = 2 for DPL, k = 3 for TPL) such that no two vertices connected by an edge are given the same color. This is a rule-based approach, which impose a geometric distance as a minimum constraint to simply decompose polygons within the distance into different masks. It is not desired in practice because this criteria cannot completely capture the behavior of the optics. For example, it lacks of sufficient information such as the optical source characteristics and the effects between the polygons outside the minimum distance. To remedy the deficiency, a model-based layout decomposition approach to make the decomposition criteria base on simulation results was first introduced at SPIE 2013.1 However, the algorithm1 is based on simplified assumption on the optical simulation model and therefore its usage on real layouts is limited. Recently AMSL2 also proposed a model-based approach to layout decomposition by iteratively simulating the layout, which requires excessive computational resource and may lead to sub-optimal solutions. The approach2 also potentially generates too many stiches. In this paper, we propose a model-based MPL layout decomposition method using a pre-simulated library of frequent layout patterns. Instead of using the graph G in the standard graph-coloring formulation, we build an expanded graph H where each vertex represents a group of adjacent features together with a coloring solution. By utilizing the library and running sophisticated graph algorithms on H, our approach can obtain optimal decomposition results efficiently. Our model-based solution can achieve a practical mask design which significantly improves the lithography quality on the wafer compared to the rule based decomposition.
Degradation of sulfamethazine by gamma irradiation in the presence of hydrogen peroxide.
Liu, Yuankun; Wang, Jianlong
2013-04-15
The gamma irradiation-induced degradation of sulfamethazine (SMT) in aqueous solution in the presence of hydrogen peroxide (H2O2) was investigated. The initial SMT concentration was 20mg/L and it was irradiated in the presence of extra H2O2 with initial concentration of 0, 10 and 30 mg/L. The results showed that gamma irradiation was effective for removing SMT in aqueous solution and its degradation conformed to the pseudo first-order kinetics under the applied conditions. When initial H2O2 concentration was in the range of 0-30 mg/L, higher concentration of H2O2 was more effective for the decomposition and mineralization of SMT. However, the removal of total organic carbon (TOC) was not as effective as that of SMT. Total nitrogen (TN) was not removed even at absorbed dose of 5 kGy, which was highest dose applied in this study. Major decomposition products of SMT, including degradation intermediates, organic acids and some inorganic ions were detected by high performance liquid chromatography (HPLC) and ion chromatography (IC). Sulfate (SO4(2-)), formic acid (HCOOH), acetic acid (CH3COOH), 4-aminophenol, 4-nitrophenol were identified in the irradiated solutions. Possible pathways for SMT decomposition by gamma irradiation in aqueous solution were proposed. Copyright © 2013 Elsevier B.V. All rights reserved.
Uncertainty propagation in orbital mechanics via tensor decomposition
NASA Astrophysics Data System (ADS)
Sun, Yifei; Kumar, Mrinal
2016-03-01
Uncertainty forecasting in orbital mechanics is an essential but difficult task, primarily because the underlying Fokker-Planck equation (FPE) is defined on a relatively high dimensional (6-D) state-space and is driven by the nonlinear perturbed Keplerian dynamics. In addition, an enormously large solution domain is required for numerical solution of this FPE (e.g. encompassing the entire orbit in the x-y-z subspace), of which the state probability density function (pdf) occupies a tiny fraction at any given time. This coupling of large size, high dimensionality and nonlinearity makes for a formidable computational task, and has caused the FPE for orbital uncertainty propagation to remain an unsolved problem. To the best of the authors' knowledge, this paper presents the first successful direct solution of the FPE for perturbed Keplerian mechanics. To tackle the dimensionality issue, the time-varying state pdf is approximated in the CANDECOMP/PARAFAC decomposition tensor form where all the six spatial dimensions as well as the time dimension are separated from one other. The pdf approximation for all times is obtained simultaneously via the alternating least squares algorithm. Chebyshev spectral differentiation is employed for discretization on account of its spectral ("super-fast") convergence rate. To facilitate the tensor decomposition and control the solution domain size, system dynamics is expressed using spherical coordinates in a noninertial reference frame. Numerical results obtained on a regular personal computer are compared with Monte Carlo simulations.
1993-03-30
Massachusetts Institute of Technology, Cambridge, MA 02139I ABSTRACT polysilanes." Pyrolysis of these polymers usually The decomposition of polymeric SiC ...of soluble polymeric solids. Pyrolysis of these polymers in argon yielded The precursors were prepared by adding a TiC/A120 3 composite at 12501C...formation of soluble polymeric solids. Pyrolysis described an approach for synthesizing AI2O/ SiC of these polymers in argon yielded TiC/AI203
The distribution and adsorption behavior of aliphatic amines in marine and lacustrine sediments
NASA Astrophysics Data System (ADS)
Wang, Xu-chen; Lee, Cindy
1990-10-01
The methylated amines—monomethyl-, dimethyl-, and trimethyl amine (MMA, DMA, TMA)—are commonly found in aquatic environments, apparently as a result of decomposition processes. Adsorption of these amines to clay minerals and organic matter significantly influences their distribution in sediments. Laboratory measurements using 14C-radiolabelled amines and application of a linear partitioning model resulted in calculated adsorption coefficients of 2.4-4.7 (MMA), 3.3 (DMA), and 3.3-4.1 (TMA). Further studies showed that adsorption of amines is influenced by salinity of the porewaters, and clay mineral and organic matter content of the sediment solid phase. Concentrations of monomethyl- and dimethyl amine were measured in the porewaters and the solid phase of sediment samples collected from Flax Pond and Lake Ronkonkoma (NY), Long Island Sound, and the coastal Peru upwelling area. These two amines were present in all sediments investigated. A clear seasonal increase in the solid-phase concentration of MMA and DMA in Flax Pond sediments was likely related to the annual senescence of salt marsh grasses, either directly as a source of these compounds or indirectly by providing additional exchange capacity to the sediments. The distribution of amines in the solid and dissolved phases observed in all sediments investigated suggests that the distribution of these compounds results from a balance among production, decomposition, and adsorption processes.
Silicon nitride equation of state
NASA Astrophysics Data System (ADS)
Brown, Robert C.; Swaminathan, Pazhayannur K.
2017-01-01
This report presents the development of a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4).1 Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonal β-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data that have indicated a complex and slow time dependent phase change to the c-Si3N4 phase. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products; however, the need for a kinetic approach is suggested to combine with the single component solid models to simulate and further investigate the global phase coexistences.
Domain decomposition for a mixed finite element method in three dimensions
Cai, Z.; Parashkevov, R.R.; Russell, T.F.; Wilson, J.D.; Ye, X.
2003-01-01
We consider the solution of the discrete linear system resulting from a mixed finite element discretization applied to a second-order elliptic boundary value problem in three dimensions. Based on a decomposition of the velocity space, these equations can be reduced to a discrete elliptic problem by eliminating the pressure through the use of substructures of the domain. The practicality of the reduction relies on a local basis, presented here, for the divergence-free subspace of the velocity space. We consider additive and multiplicative domain decomposition methods for solving the reduced elliptic problem, and their uniform convergence is established.
Dinitrosyl iron complexes with glutathione as NO and NO⁺ donors.
Borodulin, Rostislav R; Kubrina, Lyudmila N; Mikoyan, Vasak D; Poltorakov, Alexander P; Shvydkiy, Vyacheslav О; Burbaev, Dosymzhan Sh; Serezhenkov, Vladimir A; Yakhontova, Elena R; Vanin, Anatoly F
2013-02-28
It has been found that heating of solutions of the binuclear form of dinitrosyl iron complexes (B-DNIC) with glutathione in a degassed Thunberg apparatus (рН 1.0, 70°С, 6 h) results in their decomposition with a concomitant release of four gaseous NO molecules per one B-DNIC. Further injection of air into the Thunberg apparatus initiates fast oxidation of NO to NO₂ and formation of two GS-NO molecules per one B-DNIC. Under similar conditions, the decomposition of B-DNIC solutions in the Thunberg apparatus in the presence of air is complete within 30-40 min and is accompanied by formation of four GS-NO molecules per one B-DNIC. It is suggested that the latter events are determined by oxidation of B-DNIC iron and concominant release of four nitrosonium ions (NO⁺) from each complex. Binding of NO⁺ to thiol groups of glutathione provokes GS-NO synthesis. At neutral рН, decomposition of B-DNIC is initiated by strong iron chelators, viz., о-phenanthroline and N-methyl-d-glucamine dithiocarbamate (MGD). In the former case, the reaction occurs under anaerobic conditions (degassed Thunberg apparatus) and is accompanied by a release of four NO molecules from B-DNIC. Under identical conditions, MGD-induced decomposition of B-DNIC gives two EPR-active mononuclear mononitrosyl iron complexes with MGD (MNIC-MGD) able to incorporate two iron molecules and two NO molecules from each B-DNIC. The other two NO molecules released from B-DNIC (most probably, in the form of nitrosonium ions) bind to thiol groups of MGD to give corresponding S-nitrosothiols. Acidification of test solutions to рН 1.0 initiates hydrolysis of MGD and, as a consequence, decomposition of MNIC-MGD and the S-nitrosated form of MGD; the gaseous phase contains four NO molecules (as calculated per each B-DNIC). The data obtained testify to the ability of B-DNIC with glutathione (and, probably, of B-DNIC with other thiol-containing ligands) to release both NO molecules and nitrosonium ions upon their decomposition. As far as nitrosyl iron complexes with non-thiol-containing ligands predominantly represented by the mononuclear mononitrosyl iron form (MNIC) are concerned, their decomposition yields exclusively NO molecules. Copyright © 2012 Elsevier Inc. All rights reserved.
Phase Behavior of Complex Superprotonic Solid Acids
NASA Astrophysics Data System (ADS)
Panithipongwut, Chatr
Superprotonic phase transitions and thermal behaviors of three complex solid acid systems are presented, namely Rb3H(SO4) 2-RbHSO4 system, Rb3H(SeO4)2-Cs 3H(SeO4)2 solid solution system, and Cs6 (H2SO4)3(H1.5PO4) 4. These material systems present a rich set of phase transition characteristics that set them apart from other, simpler solid acids. A.C. impedance spectroscopy, high-temperature X-ray powder diffraction, and thermal analysis, as well as other characterization techniques, were employed to investigate the phase behavior of these systems. Rb3H(SO4)2 is an atypical member of the M3H(XO4)2 class of compounds (M = alkali metal or NH4+ and X = S or Se) in that a transition to a high-conductivity state involves disproportionation into two phases rather than a simple polymorphic transition [1]. In the present work, investigations of the Rb3H(SO4)2-RbHSO4 system have revealed the disproportionation products to be Rb2SO 4 and the previously unknown compound Rb5H3(SO 4)4. The new compound becomes stable at a temperature between 25 and 140 °C and is isostructural to a recently reported trigonal phase with space group P3m of Cs5H 3(SO4)4 [2]. At 185 °C the compound undergoes an apparently polymorphic transformation with a heat of transition of 23.8 kJ/mol and a slight additional increase in conductivity. The compounds Rb3H(SeO4)2 and Cs 3H(SeO4)2, though not isomorphous at ambient temperatures, are quintessential examples of superprotonic materials. Both adopt monoclinic structures at ambient temperatures and ultimately transform to a trigonal (R3m) superprotonic structure at slightly elevated temperatures, 178 and 183 °C, respectively. The compounds are completely miscible above the superprotonic transition and show extensive solubility below it. Beyond a careful determination of the phase boundaries, we find a remarkable 40-fold increase in the superprotonic conductivity in intermediate compositions rich in Rb as compared to either end-member. The compound Cs6(H2SO4)3(H 1.5PO4)4 is unusual amongst solid acid compounds in that it has a complex cubic structure at ambient temperature and apparently transforms to a simpler cubic structure of the CsCl-type (isostructural with CsH2PO4) at its transition temperature of 100-120 °C [3]. Here it is found that, depending on the level of humidification, the superprotonic transition of this material is superimposed with a decomposition reaction, which involves both exsolution of (liquid) acid and loss of H2O. This reaction can be suppressed by application of sufficiently high humidity, in which case Cs6(H2SO4)3(H 1.5PO4)4 undergoes a true superprotonic transition. It is proposed that, under conditions of low humidity, the decomposition/dehydration reaction transforms the compound to Cs6(H2-0.5xSO 4)3(H1.5PO4)4-x, also of the CsCl structure type at the temperatures of interest, but with a smaller unit cell. With increasing temperature, the decomposition/dehydration proceeds to greater and greater extent and unit cell of the solid phase decreases. This is identified to be the source of the apparent negative thermal expansion behavior. References: [1] L.A. Cowan, R.M. Morcos, N. Hatada, A. Navrotsky, S.M. Haile, Solid State Ionics 179 (2008) (9-10) 305. [2] M. Sakashita, H. Fujihisa, K.I. Suzuki, S. Hayashi, K. Honda, Solid State Ionics 178 (2007) (21-22) 1262. [3] C.R.I. Chisholm, Superprotonic Phase Transitions in Solid Acids: Parameters affecting the presence and stability of superprotonic transitions in the MHnXO4 family of compounds (X=S, Se, P, As; M=Li, Na, K, NH4, Rb, Cs), Materials Science, California Institute of Technology, Pasadena, California (2003).
Method for fabricating cermets of alumina-chromium systems
Morgan, Chester S.
1983-01-01
Cermet insulators resistant to thermal and mechanical shock are prepared from alumina-chromium systems by providing an Al.sub.2 O.sub.3 material of about 0.5 to 7.0 micron size with a solid-hydrocarbon overcoating by slurring an effective amount of said solid hydrocarbon in a solvent mixture containing said Al.sub.2 O.sub.3 and thereafter evaporating said solvent, contacting said coated Al.sub.2 O.sub.3 with a solution of chromium precursor compound, heating the resulting mixture in a reducing environment to a temperature above the decomposition temperature of said chromium precursor compound but less than the melting temperature of the Al.sub.2 O.sub.3 or chromium for sufficient duration to yield a particulate compound having chromium essentially dispersed throughout the Al.sub.2 O.sub.3, and then densifying said particulate to provide said cermet characterized by a theoretical density in excess of 96% and having 0.1 to 10.0 vol.% elemental chromium metal present therein as a dispersed phase at the boundaries of the Al.sub.2 O.sub.3 material. Cermet components prepared thereby are useful in high temperature equipment, advanced heat engines, and nuclear-related equipment applications where electrical or thermal insulators are required.
Method for fabricating cermets of alumina-chromium systems. [Patent application
Morgan, C.S.
1981-10-05
Cermet insulators resistant to thermal and mechanical shock are prepared from alumina-chromium systems in the following way: by providing an Al/sub 2/O/sub 3/ material of about 0.5 to 7.0 micron size with a solid-hydrocarbon overcoating by slurrying an effective amount of said solid hydrocarbon in a solvent mixture containing said Al/sub 2/O/sub 3/ and thereafter evaporating said solvent, contacting said coated Al/sub 2/O/sub 3/ with a solution of chromium precursor compound, heating the resulting mixture in a reducing environment to a temperature above the decomposition temperature of said chromium precursor compound but less than the melting temperature of the Al/sub 2/O/sub 3/ or chromium for sufficient duration to yield a particulate compound having chromium essentially dispersed throughout the Al/sub 2/O/sub 3/, and then densifying said particulate to provide said cermet characterized by a theoretical density in excess of 96% and having 0.1 to 10.0 vol. % elemental chromium metal present therein as a dispersed phase at the boundaries of the Al/sub 2/O/sub 3/ material. Cermet components prepared thereby are useful in high temperature equipment, advanced heat engines, and nuclear-related equipment applications where electrical or thermal insulators are required.
Sagiyama, Koki; Rudraraju, Shiva; Garikipati, Krishna
2016-09-13
Here, we consider solid state phase transformations that are caused by free energy densities with domains of non-convexity in strain-composition space; we refer to the non-convex domains as mechano-chemical spinodals. The non-convexity with respect to composition and strain causes segregation into phases with different crystal structures. We work on an existing model that couples the classical Cahn-Hilliard model with Toupin’s theory of gradient elasticity at finite strains. Both systems are represented by fourth-order, nonlinear, partial differential equations. The goal of this work is to develop unconditionally stable, second-order accurate time-integration schemes, motivated by the need to carry out large scalemore » computations of dynamically evolving microstructures in three dimensions. We also introduce reduced formulations naturally derived from these proposed schemes for faster computations that are still second-order accurate. Although our method is developed and analyzed here for a specific class of mechano-chemical problems, one can readily apply the same method to develop unconditionally stable, second-order accurate schemes for any problems for which free energy density functions are multivariate polynomials of solution components and component gradients. Apart from an analysis and construction of methods, we present a suite of numerical results that demonstrate the schemes in action.« less
Liu, Zhichao; Wu, Qiong; Zhu, Weihua; Xiao, Heming
2015-04-28
Density functional theory with dispersion-correction (DFT-D) was employed to study the effects of vacancy and pressure on the structure and initial decomposition of crystalline 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (β-NTO), a high-energy insensitive explosive. A comparative analysis of the chemical behaviors of NTO in the ideal bulk crystal and vacancy-containing crystals under applied hydrostatic compression was considered. Our calculated formation energy, vacancy interaction energy, electron density difference, and frontier orbitals reveal that the stability of NTO can be effectively manipulated by changing the molecular environment. Bimolecular hydrogen transfer is suggested to be a potential initial chemical reaction in the vacancy-containing NTO solid at 50 GPa, which is prior to the C-NO2 bond dissociation as its initiation decomposition in the gas phase. The vacancy defects introduced into the ideal bulk NTO crystal can produce a localized site, where the initiation decomposition is preferentially accelerated and then promotes further decompositions. Our results may shed some light on the influence of the molecular environments on the initial pathways in molecular explosives.
Lu, Yan; Li, Gang; Liu, Wei; Yuan, Hongyan; Xiao, Dan
2018-08-15
It is known that most of the refractory ore are the basis of national economy and widely applied in various fields, however, the complexity of the chemical composition and the diversity of the crystallinity in the mineral phases make the sample pre-treatment of refractory ore still remains a challenge. In this work, the complete decomposition of the refractory ore sample can be achieved just by exposing the solid fusion agent and the refractory ore sample in the microwave irradiation environment for a few minutes, and induced by a drop of water. A digestion time of 15 min for 3.0 g solid fusion agent mixture of sodium peroxide/sodium carbonate (Na 2 O 2 /Na 2 CO 3 ) in a corundum crucible via microwave heating is sufficient to decompose 0.1 g refractory ore sample. An excellent microwave digestion solid agent should meet the following conditions, a good decomposition ability, an outstanding ability of absorbing microwave energy and converting it into heat quickly, a higher melting point than the decomposing temperature of the ore sample. In the research, the induction effect of water plays an important role for the microwave digestion. The energy which is released by the reaction of water and the solid fusion agent (Na 2 O 2 ) is the key to decompose refractory ore samples with solid fusion agent, which replenished the total energy required for the microwave digestion and made the microwave digestion completed successfully. This microwave digestion technique has good reproducibility and precision, RSD % for Mo, Fe, Ti, Cr and W in the refractory ore samples were all better than 6, except RSD % for Be of about 8 because of the influence of matrix-effect. Meanwhile, the analysis results of the elements in the refractory ore samples provided by the microwave digestion technique were all in good agreement with the analysis results provided by the traditional fusion method except for Cr in the mixture ore samples. In the study, the non-linear dependence of the electromagnetic and thermal properties of the solid fusion agent on temperature under microwave irradiation and the selective heating of microwave are fully applied in this simple microwave technique. Comparing to the traditional fusion decomposition method, this microwave digestion technique is a simple, economical, fast and energy-saving sample pre-treatment technique. Copyright © 2018 Elsevier B.V. All rights reserved.
Parallel CE/SE Computations via Domain Decomposition
NASA Technical Reports Server (NTRS)
Himansu, Ananda; Jorgenson, Philip C. E.; Wang, Xiao-Yen; Chang, Sin-Chung
2000-01-01
This paper describes the parallelization strategy and achieved parallel efficiency of an explicit time-marching algorithm for solving conservation laws. The Space-Time Conservation Element and Solution Element (CE/SE) algorithm for solving the 2D and 3D Euler equations is parallelized with the aid of domain decomposition. The parallel efficiency of the resultant algorithm on a Silicon Graphics Origin 2000 parallel computer is checked.
Aras, N; Altinel, I K; Oommen, J
2003-01-01
In addition to the classical heuristic algorithms of operations research, there have also been several approaches based on artificial neural networks for solving the traveling salesman problem. Their efficiency, however, decreases as the problem size (number of cities) increases. A technique to reduce the complexity of a large-scale traveling salesman problem (TSP) instance is to decompose or partition it into smaller subproblems. We introduce an all-neural decomposition heuristic that is based on a recent self-organizing map called KNIES, which has been successfully implemented for solving both the Euclidean traveling salesman problem and the Euclidean Hamiltonian path problem. Our solution for the Euclidean TSP proceeds by solving the Euclidean HPP for the subproblems, and then patching these solutions together. No such all-neural solution has ever been reported.
Craw, D
2005-02-01
Eroded roots of hot spring systems in Northland, New Zealand consist of mineralised rocks containing sulfide minerals. Marcasite and cinnabar are the dominant sulfides with subordinate pyrite. Deep weathering and leached soil formation has occurred in a warm temperate to subtropical climate with up to 3 m/year rainfall. Decomposition of the iron sulfides in natural and anthropogenic rock exposures yields acid rock drainage with pH typically between 2 and 4, and locally down to pH 1. Soils and weathered rocks developed on basement greywacke have negligible acid neutralisation capacity. Natural rainforest soils have pH between 4 and 5 on unmineralised greywacke, and pH is as low as 3.5 in soils on mineralised rocks. Roads with aggregate made from mineralised rocks have pH near 3, and quarries from which the rock was extracted can have pH down to 1. Mineralised rocks are enriched in arsenic and mercury, both of which are environmentally available as solid solution impurities in iron sulfides and phosphate minerals. Base metals (Cu, Pb, Zn) are present at low levels in soils, at or below typical basement rock background. Decomposition of the iron sulfides releases the solid solution arsenic and mercury into the acid rock drainage solutions. Phosphate minerals release their impurities only under strongly acid conditions (pH<1). Arsenic and mercury are adsorbed on to iron oxyhydroxides in soils, concentrated in the C horizon, with up to 4000 ppm arsenic and 100 ppm mercury. Waters emanating from acid rock drainage areas have arsenic and mercury below drinking water limits. Leaching experiments and theoretical predictions indicate that both arsenic and mercury are least mobile in acid soils, at pH of c. 3-4. This optimum pH range for fixation of arsenic and mercury on iron oxyhydroxides in soils is similar to natural pH at the field site of this study. However, neutralisation of acid soils developed on mineralised rocks is likely to decrease adsorption and enhance mobility of arsenic and mercury. Hence, development of farmland by clearing forest and adding agricultural lime may mobilise arsenic and mercury from underlying soils on mineralised rocks. In addition, arsenic and mercury release into runoff water will be enhanced where sediment is washed off mineralised road aggregate (pH 3) on to farm land (pH>6). The naturally acid forest soils, or even lower pH of natural acid rock drainage, are the most desirable environmental conditions to restrict dissolution of arsenic and mercury from soils. This approach is only valid where mineralised soils have low base metal concentrations.
Skrdla, Peter J; Robertson, Rebecca T
2005-06-02
Many solid-state reactions and phase transformations performed under isothermal conditions give rise to asymmetric, sigmoidally shaped conversion-time (x-t) profiles. The mathematical treatment of such curves, as well as their physical interpretation, is often challenging. In this work, the functional form of a Maxwell-Boltzmann (M-B) distribution is used to describe the distribution of activation energies for the reagent solids, which, when coupled with an integrated first-order rate expression, yields a novel semiempirical equation that may offer better success in the modeling of solid-state kinetics. In this approach, the Arrhenius equation is used to relate the distribution of activation energies to a corresponding distribution of rate constants for the individual molecules in the reagent solids. This distribution of molecular rate constants is then correlated to the (observable) reaction time in the derivation of the model equation. In addition to providing a versatile treatment for asymmetric, sigmoidal reaction curves, another key advantage of our equation over other models is that the start time of conversion is uniquely defined at t = 0. We demonstrate the ability of our simple, two-parameter equation to successfully model the experimental x-t data for the polymorphic transformation of a pharmaceutical compound under crystallization slurry (i.e., heterogeneous) conditions. Additionally, we use a modification of this equation to model the kinetics of a historically significant, homogeneous solid-state reaction: the thermal decomposition of AgMnO4 crystals. The potential broad applicability of our statistical (i.e., dispersive) kinetic approach makes it a potentially attractive alternative to existing models/approaches.
Grammelis, Panagiotis; Malliopoulou, Anastasia; Basinas, Panagiotis; Danalatos, Nicholas G.
2008-01-01
Technical specifications of solid biofuels are continuously improved towards the development and promotion of their market. Efforts in the Greek market are limited, mainly due to the climate particularity of the region, which hinders the growth of suitable biofuels. Taking also into account the increased oil prices and the high inputs required to grow most annual crops in Greece, cardoon (Cynara cardunculus L.) is now considered the most important and promising sources for solid biofuel production in Greece in the immediate future. The reason is that cardoon is a perennial crop of Mediterranean origin, well adapted to the xerothermic conditions of southern Europe, which can be utilized particularly for solid biofuel production. This is due to its minimum production cost, as this perennial weed may perform high biomass productivity on most soils with modest or without any inputs of irrigation and agrochemicals. Within this framework, the present research work is focused on the planning and analysis of different land use scenarios involving this specific energy crop and the combustion behaviour characterization for the solid products. Such land use scenarios are based on quantitative estimates of the crop'sproduction potential under specific soil-climatic conditions as well as the inputs required for its realization in comparison to existing conventional crops. Concerning its decomposition behaviour, devolatilisation and char combustion tests were performed in a non-isothermal thermogravimetric analyser (TA Q600). A kinetic analysis was applied and accrued results were compared with data already available for other lignocellulosic materials. The thermogravimetric analysis showed that the decomposition process of cardoon follows the degradation of other lignocellulosic fuels, meeting high burnout rates. This research work concludes that Cynara cardunculus, under certain circumstances, can be used as a solid biofuel of acceptable quality. PMID:19325802
Kojima, Taro; Higashi, Kenjirou; Suzuki, Toyofumi; Tomono, Kazuo; Moribe, Kunikazu; Yamamoto, Keiji
2012-10-01
The stabilization mechanism of a supersaturated solution of mefenamic acid (MFA) from a solid dispersion with EUDRAGIT(®) EPO (EPO) was investigated. The solid dispersions were prepared by cryogenic grinding method. Powder X-ray diffractometry, in vitro dissolution test, in vivo oral absorption study, infrared spectroscopy, and solid- and solution-state NMR spectroscopies were used to characterize the solid dispersions. Dissolution tests in acetate buffer (pH 5.5) revealed that solid dispersion showed > 200-fold higher concentration of MFA. Supersaturated solution was stable over 1 month and exhibited improved oral bioavailability of MFA in rats, with a 7.8-fold higher area under the plasma concentration-versus-time curve. Solid-state (1)H spin-lattice relaxation time (T(1)) measurement showed that MFA was almost monomolecularly dispersed in the EPO polymer matrix. Intermolecular interaction between MFA and EPO was indicated by solid-state infrared and (13)C-T(1) measurements. Solution-state (1)H-NMR measurement demonstrated that MFA existed in monomolecular state in supersaturated solution. (1)H-T(1) and difference nuclear Overhauser effect measurements indicated that cross relaxation occurred between MFA and EPO due to the small distance between them. The formation and high stability of the supersaturated solution were attributable to the specifically formed intermolecular interactions between MFA and EPO.
Thermodynamics of magnesian calcite solid-solutions at 25°C and 1 atm total pressure
Busenberg, Eurybiades; Plummer, Niel
1989-01-01
The stability of magnesian calcites was reexamined, and new results are presented for 28 natural inorganic, 12 biogenic, and 32 synthetic magnesian calcites. The magnesian calcite solid-solutions were separated into two groups on the basis of differences in stoichiometric solubility and other physical and chemical properties. Group I consists of solids of mainly metamorphic and hydrothermal origin, synthetic calcites prepared at high temperatures and pressures, and synthetic solids prepared at low temperature and very low calcite supersaturations () from artificial sea water or NaClMgCl2CaCl2solutions. Group I solids are essentially binary s of CaCO2 and MgCO2, and are thought to be relatively free of structural defects. Group II solid-solutions are of either biogenic origin or are synthetic magnesian calcites and protodolomites (0–20 and ∼ 45 mole percent MgCO3) prepared at high calcite supersaturations () from NaClNa2SO4MgCl2CaCl2 or NaClMgCl2CaCl2 solutions. Group II solid-solutions are treated as massively defective solids. The defects include substitution foreign ions (Na+ and SO42−) in the magnesian calcite lattice (point defects) and dislocations (~2 · 109 cm−2). Within each group, the excess free energy of mixing, GE, is described by the mixing model , where x is the mole fraction of the end-member Ca0.5Mg0.5CO3 in the solid-solution. The values of A0and A1 for Group I and II solids were evaluated at 25°C. The equilibrium constants of all the solids are closely described by the equation ln , where KC and KD are the equilibrium constants of calcite and Ca0.5Mg0.5CO3. Group I magnesian calcites were modeled as sub-regular solid-solutions between calcite and dolomite, and between calcite and “disordered dolomite”. Both models yield almost identical equilibrium constants for these magnesian calcites. The Group II magnesian calcites were modeled as sub-regular solid-solutions between defective calcite and protodolomite. Group I and II solid-solutions differ significantly in stability. The rate of crystal growth and the chemical composition of the aqueous solutions from which the solids were formed are the main factors controlling stoichiometric solubility of the magnesian calcites and the density of crystal defects. The literature on the occurrence and behavior of magnesian calcites in sea water and other aqueous solutions is also examined.
Theoretical study of gas hydrate decomposition kinetics--model development.
Windmeier, Christoph; Oellrich, Lothar R
2013-10-10
In order to provide an estimate of the order of magnitude of intrinsic gas hydrate dissolution and dissociation kinetics, the "Consecutive Desorption and Melting Model" (CDM) is developed by applying only theoretical considerations. The process of gas hydrate decomposition is assumed to comprise two consecutive and repetitive quasi chemical reaction steps. These are desorption of the guest molecule followed by local solid body melting. The individual kinetic steps are modeled according to the "Statistical Rate Theory of Interfacial Transport" and the Wilson-Frenkel approach. All missing required model parameters are directly linked to geometric considerations and a thermodynamic gas hydrate equilibrium model.
NASA Astrophysics Data System (ADS)
Iqbal, R. M.; Nurherdiana, S. D.; Hartanto, D.; Othman, M. H. D.; Fansuri, H.
2018-04-01
Methane is the primary combustible component in non condensable part of natural gas. It is a promising source for syngas (CO and H2) production by partial oxidation method. The conversion of methane to syngas by partial oxidation method needs a controlled amount of oxygen. Membrane which has asymmetric structure and selectively permeates oxygen can be used to supply just enough oxygen to the reaction. One pathway to the fabricate asymmetric membrane is phase inversion method with an addition of PEG to increase pore size. La0.7Sr0.3Co0.2Fe0.8O3-δ (LSCF 7328) and Laa0.7Sr0.3MnO3-δ (LSM 73) powder were synthesized by solid-state method and they were characterized by XRD. The green membrane was prepared by phase inversion method. A dope solution was made by mixing LSCF 7328 or LSM 73 powder with PEG and stirred them in NMP for 24 h. PESf was then added into the dope solution and the stirring was continued to another 24 h. The resulted dope solution was degassed by immersing the solution inside and conical flask in an ultrasonic bath to remove air bubbles. The degassed mixture was then casted by spreading it on a glass surface (with a thickness of 2 mm) followed by immersion in a water bath for 24 h to coagulate the degassed mixture. Membrane morphology was characterized by Scanning Electron Microscopy (SEM) while the decomposition temperature of the polymer binder was analyzed by Thermogravimetric Analyzer (TGA). The XRD results show that phase of LSCF 7328 and LSM 73 are similar to LaCoO3 and LaMnO3, respectively. It indicated that the perovskite synthesis was successful. SEM micrograph of membrane cross sections show that the green membrane have finger like pores and a dense layer. Pores also appear on top and bottom surface of the membrane. Based on TGA results, the highest weight lost of green membrane at 550-600°C which represents the decomposition of PESf binder.
Amorphous Mixed-Metal Oxide Thin Films from Aqueous Solution Precursors with Near-Atomic Smoothness.
Kast, Matthew G; Cochran, Elizabeth A; Enman, Lisa J; Mitchson, Gavin; Ditto, Jeffrey; Siefe, Chris; Plassmeyer, Paul N; Greenaway, Ann L; Johnson, David C; Page, Catherine J; Boettcher, Shannon W
2016-12-28
Thin films with tunable and homogeneous composition are required for many applications. We report the synthesis and characterization of a new class of compositionally homogeneous thin films that are amorphous solid solutions of Al 2 O 3 and transition metal oxides (TMO x ) including VO x , CrO x , MnO x , Fe 2 O 3 , CoO x , NiO, CuO x , and ZnO. The synthesis is enabled by the rapid decomposition of molecular transition-metal nitrates TM(NO 3 ) x at low temperature along with precondensed oligomeric Al(OH) x (NO 3 ) 3-x cluster species, both of which can be processed from aq solution. The films are dense, ultrasmooth (R rms < 1 nm, near 0.1 nm in many cases), and atomically mixed amorphous metal-oxide alloys over a large composition range. We assess the chemical principles that favor the formation of amorphous homogeneous films over rougher phase-segregated nanocrystalline films. The synthesis is easily extended to other compositions of transition and main-group metal oxides. To demonstrate versatility, we synthesized amorphous V 0.1 Cr 0.1 Mn 0.1 Fe 0.1 Zn 0.1 Al 0.5 O x and V 0.2 Cr 0.2 Fe 0.2 Al 0.4 O x with R rms ≈ 0.1 nm and uniform composition. The combination of ideal physical properties (dense, smooth, uniform) and broad composition tunability provides a platform for film synthesis that can be used to study fundamental phenomena when the effects of transition metal cation identity, solid-state concentration of d-electrons or d-states, and/or crystallinity need to be controlled. The new platform has broad potential use in controlling interfacial phenomena such as electron transfer in solar-cell contacts or surface reactivity in heterogeneous catalysis.
SNCR De-NOx within a moderate temperature range using urea-spiked hydrazine hydrate as reductant.
Chen, H; Chen, D Z; Fan, S; Hong, L; Wang, D
2016-10-01
In this research, urea-spiked hydrazine hydrate solutions are used as reductants for the Selective Non-Catalytic Reduction (SNCR) De-NOx process below 650 °C. The urea concentration in the urea/hydrazine hydrate solutions is chosen through experimental and theoretical studies. To determine the mechanism of the De-NOx process, thermogravimetric analysis (TGA) of the urea/hydrazine hydrate solutions and their thermal decomposition in air and nitrogen atmospheres were studied to understand their decomposition behaviours and redox characteristics. Then a plug flow reactor (PFR) model was adopted to simulate the De-NOx processes in a pilot scale tubular reactor, and the calculated De-NOx efficiency vs. temperature profiles were compared with experimental results to support the mechanism and choose the proper reductant and its reaction temperature. Both the experimental and calculated results show that when the urea is spiked into hydrazine hydrate solution to make the urea-N content approximately 16.7%-25% of the total N content in the solution, better De-NOx efficiencies can be obtained in the temperature range of 550-650 °C, under which NH3 is inactive in reducing NOx. And it is also proved that for these urea-spiked hydrazine hydrate solutions, the hydrazine decomposition through the pathway N2H4 + M = N2H3 + H + M is enhanced to provide radical H, which is active to reduce NO. Finally, the reaction routes for SNCR De-NOx process based on urea-spiked hydrazine hydrate at the proper temperature are proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zope, Indraneel S.; Yu, Zhong-Zhen
2017-01-01
Metal ions present on smectite clay (montmorillonite) platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 (PA6) thermal decomposition. This changes the decomposition pathway and negatively affects the ignition response of PA6. To restrict these interfacial interactions, high-temperature-resistant polymers such as polyetherimide (PEI) and polyimide (PI) were used to coat clay layers. PEI was deposited on clay by solution-precipitation, whereas PI was deposited through a solution-imidization-precipitation technique before melt blending with PA6. The absence of polymer-clay interfacial interactions has resulted in a similar time-to-ignition of PA6/PEI-clay (133 s) and PA6/PI-clay (139 s) composites as neat PA6 (140 s). On the contrary, PA6 with conventional ammonium-based surfactant modified clay has showed a huge drop in time-to-ignition (81 s), as expected. The experimental evidences provided herein reveal the role of the catalytic activity of clay during the early stages of polymer decomposition. PMID:28800095
An intelligent decomposition approach for efficient design of non-hierarchic systems
NASA Technical Reports Server (NTRS)
Bloebaum, Christina L.
1992-01-01
The design process associated with large engineering systems requires an initial decomposition of the complex systems into subsystem modules which are coupled through transference of output data. The implementation of such a decomposition approach assumes the ability exists to determine what subsystems and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is quite often an extremely complex task which may be beyond human ability to efficiently achieve. Further, in optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the optimal solution. The ability to determine 'weak' versus 'strong' coupling strengths would aid the designer in deciding which couplings could be permanently removed from consideration or which could be temporarily suspended so as to achieve computational savings with minimal loss in solution accuracy. An approach that uses normalized sensitivities to quantify coupling strengths is presented. The approach is applied to a coupled system composed of analysis equations for verification purposes.
Zope, Indraneel S; Dasari, Aravind; Yu, Zhong-Zhen
2017-08-11
Metal ions present on smectite clay (montmorillonite) platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 (PA6) thermal decomposition. This changes the decomposition pathway and negatively affects the ignition response of PA6. To restrict these interfacial interactions, high-temperature-resistant polymers such as polyetherimide (PEI) and polyimide (PI) were used to coat clay layers. PEI was deposited on clay by solution-precipitation, whereas PI was deposited through a solution-imidization-precipitation technique before melt blending with PA6. The absence of polymer-clay interfacial interactions has resulted in a similar time-to-ignition of PA6/PEI-clay (133 s) and PA6/PI-clay (139 s) composites as neat PA6 (140 s). On the contrary, PA6 with conventional ammonium-based surfactant modified clay has showed a huge drop in time-to-ignition (81 s), as expected. The experimental evidences provided herein reveal the role of the catalytic activity of clay during the early stages of polymer decomposition.
Single crystals of metal solid solutions
NASA Technical Reports Server (NTRS)
Miller, J. F.; Austin, A. E.; Richard, N.; Griesenauer, N. M.; Moak, D. P.; Mehrabian, M. R.; Gelles, S. H.
1974-01-01
The following definitions were sought in the research on single crystals of metal solid solutions: (1) the influence of convection and/or gravity present during crystallization on the substructure of a metal solid solution; (2) the influence of a magnetic field applied during crystallization on the substructure of a metal solid solution; and (3) requirements for a space flight experiment to verify the results. Growth conditions for the selected silver-zinc alloy system are described, along with pertinent technical and experimental details of the project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumner, S.C.J.
1986-01-01
Solid state and solution /sup 13/C NMR have been used to study the conformations of the racemic mixtures and single enantiomers of methadone hydrochloride, alpha and beta methadol hydrochloride, and alpha and beta acetylmethadol hydrochloride. The NMR spectra acquired for the compounds as solids, and in polar and nonpolar solvents are compared, in order to determine the conformation of the molecules in solution. To determine the reliability of assigning solution conformations by comparing solution and solid state chemical shift data, three bond coupling constants measured in solution are compared with those calculated from X-ray data. The conformations of the racemicmore » mixture and plus enantiomer of methadone hydrochloride have been shown to be very similar in the solid state, where minor differences in conformation can be seen by comparing NMR spectra obtained for the solids. Also shown is that the molecules of methadone hydrochloride have conformations in polar and in nonpolar solvents which are very similar to the conformation of the molecules in the solid state.« less
Process for decomposing nitrates in aqueous solution
Haas, Paul A.
1980-01-01
This invention is a process for decomposing ammonium nitrate and/or selected metal nitrates in an aqueous solution at an elevated temperature and pressure. Where the compound to be decomposed is a metal nitrate (e.g., a nuclear-fuel metal nitrate), a hydroxylated organic reducing agent therefor is provided in the solution. In accordance with the invention, an effective proportion of both nitromethane and nitric acid is incorporated in the solution to accelerate decomposition of the ammonium nitrate and/or selected metal nitrate. As a result, decomposition can be effected at significantly lower temperatures and pressures, permitting the use of system components composed of off-the-shelf materials, such as stainless steel, rather than more costly materials of construction. Preferably, the process is conducted on a continuous basis. Fluid can be automatically vented from the reaction zone as required to maintain the operating temperature at a moderate value--e.g., at a value in the range of from about 130.degree.-200.degree. C.
Scalable Parallel Computation for Extended MHD Modeling of Fusion Plasmas
NASA Astrophysics Data System (ADS)
Glasser, Alan H.
2008-11-01
Parallel solution of a linear system is scalable if simultaneously doubling the number of dependent variables and the number of processors results in little or no increase in the computation time to solution. Two approaches have this property for parabolic systems: multigrid and domain decomposition. Since extended MHD is primarily a hyperbolic rather than a parabolic system, additional steps must be taken to parabolize the linear system to be solved by such a method. Such physics-based preconditioning (PBP) methods have been pioneered by Chac'on, using finite volumes for spatial discretization, multigrid for solution of the preconditioning equations, and matrix-free Newton-Krylov methods for the accurate solution of the full nonlinear preconditioned equations. The work described here is an extension of these methods using high-order spectral element methods and FETI-DP domain decomposition. Application of PBP to a flux-source representation of the physics equations is discussed. The resulting scalability will be demonstrated for simple wave and for ideal and Hall MHD waves.
COMDECOM: predicting the lifetime of screening compounds in DMSO solution.
Zitha-Bovens, Emrin; Maas, Peter; Wife, Dick; Tijhuis, Johan; Hu, Qian-Nan; Kleinöder, Thomas; Gasteiger, Johann
2009-06-01
The technological evolution of the 1990s in both combinatorial chemistry and high-throughput screening created the demand for rapid access to the compound deck to support the screening process. The common strategy within the pharmaceutical industry is to store the screening library in DMSO solution. Several studies have shown that a percentage of these compounds decompose in solution, varying from a few percent of the total to a substantial part of the library. In the COMDECOM (COMpound DECOMposition) project, the compound stability of screening compounds in DMSO solution is monitored in an accelerated thermal, hydrolytic, and oxidative decomposition program. A large database with stability data is collected, and from this database, a predictive model is being developed. The aim of this program is to build an algorithm that can flag compounds that are likely to decompose-information that is considered to be of utmost importance (e.g., in the compound acquisition process and when evaluation screening results of library compounds, as well as in the determination of optimal storage conditions).
Degradation of Penicillin G by heat activated persulfate in aqueous solution.
Norzaee, Samira; Taghavi, Mahmoud; Djahed, Babak; Kord Mostafapour, Ferdos
2018-06-01
We used Heat Activated of Persulfate (HAP) to decompose Penicillin G (PEN G) in aqueous solution. The effect of pH (3-11), temperature (313-353 K), and initial concentration of Sodium Persulfate (SPS) (0.05-0.5 mM) on the decomposition level of PEN G were investigated. The residue of PEN G was determined by spectrophotometry at the wavelength of 290 nm. Also, the Chemical Oxygen Demand (COD) was measured in each experiment. The Total Organic Carbon (TOC) analysis was utilized for surveying the mineralization of PEN G. In addition, based on Arrhenius equation, the activation energy of PEN G decomposition was calculated. The results indicated that the maximum PEN G removal rate was obtained at pH 5 and by increasing the doses of SPS from 0.05 to 0.5 mM, the PEN G decomposition was enhanced. It was found that an increase in temperature is accompanied by an increase in removal efficiency of PEN G. The activation energy of the studied process was determined to be 94.8 kJ mol -1 , suggesting that a moderate activation energy is required for PEN G decomposition. The TOC measurements indicate that the HAP can efficiently mineralize PEN G. Besides, the presence of the scavengers significantly suppressed the HAP process to remove the PEN G. Overall, the results of this study demonstrate that using HAP process can be a suitable method for decomposing of PEN G in aqueous solutions. Copyright © 2018 Elsevier Ltd. All rights reserved.
2012-05-01
molten salts can be employed over a wide range of applications, which include solvents, 7 electrolytes , 8 pharmaceuticals and therapeutics,9 and...waxy, hygroscopic solid at room temperature, where the additional products in the HP series exist as liquids at room 9 temperature. In general...compressed aluminum pans. Melting and decomposition points for solids were measured by DSC from 40 to 400 oC at a scan rate of 5 ºC/min. IR spectra
Approximate analytical solutions in the analysis of elastic structures of complex geometry
NASA Astrophysics Data System (ADS)
Goloskokov, Dmitriy P.; Matrosov, Alexander V.
2018-05-01
A method of analytical decomposition for analysis plane structures of a complex configuration is presented. For each part of the structure in the form of a rectangle all the components of the stress-strain state are constructed by the superposition method. The method is based on two solutions derived in the form of trigonometric series with unknown coefficients using the method of initial functions. The coefficients are determined from the system of linear algebraic equations obtained while satisfying the boundary conditions and the conditions for joining the structure parts. The components of the stress-strain state of a bent plate with holes are calculated using the analytical decomposition method.
Development of a CAD Model Simplification Framework for Finite Element Analysis
2012-01-01
A. Senthil Kumar , and KH Lee. Automatic solid decomposition and reduction for non-manifold geometric model generation. Computer-Aided Design, 36(13...CAD/CAM: concepts, techniques, and applications. Wiley-interscience, 1995. [38] Avneesh Sud, Mark Foskey, and Dinesh Manocha. Homotopy-preserving
Perovskite oxides: Oxygen electrocatalysis and bulk structure
NASA Technical Reports Server (NTRS)
Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, Ernest
1987-01-01
Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.
Tan, X; Meltzer, N; Lindebaum, S
1992-09-01
The solid-state stabilities of 13-cis-retinoic acid and all-trans-retinoic acid in the presence and absence of oxygen were investigated. The samples were first evaluated using microcalorimetry. The rate laws of different samples under different conditions were deduced from the shapes of the heat flow curves, and the activation energies of the reactions were determined from Arrhenius plots. Under an air atmosphere, the decomposition of 13-cis-retinoic acid is an autocatalytic reaction, while all-trans-retinoic acid undergoes a zero-order process. The degradation of the two compounds at a selected elevated temperature was also determined utilizing HPLC analysis. This technique confirmed the decomposition kinetics. Hence, their half-lives and shelf lives at room temperature could be calculated. Under a nitrogen atmosphere, the microcalorimetric experiment showed a first-order phenomenon for both samples, but HPLC analysis showed no degradation, suggesting that the two samples, in the absence of oxygen, undergo only a physical change.
Reforming and decomposition of glucose in an aqueous phase
NASA Technical Reports Server (NTRS)
Amin, S.; Reid, R. C.; Modell, M.
1975-01-01
Exploratory experiments have been carried out to study the decomposition of glucose, a typical carbohydrate, in a high temperature-high pressure water reactor. The objective of the study was to examine the feasibility of such a process to decompose cellulosic waste materials in long-term space missions. At temperatures below the critical point of water, glucose decomposed to form liquid products and char. Little gas was noted with or without reforming catalysts present. The rate of the primary glucose reaction increased significantly with temperature. Partial identification of the liquid phase was made and the C:H:O ratios determined for both the liquid and solid products. One of the more interesting results from this study was the finding that when glucose was injected into a reactor held at the critical temperature (and pressure) of water, no solid products formed. Gas production increased, but the majority of the carbon was found in soluble furans (and furan derivatives). This significant result is now being investigated further.
Perovskite-type oxides - Oxygen electrocatalysis and bulk structure
NASA Technical Reports Server (NTRS)
Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, E.
1988-01-01
Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.
Insam, Heribert; Markt, Rudolf
2016-05-15
Co-digestion of organic waste and sewage sludge enhances biogas production and reduces the mass of remaining solids. This phenomenon of enhanced organic matter decomposition by adding labile substrate is known from other habitats like soils and sediments where it is called priming effect. It is thus suggested to adopt the term priming effect also in environmental biotechnology, and in particular for biomethanisation of wastewater sludges by the addition of energy-rich co-substrates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thermodynamic Study of Solid-Liquid Equilibrium in NaCl-NaBr-H2O System at 288.15 K
NASA Astrophysics Data System (ADS)
Li, Dan; Meng, Ling-zong; Deng, Tian-long; Guo, Ya-fei; Fu, Qing-Tao
2018-06-01
The solubility data, composition of the solid solution and refractive indices of the NaCl-NaBr-H2O system at 288.15 K were studied with the isothermal equilibrium dissolution method. The solubility diagram and refractive index diagram of this system were plotted at 288.15 K. The solubility diagram consists of two crystallization zones for solid solution Na(Cl,Br) · 2H2O and Na(Cl,Br), one invariant points cosaturated with two solid solution and two univariant solubility isothermal curves. On the basis of Pitzer and Harvie-Weare (HW) chemical models, the composition equations and solubility equilibrium constant equations of the solid solutions at 288.15 K were acquired using the solubility data, the composition of solid solutions, and binary Pitzer parameters. The solubilities calculated using the new method combining the equations are in good agreement with the experimental data.
A Modified Demonstration of the Catalytic Decomposition of Hydrogen Peroxide
NASA Astrophysics Data System (ADS)
Trujillo, Carlos Alexander
2005-06-01
A safer and cheaper version of the popular catalyzed decomposition of hydrogen peroxide demonstration commonly called the “Elephants’ Toothpaste” is presented. Hydrogen peroxide is decomposed in the presence of a surfactant by the enzyme catalase producing foam. Catalase has a higher activity compared with the traditional iodide and permits the use of diluted hydrogen peroxide solutions. The demonstration can be made with household products with similar amazing effects.
Nitrations Conference Held at Menlo Park, California on 27-29 July 1983.
1983-09-01
MECHANISM OF HOMOGENEOUS GAS-PHASE DECOMPOSITION OF NITROTOLUENES" D. F. McMillen, C. W. Larson, and D. M. Golden...NITROAROMATICS. THE MECHANISM OF HOMOGENEOUS GAS-PHASE DECOMPOSITION OF NITROTOLUENES" i 6:00 Wine Tasting 7:00 Banquet, International Dining Room THURSDAY, JULY...which undergo hydrolysis or oxidations in strong acid solutions can he easily nitrated. Aryl nitriles, which could not be dinitrated without
NASA Astrophysics Data System (ADS)
Menon, Sumithra Sivadas; Anitha, R.; Gupta, Bhavana; Baskar, K.; Singh, Shubra
2016-05-01
GaN-ZnO solid solution has emerged as a successful and reproducible photocatalyst for overall water splitting by one-step photoexcitation, with a bandgap in visible region. When the solid solution is formed, some of the Zn and O ions are replaced by Ga and N ions respectively and there is a narrowing of bandgap which is hypothesized as due to Zn3d-N2p repulsion. The traditional method of synthesis of GaN-ZnO solid solution is by nitridation of the starting oxides under constant ammonia flow. Here we report a solution combustion technique for the synthesis of the solid solution at a temperature about 500 ° C in a muffle furnace with metal nitrates as precursors and urea as the fuel. The as prepared samples showed change in color with the increased concentration of ZnO in the solution. The structural, microstructural, morphological and optical properties of the samples were realized by Powder X ray diffraction, Scanning electron microscopy, Energy dispersive X ray analysis, Transmission electron microscopy and Photoluminescence. Finally the hydrogen production efficiency of the GaN-ZnO nanopowders by water splitting was found, using methanol as a scavenger. The apparent quantum yield (AQY) of 0.048% is obtained for GaN-ZnO solid solution.
NASA Astrophysics Data System (ADS)
Awadallah, A. E.; Aboul-Enein, A. A.; El-Desouki, D. S.; Aboul-Gheit, A. K.
2014-03-01
Bimetallic Ni-Fe, Ni-Co and Fe-Co supported on MgO catalysts with a total metals content of 50 wt.% were evaluated for decomposition of methane to CO/CO2 free hydrogen and carbon nanomaterials. The catalytic runs were carried out at 700 °C under atmospheric pressure using fixed bed horizontal flow reactor. The materials were characterized by XRD, TEM, Raman spectroscopy, surface analysis and TGA-DTG. The data showed that the bimetallic 25% Fe-25%Co/MgO catalyst exhibited remarkable higher activity and stability up to ˜10 h time-on-stream with respect to H2 production. However, the catalytic activity and durability was greatly declined after incorporating 25%Ni to either 25%Fe or 25%Co/MgO catalysts at all time on stream. The main reason for the catalytic inhibition of Ni containing catalysts is consuming NiO during the formation of rock-salt MgxNi(1-x)O solid solution. However, the almost complete segregation of Fe2O3 and Co3O4 oxides played an important role for the high activity of the Fe-Co based catalyst. TEM images illustrate that the accumulated carbon over all catalysts are multi-walled carbon nanotubes in nature. The TG data showed that a higher yield of MWCNTs was achieved over bimetallic Fe-Co catalyst compared to the Ni-Fe or Ni-Co containing catalysts.
Miara, Lincoln; Windmüller, Anna; Tsai, Chih-Long; Richards, William D; Ma, Qianli; Uhlenbruck, Sven; Guillon, Olivier; Ceder, Gerbrand
2016-10-12
The reactivity of mixtures of high voltage spinel cathode materials Li 2 NiMn 3 O 8 , Li 2 FeMn 3 O 8 , and LiCoMnO 4 cosintered with Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 and Li 6.6 La 3 Zr 1.6 Ta 0.4 O 12 electrolytes is studied by thermal analysis using X-ray-diffraction and differential thermoanalysis and thermogravimetry coupled with mass spectrometry. The results are compared with predicted decomposition reactions from first-principles calculations. Decomposition of the mixtures begins at 600 °C, significantly lower than the decomposition temperature of any component, especially the electrolytes. For the cathode + Li 6.6 La 3 Zr 1.6 Ta 0.4 O 12 mixtures, lithium and oxygen from the electrolyte react with the cathodes to form highly stable Li 2 MnO 3 and then decompose to form stable and often insulating phases such as La 2 Zr 2 O 7 , La 2 O 3 , La 3 TaO 7 , TiO 2 , and LaMnO 3 which are likely to increase the interfacial impedance of a cathode composite. The decomposition reactions are identified with high fidelity by first-principles calculations. For the cathode + Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 mixtures, the Mn tends to oxidize to MnO 2 or Mn 2 O 3 , supplying lithium to the electrolyte for the formation of Li 3 PO 4 and metal phosphates such as AlPO 4 and LiMPO 4 (M = Mn, Ni). The results indicate that high temperature cosintering to form dense cathode composites between spinel cathodes and oxide electrolytes will produce high impedance interfacial products, complicating solid state battery manufacturing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavun, V. Ya., E-mail: kavun@ich.dvo.ru; Uvarov, N.F.; Slobodyuk, A.B.
Ionic mobility and conductivity in the K{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} and Rb{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} (x=0.05, 0.09) solid solutions with the fluorite structure have been investigated using the methods of {sup 19}F NMR, X-ray diffraction and impedance spectroscopy. Types of ionic motions in the fluoride sublattice of solid solutions have been established and temperature ranges of their realization have been determined (150–450 K). Diffusion of fluoride ions is a dominating type of ionic motions in the fluoride sublattice of solid solutions under study above 350 K. Due to high ionic conductivity, above 10{sup –3} S/cm at 450 K,more » these solid solutions can be used as solid electrolytes in various electrochemical devices and systems. - Graphical abstract: Temperature dependence of the concentration of mobile (2, 4) and immobile (1, 3) F ions in the K{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} solid solutions. - Highlights: • Studied the ion mobility, conductivity in M{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} solid solutions (M=K, Rb). • An analysis of {sup 19}F NMR spectra made it possible to identify types of ion mobility. • The main type of ion motion above 300 K in solid solutions is a diffusion of ions F{sup –}. • The ionic conductivity of the solid solutions studied more than 10{sup –3} S/cm at 450 K.« less
Thermodynamic stability of stoichiometric LaFeO3 and BiFeO3: a hybrid DFT study.
Heifets, Eugene; Kotomin, Eugene A; Bagaturyants, Alexander A; Maier, Joachim
2017-02-01
BiFeO 3 perovskite attracts great attention due to its multiferroic properties and potential use as a parent material for Bi 1-x Sr x FeO 3-δ and Bi 1-x Sr x Fe 1-y Co y O 3-δ solid solutions in intermediate temperature cathodes of oxide fuel cells. Another iron-based LaFeO 3 perovskite is the end member for well-known solid solutions (La 1-x Sr x Fe 1-y Co y O 3-δ ) used for oxide fuel cells and other electrochemical devices. In this study an ab initio hybrid functional approach was used for the study of the thermodynamic stability of both LaFeO 3 and BiFeO 3 with respect to decompositions to binary oxides and to elements, as a function of temperature and oxygen pressure. The localized (LCAO) basis sets describing the crystalline electron wave functions were carefully re-optimized within the CRYSTAL09 computer code. The results obtained by considering Fe as an all-electron atom and within the effective core potential technique are compared in detail. Based on our calculations, the phase diagrams were constructed allowing us to predict the stability region of stoichiometric materials in terms of atomic chemical potentials. This permits determining the environmental conditions for the existence of stable BiFeO 3 and LaFeO 3 . These conditions were presented as contour maps of oxygen atoms' chemical potential as a function of temperature and partial pressure of oxygen gas. A similar analysis was also performed using the experimental Gibbs energies of formation. The obtained phase diagrams and contour maps are compared with the calculated ones.
NASA Astrophysics Data System (ADS)
Guastoni, Alessandro; Nestola, Fabrizio; Schiazza, Mariangela
2017-06-01
CaCeAl2(Fe3+ 2/3□1/3)[Si2O7][SiO4]O(OH), allanite-(Ce) and rare earth element (REE)-bearing epidote occur as globular aggregates and platy prismatic crystals in miarolitic cavities in a niobium, yttrium, fluorine (NYF) granitic pegmatite at Baveno, Verbania, Southern Alps, Italy. These samples were investigated by means of an electron probe micro-analyser (EPMA) and single-crystal X-ray diffraction. Our EPMA results show that the globular aggregates have the highest REE content in the core portion and decreases to REE-bearing epidote towards the rim whereas the prismatic crystals are characterized by marked oscillatory zoning that have the highest REE contents at the rim of the crystal. The unit-cell parameters of "allanites" have an intermediate unit-cell between CaCeAl2(Fe3+ 2/3□1/3)[Si2O7][SiO4]O(OH), allanite-(Ce) and REE-free epidote, because reflect the strong chemical heterogeneity of the samples which form complete solid solutions. Hydrothermal fluids control the activity and precipitation of incompatible elements like high field strength elements (HFSE), Sc and REE by hydrous F-rich fluids below the critical temperature which allow to deposit accessory minerals in the cavities with decreasing temperature. The source of REE and Y are the sheet and REE-silicates like siderophyllite-annite, and gadolinite-(Y) which underwent partial to complete decomposition by the activity of aggressive F-rich hydrothermal fluids.
Torres, D P; Martins-Teixeira, M B; Silva, E F; Queiroz, H M
2012-01-01
A very simple and rapid method for the determination of total mercury in fish samples using the Direct Mercury Analyser DMA-80 was developed. In this system, a previously weighted portion of fresh fish is combusted and the released mercury is selectively trapped in a gold amalgamator. Upon heating, mercury is desorbed from the amalgamator, an atomic absorption measurement is performed and the mercury concentration is calculated. Some experimental parameters have been studied and optimised. In this study the sample mass was about 100.0 mg. The relative standard deviation was lower than 8.0% for all measurements of solid samples. Two calibration curves against aqueous standard solutions were prepared through the low linear range from 2.5 to 20.0 ng of Hg, and the high linear range from 25.0 to 200.0 ng of Hg, for which a correlation coefficient better than 0.997 was achieved, as well as a normal distribution of the residuals. Mercury reference solutions were prepared in 5.0% v/v nitric acid medium. Lyophilised fish tissues were also analysed; however, the additional procedure had no advantage over the direct analysis of the fresh fish, and additionally increased the total analytical process time. A fish tissue reference material, IAEA-407, was analysed and the mercury concentration was in agreement with the certified value, according to the t-test at a 95% confidence level. The limit of quantification (LOQ), based on a mercury-free sample, was 3.0 µg kg(-1). This LOQ is in accordance with performance criteria required by the Commission Regulation No. 333/2007. Simplicity and high efficiency, without the need for any sample preparation procedure, are some of the qualities of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banks, J.W., E-mail: banksj3@rpi.edu; Henshaw, W.D., E-mail: henshw@rpi.edu; Kapila, A.K., E-mail: kapila@rpi.edu
We describe an added-mass partitioned (AMP) algorithm for solving fluid–structure interaction (FSI) problems involving inviscid compressible fluids interacting with nonlinear solids that undergo large rotations and displacements. The computational approach is a mixed Eulerian–Lagrangian scheme that makes use of deforming composite grids (DCG) to treat large changes in the geometry in an accurate, flexible, and robust manner. The current work extends the AMP algorithm developed in Banks et al. [1] for linearly elasticity to the case of nonlinear solids. To ensure stability for the case of light solids, the new AMP algorithm embeds an approximate solution of a nonlinear fluid–solidmore » Riemann (FSR) problem into the interface treatment. The solution to the FSR problem is derived and shown to be of a similar form to that derived for linear solids: the state on the interface being fundamentally an impedance-weighted average of the fluid and solid states. Numerical simulations demonstrate that the AMP algorithm is stable even for light solids when added-mass effects are large. The accuracy and stability of the AMP scheme is verified by comparison to an exact solution using the method of analytical solutions and to a semi-analytical solution that is obtained for a rotating solid disk immersed in a fluid. The scheme is applied to the simulation of a planar shock impacting a light elliptical-shaped solid, and comparisons are made between solutions of the FSI problem for a neo-Hookean solid, a linearly elastic solid, and a rigid solid. The ability of the approach to handle large deformations is demonstrated for a problem of a high-speed flow past a light, thin, and flexible solid beam.« less
NASA Technical Reports Server (NTRS)
Wang, J. C.
1982-01-01
Compositional segregation of solid solution semiconducting alloys in the radial direction during unidirectional solidification was investigated by calculating the effect of a curved solid liquid interface on solute concentration at the interface on the solid. The formulation is similar to that given by Coriell, Boisvert, Rehm, and Sekerka except that a more realistic cylindrical coordinate system which is moving with the interface is used. Analytical results were obtained for very small and very large values of beta with beta = VR/D, where V is the velocity of solidification, R the radius of the specimen, and D the diffusivity of solute in the liquid. For both very small and very large beta, the solute concentration at the interface in the solid C(si) approaches C(o) (original solute concentration) i.e., the deviation is minimal. The maximum deviation of C(si) from C(o) occurs for some intermediate value of beta.
NASA Astrophysics Data System (ADS)
Trinchenko, A. A.; Paramonov, A. P.
2017-10-01
Work is devoted to the solution of problems of energy efficiency increase in low power boilers at combustion of solid fuel. The technological method of nitrogen oxides decomposition on a surface of carbon particles with education environmentally friendly carbonic acid and molecular nitrogen is considered during the work of a low-temperature swirl fire chamber. Based on the analysis of physical and chemical processes of a fuel chemically connected energy transition into thermal, using the diffusive and kinetic theory of burning modern approaches the technique, mathematical model and the settlement program for assessment of plant ecological indicators when using a new method are developed. Alternative calculations of furnace process are carried out, quantitative assessment of nitrogen oxides emissions level of the reconstructed boiler is executed. The results of modeling and experimental data have approved that the organization of swirl burning increases overall performance of a fire chamber and considerably reduces emissions of nitrogen oxides.
The Power of Materials Science Tools for Gaining Insights into Organic Semiconductors
NASA Astrophysics Data System (ADS)
Treat, Neil D.; Westacott, Paul; Stingelin, Natalie
2015-07-01
The structure of organic semiconductors can be complex because features from the molecular level (such as molecular conformation) to the micrometer scale (such as the volume fraction and composition of phases, phase distribution, and domain size) contribute to the definition of the optoelectronic landscape of the final architectures and, hence, to device performance. As a consequence, a detailed understanding of how to manipulate molecular ordering, e.g., through knowledge of relevant phase transitions, of the solidification process, of relevant solidification mechanisms, and of kinetic factors, is required to induce the desired optoelectronic response. In this review, we discuss relevant structural features of single-component and multicomponent systems; provide a case study of the multifaceted structure that polymer:fullerene systems can adopt; and highlight relevant solidification mechanisms such as nucleation and growth, liquid-liquid phase separation, and spinodal decomposition. In addition, cocrystal formation, solid solutions, and eutectic systems are treated and their relevance within the optoelectronic area emphasized.
NASA Technical Reports Server (NTRS)
Tyson, Daniel S.; Ilhan, Faysal; Meador, Mary Ann B.; Smith, Dee Dee; Scheiman, Daniel A.; Meador, Michael A.
2004-01-01
Photolysis of o-methylphenyl ketones generates bis-o-quinodimethane intermediates that can be trapped in situ by dienophiles through Diels-Alder cycloadditions. This well-known photochemical process is applied to a series of six new photoreactive monomers containing bis-(o-methylphenyl ketone) functionalities combined with diacrylate and triacrylate ester monomers for the development of acrylic ester copolymer blends. Irradiation of cyclohexanone solutions of the bis-(o-methylphenyl ketone)s and acrylate esters produce thin polymer films. Solid state 13C NMR data indicated 47- 100% reaction of the bis-(o-methylphenyl ketone)s, depending on experimental conditions, to yield the desired products. DSC and TGA analyses were performed to determine the glass transition temperature, T,, and onset of decomposition, Td, of the resulting polymer films. A statistical Design of Experiments approach was used to obtain a systematic understanding of the effects of experimental variables on the extent of polymerization and the final polymer properties.
NASA Astrophysics Data System (ADS)
Rao, G. Babu; Rajesh, P.; Ramasamy, P.
2017-06-01
Dye inclusion crystals have attracted researchers in the context of crystal growth for applications in solid state lasers. Pure and 0.1 mol% amaranth doped KAP single crystals, were grown from aqueous solutions by slow evaporation technique at room temperature. The grown crystals are up to the dimension of 12×10×3 mm3. Attempt is made to improve the growth rate, optical, piezoelectric and photoconductive properties of pure KAP single crystal with addition of amaranth dye as a dopant. Various characterization studies were made for both pure and dye doped KAP. Thermal stability of the crystals is tested from thermogravimetric and differential thermal analysis (TG/DTA). There is only one endothermic peak indicating decomposition point. Higher optical transparency for dye doped KAP crystal was identified from the UV-vis spectrum. Etching studies showed an improvement in the optical quality of the KAP crystal after doping with amaranth dye. The positive photoconductive nature is observed from both pure and amaranth doped KAP.
Process for recovering chaotropic anions from an aqueous solution also containing other ions
Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.
1999-01-01
A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture.
Process for recovering chaotropic anions from an aqueous solution also containing other ions
Rogers, R.; Horwitz, E.P.; Bond, A.H.
1999-03-30
A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture. 19 figs.
NASA Astrophysics Data System (ADS)
Jerez-Hanckes, Carlos; Pérez-Arancibia, Carlos; Turc, Catalin
2017-12-01
We present Nyström discretizations of multitrace/singletrace formulations and non-overlapping Domain Decomposition Methods (DDM) for the solution of Helmholtz transmission problems for bounded composite scatterers with piecewise constant material properties. We investigate the performance of DDM with both classical Robin and optimized transmission boundary conditions. The optimized transmission boundary conditions incorporate square root Fourier multiplier approximations of Dirichlet to Neumann operators. While the multitrace/singletrace formulations as well as the DDM that use classical Robin transmission conditions are not particularly well suited for Krylov subspace iterative solutions of high-contrast high-frequency Helmholtz transmission problems, we provide ample numerical evidence that DDM with optimized transmission conditions constitute efficient computational alternatives for these type of applications. In the case of large numbers of subdomains with different material properties, we show that the associated DDM linear system can be efficiently solved via hierarchical Schur complements elimination.
NASA Astrophysics Data System (ADS)
Pradhan, Lagen Kumar; Pandey, Rabichandra; Kumar, Sunil; Supriya, Sweety; Kar, Manoranjan
2018-04-01
Effect of lattice distortion on diffuse phase transition in BNBTO solid solutions near Morphotropic phase boundary (MPB) has been investigated. Solid solutions of (Bi0.5Na0.5)1-xBaxTiO3 (with mole % of x= 0.04, 0.05, 0.06, 0.07 and 0.08) were prepared by the planetary ball mill method in ethanol medium. Rietveld refinement technique with rhombohedral (R3c) and tetragonal (P4bm) crystal symmetry has been employed for structural as well as phase analysis of the solid solutions. Both rhombohedral and tetragonal lattice distortion (c/a) tends toward the pseudo-cubic crystal symmetry with the increase of mole fraction of Ba2+ near MPB (x= 6 mole %). Also, the average crystallite size and grain size decrease with increase of mole fraction of Ba2+ in BNT ceramic are due to larger ionic radius of Ba2+ and grain boundary pinning process in the solid solutions respectively. Additionally, depolarization temperature (Td) and maximum temperature (Tm) reduces due to the lattice distortion of both the phases in BNBTO solid solutions, which is explained extensively. Significant increase of dielectric constant has been observed near MPB composition (x=6%) in BNBTO solid solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rounaghi, S.A., E-mail: s.a.rounaghi@gmail.com; Kiani Rashid, A.R.; Eshghi, H., E-mail: heshghi@ferdowsi.um.ac.ir
Decomposition of melamine was studied by solid state reaction of melamine and aluminum powders during high energy ball-milling. The milling procedure performed for both pure melamine and melamine/Al mixed powders as the starting materials for various times up to 48 h under ambient atmosphere. The products were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results revealed that Al causes melamine deammoniation at the first stages of milling and further milling process leads to the s-triazine ring degradation while nano-crystallite hexagonal aluminum nitride (h-AlN) was the main solid product. Comparison to milling process, the possibility ofmore » the reaction of melamine with Al was also investigated by thermal treatment method using differential scanning calorimeter (DSC) and thermo gravimetric analyzer (TGA). Melamine decomposition occurred by thermal treatment in the range of 270-370 Degree-Sign C, but no reaction between melamine and aluminum was observed. - Graphical Abstract: Mechanochemical reaction of melamine with Al resulted in the formation of nanocrystalline AlN after 7 h milling time Highlights: Black-Right-Pointing-Pointer High energy ball milling of melamine and aluminum results decomposition of melamine with elimination of ammonia. Black-Right-Pointing-Pointer Nano-crystalline AlN was synthesized by the mechanochemical route. Black-Right-Pointing-Pointer Milling process has no conspicuous effect on pure melamine degradation. Black-Right-Pointing-Pointer No reaction takes place by heating melamine and aluminum powder mixture in argon.« less
Preparation of Sic/AIN Solid Solutions Using Organometallic Precursors
1989-02-15
pyrolysis of organoaluminum and organosilicon compounds was investigated as a potential source of SiC /AUI solid solutions. Using two different co... pyrolysis methods, homogeneous mixtures of organoaluminum amides and both a vinylic polysilane and a poly- carbosilane were convertec to a preceramic ...solid that transformed to crystalline SiC /AiN solid solutions at C. Moreover, the liquid, polymeric , form of these precursor mixtures provides a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Supriya; Srivastava, Pratibha; Singh, Gurdip, E-mail: gsingh4us@yahoo.com
2013-02-15
Graphical abstract: Prepared nanoferrites were characterized by FE-SEM and bright field TEM micrographs. The catalytic effect of these nanoferrites was evaluated on the thermal decomposition of ammonium perchlorate using TG and TG–DSC techniques. The kinetics of thermal decomposition of AP was evaluated using isothermal TG data by model fitting as well as isoconversional method. Display Omitted Highlights: ► Synthesis of ferrite nanostructures (∼20.0 nm) by wet-chemical method under different synthetic conditions. ► Characterization using XRD, FE-SEM, EDS, TEM, HRTEM and SAED pattern. ► Catalytic activity of ferrite nanostructures on AP thermal decomposition by thermal techniques. ► Burning rate measurements ofmore » CSPs with ferrite nanostructures. ► Kinetics of thermal decomposition of AP + nanoferrites. -- Abstract: In this paper, the nanoferrites of Mn, Co and Ni were synthesized by wet chemical method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive, X-ray spectra (EDS), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HR-TEM). It is catalytic activity were investigated on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellants (CSPs) using thermogravimetry (TG), TG coupled with differential scanning calorimetry (TG–DSC) and ignition delay measurements. Kinetics of thermal decomposition of AP + nanoferrites have also been investigated using isoconversional and model fitting approaches which have been applied to data for isothermal TG decomposition. The burning rate of CSPs was considerably enhanced by these nanoferrites. Addition of nanoferrites to AP led to shifting of the high temperature decomposition peak toward lower temperature. All these studies reveal that ferrite nanorods show the best catalytic activity superior to that of nanospheres and nanocubes.« less
Dinunzio, James C; Brough, Chris; Hughey, Justin R; Miller, Dave A; Williams, Robert O; McGinity, James W
2010-02-01
Many techniques for the production of solid dispersions rely on elevated temperatures and prolonged material residence times, which can result in decomposition of temperature-sensitive components. In this study, hydrocortisone was used as a model temperature-sensitive active ingredient to study the effect of formulation and processing techniques as well as to characterize the benefits of KinetiSol Dispersing for the production of solid dispersions. Preformulation studies were conducted using differential scanning calorimetry and hot stage microscopy to identify optimum carriers for the production of amorphous solid dispersions. After identification, solid dispersions were prepared by hot melt extrusion and KinetiSol Dispersing, with material characterized by X-ray diffraction, dissolution and potency testing to evaluate physicochemical properties. Results from the preformulation studies showed that vinylacetate:vinylpyrrolidone (PVPVA) copolymer allowed for hydrocortisone dissolution within the carrier at temperatures as low as 160 degrees C, while hydroxypropyl methylcellulose required temperatures upward of 180 degrees C to facilitate solubilization. Low substituted hydroxypropyl cellulose, a high glass transition temperature control, showed that the material was unable to solubilize hydrocortisone. Manufacturing process control studies using hot melt extruded compositions of hydrocortisone and PVPVA showed that increased temperatures and residence times negatively impacted product potency due to decomposition. Using KinetiSol Dispersing to reduce residence time and to facilitate lower temperature processing, it was possible to produce solid dispersions with improved product potency. This study clearly demonstrated the importance of carrier selection to facilitate lower temperature processing, as well as the effect of residence time on product potency. Furthermore, KinetiSol Dispersing provided significant advantages over hot melt extrusion due to the reduced residence times and lower required processing temperatures. This allowed for the production of solid dispersions with enhanced product potency. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Computational mechanics analysis tools for parallel-vector supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Nguyen, D. T.; Baddourah, M. A.; Qin, J.
1993-01-01
Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigen-solution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization algorithm and domain decomposition. The source code for many of these algorithms is available from NASA Langley.
The solusphere-its inferences and study
Rainwater, F.H.; White, W.F.
1958-01-01
Water is a fundamental geologic agent active in rock decomposition, erosion, and synthesis. Solutes in water are of particular interest to geochemists as sources of raw material for synthesis or as products of decomposition. When geochemical studies move from the laboratory into natural environment many variables relating to solute hydrology must be considered. As a focal point there has been designed a graphical representation of solute hydrology, the solusphere, which embodies the concepts of land-water occurrence and movement on which are superimposed geologic, biologic, physical, chemical, and cultural processes affecting solutes. The solusphere is demonstrated by passing an imaginary plane through the centre of the earth. This plane intercepts concentric zones designated as rock flowage, saturation, aeration, surface activity, and atmosphere. Transport processes carry solutes within and between zones without alteration or conversion. However, whether stationary or in motion, the water's solute character is constantly subject to (1) alteration processes that change concentration by addition or subtraction of solutes or solvent without loss of solute identities, and (2) conversion processes that change the chemical state and form of solutes. The geochemist is concerned with specific conversion processes, but he also must consider transport, alteration, and other conversion processes that are continually modifying the materials with which he is dealing in nature. The solusphere is an attempt to organize processes affecting the chemical quality of land waters into a unified field of science much like the field of marine chemistry. ?? 1958.
Li, Li; Yan, Zi F; Lu, Gao Q; Zhu, Zhong H
2006-01-12
Mesoporous chromium oxide (Cr2O3) nanocrystals were first synthesized by the thermal decomposition reaction of Cr(NO3)3.9H2O using citric acid monohydrate (CA) as the mesoporous template agent. The texture and chemistry of chromium oxide nanocrystals were characterized by N2 adsorption-desorption isotherms, FTIR, X-ray diffraction (XRD), UV-vis, and thermoanalytical methods. It was shown that the hydrate water and CA are the crucial factors in influencing the formation of mesoporous Cr2O3 nanocrystals in the mixture system. The decomposition of CA results in the formation of a mesoporous structure with wormlike pores. The hydrate water of the mixture provides surface hydroxyls that act as binders, making the nanocrystals aggregate. The pore structures and phases of chromium oxide are affected by the ratio of precursor-to-CA, thermal temperature, and time.
Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures
NASA Astrophysics Data System (ADS)
Schweigert, Igor
2014-03-01
Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and the release of the chemical energy. Mesoscale modeling of these ``hot spots'' requires a chemical reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DOD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.
Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures
NASA Astrophysics Data System (ADS)
Schweigert, Igor
2015-06-01
Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and chemical energy release. Mesoscale modeling of these ``hot spots'' requires a reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DoD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.
Applications of singular value analysis and partial-step algorithm for nonlinear orbit determination
NASA Technical Reports Server (NTRS)
Ryne, Mark S.; Wang, Tseng-Chan
1991-01-01
An adaptive method in which cruise and nonlinear orbit determination problems can be solved using a single program is presented. It involves singular value decomposition augmented with an extended partial step algorithm. The extended partial step algorithm constrains the size of the correction to the spacecraft state and other solve-for parameters. The correction is controlled by an a priori covariance and a user-supplied bounds parameter. The extended partial step method is an extension of the update portion of the singular value decomposition algorithm. It thus preserves the numerical stability of the singular value decomposition method, while extending the region over which it converges. In linear cases, this method reduces to the singular value decomposition algorithm with the full rank solution. Two examples are presented to illustrate the method's utility.
Thin film superconductors and process for making same
Nigrey, P.J.
1988-01-21
A process for the preparation of oxide superconductors from high-viscosity non-aqueous solution is described. Solutions of lanthanide nitrates, alkaline earth nitrates and copper nitrates in a 1:2:3 stoichiometric ratio, when added to ethylene glycol containing citric acid solutions, have been used to prepare highly viscous non-aqueous solutions of metal mixed nitrates-citrates. Thin films of these compositions are produced when a layer of the viscous solution is formed on a substrate and subjected to thermal decomposition.
Tamiri, Tsippy; Rozin, Rinat; Lemberger, Nitay; Almog, Joseph
2009-09-01
Urea nitrate is a powerful improvised explosive, frequently used by terrorists in the Israeli arena. It was also used in the first World Trade Center bombing in New York in February 1993. It is difficult to identify urea nitrate in post-explosion debris, since only a very small fraction survives the blast. Also, in the presence of water, it readily decomposes to its original components, urea and nitric acid. It is suspected that post-blast debris of urea nitrate can be confused with ammonium nitrate, the main solid product of urea nitrate thermal decomposition. In a comprehensive study towards identification of urea nitrate in post-blast traces, a spectrophotometric technique for quantitative determination of urea nitrate was developed, and conditions were found for extraction and separation of un-exploded traces of urea nitrate with minimal decomposition. Nevertheless, out of 28 samples collected from a series of three controlled firings of urea nitrate charges, only one gave the typical adduct ion by liquid chromatography/mass spectrometry analysis. We found that urea nitrate can be extracted from solid mixtures to organic solvents by using Crown ethers as "host compounds." The adducts thus formed are solid, crystalline compounds that can be characterized by microanalysis and spectroscopic techniques.
Darboux transformation and explicit solutions for some (2+1)-dimensional equations
NASA Astrophysics Data System (ADS)
Wang, Yan; Shen, Lijuan; Du, Dianlou
2007-06-01
Three systems of (2+1)-dimensional soliton equations and their decompositions into the (1+1)-dimensional soliton equations are proposed. These equations include KPI, CKP, MKPI. With the help of Darboux transformation of (1+1)-dimensional equations, we get the explicit solutions of the (2+1)-dimensional equations.
Development of rate expressions for the thermal decomposition of RDX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, K.L.; Behrens, R. Jr.; Bulusu, S.
Decomposition and combustion of energetic materials involve processes in both condensed and gas phases. Development of reliable models for design, performance, stability, and hazard analyses requires detailed understanding of the mechanisms for both the initial condensed phase decomposition of the energetic material and the subsequent reaction of the decomposition species to form the ultimate reaction products. Those mechanisms must be described in terms of constitutive rate expressions that can be incorporated into mathematical models. The thermal decomposition of RDX has been studied by Behrens and Bulusu using Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry (STMBMS). Their work provides a basis formore » developing some of the constitutive rate expressions that are needed in models for design, performance, stability and hazard analyses involving RDX. Behrens and Bulusu have identified four primary reaction pathways that control the liquid-phase decomposition of RDX at temperatures between 200 and 215{degrees}C, and one that controls solid-phase decomposition at temperatures below 200{degrees}C. Two of the liquid-phase pathways appear to be first order in RDX. Arrhenius parameters for the first-order rate constants were evaluated from data reported by Behrens and Bulusu. Reaction rates extrapolated to temperatures between 370 and 450{degrees}C are in good agreement with global reaction rates observed by Trott et al. using high-speed photography and laser-heated thin-film samples. Furthermore, the STMBMS results of Behrens and Bulusu appear to be consistent with condensed-phase infrared results reported by Trott et al. and Erickson et al.« less
Development of rate expressions for the thermal decomposition of RDX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, K.L.; Behrens, R. Jr.; Bulusu, S.
Decomposition and combustion of energetic materials involve processes in both condensed and gas phases. Development of reliable models for design, performance, stability, and hazard analyses requires detailed understanding of the mechanisms for both the initial condensed phase decomposition of the energetic material and the subsequent reaction of the decomposition species to form the ultimate reaction products. Those mechanisms must be described in terms of constitutive rate expressions that can be incorporated into mathematical models. The thermal decomposition of RDX has been studied by Behrens and Bulusu using Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry (STMBMS). Their work provides a basis formore » developing some of the constitutive rate expressions that are needed in models for design, performance, stability and hazard analyses involving RDX. Behrens and Bulusu have identified four primary reaction pathways that control the liquid-phase decomposition of RDX at temperatures between 200 and 215[degrees]C, and one that controls solid-phase decomposition at temperatures below 200[degrees]C. Two of the liquid-phase pathways appear to be first order in RDX. Arrhenius parameters for the first-order rate constants were evaluated from data reported by Behrens and Bulusu. Reaction rates extrapolated to temperatures between 370 and 450[degrees]C are in good agreement with global reaction rates observed by Trott et al. using high-speed photography and laser-heated thin-film samples. Furthermore, the STMBMS results of Behrens and Bulusu appear to be consistent with condensed-phase infrared results reported by Trott et al. and Erickson et al.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rai, R.N., E-mail: rn_rai@yahoo.co.in; Kant, Shiva; Reddi, R.S.B.
Urea is an attractive material for frequency conversion of high power lasers to UV (for wavelength down to 190 nm), but its usage is hindered due to its hygroscopic nature, though there is no alternative organic NLO crystal which could be transparent up to 190 nm. The hygroscopic character of urea has been modified by making the solid solution (UCNB) of urea (U) and p-chloronitrobenzene (CNB). The formation of the solid solution of CNB in U is explained on the basis of phase diagram, powder XRD, FTIR, elemental analysis and single crystal XRD studies. The solubility of U, CNB andmore » UCNB in ethanol solution is evaluated at different temperatures. Transparent single crystals of UCNB are grown from its saturated solution in ethanol. Optical properties e.g., second harmonic generation (SHG), refractive index and the band gap for UCNB crystal were measured and their values were compared with the parent compounds. Besides modification in hygroscopic nature, UCNB has also shown the higher SHG signal and mechanical hardness in comparison to urea crystal. - Highlights: • The hygroscopic character of urea was modified by making the solid solution • Solid solution formation is support by elemental, powder- and single crystal XRD • Crystal of solid solution has higher SHG signal and mechanical stability. • Refractive index and band gap of solid solution crystal have determined.« less
Weiss, Ingrid M; Muth, Christina; Drumm, Robert; Kirchner, Helmut O K
2018-01-01
The pathways of thermal instability of amino acids have been unknown. New mass spectrometric data allow unequivocal quantitative identification of the decomposition products. Calorimetry, thermogravimetry and mass spectrometry were used to follow the thermal decomposition of the eight amino acids G, C, D, N, E, Q, R and H between 185 °C and 280 °C. Endothermic heats of decomposition between 72 and 151 kJ/mol are needed to form 12 to 70% volatile products. This process is neither melting nor sublimation. With exception of cysteine they emit mainly H 2 O, some NH 3 and no CO 2 . Cysteine produces CO 2 and little else. The reactions are described by polynomials, AA→ a NH 3 + b H 2 O+ c CO 2 + d H 2 S+ e residue, with integer or half integer coefficients. The solid monomolecular residues are rich in peptide bonds. Eight of the 20 standard amino acids decompose at well-defined, characteristic temperatures, in contrast to commonly accepted knowledge. Products of decomposition are simple. The novel quantitative results emphasize the impact of water and cyclic condensates with peptide bonds and put constraints on hypotheses of the origin, state and stability of amino acids in the range between 200 °C and 300 °C.
Han, Si-ping; van Duin, Adri C T; Goddard, William A; Strachan, Alejandro
2011-05-26
We studied the thermal decomposition and subsequent reaction of the energetic material nitromethane (CH(3)NO(2)) using molecular dynamics with ReaxFF, a first principles-based reactive force field. We characterize the chemistry of liquid and solid nitromethane at high temperatures (2000-3000 K) and density 1.97 g/cm(3) for times up to 200 ps. At T = 3000 K the first reaction in the decomposition of nitromethane is an intermolecular proton transfer leading to CH(3)NOOH and CH(2)NO(2). For lower temperatures (T = 2500 and 2000 K) the first reaction during decomposition is often an isomerization reaction involving the scission of the C-N bond the formation of a C-O bond to form methyl nitrate (CH(3)ONO). Also at very early times we observe intramolecular proton transfer events. The main product of these reactions is H(2)O which starts forming following those initiation steps. The appearance of H(2)O marks the beginning of the exothermic chemistry. Recent quantum-mechanics-based molecular dynamics simulations on the chemical reactions and time scales for decomposition of a crystalline sample heated to T = 3000 K for a few picoseconds are in excellent agreement with our results, providing an important, direct validation of ReaxFF.
Decomposition Studies of Tetraphenylborate Slurries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, C.L.
1997-05-06
This report details the decomposition of aqueous (K,Na) slurries in concentrated salt solutions using a more complete candidate catalyst recipe, extended testing temperatures (40-70 degrees C) and test durations of approximately 1500 hours (9 weeks). This study uses recently developed High-Pressure Liquid Chromatography (HPLC) methods for analysis of tetraphenylborate (TPB-), triphenylborane (3PB) and diphenylborinic acid (2PB). All of the present tests involve non-radioactive simulants and do not include investigations of radiolysis effects.
Solution mining dawsonite from hydrocarbon containing formations with a chelating agent
Vinegar, Harold J [Bellaire, TX
2009-07-07
A method for treating an oil shale formation comprising dawsonite includes providing heat from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation. At least some dawsonite in the formation is decomposed with the provided heat. A chelating agent is provided to the formation to dissolve at least some dawsonite decomposition products. The dissolved dawsonite decomposition products are produced from the formation.
Plummer, Niel; Busenberg, E.; Glynn, P.D.; Blum, A.E.
1992-01-01
Synthetic strontianite-aragonite solid-solution minerals were dissolved in CO2-saturated non-stoichiometric solutions of Sr(HCO3)2 and Ca(HCO3)2 at 25??C. The results show that none of the dissolution reactions reach thermodynamic equilibrium. Congruent dissolution in Ca(HCO3)2 solutions either attains or closely approaches stoichiometric saturation with respect to the dissolving solid. In Sr(HCO3)2 solutions the reactions usually become incongruent, precipitating a Sr-rich phase before reaching stoichiometric saturation. Dissolution of mechanical mixtures of solids approaches stoichiometric saturation with respect to the least stable solid in the mixture. Surface uptake from subsaturated bulk solutions was observed in the initial minutes of dissolution. This surficial phase is 0-10 atomic layers thick in Sr(HCO3)2 solutions and 0-4 layers thick in Ca(HCO3)2 solutions, and subsequently dissolves and/or recrystallizes, usually within 6 min of reaction. The initial transient surface precipitation (recrystallization) process is followed by congruent dissolution of the original solid which proceeds to stoichiometric saturation, or until the precipitation of a more stable Sr-rich solid. The compositions of secondary precipitates do not correspond to thermodynamic equilibrium or stoichiometric saturation states. X-ray photoelectron spectroscopy (XPS) measurements indicate the formation of solid solutions on surfaces of aragonite and strontianite single crystals immersed in Sr(HCO3)2 and Ca(HCO3)2 solutions, respectively. In Sr(HCO3)2 solutions, the XPS signal from the outer ~ 60 A?? on aragonite indicates a composition of 16 mol% SrCO3 after only 2 min of contact, and 14-18 mol% SrCO3 after 3 weeks of contact. The strontianite surface averages approximately 22 mol% CaCO3 after 2 min of contact with Ca(HCO3)2 solution, and is 34-39 mol% CaCO3 after 3 weeks of contact. XPS analysis suggests the surface composition is zoned with somewhat greater enrichment in the outer ~25 A?? (as much as 26 mol% SrCO3 on aragonite and 44 mol% CaCO3 on strontianite). The results indicate rapid formation of a solid-solution surface phase from subsaturated aqueous solutions. The surface phase continually adjusts in composition in response to changes in composition of the bulk fluid as net dissolution proceeds. Dissolution rates of the endmembers are greatly reduced in nonstoichiometric solutions relative to dissolution rates observed in stoichiometric solutions. All solids dissolve more slowly in solutions spiked with the least soluble component ((Sr(HCO3)2)) than in solutions spiked with the more soluble component (Ca(HCO3)2), an effect that becomes increasingly significant as stoichiometric saturation is approached. It is proposed that the formation of a non-stoichiometric surface reactive zone significantly decreases dissolution rates. ?? 1992.
Precipitation in Al–Mg solid solution prepared by solidification under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jie, J.C., E-mail: jiejc@dlut.edu.cn; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001; Wang, H.W.
2014-01-15
The precipitation in Al–Mg solid solution containing 21.6 at.% Mg prepared by solidification under 2 GPa was investigated. The results show that the γ-Al{sub 12}Mg{sub 17} phase is formed and the β′ phase cannot be observed in the solid solution during ageing process. The precipitation of γ and β phases takes place in a non-uniform manner during heating process, i.e. the γ and β phases are first formed in the interdendritic region, which is caused by the inhomogeneous distribution of Mg atoms in the solid solution solidified under high pressure. Peak splitting of X-ray diffraction patterns of Al(Mg) solid solutionmore » appears, and then disappears when the samples are aged at 423 K for different times, due to the non-uniform precipitation in Al–Mg solid solution. The direct transformation from the γ to β phase is observed after ageing at 423 K for 24 h. It is considered that the β phase is formed through a peritectoid reaction of α + γ → β which needs the diffusion of Mg atoms across the interface of α/γ phases. - Highlights: • The γ phase is formed and the β′ phase is be observed in Al(Mg) solid solution. • Peak splitting of XRD pattern of Al(Mg) solid solution appears during aged at 150 °C. • The β phase is formed through a peritectoid reaction of α + γ → β.« less
Zhou, Rong; Basile, Franco
2017-09-05
A method based on plasmon surface resonance absorption and heating was developed to perform a rapid on-surface protein thermal decomposition and digestion suitable for imaging mass spectrometry (MS) and/or profiling. This photothermal process or plasmonic thermal decomposition/digestion (plasmonic-TDD) method incorporates a continuous wave (CW) laser excitation and gold nanoparticles (Au-NPs) to induce known thermal decomposition reactions that cleave peptides and proteins specifically at the C-terminus of aspartic acid and at the N-terminus of cysteine. These thermal decomposition reactions are induced by heating a solid protein sample to temperatures between 200 and 270 °C for a short period of time (10-50 s per 200 μm segment) and are reagentless and solventless, and thus are devoid of sample product delocalization. In the plasmonic-TDD setup the sample is coated with Au-NPs and irradiated with 532 nm laser radiation to induce thermoplasmonic heating and bring about site-specific thermal decomposition on solid peptide/protein samples. In this manner the Au-NPs act as nanoheaters that result in a highly localized thermal decomposition and digestion of the protein sample that is independent of the absorption properties of the protein, making the method universally applicable to all types of proteinaceous samples (e.g., tissues or protein arrays). Several experimental variables were optimized to maximize product yield, and they include heating time, laser intensity, size of Au-NPs, and surface coverage of Au-NPs. Using optimized parameters, proof-of-principle experiments confirmed the ability of the plasmonic-TDD method to induce both C-cleavage and D-cleavage on several peptide standards and the protein lysozyme by detecting their thermal decomposition products with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The high spatial specificity of the plasmonic-TDD method was demonstrated by using a mask to digest designated sections of the sample surface with the heating laser and MALDI-MS imaging to map the resulting products. The solventless nature of the plasmonic-TDD method enabled the nonenzymatic on-surface digestion of proteins to proceed with undetectable delocalization of the resulting products from their precursor protein location. The advantages of this novel plasmonic-TDD method include short reaction times (<30 s/200 μm), compatibility with MALDI, universal sample compatibility, high spatial specificity, and localization of the digestion products. These advantages point to potential applications of this method for on-tissue protein digestion and MS-imaging/profiling for the identification of proteins, high-fidelity MS imaging of high molecular weight (>30 kDa) proteins, and the rapid analysis of formalin-fixed paraffin-embedded (FFPE) tissue samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menon, Sumithra Sivadas; Anitha, R.; Baskar, K.
2016-05-23
GaN-ZnO solid solution has emerged as a successful and reproducible photocatalyst for overall water splitting by one-step photoexcitation, with a bandgap in visible region. When the solid solution is formed, some of the Zn and O ions are replaced by Ga and N ions respectively and there is a narrowing of bandgap which is hypothesized as due to Zn3d-N2p repulsion. The traditional method of synthesis of GaN-ZnO solid solution is by nitridation of the starting oxides under constant ammonia flow. Here we report a solution combustion technique for the synthesis of the solid solution at a temperature about 500 °more » C in a muffle furnace with metal nitrates as precursors and urea as the fuel. The as prepared samples showed change in color with the increased concentration of ZnO in the solution. The structural, microstructural, morphological and optical properties of the samples were realized by Powder X ray diffraction, Scanning electron microscopy, Energy dispersive X ray analysis, Transmission electron microscopy and Photoluminescence. Finally the hydrogen production efficiency of the GaN-ZnO nanopowders by water splitting was found, using methanol as a scavenger. The apparent quantum yield (AQY) of 0.048% is obtained for GaN-ZnO solid solution.« less
40 CFR 267.111 - What general standards must I meet when I stop operating the unit?
Code of Federal Regulations, 2011 CFR
2011-07-01
... to protect human health and the environment, post-closure escape of hazardous waste, hazardous constituents, leachate, contaminated run-off, or hazardous waste decomposition products to the ground or... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE...
40 CFR 267.111 - What general standards must I meet when I stop operating the unit?
Code of Federal Regulations, 2010 CFR
2010-07-01
... to protect human health and the environment, post-closure escape of hazardous waste, hazardous constituents, leachate, contaminated run-off, or hazardous waste decomposition products to the ground or... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE...
Micro Chemical Oxygen-Iodine Laser (COIL)
2007-10-01
required to form a good o-ring seal. Steam generator design A pumping system based on steam ejectors was designed during the course of the previous HEL-JTO...options for the steam generator design . The first is to catalyze the decomposition of hydrogen peroxide through the use of a standard solid
USDA-ARS?s Scientific Manuscript database
Hyperspectral scattering is a promising technique for rapid and noninvasive measurement of multiple quality attributes of apple fruit. A hierarchical evolutionary algorithm (HEA) approach, in combination with subspace decomposition and partial least squares (PLS) regression, was proposed to select o...
Hybridization of decomposition and local search for multiobjective optimization.
Ke, Liangjun; Zhang, Qingfu; Battiti, Roberto
2014-10-01
Combining ideas from evolutionary algorithms, decomposition approaches, and Pareto local search, this paper suggests a simple yet efficient memetic algorithm for combinatorial multiobjective optimization problems: memetic algorithm based on decomposition (MOMAD). It decomposes a combinatorial multiobjective problem into a number of single objective optimization problems using an aggregation method. MOMAD evolves three populations: 1) population P(L) for recording the current solution to each subproblem; 2) population P(P) for storing starting solutions for Pareto local search; and 3) an external population P(E) for maintaining all the nondominated solutions found so far during the search. A problem-specific single objective heuristic can be applied to these subproblems to initialize the three populations. At each generation, a Pareto local search method is first applied to search a neighborhood of each solution in P(P) to update P(L) and P(E). Then a single objective local search is applied to each perturbed solution in P(L) for improving P(L) and P(E), and reinitializing P(P). The procedure is repeated until a stopping condition is met. MOMAD provides a generic hybrid multiobjective algorithmic framework in which problem specific knowledge, well developed single objective local search and heuristics and Pareto local search methods can be hybridized. It is a population based iterative method and thus an anytime algorithm. Extensive experiments have been conducted in this paper to study MOMAD and compare it with some other state-of-the-art algorithms on the multiobjective traveling salesman problem and the multiobjective knapsack problem. The experimental results show that our proposed algorithm outperforms or performs similarly to the best so far heuristics on these two problems.
Xie, Miao; Mohammadi, Reza; Turner, Christopher L.; ...
2015-07-29
In this paper, we explore the hardening mechanisms in WB4-based solid solutions upon addition of Ta, Mn, and Cr using in situ radial X-ray diffraction techniques under nonhydrostatic pressure. By examining the lattice-supported differential strain, we provide insights into the mechanism for hardness increase in binary solid solutions at low dopant concentrations. Speculations on the combined effects of electronic structure and atomic size in ternary WB 4 solid solutions containing Ta with Mn or Cr are also included to understand the extremely high hardness of these materials.
NASA Astrophysics Data System (ADS)
Kavun, V. Ya.; Uvarov, N. F.; Slobodyuk, A. B.; Merkulov, E. B.; Polyantsev, M. M.
2018-07-01
The ion mobility and conductivity of solid solutions with tysonite-type structure obtained by doping bismuth trifluoride with lead (II) fluoride, and zirconium and bismuth oxides have been studied using 19F NMR, X-ray diffraction analysis, and impedance spectroscopy. The types of ionic motions in the fluoride sublattice of the synthesized solid solutions in the temperature range 150-450 K have been determined and the energy of their activation has been estimated. Due to high ionic conductivity, above 10-2 S/cm at 570 K, these solid solutions can be considered as superionic conductors.
Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition
An, Zhinan; Jia, Haoling; Wu, Yueying; ...
2015-05-04
The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.
Hydrated electron based decomposition of perfluorooctane sulfonate (PFOS) in the VUV/sulfite system.
Gu, Yurong; Liu, Tongzhou; Wang, Hongjie; Han, Huili; Dong, Wenyi
2017-12-31
As one of the most reactive species, hydrated electron (e aq - ) is promising for reductive decomposition of recalcitrant organic pollutants, such as perfluorooctane sulfonate (PFOS). In this study, PFOS decomposition using a vacuum ultraviolet (VUV)/sulfite system was systematically investigated in comparison with sole VUV and ultraviolet (UV)/sulfite systems. A fast and nearly complete (97.3%) PFOS decomposition was observed within 4h from its initial concentration of 37.2μM in the VUV/sulfite system. The observed rate constant (k obs ) for PFOS decomposition in the studied system was 0.87±0.0060h -1 , which was nearly 7.5 and 2 folds faster than that in sole VUV and UV/sulfite systems, respectively. Compared to previously studied UV/sulfite system, VUV/sulfite system enhanced PFOS decomposition in both weak acidic and alkaline pH conditions. In weak acidic condition (pH6.0), PFOS predominantly decomposed via direct VUV photolysis, whereas in alkaline condition (pH>9.0), PFOS decomposition was mainly induced by e aq - generated from both sulfite and VUV photolytic reactions. At a fixed initial solution pH (pH10.0), PFOS decomposition kinetics showed a positive linear dependence with sulfite dosage. The co-presence of humic acid (HA) and NO 3 - obviously suppressed PFOS decomposition, whereas HCO 3 - showed marginal inhibition. A few amount of short chain perfluorocarboxylic acids (PFCAs) were detected in PFOS decomposition process, and a high defluorination efficiency (75.4%) was achieved. These results suggested most fluorine atoms in PFOS molecule ultimately mineralized into fluoride ions, and the mechanisms for PFOS decomposition in the VUV/sulfite system were proposed. Copyright © 2017 Elsevier B.V. All rights reserved.
Projection decomposition algorithm for dual-energy computed tomography via deep neural network.
Xu, Yifu; Yan, Bin; Chen, Jian; Zeng, Lei; Li, Lei
2018-03-15
Dual-energy computed tomography (DECT) has been widely used to improve identification of substances from different spectral information. Decomposition of the mixed test samples into two materials relies on a well-calibrated material decomposition function. This work aims to establish and validate a data-driven algorithm for estimation of the decomposition function. A deep neural network (DNN) consisting of two sub-nets is proposed to solve the projection decomposition problem. The compressing sub-net, substantially a stack auto-encoder (SAE), learns a compact representation of energy spectrum. The decomposing sub-net with a two-layer structure fits the nonlinear transform between energy projection and basic material thickness. The proposed DNN not only delivers image with lower standard deviation and higher quality in both simulated and real data, and also yields the best performance in cases mixed with photon noise. Moreover, DNN costs only 0.4 s to generate a decomposition solution of 360 × 512 size scale, which is about 200 times faster than the competing algorithms. The DNN model is applicable to the decomposition tasks with different dual energies. Experimental results demonstrated the strong function fitting ability of DNN. Thus, the Deep learning paradigm provides a promising approach to solve the nonlinear problem in DECT.
Layout compliance for triple patterning lithography: an iterative approach
NASA Astrophysics Data System (ADS)
Yu, Bei; Garreton, Gilda; Pan, David Z.
2014-10-01
As the semiconductor process further scales down, the industry encounters many lithography-related issues. In the 14nm logic node and beyond, triple patterning lithography (TPL) is one of the most promising techniques for Metal1 layer and possibly Via0 layer. As one of the most challenging problems in TPL, recently layout decomposition efforts have received more attention from both industry and academia. Ideally the decomposer should point out locations in the layout that are not triple patterning decomposable and therefore manual intervention by designers is required. A traditional decomposition flow would be an iterative process, where each iteration consists of an automatic layout decomposition step and manual layout modification task. However, due to the NP-hardness of triple patterning layout decomposition, automatic full chip level layout decomposition requires long computational time and therefore design closure issues continue to linger around in the traditional flow. Challenged by this issue, we present a novel incremental layout decomposition framework to facilitate accelerated iterative decomposition. In the first iteration, our decomposer not only points out all conflicts, but also provides the suggestions to fix them. After the layout modification, instead of solving the full chip problem from scratch, our decomposer can provide a quick solution for a selected portion of layout. We believe this framework is efficient, in terms of performance and designer friendly.
NASA Astrophysics Data System (ADS)
Spencer, Todd J.; Chen, Yu-Chun; Saha, Rajarshi; Kohl, Paul A.
2011-06-01
Incorporation of copper ions into poly(propylene carbonate) (PPC) films cast from γ-butyrolactone (GBL), trichloroethylene (TCE) or methylene chloride (MeCl) solutions containing a photo-acid generator is shown to stabilize the PPC from thermal decomposition. Copper ions were introduced into the PPC mixtures by bringing the polymer mixture into contact with copper metal. The metal was oxidized and dissolved into the PPC mixture. The dissolved copper interferes with the decomposition mechanism of PPC, raising its decomposition temperature. Thermogravimetric analysis shows that copper ions make PPC more stable by up to 50°C. Spectroscopic analysis indicates that copper ions may stabilize terminal carboxylic acid groups, inhibiting PPC decomposition. The change in thermal stability based on PPC exposure to patterned copper substrates was used to provide a self-aligned patterning method for PPC on copper traces without the need for an additional photopatterning registration step. Thermal decomposition of PPC is then used to create air isolation regions around the copper traces. The spatial resolution of the self-patterning PPC process is limited by the lateral diffusion of the copper ions within the PPC. The concentration profiles of copper within the PPC, patterning resolution, and temperature effects on the PPC decomposition have been studied.
The ternary system K2SO4MgSO4CaSO4
Rowe, J.J.; Morey, G.W.; Silber, C.C.
1967-01-01
Melting and subsolidus relations in the system K2SO4MgSO4CaSO4 were studied using heating-cooling curves, differential thermal analysis, optics, X-ray diffraction at room and high temperatures and by quenching techniques. Previous investigators were unable to study the binary MgSO4CaSO4 system and the adjacent area in the ternary system because of the decomposition of MgSO4 and CaSO4 at high temperatures. This problem was partly overcome by a novel sealed-tube quenching method, by hydrothermal synthesis, and by long-time heating in the solidus. As a result of this study, we found: (1) a new compound, CaSO4??3MgSO4 (m.p. 1201??C) with a field extending into the ternary system; (2) a high temperature form of MgSO4 with a sluggishly reversible inversion. An X-ray diffraction pattern for this polymorphic form is given; (3) the inversion of ??-CaSO4 (anhydrite) to ??-CaSO4 at 1195??C, in agreement with grahmann; (1) (4) the melting point of MgSO4 is 1136??C and that of CaSO4 is 1462??C (using sealed tube methods to prevent decomposition of the sulphates); (5) calcium langbeinite (K2SO4??2CaSO4) is the only compound in the K2SO4CaSO4 binary system. This resolved discrepancies in the results of previous investigators; (6) a continuous solid solution series between congruently melting K2SOP4??2MgSO4 (langbeinite) and incongruently melting K2SO4??2CaSO4 (calcium langbeinite); (7) the liquidus in the ternary system consists of primary phase fields of K2SO4, MgSO4, CaSO4, langbeinite-calcium langbeinite solid solution, and CaSO4??3MgSO4. The CaSO4 field extends over a large portion of the system. Previously reported fields for the compounds (K2SO4??MgSO4??nCaSO4), K2SO4??3CaSO4 and K2SO4??CaSO4 were not found; (8) a minimum in the ternary system at: 740??C, 25% MgSO4, 6% CaSO4, 69% K2SO4; and ternary eutectics at 882??C, 49% MgSO4, 19% CaSO4, 32% K2SO4; and 880??, 67??5% MgSO4, 5% CaSO4, 27??5% K2SO4. ?? 1967.
NASA Astrophysics Data System (ADS)
Saltas, V.; Horlait, D.; Sgourou, E. N.; Vallianatos, F.; Chroneos, A.
2017-12-01
Modelling solid solutions is fundamental in understanding the properties of numerous materials which are important for a range of applications in various fields including nanoelectronics and energy materials such as fuel cells, nuclear materials, and batteries, as the systematic understanding throughout the composition range of solid solutions for a range of conditions can be challenging from an experimental viewpoint. The main motivation of this review is to contribute to the discussion in the community of the applicability of methods that constitute the investigation of solid solutions computationally tractable. This is important as computational modelling is required to calculate numerous defect properties and to act synergistically with experiment to understand these materials. This review will examine in detail two examples: silicon germanium alloys and MAX phase solid solutions. Silicon germanium alloys are technologically important in nanoelectronic devices and are also relevant considering the recent advances in ternary and quaternary groups IV and III-V semiconductor alloys. MAX phase solid solutions display a palette of ceramic and metallic properties and it is anticipated that via their tuning they can have applications ranging from nuclear to aerospace industries as well as being precursors for particular MXenes. In the final part, a brief summary assesses the limitations and possibilities of the methodologies discussed, whereas there is discussion on the future directions and examples of solid solution systems that should prove fruitful to consider.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidler, Rolf, E-mail: rsidler@gmail.com; Carcione, José M.; Holliger, Klaus
We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in themore » radial direction and a Fourier expansion in the azimuthal direction and a Runge–Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid–solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prosviryakov, A.S., E-mail: pro.alex@mail.ru; Shch
Ground chips of as-cast Al-10 wt.% Zr alloy were subjected to mechanical alloying (MA) with 5 vol.% of nanodiamond addition in a high energy planetary ball-mill. The aim of this work was to investigate the microstructure, phase transformation and mechanical properties of the material both after MA and after subsequent annealing. Optical and transmission electron microscopes were used for morphological and microstructural analysis. The effect of milling time on powder microhardness, Al lattice parameter, lattice microstrain and crystallite size was determined. It was shown that mechanical alloying of as-cast Al-10wt.%Zr alloy during 20 h leads to a complete dissolution ofmore » the primary tetragonal Al{sub 3}Zr crystals in aluminum. At the same time, the powder microhardness increases to 370 HV. Metastable cubic Al{sub 3}Zr phase nanoparticles precipitate from the Al solution due to its decomposition after annealing, however, the Al solid solution remains supersaturated and nanocrystalline. Compression tests at room temperature and at 300 °C showed that the strength values of the hot-pressed samples reach 822 MPa and 344 MPa, respectively. - Highlights: •As-cast Al-10 wt.% Zr alloy was mechanically alloyed with 5 vol.% nanodiamond. •The primary tetragonal Al{sub 3}Zr crystals were completely dissolved in Al after 20 h. •Cubic Al{sub 3}Zr phase nanoparticles precipitated from Al solution after aging. •The aged bulk material showed a high strength at room and elevated temperatures.« less
Quench-age method for the fabrication of niobium-aluminum superconductors
Pickus, Milton R.; Ciardella, Robert L.
1978-01-01
A flexible Nb.sub.3 Al superconducting wire is fabricated from a niobium-aluminum composite wire by heating to form a solid solution which is retained at room temperature as a metastable solid solution by quenching. The metastable solid solution is then transformed to the stable superconducting A-15 phase by low temperature aging. The transformation induced by aging can be controlled to yield either a multifilamentary or a solid A-15 core surrounded by ductile niobium.
NASA Astrophysics Data System (ADS)
Matsuoka, O.; Hiwara, A.; Omi, T.; Toriida, M.; Hayashi, T.; Tanaka, C.; Saito, Y.; Ishida, T.; Tan, H.; Ono, S. S.; Yamamoto, S.
We investigated the influence of vinylene carbonate, as an additive molecule, on the decomposition phenomena of electrolyte solution [ethylene carbonate (EC)—ethyl methyl carbonate (EMC) (1:2 by volume) containing 1 M LiPF 6] on a highly oriented pyrolytic graphite (HOPG) negative electrode by using cyclic voltammetry (CV) and atomic force microscopy (AFM). Vinylene carbonate deactivated reactive sites (e.g. radicals and oxides at the defects and the edge of carbon layer) on the cleaved surface of the HOPG negative electrode, and prevented further decomposition of the other solvents there. Further, vinylene carbonate induced an ultra-thin film (less than 1.0 nm in thickness) on the terrace of the basal plane of the HOPG negative electrode, and this film suppressed the decomposition of electrolyte solution on the terraces of the basal plane. We consider that this ultra-thin passivating film is composed of a reduction product of vinylene carbonate (VC), and might have a polymer structure. These induced effects might explain how VC improves the life performance of lithium-ion cells.
Nagata, Maika K C T; Brauchle, Paul S; Wang, Sen; Briggs, Sarah K; Hong, Young Soo; Laorenza, Daniel W; Lee, Andrea G; Westmoreland, T David
2016-08-16
Three new DOTAM (1,4,7,10-tetrakis(acetamido)-1,4,7,10-tetraazacyclododecane) complexes have been synthesized and characterized by X-ray crystallography: [Co(DOTAM)]Cl 2 •3H 2 O, [Ni(DOTAM)]Cl 2 •4H 2 O, and [Cu(DOTAM)](ClO 4 ) 2 •H 2 O. Solid state and solution IR spectroscopic features for a series of [M(DOTAM)] 2+ complexes (M=Mn, Co, Cu, Ni, Ca, Zn) correlate with solid state and solution coordination numbers. [Co(DOTAM)] 2+ , [Ni(DOTAM)] 2+ , and [Zn(DOTAM)] 2+ are demonstrated to be six-coordinate in both the solid state and in solution, while [Mn(DOTAM)] 2+ and [Ca(DOTAM)] 2+ are eight-coordinate in the solid state and remain so in solution. [Cu(DOTAM)] 2+ , which is five-coordinate by X-ray crystallography, is shown to increase its coordination number in solution to six-coordinate.
Modelling biogas production of solid waste: application of the BGP model to a synthetic landfill
NASA Astrophysics Data System (ADS)
Rodrigo-Ilarri, Javier; Segura-Sobrino, Francisco
2013-04-01
Production of biogas as a result of the decomposition of organic matter included on solid waste landfills is still an issue to be understood. Reports on this matter are rarely included on the engineering construction projects of solid waste landfills despite it can be an issue of critical importance while operating the landfill and after its closure. This paper presents an application of BGP (Bio-Gas-Production) model to a synthetic landfill. The evolution in time of the concentrations of the different chemical compounds of biogas is studied. Results obtained show the impact on the air quality of different management alternatives which are usually performed in real landfills.
Metagenomic analysis of antibiotic resistance genes (ARGs) during refuse decomposition.
Liu, Xi; Yang, Shu; Wang, Yangqing; Zhao, He-Ping; Song, Liyan
2018-04-12
Landfill is important reservoirs of residual antibiotics and antibiotic resistance genes (ARGs), but the mechanism of landfill application influence on antibiotic resistance remains unclear. Although refuse decomposition plays a crucial role in landfill stabilization, its impact on the antibiotic resistance has not been well characterized. To better understand the impact, we studied the dynamics of ARGs and the bacterial community composition during refuse decomposition in a bench-scale bioreactor after long term operation (265d) based on metagenomics analysis. The total abundances of ARGs increased from 431.0ppm in the initial aerobic phase (AP) to 643.9ppm in the later methanogenic phase (MP) during refuse decomposition, suggesting that application of landfill for municipal solid waste (MSW) treatment may elevate the level of ARGs. A shift from drug-specific (bacitracin, tetracycline and sulfonamide) resistance to multidrug resistance was observed during the refuse decomposition and was driven by a shift of potential bacteria hosts. The elevated abundance of Pseudomonas mainly contributed to the increasing abundance of multidrug ARGs (mexF and mexW). Accordingly, the percentage of ARGs encoding an efflux pump increased during refuse decomposition, suggesting that potential bacteria hosts developed this mechanism to adapt to the carbon and energy shortage when biodegradable substances were depleted. Overall, our findings indicate that the use of landfill for MSW treatment increased antibiotic resistance, and demonstrate the need for a comprehensive investigation of antibiotic resistance in landfill. Copyright © 2018. Published by Elsevier B.V.
New spectrophotometric assay for pilocarpine.
El-Masry, S; Soliman, R
1980-07-01
A quick method for the determination of pilocarpine in eye drops in the presence of decomposition products is described. The method involves complexation of the alkaloid with bromocresol purple at pH 6. After treatment with 0.1N NaOH, the liberated dye is measured at 580 nm. The method has a relative standard deviation of 1.99%, and has been successfully applied to the analysis of 2 batches of pilocarpine eye drops. The recommended method was also used to monitor the stability of a pilocarpine nitrate solution in 0.05N NaOH at 65 degrees C. The BPC method failed to detect any significant decomposition after 2 h incubation, but the recommended method revealed 87.5% decomposition.
Solid/liquid interfacial free energies in binary systems
NASA Technical Reports Server (NTRS)
Nason, D.; Tiller, W. A.
1973-01-01
Description of a semiquantitative technique for predicting the segregation characteristics of smooth interfaces between binary solid and liquid solutions in terms of readily available thermodynamic parameters of the bulk solutions. A lattice-liquid interfacial model and a pair-bonded regular solution model are employed in the treatment with an accommodation for liquid interfacial entropy. The method is used to calculate the interfacial segregation and the free energy of segregation for solid-liquid interfaces between binary solutions for the (111) boundary of fcc crystals. The zone of compositional transition across the interface is shown to be on the order of a few atomic layers in width, being moderately narrower for ideal solutions. The free energy of the segregated interface depends primarily upon the solid composition and the heats of fusion of the component atoms, the composition difference of the solutions, and the difference of the heats of mixing of the solutions.
Chemiluminescence of Organic Peroxides. Thermal Generation of an o-Xylylene Peroxide.
1981-04-07
Iq It. KEY WORDS (Countinue oni tow.e* ole At neesar did tffoiltl by *lack Mmber) ?T. chemil uminesceflce AR~~ 1 * peroxides A CIEEL therniol1ys is b...recrystallization of the result- ing residue gives a peroxidic white solid. The structure of this material was deduced from spectroscopic, osmometric...recrystallized from pentane-CH2Cl to 22 give j 36 mg (32%,) as a white solid, m.p. 1.090 (with decomposition). 1HNMR (CDC]3): 7.0-6.8 (d, 2H1); 7.9-7.2
1982 AFOSR/AFRPL Rocket Propulsion Research Meeting Held at Lancaster, California on 2-4 March 1982.
1982-02-01
OF DELAWARE P.I.: THOMAS B. BRILL I I THE L*6 HMX SOLID PHASE DIAGRAM 00 •6- HMX is the stable polymorph 0 3 iM above 248*C regardless of 500 the...MX trans forma- <ia is orders of maqnitude faster miian p-piezllant combustion rates. ’- HMX is therefore the polymorph that initiates decomposition...rapidly accelerating Osage of HMX / RDX for minimu smoke solid propellants has been hampered by a lack of ballistic tailoring flexability which limits
Direct ethanol solid oxide fuel cell operating in gradual internal reforming
NASA Astrophysics Data System (ADS)
Nobrega, S. D.; Galesco, M. V.; Girona, K.; de Florio, D. Z.; Steil, M. C.; Georges, S.; Fonseca, F. C.
2012-09-01
An electrolyte supported solid oxide fuel cell (SOFC) using standard electrodes, doped-lanthanum manganite cathode and Ni-cermet anode, was operated with direct (anhydrous) ethanol for more than 100 h, delivering essentially the same power output as running on hydrogen. A ceria-based layer provides the catalytic activity for the gradual internal reforming, which uses the steam formed by the electrochemical oxidation of hydrogen for the decomposition of ethanol. Such a concept opens up the way for multi-fuel SOFCs using standard components and a catalytic layer.
Malek, John M.
1977-01-01
Process characterized by comprising successively a dissolution zone fed with carbonaceous solids and with a solvent, a high pressure hydrogenation zone provided with a source of hydrogen, and a hydrogenation products separation zone, wherein the improvement consists mainly in chemical upgrading of the liquidform products derived from the separation zone, and recycling a part of the upgraded products to the dissolution zone, this recycled part being of either positively acidic or positively basic properties for enhancing the dissolution - decomposition of base-acid structures present in the carbonaceous solid feed.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-22
...The U.S. Environmental Protection Agency (EPA or the Agency) is taking final action to revise the manner for applying the threshold planning quantities (TPQs) for those extremely hazardous substances (EHSs) that are non-reactive solid chemicals in solution. This revision allows facilities subject to the Emergency Planning requirements that have a non-reactive solid EHS in solution, to first multiply the amount of the solid chemical in solution on-site by 0.2 before determining if this quantity equals or exceeds the lower published TPQ. This change is based on data that shows less potential for non-reactive solid chemicals in solution to remain airborne and dispersed beyond a facility's fence line in the event of an accidental release. Previously, EPA assumed that 100% of non-reactive solid chemicals in solution could become airborne and dispersed beyond the fenceline in the event of an accidental release.
NASA Astrophysics Data System (ADS)
Al Roumi, Fosca; Buchert, Thomas; Wiegand, Alexander
2017-12-01
The relativistic generalization of the Newtonian Lagrangian perturbation theory is investigated. In previous works, the perturbation and solution schemes that are generated by the spatially projected gravitoelectric part of the Weyl tensor were given to any order of the perturbations, together with extensions and applications for accessing the nonperturbative regime. We here discuss more in detail the general first-order scheme within the Cartan formalism including and concentrating on the gravitational wave propagation in matter. We provide master equations for all parts of Lagrangian-linearized perturbations propagating in the perturbed spacetime, and we outline the solution procedure that allows one to find general solutions. Particular emphasis is given to global properties of the Lagrangian perturbation fields by employing results of Hodge-de Rham theory. We here discuss how the Hodge decomposition relates to the standard scalar-vector-tensor decomposition. Finally, we demonstrate that we obtain the known linear perturbation solutions of the standard relativistic perturbation scheme by performing two steps: first, by restricting our solutions to perturbations that propagate on a flat unperturbed background spacetime and, second, by transforming to Eulerian background coordinates with truncation of nonlinear terms.
NASA Astrophysics Data System (ADS)
Stradner, Anna; Bucciarelli, Saskia; Casal, Lucia; Foffi, Giuseppe; Thurston, George; Farago, Bela; Schurtenberger, Peter
2014-03-01
The occurrence of an arrest transition in concentrated colloid suspensions and its dependence on the interaction potential is a hot topic in soft matter. Such arrest transitions can also occur in concentrated protein solutions, as they exist e.g. in biological cells or are increasingly used in pharmaceutical formulations. Here we demonstrate the applicability of concepts from colloid science to understand the dynamics of concentrated protein solutions. In this presentation we report a combination of 3D light scattering, small-angle X-ray scattering and neutron spin echo measurements to study the structural properties as well as the collective and self diffusion of proteins in highly concentrated solutions on the relevant length and time scales. We demonstrate that various arrest scenarios indeed exist for different globular proteins. The proteins chosen are different bovine lens crystallins. We report examples of hard and attractive glass transitions and arrested spinodal decomposition directly linked to the effective pair potentials determined in static scattering experiments for the different proteins. We discuss these different arrest scenarios in view of possible applications of dense protein solutions as well as in view of their possible relevance for living systems.
Domain Decomposition with Local Mesh Refinement.
1989-08-01
smoothi coefficients, or non-smooth solui ioni,. We eiriplov fromn 1 to 1024 tiles on problems containing irp to 161K (degrees of freedom. Though io... methodology survives such compromises and is even sequentially advantageous in many problems. The domain decomposition algorithms we employ (sertiun 3...iog( I + !J2 it - g i Ol Qunit squiare 1 he (,mai oive i> Hie outward normal. lfie sevoh iih exam pie, from [1. 27] has a smoothi solution, but rapidlY
System and process for dissolution of solids
Liezers, Martin; Farmer, III, Orville T.
2017-10-10
A system and process are disclosed for dissolution of solids and "difficult-to-dissolve" solids. A solid sample may be ablated in an ablation device to generate nanoscale particles. Nanoparticles may then swept into a coupled plasma device operating at atmospheric pressure where the solid nanoparticles are atomized. The plasma exhaust may be delivered directly into an aqueous fluid to form a solution containing the atomized and dissolved solids. The composition of the resulting solution reflects the composition of the original solid sample.
Lipke, Mark C; Neumeyer, Felix; Tilley, T Don
2014-04-23
Solid samples of η(3)-silane complexes [PhBP(Ph)3]RuH(η(3)-H2SiRR') (R,R' = Et2, 1a; PhMe, 1b; Ph2, 1c, MeMes, 1d) decompose when exposed to dynamic vacuum. Gas-phase H2/D2 exchange between isolated, solid samples of 1c-d3 and 1c indicate that a reversible elimination of H2 is the first step in the irreversible decomposition. An efficient solution-phase trap for hydrogen, the 16-electron ruthenium benzyl complex [PhBP(Ph)3]Ru[η(3)-CH2(3,5-Me2C6H3)] (3) reacts quantitatively with H2 in benzene via elimination of mesitylene to form the η(5)-cyclohexadienyl complex [PhBP(Ph)3]Ru(η(5)-C6H7) (4). This H2 trapping reaction was utilized to drive forward and quantify the elimination of H2 from 1b,d in solution, which resulted in the decomposition of 1b,d to form 4 and several organosilicon products that could not be identified. Reaction of {[PhBP(Ph)3]Ru(μ-Cl)}2 (2) with (THF)2Li(SiHMes2) forms a new η(3)-H2Si species [PhBP(Ph)3]Ru[CH2(2-(η(3)-H2SiMes)-3,5-Me2C6H2)] (5) which reacts with H2 to form the η(3)-H2SiMes2 complex [PhBP(Ph)3]RuH(η(3)-H2SiMes2) (1e). Complex 1e was identified by NMR spectroscopy prior to its decomposition by elimination of Mes2SiH2 to form 4. DFT calculations indicate that an isomer of 5, the 16-electron silylene complex [PhBP(Ph)3]Ru(μ-H)(═SiMes2), is only 2 kcal/mol higher in energy than 5. Treatment of 5 with XylNC (Xyl = 2,6-dimethylphenyl) resulted in trapping of [PhBP(Ph)3]Ru(μ-H)(═SiMes2) to form the 18-electron silylene complex [PhBP(Ph)3]Ru(CNXyl)(μ-H)(═SiMes2) (6). A closely related germylene complex [PhBP(Ph)3]Ru[CN(2,6-diphenyl-4-MeC6H2)](H)(═GeH(t)Bu) (8) was prepared from reaction of (t)BuGeH3 with the benzyl complex [PhBP(Ph)3]Ru[CN(2,6-diphenyl-4-MeC6H2)][η(1)-CH2(3,5-Me2C6H3)] (7). Single crystal XRD analysis indicated that unlike for 6, the hydride ligand in 8 is a terminal hydride that does not engage in 3c-2e Ru-H → Ge bonding. Complex 1b is an effective precatalyst for the catalytic Ge-H dehydrocoupling of (t)BuGeH3 to form ((t)BuGeH2)2 (85% yield) and H2.
NASA Astrophysics Data System (ADS)
Sibileau, Alberto; Auricchio, Ferdinando; Morganti, Simone; Díez, Pedro
2018-01-01
Architectured materials (or metamaterials) are constituted by a unit-cell with a complex structural design repeated periodically forming a bulk material with emergent mechanical properties. One may obtain specific macro-scale (or bulk) properties in the resulting architectured material by properly designing the unit-cell. Typically, this is stated as an optimal design problem in which the parameters describing the shape and mechanical properties of the unit-cell are selected in order to produce the desired bulk characteristics. This is especially pertinent due to the ease manufacturing of these complex structures with 3D printers. The proper generalized decomposition provides explicit parametic solutions of parametric PDEs. Here, the same ideas are used to obtain parametric solutions of the algebraic equations arising from lattice structural models. Once the explicit parametric solution is available, the optimal design problem is a simple post-process. The same strategy is applied in the numerical illustrations, first to a unit-cell (and then homogenized with periodicity conditions), and in a second phase to the complete structure of a lattice material specimen.
Thermal decomposition hazard evaluation of hydroxylamine nitrate.
Wei, Chunyang; Rogers, William J; Mannan, M Sam
2006-03-17
Hydroxylamine nitrate (HAN) is an important member of the hydroxylamine family and it is a liquid propellant when combined with alkylammonium nitrate fuel in an aqueous solution. Low concentrations of HAN are used primarily in the nuclear industry as a reductant in nuclear material processing and for decontamination of equipment. Also, HAN has been involved in several incidents because of its instability and autocatalytic decomposition behavior. This paper presents calorimetric measurement for the thermal decomposition of 24 mass% HAN/water. Gas phase enthalpy of formation of HAN is calculated using both semi-empirical methods with MOPAC and high-level quantum chemical methods of Gaussian 03. CHETAH is used to estimate the energy release potential of HAN. A Reactive System Screening Tool (RSST) and an Automatic Pressure Tracking Adiabatic Calorimeter (APTAC) are used to characterize thermal decomposition of HAN and to provide guidance about safe conditions for handling and storing of HAN.
Investigation of automated task learning, decomposition and scheduling
NASA Technical Reports Server (NTRS)
Livingston, David L.; Serpen, Gursel; Masti, Chandrashekar L.
1990-01-01
The details and results of research conducted in the application of neural networks to task planning and decomposition are presented. Task planning and decomposition are operations that humans perform in a reasonably efficient manner. Without the use of good heuristics and usually much human interaction, automatic planners and decomposers generally do not perform well due to the intractable nature of the problems under consideration. The human-like performance of neural networks has shown promise for generating acceptable solutions to intractable problems such as planning and decomposition. This was the primary reasoning behind attempting the study. The basis for the work is the use of state machines to model tasks. State machine models provide a useful means for examining the structure of tasks since many formal techniques have been developed for their analysis and synthesis. It is the approach to integrate the strong algebraic foundations of state machines with the heretofore trial-and-error approach to neural network synthesis.
Molecular-Level Processing of Si-(B)-C Materials with Tailored Nano/Microstructures.
Schmidt, Marion; Durif, Charlotte; Acosta, Emanoelle Diz; Salameh, Chrystelle; Plaisantin, Hervé; Miele, Philippe; Backov, Rénal; Machado, Ricardo; Gervais, Christel; Alauzun, Johan G; Chollon, Georges; Bernard, Samuel
2017-12-01
The design of Si-(B)-C materials is investigated, with detailed insight into the precursor chemistry and processing, the precursor-to-ceramic transformation, and the ceramic microstructural evolution at high temperatures. In the early stage of the process, the reaction between allylhydridopolycarbosilane (AHPCS) and borane dimethyl sulfide is achieved. This is investigated in detail through solid-state NMR and FTIR spectroscopy and elemental analyses for Si/B ratios ranging from 200 to 30. Boron-based bridges linking AHPCS monomeric fragments act as crosslinking units, extending the processability range of AHPCS and suppressing the distillation of oligomeric fragments during the low-temperature pyrolysis regime. Polymers with low boron contents display appropriate requirements for facile processing in solution, leading to the design of monoliths with hierarchical porosity, significant pore volume, and high specific surface area after pyrolysis. Polymers with high boron contents are more appropriate for the preparation of dense ceramics through direct solid shaping and pyrolysis. We provide a comprehensive study of the thermal decomposition mechanisms, and a subsequent detailed study of the high-temperature behavior of the ceramics produced at 1000 °C. The nanostructure and microstructure of the final SiC-based ceramics are intimately linked to the boron content of the polymers. B 4 C/C/SiC nanocomposites can be obtained from the polymer with the highest boron content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Machnicka, Alicja; Grübel, Klaudiusz
2016-12-01
One of the problems in wastewater treatment technologies is the formation of foam/scum. It is thought that filamentous microorganisms are responsible for foam formation and foam elimination/destruction can be carried out by various methods, among which disintegration is included. Hybrid disintegration (chemical decomposition and hydrodynamic cavitation) of foam microorganisms results in the transfer of phosphates, ammonium nitrogen, magnesium and potassium from the foam solids into the liquid phase. Application of both methods as a hybrid pretreatment process caused an increase in the concentration of phosphates of about 650 mg [Formula: see text] L(-1) and ammonium nitrogen of about 30 mg [Formula: see text] L(-1). The concentration of Mg(2+) and K(+) in the solution increased from 6.8 and 26.1 mg Mg(2+) L(-1) to 32.2 and 82.2 mg K(+) L(-1), respectively. The presence of nutrients and metal cations in the solid phase of foam was acknowledged by EDX Quantification. The confirmation of physico-chemical changes and release of cellular matter as a result of cellular lysis (hybrid disintegration) was done by infrared analysis. It was demonstrated that the disintegration of foam permits the removal of a part of nutrients in the form of struvite.
NASA Astrophysics Data System (ADS)
Shan, Zhendong; Ling, Daosheng
2018-02-01
This article develops an analytical solution for the transient wave propagation of a cylindrical P-wave line source in a semi-infinite elastic solid with a fluid layer. The analytical solution is presented in a simple closed form in which each term represents a transient physical wave. The Scholte equation is derived, through which the Scholte wave velocity can be determined. The Scholte wave is the wave that propagates along the interface between the fluid and solid. To develop the analytical solution, the wave fields in the fluid and solid are defined, their analytical solutions in the Laplace domain are derived using the boundary and interface conditions, and the solutions are then decomposed into series form according to the power series expansion method. Each item of the series solution has a clear physical meaning and represents a transient wave path. Finally, by applying Cagniard's method and the convolution theorem, the analytical solutions are transformed into the time domain. Numerical examples are provided to illustrate some interesting features in the fluid layer, the interface and the semi-infinite solid. When the P-wave velocity in the fluid is higher than that in the solid, two head waves in the solid, one head wave in the fluid and a Scholte wave at the interface are observed for the cylindrical P-wave line source.
Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil.
Padois, Karine; Cantiéni, Céline; Bertholle, Valérie; Bardel, Claire; Pirot, Fabrice; Falson, Françoise
2011-09-15
Solid lipid nanoparticles have been reported as possible carrier for skin drug delivery. Solid lipid nanoparticles are produced from biocompatible and biodegradable lipids. Solid lipid nanoparticles made of semi-synthetic triglycerides stabilized with a mixture of polysorbate and sorbitan oleate were loaded with 5% of minoxidil. The prepared systems were characterized for particle size, pH and drug content. Ex vivo skin penetration studies were performed using Franz-type glass diffusion cells and pig ear skin. Ex vivo skin corrosion studies were realized with a method derived from the Corrositex(®) test. Solid lipid nanoparticles suspensions were compared to commercial solutions in terms of skin penetration and skin corrosion. Solid lipid nanoparticles suspensions have been shown as efficient as commercial solutions for skin penetration; and were non-corrosive while commercial solutions presented a corrosive potential. Solid lipid nanoparticles suspensions would constitute a promising formulation for hair loss treatment. Copyright © 2011 Elsevier B.V. All rights reserved.
Computational mechanics analysis tools for parallel-vector supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.; Nguyen, Duc T.; Baddourah, Majdi; Qin, Jiangning
1993-01-01
Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigensolution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization search analysis and domain decomposition. The source code for many of these algorithms is available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taoufyq, A.; Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir; CEA, DEN, Département d'Etudes des Réacteurs, Service de Physique Expérimentale, Laboratoire Dosimétrie Capteurs Instrumentation, 13108 Saint-Paul-lez-Durance
2015-10-15
Highlights: • Luminescence can be modified by chemical substitution in solid solutions Ca{sub 1−x}Cd{sub x}WO{sub 4}. • The various emission spectra (charge transfer) were obtained under X-ray excitation. • Scheelite or wolframite solid solutions presented two types of emission spectra. • A luminescence component depended on cadmium substitution in each solid solution. • A component was only characteristic of oxyanion symmetry in each solid solution. - Abstract: We have investigated the chemical substitution effects on the luminescence properties under X-ray excitation of the solid solutions Ca{sub (1−x)}Cd{sub (x)}WO{sub 4} with 0 ≤ x ≤ 1. Two types of wide spectralmore » bands, associated with scheelite-type or wolframite-type solid solutions, have been observed at room temperature. We decomposed each spectral band into several spectral components characterized by energies and intensities varying with composition x. One Gaussian component was characterized by an energy decreasing regularly with the composition x, while the other Gaussian component was only related to the tetrahedral or octahedral configurations of tungstate groups WO{sub 4}{sup 2−} or WO{sub 6}{sup 6−}. The luminescence intensities exhibited minimum values in the composition range x < 0.5 corresponding to scheelite-type structures, then, they regularly increased for cadmium compositions x > 0.5 corresponding to wolframite-type structures.« less
NASA Astrophysics Data System (ADS)
Dingman, Sean Douglas
I present new strategies to low-temperature solution-phase synthesis of indium and gallium nitride (InN and GaN) ceramic materials. The strategies include: direct conversion of precursor molecules to InN by pyrolysis, solution-phase synthesis of nanostructured InN fibers via molecular precursors and co-reactants, and synthesis of powders through reactions derived from molten-salt chemistry. Indium nitride powders are prepared by pyrolysis of the precursors R 2InN3 (R = t-Bu (1), i-Amyl(2), Et(3), i-Pr( 4)). The precursors are synthesized via azide-alkoxide exchange of R2InOMe with Me3SiN3. The precursors are coordination polymers containing five-coordinate indium centers. Pyrolysis of 1 and 2 under N2 at 400°C yields powders consisting primarily of InN with average crystal sizes of 15--35 nm. 1 yields nanocrystalline InN with average particle sizes of 7 nm at 250°C. 3 and 4 yield primarily In metal from pyrolysis. Refluxing 1 in diisopropylbenzene (203°C) in the presence of primary amines yields InN nanofibers 10--100 nm in length. InN nanofibers of up to 1 mum can be synthesized by treating 1 with 1,1-dimethylhydrazine (DMHy) The DMHy appears to control the fiber length by acting as a secondary source of active nitrogen in order to sustain fiber growth. The resulting fibers are attached to droplets of indium metal implying a solution-liquid-solid growth mechanism. Precursor 4 yields crystalline InN whiskers when reacted with DMHy. Reactions of 4 with reducing agents such as HSnBu3, yield InN nanoparticles with an average crystallite size of 16 nm. Gallium precursors R2GaN3 (R = t-Bu( 5), Me3SiCH2(6) and i-Pr( 7)), synthesized by azide-alkoxide exchange, are found to be inert toward solution decomposition and do not yield GaN. These compounds are molecular dimers and trimers unlike the indium analogs. Compound 6 displays a monomer-dimer equilibrium in benzene solution, but exists as a solid-state trimer. InN powders are also synthesized by reactions of InCl3 and LiNH2 in a molten alkali-halide eutectic, KBr: Liar (60:40), at 400°C. The molten salt acts as an appropriate recrystallization medium for InN. Large InN platelets up to 500 nm could be synthesized. This is a significant step in finding mild reaction conditions that yield large InN crystals.
Muravyev, Nikita V; Monogarov, Konstantin A; Asachenko, Andrey F; Nechaev, Mikhail S; Ananyev, Ivan V; Fomenkov, Igor V; Kiselev, Vitaly G; Pivkina, Alla N
2016-12-21
Thermal decomposition of a novel promising high-performance explosive dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50) was studied using a number of thermal analysis techniques (thermogravimetry, differential scanning calorimetry, and accelerating rate calorimetry, ARC). To obtain more comprehensive insight into the kinetics and mechanism of TKX-50 decomposition, a variety of complementary thermoanalytical experiments were performed under various conditions. Non-isothermal and isothermal kinetics were obtained at both atmospheric and low (up to 0.3 Torr) pressures. The gas products of thermolysis were detected in situ using IR spectroscopy, and the structure of solid-state decomposition products was determined by X-ray diffraction and scanning electron microscopy. Diammonium 5,5'-bistetrazole-1,1'-diolate (ABTOX) was directly identified to be the most important intermediate of the decomposition process. The important role of bistetrazole diol (BTO) in the mechanism of TKX-50 decomposition was also rationalized by thermolysis experiments with mixtures of TKX-50 and BTO. Several widely used thermoanalytical data processing techniques (Kissinger, isoconversional, formal kinetic approaches, etc.) were independently benchmarked against the ARC data, which are more germane to the real storage and application conditions of energetic materials. Our study revealed that none of the Arrhenius parameters reported before can properly describe the complex two-stage decomposition process of TKX-50. In contrast, we showed the superior performance of the isoconversional methods combined with isothermal measurements, which yielded the most reliable kinetic parameters of TKX-50 thermolysis. In contrast with the existing reports, the thermal stability of TKX-50 was determined in the ARC experiments to be lower than that of hexogen, but close to that of hexanitrohexaazaisowurtzitane (CL-20).
Kumar, Nitin; Radin, Maxwell D.; Wood, Brandon C.; ...
2015-04-13
A viable Li/O 2 battery will require the development of stable electrolytes that do not continuously decompose during cell operation. In some recent experiments it is suggested that reactions occurring at the interface between the liquid electrolyte and the solid lithium peroxide (Li 2O 2) discharge phase are a major contributor to these instabilities. To clarify the mechanisms associated with these reactions, a variety of atomistic simulation techniques, classical Monte Carlo, van der Waals-augmented density functional theory, ab initio molecular dynamics, and various solvation models, are used to study the initial decomposition of the common electrolyte solvent, dimethoxyethane (DME), onmore » surfaces of Li 2O 2. Comparisons are made between the two predominant Li 2O 2 surface charge states by calculating decomposition pathways on peroxide-terminated (O 2 2–) and superoxide-terminated (O 2 1–) facets. For both terminations, DME decomposition proceeds exothermically via a two-step process comprised of hydrogen abstraction (H-abstraction) followed by nucleophilic attack. In the first step, abstracted H dissociates a surface O 2 dimer, and combines with a dissociated oxygen to form a hydroxide ion (OH –). In the remaining surface oxygen then attacks the DME, resulting in a DME fragment that is strongly bound to the Li 2O 2 surface. DME decomposition is predicted to be more exothermic on the peroxide facet; nevertheless, the rate of DME decomposition is faster on the superoxide termination. The impact of solvation (explicit vs implicit) and an applied electric field on the reaction energetics are investigated. Finally, our calculations suggest that surface-mediated electrolyte decomposition should out-pace liquid-phase processes such as solvent auto-oxidation by dissolved O 2.« less
Rudraraju, Shiva; Van der Ven, Anton; Garikipati, Krishna
2016-06-10
Here, we present a phenomenological treatment of diffusion-driven martensitic phase transformations in multi-component crystalline solids that arise from non-convex free energies in mechanical and chemical variables. The treatment describes diffusional phase transformations that are accompanied by symmetry-breaking structural changes of the crystal unit cell and reveals the importance of a mechanochemical spinodal, defined as the region in strain-composition space, where the free-energy density function is non-convex. The approach is relevant to phase transformations wherein the structural order parameters can be expressed as linear combinations of strains relative to a high-symmetry reference crystal. The governing equations describing mechanochemical spinodal decomposition aremore » variationally derived from a free-energy density function that accounts for interfacial energy via gradients of the rapidly varying strain and composition fields. A robust computational framework for treating the coupled, higher-order diffusion and nonlinear strain gradient elasticity problems is presented. Because the local strains in an inhomogeneous, transforming microstructure can be finite, the elasticity problem must account for geometric nonlinearity. An evaluation of available experimental phase diagrams and first-principles free energies suggests that mechanochemical spinodal decomposition should occur in metal hydrides such as ZrH 2-2c. The rich physics that ensues is explored in several numerical examples in two and three dimensions, and the relevance of the mechanism is discussed in the context of important electrode materials for Li-ion batteries and high-temperature ceramics.« less
Waste-to-energy: Dehalogenation of plastic-containing wastes.
Shen, Yafei; Zhao, Rong; Wang, Junfeng; Chen, Xingming; Ge, Xinlei; Chen, Mindong
2016-03-01
The dehalogenation measurements could be carried out with the decomposition of plastic wastes simultaneously or successively. This paper reviewed the progresses in dehalogenation followed by thermochemical conversion of plastic-containing wastes for clean energy production. The pre-treatment method of MCT or HTT can eliminate the halogen in plastic wastes. The additives such as alkali-based metal oxides (e.g., CaO, NaOH), iron powders and minerals (e.g., quartz) can work as reaction mediums and accelerators with the objective of enhancing the mechanochemical reaction. The dehalogenation of waste plastics could be achieved by co-grinding with sustainable additives such as bio-wastes (e.g., rice husk), recyclable minerals (e.g., red mud) via MCT for solid fuels production. Interestingly, the solid fuel properties (e.g., particle size) could be significantly improved by HTT in addition with lignocellulosic biomass. Furthermore, the halogenated compounds in downstream thermal process could be eliminated by using catalysts and adsorbents. Most dehalogenation of plastic wastes primarily focuses on the transformation of organic halogen into inorganic halogen in terms of halogen hydrides or salts. The integrated process of MCT or HTT with the catalytic thermal decomposition is a promising way for clean energy production. The low-cost additives (e.g., red mud) used in the pre-treatment by MCT or HTT lead to a considerable synergistic effects including catalytic effect contributing to the follow-up thermal decomposition. Copyright © 2015 Elsevier Ltd. All rights reserved.
The biotransformation of the collected solid waste will be remotely monitored by measuring the accumulation of H2, CH4 and CO2 gases in the head-space of the collection chamber using an online gas analyzer. These gas levels will indicate the state of decomposition, which will ...
Kazemi, Khoshrooz; Zhang, Baiyu; Lye, Leonard M; Cai, Qinghong; Cao, Tong
2016-12-01
A design of experiment (DOE) based methodology was adopted in this study to investigate the effects of multiple factors and their interactions on the performance of a municipal solid waste (MSW) composting process. The impact of four factors, carbon/nitrogen ratio (C/N), moisture content (MC), type of bulking agent (BA) and aeration rate (AR) on the maturity, stability and toxicity of compost product was investigated. The statistically significant factors were identified using final C/N, germination index (GI) and especially the enzyme activities as responses. Experimental results validated the use of enzyme activities as proper indices during the course of composting. Maximum enzyme activities occurred during the active phase of decomposition. MC has a significant effect on dehydrogenase activity (DGH), β-glucosidase activity (BGH), phosphodiesterase activity (PDE) and the final moisture content of the compost. C/N is statistically significant for final C/N, DGH, BGH, and GI. The results provided guidance to optimize a MSW composting system that will lead to increased decomposition rate and the production of more stable and mature compost. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Benders based rolling horizon algorithm for a dynamic facility location problem
Marufuzzaman,, Mohammad; Gedik, Ridvan; Roni, Mohammad S.
2016-06-28
This study presents a well-known capacitated dynamic facility location problem (DFLP) that satisfies the customer demand at a minimum cost by determining the time period for opening, closing, or retaining an existing facility in a given location. To solve this challenging NP-hard problem, this paper develops a unique hybrid solution algorithm that combines a rolling horizon algorithm with an accelerated Benders decomposition algorithm. Extensive computational experiments are performed on benchmark test instances to evaluate the hybrid algorithm’s efficiency and robustness in solving the DFLP problem. Computational results indicate that the hybrid Benders based rolling horizon algorithm consistently offers high qualitymore » feasible solutions in a much shorter computational time period than the standalone rolling horizon and accelerated Benders decomposition algorithms in the experimental range.« less
NASA Astrophysics Data System (ADS)
Murshid, Ghulam; Shariff, Azmi Mohd; Lau, K. K.; Bustam, Mohammad Azmi; Ahmad, Faizan
2011-10-01
Physical properties such as density, viscosity, refractive index, surface tension, and thermal stability of 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD) were experimentally measured. All the experimental measurements were made over a wide range of temperatures from (298.15 to 333.15) K and AHPD concentrations of (1, 7, 13, 19, and 25) mass%. An overall decrease in all the measured physical properties was observed with increasing temperature. The experimental results are presented as a function of temperature and AHPD mass fraction. All the measured physical properties were correlated as a function of temperature. Thermal decomposition of pure and aqueous solutions of AHPD was investigated using a thermo-gravimetric analyzer (TGA) at a heating rate of 10 K · min-1.
NASA Astrophysics Data System (ADS)
Kuntman, Ertan; Canillas, Adolf; Arteaga, Oriol
2017-11-01
Experimental Mueller matrices contain certain amount of uncertainty in their elements and these uncertainties can create difficulties for decomposition methods based on analytic solutions. In an earlier paper [1], we proposed a decomposition method for depolarizing Mueller matrices by using certain symmetry conditions. However, because of the experimental error, that method creates over-determined systems with non-unique solutions. Here we propose to use least squares minimization approach in order to improve the accuracy of our results. In this method, we are taking into account the number of independent parameters of the corresponding symmetry and the rank constraints on the component matrices to decide on our fitting model. This approach is illustrated with experimental Mueller matrices that include material media with different Mueller symmetries.
Eutectics as improved pharmaceutical materials: design, properties and characterization.
Cherukuvada, Suryanarayan; Nangia, Ashwini
2014-01-28
Eutectics are a long known class of multi-component solids with important and useful applications in daily life. In comparison to other multi-component crystalline solids, such as salts, solid solutions, molecular complexes and cocrystals, eutectics are less studied in terms of molecular structure organization and bonding interactions. Classically, a eutectic is defined based on its low melting point compared to the individual components. In this article, we attempt to define eutectics not just based on thermal methods but from a structural organization view point, and discuss their microstructures and properties as organic materials vis-a-vis solid solutions and cocrystals. The X-ray crystal structure of a cocrystal is different from that of the individual components whereas the unit cell of a solid solution is similar to that of one of the components. Eutectics are closer to the latter species in that their crystalline arrangement is similar to the parent components but they are different with respect to the structural integrity. A solid solution possesses structural homogeneity throughout the structure (single phase) but a eutectic is a heterogeneous ensemble of individual components whose crystal structures are like discontinuous solid solutions (phase separated). Thus, a eutectic may be better defined as a conglomerate of solid solutions. A structural analysis of cocrystals, solid solutions and eutectics has led to an understanding that materials with strong adhesive (hetero) interactions between the unlike components will lead to cocrystals whereas those having stronger cohesive (homo/self) interactions will more often give rise to solid solutions (for similar structures of components) and eutectics (for different structures of components). We demonstrate that the same crystal engineering principles which have been profitably utilized for cocrystal design in the past decade can now be applied to make eutectics as novel composite materials, illustrated by stable eutectics of the hygroscopic salt of the anti-tuberculosis drug ethambutol as a case study. A current gap in the characterization of eutectic microstructure may be fulfilled through pair distribution function (PDF) analysis of X-ray diffraction data, which could be a rapid signature technique to differentiate eutectics from their components.
Gares, Katie L; Bykov, Sergei V; Godugu, Bhaskar; Asher, Sanford A
2014-01-01
We examined the 229 nm deep-ultraviolet resonance Raman (DUVRR) spectra of solution and solid-state trinitrotoluene (TNT) and its solution and solid-state photochemistry. Although TNT photodegrades with a solution quantum yield of ϕ ∼ 0.015, the initial photoproducts show DUVRR spectra extraordinarily similar to pure TNT, due to the similar photoproduct enhancement of the -NO2 stretching vibrations. This results in TNT-like DUVRR spectra even after complete TNT photolysis. These ultraviolet resonance Raman spectral bands enable DUVRR of trace as well as DUVRR standoff TNT detection. We determined the structure of various initial TNT photoproducts by using liquid chromatography-mass spectrometry and tandem mass spectrometry. Similar TNT DUVRR spectra and photoproducts are observed in the solution and solid states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor-Pashow, K.
2011-06-08
H-Canyon will begin dissolving High Aluminum - Low Uranium (High Al/Low U) Used Nuclear Fuel (UNF) following approval by DOE which is anticipated in CY2011. High Al/Low U is an aluminum/enriched uranium UNF with small quantities of uranium relative to aluminum. The maximum enrichment level expected is 93% {sup 235}U. The High Al/Low U UNF will be dissolved in H-Canyon in a nitric acid/mercury/gadolinium solution. The resulting solution will be neutralized and transferred to Tank 39H in the Tank Farm. To confirm that the solution generated could be poisoned with Gd, neutralized, and discarded to the Savannah River Site (SRS)more » high level waste (HLW) system without undue nuclear safety concerns the caustic precipitation of simulant solutions was examined. Experiments were performed with three simulant solutions representative of the H-Canyon estimated concentrations in the final solutions after dissolution. The maximum U, Gd, and Al concentration were selected for testing from the range of solution compositions provided. Simulants were prepared in three different nitric acid concentrations, ranging from 0.5 to 1.5 M. The simulant solutions were neutralized to four different endpoints: (1) just before a solid phase was formed (pH 3.5-4), (2) the point where a solid phase was obtained, (3) 0.8 M free hydroxide, and (4) 1.2 M free hydroxide, using 50 wt % sodium hydroxide (NaOH). The settling behavior of the neutralized solutions was found to be slower compared to previous studies, with settling continuing over a one week period. Due to the high concentration of Al in these solutions, precipitation of solids was observed immediately upon addition of NaOH. Precipitation continued as additional NaOH was added, reaching a point where the mixture becomes almost completely solid due to the large amount of precipitate. As additional NaOH was added, some of the precipitate began to redissolve, and the solutions neutralized to the final two endpoints mixed easily and had expected densities of typical neutralized waste. Based on particle size and scanning electron microscopy analyses, the neutralized solids were found to be homogeneous and less than 20 microns in size. The majority of solids were less than 4 microns in size. Compared to previous studies, a larger percentage of the Gd was found to precipitate in the partially neutralized solutions (at pH 3.5-4). In addition the Gd:U mass ratio was found to be at least 1.0 in all of the solids obtained after partial or full neutralization. The hydrogen to U (H:U) molar ratios for two accident scenarios were also determined. The first was for transient neutralization and agitator failure. Experimentally this scenario was determined by measuring the H:U ratio of the settled solids. The minimum H:U molar ratio for solids from fully neutralized solutions was 388:1. The second accident scenario is for the solids drying out in an unagitiated pump box. Experimentally, this scenario was determined by measuring the H:U molar ratio in centrifuged solids. The minimum H:U atom ratios for centrifuged precipitated solids was 250:1. It was determined previously that a 30:1 H:Pu atom ratio was sufficient for a 1:1 Gd:Pu mass ratio. Assuming a 1:1 equivalence with {sup 239}Pu, the results of these experiments show Gd is a viable poison for neutralizing U/Gd solutions with the tested compositions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Hara, Matthew J.; Kellogg, Cyndi M.; Parker, Cyrena M.
Ammonium bifluoride (ABF, NH4F·HF) is a well-known reagent for converting metal oxides to fluorides and for its applications in breaking down minerals and ores in order to extract useful components. It has been more recently applied to the decomposition of inorganic matrices prior to elemental analysis. Herein, a sample decomposition method that employs molten ABF sample treatment in the initial step is systematically evaluated across a range of inorganic sample types: glass, quartz, zircon, soil, and pitchblende ore. Method performance is evaluated across the two variables: duration of molten ABF treatment and ABF reagent mass to sample mass ratio. Themore » degree of solubilization of these sample classes are compared to the fluoride stoichiometry that is theoretically necessary to enact complete fluorination of the sample types. Finally, the sample decomposition method is performed on several soil and pitchblende ore standard reference materials, after which elemental constituent analysis is performed by ICP-OES and ICP-MS. Elemental recoveries are compared to the certified values; results indicate good to excellent recoveries across a range of alkaline earth, rare earth, transition metal, and actinide elements.« less
Low-frequency Raman scattering in a Xe hydrate.
Adichtchev, S V; Belosludov, V R; Ildyakov, A V; Malinovsky, V K; Manakov, A Yu; Subbotin, O S; Surovtsev, N V
2013-09-12
The physics of gas hydrates are rich in interesting phenomena such as anomalies for thermal conductivity, self-preservation effects for decomposition, and others. Some of these phenomena are presumably attributed to the resonance interaction of the rattling motions of guest molecules or atoms with the lattice modes. This can be expected to induce some specific features in the low-frequency (THz) vibrational response. Here we present results for low-frequency Raman scattering in a Xe hydrate, supported by numerical calculations of vibrational density of states. A number of narrow lines, located in the range from 18 to 90 cm(-1), were found in the Raman spectrum. Numerical calculations confirm that these lines correspond to resonance modes of the Xe hydrate. Also, low-frequency Raman scattering was studied during gas hydrate decomposition, and two scenarios were observed. The first one is the direct decomposition of the Xe hydrate to water and gas. The second one is the hydrate decomposition to ice and gas with subsequent melting of ice. In the latter case, a transient low-frequency Raman band is observed, which is associated with low-frequency bands (e.g., boson peak) of disordered solids.
New hydrogen-rich ammonium metal borohydrides, NH4[M(BH4)4], M = Y, Sc, Al, as potential H2 sources.
Starobrat, A; Jaroń, T; Grochala, W
2018-03-26
Three metal-ammonium borohydrides, NH4[M(BH4)4] M = Y, Sc, Al, denoted 1, 2, 3, respectively, were prepared via a low temperature mechanochemical synthesis and characterized using PXRD, FTIR and TGA/DSC/MS. The compounds 1 and 2 adopt the P21/c space group while the compound 3 crystallizes in an orthorhombic unit cell (Fddd). The first decomposition step of all three derivatives of ammonium borohydride has the maximum rate at 48 °C, 53 °C and 35 °C for 1, 2 and 3, respectively, which are comparable to that for NH4BH4 (53 °C). The thermal decomposition of these metal-ammonium borohydrides is a multistep process, with predominantly exothermic low-temperature stages. The compound 1 decomposes via known Y(BH4)3, however, some of the solid decomposition products of the other two compounds have not been fully identified. In the system containing compound 2, a new, more dense polymorph of the previously reported LiSc(BH4)4 has been detected as the intermediate of slow decomposition at room temperature.
Influence of methyl functional groups on the stability of cubane carbon cage
NASA Astrophysics Data System (ADS)
Katin, Konstantin P.; Prudkovskiy, Vladimir S.; Maslov, Mikhail M.
2016-07-01
We present a quantum-chemical study to elucidate the structure, energetics and stability of isolated polymethylcubane molecules C8H8-q(CH3)q. The results obtained by means of originally developed nonorthogonal tight-binding approach are in good agreement with the existed experimental data for solid octamethylcubane C8(CH3)8. The isomerization mechanisms for polymethylcubane family are studied in detail and the minimum energy barriers' heights preventing the decomposition are calculated. The temperature dependence of octamethylcubane molecule lifetime to the decomposition moment was determined by direct molecular dynamics simulation. It is shown that methyl groups destabilize the cubic carbon cage, but less than nitro groups.
A pilot stability study on four-drug fixed-dose combination anti-tuberculosis products.
Singh, S; Mohan, B
2003-03-01
A pilot stability study was carried out on four fixed-dose combination anti-tuberculosis products at 40 degrees C and 75% RH. The strip-packed products were stable, while the blister-packed products showed both physical and chemical changes. The products in unpacked conditions showed severe (approximately 60%) decomposition of rifampicin and extensive physical changes. The main decomposition product in the solid state was isonicotinyl hydrazone of 3-formylrifamycin and isoniazid. It is suggested that attention should be paid to the detection and quantitation of this product in the marketed formulations. The packing material used in the manufacture of FDC products should also be of the highest quality.
NASA Astrophysics Data System (ADS)
Gatto, Paolo; Lipparini, Filippo; Stamm, Benjamin
2017-12-01
The domain-decomposition (dd) paradigm, originally introduced for the conductor-like screening model, has been recently extended to the dielectric Polarizable Continuum Model (PCM), resulting in the ddPCM method. We present here a complete derivation of the analytical derivatives of the ddPCM energy with respect to the positions of the solute's atoms and discuss their efficient implementation. As it is the case for the energy, we observe a quadratic scaling, which is discussed and demonstrated with numerical tests.
Application of thermogravimetric studies for optimization of lithium hexafluorophosphate production
NASA Astrophysics Data System (ADS)
Smagin, A. A.; Matyukha, V. A.; Korobtsev, V. P.
Lithium hexafluorophosphate, isolated from hydrogen fluoride solution (anhydrous) by decanting and filtering, is an adduct of composition LiPF 6*HF. By thermogravimetric investigations the dynamics of HF removal from LiPF 6 by LiPF 6*HF thermal decomposition was studied. Based on the experimental data the constants entering into the equations as C = C0*exp( t*K0* exp(- E/RT)) were calculated, explaining the thermal decomposition processes of LiPF 6*HF and LiPF 6.
2006-03-01
chemical vapor deposition (CVD) with methane as the feed gas . CNT growth specifics included using iron nitrate in an isopropanol solution as the...with residual oxygen gas in the chamber used for growth ([24], [25], [13]). Specific conditions for producing CNTs through the decomposition of...resulting in CNT formation is given by (2.30), (2.31), and (2.32) [24]. The oxygen gas acting as a catalyst to the chemical reaction is purported to be
Integration of progressive hedging and dual decomposition in stochastic integer programs
Watson, Jean -Paul; Guo, Ge; Hackebeil, Gabriel; ...
2015-04-07
We present a method for integrating the Progressive Hedging (PH) algorithm and the Dual Decomposition (DD) algorithm of Carøe and Schultz for stochastic mixed-integer programs. Based on the correspondence between lower bounds obtained with PH and DD, a method to transform weights from PH to Lagrange multipliers in DD is found. Fast progress in early iterations of PH speeds up convergence of DD to an exact solution. As a result, we report computational results on server location and unit commitment instances.