Sample records for solid solution films

  1. Lubrication of rigid ellipsida solids

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1982-01-01

    The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds boundary conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza' classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared by using the exact expression for the film in the analysis. Contour plots are known that indicate in detail the pressure developed between the solids.

  2. Relating hydrogen-bonding interactions with the phase behavior of naproxen/PVP K 25 solid dispersions: evaluation of solution-cast and quench-cooled films.

    PubMed

    Paudel, Amrit; Nies, Erik; Van den Mooter, Guy

    2012-11-05

    In this work, we investigated the relationship between various intermolecular hydrogen-bonding (H-bonding) interactions and the miscibility of the model hydrophobic drug naproxen with the hydrophilic polymer polyvinylpyrrolidone (PVP) across an entire composition range of solid dispersions prepared by quasi-equilibrium film casting and nonequilibrium melt quench cooling. The binary phase behavior in solid dispersions exhibited substantial processing method dependence. The solid state solubility of crystalline naproxen in PVP to form amorphous solid dispersions was 35% and 70% w/w naproxen in solution-cast films and quench-cooled films, respectively. However, the presence of a single mixed phase glass transition indicated the amorphous miscibility to be 20% w/w naproxen for the films, beyond which amorphous-amorphous and/or crystalline phase separations were apparent. This was further supported by the solution state interactions data such as PVP globular size distribution and solution infrared spectral profiles. The borderline melt composition showed cooling rate dependence of amorphization. The glass transition and melting point depression profiles of the system were treated with the analytical expressions based on Flory-Huggins mixing theory to interpolate the equilibrium solid solubility. FTIR analysis and subsequent spectral deconvolution revealed composition and miscibility dependent variations in the strength of drug-polymer intermolecular H-bonding. Two types of H-bonded populations were evidenced from 25% w/w and 35% w/w naproxen in solution-cast films and quench-cooled films, respectively, with the higher fraction of strongly H-bonded population in the drug rich domains of phase separated amorphous film compositions and highly drug loaded amorphous quench-cooled dispersions.

  3. Fluorescence from polystyrene - Photochemical processes in polymeric systems, 7

    NASA Technical Reports Server (NTRS)

    Gupta, M. C.; Gupta, A.

    1983-01-01

    Results are presented for measurements of the fluorescence spectra of polystyrene in dilute solution and in pure solid films. It is determined that a major potential source of experimental error is the concurrent photooxidative degradation in air which may obscure fluorescence emission from monomeric sites in solid films at 25 C. The fluorescence spectra of oriented films are evaluated in terms of the monomer to excimer fluorescence intensity ratio and the excimer 'red shift'. The monomer to excimer fluorescence intensity ratio is determined to be significantly higher in fluid solution than in solid film.

  4. Supercritical fluid molecular spray film deposition and powder formation

    DOEpatents

    Smith, Richard D.

    1986-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. Upon expansion and supersonic interaction with background gases in the low pressure region, any clusters of solvent are broken up and the solvent is vaporized and pumped away. Solute concentration in the solution is varied primarily by varying solution pressure to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solvent clustering and solute nucleation are controlled by manipulating the rate of expansion of the solution and the pressure of the lower pressure region. Solution and low pressure region temperatures are also controlled.

  5. Properties of solid solutions, doped film, and nanocomposite structures based on zinc oxide

    NASA Astrophysics Data System (ADS)

    Lashkarev, G. V.; Shtepliuk, I. I.; Ievtushenko, A. I.; Khyzhun, O. Y.; Kartuzov, V. V.; Ovsiannikova, L. I.; Karpyna, V. A.; Myroniuk, D. V.; Khomyak, V. V.; Tkach, V. N.; Timofeeva, I. I.; Popovich, V. I.; Dranchuk, N. V.; Khranovskyy, V. D.; Demydiuk, P. V.

    2015-02-01

    A study of the properties of materials based on the wide bandgap zinc oxide semiconductor, which are promising for application in optoelectronics, photovoltaics and nanoplasmonics. The structural and optical properties of solid solution Zn1-xCdxO films with different cadmium content, are studied. The samples are grown using magnetron sputtering on sapphire backing. Low-temperature photoluminescence spectra revealed emission peaks associated with radiative recombination processes in those areas of the film that have varying amounts of cadmium. X-ray phase analysis showed the presence of a cadmium oxide cubic phase in these films. Theoretical studies of the solid solution thermodynamic properties allowed for a qualitative interpretation of the observed experimental phenomena. It is established that the growth of the homogeneous solid solution film is possible only at high temperatures, whereas regions of inhomogeneous composition can be narrowed through elastic deformation, caused by the mismatch of the film-backing lattice constants. The driving forces of the spinodal decomposition of the Zn1-xCdxO system are identified. Fullerene-like clusters of Znn-xCdxOn are used to calculate the bandgap and the cohesive energy of ZnCdO solid solutions. The properties of transparent conductive ZnO films, doped with Group III donor impurities (Al, Ga, In), are examined. It is shown that oxygen vacancies are responsible for the hole trap centers in the zinc oxide photoconductivity process. We also examine the photoluminescence properties of metal-ZnO nanocomposite structures, caused by surface plasmons.

  6. Femtosecond fluorescence dynamics of porphyrin in solution and solid films: the effects of aggregation and interfacial electron transfer between porphyrin and TiO2.

    PubMed

    Luo, Liyang; Lo, Chen-Fu; Lin, Ching-Yao; Chang, I-Jy; Diau, Eric Wei-Guang

    2006-01-12

    The excited-state relaxation dynamics of a synthetic porphyrin, ZnCAPEBPP, in solution, coated on a glass substrate as solid films, mixed with PMMA and coated on a glass substrate as solid films, and sensitized on nanocrystalline TiO2 films were investigated by using femtosecond fluorescence up-conversion spectroscopy with excitation in the Soret band, S2. We found that the S2--> S1 electronic relaxation of ZnCAPEBPP in solution and on PMMA films occurs in 910 and 690 fs, respectively, but it becomes extremely rapid, <100 fs, in solid films and TiO2 films due to formation of porphyrin aggregates. When probed in the S1 state of porphyrin, the fluorescence transients of the solid films show a biphasic kinetic feature with the rapid and slow components decaying in 1.9-2.4 and 19-26 ps, respectively. The transients in ZnCAPEBPP/TiO2 films also feature two relaxation processes but they occur on different time scales, 100-300 fs and 0.8-4.1 ps, and contain a small offset. According to the variation of relaxation period as a function of molecular density on a TiO2 surface, we assigned the femtosecond component of the TiO2 films as due to indirect interfacial electron transfer through a phenylethynyl bridge attached to one of four meso positions of the porphyrin ring, and the picosecond component arising from intermolecular energy transfer among porphyrins. The observed variation of aggregate-induced relaxation periods between solid and TiO2 films is due mainly to aggregation of two types: J-type aggregation is dominant in the former case whereas H-type aggregation prevails in the latter case.

  7. Effect of geometry on hydrodynamic film thickness

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Hamrock, B. J.; Taylor, C. M.

    1978-01-01

    The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. Pressure-viscosity effects were not considered. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza's classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared with those using the exact expression for the film in the analysis. Contour plots are shown that indicate in detail the pressure developed between the solids.

  8. Effect of geometry on hydrodynamic film thickness

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Hamrock, B. J.; Taylor, C. M.

    1978-01-01

    The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. Pressure-viscosity effects were not considered. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds boundary conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza's classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared with those using the exact expression for the film in the analysis. Contour plots are shown that indicate in detail the pressure developed between the solids.

  9. Supercritical fluid molecular spray thin films and fine powders

    DOEpatents

    Smith, Richard D.

    1988-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. The solvent is vaporized and pumped away. Solution pressure is varied to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solution temperature is varied in relation to formation of a two-phase system during expansion to control porosity of the film or powder. A wide variety of film textures and powder shapes are produced of both organic and inorganic compounds. Films are produced with regular textural feature dimensions of 1.0-2.0 .mu.m down to a range of 0.01 to 0.1 .mu.m. Powders are formed in very narrow size distributions, with average sizes in the range of 0.02 to 5 .mu.m.

  10. Solid Phase Luminescence of Several Rare Earth Ions on Ion-Exchange Films

    NASA Technical Reports Server (NTRS)

    Tanner, Stephen P.; Street, Kenneth W., Jr.

    1999-01-01

    The development and characterization of a novel ion-exchange film for solid-phase fluorometry and phosphorimetry is reported. This new cation-exchange material is suitable for spectroscopic applications in the ultraviolet and visible regions. It is advantageous because it, as a single entity, is easily recovered from solution and mounted in the spectrofluorometers. After preconcentration on the film, the luminescence intensity of lanthanide ions is several orders of magnitude greater than that of the corresponding solution, depending on the volume of solution and the amount of film. This procedure allows emission spectral measurements and determination of lanthanide ions at solution concentrations of < 5 (micro)g/L. The film may be stored for subsequent reuse or as a permanent record of the analysis. The major drawback to the use of the film is slow uptake of analyte due to diffusion limitations.

  11. Quantification of Marangoni flows and film morphology during solid film formation by inkjet printing

    NASA Astrophysics Data System (ADS)

    Ishizuka, Hirotaka; Fukai, Jun

    2018-01-01

    We visualized experimentally the internal flow inside inkjet droplets of polystyrene-anisole solution during solid film formation on substrates at room temperature. The effects of contact angle and evaporation rate on the internal flow and film morphology were quantitatively investigated. The transport process during film formation was examined by measuring the relationship between internal flow and film morphology, which provided three remarkable findings. First, self-pinning and the strength of outward flow on the free surface under 2.3 Pa s determined film morphology. The solute distribution, corresponding to rim areas in ring-like films and a convex trough in dot-like films, had already developed at self-pinning. Second, the mass fraction at self-pinning close to the contact line converged to one, regardless of the film morphology. This implies that self-pinning is independent of parameters such as the contact angle and evaporation rate. Third, at room temperature, the solutal Marangoni numbers were 20-30 times larger than the thermal ones. Thus, the outward flow on the free surface caused by the solutal Marangoni effect dominates in droplets before self-pinning. The solutal Marangoni number at self-pinning and thickness variation at the center of the film displayed a good relationship for droplets with different contact angles and evaporation rates. This suggests that film morphology can be technically controlled by solutal Marangoni number at room temperature.

  12. Modifying Optical Properties of ZnO Films by Forming Zn[subscript 1-x] Co[subscript x]O Solid Solutions via Spray Pyrolysis

    ERIC Educational Resources Information Center

    Bentley, Anne K.; Weaver, Gabriela C.; Russell, Cianan B.; Fornes, William L.; Choi, Kyoung-Shin; Shih, Susan M.

    2007-01-01

    A simple and cost-effective experiment for the development and characterization of semiconductors using Uv-vis spectroscopy is described. The study shows that the optical properties of ZnO films can be easily modified by forming Zn[subscript 1-x] Co[subscript x]O solid solutions via spray pyrolysis.

  13. Method of making supercritical fluid molecular spray films, powder and fibers

    DOEpatents

    Smith, Richard D.

    1988-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a heated nozzle having a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. In another embodiment, the temperature of the solution and nozzle is elevated above the melting point of the solute, which is preferably a polymer, and the solution is maintained at a pressure such that, during expansion, the solute precipitates out of solution within the nozzle in a liquid state. Alternatively, a secondary solvent mutually soluble with the solute and primary solvent and having a higher critical temperature than that of primary solvent is used in a low concentration (<20%) to maintain the solute in a transient liquid state. The solute is discharged in the form of long, thin fibers. The fibers are collected at sufficient distance from the orifice to allow them to solidify in the low pressure/temperature region.

  14. Microstructural and mechanical characteristics of Ni–Cr thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petley, Vijay; Sathishkumar, S.; Thulasi Raman, K.H.

    2015-06-15

    Highlights: • Ni–Cr thin films of varied composition deposited by DC magnetron co-sputtering. • Thin film with Ni–Cr: 80–20 at% composition exhibits most distinct behavior. • The films were tensile tested and exhibited no cracking till the substrate yielding. - Abstract: Ni–Cr alloy thin films have been deposited using magnetron co-sputtering technique at room temperature. Crystal structure was evaluated using GIXRD. Ni–Cr solid solution upto 40 at% of Cr exhibited fcc solid solution of Cr in Ni and beyond that it exhibited bcc solid solution of Ni in Cr. X-ray diffraction analysis shows formation of (1 1 1) fiber texturemore » in fcc and (2 2 0) fiber texture in bcc Ni–Cr thin films. Electron microscopy in both in-plane and transverse direction of the film surface revealed the presence of columnar microstructure for films having Cr upto 40 at%. Mechanical properties of the films are evaluated using nanoindentation. The modulus values increased with increase of Cr at% till the film is fcc. With further increase in Cr at% the modulus values decreased. Ni–Cr film with 20 at% Ni exhibits reduction in modulus and is correlated to the poor crystallization of the film as reflected in XRD analysis. The Ni–Cr thin film with 80 at% Ni and 20 at% Cr exhibited the most distinct columnar structure with highest electrical resistivity, indentation hardness and elastic modulus.« less

  15. Solution-processed ultrathin chemically derived graphene films as soft top contacts for solid-state molecular electronic junctions.

    PubMed

    Li, Tao; Hauptmann, Jonas Rahlf; Wei, Zhongming; Petersen, Søren; Bovet, Nicolas; Vosch, Tom; Nygård, Jesper; Hu, Wenping; Liu, Yunqi; Bjørnholm, Thomas; Nørgaard, Kasper; Laursen, Bo W

    2012-03-08

    A novel method using solution-processed ultrathin chemically derived graphene films as soft top contacts for the non-destructive fabrication of molecular junctions is demonstrated. We believe this protocol will greatly enrich the solid-state test beds for molecular electronics due to its low-cost, easy-processing and flexible nature. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Influence of Composition on the Thermoelectric Properties of Bi1- x Sb x Thin Films

    NASA Astrophysics Data System (ADS)

    Rogacheva, E. I.; Nashchekina, O. N.; Orlova, D. S.; Doroshenko, A. N.; Dresselhaus, M. S.

    2017-07-01

    Bi1- x Sb x solid solutions have attracted much attention as promising thermoelectric (TE) materials for cooling devices at temperatures below ˜200 K and as unique model materials for solid-state science because of a high sensitivity of their band structure to changes in composition, temperature, pressure, etc. Earlier, we revealed a non-monotonic behavior of the concentration dependences of TE properties for polycrystalline Bi1- x Sb x solid solutions and attributed these anomalies to percolation effects in the solid solution, transition to a gapless state, and to a semimetal-semiconductor transition. The goal of the present work is to find out whether the non-monotonic behavior of the concentration dependences of TE properties is observed in the thin film state as well. The objects of the study are Bi1- x Sb x thin films with thicknesses in the range d = 250-300 nm prepared by thermal evaporation of Bi1- x Sb x crystals ( x = 0-0.09) onto mica substrates. It was shown that the anomalies in the dependence of the TE properties on Bi1- x Sb x crystal composition are reproduced in thin films.

  17. The role of surface elasticity in liquid film formation

    NASA Astrophysics Data System (ADS)

    Champougny, Lorene; Scheid, Benoit; Restagno, Frederic; Rio, Emmanuelle; Laboratoire de Physique des Solides Team; TIPS-Fluid Physics Unit Team

    2014-11-01

    The formation of thin liquid films, either free standing (soap films) or deposited on a solid substrate (coated films), is of utmost importance for many applications, ranging from the control of foam stability to surface functionalization. In this work, the behavior of thin liquid films during their generation from a surfactant solution is investigated through comparison between a hydrodynamic model including surface elasticity and experiments. ``Twin'' models are proposed to describe the coating of films onto a solid plate (Landau-Levich-Derjaguin configuration) as well as soap film pulling (Frankel configuration) in a single framework. Experimental data are successfully fitted using the models, surface elasticity being the only adjustable parameter. For a given surfactant solution, the analyses of soap and coated films both yield the same value for the effective surface elasticity, showing that it is an intrinsic parameter of a surfactant solution. Conversely, we demonstrate that Frankel- or Landau-Levich-like experiments can be used in practice as surface rheometers to determine the numerical value of the (effective) surface elasticity of a solution, especially for values lower than those measurable by classical devices. L.C. was supported by ANR F2F. B.S. thanks the F.R.S.-FNRS for funding as well as the IAP-MicroMAST project.

  18. Pseudomorphic Semiconducting Heterostructures from Combinations of AlN, GaN and Selected SiC Polytypes: Theoretical Advancement and its Coordination with Experimental Studies of Nucleation, Growth, Characterization and Device Development

    DTIC Science & Technology

    1994-06-01

    simultaneously expluiting the favorable characteristics of these materials include the thin film deposition of both pseudomorphic beterostructure and alloys ...diagram proposed by Zangvil and Ruh [10] shows a flat miscibility gap at =1900*C between -20 and 80 wt % AIN. Above this temperature, a 2H solid solution...was reported from >20 wt % AIN. For .20 wt % AIN, 8 I I solutions and two phase mixtures of 6H, 4H, and 2H were observed. Thin film solid solutions

  19. On dewetting of thin films due to crystallization (crystallization dewetting).

    PubMed

    Habibi, Mehran; Rahimzadeh, Amin; Eslamian, Morteza

    2016-03-01

    Drying and crystallization of a thin liquid film of an ionic or a similar solution can cause dewetting in the resulting thin solid film. This paper aims at investigating this type of dewetting, herein termed "crystallization dewetting", using PbI2 dissolved in organic solvents as the model solution. PbI2 solid films are usually used in X-ray detection and lead halide perovskite solar cells. In this work, PbI2 films are fabricated using spin coating and the effect of major parameters influencing the crystallization dewetting, including the type of the solvent, solution concentration, drying temperature, spin speed, as well as imposed vibration on the substrate are studied on dewetting, surface profile and coverage, using confocal scanning laser microscopy. Simplified hydrodynamic governing equations of crystallization in thin films are presented and using a mathematical representation of the process, it is phenomenologically demonstrated that crystallization dewetting occurs due to the absorption and consumption of the solution surrounding a growing crystal. Among the results, it is found that a low spin speed (high thickness), a high solution concentration and a low drying temperature promote crystal growth, and therefore crystallization dewetting. It is also shown that imposed vibration on the substrate can affect the crystal size and crystallization dewetting.

  20. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition

    DOE PAGES

    An, Zhinan; Jia, Haoling; Wu, Yueying; ...

    2015-05-04

    The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.

  1. Unraveling the Solution-State Supramolecular Structures of Donor-Acceptor Polymers and their Influence on Solid-State Morphology and Charge-Transport Properties.

    PubMed

    Zheng, Yu-Qing; Yao, Ze-Fan; Lei, Ting; Dou, Jin-Hu; Yang, Chi-Yuan; Zou, Lin; Meng, Xiangyi; Ma, Wei; Wang, Jie-Yu; Pei, Jian

    2017-11-01

    Polymer self-assembly in solution prior to film fabrication makes solution-state structures critical for their solid-state packing and optoelectronic properties. However, unraveling the solution-state supramolecular structures is challenging, not to mention establishing a clear relationship between the solution-state structure and the charge-transport properties in field-effect transistors. Here, for the first time, it is revealed that the thin-film morphology of a conjugated polymer inherits the features of its solution-state supramolecular structures. A "solution-state supramolecular structure control" strategy is proposed to increase the electron mobility of a benzodifurandione-based oligo(p-phenylene vinylene) (BDOPV)-based polymer. It is shown that the solution-state structures of the BDOPV-based conjugated polymer can be tuned such that it forms a 1D rod-like structure in good solvent and a 2D lamellar structure in poor solvent. By tuning the solution-state structure, films with high crystallinity and good interdomain connectivity are obtained. The electron mobility significantly increases from the original value of 1.8 to 3.2 cm 2 V -1 s -1 . This work demonstrates that "solution-state supramolecular structure" control is critical for understanding and optimization of the thin-film morphology and charge-transport properties of conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Rapid, cool sintering of wet processed yttria-stabilized zirconia ceramic electrolyte thin films.

    PubMed

    Park, Jun-Sik; Kim, Dug-Joong; Chung, Wan-Ho; Lim, Yonghyun; Kim, Hak-Sung; Kim, Young-Beom

    2017-09-29

    Here we report a photonic annealing process for yttria-stabilized zirconia films, which are one of the most well-known solid-state electrolytes for solid oxide fuel cells (SOFCs). Precursor films were coated using a wet-chemical method with a simple metal-organic precursor solution and directly annealed at standard pressure and temperature by two cycles of xenon flash lamp irradiation. The residual organics were almost completely decomposed in the first pre-annealing step, and the fluorite crystalline phases and good ionic conductivity were developed during the second annealing step. These films showed properties comparable to those of thermally annealed films. This process is much faster than conventional annealing processes (e.g. halogen furnaces); a few seconds compared to tens of hours, respectively. The significance of this work includes the treatment of solid-state electrolyte oxides for SOFCs and the demonstration of the feasibility of other oxide components for solid-state energy devices.

  3. Conformal Electroplating of Azobenzene-Based Solar Thermal Fuels onto Large-Area and Fiber Geometries.

    PubMed

    Zhitomirsky, David; Grossman, Jeffrey C

    2016-10-05

    There is tremendous growth in fields where small functional molecules and colloidal nanomaterials are integrated into thin films for solid-state device applications. Many of these materials are synthesized in solution and there often exists a significant barrier to transition them into the solid state in an efficient manner. Here, we develop a methodology employing an electrodepositable copolymer consisting of small functional molecules for applications in solar energy harvesting and storage. We employ azobenzene solar thermal fuel polymers and functionalize them to enable deposition from low concentration solutions in methanol, resulting in uniform and large-area thin films. This approach enables conformal deposition on a variety of conducting substrates that can be either flat or structured depending on the application. Our approach further enables control over film growth via electrodepsition conditions and results in highly uniform films of hundreds of nanometers to microns in thickness. We demonstrate that this method enables superior retention of solar thermal fuel properties, with energy densities of ∼90 J/g, chargeability in the solid state, and exceptional materials utilization compared to other solid-state processing approaches. This novel approach is applicable to systems such as photon upconversion, photovoltaics, photosensing, light emission, and beyond, where small functional molecules enable solid-state applications.

  4. Solid-gel precursor solutions and methods for the fabrication of polymetallicsiloxane coating films

    DOEpatents

    Sugama, Toshifumi

    1992-01-01

    Solutions and preparation methods necessary for the fabrication of metal oxide cross-linked polysiloxane coating films are disclosed. The films are useful in provide heat resistance against oxidation, wear resistance, thermal insulation, and corrosion resistance of substrates. The sol-gel precursor solution comprises a mixture of a monomeric organoalkoxysilane, a metal alkoxide M(OR).sub.n (wherein M is Ti, Zr, Ge or Al; R is CH.sub.3, C.sub.2 H.sub.5 or C.sub.3 H.sub.7 ; and n is 3 or 4), methanol, water, HCl and NaOH. The invention provides a sol-gel solution, and a method of use thereof, which can be applied and processed at low temperatures (i.e., <1000.degree. C.). The substrate can be coated by immersing it in the above mentioned solution at ambient temperature. The substrate is then withdrawn from the solution. Next, the coated substrate is heated for a time sufficient and at a temperature sufficient to yield a solid coating. The coated substrate is then heated for a time sufficient, and temperature sufficient to produce a polymetallicsiloxane coating.

  5. Solid-gel precursor solutions and methods for the fabrication of polymetallicsiloxane coating films

    DOEpatents

    Sugama, Toshifumi

    1993-01-01

    Solutions and preparation methods necessary for the fabrication of metal oxide cross-linked polysiloxane coating films are disclosed. The films are useful in provide heat resistance against oxidation, wear resistance, thermal insulation, and corrosion resistance of substrates. The sol-gel precursor solution comprises a mixture of a monomeric organoalkoxysilane, a metal alkoxide M(OR).sub.n (wherein M is Ti, Zr, Ge or Al; R is CH.sub.3, C.sub.2 H.sub.5 or C.sub.3 H.sub.7 ; and n is 3 or 4), methanol, water, HCl and NaOH. The invention provides a sol-gel solution, and a method of use thereof, which can be applied and processed at low temperatures (i.e., <1000.degree. C.). The substrate can be coated by immersing it in the above mentioned solution at ambient temperature. The substrate is then withdrawn from the solution. Next, the coated substrate is heated for a time sufficient and at a temperature sufficient to yield a solid coating. The coated substrate is then heated for a time sufficient, and temperature sufficient to produce a polymetallicsiloxane coating.

  6. Solid-gel precursor solutions and methods for the fabrication of polymetallicsiloxane coating films

    DOEpatents

    Toshifumi Sugama.

    1993-04-06

    Solutions and preparation methods necessary for the fabrication of metal oxide cross-linked polysiloxane coating films are disclosed. The films are useful in provide heat resistance against oxidation, wear resistance, thermal insulation, and corrosion resistance of substrates. The sol-gel precursor solution comprises a mixture of a monomeric organoalkoxysilane, a metal alkoxide M(OR)[sub n] (wherein M is Ti, Zr, Ge or Al; R is CH[sub 3], C[sub 2]H[sub 5] or C[sub 3]H[sub 7]; and n is 3 or 4), methanol, water, HCl and NaOH. The invention provides a sol-gel solution, and a method of use thereof, which can be applied and processed at low temperatures (i.e., < 1,000 C.). The substrate can be coated by immersing it in the above mentioned solution at ambient temperature. The substrate is then withdrawn from the solution. Next, the coated substrate is heated for a time sufficient and at a temperature sufficient to yield a solid coating. The coated substrate is then heated for a time sufficient, and temperature sufficient to produce a polymetallicsiloxane coating.

  7. Determination of copper in tap water using solid-phase spectrophotometry

    NASA Technical Reports Server (NTRS)

    Hill, Carol M.; Street, Kenneth W.; Philipp, Warren H.; Tanner, Stephen P.

    1994-01-01

    A new application of ion exchange films is presented. The films are used in a simple analytical method of directly determining low concentrations of Cu(2+) in aqueous solutions, in particular, drinking water. The basis for this new test method is the color and absorption intensity of the ion when adsorbed onto the film. The film takes on the characteristic color of the adsorbed cation, which is concentrated on the film by many orders of magnitude. The linear relationship between absorbance (corrected for variations in film thickness) and solution concentration makes the determinations possible. These determinations agree well with flame atomic absorption determinations.

  8. Solid-phase electrochemical reduction of graphene oxide films in alkaline solution

    NASA Astrophysics Data System (ADS)

    Basirun, Wan J.; Sookhakian, Mehran; Baradaran, Saeid; Mahmoudian, Mohammad R.; Ebadi, Mehdi

    2013-09-01

    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.

  9. Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser

    PubMed Central

    Khazaeinezhad, Reza; Hosseinzadeh Kassani, Sahar; Paulson, Bjorn; Jeong, Hwanseong; Gwak, Jiyoon; Rotermund, Fabian; Yeom, Dong-Il; Oh, Kyunghwan

    2017-01-01

    A new extraordinary application of deoxyribonucleic acid (DNA) thin-solid-film was experimentally explored in the field of ultrafast nonlinear photonics. Optical transmission was investigated in both linear and nonlinear regimes for two types of DNA thin-solid-films made from DNA in aqueous solution and DNA-cetyltrimethylammonium chloride (CTMA) in an organic solvent. Z-scan measurements revealed a high third-order nonlinearity with n2 exceeding 10−9 at a wavelength of 1570 nm, for a nonlinarity about five orders of magnitude larger than that of silica. We also demonstrated ultrafast saturable absorption (SA) with a modulation depth of 0.43%. DNA thin solid films were successfully deposited on a side-polished optical fiber, providing an efficient evanescent wave interaction. We built an organic-inorganic hybrid all-fiber ring laser using DNA film as an ultrafast SA and using Erbium-doped fiber as an efficient optical gain medium. Stable transform-limited femtosecond soliton pulses were generated with full width half maxima of 417 fs for DNA and 323 fs for DNA-CTMA thin-solid-film SAs. The average output power was 4.20 mW for DNA and 5.46 mW for DNA-CTMA. Detailed conditions for DNA solid film preparation, dispersion control in the laser cavity and subsequent characteristics of soliton pulses are discussed, to confirm unique nonlinear optical applications of DNA thin-solid-film. PMID:28128340

  10. Investigation of Artificial Forced Cooling in the Bridgman Crystal Growth of Cadmium Zinc Telluride

    NASA Astrophysics Data System (ADS)

    Liu, Juncheng; Li, Jiao; Zhang, Guodong; Li, Changxing; Lennon, Craig; Sivananthan, Siva

    2007-08-01

    The effects of artificial forced cooling on the solid liquid interface and on solute segregation were investigated by modeling the vertical Bridgman method for the single-crystal growth of CdZnTe, taking into consideration effects such as increasing the axial outward heat flux from the crucible bottom, the radial outward heat flux from the crucible wall, and the carbon film thickness on the crucible inner wall. Axial artificially forced cooling noticeably increases convection and the temperature gradient in the melt next to the solid liquid interface, and substantially reduces interface concavity at the initial solidification stage. Interface concavity increases a little when the solidification proceeds further, however. Axial artificially forced cooling reduces radial solute segregation of the initial segment of the grown crystal and slightly increases the solute iso-concentration segment. Radial artificially forced cooling enhances melt convection substantially, affects solid liquid interface concavity only slightly, and hardly affects solute segregation in the grown crystal. Doubling the carbon film thickness weakens convection of the melt in front of the interface, substantially increases interface concavity, and hardly affects solute segregation in the grown crystal.

  11. Dielectric relaxation in epitaxial films of paraelectric-magnetic SrTiO3-SrMnO3 solid solution

    NASA Astrophysics Data System (ADS)

    Savinov, M.; Bovtun, V.; Tereshina-Chitrova, E.; Stupakov, A.; Dejneka, A.; Tyunina, M.

    2018-01-01

    Magneto-dielectric properties of (A2+)MnO3-type perovskites are attractive for applications and stimulate extensive studies of these materials. Here, the complex dielectric and magnetic responses are investigated as in epitaxial films of SrTi0.6Mn0.4O3, solid solution of paraelectric SrTiO3 and magnetic SrMnO3. The impedance and resonance measurements at frequencies of 10-2-1010 Hz and temperatures of 10-500 K reveal broad dielectric anomalies centered at 100-200 K, while the films are paramagnetic at all temperatures. Analysis shows polaronic electrical conductivity behind the observed behavior. Electron-phonon correlations, rather than spin-phonon correlations, are suggested to produce the apparent magneto-dielectric responses in many multiferroic manganites.

  12. Crystal growth of YBCO coated conductors by TFA MOD method

    NASA Astrophysics Data System (ADS)

    Yoshizumi, M.; Nakanishi, T.; Matsuda, J.; Nakaoka, K.; Sutoh, Y.; Izumi, T.; Shiohara, Y.

    2008-09-01

    The crystal growth mechanism of TFA (trifluoroacetates)-MOD (metal organic deposition) derived YBa 2Cu 3O y has been investigated to understand the process for higher production rates of the conversion process. YBCO films were prepared by TFA-MOD on CeO 2/Gd 2Zr 2O 7/Hastelloy C276 substrates. The growth rates of YBCO derived from Y:Ba:Cu = 1:2:3 and 1:1.5:3 starting solutions were investigated by XRD and TEM analyses. YBCO growth proceeds in two steps of the epitaxial one from the substrate and solid state reaction. The overall growth rate estimated from the residual amounts of BaF 2 with time measured by XRD is proportional to a square root of P(H 2O). The trend was independent of the composition of starting solutions, however, the growth rate obtained from the 1:1.5:3 starting solutions was high as twice as that of 1:2:3, which could not be explained by the composition of BaF 2 included in the precursor films. On the other hand, the growth rate measured from the thickness of the YBCO quenched film at the same process time showed no difference between the samples of 1:2:3 and 1:1.5:3. The epitaxial growth rate of 1:1.5:3 was also the same as the overall growth rate of that, which means there was no solid state reaction to form YBCO after the epitaxial growth. The YBCO growth mechanism was found to be as follows; YBCO crystals nucleate at the surface of the substrate and epitaxially grow into the precursor by layer-by-layer by a manner with trapping unreacted particles. The amounts of YBCO and the unreacted particles trapped in the YBCO film are independent of the composition of the starting solution in this step. Unreacted particles react with each other to form YBCO and pores by solid state reaction as long as there is BaF 2 left in the film. The Ba-poor starting solution gives little BaF 2 left in the film and so the solid state reaction is completed within a short time, resulting in the fast overall growth rate.

  13. Measurement of interactions between solid particles, liquid droplets, and/or gas bubbles in a liquid using an integrated thin film drainage apparatus.

    PubMed

    Wang, Louxiang; Sharp, David; Masliyah, Jacob; Xu, Zhenghe

    2013-03-19

    A novel device was designed to measure drainage dynamics of thin liquid films confined between a solid particle, an immiscible liquid droplet, and/or gas bubble. Equipped with a bimorph force sensor, a computer-interfaced video capture, and a data acquisition system, the newly designed integrated thin film drainage apparatus (ITFDA) allows for the direct and simultaneous measurements of force barrier, true film drainage time, and bubble/droplet deformation under a well-controlled external force, receding and advancing contact angles, capillary force, and adhesion (detachment) force between an air bubble or oil droplet and a solid, a liquid, or an air bubble in an immiscible liquid. Using the diaphragm of a high-frequency speaker as the drive mechanism for the air bubble or oil droplet attached to a capillary tube, this newly designed device is capable of measuring forces over a wide range of hydrodynamic conditions, including bubble approach and retract velocities up to 50 mm/s and displacement range up to 1 mm. The results showed that the ITFDA was capable of measuring hydrodynamic resistance, film drainage time, and other important physical parameters between air bubbles and solid particles in aqueous solutions. As an example of illustrating the versatility, the ITFDA was also applied to other important systems such as interactions between air bubble and oil droplet, two air bubbles, and two oil droplets in an aqueous solution.

  14. Solid state thin film battery having a high temperature lithium alloy anode

    DOEpatents

    Hobson, David O.

    1998-01-01

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

  15. Simulation of Patterned Glass Film Formation in the Evaporating Colloidal Liquid under IR Heating

    NASA Astrophysics Data System (ADS)

    Kolegov, K. S.

    2018-02-01

    The paper theoretically studies the method of evaporative lithography in combination with external infrared heating. This method makes it possible to form solid microstructures of the required relief shape as a result of evaporation of the liquid film of the colloidal solution under the mask. The heated particles are sintered easier, so there are no cracks in the obtained structure, unlike the structure obtained employing the standard method of evaporative lithography. The paper puts forward a modification of the mathematical model which allows to describe not only heat and mass transfer at the initial stage of the process, but also the phase transition of colloidal solution into glass. Aqueous latex is taken as an example. The resulting final form of solid film is in good agreement with the experimental data of other authors.

  16. Solid state thin film battery having a high temperature lithium alloy anode

    DOEpatents

    Hobson, D.O.

    1998-01-06

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures. 2 figs.

  17. Determination of the activity concentration of a 238 Pu solution by the defined solid angle method utilizing a novel dual diaphragm-detector assembly.

    PubMed

    Aguiar, Julio C; Galiano, Eduardo; Arenillas, Pablo

    2005-08-01

    The activity concentration of a (238)Pu solution was measured by the determined solid angle method employing a novel dual diaphragm-detector assembly, which has been previously described. Due to the special requirements of the detector, a new type of source holder was developed, which consisted of sandwiching the radioisotope between two organic films called VYNS. It was experimentally demonstrated that the VYNS films do not absorb alpha particles, but reduce their energy by an average of 22 keV.A mean activity concentration for (238)Pu of 359.10+/-0.8 kBq/g was measured.

  18. Overcoming Short-Circuit in Lead-Free CH3NH3SnI3 Perovskite Solar Cells via Kinetically Controlled Gas-Solid Reaction Film Fabrication Process.

    PubMed

    Yokoyama, Takamichi; Cao, Duyen H; Stoumpos, Constantinos C; Song, Tze-Bin; Sato, Yoshiharu; Aramaki, Shinji; Kanatzidis, Mercouri G

    2016-03-03

    The development of Sn-based perovskite solar cells has been challenging because devices often show short-circuit behavior due to poor morphologies and undesired electrical properties of the thin films. A low-temperature vapor-assisted solution process (LT-VASP) has been employed as a novel kinetically controlled gas-solid reaction film fabrication method to prepare lead-free CH3NH3SnI3 thin films. We show that the solid SnI2 substrate temperature is the key parameter in achieving perovskite films with high surface coverage and excellent uniformity. The resulting high-quality CH3NH3SnI3 films allow the successful fabrication of solar cells with drastically improved reproducibility, reaching an efficiency of 1.86%. Furthermore, our Kelvin probe studies show the VASP films have a doping level lower than that of films prepared from the conventional one-step method, effectively lowering the film conductivity. Above all, with (LT)-VASP, the short-circuit behavior often obtained from the conventional one-step-fabricated Sn-based perovskite devices has been overcome. This study facilitates the path to more successful Sn-perovskite photovoltaic research.

  19. Automated electrochemical synthesis and photoelectrochemical characterization of Zn1-xCo(x)O thin films for solar hydrogen production.

    PubMed

    Jaramillo, Thomas F; Baeck, Sung-Hyeon; Kleiman-Shwarsctein, Alan; Choi, Kyoung-Shin; Stucky, Galen D; McFarland, Eric W

    2005-01-01

    High-throughput electrochemical methods have been developed for the investigation of Zn1-xCo(x)O films for photoelectrochemical hydrogen production from water. A library of 120 samples containing 27 different compositions (0

  20. Spectroscopic and Structural Studies of a Surface Active Porphyrin in Solution and in Langmuir-Blodgett Films.

    PubMed

    Ponce, Concepcion P; Araghi, Hessamaddin Younesi; Joshi, Neeraj K; Steer, Ronald P; Paige, Matthew F

    2015-12-22

    Controlling aggregation of the dual sensitizer-emitter (S-E) zinc tetraphenylporphyrin (ZnTPP) is an important consideration in solid state noncoherent photon upconversion (NCPU) applications. The Langmuir-Blodgett (LB) technique is a facile means of preparing ordered assemblies in thin films to study distance-dependent energy transfer processes in S-E systems and was used in this report to control the aggregation of a functionalized ZnTPP on solid substrates. This was achieved by synthetic addition of a short polar tail to one of the pendant phenyl rings in ZnTPP in order to make it surface active. The surface active ZnTPP derivative formed rigid films at the air-water interface and exhibited mean molecular areas consistent with approximately vertically oriented molecules under appropriate film compression. A red shift in the UV-vis spectra as well as unquenched fluorescence emission of the LB films indicated formation of well-ordered aggregates. However, NCPU, present in the solution phase, was not observed in the LB films, suggesting that NCPU from ZnTPP as a dual S-E required not just a controlled aggregation but a specific orientation of the molecules with respect to each other.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saidov, A. S., E-mail: amin@uzsci.net; Usmonov, Sh. N., E-mail: sh-usmonov@rambler.ru; Saidov, M. S.

    (Si{sub 2}){sub 1−x−y}(Ge{sub 2}){sub x}(GaAs){sub y} substitutional solid solutions (0 ≤ x ≤ 0.91, 0 ≤ y ≤ 0.94) are grown by liquid-phase epitaxy from a Pb-based solution-melt on Si substrates with the (111) crystallographic orientation. The chemical composition of the epitaxial films is studied by X-rays probe microanalysis, and the distribution profile of solid solution components is determined. Spectral dependences of the photosensitivity and photoluminescence of the n-Si-p(Si{sub 2}){sub 1−x−y}(Ge{sub 2}){sub x}(GaAs){sub y} heterostructures are studied at room and liquid-nitrogen temperatures. Two maxima are found in the photoluminescence spectra of the (Si{sub 2}){sub 1−x−y}(Ge{sub 2}){sub x}(GaAs){sub y} films (0more » ≤ x ≤ 0.91, 0 ≤ y ≤ 0.94) against the background of a broad emission spectrum. The fundamental maximum with an energy of 1.45 eV is caused by the band-to-band recombination of solid solution carriers, and an additional maximum with an energy of 1.33 eV is caused by the recombination of carriers with the participation of impurity levels of the Si-Si bond (Si{sub 2} is covalently coupled with the tetrahedral lattice of the solid solution host)« less

  2. Bioavailable cadmium during the bioremediation of phenanthrene-contaminated soils using the diffusive gradients in thin-film technique.

    PubMed

    Amezcua-Allieri, M A; Rodríguez-Vázquez, R

    2006-03-01

    To study the impact of fungal bioremediation of phenanthrene on trace cadmium solid-solution fluxes and solution phase concentration. The bioremediation of phenanthrene in soils was performed using the fungus Penicillium frequentans. Metal behaviour was evaluated by the techniques of diffusive gradient in thin-films (DGT) and filtration. Fluxes of cadmium (Cd) show a significant (P < 0.002) increase after the start of bioremediation, indicating that the bioremediation process itself releases significant amount of Cd into solution from the soil solid-phase. Unlike DGT devices, the solution concentration from filtration shows a clear bimodal distribution. We postulate that the initial action of the fungi is most likely to breakdown the surface of the solid phase to smaller, 'solution-phase' material (<0.45 microm) leading to a peak in Cd concentration in solution. Phenanthrene removal from soils by bioremediation ironically results in the mobilization of another toxic pollutant (Cd). Bioremediation of organic pollutants in contaminated soil will likely lead to large increases in the mobilization of toxic metals, increasing metal bio-uptake and incorporation into the wider food chain. Bioremediation strategies need to account for this behaviour and further research is required both to understand the generality of this behaviour and the operative mechanisms.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isfahani, RN; Moghaddam, S

    An experimental study on absorption characteristics of water vapor into a thin lithium bromide (LiBr) solution flow is presented. The LiBr solution flow is constrained between a superhydrophobic vapor permeable wall and a solid surface that removes the heat of absorption. As opposed to conventional falling film absorbers, in this configuration, the solution film thickness and velocity can be controlled independently to enhance the absorption rate. The effects of water vapor pressure, cooling surface temperature, solution film thickness, and solution flow velocity on the absorption rate are studied. An absorption rate of approximately 0.006 kg/m(2) s was measured at amore » LiBr solution channel thickness and flow velocity of 100 mu m and 5 mm/s, respectively. The absorption rate increased linearly with the water vapor driving potential at the test conditions of this study. It was demonstrated that decreasing the solution film thickness and increasing the solution velocity enhance the absorption rate. The high absorption rate and the inherently compact form of the proposed,absorber facilitate development of compact small-scale waste heat or solar-thermal driven cooling systems. Published by Elsevier Ltd.« less

  4. Some photophysical properties of new oligomer obtained from anodic oxidation of 4,4‧-dimethoxychalcone

    NASA Astrophysics Data System (ADS)

    Ghomrasni, S.; Aribi, I.; Chemek, M.; Said, A. Haj; Alimi, K.

    2018-04-01

    Some photopysical properties of a new oligomer obtained from the anodic oxidation of the 4,4‧-dimethoxy-chalcone were investigated using different and complementary techniques. Firstly, TGA analysis and X-Ray diffraction experiments showed that the oligomer is thermally stable up to 500 K and partially organized at the solid state, respectively. Secondly, the optical properties of the oligomer were studied in solution and in the solid state. The optical band gap was estimated to be 3.17 eV in solution state and 2.70 eV in film state. What's more, the fluorescence decay is determined showing a considerably faster in the film state (0.183 ns) than in solution state (1.606 ns), due to the rapid non-radiative decay at inter-chain trap sites.

  5. Effects of crystallization on structural and dielectric properties of thin amorphous films of (1 - x)BaTiO3-xSrTiO3 (x=0-0.5, 1.0)

    NASA Astrophysics Data System (ADS)

    Kawano, H.; Morii, K.; Nakayama, Y.

    1993-05-01

    The possibilities for fabricating solid solutions of (Ba1-x,Srx)TiO3 (x≤0.5,1.0) by crystallization of amorphous films and for improving their dielectric properties by adjusting the Sr content were investigated. Thin amorphous films were prepared from powder targets consisting of mixtures of BaTiO3 and SrTiO3 by sputtering with a neutralized Ar-ion beam. The amorphous films crystallized into (Ba1-x, Srx)TiO3 solid solutions with a cubic perovskite-type structure after annealing in air at 923 K for more than 1 h. The Debye-type dielectric relaxation was observed for the amorphous films, whereas the crystallized films showed paraelectric behavior. The relative dielectric constants were of the order of 20 for the amorphous samples, but increased greatly after crystallization to about 60-200, depending on the composition; a larger increase in the dielectric constant was observed in the higher Sr content films, in the range x≤0.5, which could be correlated with an increase in the grain size of the crystallites. The crystallization processes responsible for the difference in the grain size are discussed based on the microstructural observations.

  6. Novel Organo-Soluble Optically Tunable Chiral Hybrid Gold Nanorods

    DTIC Science & Technology

    2014-12-04

    in a polydimethylsiloxane film, the area with gold nanoparticles showed significant quenching effect under a UV light but appeared visually...Schematic depiction of the molecular state of PDI molecules mixing with GNP1 in the solution and solid states. Middle: Picture of a PDMS film containing a

  7. Simultaneous measurement of dynamic force and spatial thin film thickness between deformable and solid surfaces by integrated thin liquid film force apparatus.

    PubMed

    Zhang, Xurui; Tchoukov, Plamen; Manica, Rogerio; Wang, Louxiang; Liu, Qingxia; Xu, Zhenghe

    2016-11-09

    Interactions involving deformable surfaces reveal a number of distinguishing physicochemical characteristics that do not exist in interactions between rigid solid surfaces. A unique fully custom-designed instrument, referred to as integrated thin liquid film force apparatus (ITLFFA), was developed to study the interactions between one deformable and one solid surface in liquid. Incorporating a bimorph force sensor with interferometry, this device allows for the simultaneous measurement of the time-dependent interaction force and the corresponding spatiotemporal film thickness of the intervening liquid film. The ITLFFA possesses the specific feature of conducting measurement under a wide range of hydrodynamic conditions, with a displacement velocity of deformable surfaces ranging from 2 μm s -1 to 50 mm s -1 . Equipped with a high speed camera, the results of a bubble interacting with hydrophilic and partially hydrophobic surfaces in aqueous solutions indicated that ITLFFA can provide information on interaction forces and thin liquid film drainage dynamics not only in a stable film but also in films of the quick rupture process. The weak interaction force was extracted from a measured film profile. Because of its well-characterized experimental conditions, ITLFFA permits the accurate and quantitative comparison/validation between measured and calculated interaction forces and temporal film profiles.

  8. Hydration of AMP and ATP molecules in aqueous solution and solid films.

    PubMed

    Faizullin, Dzhigangir; Zakharchenko, Nataliya; Zuev, Yuriy; Puzenko, Alexander; Levy, Evgeniya; Feldman, Yuri

    2013-11-20

    Water enables life and plays a critical role in biology. Considered as a versatile and adaptive component of the cell, water engages a wide range of biomolecular interactions. An organism can exist and function only if its self-assembled molecular structures are hydrated. It was shown recently that switching of AMP/ATP binding to the insulin-independent glucose transporter Human Erythrocyte Glucose Transport Protein (GLUT1) may greatly influence the ratio of bulk and bound water during regulation of glucose uptake by red blood cells. In this paper, we present the results on the hydration properties of AMP/ATP obtained by means of dielectric spectroscopy in aqueous solution and for fully ionized forms in solid amorphous films with the help of gravimetric studies.

  9. Solid surface dependent layering of self-arranged structures with fibril-like assemblies of alpha-synuclein

    NASA Astrophysics Data System (ADS)

    Bukauskas, V.; Šetkus, A.; Šimkienė, I.; Tumėnas, S.; Kašalynas, I.; Rėza, A.; Babonas, J.; Časaitė, V.; Povilonienė, S.; Meškys, R.

    2012-03-01

    In present work the formation of hybrid constructions composed of alpha-synuclein-based colloidal solutions on various solid surfaces (silica coated Si, mica, CaF2 and KBr) is investigated by scanning probe microscopy, spectrocopic ellipsometry, Fourier transformed infrared spectroscopy and vibrational circular dichroism. Prior to the modification of the solids, the proteins were intentionally fibrilled under special conditions. It is proved that the multi-component coatings are self-arranged on the solid substrates. Depending on the substrate material, the interface films consisting of individual biomolecules can be detected on the solid surfaces. The coatings with fibril-like alpha-synuclein objects can be obtained on solid surfaces with negligible or comparatively thick interface films. The results are interpreted in terms of the charged surface-controlled electrostatic interaction between the substrate and the biomolecules. Solubility of solids is considered in this interpretation.

  10. Overcoming Short-Circuit in Lead-Free CH 3 NH 3 SnI 3 Perovskite Solar Cells via Kinetically Controlled Gas–Solid Reaction Film Fabrication Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoyama, Takamichi; Cao, Duyen H.; Stoumpos, Constantinos C.

    2016-02-17

    The development of Sn-based perovskite solar cells has been challenging because devices often show short-circuit behavior due to poor morphologies and undesired electrical properties of the thin films. A low-temperature vapor-assisted solution process (LT-VASP) has been employed as a novel kinetically controlled gas–solid reaction film fabrication method to prepare lead-free CH3NH3SnI3 thin films. We show that the solid SnI2 substrate temperature is the key parameter in achieving perovskite films with high surface coverage and excellent uniformity. The resulting high-quality CH3NH3SnI3 films allow the successful fabrication of solar cells with drastically improved reproducibility, reaching an efficiency of 1.86%. Furthermore, our Kelvinmore » probe studies show the VASP films have a doping level lower than that of films prepared from the conventional one-step method, effectively lowering the film conductivity. Above all, with (LT)-VASP, the short-circuit behavior often obtained from the conventional one-step-fabricated Sn-based perovskite devices has been overcome. This study facilitates the path to more successful Sn-perovskite photovoltaic research.« less

  11. Influence of Dy in solid solution on the degradation behavior of binary Mg-Dy alloys in cell culture medium.

    PubMed

    Yang, Lei; Ma, Liangong; Huang, Yuanding; Feyerabend, Frank; Blawert, Carsten; Höche, Daniel; Willumeit-Römer, Regine; Zhang, Erlin; Kainer, Karl Ulrich; Hort, Norbert

    2017-06-01

    Rare earth element Dy is one of the promising alloying elements for magnesium alloy as biodegradable implants. To understand the effect of Dy in solid solution on the degradation of Mg-Dy alloys in simulated physiological conditions, the present work studied the microstructure and degradation behavior of Mg-Dy alloys in cell culture medium. It is found the corrosion resistance enhances with the increase of Dy content in solid solution in Mg. This can be attributed to the formation of a relatively more corrosion resistant Dy-enriched film which decreases the anodic dissolution of Mg. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Phase Behaviour and Miscibility Studies of Collagen/Silk Fibroin Macromolecular System in Dilute Solutions and Solid State.

    PubMed

    Ghaeli, Ima; de Moraes, Mariana A; Beppu, Marisa M; Lewandowska, Katarzyna; Sionkowska, Alina; Ferreira-da-Silva, Frederico; Ferraz, Maria P; Monteiro, Fernando J

    2017-08-18

    Miscibility is an important issue in biopolymer blends for analysis of the behavior of polymer pairs through the detection of phase separation and improvement of the mechanical and physical properties of the blend. This study presents the formulation of a stable and one-phase mixture of collagen and regenerated silk fibroin (RSF), with the highest miscibility ratio between these two macromolecules, through inducing electrostatic interactions, using salt ions. For this aim, a ternary phase diagram was experimentally built for the mixtures, based on observations of phase behavior of blend solutions with various ratios. The miscibility behavior of the blend solutions in the miscible zones of the phase diagram was confirmed quantitatively by viscosimetric measurements. Assessing the effects of biopolymer mixing ratio and salt ions, before and after dialysis of blend solutions, revealed the importance of ion-specific interactions in the formation of coacervate-based materials containing collagen and RSF blends that can be used in pharmaceutical, drug delivery, and biomedical applications. Moreover, the conformational change of silk fibroin from random coil to beta sheet, in solution and in the final solid films, was detected by circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR), respectively. Scanning electron microscopy (SEM) exhibited alterations of surface morphology for the biocomposite films with different ratios. Surface contact angle measurement illustrated different hydrophobic properties for the blended film surfaces. Differential scanning calorimetry (DSC) showed that the formation of the beta sheet structure of silk fibroin enhances the thermal stability of the final blend films. Therefore, the novel method presented in this study resulted in the formation of biocomposite films whose physico-chemical properties can be tuned by silk fibroin conformational changes by applying different component mixing ratios.

  13. Effect of Halide Composition on the Photochemical Stability of Perovskite Photovoltaic Materials.

    PubMed

    Misra, Ravi K; Ciammaruchi, Laura; Aharon, Sigalit; Mogilyansky, Dmitry; Etgar, Lioz; Visoly-Fisher, Iris; Katz, Eugene A

    2016-09-22

    The photochemical stability of encapsulated films of mixed halide perovskites with a range of MAPb(I 1-x Br x ) 3 (MA=methylammonium) compositions (solid solutions) was investigated under accelerated stressing using concentrated sunlight. The relevance of accelerated testing to standard operational conditions of solar cells was confirmed by comparison to degradation experiments under outdoor sunlight exposure. We found that MAPbBr 3 films exhibited no degradation, while MAPbI 3 and mixed halide MAPb(I 1-x Br x ) 3 films decomposed yielding crystallization of inorganic PbI 2 accompanied by degradation of the perovskite solar light absorption, with faster absorption degradation in mixed halide films. The crystal coherence length was found to correlate with the stability of the films. We postulate that the introduction of Br into the mixed halide solid solution stressed its structure and induced more structural defects and/or grain boundaries compared to pure halide perovskites, which might be responsible for the accelerated degradation. Hence, the cause for accelerated degradation may be the increased defect density rather than the chemical composition of the perovskite materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Electrical potential modulation of dynamic film properties of aqueous surfactant solutions through a nanogap

    NASA Astrophysics Data System (ADS)

    Xie, Guoxin; Luo, Jianbin; Liu, Shuhai; Guo, Dan

    2011-01-01

    The effect of external electrical potentials (EEPs) on aqueous surfactant films nanoconfined in a ball-plate configuration has been investigated by measuring the dynamic film thickness with an interferometer. Experimental results indicate that the film formation properties of the surfactant solutions in the nanogap under applied EEPs are strongly dependent on the interfacial adsorbed surfactant structure. Effective control over the film formation properties by applying EEPs depends on the signs of the charges on the solid surface and the surfactant headgroups, the surfactant concentration, and the magnitude of EEPs. Remarkable alterations of the film formation properties in the nanogap by EEPs can be observed except when the surface charge is the same in sign as the headgroups and the surfactant concentration is above the critical micelle concentration. Mechanisms of these phenomena have been discussed in this work.

  15. Synthesis, vapor growth, polymerization, and characterization of thin films of novel diacetylene derivatives of pyrrole. The use of computer modeling to predict chemical and optical properties of these diacetylenes and poly(diacetylenes)

    NASA Technical Reports Server (NTRS)

    Paley, M. S.; Frazier, D. O.; Abeledeyem, H.; Mcmanus, S. P.; Zutaut, S. E.

    1992-01-01

    In the present work two diacetylene derivatives of pyrrole which are predicted by semiempirical AM1 calculations to have very different properties, are synthesized; the polymerizability of these diacetylenes in the solid state is determined, and the results are compared to the computer predictions. Diacetylene 1 is novel in that the monomer is a liquid at room temperature; this may allow for the possibility of polymerization in the liquid state as well as the solid state. Thin poly(diacetylene) films are obtained from compound 1 by growing films of the monomer using vapor deposition and polymerizing with UV light; these films are then characterized. Interestingly, while the poly(diacetylene) from 1 does not possess good nonlinear optical properties, the monomer exhibits very good third-order effects (phase conjugation) in solution. Dilute acetone solutions of the monomer 1 give intensity-dependent refractive indices on the order of 10 exp -6 esu; these are 10 exp 6 times better than for CS2.

  16. Hydrodynamic Coating of a Fiber

    NASA Astrophysics Data System (ADS)

    Quéré, D.; de Ryck, A.

    We discuss how a solid (especially a fiber) is coated when drawn out of a bath of liquid. 1. For slow withdrawals out of pure viscous liquids, the data are found to be fitted by the famous Landau law: then, the coating results from a balance between viscosity and capillarity. For quicker withdrawals, the thickness of the entrained film suddenly diverges, at a velocity on order 1 m/s. Inertia is shown to be responsible for this effect. At still higher velocities, the thickness decreases with the velocity because the solid can only entrain the viscous boundary layer. 2. For complex fluids, surface effects are found in the low velocity regime: out of a surfactant solution, films are thicker than predicted by Landau, by a factor of order 2. The thickening factor is shown to be fixed by the Marangoni flow due to the presence of surfactants; out of an emulsion, the film can be enriched with oil , which can be understood by a simple model of capture; out of a polymer solution, a strong swelling of the film is observed if normal stresses are present. Hence, the problem has two families of solution: (i) at low velocity, the thickness of the layer is fixed by a balance between viscous and surface forces and thus is sensitive to the presence of surfactants, or other heterogeneities; (ii) at high velocity, inertia must be considered and the film thickness is fixed by the bulk properties of the liquid (density and viscosity). In these regimes, it is not affected by the presence of surfactants in the bath. Nous décrivons le dépôt de liquide sur un solide (le plus souvent une fibre) qui advient quand on tire ce solide d'un bain. 1. Si le retrait se fait lentement hors d'un liquide pur et visqueux, les données expérimentales suivent la loi de Landau : le dépôt résulte d'un compromis entre forces visqueuses et forces capillaires. Pour des retraits plus rapides, on observe que l'épaisseur du dépôt diverge, pour une vitesse de l'ordre du mètre par seconde. Nous montrons comment l'inertie du fluide engendre un tel effet. Plus vite encore, l'épaisseur décroît lentement avec la vitesse, le solide ne parvenant à entraîner avec lui que la couche limite visqueuse qu'il a mis en mouvement. 2. Pour des liquides complexes, des effets de surface sont observés dans le régime basse vitesse : hors d'une solution de tensioactifs, les films sont plus épais que ce que prévoit la loi de Landau, d'un facteur 2 environ. Nous montrons que l'épaississement est déterminé par l'écoulement Marangoni dû à la présence des tensioactifs ; hors d'une émulsion, le film peut être enrichi en huile, ce que l'on peut interpréter à l'aide d'un modèle de capture ; hors d'une solution de polymère, on observe un fort gonflement du film dès que la solution est semi-diluée, à cause de l'effet des contraintes normales (effet Weissenberg). Le problème étudié a donc deux familles de solution : (i) à basse vitesse, le dépôt résulte d'un compromis entre viscosité et capillarité, si bien qu'il est sensible à la présence dans le bain d'hétérogénéités (tensioactifs, gouttes d'huile) ; (ii) à plus grande vitesse, l'inertie doit être prise en compte et l'épaisseur du film est alors liée aux propriétés de volume du liquide (densité et viscosité).

  17. Control of silicification by genetically engineered fusion proteins: silk-silica binding peptides.

    PubMed

    Zhou, Shun; Huang, Wenwen; Belton, David J; Simmons, Leo O; Perry, Carole C; Wang, Xiaoqin; Kaplan, David L

    2015-03-01

    In the present study, an artificial spider silk gene, 6mer, derived from the consensus sequence of Nephila clavipes dragline silk gene, was fused with different silica-binding peptides (SiBPs), A1, A3 and R5, to study the impact of the fusion protein sequence chemistry on silica formation and the ability to generate a silk-silica composite in two different bioinspired silicification systems: solution-solution and solution-solid. Condensed silica nanoscale particles (600-800 nm) were formed in the presence of the recombinant silk and chimeras, which were smaller than those formed by 15mer-SiBP chimeras, revealing that the molecular weight of the silk domain correlated to the sizes of the condensed silica particles in the solution system. In addition, the chimeras (6mer-A1/A3/R5) produced smaller condensed silica particles than the control (6mer), revealing that the silica particle size formed in the solution system is controlled by the size of protein assemblies in solution. In the solution-solid interface system, silicification reactions were performed on the surface of films fabricated from the recombinant silk proteins and chimeras and then treated to induce β-sheet formation. A higher density of condensed silica formed on the films containing the lowest β-sheet content while the films with the highest β-sheet content precipitated the lowest density of silica, revealing an inverse correlation between the β-sheet secondary structure and the silica content formed on the films. Intriguingly, the 6mer-A3 showed the highest rate of silica condensation but the lowest density of silica deposition on the films, compared with 6mer-A1 and -R5, revealing antagonistic crosstalk between the silk and the SiBP domains in terms of protein assembly. These findings offer a path forward in the tailoring of biopolymer-silica composites for biomaterial related needs. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. CdTe1-x S x (x  ⩽  0.05) thin films synthesized by aqueous solution deposition and annealing

    NASA Astrophysics Data System (ADS)

    Pruzan, Dennis S.; Hahn, Carina E.; Misra, Sudhajit; Scarpulla, Michael A.

    2017-11-01

    While CdS thin films are commonly deposited from aqueous solutions, CdTe thin films are extremely difficult to deposit directly from aqueous solution. In this work, we report on polycrystalline CdTe1-x S x thin films synthesized via deposition from aqueous precursor solutions followed by annealing treatments and on their physical properties. The deposition method uses spin-coating of alternating Cd2+ and Te2- aqueous solutions and rinse steps to allow formation of the films but to shear off excess reactants and poorly-bonded solids. Films are then annealed in the presence of CdCl2 as is commonly done for CdTe photovoltaic absorber layers deposited by any means. Scanning electron microscopy (SEM) reveals low void fractions and grain sizes up to 4 µm and x-ray diffraction (XRD) shows that the films are primarily cubic CdTe1-x S x (x  ⩽  0.05) with random crystallographic orientation. Optical transmission yields bandgap absorption consistent with a CdTe1-x S x dilute alloy and low-temperature photoluminescence (PL) consists of an emission band centered at 1.35 eV consistent with donor-acceptor pair (DAP) transitions in CdTe1-x S x . Together, the crystalline quality and PL yield from films produced by this method represent an important step towards electroless, ligand-free solution processed CdTe and related alloy thin films suitable for optoelectronic device applications such as thin film heterojunction or nanodipole-based photovoltaics.

  19. Phonon scattering mechanisms dictating the thermal conductivity of lead zirconate titanate (PbZr 1- xTi xO 3) thin films across the compositional phase diagram

    DOE PAGES

    Foley, Brian M.; Paisley, Elizabeth A.; DiAntonio, Christopher; ...

    2017-05-23

    This paper represents a thorough investigation of the thermal conductivity (κ) in both thin film and bulk PbZr 1–xTi xO 3 (PZT) across the compositional phase diagram. Given the technological importance of PZT as a superb piezoelectric and ferroelectric material in devices and systems impacting a wide array of industries, this research serves to fill the gap in knowledge regarding the thermal properties. The thermal conductivities of both thin film and bulk PZT are found to vary by a considerable margin as a function of composition x. Additionally, we observe a discontinuity in κ in the vicinity of the morphotropicmore » phase boundary (MPB, x = 0.48) where there is a 20%–25% decrease in κ in our thin film data, similar to that found in literature data for bulk PZT. The comparison between bulk and thin film materials highlights the sensitivity of κ to size effects such as film thickness and grain size even in disordered alloy/solid-solution materials. A model for the thermal conductivity of PZT as a function of composition (κ(x)) is presented, which enables the application of the virtual crystal approximation for alloy-type material systems with very different crystals structures, resulting in differing temperature trends for κ. We show that in the case of crystalline solid-solutions where the thermal conductivity of one of the parent materials exhibits glass-like temperature trends the compositional dependence of thermal conductivity is relatively constant for most values of x. Finally, this is in stark contrast with the typical trends of thermal conductivity with x in alloys, where the thermal conductivity increases dramatically as the composition of the alloy or solid-solution approaches that of a pure parent materials (i.e., as x = 0 or 1).« less

  20. Phonon scattering mechanisms dictating the thermal conductivity of lead zirconate titanate (PbZr 1- xTi xO 3) thin films across the compositional phase diagram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foley, Brian M.; Paisley, Elizabeth A.; DiAntonio, Christopher

    This paper represents a thorough investigation of the thermal conductivity (κ) in both thin film and bulk PbZr 1–xTi xO 3 (PZT) across the compositional phase diagram. Given the technological importance of PZT as a superb piezoelectric and ferroelectric material in devices and systems impacting a wide array of industries, this research serves to fill the gap in knowledge regarding the thermal properties. The thermal conductivities of both thin film and bulk PZT are found to vary by a considerable margin as a function of composition x. Additionally, we observe a discontinuity in κ in the vicinity of the morphotropicmore » phase boundary (MPB, x = 0.48) where there is a 20%–25% decrease in κ in our thin film data, similar to that found in literature data for bulk PZT. The comparison between bulk and thin film materials highlights the sensitivity of κ to size effects such as film thickness and grain size even in disordered alloy/solid-solution materials. A model for the thermal conductivity of PZT as a function of composition (κ(x)) is presented, which enables the application of the virtual crystal approximation for alloy-type material systems with very different crystals structures, resulting in differing temperature trends for κ. We show that in the case of crystalline solid-solutions where the thermal conductivity of one of the parent materials exhibits glass-like temperature trends the compositional dependence of thermal conductivity is relatively constant for most values of x. Finally, this is in stark contrast with the typical trends of thermal conductivity with x in alloys, where the thermal conductivity increases dramatically as the composition of the alloy or solid-solution approaches that of a pure parent materials (i.e., as x = 0 or 1).« less

  1. Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films.

    PubMed

    Ihlefeld, Jon F; Foley, Brian M; Scrymgeour, David A; Michael, Joseph R; McKenzie, Bonnie B; Medlin, Douglas L; Wallace, Margeaux; Trolier-McKinstry, Susan; Hopkins, Patrick E

    2015-03-11

    Dynamic control of thermal transport in solid-state systems is a transformative capability with the promise to propel technologies including phononic logic, thermal management, and energy harvesting. A solid-state solution to rapidly manipulate phonons has escaped the scientific community. We demonstrate active and reversible tuning of thermal conductivity by manipulating the nanoscale ferroelastic domain structure of a Pb(Zr0.3Ti0.7)O3 film with applied electric fields. With subsecond response times, the room-temperature thermal conductivity was modulated by 11%.

  2. Chromium and Ruthenium-Doped Zinc Oxide Thin Films for Propane Sensing Applications

    PubMed Central

    Gómez-Pozos, Heberto; González-Vidal, José Luis; Torres, Gonzalo Alberto; Rodríguez-Baez, Jorge; Maldonado, Arturo; de la Luz Olvera, María; Acosta, Dwight Roberto; Avendaño-Alejo, Maximino; Castañeda, Luis

    2013-01-01

    Chromium and ruthenium-doped zinc oxide (ZnO:Cr) and (ZnO:Ru) thin solid films were deposited on soda-lime glass substrates by the sol-gel dip-coating method. A 0.6 M solution of zinc acetate dihydrate dissolved in 2-methoxyethanol and monoethanolamine was used as basic solution. Chromium (III) acetylacetonate and Ruthenium (III) trichloride were used as doping sources. The Ru incorporation and its distribution profile into the films were proved by the SIMS technique. The morphology and structure of the films were studied by SEM microscopy and X-ray diffraction measurements, respectively. The SEM images show porous surfaces covered by small grains with different grain size, depending on the doping element, and the immersions number into the doping solutions. The sensing properties of ZnO:Cr and ZnO:Ru films in a propane (C3H8) atmosphere, as a function of the immersions number in the doping solution, have been studied in the present work. The highest sensitivity values were obtained for films doped from five immersions, 5.8 and 900, for ZnO:Cr and ZnO:Ru films, respectively. In order to evidence the catalytic effect of the chromium (Cr) and ruthenium (Ru), the sensing characteristics of undoped ZnO films are reported as well. PMID:23482091

  3. Influence of annealing time on pH sensitivity of ZnO sensing membrane for EGFET sensor

    NASA Astrophysics Data System (ADS)

    Zulkefle, M. A.; Rahman, R. A.; Yusoff, K. A.; Abdullah, W. F. H.; Rusop, M.; Herman, S. H.

    2018-05-01

    Solid-state materials have becomes essential in recent technological advancements. This study also utilized solid-state material but in form of thin films to sense hydrogen ions in solutions. Fabrication of ZnO thin film was done using sol-gel spin coating technique. In an attempt to increase the pH sensitivity of the produced film, prolonging of annealing time was done. It was found that the increase in annealing time from 15 minutes to 30 minutes had managed to improve the sensitivity by 4.35%. The optimum pH sensitivity and linearity obtained in this study is 50.40 mV/pH and 0.9911 respectively.

  4. Effect of heat transfer of melt/solid interface shape and solute segregation in Edge-Defined Film-Fed growth - Finite element analysis

    NASA Technical Reports Server (NTRS)

    Ettouney, H. M.; Brown, R. A.

    1982-01-01

    The effects of the heat transfer environment in Edge-Defined Film-Fed Growth on melt-solid interface shape and lateral dopant segregation are studied by finite-element analysis of two-dimensional models for heat and mass transfer. Heat transfer configurations are studied that correspond to the uniform surroundings assumed in previous models and to lowand high-speed growth systems. The maximum growth rate for a silicon sheet is calculated and the range of validity of one-dimensional heat transfer models is established. The lateral segregation that results from curvature of the solidification interface is calculated for two solutes, boron and aluminum. In this way, heat transfer is linked directly to the uniformity of the product crystal.

  5. Preparation, certification and validation of a stable solid spike of uranium and plutonium coated with a cellulose derivative for the measurement of uranium and plutonium content in dissolved nuclear fuel by isotope dilution mass spectrometry.

    PubMed

    Surugaya, Naoki; Hiyama, Toshiaki; Verbruggen, André; Wellum, Roger

    2008-02-01

    A stable solid spike for the measurement of uranium and plutonium content in nitric acid solutions of spent nuclear fuel by isotope dilution mass spectrometry has been prepared at the European Commission Institute for Reference Materials and Measurements in Belgium. The spike contains about 50 mg of uranium with a 19.838% (235)U enrichment and 2 mg of plutonium with a 97.766% (239)Pu abundance in each individual ampoule. The dried materials were covered with a thin film of cellulose acetate butyrate as a protective organic stabilizer to resist shocks encountered during transportation and to eliminate flaking-off during long-term storage. It was found that the cellulose acetate butyrate has good characteristics, maintaining a thin film for a long time, but readily dissolving on heating with nitric acid solution. The solid spike containing cellulose acetate butyrate was certified as a reference material with certified quantities: (235)U and (239)Pu amounts and uranium and plutonium amount ratios, and was validated by analyzing spent fuel dissolver solutions of the Tokai reprocessing plant in Japan. This paper describes the preparation, certification and validation of the solid spike coated with a cellulose derivative.

  6. Realizing Full Coverage of Stable Perovskite Film by Modified Anti-Solvent Process

    NASA Astrophysics Data System (ADS)

    Ji, Long; Zhang, Ting; Wang, Yafei; Zhang, Peng; Liu, Detao; Chen, Zhi; Li, Shibin

    2017-05-01

    Lead-free solution-processed solid-state photovoltaic devices based on formamidinium tin triiodide (FASnI3) and cesium tin triiodide (CsSnI3) perovskite semiconductor as the light harvester are reported. In this letter, we used solvent engineering and anti-solvent dripping method to fabricate perovskite films. SnCl2 was used as an inhibitor of Sn4+ in FASnI3 precursor solution. We obtained the best films under the function of toluene or chlorobenzene in anti-solvent dripping method and monitored the oxidation of FASnI3 films in air. We chose SnF2 as an additive of CsSnI3 precursor solution to prevent the oxidation of the Sn2+, improving the stability of CsSnI3. The experimental results we obtained can pave the way for lead-free tin-based perovskite solar cells (PSCs).

  7. Donor-Acceptor-Collector Ternary Crystalline Films for Efficient Solid-State Photon Upconversion.

    PubMed

    Ogawa, Taku; Hosoyamada, Masanori; Yurash, Brett; Nguyen, Thuc-Quyen; Yanai, Nobuhiro; Kimizuka, Nobuo

    2018-06-25

    It is pivotal to achieve efficient triplet-triplet annihilation based photon upconversion (TTA-UC) in the solid-state for enhancing potentials of renewable energy production devices. However, the UC efficiency of solid materials is largely limited by low fluorescence quantum yields that originate from the aggregation of TTA-UC chromophores, and also by severe back energy transfer from the acceptor singlet state to the singlet state of the triplet donor in the condensed state. In this work, to overcome these issues, we introduce a highly fluorescent singlet energy collector as the third component of donor-doped acceptor crystalline films, in which dual energy migration, i.e., triplet energy migration for TTA-UC and succeeding singlet energy migration for transferring energy to a collector, takes place. To demonstrate this scheme, a highly fluorescent singlet energy collector was added as the third component of donor-doped acceptor crystalline films. An anthracene-based acceptor containing alkyl chains and a carboxylic moiety is mixed with the triplet donor Pt(II) octaethylporphyrin (PtOEP) and the energy collector 2,5,8,11-tetra- tert-butylperylene (TTBP) in solution, and spin-coating of the mixed solution gives acceptor films of nanofibrous crystals homogeneously doped with PtOEP and TTBP. Interestingly, delocalized singlet excitons in acceptor crystals are found to diffuse effectively over the distance of ~37 nm. Thanks to this high diffusivity, only 0.5 mol% of doped TTBP can harvest most of the singlet excitons, which successfully doubles the solid-state fluorescent quantum yield of acceptor/TTBP blend films to 76%. Furthermore, since the donor PtOEP and the collector TTBP are separately isolated in the nanofibrous acceptor crystals, the singlet back energy transfer from the collector to the donor is effectively avoided. Such efficient singlet energy collection and inhibited back energy transfer processes result in a large increase of UC efficiency up to 9.0%, offering rational design principles towards ultimately efficient solid-state upconverters.

  8. Role of adsorption in liquid lubrication

    NASA Technical Reports Server (NTRS)

    Groszek, A. J.

    1973-01-01

    Changes at solid-liquid interfaces caused by adsorption from solution are discussed paying attention to the following aspects: (1) stability of adsorbed films and the structure of metal-additive-film-liquid interface and effect of adsorbate orientation. (2) chemical versus physical adsorption, (3) heat of adsorption, (4) adsorption of additives, (5) activated adsorption, effect of activating adsorbates, (6) displacement phenomena at solid-liquid interfaces, (7) competition of antiwear additives, their solvents, and water, (8) effect of adsorption on the orientation of liquid in the interfacial region, and (9) relation between the chemical nature of solid surfaces and their interaction with liquid lubricants. The relevance of the above adsorption phenomena to lubrication is discussed, referring where possible to specific examples.

  9. Controlled Chemical Doping of Semiconductor Nanocrystals Using Redox Buffers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, Jesse H.; Surendranath, Yogesh; Alivisatos, Paul

    Semiconductor nanocrystal solids are attractive materials for active layers in next-generation optoelectronic devices; however, their efficient implementation has been impeded by the lack of precise control over dopant concentrations. Herein we demonstrate a chemical strategy for the controlled doping of nanocrystal solids under equilibrium conditions. Exposing lead selenide nanocrystal thin films to solutions containing varying proportions of decamethylferrocene and decamethylferrocenium incrementally and reversibly increased the carrier concentration in the solid by 2 orders of magnitude from their native values. This application of redox buffers for controlled doping provides a new method for the precise control of the majority carrier concentrationmore » in porous semiconductor thin films.« less

  10. [Study on focusing chromatographic simultaneous determinations of 226Ra and its daughter nuclides by means of solid state alpha-tracks detection and beta-autoradiography (author's transl)].

    PubMed

    Furushima, K; Shinagawa, M

    1980-09-01

    In order to detect to radioactive band on the paper strip developed by focusing chromatography, plate-making-film was used for the autoradiography and beta-spots were photographed. Thereafter the film was etched with sodium hydroxide solution to find the alpha-tracks. Paper strip used for the sample was prepared by the precipitation focusing chromatography of 226Ra and its daughter nuclides using HCl-KF solution as a developer. The film used was not high in its beta-sensitivity, but because of its high resolution good photographic results were obtained according to the intensity of beta-activity when the proper conditions of photographic development were fulfilled. The simple alpha-spectrometry was made possible by counting the numbers of tracks according to the etching depth of the film. The film was hard and thick enough for etching with 6M sodium hydroxide solution at 50 degrees C for more than 50 hrs to measure the depth of tracks.

  11. Controlling Long-Lived Triplet Generation from Intramolecular Singlet Fission in the Solid State

    DOE PAGES

    Pace, Natalie A.; Zhang, Weimin; Arias, Dylan H.; ...

    2017-11-30

    The conjugated polymer poly(benzothiophene dioxide) (PBTDO1) has recently been shown to exhibit efficient intramolecular singlet fission in solution. We investigate the role of intermolecular interactions in triplet separation dynamics after singlet fission. We use transient absorption spectroscopy to determine the singlet fission rate and triplet yield in two polymers differing only by side-chain motif in both solution and the solid state. Whereas solid-state films show singlet fission rates identical to those measured in solution, the average lifetime of the triplet population increases dramatically and is strongly dependent on side-chain identity. These results show that it may be necessary to carefullymore » engineer the solid-state microstructure of these 'singlet fission polymers' to produce the long-lived triplets needed to realize efficient photovoltaic devices.« less

  12. Controlling Long-Lived Triplet Generation from Intramolecular Singlet Fission in the Solid State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, Natalie A.; Zhang, Weimin; Arias, Dylan H.

    The conjugated polymer poly(benzothiophene dioxide) (PBTDO1) has recently been shown to exhibit efficient intramolecular singlet fission in solution. We investigate the role of intermolecular interactions in triplet separation dynamics after singlet fission. We use transient absorption spectroscopy to determine the singlet fission rate and triplet yield in two polymers differing only by side-chain motif in both solution and the solid state. Whereas solid-state films show singlet fission rates identical to those measured in solution, the average lifetime of the triplet population increases dramatically and is strongly dependent on side-chain identity. These results show that it may be necessary to carefullymore » engineer the solid-state microstructure of these 'singlet fission polymers' to produce the long-lived triplets needed to realize efficient photovoltaic devices.« less

  13. Extending atomistic simulation timescale in solid/liquid systems: crystal growth from solution by a parallel-replica dynamics and continuum hybrid method.

    PubMed

    Lu, Chun-Yaung; Voter, Arthur F; Perez, Danny

    2014-01-28

    Deposition of solid material from solution is ubiquitous in nature. However, due to the inherent complexity of such systems, this process is comparatively much less understood than deposition from a gas or vacuum. Further, the accurate atomistic modeling of such systems is computationally expensive, therefore leaving many intriguing long-timescale phenomena out of reach. We present an atomistic/continuum hybrid method for extending the simulation timescales of dynamics at solid/liquid interfaces. We demonstrate the method by simulating the deposition of Ag on Ag (001) from solution with a significant speedup over standard MD. The results reveal specific features of diffusive deposition dynamics, such as a dramatic increase in the roughness of the film.

  14. Formation Mechanism and Control of Perovskite Films from Solution to Crystalline Phase Studied by in Situ Synchrotron Scattering.

    PubMed

    Chang, Chun-Yu; Huang, Yu-Ching; Tsao, Cheng-Si; Su, Wei-Fang

    2016-10-12

    Controlling the crystallization and morphology of perovskite films is crucial for the fabrication of high-efficiency perovskite solar cells. For the first time, we investigate the formation mechanism of the drop-cast perovskite film from its precursor solution, PbCl 2 and CH 3 NH 3 I in N,N-dimethylformamide, to a crystalline CH 3 NH 3 PbI 3-x Cl x film at different substrate temperatures from 70 to 180 °C in ambient air and humidity. We employed an in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) technique for this study. When the substrate temperature is at or below 100 °C, the perovskite film is formed in three stages: the initial solution stage, transition-to-solid film stage, and transformation stage from intermediates into a crystalline perovskite film. In each stage, the multiple routes for phase transformations are preceded concurrently. However, when the substrate temperature is increased from 100 to 180 °C, the formation mechanism of the perovskite film is changed from the "multistage formation mechanism" to the "direct formation mechanism". The proposed mechanism has been applied to understand the formation of a perovskite film containing an additive. The result of this study provides a fundamental understanding of the functions of the solvent and additive in the solution and transition states to the crystalline film. It provides useful knowledge to design and fabricate crystalline perovskite films for high-efficiency solar cells.

  15. Effect of plasticizer on surface of free films prepared from aqueous solutions of salts of cationic polymers with different plasticizers

    NASA Astrophysics Data System (ADS)

    Bajdik, János; Fehér, Máté; Pintye-Hódi, Klára

    2007-06-01

    Acquisition of a more detailed understanding of all technological processes is currently a relevant tendency in pharmaceutical technology and hence in industry. A knowledge of film formation from dispersion of polymers is very important during the coating of solid dosage forms. This process and the structure of the film can be influenced by different additives. In the present study, taste-masking films were prepared from aqueous citric acid solutions of a cationic polymer (Eudragit ® E PO) with various hydrophilic plasticizers (glycerol, propylene glycol and different poly(ethylene glycols)). The mechanical properties, film thickness, wetting properties and surface free energy of the free films were studied. The aim was to evaluate the properties of surface of free films to predict the arrangement of macromolecules in films formed from aqueous solutions of salts of cationic polymers. A high molecular weight of the plasticizer decreased the work of deformation. The surface free energy and the polarity were highest for the film without plasticizer; the hydrophilic additives decreased these parameters. The direction of the change in polarity (a hydrophilic component caused a decrease in the polarity) was unexpected. It can be explained by the change in orientation of the macromolecules, a hydrophobic surface being formed. Examination of the mechanical properties and film thickness can furnish additional results towards a knowledge of film formation by this not frequently applied type of polymer from aqueous solution.

  16. Supramolecular structures and assembly and luminescent properties of quinacridone derivatives.

    PubMed

    Ye, Kaiqi; Wang, Jia; Sun, Hui; Liu, Yu; Mu, Zhongcheng; Li, Fei; Jiang, Shimei; Zhang, Jingying; Zhang, Hongxing; Wang, Yue; Che, Chi-Ming

    2005-04-28

    The synthesis and single-crystal X-ray structures of two quinacridone derivatives, N,N'-di(n-butyl)quinacridone (1) and N,N'-di(n-butyl)-1,3,8,10-tetramethylquinacridone (2), are reported, and the 1H NMR, absorption, photoluminescent (PL), and electroluminescent (EL) characteristics are presented. Both these crystal structures are characterized by intermolecular pi...pi and hydrogen bonding interactions. The intermolecular pi...pi interactions lead to the formation of molecular columns in the solids of 1 and 2, and the interplanar contact distances between two adjacent molecules are 3.48 and 3.55 angstroms, respectively. Crystals of 1 display shorter intermolecular pi...pi contacts and higher density than 2. These results suggest that tighter intermolecular interactions exist in 1. The 1H NMR, absorption, and PL spectra of 1 and 2 in solutions exhibit concentration-dependent properties. The PL quantum yields of 1 in solutions decrease more quickly with the increase of concentration compared to that of 2 in solutions. For solid thin films of Alq3:1 (Alq3 = tris(8-hydroxyquinolinato)aluminum), emission intensities dramatically decrease and obvious red shifts are observed when the dopant concentration is above 4.2%, while for films of Alq3:2, a similar phenomenon occurs when the concentration is above 6.7%. EL devices with Alq3:1 as emitting layer only show high efficiencies (20.3-14.5 cd/A) within the narrow dopant concentration range of 0.5-1.0%. In contrast, high efficiencies (21.5-12.0 cd/A) are achieved for a wider dopant concentration range of 0.5-5.0% when Alq3:2 films are employed as emitting layer. The different PL and EL concentration-dependent properties of the solid thin films Alq3:1 and Alq3:2 are attributed to their different molecular packing characteristics in the solid state.

  17. Critical Role of Surface Energy in Guiding Crystallization of Solution-Coated Conjugated Polymer Thin Films

    DOE PAGES

    Zhang, Fengjiao; Mohammadi, Erfan; Luo, Xuyi; ...

    2017-10-02

    It is well-known that substrate surface properties have a profound impact on morphology of thin films solution coated atop and the resulting solid-state properties. However, design rules for guiding the substrate selection have not yet been established. Such design rules are particularly important for solution coated semiconducting polymers, as the substratedirected thin film morphology can impact charge transport properties by orders of magnitude. We hypothesize that substrate surface energies dictate the thin film morphology by modulating the free energy barrier to heterogeneous nucleation. To test this hypothesis, we systematically vary the substrate surface energy via surface functionalization techniques. We performmore » in-depth morphology and device characterizations to establish the relationship between substrate surface energy, thin film morphology and charge transport properties, employing a donor-accepter (D-A) conjugated polymer. Here, we find that decreasing the substrate surface energy progressively increases thin film crystallinity, degree of molecular ordering and extent of domain alignment. Notably, the enhanced morphology on the lowest surface energy substrate lead to a 10-fold increase in the charge carrier mobility. We further develop a free energy model relating the substrate surface energy to the penalty of heterogeneous nucleation from solution in the thin film geometry. The model correctly predicts the experimental trend, thereby validating our hypothesis. This work is a significant step towards establishing design rules and understanding the critical role of substrates in determining morphology of solution coated thin films.« less

  18. Critical Role of Surface Energy in Guiding Crystallization of Solution-Coated Conjugated Polymer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fengjiao; Mohammadi, Erfan; Luo, Xuyi

    It is well-known that substrate surface properties have a profound impact on morphology of thin films solution coated atop and the resulting solid-state properties. However, design rules for guiding the substrate selection have not yet been established. Such design rules are particularly important for solution coated semiconducting polymers, as the substratedirected thin film morphology can impact charge transport properties by orders of magnitude. We hypothesize that substrate surface energies dictate the thin film morphology by modulating the free energy barrier to heterogeneous nucleation. To test this hypothesis, we systematically vary the substrate surface energy via surface functionalization techniques. We performmore » in-depth morphology and device characterizations to establish the relationship between substrate surface energy, thin film morphology and charge transport properties, employing a donor-accepter (D-A) conjugated polymer. Here, we find that decreasing the substrate surface energy progressively increases thin film crystallinity, degree of molecular ordering and extent of domain alignment. Notably, the enhanced morphology on the lowest surface energy substrate lead to a 10-fold increase in the charge carrier mobility. We further develop a free energy model relating the substrate surface energy to the penalty of heterogeneous nucleation from solution in the thin film geometry. The model correctly predicts the experimental trend, thereby validating our hypothesis. This work is a significant step towards establishing design rules and understanding the critical role of substrates in determining morphology of solution coated thin films.« less

  19. Electrolysis-induced protonation of VO2 thin film transistor for the metal-insulator phase modulation

    NASA Astrophysics Data System (ADS)

    Katase, Takayoshi; Endo, Kenji; Ohta, Hiromichi

    2016-02-01

    Compared to state-of-the-art modulation techniques, protonation is the most ideal to control the electrical and optical properties of transition metal oxides (TMOs) due to its intrinsic non-volatile operation. However, the protonation of TMOs is not typically utilized for solid-state devices because of imperative high-temperature annealing treatment in hydrogen source. Although one solution for room temperature (RT) protonation of TMOs is liquid-phase electrochemistry, it is unsuited for practical purposes due to liquid-leakage problem. Herein we demonstrate solid-state RT-protonation of vanadium dioxide (VO2), which is a well-known thermochromic TMO. We fabricated the three terminal thin-film-transistor structure on an insulating VO2 film using a water-infiltrated nanoporous glass, which serves as a solid electrolyte. For gate voltage application, water electrolysis and protonation/deprotonation of VO2 film surface occurred, leading to reversible metal-insulator phase conversion of ~11-nm-thick VO2 layer. The protonation was clearly accompanied by the structural change from an insulating monoclinic to a metallic tetragonal phase. Present results offer a new route for the development of electro-optically active solid-state devices with TMO materials by engineering RT protonation.

  20. Growing Oxide Nanowires and Nanowire Networks by Solid State Contact Diffusion into Solution-Processed Thin Films.

    PubMed

    Glynn, Colm; McNulty, David; Geaney, Hugh; O'Dwyer, Colm

    2016-11-01

    New techniques to directly grow metal oxide nanowire networks without the need for initial nanoparticle seed deposition or postsynthesis nanowire casting will bridge the gap between bottom-up formation and top-down processing for many electronic, photonic, energy storage, and conversion technologies. Whether etched top-down, or grown from catalyst nanoparticles bottom-up, nanowire growth relies on heterogeneous material seeds. Converting surface oxide films, ubiquitous in the microelectronics industry, to nanowires and nanowire networks by the incorporation of extra species through interdiffusion can provide an alternative deposition method. It is shown that solution-processed thin films of oxides can be converted and recrystallized into nanowires and networks of nanowires by solid-state interdiffusion of ionic species from a mechanically contacted donor substrate. NaVO 3 nanowire networks on smooth Si/SiO 2 and granular fluorine-doped tin oxide surfaces can be formed by low-temperature annealing of a Na diffusion species-containing donor glass to a solution-processed V 2 O 5 thin film, where recrystallization drives nanowire growth according to the crystal habit of the new oxide phase. This technique illustrates a new method for the direct formation of complex metal oxide nanowires on technologically relevant substrates, from smooth semiconductors, to transparent conducting materials and interdigitated device structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Development of gellan gum containing formulations for transdermal drug delivery: Component evaluation and controlled drug release using temperature responsive nanogels.

    PubMed

    Carmona-Moran, Carlos A; Zavgorodnya, Oleksandra; Penman, Andrew D; Kharlampieva, Eugenia; Bridges, S Louis; Hergenrother, Robert W; Singh, Jasvinder A; Wick, Timothy M

    2016-07-25

    Enhancing skin permeation is important for development of new transdermal drug delivery formulations. This is particularly relevant for non-steroidal anti-inflammatory drugs (NSAIDs). To address this, semisolid gel and solid hydrogel film formulations containing gellan gum as a gelling agent were developed and the effects of penetration enhancers (dimethyl sulfoxide, isopropyl alcohol and propylene glycol) on transport of the NSAID diclofenac sodium was quantified. A transwell diffusion system was used to accelerate formulation development. After 4h, diclofenac flux from a superior formulation of the semisolid gel or the solid hydrogel film was 130±11μg/cm(2)h and 108±7μg/cm(2)h, respectively, and significantly greater than that measured for a currently available diclofenac sodium topical gel (30±4μg/cm(2)h, p<0.05) or solution formulation (44±6μg/cm(2)h, p<0.05) under identical conditions. Over 24h diclofenac transport from the solid hydrogel film was greater than that measured for any new or commercial diclofenac formulation. Entrapment of temperature-responsive nanogels within the solid hydrogel film provides temperature-activated prolonged release of diclofenac. Diclofenac transport was minimal at 22°C, when diclofenac is entrapped within temperature-responsive nanogels incorporated into the solid hydrogel film, but increased 6-fold when the temperature was increased to skin surface temperature of 32°C. These results demonstrate the feasibility of the semisolid gel and solid hydrogel film formulations that can include thermo-responsive nanogels for development of transdermal drug formulations with adjustable drug transport kinetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Development of chitosan-based ondansetron buccal delivery system for the treatment of emesis.

    PubMed

    Park, Dong-Min; Song, Yun-Kyoung; Jee, Jun-Pil; Kim, Hyung Tae; Kim, Chong-Kook

    2012-09-01

    For the buccal drug delivery, chitosan (CS) can be used to improve drug absorption and reduce application frequency and drug amount. The aim of this study is to develop and evaluate mucoadhesive ondansetron buccal films for the treatment of emesis using CS as a mucoadhesive polymer. The film prepared by solvent casting method was comprised of ondansetron (approximately 65 μg)-loaded mucoadhesive gels containing 1, 2 or 3% CS and impermeable backing layer. Rheological property of the gels, physiochemical properties of the films (weight, thickness, drug content, swelling ratio, adhesion time and mucoadhesive force) and in vitro ondansetron release profile from the films were determined to evaluate the formulation. The films containing 3% CS (diameter: 0.5 cm; thickness: 170 μm) was selected as the novel formulation, and were used for the in vivo study. Comparative pharmacokinetic studies of ondansetron with this film and oral solution were performed at the same dose in hamsters. The mean values of T(max) and C(max) of the film and oral solution were similar. However, the half-life, mean residence time and AUC(0-24 h) of the film were about 1.7, 1.4 and 2.0-fold higher than those of the oral solution, respectively. The film showed enhanced bioavailability and prolonged efficacy compared to the oral solution. The mucoadhesive ondansetron buccal film may be a potential alternative to the marketed oral formulation, parenterals and solid suppositories with better patient compliance and higher bioavailability for the treatment of emesis.

  3. Porous Organic Nanolayers for Coating of Solid-state Devices

    PubMed Central

    2011-01-01

    Background Highly hydrophobic surfaces can have very low surface energy and such low surface energy biological interfaces can be obtained using fluorinated coatings on surfaces. Deposition of biocompatible organic films on solid-state surfaces is attained with techniques like plasma polymerization, biomineralization and chemical vapor deposition. All these require special equipment or harsh chemicals. This paper presents a simple vapor-phase approach to directly coat solid-state surfaces with biocompatible films without any harsh chemical or plasma treatment. Hydrophilic and hydrophobic monomers were used for reaction and deposition of nanolayer films. The monomers were characterized and showed a very consistent coating of 3D micropore structures. Results The coating showed nano-textured surface morphology which can aid cell growth and provide rich molecular functionalization. The surface properties of the obtained film were regulated by varying monomer concentrations, reaction time and the vacuum pressure in a simple reaction chamber. Films were characterized by contact angle analysis for surface energy and with profilometer to measure the thickness. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the chemical composition of the coated films. Variations in the FTIR results with respect to different concentrations of monomers showed the chemical composition of the resulting films. Conclusion The presented approach of vapor-phase coating of solid-state structures is important and applicable in many areas of bio-nano interface development. The exposure of coatings to the solutions of different pH showed the stability of the coatings in chemical surroundings. The organic nanocoating of films can be used in bio-implants and many medical devices. PMID:21569579

  4. Ti{sub 2}AlN thin films synthesized by annealing of (Ti+Al)/AlN multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabioch, Thierry, E-mail: Thierry.cabioch@univ-poitiers.fr; Alkazaz, Malaz; Beaufort, Marie-France

    2016-08-15

    Highlights: • Epitaxial thin films of the MAX phase Ti{sub 2}AlN are obtained by thermal annealing. • A new metastable (Ti,Al,N) solid solution with the structure of α-T is evidenced. • The formation of the MAX phase occurs at low temperature (600 °C). - Abstract: Single-phase Ti{sub 2}AlN thin films were obtained by annealing in vacuum of (Ti + Al)/AlN multilayers deposited at room temperature by magnetron sputtering onto single-crystalline (0001) 4H-SiC and (0001) Al{sub 2}O{sub 3} substrates. In-situ X-ray diffraction experiments combined with ex-situ cross-sectional transmission electron microscopy observations reveal that interdiffusion processes occur in the multilayer at amore » temperature of ∼400 °C leading to the formation of a (Ti, Al, N) solid solution, having the hexagonal structure of α-Ti, whereas the formation of Ti{sub 2}AlN occurs at 550–600 °C. Highly oriented (0002) Ti{sub 2}AlN thin films can be obtained after an annealing at 750 °C.« less

  5. Effect of spin-orbit coupling on excitonic levels in layered chalcogenide-fluorides

    NASA Astrophysics Data System (ADS)

    Zakutayev, Andriy; Kykyneshi, Robert; Kinney, Joseph; McIntyre, David H.; Schneider, Guenter; Tate, Janet

    2008-03-01

    BaCuChF (Ch=S,Se,Te) comprise a family of wide-bandgap p-type semiconductors. Due to their high transparency and conductivity, they have potential applications as components of transparent thin-film transistors, solar cells and light-emitting devices. Thin films of BaCuChF have been deposited on MgO by pulsed laser deposition (PLD). Solid solutions BaCuS1-xSexTeF and BaCuSe1-xTex have been prepared by PLD of alternating thin BaCuChF layers. All films were deposited at elevated substrate temperatures. They are preferentially c-axis oriented, conductive and transparent in the visible part of the spectrum. Double excitonic peaks have been observed in the absorption spectrum of these films in the temperature range from 80 to 300K. The separation between the peaks in the doublet increases with the increase of atomic mass of the chalcogen. It also increases with the increase of the heavy chalcogen component x in the solid solutions. This separation most likely is caused by the effect of spin-orbit coupling in the chalcogen atoms on excitonic levels in BaCuChF.

  6. Electrochemical luminescence determination of hyperin using a sol-gel@graphene luminescent composite film modified electrode for solid phase microextraction

    NASA Astrophysics Data System (ADS)

    Zou, Xiaojun; Shang, Fang; Wang, Sui

    2017-02-01

    In this paper, a novel electrochemiluminescence (ECL) sensor of sol-gel@graphene luminescent composite film modified electrode for hyperin determination was prepared using graphene (G) as solid-phase microextraction (SPME) material, based on selective preconcentration of target onto an electrode and followed by luminol ECL detection. Hyperin was firstly extracted from aqueous solution through the modified GCE. Hydrogel, electrogenerated chemiluminescence reagents, pH of working solution, extraction time and temperature and scan rate were discussed. Under the optimum conditions, the change of ECL intensity was in proportion to the concentration of hyperin in the range of 0.02-0.24 μg/mL with a detection limit of 0.01 μg/mL. This method showed good performance in stability, reproducibility and precision for the determination of hyperin.

  7. Adsorption and sub-nanomolar sensing of thioflavin T on colloidal gold nanoparticles, silver nanoparticles and silver-coated films studied using surface-enhanced Raman scattering.

    PubMed

    Maiti, Nandita; Chadha, Ridhima; Das, Abhishek; Kapoor, Sudhir

    2015-01-01

    Raman and surface-enhanced Raman scattering (SERS) studies of thioflavin T (ThT) in solid, solution, gold nanoparticles (GNPs), silver nanoparticles (SNPs) and silver-coated films (SCFs) were investigated. Concentration-dependent SERS spectrum of ThT in GNPs and SNPs indicated the existence of two possible structures, one with the torsional angle (φ) between benzothiazole and dimethylaminobenzene rings being 37° and the other with φ=90°. The SERS spectrum of ThT in SCFs were similar to the Raman spectrum of solid and solution that suggests φ=37°. In this paper, the high sensitivity of the SERS technique was employed for sub-nanomolar (picomolar) sensing of ThT. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Sol-gel derived (La 0.8M 0.2)CrO 3 (M dbnd Ca, Sr) coating layer on stainless-steel substrate for use as a separator in intermediate-temperature solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    A Lee, E.; Lee, S.; Hwang, H. J.; Moon, J.-W.

    A ceramic coating technique is applied to reduce the voltage drop caused by oxidation of the metallic separator (SUS444) in intermediate-temperature (IT) solid oxide fuel cell (SOFCs) systems. Precursor solutions for (La, Ca)CrO 3 (LCC) and (La, Sr)CrO 3 (LSC) coatings are prepared by adding nitric acid and ethylene glycol into an aqueous solution of lanthanum, strontium (or calcium) and chromium nitrates. Dried LCC and LSC gel films are heat-treated at 400-800 °C after dip-coating on the SUS444 substrate. XRD and Fourier-transform infrared (FT-IR) analysis is used to examine the crystallization behaviour and chemical structure of the precursor solution. The oxidation behaviour of the coated SUS444 substrate is compared with an uncoated SUS444 substrate. The oxidation of the SUS444 is inhibited by the LCC and LSC thin film layers.

  9. High Temperature Stability of Binary Microstructures Derived from Liquid Precursors

    DTIC Science & Technology

    1994-06-30

    isopropoxide , Ti(OC3H7 )4 was stirred into the solution under nitrogen to produce a composition with a 1:1 Pb:Ti ratio. The solution was then boiled and...This program has emphasized two topics: 1) the crystallization of metastable, solid- solution structures, their partitioning into equilibrium structures...structural ceramics and their composites, and 2) the formation of single crystal thin films via spin coating single crystal substrates with solution

  10. Films, Preimpregnated Tapes and Composites Made from Polyimide "Salt-Like" Solutions

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J. (Inventor); Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2001-01-01

    High quality films, preimpregnated tape (prepegs), and composites have been fabricated from polyimide precursor 'saltlike' solutions. These salt-like solutions have a low viscosity (5,000 to 10,000 cp) and a high solids content (50-65% by weight) and can be coated onto reinforcing fiber to produce prepegs with excellent tack and drape at 12-15% residual solvent (approximately 4-6% water from thermal imidization reaction). The processing of these types of prepegs significantly overcomes solvent removal problems and allows excellent fiber wet out. In addition, the physical characteristics of the polyimide precursor salt-like solutions permits processing into high-performance materials through the use of standard prepregging and composite fabrication equipment. The resultant composites are of high quality.

  11. Antireflective coating for AgBr-TlI and AgBr-TlBr0.46I0.54 solid solution crystals

    NASA Astrophysics Data System (ADS)

    Korsakov, Alexandr; Salimgareev, Dmitrii; Lvov, Alexandr; Zhukova, Liya

    2016-12-01

    We researched the process of ultraviolet (UV) irradiation for the crystals of AgBr-TlI and AgBr-TlBr0.46I0.54 systems. It was found that on the surface of irradiated crystals, the film is formed and film grain size depends on exposure time and crystal composition. This film proved to gain the transmission by reducing the reflection from its surface within the 8.0-27.0 μm range.

  12. Structural and optical characterization of PVA:KMnO4 based solid polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Abdullah, Omed Gh.; Aziz, Shujahadeen B.; Rasheed, Mariwan A.

    Solid polymer electrolyte films of polyvinyl alcohol (PVA) doped with a different weight percent of potassium permanganate (KMnO4) were prepared by standard solution cast method. XRD and FTIR techniques were performed for structural study. Complex formation between the PVA polymer and KMnO4 salt was confirmed by Fourier transform infrared (FTIR) spectroscopy. The description of crystalline nature of the solid polymer electrolyte films has been confirmed by XRD analysis. The UV-Visible absorption spectra were analyzed in terms of absorption formula for non-crystalline materials. The fundamental optical parameters such as optical band gap energy, refractive index, optical conductivity, and dielectric constants have been investigated and showed a clear dependence on the KMnO4 concentration. The observed value of optical band gap energy for pure PVA is about 6.27 eV and decreases to a value 3.12 eV for the film sample formed with 4 wt% KMnO4 salt. The calculated values of refractive index and the dielectric constants of the polymer electrolyte films increase with increasing KMnO4 content.

  13. Spontaneous formation of linearly arranged microcraters on sol-gel-derived silica-poly(vinylpyrrolidone) hybrid films induced by Bénard-Marangoni convection.

    PubMed

    Uchiyama, Hiroaki; Mantani, Yuto; Kozuka, Hiromitsu

    2012-07-10

    Complex, sophisticated surface patterns on micrometer and nanometer scales are obtained when solvent evaporates from solutions containing nonvolatile solutes dropped on a solid substrate. Such evaporation-driven pattern formation has been utilized as a fabrication process of highly ordered patterns in thin films. Here, we suggested the spontaneous pattern formation induced by Bénard-Marangoni convection triggered by solvent evaporation as a novel patterning process of sol-gel-derived organic-inorganic hybrid films. Microcraters of 1.0-1.5 μm in height and of 100-200 μm in width were spontaneously formed on the surface of silica-poly(vinylpyrrolidone) hybrid films prepared via temperature-controlled dip-coating process, where the surface patterns were linearly arranged parallel to the substrate withdrawal direction. Such highly ordered micropatterns were achieved by Bénard-Marangoni convection activated at high temperatures and the unidirectional flow of the coating solution on the substrate during dip-coating.

  14. ZrB 2-HfB 2 solid solutions as electrode materials for hydrogen reaction in acidic and basic solutions

    DOE PAGES

    Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit

    2016-11-09

    Spark plasma sintered transition metal diborides such as HfB 2, ZrB 2 and their solid solutions were investigated as electrode materials for electrochemical hydrogen evolutions reactions (HER) in 1 M H 2SO 4 and 1 M NaOH electrolytes. HfB 2 and ZrB 2 formed complete solid solutions when mixed in 1:1, 1:4, and 4:1 ratios and they were stable in both electrolytes. The HER kinetics of the diborides were slower in the basic solution than in the acidic solutions. The Tafel slopes in 1 M H 2SO 4 were in the range of 0.15 - 0.18 V/decade except for puremore » HfB 2 which showed a Tafel slope of 0.38 V/decade. In 1 M NaOH the Tafel slopes were in the range of 0.12 - 0.27 V/decade. The composition of Hf xZr 1-xB 2 solid solutions with x = 0.2 - 0.8, influenced the exchange current densities, overpotentials and Tafel slopes of the HER. As a result, the EIS data were fitted with a porous film equivalent circuit model in order to better understand the HER behavior. In addition, modeling calculations, using density functional theory approach, were carried out to estimate the density of states and band structure of the boride solid solutions.« less

  15. Tunable band gap in Bi(Fe1-xMnx)O3 films

    NASA Astrophysics Data System (ADS)

    Xu, X. S.; Ihlefeld, J. F.; Lee, J. H.; Ezekoye, O. K.; Vlahos, E.; Ramesh, R.; Gopalan, V.; Pan, X. Q.; Schlom, D. G.; Musfeldt, J. L.

    2010-05-01

    In order to investigate band gap tunability in polar oxides, we measured the optical properties of a series of Bi(Fe1-xMnx)O3 thin films. The absorption response of the mixed metal solid solutions is approximately a linear combination of the characteristics of the two end members, a result that demonstrates straightforward band gap tunability in this system.

  16. Linear adsorption of nonionic organic compounds from water onto hydrophilic minerals: Silica and alumina

    USGS Publications Warehouse

    Su, Y.-H.; Zhu, Y.-G.; Sheng, G.; Chiou, C.T.

    2006-01-01

    To characterize the linear adsorption phenomena in aqueous nonionic organic solute-mineral systems, the adsorption isotherms of some low-molecular- weightnonpolar nonionic solutes (1,2,3-trichlorobenzene, lindane, phenanthrene, and pyrene) and polar nonionic solutes (1,3-dinitrobenzene and 2,4-dinitrotoluene) from single-and binary-solute solutions on hydrophilic silica and alumina were established. Toward this objective, the influences of temperature, ionic strength, and pH on adsorption were also determined. It is found that linear adsorption exhibits low exothermic heats and practically no adsorptive competition. The solute-solid configuration and the adsorptive force consistent with these effects were hypothesized. For nonpolar solutes, the adsorption occurs presumably by London (dispersion) forces onto a water film above the mineral surface. For polar solutes, the adsorption is also assisted by polar-group interactions. The reduced adsorptive forces of solutes with hydrophilic minerals due to physical separation by the water film and the low fractions of the water-film surface covered by solutes offer a theoretical basis for linear solute adsorption, low exothermic heats, and no adsorptive competition. The postulated adsorptive forces are supported by observations that ionic strength or pH poses no effect on the adsorption of nonpolar solutes while it exhibits a significant effect on the uptake of polar solutes. ?? 2006 American Chemical Society.

  17. Masked PDAMNA Film On Glass

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Polydiacetylenes are a unique class of highly conjugated organic polymers that are of interest for both electronic and photonic applications. Photodeposition from solutions is a novel process superior to those grown by conventional techniques. Evidence of this is seen when the films are viewed under a microscope; they exhibit small particles of solid polymer which form in the bulk solution, get transported by convection to the surface of the growing film, and become embedded. Also convection tends to cause the film thickness to be less uniform, and may even affect the molecular orientation of the films. The thrust of the research is to investigate in detail, both in 1-g and low-g, the effects of convection (and lack thereof) on this novel and interesting reaction. In this example, a portion of the substrate was blocked from exposure to the UV light by the mask, which was placed on the opposite side of the glass disk as the film, clearly demonstrating that photodeposition occurs only where the substrate is irradiated directly.

  18. Tribology of thin wetting films between bubble and moving solid surface.

    PubMed

    Karakashev, Stoyan I; Stöckelhuber, Klaus W; Tsekov, Roumen; Phan, Chi M; Heinrich, Gert

    2014-08-01

    This work shows a successful example of coupling of theory and experiment to study the tribology of bubble rubbing on solid surface. Such kind of investigation is reported for the first time in the literature. A theory about wetting film intercalated between bubble and moving solid surface was developed, thus deriving the non-linear evolution differential equation which accounted for the friction slip coefficient at the solid surface. The stationary 3D film thickness profile, which appears to be a solution of the differential equation, for each particular speed of motion of the solid surface was derived by means of special procedure and unique interferometric experimental setup. This allowed us to determine the 3D map of the lift pressure within the wetting film, the friction force per unit area and the friction coefficient of rubbing at different speeds of motion of the solid surface. Thus, we observed interesting tribological details about the rubbing of the bubble on the solid surface like for example: 1. A regime of mixed friction between dry and lubricated friction exists in the range of 6-170 μm/s, beyond which the rubbing between the bubble and solid becomes completely lubricated and passes through the maximum; 2. The friction coefficient of rubbing has high values at very small speeds of solid's motion and reduces substantially with the increase of the speed of the solid motion until reaching small values, which change insignificantly with the further increase of the speed of the solid. Despite the numerous studies on the motion of bubble/droplet in close proximity to solid wall in the literature, the present investigation appears to be a step ahead in this area as far as we were able to derive 3D maps of the bubble close to the solid surface, which makes the investigation more profound. © 2013.

  19. Liquid film drag out in the presence of molecular forces

    NASA Astrophysics Data System (ADS)

    Schmidhalter, I.; Cerro, R. L.; Giavedoni, M. D.; Saita, F. A.

    2013-03-01

    From a practical as well as a conceptual point of view, one of the most interesting problems of physicochemical hydrodynamics is the drag out of a liquid film by a moving solid out of a pool of liquid. The basic problem, sometimes denoted the Landau-Levich problem [L. Landau and B. Levich, "Dragging of a liquid by a moving plate," Acta Physicochim. USSR 17, 42-54 (1942)], involves an interesting blend of capillary and viscous forces plus a matching of the static solution for capillary rise with a numerical solution of the film evolution equation, neglecting gravity, on the downstream region of the flow field. The original solution describes experimental data for a wide range of Capillary numbers but fails to match results for large and very small Capillary numbers. Molecular level forces are introduced to create an augmented version of the film evolution equation to show the effect of van der Waals forces at the lower range of Capillary numbers. A closed form solution for static capillary rise, including molecular forces, was matched with a numerical solution of the augmented film evolution equation in the dynamic meniscus region. Molecular forces do not sensibly modify the static capillary rise region, since film thicknesses are larger than the range of influence of van der Waals forces, but are determinant in shaping the downstream dynamic meniscus of the very thin liquid films. As expected, a quantitatively different level of disjoining pressure for different values of molecular constants remains in the very thin liquid film far downstream. Computational results for a wide range of Capillary numbers and Hamaker constants show a clear transition towards a region where the film thickness becomes independent of the coating speed.

  20. Nucleation and strain-stabilization during organic semiconductor thin film deposition.

    PubMed

    Li, Yang; Wan, Jing; Smilgies, Detlef-M; Bouffard, Nicole; Sun, Richard; Headrick, Randall L

    2016-09-07

    The nucleation mechanisms during solution deposition of organic semiconductor thin films determine the grain morphology and may influence the crystalline packing in some cases. Here, in-situ optical spectromicroscopy in reflection mode is used to study the growth mechanisms and thermal stability of 6,13-bis(trisopropylsilylethynyl)-pentacene thin films. The results show that the films form in a supersaturated state before transforming to a solid film. Molecular aggregates corresponding to subcritical nuclei in the crystallization process are inferred from optical spectroscopy measurements of the supersaturated region. Strain-free solid films exhibit a temperature-dependent blue shift of optical absorption peaks due to a continuous thermally driven change of the crystalline packing. As crystalline films are cooled to ambient temperature they become strained although cracking of thicker films is observed, which allows the strain to partially relax. Below a critical thickness, cracking is not observed and grazing incidence X-ray diffraction measurements confirm that the thinnest films are constrained to the lattice constants corresponding to the temperature at which they were deposited. Optical spectroscopy results show that the transition temperature between Form I (room temperature phase) and Form II (high temperature phase) depends on the film thickness, and that Form I can also be strain-stabilized up to 135 °C.

  1. An artificial photosynthesis anode electrode composed of a nanoparticulate photocatalyst film in a visible light responsive GaN-ZnO solid solution system

    NASA Astrophysics Data System (ADS)

    Imanaka, Yoshihiko; Anazawa, Toshihisa; Manabe, Toshio; Amada, Hideyuki; Ido, Sachio; Kumasaka, Fumiaki; Awaji, Naoki; Sánchez-Santolino, Gabriel; Ishikawa, Ryo; Ikuhara, Yuichi

    2016-10-01

    The artificial photosynthesis technology known as the Honda-Fujishima effect, which produces oxygen and hydrogen or organic energy from sunlight, water, and carbon dioxide, is an effective energy and environmental technology. The key component for the higher efficiency of this reaction system is the anode electrode, generally composed of a photocatalyst formed on a glass substrate from electrically conductive fluorine-doped tin oxide (FTO). To obtain a highly efficient electrode, a dense film composed of a nanoparticulate visible light responsive photocatalyst that usually has a complicated multi-element composition needs to be deposited and adhered onto the FTO. In this study, we discovered a method for controlling the electronic structure of a film by controlling the aerosol-type nanoparticle deposition (NPD) condition and thereby forming films of materials with a band gap smaller than that of the prepared raw material powder, and we succeeded in extracting a higher current from the anode electrode. As a result, we confirmed that a current approximately 100 times larger than those produced by conventional processes could be obtained using the same material. This effect can be expected not only from the materials discussed (GaN-ZnO) in this paper but also from any photocatalyst, particularly materials of solid solution compositions.

  2. Amorphous Mixed-Metal Oxide Thin Films from Aqueous Solution Precursors with Near-Atomic Smoothness.

    PubMed

    Kast, Matthew G; Cochran, Elizabeth A; Enman, Lisa J; Mitchson, Gavin; Ditto, Jeffrey; Siefe, Chris; Plassmeyer, Paul N; Greenaway, Ann L; Johnson, David C; Page, Catherine J; Boettcher, Shannon W

    2016-12-28

    Thin films with tunable and homogeneous composition are required for many applications. We report the synthesis and characterization of a new class of compositionally homogeneous thin films that are amorphous solid solutions of Al 2 O 3 and transition metal oxides (TMO x ) including VO x , CrO x , MnO x , Fe 2 O 3 , CoO x , NiO, CuO x , and ZnO. The synthesis is enabled by the rapid decomposition of molecular transition-metal nitrates TM(NO 3 ) x at low temperature along with precondensed oligomeric Al(OH) x (NO 3 ) 3-x cluster species, both of which can be processed from aq solution. The films are dense, ultrasmooth (R rms < 1 nm, near 0.1 nm in many cases), and atomically mixed amorphous metal-oxide alloys over a large composition range. We assess the chemical principles that favor the formation of amorphous homogeneous films over rougher phase-segregated nanocrystalline films. The synthesis is easily extended to other compositions of transition and main-group metal oxides. To demonstrate versatility, we synthesized amorphous V 0.1 Cr 0.1 Mn 0.1 Fe 0.1 Zn 0.1 Al 0.5 O x and V 0.2 Cr 0.2 Fe 0.2 Al 0.4 O x with R rms ≈ 0.1 nm and uniform composition. The combination of ideal physical properties (dense, smooth, uniform) and broad composition tunability provides a platform for film synthesis that can be used to study fundamental phenomena when the effects of transition metal cation identity, solid-state concentration of d-electrons or d-states, and/or crystallinity need to be controlled. The new platform has broad potential use in controlling interfacial phenomena such as electron transfer in solar-cell contacts or surface reactivity in heterogeneous catalysis.

  3. GOMA 6.0 :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunk, Peter Randall; Rao, Rekha Ranjana; Chen, Ken S

    Goma 6.0 is a finite element program which excels in analyses of multiphysical processes, particularly those involving the major branches of mechanics (viz. fluid/solid mechanics, energy transport and chemical species transport). Goma is based on a full-Newton-coupled algorithm which allows for simultaneous solution of the governing principles, making the code ideally suited for problems involving closely coupled bulk mechanics and interfacial phenomena. Example applications include, but are not limited to, coating and polymer processing flows, super-alloy processing, welding/soldering, electrochemical processes, and solid-network or solution film drying. This document serves as a users guide and reference.

  4. Modeling on the cathodoluminescence properties of the thin film phosphors for field emission flat panel displays

    NASA Astrophysics Data System (ADS)

    Cho, Kyu-Gong

    2000-12-01

    In order to investigate the effects of the film roughness with the fundamental luminance parameters of thin film phosphors, Y2 O3:Eu films with different thickness and roughness values were deposited on various substrate materials using a pulsed laser deposition technique under a controlled experimental procedure. The best luminous efficiency was observed from the Y2O3:Eu films on quartz substrates due to the smaller refractive index and low absorption characteristics of the quartz substrates which produce a larger amount of total internal reflection in the film and low loss of light intensity during the multiple internal reflections. The trapped light inside the film can escape the film more easily due to rougher film surface. The better epitaxial growth capability of the Y2O 3:Eu films with the LaAlO3 substrates resulted in higher luminous efficiency in the small surface roughness region. Higher luminous efficiency was observed in reflection mode than in transmission mode due to the contribution of diffusely scattered light at the air-film interface. A new theoretical model based on the diffraction scattering theory of light, the steady-state diffusion condition of carriers and the Kanaya-Okayama's electron- beam-solid interaction range satisfactorily explains all the experimental results mentioned above. The model also provides solid understandings on the cathodoluminescence properties of the thin film phosphors with the effects of other single or multiple luminance parameters. The parameters encountered for the model are surface roughness, electron-beam-solid interaction, surface recombination rate of carriers, charge carrier diffusion properties, multiple scattering at the interfaces (air- film, film-substrate, and substrate-air), optical properties of the material, film thickness, and substrate type. The model supplies a general solution in both qualitative and quantitative ways to estimate the luminance properties of the thin film phosphors and it can be utilized to optimize the thin film phosphor properties for the application of field emission flat panel displays.

  5. Nonstoichiometry of Epitaxial FeTiO(3+delta) Films

    DTIC Science & Technology

    2003-01-01

    nonstoichiometry of the FeTiO3 +8 films was probably produced by cation vacancies and disarrangement of Fe3+ and Ti4 ions, which randomly occupied both interstitial...and substitutional sites of the FeTiO 3 related structure. INTRODUCTION Solid solutions of ot-Fe20 3- FeTiO3 (hematite-ilmenite) series are known to...tried to confirm preparation conditions of stoichiometric FeTiO 3 films. According to a literature on bulk crystal growth of FeTiO3 [5], very low oxygen

  6. Disentangled solid state and metastable polymer melt; a solvent free route to high-modulus high-strength tapes and films of UHMWPE

    NASA Astrophysics Data System (ADS)

    Rastogi, Sanjay

    2013-03-01

    Ultra High Molecular Weight Polyethylene (UHMWPE) having average molar mass greater than a million g/mol is an engineering polymer. Due to its light-weight, high abrasion resistance and biocompatibility it is used for demanding applications such as body armour, prostheses etc. At present, because of its high melt viscosity to achieve the uniaxial/biaxial properties in the form of fibers/films the polymer is processed via solution route where nearly 95wt% of the solvent is used to process 5wt% of the polymer. In past several attempts have been made to process the polymer without using any solvent. However, compared to the solvent processing route the achieved mechanical properties were rather poor. Here we show that by controlled synthesis it is feasible to obtain UHMWPE that could be processed free of solvent to make uniaxial tapes and biaxial films, having unprecedented mechanical properties, exceeding that of the solution spun fibers. We address some of the fundamental aspects of chemistry, physics, rheology and processing for the development of desired morphological features to achieve the ultimate mechanical properties in tapes and films. The paper will also address the metastable melt state obtained on melting of the disentangled crystals and its implication on rheology in linear and nonlinear viscoelastic region. Solid state NMR studies will be applied to establish disentangled state in solid state to the polymerisation conditions. References: Macromolecules 2011, 44(14), 5558-5568; Nature Materials 2005, 4, 635-641; Phys Rev Lett 2006, 96(21), 218303-218205. The authors acknowledge financial support by the Dutch Polymer Institute.

  7. Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface.

    PubMed

    Zhu, Guang; Su, Yuanjie; Bai, Peng; Chen, Jun; Jing, Qingshen; Yang, Weiqing; Wang, Zhong Lin

    2014-06-24

    Energy harvesting from ambient water motions is a desirable but underexplored solution to on-site energy demand for self-powered electronics. Here we report a liquid-solid electrification-enabled generator based on a fluorinated ethylene propylene thin film, below which an array of electrodes are fabricated. The surface of the thin film is charged first due to the water-solid contact electrification. Aligned nanowires created on the thin film make it hydrophobic and also increase the surface area. Then the asymmetric screening to the surface charges by the waving water during emerging and submerging processes causes the free electrons on the electrodes to flow through an external load, resulting in power generation. The generator produces sufficient output power for driving an array of small electronics during direct interaction with water bodies, including surface waves and falling drops. Polymer-nanowire-based surface modification increases the contact area at the liquid-solid interface, leading to enhanced surface charging density and thus electric output at an efficiency of 7.7%. Our planar-structured generator features an all-in-one design without separate and movable components for capturing and transmitting mechanical energy. It has extremely lightweight and small volume, making it a portable, flexible, and convenient power solution that can be applied on the ocean/river surface, at coastal/offshore areas, and even in rainy places. Considering the demonstrated scalability, it can also be possibly used in large-scale energy generation if layers of planar sheets are connected into a network.

  8. Nonflat equilibrium liquid shapes on flat surfaces.

    PubMed

    Starov, Victor M

    2004-01-15

    The hydrostatic pressure in thin liquid layers differs from the pressure in the ambient air. This difference is caused by the actions of surface forces and capillary pressure. The manifestation of the surface force action is the disjoining pressure, which has a very special S-shaped form in the case of partial wetting (aqueous thin films and thin films of aqueous electrolyte and surfactant solutions, both free films and films on solid substrates). In thin flat liquid films the disjoining pressure acts alone and determines their thickness. However, if the film surface is curved then both the disjoining and the capillary pressures act simultaneously. In the case of partial wetting their simultaneous action results in the existence of nonflat equilibrium liquid shapes. It is shown that in the case of S-shaped disjoining pressure isotherm microdrops, microdepressions, and equilibrium periodic films exist on flat solid substrates. Criteria are found for both the existence and the stability of these nonflat equilibrium liquid shapes. It is shown that a transition from thick films to thinner films can go via intermediate nonflat states, microdepressions and periodic films, which both can be more stable than flat films within some range of hydrostatic pressure. Experimental investigations of shapes of the predicted nonflat layers can open new possibilities of determination of disjoining pressure in the range of thickness in which flat films are unstable.

  9. Gravitational Effects on the Morphology and Kinetics of Photodeposition of Polydiacetylene Thin Films From Monomer Solutions

    NASA Technical Reports Server (NTRS)

    Paley, Mark S.; Antar, Basil; Witherow, William K.; Frazier, Donald O.

    1999-01-01

    The goal of this proposed work is to study gravitational effects on the photodeposition of polydiacetylene thin films from monomer solutions onto transparent substrates. Polydiacetylenes have been an extensively studied class of organic polymers because they exhibit many unusual and interesting properties, including electrical conductivity and optical nonlinearity. Their long polymeric chains render polydiacetylenes readily conducive to thin film formation, which is necessary for many applications. These applications require thin polydiacetylene films possessing uniform thicknesses, high purity, minimal inhomogeneities and defects (such as scattering centers), etc. Also, understanding and controlling the microstructure and morphology of the films is important for optimizing their electronic and optical properties. The lack of techniques for processing polydiacetylenes into such films has been the primary limitation to their commercial use. We have recently discovered a novel method for the formation of polydiacetylene thin films using photo-deposition from monomer solutions onto transparent substrates with UV light. This technique is very simple to carry out, and can yield films with superior quality to those produced by conventional methods. Furthermore, these films exhibit good third-order properties and are capable of waveguiding. We have been actively studying the chemistry of diacetylene polymerization in solution and the photo-deposition of polydiacetylene thin films from solution. It is well-known that gravitational factors such as buoyancy-driven convection and sedimentation can affect chemical and mass transport processes in solution. One important aspect of polydiacetylene thin film photodeposition in solution, relevant to microgravity science, is that heat generated by absorption of UV radiation induces thermal density gradients that under the influence of gravity, can cause fluid flows (buoyancy-driven convection). Additionally, changes in the chemical composition of the solution during polymerization may cause solutal convection. These fluid flows affect transport of material to and from the film surface and thereby affect the kinetics of the growth process. This manifests itself in the morphology of the resulting films; films grown under the influence of convection tend to have less uniform thicknesses, and can possess greater inhomogeneities and defects. Specifically, polydiacetylene films photodeposited from solution, when viewed under a microscope, exhibit very small particles of solid polymer which get transported by convection from the bulk solution to the surface of the growing film and become embedded. Even when carried out under conditions designed to minimize unstable density gradients (i.e., irradiating the solution from the top), some fluid flow still takes place (particles remain present in the films). It is also possible that defect nucleation may be occurring within the films or on the surface of the substrate; this, too, can be affected by convection (as is the case with crystal growth). Hence films grown in 1-g will, at best, still possess some defects. The objective of this proposal is to investigate, both in 1-g and in low-g, the effects of gravitational factors (primarily convection) on the dynamics of these processes, and on the quality, morphology, and properties of the films obtained.

  10. Control of silicification by genetically engineered fusion proteins: Silk–silica binding peptides

    PubMed Central

    Zhou, Shun; Huang, Wenwen; Belton, David J.; Simmons, Leo O.; Perry, Carole C.; Wang, Xiaoqin; Kaplan, David L.

    2014-01-01

    In the present study, an artificial spider silk gene, 6mer, derived from the consensus sequence of Nephila clavipes dragline silk gene, was fused with different silica-binding peptides (SiBPs), A1, A3 and R5, to study the impact of the fusion protein sequence chemistry on silica formation and the ability to generate a silk–silica composite in two different bioinspired silicification systems: solution–solution and solution– solid. Condensed silica nanoscale particles (600–800 nm) were formed in the presence of the recombinant silk and chimeras, which were smaller than those formed by 15mer-SiBP chimeras [1], revealing that the molecular weight of the silk domain correlated to the sizes of the condensed silica particles in the solution system. In addition, the chimeras (6mer-A1/A3/R5) produced smaller condensed silica particles than the control (6mer), revealing that the silica particle size formed in the solution system is controlled by the size of protein assemblies in solution. In the solution–solid interface system, silicification reactions were performed on the surface of films fabricated from the recombinant silk proteins and chimeras and then treated to induce β-sheet formation. A higher density of condensed silica formed on the films containing the lowest β-sheet content while the films with the highest β-sheet content precipitated the lowest density of silica, revealing an inverse correlation between the β-sheet secondary structure and the silica content formed on the films. Intriguingly, the 6mer-A3 showed the highest rate of silica condensation but the lowest density of silica deposition on the films, compared with 6mer-A1 and -R5, revealing antagonistic crosstalk between the silk and the SiBP domains in terms of protein assembly. These findings offer a path forward in the tailoring of biopolymer–silica composites for biomaterial related needs. PMID:25462851

  11. Microgravity

    NASA Image and Video Library

    1996-08-01

    Polydiacetylenes are a unique class of highly conjugated organic polymers that are of interest for both electronic and photonic applications. Photodeposition from solutions is a novel process superior to those grown by conventional techniques. Evidence of this is seen when the films are viewed under a microscope; they exhibit small particles of solid polymer which form in the bulk solution, get transported by convection to the surface of the growing film, and become embedded. Also convection tends to cause the film thickness to be less uniform, and may even affect the molecular orientation of the films. The thrust of the research is to investigate in detail, both in 1-g and low-g, the effects of convection (and lack thereof) on this novel and interesting reaction. In this example, a portion of the substrate was blocked from exposure to the UV light by the mask, which was placed on the opposite side of the glass disk as the film, clearly demonstrating that photodeposition occurs only where the substrate is irradiated directly.

  12. Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines.

    PubMed

    Law, Matt; Luther, Joseph M; Song, Qing; Hughes, Barbara K; Perkins, Craig L; Nozik, Arthur J

    2008-05-07

    We describe the structural, optical, and electrical properties of films of spin-cast, oleate-capped PbSe nanocrystals that are treated thermally or chemically in solutions of hydrazine, methylamine, or pyridine to produce electronically coupled nanocrystal solids. Postdeposition heat treatments trigger nanocrystal sintering at approximately 200 degrees C, before a substantial fraction of the oleate capping group evaporates or pyrolyzes. The sintered nanocrystal films have a large hole density and are highly conductive. Most of the amine treatments preserve the size of the nanocrystals and remove much of the oleate, decreasing the separation between nanocrystals and yielding conductive films. X-ray scattering, X-ray photoelectron and optical spectroscopy, electron microscopy, and field-effect transistor electrical measurements are used to compare the impact of these chemical treatments. We find that the concentration of amines adsorbed to the NC films is very low in all cases. Treatments in hydrazine in acetonitrile remove only 2-7% of the oleate yet result in high-mobility n-type transistors. In contrast, ethanol-based hydrazine treatments remove 85-90% of the original oleate load. Treatments in pure ethanol strip 20% of the oleate and create conductive p-type transistors. Methylamine- and pyridine-treated films are also p-type. These chemically treated films oxidize rapidly in air to yield, after short air exposures, highly conductive p-type nanocrystal solids. Our results aid in the rational development of solar cells based on colloidal nanocrystal films.

  13. Structural modification in the formation of starch - silver nanocomposites

    NASA Astrophysics Data System (ADS)

    Begum, S. N. Suraiya; Aswal, V. K.; Ramasamy, Radha Perumal

    2016-05-01

    Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO3) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO3. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO3 concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.

  14. Method of synthesizing polymers from a solid electrolyte

    DOEpatents

    Skotheim, Terje A.

    1985-01-01

    A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte wherein an assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

  15. Method of synthesizing polymers from a solid electrolyte

    DOEpatents

    Skotheim, T.A.

    1984-10-19

    A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte is disclosed. An assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

  16. Lactic Acid and Biosurfactants Production from Residual Cellulose Films.

    PubMed

    Portilla Rivera, Oscar Manuel; Arzate Martínez, Guillermo; Jarquín Enríquez, Lorenzo; Vázquez Landaverde, Pedro Alberto; Domínguez González, José Manuel

    2015-11-01

    The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6% (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49% of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50% of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit

    Spark plasma sintered transition metal diborides such as HfB 2, ZrB 2 and their solid solutions were investigated as electrode materials for electrochemical hydrogen evolutions reactions (HER) in 1 M H 2SO 4 and 1 M NaOH electrolytes. HfB 2 and ZrB 2 formed complete solid solutions when mixed in 1:1, 1:4, and 4:1 ratios and they were stable in both electrolytes. The HER kinetics of the diborides were slower in the basic solution than in the acidic solutions. The Tafel slopes in 1 M H 2SO 4 were in the range of 0.15 - 0.18 V/decade except for puremore » HfB 2 which showed a Tafel slope of 0.38 V/decade. In 1 M NaOH the Tafel slopes were in the range of 0.12 - 0.27 V/decade. The composition of Hf xZr 1-xB 2 solid solutions with x = 0.2 - 0.8, influenced the exchange current densities, overpotentials and Tafel slopes of the HER. As a result, the EIS data were fitted with a porous film equivalent circuit model in order to better understand the HER behavior. In addition, modeling calculations, using density functional theory approach, were carried out to estimate the density of states and band structure of the boride solid solutions.« less

  18. Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Sengwa, R. J.; Dhatarwal, Priyanka; Choudhary, Shobhna

    2016-05-01

    Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF4) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10-6 S cm-1 which suggests the suitability of the SPE film for rechargeable lithium batteries.

  19. Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengwa, R. J., E-mail: rjsengwa@rediffmail.com; Dhatarwal, Priyanka, E-mail: dhatarwalpriyanka@gmail.com; Choudhary, Shobhna, E-mail: shobhnachoudhary@rediffmail.com

    2016-05-06

    Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF{sub 4}) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governedmore » by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10{sup −6} S cm{sup −1} which suggests the suitability of the SPE film for rechargeable lithium batteries.« less

  20. Utilization of chemically treated municipal solid waste (spent coffee bean powder) as reinforcement in cellulose matrix for packaging applications.

    PubMed

    Thiagamani, Senthil Muthu Kumar; Nagarajan, Rajini; Jawaid, Mohammad; Anumakonda, Varadarajulu; Siengchin, Suchart

    2017-11-01

    As the annual production of the solid waste generable in the form of spent coffee bean powder (SCBP) is over 6 million tons, its utilization in the generation of green energy, waste water treatment and as a filler in biocomposites is desirable. The objective of this article is to analyze the possibilities to valorize coffee bean powder as a filler in cellulose matrix. Cellulose matrix was dissolved in the relatively safer aqueous solution mixture (8% LiOH and 15% Urea) precooled to -12.5°C. To the cellulose solution (SCBP) was added in 5-25wt% and the composite films were prepared by regeneration method using ethyl alcohol as a coagulant. Some SCBP was treated with aq. 5% NaOH and the composite films were also prepared using alkali treated SCBP as a filler. The films of composites were uniform with brown in color. The cellulose/SCBP films without and with alkali treated SCBP were characterized by FTIR, XRD, optical and polarized optical microscopy, thermogravimetric analysis (TGA) and tensile tests. The maximum tensile strength of the composite films with alkali treated SCBP varied between (106-149MPa) and increased with SCBP content when compared to the composites with untreated SCBP. The thermal stability of the composite was higher at elevated temperatures when alkali treated SCBP was used. Based on the improved tensile properties and photo resistivity, the cellulose/SCBP composite films with alkali treated SCBP may be considered for packaging and wrapping of flowers and vegetables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A FRET system built on quartz plate as a ratiometric fluorescence sensor for mercury ions in water.

    PubMed

    Liu, Baoyu; Zeng, Fang; Liu, Yan; Wu, Shuizhu

    2012-04-07

    Due to the hazardous nature of mercury ions, the development of a cost effective, sensitive and field-portable sensor is of high significance for both industry and civilian use. In this work, a FRET-based ratiometric sensor for detecting mercury ions in water was fabricated by depositing a multilayered silica structure on a quartz plate. For the preparation of the film-based sensor, a silica support layer was first deposited on the quartz plate by using the sol-gel spin-coating procedure, and three ultrathin functional layers (donor, spacer and receptor) were then deposited on the support layer by dip-coating in a stepwise manner in toluene solution. As the film-based sensor was placed into an aqueous solution of Hg(2+), the non-fluorescent receptor (a spirolactam rhodamine derivative) on the film surface could form a complex with the mercury ion and act as the acceptor of the energy transfer. Upon excitation, the donor (a nitrobenzoxadiazolyl derivative, NBD) could transfer its excited energy from the donor layer to the acceptor on the film surface via the 'through space' energy transfer process, thus realizing the FRET-based ratiometric sensing for mercury ions. The sensor can selectively detect Hg(2+) in water with the detection limit of 1 μM. This solid film sensor is capable of being easily-portable and visualized detection. This strategy may offer new approaches for constructing other FRET-based solid-state devices.

  2. Chitosan film loaded with silver nanoparticles-sorbent for solid phase extraction of Al(III), Cd(II), Cu(II), Co(II), Fe(III), Ni(II), Pb(II) and Zn(II).

    PubMed

    Djerahov, Lubomir; Vasileva, Penka; Karadjova, Irina; Kurakalva, Rama Mohan; Aradhi, Keshav Krishna

    2016-08-20

    The present study describes the ecofriendly method for the preparation of chitosan film loaded with silver nanoparticles (CS-AgNPs) and application of this film as efficient sorbent for separation and enrichment of Al(III), Cd(II), Cu(II), Co(II), Fe(III), Ni(II), Pb(II) and Zn(II). The stable CS-AgNPs colloid was prepared by dispersing the AgNPs sol in chitosan solution at appropriate ratio and further used to obtain a cast film with very good stability under storage and good mechanical strength for easy handling in aqueous medium. The incorporation of AgNPs in the structure of CS film and interaction between the polymer matrix and nanoparticles were confirmed by UV-vis and FTIR spectroscopy. The homogeneously embedded AgNPs (average diameter 29nm, TEM analysis) were clearly observed throughout the film by SEM. The CS-AgNPs nanocomposite film shows high sorption activity toward trace metals under optimized chemical conditions. The results suggest that the CS-AgNPs nanocomposite film can be feasibly used as a novel sorbent material for solid-phase extraction of metal pollutants from surface waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Ionic liquid supported on an electrodeposited polycarbazole film for the headspace solid-phase microextraction and gas chromatography determination of aromatic esters.

    PubMed

    Feng, Yuanyuan; Zhao, Faqiong; Zeng, Baizhao

    2015-05-01

    A polycarbazole film was electrodeposited on a stainless-steel wire from a solution of N,N-dimethylformamide/propylene carbonate (1:9 v/v) containing 0.10 M carbazole and 0.10 M tetrabutylammonium perchlorate. The obtained polycarbazole fiber was immersed into an ionic liquid (1-hydroxyethyl-3-methyl imidazolium bis[(trifluoromethyl)sulfonyl]imide) solution (in dimethylsulfoxide) for 30 min, followed by drying under an infrared lamp. The resulting polycarbazole/ionic liquid fiber was applied to the headspace solid-phase microextraction and determination of aromatic esters by coupling with gas chromatography and flame ionization detection. Under the optimized conditions, the limits of detection were below 61 ng/L (S/N = 3) and the linear ranges were 0.061-500 μg/L with correlation coefficients above 0.9876. The relative standard deviations were below 4.8% (n = 5) for a single fiber, and below 9.9% for multi-fiber (n = 4). This fiber also exhibited good stability. It could be used for more than 160 times of headspace solid-phase microextraction and could withstand a high temperature up to 350°C. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arya, Anil; Sharma, Sweety; Sharma, A. L., E-mail: alsharmaiitkgp@gmail.com

    Blend polymer electrolytes are prepared for salt concentration (Ö/Li = 4) with the constant ratio (0.5 gm) of PEO and PAN using solution casting technique. The prepared free standing solid polymeric film is characterized by Field Emission Scanning Electron Microscopy (FESEM) which confirms the homogeneous distribution of dissociated salt in blend polymer matrix. After addition of salt the ionic conductivity value is found to be of the order of 7.13 × 10{sup −5} Scm{sup −1} which is three orders higher when compared with pure blend polymer films. The microscopic interaction among the polymer-ion, ion-ion has been confirmed by the Fouriermore » Transform Infrared (FTIR) Spectroscopy. A very fine correlation has been built in the electrical conductivity and FTIR result. On the basis of above finding, a prepared free standing solid polymeric film appears to be appropriate for the energy storage/conversion device applications.« less

  5. Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells.

    PubMed

    Kim, Younghoon; Bicanic, Kristopher; Tan, Hairen; Ouellette, Olivier; Sutherland, Brandon R; García de Arquer, F Pelayo; Jo, Jea Woong; Liu, Mengxia; Sun, Bin; Liu, Min; Hoogland, Sjoerd; Sargent, Edward H

    2017-04-12

    Colloidal quantum dot (CQD) materials are of interest in thin-film solar cells due to their size-tunable bandgap and low-cost solution-processing. However, CQD solar cells suffer from inefficient charge extraction over the film thicknesses required for complete absorption of solar light. Here we show a new strategy to enhance light absorption in CQD solar cells by nanostructuring the CQD film itself at the back interface. We use two-dimensional finite-difference time-domain (FDTD) simulations to study quantitatively the light absorption enhancement in nanostructured back interfaces in CQD solar cells. We implement this experimentally by demonstrating a nanoimprint-transfer-patterning (NTP) process for the fabrication of nanostructured CQD solids with highly ordered patterns. We show that this approach enables a boost in the power conversion efficiency in CQD solar cells primarily due to an increase in short-circuit current density as a result of enhanced absorption through light-trapping.

  6. Influence of carbon nanotubes on the optical properties of plasticized solid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Ibrahim, Suriani; Yasin, Siti Mariah Mohd; Johan, Mohd Rafie

    2013-07-01

    Polyethylene oxide (PEO) based solid polymer electrolyte films complexed with lithium hexafluorophosphate (LiPF6), ethylene carbonate (EC) and carbon nanotubes (CNTs) are prepared by solution-casting technique. The complexation of doping materials with polymer is confirmed by X-ray diffraction and infrared studies. The incorporation of LiPF6, EC and CNTs into the host polymer shows a significant increase in conductivity of 10-10 and 10-3 S cm-1. The optical properties such as direct and indirect band gaps are investigated for pure and doped polymer films within a wavelength range of 200-400 nm. It is found that the energy gaps and band edge values shift towards lower energies upon doping. It is shown that LiPF6, EC and CNTs are responsible for the formation of defects in polymer electrolytes, which increases the degree of disorder in the films.

  7. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids

    NASA Astrophysics Data System (ADS)

    Liu, Mengxia; Voznyy, Oleksandr; Sabatini, Randy; García de Arquer, F. Pelayo; Munir, Rahim; Balawi, Ahmed Hesham; Lan, Xinzheng; Fan, Fengjia; Walters, Grant; Kirmani, Ahmad R.; Hoogland, Sjoerd; Laquai, Frédéric; Amassian, Aram; Sargent, Edward H.

    2017-02-01

    Bandtail states in disordered semiconductor materials result in losses in open-circuit voltage (Voc) and inhibit carrier transport in photovoltaics. For colloidal quantum dot (CQD) films that promise low-cost, large-area, air-stable photovoltaics, bandtails are determined by CQD synthetic polydispersity and inhomogeneous aggregation during the ligand-exchange process. Here we introduce a new method for the synthesis of solution-phase ligand-exchanged CQD inks that enable a flat energy landscape and an advantageously high packing density. In the solid state, these materials exhibit a sharper bandtail and reduced energy funnelling compared with the previous best CQD thin films for photovoltaics. Consequently, we demonstrate solar cells with higher Voc and more efficient charge injection into the electron acceptor, allowing the use of a closer-to-optimum bandgap to absorb more light. These enable the fabrication of CQD solar cells made via a solution-phase ligand exchange, with a certified power conversion efficiency of 11.28%. The devices are stable when stored in air, unencapsulated, for over 1,000 h.

  8. Solid solutions of MnSb as recording media in optical memory applications

    NASA Astrophysics Data System (ADS)

    Bai, V. S.; Rama Rao, K. V. S.

    1984-03-01

    Possibilities regarding the use of larger packing densities and faster access times make it potentially feasible to employ optical technology for the development of computer data storage systems with a performance which is 2-4 orders of magnitude better than that of conventional systems. The information can be stored on thin magnetic films using the technique of laser Curie point writing and retrieved with the aid of magnetooptic readout. Thin films of MnBi have been studied extensively as a prospective storage medium. However, certain difficulties arise in connection with a phase transformation. For these reasons, the present investigation is concerned with the possibility of employing as storage medium MnSb, in which such a phase transformation is absent. In the case of MnSb, a change regarding the easy direction of magnetization would be required. Attention is given to several solid solutions of MnSb and the merits of these materials for optical memory applications.

  9. Inclusions in freely suspended smectic films

    NASA Astrophysics Data System (ADS)

    Stannarius, Ralf; Harth, Kirsten

    Smectic liquid crystal phases have a unique property: Like soap solutions, they can form stable freely suspended films. Their aspect ratios can be larger than one million to one. Such films can serve as models for two-dimensional (2D) uids, with or without in-plane anisotropy. Solid or liquid inclusions trapped in these films by capillary forces can move in the film plane and interact with other inclusions, with film thickness gradients or the film boundaries, and even with the local orientation field. We describe preparation techniques to incorporate particles or droplets in thin smectic films, and optical observation methods. Several aspects make inclusions in freely suspended films interesting research objects: They provide rich information on capillary forces as well as surface and interfacial tensions, they can serve as platforms for hydrodynamic studies in 2D, and they may help to understand coalescence dynamics at the transition from 2D to 3D...

  10. Low-Temperature Postfunctionalization of Highly Conductive Oxide Thin-Films toward Solution-Based Large-Scale Electronics.

    PubMed

    Ban, Seok-Gyu; Kim, Kyung-Tae; Choi, Byung Doo; Jo, Jeong-Wan; Kim, Yong-Hoon; Facchetti, Antonio; Kim, Myung-Gil; Park, Sung Kyu

    2017-08-09

    Although transparent conducting oxides (TCOs) have played a key role in a wide range of solid-state electronics from conventional optoelectronics to emerging electronic systems, the processing temperature and conductivity of solution-processed materials seem to be far exceeding the thermal limitations of soft materials and insufficient for high-perfomance large-area systems, respectively. Here, we report a strategy to form highly conductive and scalable solution-processed oxide materials and their successful translation into large-area electronic applications, which is enabled by photoassisted postfunctionalization at low temperature. The low-temperature fabrication of indium-tin-oxide (ITO) thin films was achieved by using photoignited combustion synthesis combined with photoassisted reduction process under hydrogen atmosphere. It was noteworthy that the photochemically activated hydrogens on ITO surface could be triggered to facilitate highly crystalline oxygen deficient structure allowing significant increase of carrier concentration and mobility through film microstructure modifications. The low-temperature postfunctionalized ITO films demonstrated conductivity of >1607 S/cm and sheet resistance of <104 Ω/□ under the process temperature of less than 300 °C, which are comparable to those of vacuum-deposited and high-temperature annealed ITO films. Based on the photoassisted postfunctionalization route, all-solution-processed transparent metal-oxide thin-film-transistors and large-area integrated circuits with the ITO bus lines were demonstrated, showing field-effect mobilities of >6.5 cm 2 V -1 s -1 with relatively good operational stability and oscillation frequency of more than 1 MHz in 7-stage ring oscillators, respectively.

  11. Long Term Stability in Thin Film Ferroelectric Memories

    DTIC Science & Technology

    1992-09-29

    concentration is adjusted to IM. IM PT stock solution is prepared from Pb acetate and Ti isopropoxide dissolved in 2-MOE, and is added to the PMN stock...is necessary to understand that defect chemistry in detail. While PbTi0 3, PbZrO3 , and their solid- solutions , PZT, have not been thoroughly studied...methoxyethanol (2-MOE) is added. The ethanol and excess 2-MOE are removed by distillation. Pb precursor solution (Pb acetate in 2-MOE) is added and the 13

  12. Singlet Fission and Excimer Formation in Disordered Solids of Alkyl-Substituted 1,3-Diphenylisobenzofurans

    DOE PAGES

    Dron, Paul I.; Michl, Josef; Johnson, Justin C.

    2017-10-16

    Here, we describe the preparation and excited state dynamics of three alkyl derivatives of 1,3-diphenylisobenzofuran (1) in both solutions and thin films. The substitutions are intended to disrupt the slip-stacked packing observed in crystals of 1 while maintaining the favorable energies of singlet and triplet for singlet fission (SF). All substitutions result in films that are largely amorphous as judged by the absence of strong X-ray diffraction peaks.

  13. An artificial photosynthesis anode electrode composed of a nanoparticulate photocatalyst film in a visible light responsive GaN-ZnO solid solution system

    PubMed Central

    Imanaka, Yoshihiko; Anazawa, Toshihisa; Manabe, Toshio; Amada, Hideyuki; Ido, Sachio; Kumasaka, Fumiaki; Awaji, Naoki; Sánchez-Santolino, Gabriel; Ishikawa, Ryo; Ikuhara, Yuichi

    2016-01-01

    The artificial photosynthesis technology known as the Honda-Fujishima effect, which produces oxygen and hydrogen or organic energy from sunlight, water, and carbon dioxide, is an effective energy and environmental technology. The key component for the higher efficiency of this reaction system is the anode electrode, generally composed of a photocatalyst formed on a glass substrate from electrically conductive fluorine-doped tin oxide (FTO). To obtain a highly efficient electrode, a dense film composed of a nanoparticulate visible light responsive photocatalyst that usually has a complicated multi-element composition needs to be deposited and adhered onto the FTO. In this study, we discovered a method for controlling the electronic structure of a film by controlling the aerosol-type nanoparticle deposition (NPD) condition and thereby forming films of materials with a band gap smaller than that of the prepared raw material powder, and we succeeded in extracting a higher current from the anode electrode. As a result, we confirmed that a current approximately 100 times larger than those produced by conventional processes could be obtained using the same material. This effect can be expected not only from the materials discussed (GaN-ZnO) in this paper but also from any photocatalyst, particularly materials of solid solution compositions. PMID:27759108

  14. Rigorous asymptotics of traveling-wave solutions to the thin-film equation and Tanner’s law

    NASA Astrophysics Data System (ADS)

    Giacomelli, Lorenzo; Gnann, Manuel V.; Otto, Felix

    2016-09-01

    We are interested in traveling-wave solutions to the thin-film equation with zero microscopic contact angle (in the sense of complete wetting without precursor) and inhomogeneous mobility {{h}3}+{λ3-n}{{h}n} , where h, λ, and n\\in ≤ft(\\frac{3}{2},\\frac{7}{3}\\right) denote film height, slip parameter, and mobility exponent, respectively. Existence and uniqueness of these solutions have been established by Maria Chiricotto and the first of the authors in previous work under the assumption of sub-quadratic growth as h\\to ∞ . In the present work we investigate the asymptotics of solutions as h\\searrow 0 (the contact-line region) and h\\to ∞ . As h\\searrow 0 we observe, to leading order, the same asymptotics as for traveling waves or source-type self-similar solutions to the thin-film equation with homogeneous mobility h n and we additionally characterize corrections to this law. Moreover, as h\\to ∞ we identify, to leading order, the logarithmic Tanner profile, i.e. the solution to the corresponding unperturbed problem with λ =0 that determines the apparent macroscopic contact angle. Besides higher-order terms, corrections turn out to affect the asymptotic law as h\\to ∞ only by setting the length scale in the logarithmic Tanner profile. Moreover, we prove that both the correction and the length scale depend smoothly on n. Hence, in line with the common philosophy, the precise modeling of liquid-solid interactions (within our model, the mobility exponent) does not affect the qualitative macroscopic properties of the film.

  15. A study of physical properties of ODPA-p-PDA polyimide films

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; St.clair, Terry L.

    1990-01-01

    Physical properties were investigated of ODPA-p-PDA polyimide films, including their lower molecular weight versions with phthalimide endcaps. Free volume, determined by low energy positron annihilation in the test films, was the major parameter of interest since all other physical properties are ostensibly related to it. It affects the dielectric constant as well as the saturation moisture pickup of the test films. An empirical relation was developed between the free volume and molecular weight of the test films, comparable to the Mark-Houwink relation between the polymer solution viscosity and the molecular weight. Development of such a relation constitutes a unique achievement since it enables researchers to estimate the molecular weight of an intractable polymer in solid state for the first time.

  16. Microwave properties of film Ba x Sr1 - x TiO3 ferroelectric variconds with a magnesium-containing additive

    NASA Astrophysics Data System (ADS)

    Tumarkin, A. V.; Tepina, E. R.; Nenasheva, E. A.; Kartenko, N. F.; Kozyrev, A. B.

    2012-06-01

    The electrophysical properties of bulk ceramics based on Ba x Sr1 - x TiO3 solid solutions with a Mg-containing additive and planar variconds based on ferroelectric films obtained by the ion-plasma sputtering of targets with different elemental compositions are studied. Controllability n( U) = C(0)/ C( U) and the dielectric loss tangent (tanδ) of ferroelectric variconds are measured as functions of the elemental composition of the ferroelectric. The figure of merit of the variconds is estimated, and the film composition providing the best electrophysical parameters is determined.

  17. Structural modification in the formation of starch – silver nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begum, S. N. Suraiya; Ramasamy, Radha Perumal, E-mail: perumal.ramasamy@gmail.com; Aswal, V. K.

    Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO{sub 3}) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO{sub 3}. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structuresmore » and with increasing the AgNO{sub 3} concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.« less

  18. Analysis of the fluid flow and heat transfer in a thin liquid film in the presence and absence of gravity

    NASA Technical Reports Server (NTRS)

    Rahman, M. M.; Hankey, W. L.; Faghri, A.

    1991-01-01

    The hydrodynamic and thermal behavior of a thin liquid film flowing over a solid horizontal surface is analyzed for both plane and radially spreading flows. The situations where the gravitational force is completely absent and where it is significant are analyzed separately and their practical relevance to a micro-gravity environment is discussed. In the presence of gravity, in addition to Reynolds number, the Froude number of the film is found to be an important parameter that determines the supercritical and subcritical flow regimes and any associated hydraulic jump. A closed-form solution is possible under some flow situations, whereas others require numerical integration of ordinary differential equations. The approximate analytical results are found to compare well with the available two-dimensional numerical solutions.

  19. Sensitivity of Imaging Materials to Electron Beam Irradiation

    DTIC Science & Technology

    1991-04-01

    solvent/nonsolvent ratio, and in the solid state by applying mechanical stresses. The terms thermochromism , solvatochromism, and mechanochromism have been...these examples, the thermochromic phase transitions that occur in solution are reversible [101. The changes in optical absorption for solutions of 3BCMU...three-dimensional perspective, as would be observed in a monomolecular layer of an LB film. Flanking this view are both a side view (14a) and a front

  20. A Solution Processable High-Performance Thermoelectric Copper Selenide Thin Film.

    PubMed

    Lin, Zhaoyang; Hollar, Courtney; Kang, Joon Sang; Yin, Anxiang; Wang, Yiliu; Shiu, Hui-Ying; Huang, Yu; Hu, Yongjie; Zhang, Yanliang; Duan, Xiangfeng

    2017-06-01

    A solid-state thermoelectric device is attractive for diverse technological areas such as cooling, power generation and waste heat recovery with unique advantages of quiet operation, zero hazardous emissions, and long lifetime. With the rapid growth of flexible electronics and miniature sensors, the low-cost flexible thermoelectric energy harvester is highly desired as a potential power supply. Herein, a flexible thermoelectric copper selenide (Cu 2 Se) thin film, consisting of earth-abundant elements, is reported. The thin film is fabricated by a low-cost and scalable spin coating process using ink solution with a truly soluble precursor. The Cu 2 Se thin film exhibits a power factor of 0.62 mW/(m K 2 ) at 684 K on rigid Al 2 O 3 substrate and 0.46 mW/(m K 2 ) at 664 K on flexible polyimide substrate, which is much higher than the values obtained from other solution processed Cu 2 Se thin films (<0.1 mW/(m K 2 )) and among the highest values reported in all flexible thermoelectric films to date (≈0.5 mW/(m K 2 )). Additionally, the fabricated thin film shows great promise to be integrated with the flexible electronic devices, with negligible performance change after 1000 bending cycles. Together, the study demonstrates a low-cost and scalable pathway to high-performance flexible thin film thermoelectric devices from relatively earth-abundant elements. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOEpatents

    Jankowski, A.F.; Makowiecki, D.M.; Rambach, G.D.; Randich, E.

    1998-05-19

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated. 8 figs.

  2. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOEpatents

    Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik

    1999-01-01

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

  3. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOEpatents

    Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik

    1998-01-01

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

  4. Chemical routes to nanocrystalline and thin-film III-VI and I-III-VI semiconductors

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jennifer Ann

    1999-11-01

    The work encompasses: (1) catalyzed low-temperature, solution-based routes to nano- and microcrystalline III-VI semiconductor powders and (2) spray chemical vapor deposition (spray CVD) of I-III-VI semiconductor thin films. Prior to this work, few, if any, examples existed of chemical catalysis applied to the synthesis of nonmolecular, covalent solids. New crystallization strategies employing catalysts were developed for the regioselective syntheses of orthorhombic InS (beta-InS), the thermodynamic phase, and rhombohedral InS (R-InS), a new, metastable structural isomer. Growth of beta-InS was facilitated by a solvent-suspended, molten-metal flux in a process similar to the SolutionLiquid-Solid (SLS) growth of InP and GaAs fibers and single-crystal whiskers. In contrast, metastable R-InS, having a pseudo-graphitic layered structure, was prepared selectively when the molecular catalyst, benzenethiol, was present in solution and the inorganic "catalyst" (metal flux) was not present. In the absence of any crystal-growth facilitator, metal flux or benzenethiol, amorphous product was obtained under the mild reaction conditions employed (T ≤ 203°C). The inorganic and organic catalysts permitted the regio-selective syntheses of InS and were also successfully applied to the growth of network and layered InxSey compounds, respectively, as well as nanocrystalline In2S3. Extensive microstructural characterization demonstrated that the layered compounds grew as fullerene-like nanostructures and large, colloidal single crystals. Films of the I-III-VI compounds, CuInS2, CuGaS2, and Cu(In,Ga)S 2, were deposited by spray CVD using the known single-source metalorganic precursor, (Ph3P)2CuIn(SEt)4, a new precursor, (Ph3P)2CuGa(SEt)3, and a mixture of the two precursors, respectively. The CulnS2 films exhibited a variety of microstructures from dense and faceted or platelet-like to porous and dendritic. Crystallographic orientations ranged from strongly [112] to strongly [220] oriented. Microstructure, orientation, and growth kinetics were controlled by changing processing parameters: carrier-gas flow rate, substrate temperature, and precursor-solution concentration. Low resistivities (<50 O cm) were associated with [220]-oriented films. All CuInS2 films were approximately stoichiometric and had the desired bandgap (Eg ≅ 1.4 eV) for application as the absorber layer in thin-film photovoltaic devices.

  5. Dynamic mechanical thermal analysis of hypromellose 2910 free films.

    PubMed

    Cespi, Marco; Bonacucina, Giulia; Mencarelli, Giovanna; Casettari, Luca; Palmieri, Giovanni Filippo

    2011-10-01

    It is common practice to coat oral solid dosage forms with polymeric materials for controlled release purposes or for practical and aesthetic reasons. Good knowledge of thermo-mechanical film properties or their variation as a function of polymer grade, type and amount of additives or preparation method is of prime importance in developing solid dosage forms. This work focused on the dynamic mechanical thermal characteristics of free films of hypromellose 2910 (also known as HPMC), prepared using three grades of this polymer from two different manufacturers, in order to assess whether polymer chain length or origin affects the mechanical or thermo-mechanical properties of the final films. Hypromellose free films were obtained by casting their aqueous solutions prepared at a specific concentrations in order to obtain the same viscosity for each. The films were stored at room temperature until dried and then examined using a dynamic mechanical analyser. The results of the frequency scans showed no significant differences in the mechanical moduli E' and E″ of the different samples when analysed at room temperature; however, the grade of the polymer affected material transitions during the heating process. Glass transition temperature, apparent activation energy and fragility parameters depended on polymer chain length, while the material brand showed little impact on film performance. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Rapid prototyping of all-solution-processed multi-lengthscale electrodes using polymer-induced thin film wrinkling

    PubMed Central

    Gabardo, Christine M.; Adams-McGavin, Robert C.; Fung, Barnabas C.; Mahoney, Eric J.; Fang, Qiyin; Soleymani, Leyla

    2017-01-01

    Three-dimensional electrodes that are controllable over multiple lengthscales are very important for use in bioanalytical systems that integrate solid-phase devices with solution-phase samples. Here we present a fabrication method based on all-solution-processing and thin film wrinkling using smart polymers that is ideal for rapid prototyping of tunable three-dimensional electrodes and is extendable to large volume manufacturing. Although all-solution-processing is an attractive alternative to vapor-based techniques for low-cost manufacturing of electrodes, it often results in films suffering from low conductivity and poor substrate adhesion. These limitations are addressed here by using a smart polymer to create a conformal layer of overlapping wrinkles on the substrate to shorten the current path and embed the conductor onto the polymer layer. The structural evolution of these wrinkled electrodes, deposited by electroless deposition onto a nanoparticle seed layer, is studied at varying deposition times to understand its effects on structural parameters such as porosity, wrinkle wavelength and height. Furthermore, the effect of structural parameters on functional properties such as electro-active surface area and surface-enhanced Raman scattering is investigated. It is found that wrinkling of electroless-deposited thin films can be used to reduce sheet resistance, increase surface area, and enhance the surface-enhanced Raman scattering signal. PMID:28211898

  7. Rapid prototyping of all-solution-processed multi-lengthscale electrodes using polymer-induced thin film wrinkling

    NASA Astrophysics Data System (ADS)

    Gabardo, Christine M.; Adams-McGavin, Robert C.; Fung, Barnabas C.; Mahoney, Eric J.; Fang, Qiyin; Soleymani, Leyla

    2017-02-01

    Three-dimensional electrodes that are controllable over multiple lengthscales are very important for use in bioanalytical systems that integrate solid-phase devices with solution-phase samples. Here we present a fabrication method based on all-solution-processing and thin film wrinkling using smart polymers that is ideal for rapid prototyping of tunable three-dimensional electrodes and is extendable to large volume manufacturing. Although all-solution-processing is an attractive alternative to vapor-based techniques for low-cost manufacturing of electrodes, it often results in films suffering from low conductivity and poor substrate adhesion. These limitations are addressed here by using a smart polymer to create a conformal layer of overlapping wrinkles on the substrate to shorten the current path and embed the conductor onto the polymer layer. The structural evolution of these wrinkled electrodes, deposited by electroless deposition onto a nanoparticle seed layer, is studied at varying deposition times to understand its effects on structural parameters such as porosity, wrinkle wavelength and height. Furthermore, the effect of structural parameters on functional properties such as electro-active surface area and surface-enhanced Raman scattering is investigated. It is found that wrinkling of electroless-deposited thin films can be used to reduce sheet resistance, increase surface area, and enhance the surface-enhanced Raman scattering signal.

  8. Combinatorial Study of Gradient Ag-Al Thin Films: Microstructure, Phase Formation, Mechanical and Electrical Properties.

    PubMed

    Mao, Fang; Taher, Mamoun; Kryshtal, Oleksandr; Kruk, Adam; Czyrska-Filemonowicz, Aleksandra; Ottosson, Mikael; Andersson, Anna M; Wiklund, Urban; Jansson, Ulf

    2016-11-09

    A combinatorial approach is applied to rapidly deposit and screen Ag-Al thin films to evaluate the mechanical, tribological, and electrical properties as a function of chemical composition. Ag-Al thin films with large continuous composition gradients (6-60 atom % Al) were deposited by a custom-designed combinatorial magnetron sputtering system. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), nanoindentation, and four-point electrical resistance screening were employed to characterize the chemical composition, structure, and physical properties of the films in a time-efficient way. For low Al contents (<13 atom %), a highly (111)-textured fcc phase was formed. At higher Al contents, a (002)-textured hcp solid solution phase was formed followed by a fcc phase in the most Al-rich regions. No indication of a μ phase was observed. The Ag-Al films with fcc-Ag matrix is prone to adhesive material transfer leading to a high friction coefficient (>1) and adhesive wear, similar to the behavior of pure Ag. In contrast, the hexagonal solid solution phase (from ca. 15 atom %Al) exhibited dramatically reduced friction coefficients (about 15% of that of the fcc phase) and dramatically reduced adhesive wear when tested against the pure Ag counter surface. The increase in contact resistance of the Ag-Al films is limited to only 50% higher than a pure Ag reference sample at the low friction and low wear region (19-27 atom %). This suggests that a hcp Ag-Al alloy can have a potential use in sliding electrical contact applications and in the future will replace pure Ag in specific electromechanical applications.

  9. Partial Melt Processing of Solid-Solution Bi2Sr2CaCu2O8+delta Thick-Film Conductors with Nanophase Al2O3 Additions

    DTIC Science & Technology

    2006-04-01

    characterize the superconducting properties of powders, field-cooled (FC) Meissner and ZFC measure- ments were performed from 5 to 125 K.46 The SQUID magnet ...measured magnetic susceptibility, and D 0.3333 is the demagnetization factor assuming a spherical particle distribution.6,46 The applied magnetic ...and superconducting properties was studied for a range of partial-melt temperatures. Results were compared to Al203-free films with compositions lying

  10. Zeolite Coating System for Corrosion Control to Eliminate Hexavalent Chromium from DoD Applications

    DTIC Science & Technology

    2009-08-01

    Beving D.; Munoz R.; Yushan Y. 2005, Hydrothermal Synthesis and Corrosion Resistance of Vanadium ZSM-5 Films, The American Institute of Chemical...Engineers National Meeting, October 30 - November 4, Cincinnati, Ohio. 8) Mao Y.; Beving D.; Munoz R.; Yushan Y. 2005, Hydrothermal Synthesis of...directly at the solid-liquid interface from a synthesis solution during the coating formation process (Figure 2-4)12. The synthesis solution used is a

  11. Impact of silk biomaterial structure on proteolysis.

    PubMed

    Brown, Joseph; Lu, Chia-Li; Coburn, Jeannine; Kaplan, David L

    2015-01-01

    The goal of this study was to determine the impact of silk biomaterial structure (e.g. solution, hydrogel, film) on proteolytic susceptibility. In vitro enzymatic degradation of silk fibroin hydrogels and films was studied using a variety of proteases, including proteinase K, protease XIV, α-chymotrypsin, collagenase, matrix metalloproteinase-1 (MMP-1) and MMP-2. Hydrogels were used to assess bulk degradation while films were used to assess surface degradation. Weight loss, secondary structure determined by Fourier transform infrared spectroscopy and degradation products analyzed via sodium dodecyl sulfate-polyacrylamide gel electrophoresis were used to evaluate degradation over 5 days. Silk films were significantly degraded by proteinase K, while silk hydrogels were degraded more extensively by protease XIV and proteinase K. Collagenase preferentially degraded the β-sheet content in hydrogels while protease XIV and α-chymotrypsin degraded the amorphous structures. MMP-1 and MMP-2 degraded silk fibroin in solution, resulting in a decrease in peptide fragment sizes over time. The link between primary sequence mapping with protease susceptibility provides insight into the role of secondary structure in impacting proteolytic access by comparing solution vs. solid state proteolytic susceptibility. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. New strategy and easy fabrication of solid-state supercapacitor based on polypyrrole and nitrile rubber.

    PubMed

    Lee, Sangyool; Lee, Youngkwan; Cho, Mi-Suk; Nam, Jae-Do

    2008-09-01

    Solid state redox supercapacitors were fabricated using a solid polymer electrolyte, nitrile butadiene rubber (NBR)-KCI and chemically deposited polypyrrole (PPy) as the conducting polymer electrodes on both surfaces of a NBR film. The optimal conditions for the preparation of the PPy/NBR electrode were confirmed as functions of the uptake of pyrrole monomer into the NBR matrix as well as the immersion time in an oxidant solution. The morphology of the PPy-NBR-KCI capacitor was observed using scanning electron microscopy. The performance of the capacitors was characterized using a galvanostatic charge-discharge technique.

  13. Degradation of Highly Alloyed Metal Halide Perovskite Precursor Inks: Mechanism and Storage Solutions

    DOE PAGES

    Dou, Benjia; Wheeler, Lance M.; Christians, Jeffrey A.; ...

    2018-03-14

    Whereas the promise of metal halide perovskite (MHP) photovoltaics (PV) is that they can combine high efficiency with solution-processability, the chemistry occurring in precursor inks is largely unexplored. Herein, we investigate the degradation of MHP solutions based on the most widely used solvents, dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). For the MHP inks studied, which contain formamidinium (FA+), methylammonium (MA+), cesium (Cs+), lead (Pb2+), bromide (Br-), and iodide (I-), dramatic compositional changes are observed following storage of the inks in nitrogen in the dark. We show that hydrolysis of DMF in the precursor solution forms dimethylammonium formate, which subsequently incorporatesmore » into the MHP film to compromise the ability of Cs+ and MA+ to stabilize FA+-based MHP. The changes in solution chemistry lead to a modification of the perovskite film stoichiometry, band gap, and structure. The solid precursor salts are stable when ball-milled into a powder, allowing for the storage of large quantities of stoichiometric precursor materials.« less

  14. Degradation of Highly Alloyed Metal Halide Perovskite Precursor Inks: Mechanism and Storage Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Benjia; Wheeler, Lance M.; Christians, Jeffrey A.

    Whereas the promise of metal halide perovskite (MHP) photovoltaics (PV) is that they can combine high efficiency with solution-processability, the chemistry occurring in precursor inks is largely unexplored. Herein, we investigate the degradation of MHP solutions based on the most widely used solvents, dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). For the MHP inks studied, which contain formamidinium (FA+), methylammonium (MA+), cesium (Cs+), lead (Pb2+), bromide (Br-), and iodide (I-), dramatic compositional changes are observed following storage of the inks in nitrogen in the dark. We show that hydrolysis of DMF in the precursor solution forms dimethylammonium formate, which subsequently incorporatesmore » into the MHP film to compromise the ability of Cs+ and MA+ to stabilize FA+-based MHP. The changes in solution chemistry lead to a modification of the perovskite film stoichiometry, band gap, and structure. The solid precursor salts are stable when ball-milled into a powder, allowing for the storage of large quantities of stoichiometric precursor materials.« less

  15. Features of the rupture of free hanging liquid film under the action of a thermal load

    NASA Astrophysics Data System (ADS)

    Ovcharova, Alla S.

    2011-10-01

    We consider a deformation and a rupture of a thin liquid film which is hanging between two solid flat walls under the action of concentrated thermal load action. A two-dimensional model is applied to describe the motion of thin layers of viscous non-isothermal liquid under micro-gravity conditions. For flow simulation, two-dimensional Navier-Stokes equations are used. A computational analysis of the influence of thermal loads on the deformation and the rupture behavior of the thin freely hanging film is carried out. It is shown that the rupture of the thin film with generation of a droplet can occur under the thermal beam of specific width acting on the free surface of the film. The results of the model problem solutions are presented.

  16. Infrared optical constants of H2O ice, amorphous nitric acid solutions, and nitric acid hydrates

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Koehler, Birgit G.; Middlebrook, Ann M.; Tolbert, Margaret A.; Jordon, Joseph

    1994-01-01

    We determined the infrared optical constants of nitric acid trihydrate, nitric acid dihydrate, nitric acid monohydrate, and solid amorphous nitric acid solutions which crystallize to form these hydrates. We have also found the infrared optical constants of H2O ice. We measured the transmission of infrared light throught thin films of varying thickness over the frequency range from about 7000 to 500/cm at temperatures below 200 K. We developed a theory for the transmission of light through a substrate that has thin films on both sides. We used an iterative Kramers-Kronig technique to determine the optical constants which gave the best match between measured transmission spectra and those calculated for a variety of films of different thickness. These optical constants should be useful for calculations of the infrared spectrum of polar stratospheric clouds.

  17. Sodium to sodium carbonate conversion process

    DOEpatents

    Herrmann, Steven D.

    1997-01-01

    A method of converting radioactive alkali metal into a low level disposable solid waste material. The radioactive alkali metal is atomized and introduced into an aqueous caustic solution having caustic present in the range of from about 20 wt % to about 70 wt % to convert the radioactive alkali metal to a radioactive alkali metal hydroxide. The aqueous caustic containing radioactive alkali metal hydroxide and CO.sub.2 are introduced into a thin film evaporator with the CO.sub.2 present in an amount greater than required to convert the alkali metal hydroxide to a radioactive alkali metal carbonate, and thereafter the radioactive alkali metal carbonate is separated from the thin film evaporator as a dry powder. Hydroxide solutions containing toxic metal hydroxide including one or more metal ions of Sb, As, Ba, Be, Cd, Cr, Pb, Hg, Ni, Se, Ag and T1 can be converted into a low level non-hazardous waste using the thin film evaporator of the invention.

  18. Effect of aluminum contents on sputter deposited CrAlN thin films

    NASA Astrophysics Data System (ADS)

    Vyas, A.; Zhou, Z. F.; Shen, Y. G.

    2018-02-01

    Pure CrN and CrAlN films with varied Al concentrations were prepared onto Si(100) substrates by an unbalanced reactive dc-magnetron sputtering system. The crystal structure, chemical states, and microstructure of the films were characterized by X-ray diffraction, X-ray photoelectron microscopy, transmission electron microscopy whereas mechanical properties were determined by nano-indentation measurements. XRD results showed a prominent (200) reflection in both CrN and CrAlN films. Results demonstrate that CrAlN films formed a solid solution and doping of Al atoms replace the Cr atoms affecting the lattice parameter and crystallization of the films. All Al doped films were of B1 NaCl-type structure, demonstrating that CrAlN films primarily crystallized in cubic structure. Microstructural investigation by TEM for a CrAlN film containing Al content of 24.1 at.%, revealed that there exists an amorphous/nanocrystalline domains (grains of about ∼ 11 nm) and hardness increases 22% when compared with pure CrN film.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourlier, Yoan; Cristini Robbe, Odile; Laboratoire de Physique des Lasers, Atomes et Molécules

    Highlights: • CuIn{sub (1−x)}Ga{sub x}S{sub 2} thin films were prepared by sol–gel process. • Evolution of lattice parameters is characteristic of a solid solution. • Optical band gap was found to be linearly dependent on the gallium rate. - Abstract: In this paper, we report the elaboration of Cu(In,Ga)S{sub 2} chalcopyrite thin films via a sol–gel process. To reach this aim, solutions containing copper, indium and gallium complexes were prepared. These solutions were thereafter spin-coated onto the soda lime glass substrates and calcined, leading to metallic oxides thin films. Expected chalcopyrite films were finally obtained by sulfurization of oxides layersmore » using a sulfur atmosphere at 500 °C. The rate of gallium incorporation was studied both at the solutions synthesis step and at the thin films sulfurization process. Elemental and X-ray diffraction (XRD) analyses have shown the efficiency of monoethanolamine used as a complexing agent for the preparation of CuIn{sub (1−x)}Ga{sub x}S{sub 2} thin layers. Moreover, the replacement of diethanolamine by monoethanolamine has permitted the substitution of indium by isovalent gallium from x = 0 to x = 0.4 and prevented the precipitation of copper derivatives. XRD analyses of sulfurized thin films CuIn{sub (1−x)}Ga{sub x}S{sub 2,} clearly indicated that the increasing rate of gallium induced a shift of XRD peaks, revealing an evolution of the lattice parameter in the chalcopyrite structure. These results were confirmed by Raman analyses. Moreover, the optical band gap was also found to be linearly dependent upon the gallium rate incorporated within the thin films: it varies from 1.47 eV for x = 0 to 1.63 eV for x = 0.4.« less

  20. Ultrathin Polymer Films, Patterned Arrays, and Microwells

    NASA Astrophysics Data System (ADS)

    Yan, Mingdi

    2002-05-01

    The ability to control and tailor the surface and interface properties of materials is important in microelectronics, cell growth control, and lab-on-a-chip devices. Modification of material surfaces with ultrathin polymer films is attractive due to the availability of a variety of polymers either commercially or by synthesis. We have developed two approaches to the attachment of ultrathin polymer films on solid substrates. In the first method, a silane-functionalized perfluorophenyl azide (PFPA-silane) was synthesized and used to covalently immobilize polymer thin films on silicon wafers. Silanization of the wafer surface with the PFPA-silane introduced a monolayer of azido groups which in turn covalently attached the polymer film by way of photochemically initiated insertion reactions. The thickness of the film could be adjusted by the type and the molecular weight of the polymer. The method is versatile due to the general C-H and/or N-H insertion reactions of crosslinker; and therefore, no specific reactive functional groups on the polymers are required. Using this method, a new type of microwell array was fabricated from covalently immobilized polymer thin films on flat substrates. The arrays were characterized with AFM, XPS, and TOF-SIMS. The second method describes the attachment of polymer thin films on solid substrates via UV irradiation. The procedure consisted of spin-coating a polymer film and irradiating the film with UV light. Following solvent extraction, a thin film remained. The thickness of the film, from a few to over a hundred nanometers, was controlled by varying solution concentration and the molecular weight of the polymer.

  1. Development of a direct patterning method for functional oxide thin films using ultraviolet irradiation and hybrid-cluster gels and its application to thin-film transistor fabrication

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Yuuki; Li, Jinwang; Shimoda, Tatsuya

    2018-04-01

    A gel state exists in the solution-solid conversion process. We found that solidification can be promoted by irradiating the gel with ultraviolet (UV) light. In this study, a patterning method without using a vacuum system or employing photoresist materials has been proposed wherein solidification was applied to a gel by UV irradiation. Indium oxide gel, indium gallium oxide gel, lanthanum zirconium oxide gel, and lanthanum ruthenium oxide gels were successfully patterned by using our technique. Moreover, an oxide thin-film transistor was fabricated by our novel patterning method and was successfully operated.

  2. Conducting polymer actuator based on chemically deposited polypyrrole and polyurethane-based solid polymer electrolyte working in air

    NASA Astrophysics Data System (ADS)

    Choi, Hwa-Jeong; Song, Young-Min; Chung, Ildoo; Ryu, Kwang-Sun; Jo, Nam-Ju

    2009-02-01

    Conducting polymers (CPs), such as polypyrrole, polythiophene, and polyaniline, are unique in that they have switchable properties due to their two or more mechanically stable oxidation states. Thus, their films or coatings can be easily switched by the application of a small voltage and current to change their volume during electrochemical redox processes. In particular, polypyrrole (PPy) has been studied most extensively because of its high electrical conductivity and good environmental stability under ambient conditions. In this work, we have studied a new CP actuator, fully polymeric, assembled with two PPy film electrodes and a solid polymer electrolyte (SPE), polyurethane/Mg(ClO4)2. Polyurethanes (PUs) were synthesized from 4,4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (1,4-BD) and three types of polyol: poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), and PPG-block-PEG-block-PPG (PPG-co-PEG). The chemical polymerization of PPy by immersion in Py monomer aqueous solution and oxidant aqueous solution is an adequate method to prepare PU/PPy composite film as an actuator. To find the proper thickness of the PPy coating layer for actuation, we measured the displacements of the actuators according to the thickness of the PPy coating layer. The displacement of all actuators is discussed in connection with the properties of the SPE and PPy. All the results obtained in this work show the feasibility of electrochemomechanical devices based on PPy and SPE film being able to work in air.

  3. Boron doped bcc-W films: Achieving excellent mechanical properties and tribological performance by regulating substrate bias voltage

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Zhang, Kan; Zeng, Yi; Wang, Xin; Du, Suxuan; Tao, Chuanying; Ren, Ping; Cui, Xiaoqiang; Wen, Mao

    2017-11-01

    Boron doped bcc-W (WBx, x = B/W) films were deposited on Si(100) substrates by magnetron co-sputtering pure W and B targets. Our results reveal that when the absolute value of substrate bias voltage (Vb) increases from floating to 240 V, the value of x monotonously decreases from 0.18 to 0.04, accompanied by a phase transition from a mixture of tetragonal γ-W2B and body-centered cubic α-W(B) phase (-Vb ≤ 60 V) to α-W(B) single phase (-Vb > 60 V). Hardness, depending on Vb, increases first and then drops, where the maximum hardness of 30.8 GPa was obtained at -Vb = 60 V and far higher than pure W and W2B theoretical value. In the mixed phase structure, the grain boundaries strengthening, Hall-Petch effect and solid-solution strengthening induced by B dominate the strengthening mechanism. Astonishingly, the film grown at -Vb = 120 V still possesses twice higher hardness than pure W, wherein unexpectedly low (6.7 at.%) B concentration and only the single α-W(B) phase can be identified. In this case, both Hall-Petch effect and solid-solution strengthening work. Besides, low friction coefficient of ∼0.18 can be obtained for the films with α-W(B) phase, which is competitive to that of reported B-rich transition-metal borides, such as TiB2, CrB and CrB2.

  4. Heteroepitaxial growth of cadmium carbonate at dolomite and calcite surfaces: Mechanisms and rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callagon, Erika Blanca R.; Lee, Sang Soo; Eng, Peter J.

    Here, the systematic variation of rates and the mechanism of cadmium uptake on the (104) surface of dolomite (CaMg(CO 3) 2) were investigated using in situ and ex situ atomic force microscopy (AFM), ex situ specular X-ray reflectivity (XR), and ex situ X-ray fluorescence (XRF). Selected experiments were performed on the calcite (CaCO 3) (104) surface for comparison. Aqueous solutions of CdCl 2, CaCl 2, and NaHCO 3, undersaturated with respect to calcite and supersaturated with respect to otavite (CdCO 3) and the (Cd xCa 1-x)CO 3 solid solution, were reacted with dolomite surfaces for minutes to days. Calcite substratesmore » were reacted with solutions containing 1-50 μM CdCl 2, and with no added Ca or CO 3. Thin carbonate films following the Stranski-Krastanov growth mode were observed on both substrates. Specular XR and XRF revealed the formation of nm-thick Cd-rich carbonate films that were structurally ordered with respect to the dolomite (104) plane. Epitaxial films adopted the calcite crystal structure with a d 104- spacing (3.00 Å) larger than those of pure dolomite (2.88 Å) and otavite (2.95 Å) indicating either a solid solution with x approximate to 0.5, or a strained Cd-rich carbonate with a composition near that of otavite. The growth rate r of this phase increases with the initial supersaturation of the solution with respect to the solid solution, beta max, and follows the empirical relationship, as determined from XRF measurements, given by: r = 10 -4.88 ± 0.42 (β 2.29 ± 0.24 max - 1), (in units of atoms of Cd/Å 2/h).The morphology of the overgrowth also varied with β max, as exemplified by AFM observations. Growth at step edges occurred over the entire β max range considered, and additional growth features including 3 Å high monolayer islands and ~ 25 Å high tall islands were observed when log β max > 1. On calcite, in situ XR indicated that this phase is similar to the Cd-rich overgrowth formed on dolomite and images obtained from X-ray reflection interface microscopy (XRIM) reveal the existence of laterally variable Cd-rich domains.« less

  5. Heteroepitaxial growth of cadmium carbonate at dolomite and calcite surfaces: Mechanisms and rates

    DOE PAGES

    Callagon, Erika Blanca R.; Lee, Sang Soo; Eng, Peter J.; ...

    2016-12-10

    Here, the systematic variation of rates and the mechanism of cadmium uptake on the (104) surface of dolomite (CaMg(CO 3) 2) were investigated using in situ and ex situ atomic force microscopy (AFM), ex situ specular X-ray reflectivity (XR), and ex situ X-ray fluorescence (XRF). Selected experiments were performed on the calcite (CaCO 3) (104) surface for comparison. Aqueous solutions of CdCl 2, CaCl 2, and NaHCO 3, undersaturated with respect to calcite and supersaturated with respect to otavite (CdCO 3) and the (Cd xCa 1-x)CO 3 solid solution, were reacted with dolomite surfaces for minutes to days. Calcite substratesmore » were reacted with solutions containing 1-50 μM CdCl 2, and with no added Ca or CO 3. Thin carbonate films following the Stranski-Krastanov growth mode were observed on both substrates. Specular XR and XRF revealed the formation of nm-thick Cd-rich carbonate films that were structurally ordered with respect to the dolomite (104) plane. Epitaxial films adopted the calcite crystal structure with a d 104- spacing (3.00 Å) larger than those of pure dolomite (2.88 Å) and otavite (2.95 Å) indicating either a solid solution with x approximate to 0.5, or a strained Cd-rich carbonate with a composition near that of otavite. The growth rate r of this phase increases with the initial supersaturation of the solution with respect to the solid solution, beta max, and follows the empirical relationship, as determined from XRF measurements, given by: r = 10 -4.88 ± 0.42 (β 2.29 ± 0.24 max - 1), (in units of atoms of Cd/Å 2/h).The morphology of the overgrowth also varied with β max, as exemplified by AFM observations. Growth at step edges occurred over the entire β max range considered, and additional growth features including 3 Å high monolayer islands and ~ 25 Å high tall islands were observed when log β max > 1. On calcite, in situ XR indicated that this phase is similar to the Cd-rich overgrowth formed on dolomite and images obtained from X-ray reflection interface microscopy (XRIM) reveal the existence of laterally variable Cd-rich domains.« less

  6. Sol-gel derived ceramic electrolyte films on porous substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kueper, T.W.

    1992-05-01

    A process for the deposition of sol-gel derived thin films on porous substrates has been developed; such films should be useful for solid oxide fuel cells and related applications. Yttria-stabilized zirconia films have been formed from metal alkoxide starting solutions. Dense films have been deposited on metal substrates and ceramic substrates, both dense and porous, through dip-coating and spin-coating techniques, followed by a heat treatment in air. X-ray diffraction has been used to determine the crystalline phases formed and the extent of reactions with various substrates which may be encountered in gas/gas devices. Surface coatings have been successfully applied tomore » porous substrates through the control of substrate pore size and deposition parameters. Wetting of the substrate pores by the coating solution is discussed, and conditions are defined for which films can be deposited over the pores without filling the interiors of the pores. Shrinkage cracking was encountered in films thicker than a critical value, which depended on the sol-gel process parameters and on the substrate characteristics. Local discontinuities were also observed in films which were thinner than a critical value which depended on the substrate pore size. A theoretical discussion of cracking mechanisms is presented for both types of cracking, and the conditions necessary for successful thin formation are defined. The applicability of these film gas/gas devices is discussed.« less

  7. [The change in optical spectra from solid and liquid solution of copper phthalocyanines derivatives].

    PubMed

    Zheng, Xiao-pan; He, Zhi-qun; Zhang, Chun-xiu; Xu, Zheng; Wang, Yong-sheng

    2006-06-01

    In the present work, the change in electronic absorption spectra from three copper phthalocyanines (CuPc, tb-CuPc, oo-CuPc) in different environments was investigated. The mechanism of red shift Q-band absorption from the three species in an organic solvent before and after protonation was discussed. This was used to compare with those dispersed in solid films. The relation between the molecular interactions and the spectra change was studied. In a combination of POM, DSC and XRD techniques, the structure and morphology of the thin films were characterised. It was found that the molecules in the doped matrices of PC were associated or aggregated. This association and hence the corresponding change in absorption spectra cannot be altered by the modification of dopant concentration.

  8. Effect of Gold on the Corrosion Behavior of an Electroless Nickel/Immersion Gold Surface Finish

    NASA Astrophysics Data System (ADS)

    Bui, Q. V.; Nam, N. D.; Yoon, J. W.; Choi, D. H.; Kar, A.; Kim, J. G.; Jung, S. B.

    2011-09-01

    The performance of surface finishes as a function of the pH of the utilized plating solution was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5 wt.% NaCl solution. In addition, the surface finishes were examined by x-ray diffraction (XRD), and the contact angle of the liquid/solid interface was recorded. NiP films on copper substrates with gold coatings exhibited their highest coating performance at pH 5. This was attributed to the films having the highest protective efficiency and charge transfer resistance, lowest porosity value, and highest contact angle among those examined as a result of the strongly preferred Au(111) orientation and the improved surface wettability.

  9. Photophysics of detection of explosive vapours via luminescence quenching of thin films: impact of inter-molecular interactions.

    PubMed

    Shoaee, Safa; Fan, Shengqiang; Burn, Paul L; Shaw, Paul E

    2016-09-21

    Fluorescence-based detection of explosive analytes requires an understanding of the nature of the excited state responsible for the luminescence response of a sensing material. Many measurements are carried out to elucidate the fundamental photophysical properties of an emissive material in solution. However, simple transfer of the understanding gained from the solution measurements to the solid-state can lead to errors. This is in part due to the absence of inter-molecular interactions of the chromophores in solution, which are present in the solid-state. To understand the role of inter-molecular interactions on the detection of explosive analytes we have chosen dendrimers from two different families, D1 and D2, which allow facile control of the inter-molecular interactions through the choice of dendrons and emissive chromophores. Using ultrafast transient absorption spectroscopy we find that the solution photoinduced absorption (PA) for both materials can be explained in terms of the generation of singlet excitons, which decay to the ground state, or intersystem cross (ISC) to form a triplet exciton. In neat films however, we observe different photophysical behaviours; first, ISC to the triplet state does not occur, and second, depending on the chromophore, charge transfer and charge separated states are formed. Furthermore, we find that when either dendrimer is interfaced with analyte vapour, the singlet state is strongly quenched, generating a charge transfer state that undergoes geminate recombination.

  10. Development of Functional Thin Polymer Films Using a Layer-by-Layer Deposition Technique.

    PubMed

    Yoshida, Kentaro

    2017-01-01

    Functional thin films containing insulin were prepared using layer-by-layer (LbL) deposition of insulin and negatively- or positively-charged polymers on the surface of solid substrates. LbL films composed of insulin and negatively-charged polymers such as poly(acrylic acid) (PAA), poly(vinylsulfate) (PVS), and dextran sulfate (DS) were prepared through electrostatic affinity between the materials. The insulin/PAA, insulin/PVS, and insulin/DS films were stable in acidic solutions, whereas they decomposed under physiological conditions as a result of a change in the net electric charge of insulin from positive to negative. Interestingly, the insulin-containing LbL films were stable even in the presence of a digestive-enzyme (pepcin) at pH 1.4 (stomach pH). In contrast, LbL films consisting of insulin and positively-charged polymers such as poly(allylamine hydrochloride) (PAH) decomposed in acidic solutions due to the positive charges of insulin generated in acidic media. The insulin-containing LbL films can be prepared not only on the surface of flat substrates, such as quartz slides, but also on the surface of microparticles, such as poly(lactic acid) (PLA) microbeads. Thus, insulin-containing LbL film-coated PLA microbeads can be handled as a powder. In addition, insulin-containing microcapsules were prepared by coating LbL films on the surface of insulin-doped calcium carbonate (CaCO 3 ) microparticles, followed by dissolution of the CaCO 3 core. The release of insulin from the microcapsules was accelerated at pH 7.4, whereas it was suppressed in acidic solutions. These results suggest the potential use of insulin-containing microcapsules in the development of oral formulations of insulin.

  11. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids.

    PubMed

    Liu, Mengxia; Voznyy, Oleksandr; Sabatini, Randy; García de Arquer, F Pelayo; Munir, Rahim; Balawi, Ahmed Hesham; Lan, Xinzheng; Fan, Fengjia; Walters, Grant; Kirmani, Ahmad R; Hoogland, Sjoerd; Laquai, Frédéric; Amassian, Aram; Sargent, Edward H

    2017-02-01

    Bandtail states in disordered semiconductor materials result in losses in open-circuit voltage (V oc ) and inhibit carrier transport in photovoltaics. For colloidal quantum dot (CQD) films that promise low-cost, large-area, air-stable photovoltaics, bandtails are determined by CQD synthetic polydispersity and inhomogeneous aggregation during the ligand-exchange process. Here we introduce a new method for the synthesis of solution-phase ligand-exchanged CQD inks that enable a flat energy landscape and an advantageously high packing density. In the solid state, these materials exhibit a sharper bandtail and reduced energy funnelling compared with the previous best CQD thin films for photovoltaics. Consequently, we demonstrate solar cells with higher V oc and more efficient charge injection into the electron acceptor, allowing the use of a closer-to-optimum bandgap to absorb more light. These enable the fabrication of CQD solar cells made via a solution-phase ligand exchange, with a certified power conversion efficiency of 11.28%. The devices are stable when stored in air, unencapsulated, for over 1,000 h.

  12. Band gap bowing in NixMg1−xO

    PubMed Central

    Niedermeier, Christian A.; Råsander, Mikael; Rhode, Sneha; Kachkanov, Vyacheslav; Zou, Bin; Alford, Neil; Moram, Michelle A.

    2016-01-01

    Epitaxial transparent oxide NixMg1−xO (0 ≤ x ≤ 1) thin films were grown on MgO(100) substrates by pulsed laser deposition. High-resolution synchrotron X-ray diffraction and high-resolution transmission electron microscopy analysis indicate that the thin films are compositionally and structurally homogeneous, forming a completely miscible solid solution. Nevertheless, the composition dependence of the NixMg1−xO optical band gap shows a strong non-parabolic bowing with a discontinuity at dilute NiO concentrations of x < 0.037. Density functional calculations of the NixMg1−xO band structure and the density of states demonstrate that deep Ni 3d levels are introduced into the MgO band gap, which significantly reduce the fundamental gap as confirmed by optical absorption spectra. These states broaden into a Ni 3d-derived conduction band for x > 0.074 and account for the anomalously large band gap narrowing in the NixMg1−xO solid solution system. PMID:27503808

  13. The production of ultrathin polyimide films for the solar sail program and Large Space Structures Technology (LSST): A feasibility study

    NASA Technical Reports Server (NTRS)

    Forester, R. H.

    1978-01-01

    Polyimide membranes of a thickness range from under 0.01 micron m to greater than 1 micron m can be produced at an estimated cost of 50 cents per sq m (plus the cost of the polymer). The polymer of interest is dissolved in a solvent which is solube in water. The polymer or casting solution is allowed to flow down an inclined ramp onto a water surface where a pool of floating polymer develops. The solvent dissolves into the water lowering the surface tension of the water on equently, the contact angle of the polymer pool is very low and the edge of the pool is very thin. The solvent dissolves from this thin region too rapidly to be replenished from the bulk of the pool and a solid polymer film forms. Firm formation is rapid and spontaneous and the film spreads out unaided, many feet from the leading edge of the pool. The driving force for this process is the exothermic solution of the organic solvent from the polymer solution into the water.

  14. Microencapsulation of Thai rice grass (O. Sativa cv. Khao Dawk Mali 105) extract incorporated to form bioactive carboxymethyl cellulose edible film.

    PubMed

    Rodsamran, Pattrathip; Sothornvit, Rungsinee

    2018-03-01

    Microencapsulation was investigated to enhance the stability of Thai rice grass extract. Microencapsulated powder (MP) was formed using total solid of extract solution and maltodextrin ratios of 1:4 (MP 1:4) and 1:9 (MP 1:9). The absence of an endothermic peak for both MPs confirmed all extract solutions were coated with maltodextrin. MP 1:9 had a lower total phenolic content (TPC) but was higher in antioxidant capacity than MP 1:4. Moreover, the TPC of the MPs slightly decreased (70.02-93.04%) during storage at 10, 30 and 70°C for 30d. Comparatively, the TPC of the extract solution significantly decreased from 100% down to 20.8%, 11.2% and 8.6% at 10, 30 and 70°C, respectively. Therefore, MP 1:9 incorporated with blended carboxymethyl cellulose film increased the water barrier and the TPC. This film can serve as a bioactive biodegradable packaging material to reduce plastic packaging in the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Electrical and thermal properties of Cu-Ta films prepared by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Qin, Wen; Fu, Licai; Zhu, Jiajun; Yang, Wulin; Sang, Jianquan; Li, Deyi; Zhou, Lingping

    2018-06-01

    The microstructure, electrical resistivity and thermal conductivity of the sputtering deposited Cu-Ta films were investigated as a function of Ta content. The results showed that the amorphous phase formed between 20 at.% and 60 at.% Ta, and out of this range α-Cu(Ta) and β-Ta(Cu) solid solutions formed. Because the lattice distortion and β-Ta structure could significantly increase the probability of electron scattering, the electrical resistivity of the Cu-Ta films shows a 'N' type change with the increase of Ta content, and the inflection point appears at 50 at.% Ta and 60 at.% Ta respectively. As the thermal conductance is also dominated by electrons in metals films, an opposite variation tendency is found in the thermal conductivity of the Cu-Ta films. According to our knowledge, this is the first time to measure the thermal conductivity of Cu-Ta thin films.

  16. The Chemistry of Inorganic Precursors during the Chemical Deposition of Films on Solid Surfaces.

    PubMed

    Barry, Seán T; Teplyakov, Andrew V; Zaera, Francisco

    2018-03-20

    The deposition of thin solid films is central to many industrial applications, and chemical vapor deposition (CVD) methods are particularly useful for this task. For one, the isotropic nature of the adsorption of chemical species affords even coverages on surfaces with rough topographies, an increasingly common requirement in microelectronics. Furthermore, by splitting the overall film-depositing reactions into two or more complementary and self-limiting steps, as it is done in atomic layer depositions (ALD), film thicknesses can be controlled down to the sub-monolayer level. Thanks to the availability of a vast array of inorganic and metalorganic precursors, CVD and ALD are quite versatile and can be engineered to deposit virtually any type of solid material. On the negative side, the surface chemistry that takes place in these processes is often complex, and can include undesirable side reactions leading to the incorporation of impurities in the growing films. Appropriate precursors and deposition conditions need to be chosen to minimize these problems, and that requires a proper understanding of the underlying surface chemistry. The precursors for CVD and ALD are often designed and chosen based on their known thermal chemistry from inorganic chemistry studies, taking advantage of the vast knowledge developed in that field over the years. Although a good first approximation, however, this approach can lead to wrong choices, because the reactions of these precursors at gas-solid interfaces can be quite different from what is seen in solution. For one, solvents often aid in the displacement of ligands in metalorganic compounds, providing the right dielectric environment, temporarily coordinating to the metal, or facilitating multiple ligand-complex interactions to increase reaction probabilities; these options are not available in the gas-solid reactions associated with CVD and ALD. Moreover, solid surfaces act as unique "ligands", if these reactions are to be viewed from the point of view of the metalorganic complexes used as precursors: they are bulky and rigid, can provide multiple binding sites for a single reaction, and can promote unique bonding modes, especially on metals, which have delocalized electronic structures. The differences between the molecular and surface chemistry of CVD and ALD precursors can result in significant variations in their reactivity, ultimately leading to unpredictable properties in the newly grown films. In this Account, we discuss some of the main similarities and differences in chemistry that CVD/ALD precursors follow on surfaces when contrasted against their known behavior in solution, with emphasis on our own work but also referencing other key contributions. Our approach is unique in that it combines expertise from the inorganic, surface science, and quantum-mechanics fields to better understand the mechanistic details of the chemistry of CVD and ALD processes and to identify new criteria to consider when designing CVD/ALD precursors.

  17. Conductivity enhancement of surface-polymerized polyaniline films via control of processing conditions

    NASA Astrophysics Data System (ADS)

    Park, Chung Hyoi; Jang, Sung Kyu; Kim, Felix Sunjoo

    2018-01-01

    We investigate a fast and facile approach for the simultaneous synthesis and coating of conducting polyaniline (PANI) onto a substrate and the effects of processing conditions on the electrical properties of the fabricated films. Simultaneous polymerizing and depositing on the substrate forms a thin film with the average thickness of 300 nm and sheet resistance of 304 Ω/sq. Deposition conditions such as polymerization time (3-240 min), temperature (-10 to 40 °C), concentrations of monomer and oxidant (0.1-0.9 M), and type of washing solvents (acetone, water, and/or HCl solution) affect the film thickness, doping state, absorption characteristics, and solid-state nanoscale morphology, therefore affecting the electrical conductivity. Among the conditions, the surface-polymerized PANI film deposited at room temperature with acetone washing showed the highest conductivity of 22.2 S/cm.

  18. Ion plasma deposition of oxide films with graded-stoichiometry composition: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Volpyas, V. A.; Tumarkin, A. V.; Mikhailov, A. K.; Kozyrev, A. B.; Platonov, R. A.

    2016-07-01

    A method of ion plasma deposition is proposed for obtaining thin multicomponent films with continuously graded composition in depth of the film. The desired composition-depth profile is obtained by varying the working gas pressure during deposition in the presence of an additional adsorbing screen in the drift space between a sputtered target and substrate. Efficiency of the proposed method is confirmed by Monte Carlo simulation of the deposition of thin films of Ba x Sr1- x TiO3 (BSTO) solid solution. It is demonstrated that, during sputtering of a Ba0.3Sr0.7TiO3 target, the parameter of composition stoichiometry in the growing BSTO film varies in the interval of x = 0.3-0.65 when the gas pressure is changed within 2-60 Pa.

  19. Morphological instability of a thermophoretically growing deposit

    NASA Technical Reports Server (NTRS)

    Castillo, Jose L.; Garcia-Ybarra, Pedro L.; Rosner, Daniel E.

    1992-01-01

    The stability of the planar interface of a structureless solid growing from a depositing component dilute in a carrier fluid is studied when the main solute transport mechanism is thermal (Soret) diffusion. A linear stability analysis, carried out in the limit of low growth Peclet number, leads to a dispersion relation which shows that the planar front is unstable either when the thermal diffusion factor of the condensing component is positive and the latent heat release is small or when the thermal diffusion factor is negative and the solid grows over a thermally-insulating substrate. Furthermore, the influence of interfacial energy effects and constitutional supersaturation in the vicinity of the moving interface is analyzed in the limit of very small Schmidt numbers (small solute Fickian diffusion). The analysis is relevant to physical vapor deposition of very massive species on cold surfaces, as in recent experiments of organic solid film growth under microgravity conditions.

  20. Room temperature synthesis of copper indium diselenide in non-aqueous solution using an organoindium reagent

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Andras, Maria T.; Bailey, Sheila G.; Duraj, Stan A.

    1992-01-01

    A novel two-phase synthesis of CuInSe2 at 25 C from Cu2Se and Cp3In in 4-methylpyridine has been discovered. Characterization of the material produced shows it to be platelet-shaped crystallites with an average particle size of 10 microns, less than 2 percent C and H, with a small amount of unidentified crystalline impurity. The results demonstrate that it is possible to produce from solution a material that is ordinarily synthesized in bulk or films at much higher temperatures or using extraneous reagents and/or electrons. The use of a solid-state reagent as a starting material which is converted to another solid-state compound by an organometallic reagent has tremendous potential to produce precursors for a wide range of solid-state materials of interest to the electronics, defense, and aerospace communities.

  1. The Development of A Squeeze Film Damper Parametric Model in the Context of a Fluid-structural Interaction Task

    NASA Astrophysics Data System (ADS)

    Novikov, Dmitrii K.; Diligenskii, Dmitrii S.

    2018-01-01

    The article considers the work of some squeeze film damper with elastic rings parts. This type of damper is widely used in gas turbine engines supports. Nevertheless, modern analytical solutions have a number of limitations. The article considers the behavior of simple hydrodynamic damping systems. It describes the analysis of fluid-solid interaction simulation applicability for the defying properties of hydrodynamic damper with elastic rings (“allison ring”). There are some recommendations on the fluid structural interaction analysis of the hydrodynamic damper with elastic rings.

  2. Vibrational characterisation of a crystallised oligoaniline: a model compound of polyaniline

    NASA Astrophysics Data System (ADS)

    Quillard, Sophie; Corraze, Benoı̂t; Boyer, Marie Isabelle; Fayad, Elias; Louarn, Guy; Froyer, Gérard

    2001-09-01

    We present a detailed study on the vibrational properties of N,N‧-diphenyl-1,4-phenylenediamine in different crystalline forms. A new triclinic form of the molecule has been obtained through appropriate recrystallization procedure. This polymorphism of the crystalline state was associated to different vibrational features. These results are discussed with regards to the possible conformations of the molecule. In order to complete the study, thin solid films of these materials were also elaborated by vacuum sublimation of the molecule, upon selected conditions of rate, deposition and thickness. Spectroscopic measurements of these layers are showed and compared to those obtained on the crystalline solid forms. We performed convenient oxidation processes of this neutral N,N‧-diphenyl-1,4-phenylenediamine (powder and thin solid film) leading to the formation of the correspondent radical cation species. A comparison with radical cation generated in solution by electrochemical oxidative method is done. Vibrational characterisations of this doped oligomer were achieved in each case and finally, the observed differences are discussed in terms of conformation.

  3. Drop dynamics on a thin film: Thin film rupture

    NASA Astrophysics Data System (ADS)

    Carlson, Andreas; Kim, Pilnam; Stone, Howard A.

    2011-11-01

    The spreading of a water drop on an oil film that covers a solid substrate is a common event in many industrial processes. We study in experiments the dynamics of a water drop on a thin silicone oil film and quantify its interaction with the solid substrate that supports the film. The oil film becomes unstable and ruptures for solids that are hydrophilic. We determine the ``waiting time,'' the time it takes the water drop to drain the silicone film. This timescale is found to highly depend on how well water wets the solid, illustrating the interplay between intermolecular and hydrodynamic forces in the phenomenon. A phase diagram for the thin film stability is extracted based on waters equilibrium contact angle on the solid, which shows that we can either promote or inhibit de-wetting. As water comes in direct contact with the solid, it spreads and peels off the silicone film. We show the influence of viscosity, equilibrium contact angle and film height on the opening radius of the hole formed as the solid de-wets.

  4. High-performance graphene-based supercapacitors made by a scalable blade-coating approach

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Liu, Jinzhang; Mirri, Francesca; Pasquali, Matteo; Motta, Nunzio; Holmes, John W.

    2016-04-01

    Graphene oxide (GO) sheets can form liquid crystals (LCs) in their aqueous dispersions that are more viscous with a stronger LC feature. In this work we combine the viscous LC-GO solution with the blade-coating technique to make GO films, for constructing graphene-based supercapacitors in a scalable way. Reduced GO (rGO) films are prepared by wet chemical methods, using either hydrazine (HZ) or hydroiodic acid (HI). Solid-state supercapacitors with rGO films as electrodes and highly conductive carbon nanotube films as current collectors are fabricated and the capacitive properties of different rGO films are compared. It is found that the HZ-rGO film is superior to the HI-rGO film in achieving high capacitance, owing to the 3D structure of graphene sheets in the electrode. Compared to gelled electrolyte, the use of liquid electrolyte (H2SO4) can further increase the capacitance to 265 F per gram (corresponding to 52 mF per cm2) of the HZ-rGO film.

  5. Elastica solution for a nanotube formed by self-adhesion of a folded thin film

    NASA Astrophysics Data System (ADS)

    Glassmaker, N. J.; Hui, C. Y.

    2004-09-01

    Schmidt and Eberl demonstrated the construction of tubes with submicron diameters by the method of folding thin solid films [Nature (London) 410, 168 (2001)]. In their method, a thin film is folded 180° and brought into adhesive contact with itself. The resulting sealed loop forms a nanotube with the thickness of the tube walls equal to the thickness of the thin film. The calculation of the diameter of the tube and the shape of its cross section in equilibrium are the subjects of this study. The tube is modeled as a two-dimensional elastica when viewed in cross section, and adhesive behavior is governed by an energy release rate criterion. A numerical technique is used to find elastic equilibria for a large range of material parameters. With these solutions in hand, the problem of designing a nanotube becomes transparent. It is shown that one dimensionless parameter determines the diameter of the nanotube, while another fixes its shape. Each of these parameters is a ratio involving the material's mechanical properties and the film thickness. Before concluding, we verify our model by comparing its results with the experimental observations of Schmidt and Eberl, for their materials.

  6. Nonequilibrium segregation and phase instability in alloy films during elevated-temperature irradiation in a high-voltage electron microscope

    NASA Astrophysics Data System (ADS)

    Lam, N. Q.; Okamoto, P. R.

    1984-05-01

    The effects of defect-production rate gradients, caused by the radial nonuniformity in the electron flux distribution, on solute segregation and phase stability in alloy films undergoing high-voltage electron-microscope (HVEM) irradiation at high temperatures are assessed. Two-dimensional (axially symmetric) compositional redistributions were calculated, taking into account both axial and transverse radial defect fluxes. It was found that when highly focused beams were employed radiation-induced segregation consisted of two stages: dominant axial segregation at the film surfaces at short irradiation times and competitive radial segregation at longer times. The average alloy composition within the irradiated region could differ greatly from that irradiated with a uniform beam, because of the additional atom transport from or to the region surrounding the irradiated zone under the influence of radial fluxes. Damage-rate gradient effects must be taken into account when interpreting in-situ HVEM observations of segregation-induced phase instabilities. The theoretical predictions are compared with experimental observations of the temporal and spatial dependence of segregation-induced precipitation in thin films of Ni-Al, Ni-Ge and Ni-Si solid solutions.

  7. Supramolecular architectures of iron phthalocyanine Langmuir-Blodgett films: The role played by the solution solvents

    NASA Astrophysics Data System (ADS)

    Rubira, Rafael Jesus Gonçalves; Aoki, Pedro Henrique Benites; Constantino, Carlos José Leopoldo; Alessio, Priscila

    2017-09-01

    The developing of organic-based devices has been widely explored using ultrathin films as the transducer element, whose supramolecular architecture plays a central role in the device performance. Here, Langmuir and Langmuir-Blodgett (LB) ultrathin films were fabricated from iron phthalocyanine (FePc) solutions in chloroform (CHCl3), dichloromethane (CH2Cl2), dimethylformamide (DMF), and tetrahydrofuran (THF) to determine the influence of different solvents on the supramolecular architecture of the ultrathin films. The UV-vis absorption spectroscopy shows a strong dependence of the FePc aggregation on these solvents. As a consequence, the surface pressure vs. mean molecular area (π-A) isotherms and Brewster angle microscopy (BAM) reveal a more homogeneous (surface morphology) Langmuir film at the air/water interface for FePc in DMF. The same morphological pattern observed for the Langmuir films is preserved upon LB deposition onto solid substrates. The Raman and FTIR analyses indicate the DMF-FePc interaction relies on coordination bonds between N atom (from DMF) and Fe atom (from FePc). Besides, the FePc molecular organization was also found to be affected by the DMF-FePc chemical interaction. It is interesting to note that, if the DMF-FePc leads to less aggregated FePc either in solution or ultrathin films (Langmuir and LB), with time (one week) the opposite trend is found. Taking into account the N-Fe interaction, the performance of the FePc ultrathin films with distinct supramolecular architectures composing sensing units was explored as proof-of-principle in the detection of trace amounts of atrazine herbicide in water using impedance spectroscopy. Further statistical and computational analysis reveal not only the role played by FePc supramolecular architecture but also the sensitivity of the system to detect atrazine solutions down to 10-10 mol/L, which is sufficient to monitor the quality of drinking water even according to the most stringent international regulations.

  8. Method of lift-off patterning thin films in situ employing phase change resists

    DOEpatents

    Bahlke, Matthias Erhard; Baldo, Marc A; Mendoza, Hiroshi Antonio

    2014-09-23

    Method for making a patterned thin film of an organic semiconductor. The method includes condensing a resist gas into a solid film onto a substrate cooled to a temperature below the condensation point of the resist gas. The condensed solid film is heated selectively with a patterned stamp to cause local direct sublimation from solid to vapor of selected portions of the solid film thereby creating a patterned resist film. An organic semiconductor film is coated on the patterned resist film and the patterned resist film is heated to cause it to sublime away and to lift off because of the phase change.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorn, Gilad, E-mail: zorn@ge.com; Castner, David G.; Tyagi, Anuradha

    Perfluorophenylazide (PFPA) chemistry is a novel method for tailoring the surface properties of solid surfaces and nanoparticles. It is general and versatile, and has proven to be an efficient way to immobilize graphene, proteins, carbohydrates, and synthetic polymers. The main thrust of this work is to provide a detailed investigation on the chemical composition and surface density of the PFPA tailored surface. Specifically, gold surfaces were treated with PFPA-derivatized (11-mercaptoundecyl)tetra(ethylene glycol) (PFPA-MUTEG) mixed with 2-[2-(2-mercaptoethoxy)ethoxy]ethanol (MDEG) at varying solution mole ratios. Complementary analytical techniques were employed to characterize the resulting films including Fourier transform infrared spectroscopy to detect fingerprints ofmore » the PFPA group, x-ray photoelectron spectroscopy and ellipsometry to study the homogeneity and uniformity of the films, and near edge x-ray absorption fine structures to study the electronic and chemical structure of the PFPA groups. Results from these studies show that the films prepared from 90:10 and 80:20 PFPA-MUTEG/MDEG mixed solutions exhibited the highest surface density of PFPA and the most homogeneous coverage on the surface. A functional assay using surface plasmon resonance with carbohydrates covalently immobilized onto the PFPA-modified surfaces showed the highest binding affinity for lectin on the PFPA-MUTEG/MDEG film prepared from a 90:10 solution.« less

  10. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices.

    PubMed

    Eslamian, Morteza; Zabihi, Fatemeh

    2015-12-01

    A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic "substrate vibration-assisted drop casting" (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few similar reports by others, confirm that imposing ultrasonic vibration on the substrate can simply convert the uncontrollable drop casting method into a controllable coating technique. Therefore, the SVADC may be used to fabricate an array of emerging thin-film solar cells, such as polymer, perovskite, and quantum-dot solar cells, as well as other small thin-film devices, in a roll-to-roll and automated fabrication process. The preliminary results demonstrate a ten-fold increase in electrical conductivity of PSS made by SVADC compared with the film made by conventional drop casting. Also, simple planar perovskite solar cells made here using SVADC show promising performance with an efficiency of over 3 % for a simple structure without performing process optimization or using expensive materials and treatments.

  11. Starch-based edible film with gum arabic for fruits coating

    NASA Astrophysics Data System (ADS)

    Razak, Aqeela Salfarina; Lazim, Azwan Mat

    2015-09-01

    Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. The introduction of biodegradable materials such as edible film and coating which can be disposed directly into the soil, can be one possible solution to this problem. Edible coating is defined as a thin layer of edible material form as a film on the surface of the fruits and vegetables. This coating can affect the respiration and moisture loss. In this study, edible film and coating were used as fruit coating. The edible film were prepared with different ratios which is 2:2, 3:1, and 1:3 of starch and gum Arabic with 10% of glycerol and sorbitol as plasticiser. A study of practical application for the edible film and coating from starch with gum Arabic for fruit coating was conducted. Banana were coated with an aqueous solution of starch with gum Arabic and stored at ambient temperature (26 ± 1°C; 70 ± 10% RH). The results indicate that with the coating application, the fruits lost about 30% less weight than the uncoated fruits. The coating application was also effective in retaining the firmness of the banana and slow down the ripening process.

  12. Structural, Thermal, Physical, Mechanical, and Barrier Properties of Chitosan Films with the Addition of Xanthan Gum.

    PubMed

    de Morais Lima, Maria; Carneiro, Lucia Cesar; Bianchini, Daniela; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa; Prentice, Carlos; Moreira, Angelita da Silveira

    2017-03-01

    Films based on chitosan and xanthan gum were prepared using casting technique aiming to investigate the potential of these polymers as packaging materials. Six formulations of films were studied varying the proportion of chitosan and xanthan gum: 100:0 (chitosan:xanthan gum, w/w, C100XG0 film); 90:10 (chitosan:xanthan gum, w/w, C90XG10 film); 80:20 (chitosan:xanthan gum, w/w, C80XG20 film); 70:30 (chitosan:xanthan gum, w/w, C70XG30 film); 60:40 (chitosan:xanthan gum, w/w, C60XG40 film); and 50:50 (chitosan:xanthan gum, w/w, C50XG50 film). The total quantity of solids (chitosan and xanthan gum) in the filmogenic solution was 1.5 g per 100 mL of aqueous solution for all treatments, according to the proportion of each polymer. The films were evaluated by their functional groups, structural, thermal, morphological, physical, mechanical, and barrier properties. All films have presented endothermic peaks in the range of 122 to 175 °C and broad exothermic peaks above 200 °C, which were assigned to the melting temperature and thermal decomposition, respectively. These results demonstrated that films with xanthan gum have the highest T m and Δ m H. The films containing higher content of xanthan gum show also the highest tensile strength and the lowest elongation. Xanthan gum addition did not affect the water vapor permeability, solubility, and moisture of films. This set of data suggests the formation of chitosan-xanthan complexes in the films. © 2017 Institute of Food Technologists®.

  13. A study on the electrical, optical, and physicochemical properties of poly(MMA-co-MAA)/ poly(3,4-ethylenedioxythiophene) hybrid thin films.

    PubMed

    Han, Yong-Hyeon; Kim, Hyeong Eun; Hwangbo, Kyung-Hee; Yim, Jin-Heong; Cho, Kuk Young

    2013-08-01

    Poly(3,4-ethylenedioxythiophene) (PEDOT) has good properties as a conductive polymer such as high conductivity, optical transmittance, and chemical stability, while offering relatively weak physicochemical properties. The main purpose of this paper is to improve physicochemical properties such as solvent resistance and pencil hardness of PEDOT. Carboxyl groups in the poly(MMA-co-MAA) polymer chains can effectively crosslink each other in the presence of aziridine, resulting in physicochemically robust PEDOT/poly(MMA-co-MAA) hybrid conductive films. The electrical conductivity, optical properties, and physicochemical properties of the hybrid conductive film were compared by varying the solid content and poly(MMA-co-MAA) portion in the coating precursor solution. From the results, the transparency and surface resistance of the hybrid film show a tendency to decrease with increasing solid content in the coating precursor. Moreover, solvent resistance and hardness were dramatically enhanced by hybridization of PEDOT and crosslinked poly(MMA-co-MAA) due to curing reactions between carboxyl groups. The chemical composition of 30 wt-% of poly(MMA-co-MAA) (MMA:MAA mole ratio 9:1) and 3 wt-% - 5 wt-% of aziridine yields the best physicochemical properties of poly(MMA-co-MAA)/PEDOT hybrid thin films.

  14. Composition and Morphology Control of Metal Dichalcogenides via Chemical Vapor Deposition for Photovoltaic and Nanoelectronic Applications

    NASA Astrophysics Data System (ADS)

    Samad, Leith L. J.

    The body of work reviewed here encompasses a variety of metal dichalcogenides all synthesized using chemical vapor deposition (CVD) for solar and electronics applications. The first reported phase-pure CVD synthesis of iron pyrite thin films is presented with detailed structural and electrochemical analysis. The phase-pure thin film and improved crystal growth on a metallic backing material represents one of the best options for potential solar applications using iron pyrite. Large tin-sulfur-selenide solid solution plates with tunable bandgaps were also synthesized via CVD as single-crystals with a thin film geometry. Solid solution tin-sulfur-selenide plates were demonstrated to be a new material for solar cells with the first observed solar conversion efficiencies up to 3.1%. Finally, a low temperature molybdenum disulfide vertical heterostructure CVD synthesis with layered controlled growth was achieved with preferential growth enabled by Van der Waals epitaxy. Through recognition of additional reaction parameters, a fully regulated CVD synthesis enabled the controlled growth of 1-6 molybdenum disulfide monolayers for nanoelectronic applications. The improvements in synthesis and materials presented here were all enabled by the control afforded by CVD such that advances in phase purity, growth, and composition control of several metal dichalcogenides were achieved. Further work will be able to take full advantage of these advances for future solar and electronics technologies.

  15. Structural perturbations of azurin deposited on solid matrices as revealed by trp phosphorescence.

    PubMed Central

    Gabellieri, E; Strambini, G B

    2001-01-01

    The phosphorescence emission of Cd-azurin from Pseudomonas aeruginosa was used as a probe of possible perturbations in the dynamical structure of the protein core that may be induced by protein-sorbent and protein-protein interactions occurring when the macromolecule is deposited into amorphous, thin solid films. Relative to the protein in aqueous solution, the spectrum is unrelaxed and the phosphorescence decay becomes highly heterogeneous, the average lifetime increasing sharply with film thickness and upon its dehydration. According to the lifetime parameter, adsorption of the protein to the substrate is found to produce a multiplicity of partially unfolded structures, an influence that propagates for several protein layers from the surface. Among the substrates used for film deposition, hydrophilic silica, dextran, DEAE-dextran, dextran sulfate, and hydrophobic octodecylamine, the perturbation is smallest with dextran sulfate and largest with octodecylamine. The destabilizing effect of protein-protein interactions, as monitored on 50-layer-thick films, is most evident at a relative humidity of 75%. Stabilizing agents were incorporated to attenuate the deleterious effects of protein aggregation. Among them, the most effective in preserving a more native-like structure are the disaccharides sucrose and trehalose in dry films and the polymer dextran in wet films. Interestingly, the polymer was found to achieve maximum efficacy at sensibly lower additive/protein ratios than the sugars. PMID:11325742

  16. Mechanical properties and microstructures of Al-Cu Thin films with various heat treatments

    NASA Astrophysics Data System (ADS)

    Joo, Young-Chang

    1998-10-01

    The relationship between microstructure and mechanical properties has been investigated in Al-Cu thin films. The Cu content in Al-Cu samples used in this study ranges from 0 to 2 wt.% and substrate curvature measurement was used to measure film stress. In thin films, the constraints on the film by the substrate influence the microstructure and mechanical properties. Al-Cu thin films cooled from high temperatures have a large density of dislocations due to the plastic deformation caused by the thermal mismatch between the film and substrate. The high density of dislocations in the thin film enables precipitates to form inside the grain even during a very rapid quenching. The presence of a large density of dislocations and precipitates will in turn cause precipitation hardening of the Al-Cu films. The precipitation hardening is dominant at lower temperatures, and solid solution hardening is observed at higher temperatures in the tensile regime. Pure Al films showed the same values of tensile and compressive yield stresses at a given temperature during stress-temperature cycling.

  17. Time and Temperature Dependence of Viscoelastic Stress Relaxation in Gold and Gold Alloy Thin Films

    NASA Astrophysics Data System (ADS)

    Mongkolsuttirat, Kittisun

    Radio frequency (RF) switches based on capacitive MicroElectroMechanical System (MEMS) devices have been proposed as replacements for traditional solid-state field effect transistor (FET) devices. However, one of the limitations of the existing capacitive switch designs is long-term reliability. Failure is generally attributed to electrical charging in the capacitor's dielectric layer that creates an attractive electrostatic force between a moving upper capacitor plate (a metal membrane) and the dielectric. This acts as an attractive stiction force between them that may cause the switch to stay permanently in the closed state. The force that is responsible for opening the switch is the elastic restoring force due to stress in the film membrane. If the restoring force decreases over time due to stress relaxation, the tendency for stiction failure behavior will increase. Au films have been shown to exhibit stress relaxation even at room temperature. The stress relaxation observed is a type of viscoelastic behavior that is more significant in thin metal films than in bulk materials. Metal films with a high relaxation resistance would have a lower probability of device failure due to stress relaxation. It has been shown that solid solution and oxide dispersion can strengthen a material without unacceptable decreases in electrical conductivity. In this study, the viscoelastic behavior of Au, AuV solid solution and AuV2O5 dispersion created by DC magnetron sputtering are investigated using the gas pressure bulge testing technique in the temperature range from 20 to 80°C. The effectiveness of the two strengthening approaches is compared with the pure Au in terms of relaxation modulus and 3 hour modulus decay. The time dependent relaxation curves can be fitted very well with a four-term Prony series model. From the temperature dependence of the terms of the series, activation energies have been deduced to identify the possible dominant relaxation mechanism. The measured modulus relaxation of Au films also proves that the films exhibit linear viscoelastic behavior. From this, a linear viscoelastic model is shown to fit very well to experimental steady state stress relaxation data and can predict time dependent stress for complex loading histories including the ability to predict stress-time behavior at other strain rates during loading. Two specific factors that are expected to influence the viscoelastic behavior-degree of alloying and grain size are investigated to explore the influence of V concentration in solid solution and grain size of pure Au. It is found that the normalized modulus of Au films is dependent on both concentration (C) and grain size (D) with proportionalities of C1/3 and D 2, respectively. A quantitative model of the rate-equation for dislocation glide plasticity based on Frost and Ashby is proposed and fitted well with steady state anelastic stress relaxation experimental data. The activation volume and the density of mobile dislocations is determined using repeated stress relaxation tests in order to further understand the viscoelastic relaxation mechanism. A rapid decrease of mobile dislocation density is found at the beginning of relaxation, which correlates well with a large reduction of viscoelastic modulus at the early stage of relaxation. The extracted activation volume and dislocation mobility can be ascribed to mobile dislocation loops with double kinks generated at grain boundaries, consistent with the dislocation mechanism proposed for the low activation energy measured in this study.

  18. LPG sensing characteristics of electrospray deposited SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Gürbüz, Mevlüt; Günkaya, Göktuğ; Doğan, Aydın

    2014-11-01

    In this study, SnO2 films were fabricated on conductive substrate such as aluminum and platinum coated alumina using electro-spray deposition (ESD) method for gas sensor applications. Solution flow rate, coating time, substrate-nozzle distance and solid/alcohol ratio were studied to optimize SnO2 film structure. The morphology of the deposited films was characterized by stereo and scanning electron microscopy (SEM). The gas sensing properties of tin oxide films were investigated using liquid petroleum gas (LPG) for various lower explosive limit (LEL). The results obtained from microscopic analyses show that optimum SnO2 films were evaluated at flow rate of 0.05 ml/min, at distance of 6 cm, for 10 min deposition time, for 20 gSnO2/Lethanol ratio and at 7 kV DC electric field. By the results obtained from the gas sensing behavior, the sensitivity of the films was increased with operating temperature. The films showed better sensitivity for 20 LEL LPG concentration at 450 °C operating temperature.

  19. Facile Co-Electrodeposition Method for High-Performance Supercapacitor Based on Reduced Graphene Oxide/Polypyrrole Composite Film.

    PubMed

    Chen, Junchen; Wang, Yaming; Cao, Jianyun; Liu, Yan; Zhou, Yu; Ouyang, Jia-Hu; Jia, Dechang

    2017-06-14

    A facile co-electrodeposition method has been developed to fabricate reduced graphene oxide/polypyrrole (rGO/PPy) composite films, with sodium dodecyl benzene sulfonate as both a surfactant and supporting electrolyte in the precursor solution. The introduction of rGO into the PPy films forms porous structure and enhances the conductivity across the film, leading to superior electrochemical performance. By controlling the deposition time and rGO concentration, the highest area capacitance can reach 411 mF/cm 2 (0.2 mA/cm 2 ) for rGO/PPy films, whereas optimized specific capacitance is as high as 361 F/g (0.2 mA/cm 2 ). All of the composite films exhibit excellent rate capability (at least 175 F/g at the current density of 12 mA/cm 2 ) compared with pure PPy film (only 12 F/g at the current density of 12 mA/cm 2 ). The rGO/PPy composite exhibits excellent cycling stability that maintains 104% of its initial capacitance after cycling for 2000 cycles and 80% for 5000 cycles. The two-electrode solid-state supercapacitor (SC) based on rGO/PPy composite electrodes demonstrates good rate performance, excellent cycling stability, as well as a high area capacitance of 222 mF/cm 2 . The solid-state planar SC based on the rGO/PPy composite exhibits an area capacitance of 9.4 mF/cm 2 , demonstrating great potential for fabrication of microsupercapacitors.

  20. Process-Parameter-Dependent Optical and Structural Properties of ZrO2MgO Mixed-Composite Films Evaporated from the solid Solution

    NASA Technical Reports Server (NTRS)

    Sahoo, N. K.; Shapiro, A. P.

    1998-01-01

    The process-parameter-dependent optical and structural properties of ZrO2MgO mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. By use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray (EDX) analysis, the surface morphology, grain size distributions, crystallographic phases, and process-dependent material composition of films have been investigated. EDX analysis made evident the correlation between the oxygen enrichment in the films prepared at a high level of oxygen pressure and the very low refractive index. Since oxygen pressure can be dynamically varied during a deposition process, coatings constructed of suitable mixed-composite thin films can benefit from continuous modulation of the index of refraction. A step modulation approach is used to develop various multilayer-equivalent thin-film devices.

  1. Epitaxial strain relaxation by provoking edge dislocation dipoles

    NASA Astrophysics Data System (ADS)

    Soufi, A.; El-Hami, K.

    2018-02-01

    Thin solid films have been used in various devices and engineering systems such as rapid development of highly integrated electronic circuits, the use of surface coatings to protect structural materials in high temperature environments, and thin films are integral parts of many micro-electro-mechanical systems designed to serve as sensors, actuators. Among techniques of ultra-thin films deposition, the heteroepitaxial method becomes the most useful at nanoscale level to obtain performed materials in various applications areas. On the other hand, stresses that appeared during the elaboration of thin films could rise deformations and fractures in materials. The key solution to solve this problem at the nanoscale level is the nucleation of interface dislocations from free surfaces. By provoking edge dislocation dipoles we obtained a strain relaxation in thin films. Moreover, the dynamic of nucleation in edge dislocations from free lateral surfaces was also studied.

  2. Nanotwinned metal MEMS films with unprecedented strength and stability

    PubMed Central

    Sim, Gi-Dong; Krogstad, Jessica A.; Reddy, K. Madhav; Xie, Kelvin Y.; Valentino, Gianna M.; Weihs, Timothy P.; Hemker, Kevin J.

    2017-01-01

    Silicon-based microelectromechanical systems (MEMS) sensors have become ubiquitous in consumer-based products, but realization of an interconnected network of MEMS devices that allows components to be remotely monitored and controlled, a concept often described as the “Internet of Things,” will require a suite of MEMS materials and properties that are not currently available. We report on the synthesis of metallic nickel-molybdenum-tungsten films with direct current sputter deposition, which results in fully dense crystallographically textured films that are filled with nanotwins. These films exhibit linear elastic mechanical behavior and tensile strengths exceeding 3 GPa, which is unprecedented for materials that are compatible with wafer-level device fabrication processes. The ultrahigh strength is attributed to a combination of solid solution strengthening and the presence of dense nanotwins. These films also have excellent thermal and mechanical stability, high density, and electrical properties that are attractive for next-generation metal MEMS applications. PMID:28782015

  3. Dielectric and acoustical high frequency characterisation of PZT thin films

    NASA Astrophysics Data System (ADS)

    Conde, Janine; Muralt, Paul

    2010-02-01

    Pb(Zr, Ti)O3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  4. Sodium to sodium carbonate conversion process

    DOEpatents

    Herrmann, S.D.

    1997-10-14

    A method is described for converting radioactive alkali metal into a low level disposable solid waste material. The radioactive alkali metal is atomized and introduced into an aqueous caustic solution having caustic present in the range of from about 20 wt % to about 70 wt % to convert the radioactive alkali metal to a radioactive alkali metal hydroxide. The aqueous caustic containing radioactive alkali metal hydroxide and CO{sub 2} are introduced into a thin film evaporator with the CO{sub 2} present in an amount greater than required to convert the alkali metal hydroxide to a radioactive alkali metal carbonate, and thereafter the radioactive alkali metal carbonate is separated from the thin film evaporator as a dry powder. Hydroxide solutions containing toxic metal hydroxide including one or more metal ions of Sb, As, Ba, Be, Cd, Cr, Pb, Hg, Ni, Se, Ag and Tl can be converted into a low level non-hazardous waste using the thin film evaporator of the invention. 3 figs.

  5. Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit.

    PubMed

    Kaewklin, Patinya; Siripatrawan, Ubonrat; Suwanagul, Anawat; Lee, Youn Suk

    2018-06-01

    The feasibility of active packaging from chitosan (CS) and chitosan containing nanosized titanium dioxide (CT) to maintain quality and extend storage life of climacteric fruit was investigated. The CT nanocomposite film and CS film were fabricated using a solution casting method and used as active packaging to delay ripening process of cherry tomatoes. Changes in firmness, weight loss, a*/b* color, lycopene content, total soluble solid, ascorbic acid, and concentration of ethylene and carbon dioxide of the tomatoes packaged in CT film, CS film, and control (without CT or CS films) were monitored during storage at 20°C. Classification of fruit quality as a function of different packaging treatments was visualized using linear discriminant analysis. Tomatoes packaged in the CT film evolved lower quality changes than those in the CS film and control. The results suggested that the CT film exhibited ethylene photodegradation activity when exposed to UV light and consequently delayed the ripening process and changes in the quality of the tomatoes. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Growth of nanocrystalline Cu2ZnSnS4 thin films using the spray pyrolysis technique and their characterization

    NASA Astrophysics Data System (ADS)

    Chandel, Tarun; Halaszova, Sona; Prochazka, Michal; Hasko, Daniel; Velic, Dusan; Thakur, Vikas; Dwivedi, Shailendra Kumar; Zaman, M. Buhanuz; Rajaram, Poolla

    2018-05-01

    Nanocrystalline thin films of Cu2ZnSnS4 (CZTS) were grown on the glass substrates using the spray pyrolysis technique. The films were grown at a substrate temperature of 300 °C after which they were annealed at 350 °C in vacuum. X-ray diffraction (XRD) studies showed that the films crystallized in the kesterite structure. Energy dispersive analysis of X-rays (EDAX) studies showed that the films possess the desired stoichiometry i.e. the proportion of Cu:Zn:Sn:S in the CZTS solid solution is close to 2:1:1:4. Secondary Ions Mass Spectroscopy (SIMS) depth profiling confirmed the uniformity in elemental composition along the depth of the films. SEM studies showed that the films are covered with CZTS particles forming sheet like structures. AFM studies show that the size of the particles on the surface of the films is around 10-15 nm. UV-VIS-NIR transmission spectra were used to determine the optical band gap of the CZTS films which was found to be around 1.55eV.

  7. Characterization of stable, electroactive protein cage/synthetic polymer multilayer thin films prepared by layer-by-layer assembly

    NASA Astrophysics Data System (ADS)

    Uto, Koichiro; Yamamoto, Kazuya; Kishimoto, Naoko; Muraoka, Masahiro; Aoyagi, Takao; Yamashita, Ichiro

    2013-04-01

    We have fabricated electroactive multilayer thin films containing ferritin protein cages. The multilayer thin films were prepared on a solid substrate by the alternate electrostatic adsorption of (apo)ferritin and poly( N-isopropylacrylamide- co-2-carboxyisopropylacrylamide) (NIPAAm- co-CIPAAm) in pH 3.5 acetate buffer solution. The assembly process was monitored using a quartz crystal microbalance. The (apo)ferritin/poly(NIPAAm- co-CIPAAm) multilayer thin films were then cross-linked using a water-soluble carbodiimide, 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide. The cross-linked films were stable under a variety of conditions. The surface morphology and thickness of the multilayer thin films were characterized by atomic force microscopy, and the ferritin iron cores were observed by scanning electron microscopy to confirm the assembly mechanism. Cyclic voltammetry measurements showed different electrochemical properties for the cross-linked ferritin and apoferritin multilayer thin films, and the effect of stability of the multilayer film on its electrochemical properties was also examined. Our method for constructing multilayer films containing protein cages is expected to be useful in building more complex functional inorganic nanostructures.

  8. Photogeneration of H2O2 in Water-Swollen SPEEK/PVA Polymer Films.

    PubMed

    Lockhart, PaviElle; Little, Brian K; Slaten, B L; Mills, G

    2016-06-09

    Efficient reduction of O2 took place via illumination with 350 nm photons of cross-linked films containing a blend of sulfonated poly(ether etherketone) and poly(vinyl alcohol) in contact with air-saturated aqueous solutions. Swelling of the solid macromolecular matrices in H2O enabled O2 diffusion into the films and also continuous extraction of the photogenerated H2O2, which was the basis for a method that allowed quantification of the product. Peroxide formed with similar efficiencies in films containing sulfonated polyketones prepared from different precursors and the initial photochemical process was found to be the rate-determining step. Generation of H2O2 was most proficient in the range of 4.9 ≤ pH ≤ 8 with a quantum yield of 0.2, which was 10 times higher than the efficiencies determined for solutions of the polymer blend. Increases in temperature as well as [O2] in solution were factors that enhanced the H2O2 generation. H2O2 quantum yields as high as 0.6 were achieved in H2O/CH3CN mixtures with low water concentrations, but peroxide no longer formed when film swelling was suppressed. A mechanism involving reduction of O2 by photogenerated α-hydroxy radicals from the polyketone in competition with second-order radical decay processes explains the kinetic features. Higher yields result from the films because cross-links present in them hinder diffusion of the radicals, limiting their decay and enhancing the oxygen reduction pathway.

  9. Single-molecule studies of oligomer extraction and uptake of dyes in poly(dimethylsiloxane) films.

    PubMed

    Lange, Jeffrey J; Collinson, Maryanne M; Culbertson, Christopher T; Higgins, Daniel A

    2009-12-15

    Single-molecule microscopic methods were used to probe the uptake, mobility, and entrapment of dye molecules in cured poly(dimethylsiloxane) (PDMS) films as a function of oligomer extraction. The results are relevant to the use of PDMS in microfluidic separations, pervaporation, solid-phase microextraction, and nanofiltration. PDMS films were prepared by spin-casting dilute solutions of Sylgard 184 onto glass coverslips, yielding approximately 1.4 microm thick films after curing. Residual oligomers were subsequently extracted from the films by "spin extraction". In this procedure, 200 microL aliquots of isopropyl alcohol were repeatedly dropped onto the film surface and spun off at 2000 rpm. Samples extracted 5, 10, 20, and 40 times were investigated. Dye molecules were loaded into these films by spin-casting nanomolar dye solutions onto the films. Both neutral perylene diimide (N,N'-bis(butoxypropyl)perylene-3,4,9,10-tetracarboxylic diimide) and cationic rhodamine 6G (R6G) dyes were employed. The films were imaged by confocal fluorescence microscopy. The images obtained depict nonzero populations of fixed and mobile molecules in all films. Cross-correlation methods were used to quantitatively determine the population of fixed molecules in a given region, while a Bayesian burst analysis was used to obtain the total population of molecules. The results show that the total amount of dye loaded increases with increased oligomer extraction, while the relative populations of fixed and mobile molecules decrease and increase, respectively. Bulk R6G data also show greater dye loading with increased oligomer extraction.

  10. Tracer Film Growth Study of the Corrosion of Magnesium Alloys AZ31B and ZE10A in 0.01% NaCl Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, M. P.; Fayek, M.; Leonard, D. N.

    We conducted a sequential isotopic tracer study of corrosion film growth for Mg-3Al-1Zn-0.25Mn (AZ31B) and Mg-1.2Zn-0.25Zr-<0.5Nd (ZE10A) by 4 h immersion in H 2 18O or D 2 16O, followed by a 20 h immersion in a 0.01 wt% NaCl H 2 18O or D 2 16O solution. Sputter depth profiles were obtained for 16O, 18O, H, and D using secondary ion mass spectrometry (SIMS). When compared to the previous tracer study for these alloys in salt-free water, the addition of 0.01 wt% NaCl resulted in a transition from oxygen inward-dominated film growth to a component of mixed inward/outward filmmore » growth for both alloys. The hydrogen tracer behavior remained inward growing for AZ31B, and short-circuit, inward growing for ZE10A, in both pure water and in 0.01 wt% NaCl solution, with extensive penetration of D beyond the film and into the underlying alloy also observed for ZE10A. Our analysis of the films by X-ray photoelectron spectroscopy (XPS) and cross-section scanning transmission electron microscopy (STEM) indicated intermixed Mg(OH) 2 and MgO, with the relative fraction of Mg(OH) 2 peaking near the center of the film. These findings suggest a decoupled film growth mechanism, with initial formation of oxide followed by NaCl-accelerated conversion to hydroxide, likely by both solid-state and dissolution-precipitation processes.« less

  11. π-π Interaction among violanthrone molecules: observation, enhancement, and resulting charge transport properties.

    PubMed

    Shi, Min-Min; Chen, Yi; Nan, Ya-Xiong; Ling, Jun; Zuo, Li-Jian; Qiu, Wei-Ming; Wang, Mang; Chen, Hong-Zheng

    2011-02-03

    To investigate the relationship between π-π stacking and charge transport property of organic semiconductors, a highly soluble violanthrone derivative, 16,17-bis(2-ethylhexyloxy)anthra[9,1,2-cde-]benzo[rst]pentaphene-5,10-dione (3), is designed and synthesized. The π-π stacking behavior and the aggregation of compound 3 in both solution and thin film were studied in detail by (1)H nuclear magnetic resonance (NMR) spectroscopy, ultraviolet-visible (UV-vis) absorption, X-ray diffraction (XRD), and atomic force microscopy (AFM). When (1)H NMR spectroscopy and theoretical modeling results were combined, the arrangements of compound 3 molecules in the aggregates are demonstrated, where the dipole moments of the two adjacent molecules are nearly reversed to achieve efficient intermolecular π-π overlapping. Furthermore, it is interesting to find that the π-π stacking of compound 3, in both solution and thin films, can be enhanced by introducing a poor solvent n-hexane into the dilute chloroform solution. The resulting film exhibits more red-shifted absorption and higher crystallinity than the film made from pure chloroform solvent, suggesting that π-π interactions in the solid state are intensified by the poor solvent. Organic field-effect transistors (OFETs) with compound 3 film as the transportation layer were fabricated. It is disclosed that the compound 3 film obtained from the chloroform/n-hexane mixed solvents exhibits 1 order of magnitude higher hole mobility than that from the pure chloroform solvent because of the enhanced π-π interactions and the higher crystallinity in the former film. This work provided us valuable information in the improvement of electronic and optoelectronic performances of organic semiconductors by tuning their aggregate structures.

  12. Tracer Film Growth Study of the Corrosion of Magnesium Alloys AZ31B and ZE10A in 0.01% NaCl Solution

    DOE PAGES

    Brady, M. P.; Fayek, M.; Leonard, D. N.; ...

    2017-05-25

    We conducted a sequential isotopic tracer study of corrosion film growth for Mg-3Al-1Zn-0.25Mn (AZ31B) and Mg-1.2Zn-0.25Zr-<0.5Nd (ZE10A) by 4 h immersion in H 2 18O or D 2 16O, followed by a 20 h immersion in a 0.01 wt% NaCl H 2 18O or D 2 16O solution. Sputter depth profiles were obtained for 16O, 18O, H, and D using secondary ion mass spectrometry (SIMS). When compared to the previous tracer study for these alloys in salt-free water, the addition of 0.01 wt% NaCl resulted in a transition from oxygen inward-dominated film growth to a component of mixed inward/outward filmmore » growth for both alloys. The hydrogen tracer behavior remained inward growing for AZ31B, and short-circuit, inward growing for ZE10A, in both pure water and in 0.01 wt% NaCl solution, with extensive penetration of D beyond the film and into the underlying alloy also observed for ZE10A. Our analysis of the films by X-ray photoelectron spectroscopy (XPS) and cross-section scanning transmission electron microscopy (STEM) indicated intermixed Mg(OH) 2 and MgO, with the relative fraction of Mg(OH) 2 peaking near the center of the film. These findings suggest a decoupled film growth mechanism, with initial formation of oxide followed by NaCl-accelerated conversion to hydroxide, likely by both solid-state and dissolution-precipitation processes.« less

  13. Triplet-Triplet Annihilation Photon Upconversion in Polymer Thin Film: Sensitizer Design.

    PubMed

    Jiang, Xinpeng; Guo, Xinyan; Peng, Jiang; Zhao, Dahui; Ma, Yuguo

    2016-05-11

    Efficient visible-to-UV photon upconversion via triplet-triplet annihilation (TTA) is accomplished in polyurethane (PU) films by developing new, powerful photosensitizers fully functional in the solid-state matrix. These rationally designed triplet sensitizers feature a bichromophoric scaffold comprising a tris-cyclometalated iridium(III) complex covalently tethered to a suitable organic small molecule. The very rapid intramolecular triplet energy transfer from the former to the latter is pivotal for achieving the potent sensitizing ability, because this process out-competes the radiative and nonradiative decays inherent to the metal complex and produces long-lived triplet excitons localized with the acceptor moiety readily available for intermolecular transfer and TTA. Nonetheless, compared to the solution state, the molecular diffusion is greatly limited in solid matrices, which even creates difficulty for the Dexter-type intramolecular energy transfer. This is proven by the experimental results showing that the sensitizing performance of the bichromophoric molecules strongly depends on the spatial distance separating the donor (D) and acceptor (A) units and that incorporating a longer linker between the D and A evidently curbs the TTA upconversion efficiency in PU films. Using a rationally optimized sensitizer structure in combination with 2,7-di-tert-butylpyrene as the annihilator/emitter, the doped polyurethane (PU) films demonstrate effective visible-to-UV upconverted emission signal under noncoherent-light irradiation, attaining an upconversion quantum yield of 2.6%. Such quantum efficiency is the highest value so far reported for the visible-to-UV TTA systems in solid matrices.

  14. Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions.

    PubMed

    Gogoi, Neelam; Barooah, Mayuri; Majumdar, Gitanjali; Chowdhury, Devasish

    2015-02-11

    A robust solid sensing platform for an on-site operational and accurate detection of heavy metal is still a challenge. We introduce chitosan based carbon dots rooted agarose hydrogel film as a hybrid solid sensing platform for detection of heavy metal ions. The fabrication of the solid sensing platform is centered on simple electrostatic interaction between the NH3+ group present in the carbon dots and the OH- groups present in agarose. Simply on dipping the hydrogel film strip into the heavy metal ion solution, in particular Cr6+, Cu2+, Fe3+, Pb2+, Mn2+, the strip displays a color change, viz., Cr6+→yellow, Cu2+→blue, Fe3+→brown, Pb2+→white, Mn2+→tan brown. The optical detection limit of the respective metal ion is found to be 1 pM for Cr6+, 0.5 μM for Cu2+, and 0.5 nM for Fe3+, Pb2+, and Mn2+ by studying the changes in UV-visible reflectance spectrum of the hydrogel film. Moreover, the hydrogel film finds applicability as an efficient filtration membrane for separation of these quintet heavy metal ions. The strategic fundamental feature of this sensing platform is the successful capability of chitosan to form colored chelates with transition metals. This proficient hybrid hydrogel solid sensing platform is thus the most suitable to employ as an on-site operational, portable, cheap colorimetric-optical detector of heavy metal ion with potential skill in their separation. Details of the possible mechanistic insight into the colorimetric detection and ion separation are also discussed.

  15. Research of vacuum polymer film on three-dimension surface (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bau, Yung-Han

    2016-09-01

    This study focused on UV-curable acrylic hybrid of solute in vacuum-deposited on the surface and make it smooth. On the surface coating of the entire process, including the pre-treatment of organic solutes, vacuum, nozzle pressure, airflow, frequency ratio, the surface of the rotation rate, nozzle angle, UV light irradiation time, waste solute recycling.Organic solutes through a flow meter and precise measured,by high pressure or vibration of a piezoelectric material, spray our organic solute in a certain degree of vacuum,leaving nozzle of tiny micro-mist volatiles in a vacuum to form secondary atomization,deposited our surface,Since no UV light irradiation, the surface is a liquid having fluidity, so the non-planar substrates can have good performance, finally it is irradiated by UV light of sufficient energy solidify to form a solid film.The advantage of this approach is that a smooth surface,Strong adhesion, low-cost equipment, low temperature, a wide range of high deposition rate can be combined with other deposition method,Under vacuum have not waste because excess paint can be recycled.Avoid solute direct contact with human, relative to the environment-friendly.

  16. Flexible continuous manufacturing platforms for solid dispersion formulations

    NASA Astrophysics Data System (ADS)

    Karry-Rivera, Krizia Marie

    In 2013 16,000 people died in the US due to overdose from prescription drugs and synthetic narcotics. As of that same year, 90% of new molecular entities in the pharmaceutical drug pipeline are classified as poor water-soluble. The work in this dissertation aims to design, develop and validate platforms that solubilize weak acids and can potentially deter drug abuse. These platforms are based on processing solid dispersions via solvent-casting and hot-melt extrusion methods to produce oral transmucosal films and melt tablets. To develop these platforms, nanocrystalline suspensions and glassy solutions were solvent-casted in the form of films after physicochemical characterizations of drug-excipient interactions and design of experiment approaches. A second order model was fitted to the emulsion diffusion process to predict average nanoparticle size and for process optimization. To further validate the manufacturing flexibility of the formulations, glassy solutions were also extruded and molded into tablets. This process included a systematic quality-by-design (QbD) approach that served to identify the factors affecting the critical quality attributes (CQAs) of the melt tablets. These products, due to their novelty, lack discriminatory performance tests that serve as predictors to their compliance and stability. Consequently, Process Analytical Technology (PAT) tools were integrated into the continuous manufacturing platform for films. Near-infrared (NIR) spectroscopy, including chemical imaging, combined with deconvolution algorithms were utilized for a holistic assessment of the effect of formulation and process variables on the product's CQAs. Biorelevant dissolution protocols were then established to improve the in-vivo in-vitro correlation of the oral transmucosal films. In conclusion, the work in this dissertation supports the delivery of poor-water soluble drugs in products that may deter abuse. Drug nanocrystals ensured high bioavailability, while glassy solutions enabled drug solubilization in polymer matrices. PAT tools helped in characterizing the micro and macro structure of the product while also used as a control strategy for manufacturing. The systematic QbD assessment enabled identification of the variables that significantly affected melt tablet performance and their potential as an abuse deterrent product. Being that these glassy products are novel systems, biorelevant protocols for testing dissolution performance of films were also developed.

  17. Numerical modeling of runback water on ice protected aircraft surfaces

    NASA Technical Reports Server (NTRS)

    Al-Khalil, Kamel M.; Keith, Theo G., Jr.; Dewitt, Kenneth J.

    1992-01-01

    A numerical simulation for 'running wet' aircraft anti-icing systems is developed. The model includes breakup of the water film, which exists in regions of direct impingement, into individual rivulets. The wetness factor distribution resulting from the film breakup and the rivulet configuration on the surface are predicted in the numerical solution procedure. The solid wall is modeled as a multilayer structure and the anti-icing system used is of the thermal type utilizing hot air and/or electrical heating elements embedded with the layers. Details of the calculation procedure and the methods used are presented.

  18. Electrochemical membrane incinerator

    DOEpatents

    Johnson, Dennis C.; Houk, Linda L.; Feng, Jianren

    2001-03-20

    Electrochemical incineration of p-benzoquinone was evaluated as a model for the mineralization of carbon in toxic aromatic compounds. A Ti or Pt anode was coated with a film of the oxides of Ti, Ru, Sn and Sb. This quaternary metal oxide film was stable; elemental analysis of the electrolyzed solution indicated the concentration of these metal ions to be 3 .mu.g/L or less. The anode showed good reactivity for the electrochemical incineration of benzoquinone. The use of a dissolved salt matrix as the so-called "supporting electrolyte" was eliminated in favor of a solid-state electrolyte sandwiched between the anode and cathode.

  19. Diblock Copolymer Micelles and Supported Films with Noncovalently Incorporated Chromophores: A Modular Platform for Efficient Energy Transfer

    DOE PAGES

    Adams, Peter G.; Collins, Aaron M.; Sahin, Tuba; ...

    2015-04-08

    Here we report generation of modular, artificial light-harvesting assemblies where an amphiphilic diblock copolymer, poly(ethylene oxide)-block-poly(butadiene), serves as the framework for noncovalent organization of BODIPY-based energy donor and bacteriochlorin-based energy acceptor chromophores. The assemblies are adaptive and form well-defined micelles in aqueous solution and high-quality monolayer and bilayer films on solid supports, with the latter showing greater than 90% energy transfer efficiency. Ultimately, this study lays the groundwork for further development of modular, polymer-based materials for light harvesting and other photonic applications.

  20. Solid-state, ambient-operation thermally activated delayed fluorescence from flexible, non-toxic gold-nanocluster thin films: towards the development of biocompatible light-emitting devices

    NASA Astrophysics Data System (ADS)

    Talite, M. J. A.; Lin, H. T.; Jiang, Z. C.; Lin, T. N.; Huang, H. Y.; Heredia, E.; Flores, A.; Chao, Y. C.; Shen, J. L.; Lin, C. A. J.; Yuan, C. T.

    2016-08-01

    Luminescent gold nanoclusters (AuNCs) with good biocompatibility have gained much attention in bio-photonics. In addition, they also exhibit a unique photo-physical property, namely thermally activated delayed fluorescence (TADF), by which both singlet and triplet excitons can be harvested. The combination of their non-toxic material property and unique TADF behavior makes AuNCs biocompatible nano-emitters for bio-related light-emitting devices. Unfortunately, the TADF emission is quenched when colloidal AuNCs are transferred to solid states under ambient environment. Here, a facile, low-cost and effective method was used to generate efficient and stable TADF emissions from solid AuNCs under ambient environment using polyvinyl alcohol as a solid matrix. To unravel the underlying mechanism, temperature-dependent static and transient photoluminescence measurements were performed and we found that two factors are crucial for solid TADF emission: small energy splitting between singlet and triplet states and the stabilization of the triplet states. Solid TADF films were also deposited on the flexible plastic substrate with patterned structures, thus mitigating the waveguide-mode losses. In addition, we also demonstrated that warm white light can be generated based on a co-doped single emissive layer, consisting of non-toxic, solution-processed TADF AuNCs and fluorescent carbon dots under UV excitation.

  1. Solid film lubricants and thermal control coatings flown aboard the EOIM-3 MDA sub-experiment

    NASA Technical Reports Server (NTRS)

    Murphy, Taylor J.; David, Kaia E.; Babel, Hank W.

    1995-01-01

    Additional experimental data were desired to support the selection of candidate thermal control coatings and solid film lubricants for the McDonnell Douglas Aerospace (MDA) Space Station hardware. The third Evaluation of Oxygen Interactions With Materials Mission (EOIM-3) flight experiment presented an opportunity to study the effects of the low Earth orbit environment on thermal control coatings and solid film lubricants. MDA provided five solid film lubricants and two anodic thermal control coatings for EOIM-3. The lubricant sample set consisted of three solid film lubricants with organic binders one solid film lubricant with an inorganic binder, and one solid film lubricant with no binder. The anodize coating sample set consisted of undyed sulfuric acid anodize and cobalt sulfide dyed sulfuric acid anodize, each on two different substrate aluminum alloys. The organic and inorganic binders in the solid film lubricants experienced erosion, and the lubricating pigments experienced oxidation. MDA is continuing to assess the effect of exposure to the low Earth orbit environment on the life and friction properties of the lubricants. Results to date support the design practice of shielding solid film lubricants from the low Earth orbit environment. Post-flight optical property analysis of the anodized specimens indicated that there were limited contamination effects and some atomic oxygen and ultraviolet radiation effects. These effects appeared to be within the values predicted by simulated ground testing and analysis of these materials, and they were different for each coating and substrate.

  2. Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato.

    PubMed

    Choi, Inyoung; Lee, Jun Young; Lacroix, Monique; Han, Jaejoon

    2017-03-01

    A new colorimetric pH indicator film was developed using agar, potato starch, and natural dyes extracted from purple sweet potato, Ipomoea batatas. Both agar and potato starch are solid matrices used to immobilize natural dyes, anthocyanins. The ultraviolet-visible (UV-vis) spectrum of anthocyanin extract solutions and agar/potato starch films with anthocyanins showed color variations to different pH values (pH 2.0-10.0). Fourier transform infrared (FT-IR) and UV-vis region spectra showed compatibility between agar, starch, and anthocyanin extracts. Color variations of pH indicator films were measured by a colorimeter after immersion in different pH buffers. An application test was conducted for potential use as a meat spoilage sensor. The pH indicator films showed pH changes and spoilage point of pork samples, changing from red to green. Therefore, the developed pH indicator films could be used as a diagnostic tool for the detection of food spoilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A fluorescent chemosensor for Zn(II). Exciplex formation in solution and the solid state.

    PubMed

    Bencini, Andrea; Berni, Emanuela; Bianchi, Antonio; Fornasari, Patrizia; Giorgi, Claudia; Lima, Joao C; Lodeiro, Carlos; Melo, Maria J; de Melo, J Seixas; Parola, Antonio Jorge; Pina, Fernando; Pina, Joao; Valtancoli, Barbara

    2004-07-21

    The macrocyclic phenanthrolinophane 2,9-[2,5,8-triaza-5-(N-anthracene-9-methylamino)ethyl]-[9]-1,10-phenanthrolinophane (L) bearing a pendant arm containing a coordinating amine and an anthracene group forms stable complexes with Zn(II), Cd(II) and Hg(II) in solution. Stability constants of these complexes were determined in 0.10 mol dm(-3) NMe(4)Cl H(2)O-MeCN (1:1, v/v) solution at 298.1 +/- 0.1 K by means of potentiometric (pH metric) titration. The fluorescence emission properties of these complexes were studied in this solvent. For the Zn(II) complex, steady-state and time-resolved fluorescence studies were performed in ethanol solution and in the solid state. In solution, intramolecular pi-stacking interaction between phenanthroline and anthracene in the ground state and exciplex emission in the excited state were observed. From the temperature dependence of the photostationary ratio (I(Exc)/I(M)), the activation energy for the exciplex formation (E(a)) and the binding energy of the exciplex (-DeltaH) were determined. The crystal structure of the [ZnLBr](ClO(4)).H(2)O compound was resolved, showing that in the solid state both intra- and inter-molecular pi-stacking interactions are present. Such interactions were also evidenced by UV-vis absorption and emission spectra in the solid state. The absorption spectrum of a thin film of the solid complex is red-shifted compared with the solution spectra, whereas its emission spectrum reveals the unique featureless exciplex band, blue shifted compared with the solution. In conjunction with X-ray data the solid-state data was interpreted as being due to a new exciplex where no pi-stacking (full overlap of the pi-electron cloud of the two chromophores - anthracene and phenanthroline) is observed. L is a fluorescent chemosensor able to signal Zn(II) in presence of Cd(II) and Hg(II), since the last two metal ions do not give rise either to the formation of pi-stacking complexes or to exciplex emission in solution.

  4. Molecular Strategies for Morphology Control in Semiconducting Polymers for Optoelectronics.

    PubMed

    Rahmanudin, Aiman; Sivula, Kevin

    2017-06-28

    Solution-processable semiconducting polymers have been explored over the last decades for their potential applications in inexpensively fabricated transistors, diodes and photovoltaic cells. However, a remaining challenge in the field is to control the solid-state self-assembly of polymer chains in thin films devices, as the aspects of (semi)crystallinity, grain boundaries, and chain entanglement can drastically affect intra-and inter-molecular charge transport/transfer and thus device performance. In this short review we examine how the aspects of molecular weight and chain rigidity affect solid-state self-assembly and highlight molecular engineering strategies to tune thin film morphology. Side chain engineering, flexibly linking conjugation segments, and block co-polymer strategies are specifically discussed with respect to their effect on field effect charge carrier mobility in transistors and power conversion efficiency in solar cells. Example systems are taken from recent literature including work from our laboratories to illustrate the potential of molecular engineering semiconducting polymers.

  5. Temperature Variations in Lubricating Films Induced by Viscous Dissipation

    NASA Astrophysics Data System (ADS)

    Mozaffari, Farshad; Metcalfe, Ralph

    2015-11-01

    We have studied temperature distributions of lubricating films. The study has applications in tribology where temperature-reduced viscosity decreases load carrying capacity of bearings, or degrades elastomeric seals. The viscosity- temperature dependency is modeled according to ASTM D341-09. We have modeled the film temperature distribution by our finite element program. The program is made up of three modules: the first one solves the general form of Reynolds equation for the film pressure and velocity gradients. The other two solve the energy equation for the film and its solid boundary temperature distributions. The modules are numerically coupled and iteratively converged to the solutions. We have shown that the temperature distribution in the film is strongly coupled with the thermal response at the boundary. In addition, only thermal diffusion across film thickness is dominant. Moreover, thermal diffusion in the lateral directions, as well as all the convection terms, are negligible. The approximation reduces the energy equation to an ordinary differential equation, which significantly simplifies the modeling of temperature -viscosity effects in thin films. Supported by Kalsi Engineering, Inc.

  6. A model system to mimic environmentally active surface film roughness and hydrophobicity.

    PubMed

    Grant, Jacob S; Shaw, Scott K

    2017-10-01

    This work presents the development and initial assessment of a laboratory platform to allow quantitative studies on model urban films. The platform consists of stearic acid and eicosane mixtures that are solution deposited from hexanes onto smooth, solid substrates. We show that this model has distinctive capabilities to better mimic a naturally occurring film's morphology and hydrophobicity, two important parameters that have not previously been incorporated into model film systems. The physical and chemical properties of the model films are assessed using a variety of analytical instruments. The film thickness and roughness are probed via atomic force microscopy while the film composition, wettability, and water uptake are analyzed by Fourier transform infrared spectroscopy, contact angle goniometry, and quartz crystal microbalance, respectively. Simulated environmental maturation is achieved by exposing the film to regulated amounts of UV/ozone. Ultimately, oxidation of the film is monitored by the analytical techniques mentioned above and proceeds as expected to produce a utile model film system. Including variable roughness and tunable surface coverage results in several key advantages over prior model systems, and will more accurately represent native urban film behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Thermoelectric Devices Cool, Power Electronics

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Nextreme Thermal Solutions Inc., based in Research Triangle Park, North Carolina, licensed thermoelectric technology from NASA s Jet Propulsion Laboratory. This has allowed the company to develop cutting edge, thin-film thermoelectric coolers that effective remove heat generated by increasingly powerful and tightly packed microchip components. These solid-state coolers are ideal solutions for applications like microprocessors, laser diodes, LEDs, and even potentially for cooling the human body. Nextreme s NASA technology has also enabled the invention of thermoelectric generators capable of powering technologies like medical implants and wireless sensor networks.

  8. Analysis of the surface density and reactivity of perfluorophenylazide and the impact on ligand immobilization.

    PubMed

    Zorn, Gilad; Castner, David G; Tyagi, Anuradha; Wang, Xin; Wang, Hui; Yan, Mingdi

    2015-03-01

    Perfluorophenylazide (PFPA) chemistry is a novel method for tailoring the surface properties of solid surfaces and nanoparticles. It is general and versatile, and has proven to be an efficient way to immobilize graphene, proteins, carbohydrates, and synthetic polymers. The main thrust of this work is to provide a detailed investigation on the chemical composition and surface density of the PFPA tailored surface. Specifically, gold surfaces were treated with PFPA-derivatized (11-mercaptoundecyl)tetra(ethylene glycol) (PFPA-MUTEG) mixed with 2-[2-(2-mercaptoethoxy)ethoxy]ethanol (MDEG) at varying solution mole ratios. Complementary analytical techniques were employed to characterize the resulting films including Fourier transform infrared spectroscopy to detect fingerprints of the PFPA group, x-ray photoelectron spectroscopy and ellipsometry to study the homogeneity and uniformity of the films, and near edge x-ray absorption fine structures to study the electronic and chemical structure of the PFPA groups. Results from these studies show that the films prepared from 90:10 and 80:20 PFPA-MUTEG/MDEG mixed solutions exhibited the highest surface density of PFPA and the most homogeneous coverage on the surface. A functional assay using surface plasmon resonance with carbohydrates covalently immobilized onto the PFPA-modified surfaces showed the highest binding affinity for lectin on the PFPA-MUTEG/MDEG film prepared from a 90:10 solution.

  9. Aluminum concentration and substrate temperature in chemical sprayed ZnO:Al thin solid films

    NASA Astrophysics Data System (ADS)

    Lozada, Erick Velázquez; Castañeda, L.; Aguilar, E. Austria

    2018-02-01

    The continuous interest in the synthesis and properties study of materials has permitted the development of semiconductor oxides. Zinc oxide (ZnO) with hexagonal wurzite structure is a wide band gap n-type semiconductor and interesting material over a wide range. Chemically sprayed aluminium-doped zinc oxide thin films (ZnO:Al) were deposited on soda-lime glass substrates starting from zinc pentanedionate and aluminium pentanedionate. The influence of both the dopant concentration in the starting solution and the substrate temperature on the composition, morphology, and transport properties of the ZnO:Al thin films were studied. The structure of all the ZnO:Al thin films was polycrystalline, and variation in the preferential growth with the aluminium content in the solution was observed: from an initial (002) growth in films with low Al content, switching to a predominance of (101) planes for heavily dopant regime. The crystallite size was found to decrease with doping concentration and range from 33 to 20 nm. First-order Raman scattering from ZnO:Al, all having the wurtzite structure. The assignments of the E2 mode in ZnO:Al differ from previous investigations. The film composition and the dopant concentration were determined by Auger Electron Spectroscopy (AES); these results showed that the films are almost stoichiometric ZnO. The optimum deposition conditions leading to conductive and transparent ZnO:Al thin films were also found. In this way a resistivity of 0.03 Ω-cm with a (002) preferential growth, were obtained in optimized ZnO:Al thin films.

  10. In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution

    NASA Astrophysics Data System (ADS)

    Shi, Yunzhu; Collins, Liam; Balke, Nina; Liaw, Peter K.; Yang, Bin

    2018-05-01

    In-situ electrochemical (EC)-AFM is employed to investigate the localized corrosion of the AlxCoCrFeNi high-entropy alloys (HEAs). Surface topography changes on the micro/sub-micro scale are monitored at different applied anodizing potentials in a 3.5 wt% NaCl solution. The microstructural evolutions with the increased Al content in the alloys are characterized by SEM, TEM, EDS and EBSD. The results show that by increasing the Al content, the microstructure changes from single solid-solution to multi-phases, leading to the segregations of elements. Due to the microstructural variations in the AlxCoCrFeNi HEAs, localized corrosion processes in different ways after the breakdown of the passive film, which changes from pitting to phase boundary corrosion. The XPS results indicate that an increased Al content in the alloys/phases corresponds to a decreased corrosion resistance of the surface passive film.

  11. The Effects of Temperature and Oxidation on Deuterium Retention in Solid and Liquid Lithium Films on Molybdenum Plasma-Facing Components

    NASA Astrophysics Data System (ADS)

    Capece, Angela

    2014-10-01

    Liquid metal plasma-facing components (PFCs) enable in-situ renewal of the surface, thereby offering a solution to neutron damage, erosion, and thermal fatigue experienced by solid PFCs. Lithium in particular has a high chemical affinity for hydrogen, which has resulted in reduced recycling and enhanced plasma performance on many fusion devices including TFTR, T11-M, FTU, CDX-U, LTX, TJ-II, and NSTX. A key component to the improvement in plasma performance is deuterium retention in Li; however, this process is not well understood in the complex tokamak environment. Recent surface science experiments conducted at the Princeton Plasma Physics Laboratory have used electron spectroscopy and temperature programmed desorption to understand the mechanisms for D retention in Li coatings on Mo substrates. The experiments were designed to give monolayer-control of Li films and were conducted in ultrahigh vacuum under controlled environments. An electron cyclotron resonance plasma source was used to deliver a beam of deuterium ions to the surface over a range of ion energies. Our work shows that D is retained as LiD in metallic Li films. However, when oxygen is present in the film, either by diffusion from the subsurface at high temperature or as a contaminant during the deposition process, Li oxides are formed that retain D as LiOD. Experiments indicate that LiD is more thermally stable than LiOD, which decomposes to liberate D2 gas and D2O at temperatures 100 K lower than the LiD decomposition temperature. Other experiments show how D retention varies with substrate temperature to provide insight into the differences between solid and liquid lithium films. This work was supported by DOE Contract No. DE AC02-09CH11466.

  12. Preparation of surfactant-free nanoparticles of methacrylic acid copolymers used for film coating.

    PubMed

    Nguyen, Cung An; Konan-Kouakou, Yvette Niamien; Allémann, Eric; Doelker, Eric; Quintanar-Guerrero, David; Fessi, Hatem; Gurny, Robert

    2006-07-28

    The aim of the present study was to prepare surfactant-free pseudolatexes of various methacrylic acid copolymers. These aqueous colloidal dispersions of polymeric materials for oral administration are intended for film coating of solid dosage forms or for direct manufacturing of nanoparticles. Nanoparticulate dispersions were produced by an emulsification-diffusion method involving the use of partially water-miscible solvents and the mutual saturation of the aqueous and organic phases prior to the emulsification in order to reduce the initial thermodynamic instability of the emulsion. Because of the self-emulsifying properties of the methacrylic acid copolymers, it was possible to prepare aqueous dispersions of colloidal size containing up to 30% wt/vol of Eudragit RL, RS, and E using 2-butanone or methyl acetate as partially water-miscible solvents, but without any surfactant. However, in the case of the cationic Eudragit E, protonation of the tertiary amine groups by acidification of the aqueous phase was necessary to improve the emulsion stability in the absence of surfactant and subsequently to prevent droplet coalescence during evaporation. In addition, a pseudolatex of Eudragit E was used to validate the coating properties of the formulation for solid dosage forms. Film-coated tablets of quinidine sulfate showed a transparent glossy continuous film that was firmly attached to the tablet. The dissolution profile of quinidine sulfate from the tablets coated with the Eudragit E pseudolatex was comparable to that of tablets coated with an acetonic solution of Eudragit E. Furthermore, both types of coating ensured similar taste masking. The emulsification-evaporation method used was shown to be appropriate for the preparation of surfactant-free colloidal dispersions of the 3 types of preformed methacrylic acid copolymers; the dispersions can subsequently be used for film coating of solid dosage forms.

  13. Long-Range Order in Nanocrystal Assemblies Determines Charge Transport of Films

    DOE PAGES

    Sainato, Michela; Shevitski, Brian; Sahu, Ayaskanta; ...

    2017-07-18

    Self-assembly of semiconductor nanocrystals (NCs) into two-dimensional patterns or three-dimensional (2- 3D) superstructures has emerged as a promising low-cost route to generate thin-film transistors and solar cells with superior charge transport because of enhanced electronic coupling between the NCs. Here, we show that lead sulfide (PbS) NCs solids featuring either short-range (disordered glassy solids, GSs) or long-range (superlattices, SLs) packing order are obtained solely by controlling deposition conditions of colloidal solution of NCs. In this study, we demonstrate the use of the evaporation-driven self-assembly method results in PbS NC SL structures that are observed over an area of 1 mmmore » × 100 μm, with long-range translational order of up to 100 nm. A number of ordered domains appear to have nucleated simultaneously and grown together over the whole area, imparting a polycrystalline texture to the 3D SL films. By contrast, a conventional, optimized spin-coating deposition method results in PbS NC glassy films with no translational symmetry and much shorter-range packing order in agreement with state-of-the-art reports. Further, we investigate the electronic properties of both SL and GS films, using a field-effect transistor configuration as a test platform. The long-range ordering of the PbS NCs into SLs leads to semiconducting NC-based solids, the mobility (μ) of which is 3 orders of magnitude higher than that of the disordered GSs. Furthemore, although spin-cast GSs of PbS NCs have weak ambipolar behavior with limited gate tunability, SLs of PbS NCs show a clear p-type behavior with significantly higher conductivities.« less

  14. Application of solution calorimetry in pharmaceutical and biopharmaceutical research.

    PubMed

    Royall, P G; Gaisford, S

    2005-06-01

    In solution calorimetry the heat of solution (Delta(sol)H) is recorded as a solute (usually a solid) dissolves in an excess of solvent. Such measurements are valuable during all the phases of pharmaceutical formulation and the number of applications of the technique is growing. For instance, solution calorimetry is extremely useful during preformulation for the detection and quantification of polymorphs, degrees of crystallinity and percent amorphous content; knowledge of all of these parameters is essential in order to exert control over the manufacture and subsequent performance of a solid pharmaceutical. Careful experimental design and data interpretation also allows the measurement of the enthalpy of transfer (Delta(trans)H) of a solute between two phases. Because solution calorimetry does not require optically transparent solutions, and can be used to study cloudy or turbid solutions or suspensions directly, measurement of Delta(trans)H affords the opportunity to study the partitioning of drugs into, and across, biological membranes. It also allows the in-situ study of cellular systems. Furthermore, novel experimental methodologies have led to the increasing use of solution calorimetry to study a wider range of phenomena, such as the precipitation of drugs from supersaturated solutions or the formation of liposomes from phospholipid films. It is the purpose of this review to discuss some of these applications, in the context of pharmaceutical formulation and preformulation, and highlight some of the potential future areas where solution calorimetry might find applications.

  15. A new method to measure effective soil solution concentration predicts copper availability to plants.

    PubMed

    Zhang, H; Zhao, F J; Sun, B; Davison, W; McGrath, S P

    2001-06-15

    Risk assessments of metal contaminated soils need to address metal bioavailability. To predict the bioavailability of metals to plants, it is necessary to understand both solution and solid phase supply processes in soils. In striving to find surrogate chemical measurements, scientists have focused either on soil solution chemistry, including free ion activities, or operationally defined fractions of metals. Here we introduce the new concept of effective concentration, CE, which includes both the soil solution concentration and an additional term, expressed as a concentration, that represents metal supplied from the solid phase. CE was measured using the technique of diffusive gradients in thin films (DGT) which, like a plant, locally lowers soil solution concentrations, inducing metal supply from the solid phase, as shown by a dynamic model of the DGT-soil system. Measurements of Cu as CE, soil solution concentration, by EDTA extraction and as free Cu2+ activity in soil solution were made on 29 different soils covering a large range of copper concentrations. Theywere compared to Cu concentrations in the plant material of Lepidium heterophyllum grown on the same soils. Plant concentrations were linearly related and highly correlated with CE but were more scattered and nonlinear with respect to free Cu2+ activity, EDTA extraction, or soil solution concentrations. These results demonstrate that the dominant supply processes in these soils are diffusion and labile metal release, which the DGT-soil system mimics. The quantity CE is shown to have promise as a quantitative measure of the bioavailable metal in soils.

  16. Electric Field Tuning Molecular Packing and Electrical Properties of Solution-Shearing Coated Organic Semiconducting Thin Films

    DOE PAGES

    Molina-Lopez, Francisco; Yan, Hongping; Gu, Xiaodan; ...

    2017-01-17

    Recent improvements in solution-coated organic semiconductors (OSCs) evidence their high potential for cost-efficient organic electronics and sensors. Molecular packing structure determines the charge transport property of molecular solids. However, it remains challenging to control the molecular packing structure for a given OSC. Here, the application of alternating electric fields is reported to fine-tune the crystal packing of OSC solution-shearing coated at ambient conditions. First, a theoretical model based on dielectrophoresis is developed to guide the selection of the optimal conditions (frequency and amplitude) of the electric field applied through the solution-shearing blade during coating of OSC thin films. Next, electricmore » field-induced polymorphism is demonstrated for OSCs with both herringbone and 2D brick-wall packing motifs in 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene and 6,13-bis(triisopropylsilylethynyl) pentacene, respectively. Favorable molecular packing can be accessible in some cases, resulting in higher charge carrier mobilities. In conclusion, this work provides a new approach to tune the properties of solution-coated OSCs in functional devices for high-performance printed electronics.« less

  17. Morphology, orientation, and mechanical properties of gelatin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanton, T.N.; Tsou, A.H.

    1996-12-31

    Gelatin is a polypeptide derived from degradation and disorganization of collagen fibers and is the primary binder in photographic emulsions. Gelatin provides the mechanical integrity and strength to the photographic emulsion allowing for packaging, handling, and photofinishing operations. Gelatin films generated from aqueous-solution casting can exist in a semicrystalline or an amorphous state. When a gelatin solution is cooled below its helix-coil transition temperature, partial renaturation of gelatin to form triple helices can occur. The degree of renaturation in a coated film is dependent upon the drying temperature and the drying rate. During the drying process, gelatin crystals can bemore » formed by lateral association of the triple helices through a mechanism of nucleation and growth of a fringed micelle structure. X-ray scattering techniques have been utilized to examine the morphology and orientation of gelatin films. Based on X-ray diffraction data, it is observed that aggregates of triple-helix rods lie parallel to the film plane but are symmetrically distributed within the film plane. Since a material`s physical and mechanical properties are related to its structure, it is necessary to understand and to characterize the morphological development in gelatin film formation. In this study, an X-ray diffractometer and pole figure goniometer were utilized to examine the structural development and orientation anisotropy in solid-state gelatin films. Also, in this study, the in-plane mechanical properties of a gelatin film were determined from a uniaxial tensile test, and the gelatin film properties in the thickness direction were extracted from an indentation test based on the finite element analysis of the indentation results using a viscoelastic material model.« less

  18. Online-LASIL: Laser Ablation of Solid Samples in Liquid with online-coupled ICP-OES detection for direct determination of the stoichiometry of complex metal oxide thin layers.

    PubMed

    Bonta, Maximilian; Frank, Johannes; Taibl, Stefanie; Fleig, Jürgen; Limbeck, Andreas

    2018-02-13

    Advanced materials such as complex metal oxides are used in a wide range of applications and have further promising perspectives in the form of thin films. The exact chemical composition essentially influences the electronic properties of these materials which makes correct assessment of their composition necessary. However, due to high chemical resistance and in the case of thin films low absolute analyte amounts, this procedure is in most cases not straightforward and extremely time-demanding. Commonly applied techniques either lack in ease of use (i.e., solution-based analysis with preceding sample dissolution), or adequately accurate quantification (i.e., solid sampling techniques). An analysis approach which combines the beneficial aspects of solution-based analysis as well as direct solid sampling is Laser Ablation of a Sample in Liquid (LASIL). In this work, it is shown that the analysis of major as well as minor sample constituents is possible using a novel online-LASIL setup, allowing sample analysis without manual sample handling after placing it in an ablation chamber. Strontium titanate (STO) thin layers with different compositions were analyzed in the course of this study. Precision of the newly developed online-LASIL method is comparable to conventional wet chemical approaches. With only about 15-20 min required for the analysis per sample, time demand is significantly reduced compared to often necessary fusion procedures lasting multiple hours. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Boiling characteristics of dilute polymer solutions and implications for the suppression of vapor explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bang, K.H.; Kim, M.H.

    Quenching experiments of hot solid spheres in dilute aqueous solutions of polyethylene oxide polymer have been conducted for the purpose of investigating the physical mechanisms of the suppression of vapor explosions in this polymer solutions. Two spheres of 22.2mm and 9.5mm-diameter were tested in the polymer solutions of various concentrations at 30{degrees}C. Minimum film boiling temperature ({Delta}T{sub MFB}) in this highly-subcooled liquid rapidly decreased from over 700{degrees}c for pure water to about 150{degrees}C as the polymer concentration was increased up to 300ppm for 22.2mm sphere, and it decreased to 350{degrees}C for 9.5mm sphere. This rapid reduction of minimum film boilingmore » temperature in the PEO aqueous solutions can explain its ability of the suppression of spontaneous vapor explosions. The ability of suppression of vapor explosions by dilute polyethylene oxide solutions against an external trigger pressure was tested by dropping molten tin into the polymer solutions at 25{degrees}C. It was observed that in 50ppm solutions more mass fragmented than in pure water, but produced weaker explosion pressures. The explosion was completely suppressed in 300ppm solutions with the external trigger. The debris size distributions of fine fragments smaller than 0.7mm were shown almost identical regardless of the polymer concentrations.« less

  20. Stimulated Emission and Optical Properties of Solid Solutions of Cu(In,Ga)Se2 Direct Band Gap Semiconductors

    NASA Astrophysics Data System (ADS)

    Svitsiankou, I. E.; Pavlovskii, V. N.; Lutsenko, E. V.; Yablonskii, G. P.; Mudryi, A. V.; Borodavchenko, O. M.; Zhivulko, V. D.; Yakushev, M. V.; Martin, R.

    2018-05-01

    Stimulated emission, optical properties, and structural characteristics of non-irradiated and proton-irradiated Cu(In,Ga)Se2 thin films deposited on soda lime glass substrates using co-evaporation of elements in a multistage process were investigated. X-ray diffraction analysis, scanning electron microscopy, X-ray spectral analysis with energy dispersion, low-temperature photoluminescence, optical transmittance and reflectance were used to study the films. Stimulated emission at low temperatures of 20 K was found in non-irradiated and proton-irradiated Cu(In,Ga)Se2 thin films upon excitation by laser pulses of nanosecond duration with a threshold power density of 20 kW/cm2. It was shown that the appearance and parameters of the stimulated emission depend strongly on the concentration of ion-induced defects in Cu(In,Ga)Se2 thin films.

  1. Singlet Fission and Excimer Formation in Disordered Solids of Alkyl-Substituted 1,3-Diphenylisobenzofurans.

    PubMed

    Dron, Paul I; Michl, Josef; Johnson, Justin C

    2017-11-16

    We describe the preparation and excited state dynamics of three alkyl derivatives of 1,3-diphenylisobenzofuran (1) in both solutions and thin films. The substitutions are intended to disrupt the slip-stacked packing observed in crystals of 1 while maintaining the favorable energies of singlet and triplet for singlet fission (SF). All substitutions result in films that are largely amorphous as judged by the absence of strong X-ray diffraction peaks. The films of 1 carrying a methyl in the para position of one phenyl ring undergo SF relatively efficiently (≥75% triplet yield, Φ T ) but more slowly than thin films of 1. When the methyl is replaced with a t-butyl, kinetic competition in the excited state favors excimer formation rather than SF (Φ T = 55%). When t-Bu groups are placed in both meta positions of the phenyl substituent, SF is slowed further and Φ T = 35%.

  2. Droplet manipulation by an external electric field for crystalline film growth.

    PubMed

    Komino, Takeshi; Kuwabara, Hirokazu; Ikeda, Masaaki; Yahiro, Masayuki; Takimiya, Kazuo; Adachi, Chihaya

    2013-07-30

    Combining droplet manipulation by the application of an electric field with inkjet printing is proposed as a unique technique to control the surface wettability of substrates for solution-processed organic field-effect transistors (FETs). With the use of this technique, uniform thin films of 2,7-dioctyl[1]benzothieno[2,3,-b][1]benzothiopene (C8-BTBT) could be fabricated on the channels of FET substrates without self-assembled monolayer treatment. High-speed camera observation revealed that the crystals formed at the solid/liquid interface. The coverage of the crystals on the channels depended on the ac frequency of the external electric field applied during film formation, leading to a wide variation in the carrier transport of the films. The highest hole mobility of 0.03 cm(2) V(-1) s(-1) was obtained when the coverage was maximized with an ac frequency of 1 kHz.

  3. Influence of Ti Content on the Partial Oxidation of TixFeCoNi Thin Films in Vacuum Annealing

    PubMed Central

    Yang, Ya-Chu; Yeh, Jien-Wei; Tsau, Chun-Huei

    2017-01-01

    This study investigated the effects of Ti content and vacuum annealing on the microstructure evolution of TixFeCoNi (x = 0, 0.5, and 1) thin films and the underlying mechanisms. The as-deposited thin film transformed from an FCC (face center cubic) structure at x = 0 into an amorphous structure at x = 1, which can be explained by determining topological instability and a hard ball model. After annealing was performed at 1000 °C for 30 min, the films presented a layered structure comprising metal solid solutions and oxygen-deficient oxides, which can be major attributed to oxygen traces in the vacuum furnace. Different Ti contents provided various phase separation and layered structures. The underlying mechanism is mainly related to the competition among possible oxides in terms of free energy production at 1000 °C. PMID:28953244

  4. Radical-induced generation of small silver particles in SPEEK/PVA polymer films and solutions: UV-Vis, EPR, and FT-IR studies.

    PubMed

    Korchev, A S; Konovalova, T; Cammarata, V; Kispert, L; Slaten, L; Mills, G

    2006-01-03

    The present study is centered on the processes involved in the photochemical generation of nanometer-sized Ag particles via illumination at 350 nm of aqueous solutions and cross linked films containing sulfonated poly(ether ether ketone) and poly(vinyl alcohol). Optical and electron paramagnetic resonance experiments, including electron nuclear double resonance data, proved conclusively that the photogenerated chromophore exhibiting a band with lambda(max) = 565 nm is an alpha-hydroxy aromatic (ketyl) radical of the polymeric ketone. This reducing species was produced by illumination of either solutions or films, but the radical lifetime extended from minutes in the fluid phase to hours in the solid. Direct evidence is presented that this long-lived chromophore reduces Ag(I), Cu(II), and Au(III) ions in solution. A rate constant of k = 1.4 x 10(3) M(-)(1) s(-)(1) was obtained for the reduction of Ag(+) by the ketyl radical from the post-irradiation formation of Ag crystallites. FTIR results confirmed that the photoprocess yielding polymeric ketyl radicals involves a reaction between the macromolecules. The photochemical oxidation of the polymeric alcohol, as well as the formation of light-absorbing macromolecular products and polyols, indicates that the sulfonated polyketone experienced transformations similar to those encountered during illumination of the benzophenone/2-propanol system.

  5. Tribological properties of surfaces

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1978-01-01

    The real area of contact between two solid surfaces is only a small portion of the apparent area. Deformation of these areas can result in solid state contact through surface films. For clean solid to solid contact strong adhesive bonding occurs across the interface. Under these conditions many properties of the solid such as the metallurgical and chemical nature of metals can influence adhesion, friction, and wear behavior. The presence of gases, liquids, and solid films on the surface of solids alter markedly tribological characteristics. These surface films can also considerably change the mechanical effects of solid state contact on bulk material behavior.

  6. Polyaniline-Modified Oriented Graphene Hydrogel Film as the Free-Standing Electrode for Flexible Solid-State Supercapacitors.

    PubMed

    Du, Pengcheng; Liu, Huckleberry C; Yi, Chao; Wang, Kai; Gong, Xiong

    2015-11-04

    In this study, we report polyaniline (PANI)-modified oriented graphene hydrogel (OGH) films as the free-standing electrode for flexible solid-state supercapacitors (SCs). The OGH films are prepared by a facile filtration method using chemically converted graphene sheets and then introduced to PANI on the surface of OGH films by in situ chemical polymerization. The PANI-modified OGH films possess high flexibility, high electrical conductivity, and mechanical robustness. The flexible solid-state SCs based on the PANI-modified OGH films exhibit a specific capacitance of 530 F/g, keeping 80% of its original value up to 10 000 charge-discharge cycles at the current density of 10 A/g. Remarkably, the flexible solid-state SCs maintain ∼100% capacitance retention bent at 180° for 250 cycles. Moreover, the flexible solid-state SCs are further demonstrated to be able to light up a red-light-emitting diode. These results indicate that the flexible solid-state SCs based on PANI-modified OGH films as the free-standing electrode have potential applications as energy-storage devices.

  7. Switchable and tunable film bulk acoustic resonator fabricated using barium strontium titanate active layer and Ta{sub 2}O{sub 5}/SiO{sub 2} acoustic reflector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sbrockey, N. M., E-mail: sbrockey@structuredmaterials.com; Tompa, G. S.; Kalkur, T. S.

    2016-08-01

    A solidly mounted acoustic resonator was fabricated using a Ba{sub 0.60}Sr{sub 0.40}TiO{sub 3} (BST) film deposited by metal organic chemical vapor deposition. The device was acoustically isolated from the substrate using a Bragg reflector consisting of three pairs of Ta{sub 2}O{sub 5}/SiO{sub 2} layers deposited by chemical solution deposition. Transmission electron microscopy verified that the Bragg reflector was not affected by the high temperatures and oxidizing conditions necessary to process high quality BST films. Electrical characterization of the resonator demonstrated a quality factor (Q) of 320 and an electromechanical coupling coefficient (K{sub t}{sup 2}) of 7.0% at 11 V.

  8. Nb(x)Ti(1-x)N Superconducting-Nanowire Single-Photon Detectors

    NASA Technical Reports Server (NTRS)

    Stern, Jeffrey A.; Farr, William H.; Leduc, Henry G.; Bumble, Bruce

    2008-01-01

    Superconducting-nanowire single-photon detectors (SNSPDs) in which Nb(x)Ti(1-x)N (where x<1) films serve as the superconducting materials have shown promise as superior alternatives to previously developed SNSPDs in which NbN films serve as the superconducting materials. SNSPDs have potential utility in optical communications and quantum cryptography. Nb(x)Ti(1-x)N is a solid solution of NbN and TiN, and has many properties similar to those of NbN. It has been found to be generally easier to stabilize Nb(x)Ti(1-x)N in the high-superconducting-transition temperature phase than it is to so stabilize NbN. In addition, the resistivity and penetration depth of polycrystalline films of Nb(x)Ti(1-x)N have been found to be much smaller than those of films of NbN. These differences have been hypothesized to be attributable to better coupling at grain boundaries within Nb(x)Ti(1-x)N films.

  9. Nb(x)Ti(1-x)N Superconducting-Nanowire Single-Photon Detectors

    NASA Technical Reports Server (NTRS)

    Stem, Jeffrey A.; Farr, William H.; Leduc, Henry G.; Bumble, Bruce

    2008-01-01

    Superconducting-nanowire singlephoton detectors (SNSPDs) in which Nb(x)Ti(1-x)N (where x<1) films serve as the superconducting materials have shown promise as superior alternatives to previously developed SNSPDs in which NbN films serve as the superconducting materials. SNSPDs have potential utility in optical communications and quantum cryptography. Nb(x)Ti(1-x)N is a solid solution of NbN and TiN, and has many properties similar to those of NbN. It has been found to be generally easier to stabilize NbxTi1 xN in the high-superconducting-transitiontemperature phase than it is to so stabilize NbN. In addition, the resistivity and penetration depth of polycrystalline films of Nb(x)Ti(1-x)N have been found to be much smaller than those of films of NbN. These differences have been hypothesized to be attributable to better coupling at grain boundaries within Nb(x)Ti(1-x)N films.

  10. Friction behavior of network-structured CNT coating on pure titanium plate

    NASA Astrophysics Data System (ADS)

    Umeda, Junko; Fugetsu, Bunshi; Nishida, Erika; Miyaji, Hirofumi; Kondoh, Katsuyoshi

    2015-12-01

    Friction behavior of the network-structured CNTs coated pure Ti plate was evaluated by ball-on-disk wear test using SUS304 ball specimen under dry condition. The friction coefficient was significantly low and stable compared to the as-received Ti plate with no coating film. CNTs coating film had two important roles; self-lubrication and bearing effects to reduce the friction coefficient and carbon solid-solution hardening to improve the abrasive wear property of Ti plate. The annealing treatment at higher temperature (1123 K) was more effective to reduce the friction coefficient than that at lower temperature (973 K) because the Ti plate surface was uniformly covered with CNTs film even after sliding wear test. This is due to TiC interlayer formation via a reaction between Ti plate and carbon elements originated from CNTs during annealing. As a result, a strong interface bonding between CNTs film and Ti plate surface was obtained by higher temperature annealing treatment, and obstructed the detachment of CNTs film during wear test.

  11. A mixed solution-processed gate dielectric for zinc-tin oxide thin-film transistor and its MIS capacitance

    NASA Astrophysics Data System (ADS)

    Kim, Hunho; Kwack, Young-Jin; Yun, Eui-Jung; Choi, Woon-Seop

    2016-09-01

    Solution-processed gate dielectrics were fabricated with the combined ZrO2 and Al2O3 (ZAO) in the form of mixed and stacked types for oxide thin film transistors (TFTs). ZAO thin films prepared with double coatings for solid gate dielectrics were characterized by analytical tools. For the first time, the capacitance of the oxide semiconductor was extracted from the capacitance-voltage properties of the zinc-tin oxide (ZTO) TFTs with the combined ZAO dielectrics by using the proposed metal-insulator-semiconductor (MIS) structure model. The capacitance evolution of the semiconductor from the TFT model structure described well the threshold voltage shift observed in the ZTO TFT with the ZAO (1:2) gate dielectric. The electrical properties of the ZTO TFT with a ZAO (1:2) gate dielectric showed low voltage driving with a field effect mobility of 37.01 cm2/Vs, a threshold voltage of 2.00 V, an on-to-off current ratio of 1.46 × 105, and a subthreshold slope of 0.10 V/dec.

  12. A mixed solution-processed gate dielectric for zinc-tin oxide thin-film transistor and its MIS capacitance

    PubMed Central

    Kim, Hunho; Kwack, Young-Jin; Yun, Eui-Jung; Choi, Woon-Seop

    2016-01-01

    Solution-processed gate dielectrics were fabricated with the combined ZrO2 and Al2O3 (ZAO) in the form of mixed and stacked types for oxide thin film transistors (TFTs). ZAO thin films prepared with double coatings for solid gate dielectrics were characterized by analytical tools. For the first time, the capacitance of the oxide semiconductor was extracted from the capacitance-voltage properties of the zinc-tin oxide (ZTO) TFTs with the combined ZAO dielectrics by using the proposed metal-insulator-semiconductor (MIS) structure model. The capacitance evolution of the semiconductor from the TFT model structure described well the threshold voltage shift observed in the ZTO TFT with the ZAO (1:2) gate dielectric. The electrical properties of the ZTO TFT with a ZAO (1:2) gate dielectric showed low voltage driving with a field effect mobility of 37.01 cm2/Vs, a threshold voltage of 2.00 V, an on-to-off current ratio of 1.46 × 105, and a subthreshold slope of 0.10 V/dec. PMID:27641430

  13. Engineering topochemical polymerizations using block copolymer templates.

    PubMed

    Zhu, Liangliang; Tran, Helen; Beyer, Frederick L; Walck, Scott D; Li, Xin; Agren, Hans; Killops, Kato L; Campos, Luis M

    2014-09-24

    With the aim to achieve rapid and efficient topochemical polymerizations in the solid state, via solution-based processing of thin films, we report the integration of a diphenyldiacetylene monomer and a poly(styrene-b-acrylic acid) block copolymer template for the generation of supramolecular architectural photopolymerizable materials. This strategy takes advantage of non-covalent interactions to template a topochemical photopolymerization that yields a polydiphenyldiacetylene (PDPDA) derivative. In thin films, it was found that hierarchical self-assembly of the diacetylene monomers by microphase segregation of the block copolymer template enhances the topochemical photopolymerization, which is complete within a 20 s exposure to UV light. Moreover, UV-active cross-linkable groups were incorporated within the block copolymer template to create micropatterns of PDPDA by photolithography, in the same step as the polymerization reaction. The materials design and processing may find potential uses in the microfabrication of sensors and other important areas that benefit from solution-based processing of flexible conjugated materials.

  14. A novel approach for the fabrication of all-inorganic nanocrystal solids: Semiconductor matrix encapsulated nanocrystal arrays

    NASA Astrophysics Data System (ADS)

    Moroz, Pavel

    Growing fossil fuels consumption compels researchers to find new alternative pathways to produce energy. Along with new materials for the conversion of different types of energy into electricity innovative methods for efficient processing of energy sources are also introduced. The main criteria for the success of such materials and methods are the low cost and compelling performance. Among different types of materials semiconductor nanocrystals are considered as promising candidates for the role of the efficient and cheap absorbers for solar energy applications. In addition to the anticipated cost reduction, the integration of nanocrystals (NC) into device architectures is inspired by the possibility of tuning the energy of electrical charges in NCs via nanoparticle size. However, the stability of nanocrystals in photovoltaic devices is limited by the stability of organic ligands which passivate the surface of semiconductors to preserve quantum confinement. The present work introduces a new strategy for low-temperature processing of colloidal nanocrystals into all-inorganic films: semiconductor matrix encapsulated nanocrystal arrays (SMENA). This methodology goes beyond the traditional ligand-interlinking scheme and relies on the encapsulation of morphologically-defined nanocrystal arrays into a matrix of a wide-band gap semiconductor, which preserves optoelectronic properties of individual nanoparticles. Fabricated solids exhibit excellent thermal stability, which is attributed to the heteroepitaxial structure of nanocrystal-matrix interfaces. The main characteristics and properties of these solids were investigated and compared with ones of traditionally fabricated nanocrystal films using standard spectroscopic, optoelectronic and electronic techniques. As a proof of concept, we. We also characterized electron transport phenomena in different types of nanocrystal films using all-optical approach. By measuring excited carrier lifetimes in either ligand-linked or matrix-encapsulated PbS nanocrystal films containing a tunable fraction of insulating ZnS domains, we uniquely distinguish the dynamics of charge scattering on defects from other processes of exciton dissociation. The measured times are subsequently used to estimate the diffusion length and the carrier mobility for each film type within hopping transport regime. It is demonstrated that nanocrystal films encapsulated into semiconductor matrices exhibit a lower probability of charge scattering than nanocrystal solids cross-linked with either 3-mercaptopropionic acid or 1,2-ethanedithiol molecular linkers. The suppression of carrier scattering in matrix-encapsulated nanocrystal films is attributed to a relatively low density of surface defects at nanocrystal/matrix interfaces. High stability and low density of defects made it possible to fabricate infrared-emitting nanocrystal solids. Presently, an important challenge facing the development of nanocrystal infrared emitters concerns the fact that both the emission quantum yield and the stability of colloidal nanoparticles become compromised when nanoparticle solutions are processed into solids. Here, we address this issue by developing an assembly technique that encapsulates infrared-emitting PbS NCs into crystalline CdS matrices, designed to preserve NC emission characteristics upon film processing. Here, the morphology of these matrices was designed to suppress the nonradiative carrier decay, whereby increasing the exciton lifetime up to 1 mus, and boosting the emission quantum yield to an unprecedented 3.7% for inorganically encapsulated PbS NC solids.

  15. A Holistic Approach to Understanding the Desorption of Phosphorus in Soils.

    PubMed

    Menezes-Blackburn, Daniel; Zhang, Hao; Stutter, Marc; Giles, Courtney D; Darch, Tegan; George, Timothy S; Shand, Charles; Lumsdon, David; Blackwell, Martin; Wearing, Catherine; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Haygarth, Philip M

    2016-04-05

    The mobility and resupply of inorganic phosphorus (P) from the solid phase were studied in 32 soils from the UK. The combined use of diffusive gradients in thin films (DGT), diffusive equilibration in thin films (DET) and the "DGT-induced fluxes in sediments" model (DIFS) were adapted to explore the basic principles of solid-to-solution P desorption kinetics in previously unattainable detail. On average across soil types, the response time (Tc) was 3.6 h, the desorption rate constant (k-1) was 0.0046 h(-1), and the desorption rate was 4.71 nmol l(-1) s(-1). While the relative DGT-induced inorganic P flux responses in the first hour is mainly a function of soil water retention and % Corg, at longer times it is a function of the P resupply from the soil solid phase. Desorption rates and resupply from solid phase were fundamentally influenced by P status as reflected by their high correlation with P concentration in FeO strips, Olsen, NaOH-EDTA and water extracts. Soil pH and particle size distribution showed no significant correlation with the evaluated mobility and resupply parameters. The DGT and DET techniques, along with the DIFS model, were considered accurate and practical tools for studying parameters related to soil P desorption kinetics.

  16. Ultrathin free-standing close-packed gold nanoparticle films: Conductivity and Raman scattering enhancement

    NASA Astrophysics Data System (ADS)

    Yu, Qing; Huang, Hongwen; Peng, Xinsheng; Ye, Zhizhen

    2011-09-01

    A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post-treatment temperature, and thickness, respectively. The conductivity of the film prepared from 20 nm gold nanoparticles is higher than that of the film prepared from 40 nm gold nanoparticle by filtering the same filtration volume of their solution, respectively. Their conductivities are comparable to that of the 220 nm thick ITO film. Furthermore, these films demonstrated an average surface Raman scattering enhancement up to 6.59 × 105 for Rhodamine 6 G molecules on the film prepared from 40 nm gold nanoparticles. Due to a lot of nano interspaces generated from the close-packed structures, two abnormal enhancements and relative stronger intensities of the asymmetrical vibrations at 1534 and 1594 cm-1 of R6G were observed, respectively. These robust free-standing gold nanoparticle films could be easily transferred onto various solid substrates and hold the potential application for electrodes and surface enhanced Raman detectors. This method is applicable for preparation of other nanoparticle free-standing thin films.A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post-treatment temperature, and thickness, respectively. The conductivity of the film prepared from 20 nm gold nanoparticles is higher than that of the film prepared from 40 nm gold nanoparticle by filtering the same filtration volume of their solution, respectively. Their conductivities are comparable to that of the 220 nm thick ITO film. Furthermore, these films demonstrated an average surface Raman scattering enhancement up to 6.59 × 105 for Rhodamine 6 G molecules on the film prepared from 40 nm gold nanoparticles. Due to a lot of nano interspaces generated from the close-packed structures, two abnormal enhancements and relative stronger intensities of the asymmetrical vibrations at 1534 and 1594 cm-1 of R6G were observed, respectively. These robust free-standing gold nanoparticle films could be easily transferred onto various solid substrates and hold the potential application for electrodes and surface enhanced Raman detectors. This method is applicable for preparation of other nanoparticle free-standing thin films. Electronic supplementary information (ESI) available: Figure S1, the SEM images and photograph of the films prepared from 10 ml, 20 nm gold nanoparticles. Scheme S1, the vibrations of 1534 and 1594 cm-1 of R6G. See DOI: 10.1039/c1nr10578g

  17. The W alloying effect on thermal stability and hardening of nanostructured Cu-W alloyed thin films.

    PubMed

    Zhao, J T; Zhang, J Y; Hou, Z Q; Wu, K; Feng, X B; Liu, G; Sun, J

    2018-05-11

    In order to achieve desired mechanical properties of alloys by manipulating grain boundaries (GBs) via solute decoration, it is of great significance to understand the underlying mechanisms of microstructural evolution and plastic deformation. In this work, nanocrystalline (NC) Cu-W alloyed films with W concentrations spanning from 0 to 40 at% were prepared by using magnetron sputtering. Thermal stability (within the temperature range of 200 °C-600 °C) and hardness of the films were investigated by using the x-ray diffraction, transmission electron microscope (TEM) and nanoindentation, respectively. The NC pure Cu film exhibited substantial grain growth upon all annealing temperatures. The Cu-W alloyed films, however, displayed distinct microstructural evolution that depended not only on the W concentration but also on the annealing temperature. At a low temperature of 200 °C, all the Cu-W alloyed films were highly stable, with unconspicuous change in grain sizes. At high temperatures of 400 °C and 600 °C, the microstructural evolution was greatly controlled by the W concentrations. The Cu-W films with low W concentration manifested abnormal grain growth (AGG), while the ones with high W concentrations showed phase separation. TEM observations unveiled that the AGG in the Cu-W alloyed thin films was rationalized by GB migration. Nanoindentation results showed that, although the hardness of both the as-deposited and annealed Cu-W alloyed thin films monotonically increased with W concentrations, a transition from annealing hardening to annealing softening was interestingly observed at the critical W addition of ∼25 at%. It was further revealed that an enhanced GB segregation associated with detwinning was responsible for the annealing hardening, while a reduced solid solution hardening for the annealing softening.

  18. The W alloying effect on thermal stability and hardening of nanostructured Cu–W alloyed thin films

    NASA Astrophysics Data System (ADS)

    Zhao, J. T.; Zhang, J. Y.; Hou, Z. Q.; Wu, K.; Feng, X. B.; Liu, G.; Sun, J.

    2018-05-01

    In order to achieve desired mechanical properties of alloys by manipulating grain boundaries (GBs) via solute decoration, it is of great significance to understand the underlying mechanisms of microstructural evolution and plastic deformation. In this work, nanocrystalline (NC) Cu–W alloyed films with W concentrations spanning from 0 to 40 at% were prepared by using magnetron sputtering. Thermal stability (within the temperature range of 200 °C–600 °C) and hardness of the films were investigated by using the x-ray diffraction, transmission electron microscope (TEM) and nanoindentation, respectively. The NC pure Cu film exhibited substantial grain growth upon all annealing temperatures. The Cu–W alloyed films, however, displayed distinct microstructural evolution that depended not only on the W concentration but also on the annealing temperature. At a low temperature of 200 °C, all the Cu–W alloyed films were highly stable, with unconspicuous change in grain sizes. At high temperatures of 400 °C and 600 °C, the microstructural evolution was greatly controlled by the W concentrations. The Cu–W films with low W concentration manifested abnormal grain growth (AGG), while the ones with high W concentrations showed phase separation. TEM observations unveiled that the AGG in the Cu–W alloyed thin films was rationalized by GB migration. Nanoindentation results showed that, although the hardness of both the as-deposited and annealed Cu–W alloyed thin films monotonically increased with W concentrations, a transition from annealing hardening to annealing softening was interestingly observed at the critical W addition of ∼25 at%. It was further revealed that an enhanced GB segregation associated with detwinning was responsible for the annealing hardening, while a reduced solid solution hardening for the annealing softening.

  19. Solid Lubrication Fundamentals and Applications. Chapter 6

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2000-01-01

    This chapter focuses attention on the friction and wear properties of selected solid lubricating films to aid users in choosing the best lubricant, deposition conditions, and operational variables. For simplicity, discussion of the tribological properties of concern is separated into two parts. The first part of the chapter discusses the different solid lubricating films selected for study including commercially developed solid film lubricants: (1) bonded molybdenum disulfide (MoS2), (2) magnetron-sputtered MoS2, (3) ion-plated silver, (4) ion-plated lead, (5) magnetron-sputtered diamondlike carbon (MS DLC), and (6) plasma-assisted, chemical-vapor-deposited diamondlike carbon (PACVD DEC) films. Marked differences in the friction and wear properties of the different films resulted from the different environmental conditions (ultrahigh vacuum, humid air, and dry nitrogen) and the solid film lubricant materials. The second part of the chapter discusses the physical and chemical characteristics, friction behavior, and endurance life of the magnetron-sputtered MoS2 films. The role of interface species and the effects of applied load, film thickness, oxygen pressure, environment, and temperature on the friction and wear properties are considered.

  20. Preparation and characterization of epitaxial Fe{sub 2-x}Ti{sub x}O{sub 3} films with various Ti concentrations (0.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takada, Y.; Nakanishi, M.; Fujii, T.

    2008-08-01

    An ilmenite-hematite solid solution (Fe{sub 2-x}Ti{sub x}O{sub 3}) is one of the candidates for practical magnetic semiconductors with a high Curie temperature. We have prepared well-crystallized epitaxial Fe{sub 2-x}Ti{sub x}O{sub 3} films with a wide range of Ti concentrations--x=0.50, 0.60, 0.65, 0.76, 0.87, and 0.94--on {alpha}-Al{sub 2}O{sub 3}(001) substrates. The films are prepared by a reactive helicon plasma sputtering technique to evaporate Fe and TiO targets simultaneously under optimized oxygen pressure conditions. The structural characterizations of the films reveal that all films have a single phase of the ordered structure with R3 symmetry, where Ti-rich and Fe-rich layers are stackedmore » alternately along the c axis. All films have large ferrimagnetic moments at low temperature, and room temperature magnetization is clearly observed at x<0.7. The inverse temperature dependence of the resistivities of the films indicates their semiconducting behavior. The film resistivities decrease with decreasing Ti concentration.« less

  1. Determination and Quantification of Molecular Interactions in Protein Films: A Review.

    PubMed

    Hammann, Felicia; Schmid, Markus

    2014-12-10

    Protein based films are nowadays also prepared with the aim of replacing expensive, crude oil-based polymers as environmentally friendly and renewable alternatives. The protein structure determines the ability of protein chains to form intra- and intermolecular bonds, whereas the degree of cross-linking depends on the amino acid composition and molecular weight of the protein, besides the conditions used in film preparation and processing. The functionality varies significantly depending on the type of protein and affects the resulting film quality and properties. This paper reviews the methods used in examination of molecular interactions in protein films and discusses how these intermolecular interactions can be quantified. The qualitative determination methods can be distinguished by structural analysis of solutions (electrophoretic analysis, size exclusion chromatography) and analysis of solid films (spectroscopy techniques, X-ray scattering methods). To quantify molecular interactions involved, two methods were found to be the most suitable: protein film swelling and solubility. The importance of non-covalent and covalent interactions in protein films can be investigated using different solvents. The research was focused on whey protein, whereas soy protein and wheat gluten were included as further examples of proteins.

  2. Determination Quantification of Molecular Interactions in Protein Films: A Review

    PubMed Central

    Hammann, Felicia; Schmid, Markus

    2014-01-01

    Protein based films are nowadays also prepared with the aim of replacing expensive, crude oil-based polymers as environmentally friendly and renewable alternatives. The protein structure determines the ability of protein chains to form intra- and intermolecular bonds, whereas the degree of cross-linking depends on the amino acid composition and molecular weight of the protein, besides the conditions used in film preparation and processing. The functionality varies significantly depending on the type of protein and affects the resulting film quality and properties. This paper reviews the methods used in examination of molecular interactions in protein films and discusses how these intermolecular interactions can be quantified. The qualitative determination methods can be distinguished by structural analysis of solutions (electrophoretic analysis, size exclusion chromatography) and analysis of solid films (spectroscopy techniques, X-ray scattering methods). To quantify molecular interactions involved, two methods were found to be the most suitable: protein film swelling and solubility. The importance of non-covalent and covalent interactions in protein films can be investigated using different solvents. The research was focused on whey protein, whereas soy protein and wheat gluten were included as further examples of proteins. PMID:28788285

  3. Fundamental Studies of Surfaces Processes and Trace Analysis Using Solid Electrodes.

    DTIC Science & Technology

    1987-08-10

    ism of the catalysis of formic acid electrooxidation by underpotentially deposited species, b) modelling the interaction of mass transport and light...and many monolayer thick electrodeposited and electrosorbed films. The effect of solution temperature and viscosity, and height of liquid above the...carrier stream to produce nitric oxide and iodine, and both are electrooxidized at the gold electrode. The detection limit was 30 pg of nitrite ion

  4. Cadmium telluride in tellurium—cadmium films consisting of ultradispersed particles

    NASA Astrophysics Data System (ADS)

    Tuleushev, Yu. Zh.; Volodin, V. N.; Migunova, A. A.; Lisitsyn, V. N.

    2015-08-01

    Solid solutions of tellurium in cadmium, cadmium in tellurium, and cadmium in cadmium telluride synthesized during sputtering are formed for the first time by ion-plasma sputtering and the codeposition of ultradispersed Te and Cd particle fluxes onto substrates moving with respect to the fluxes. This fact supports thermofluctuation melting and coalescence of small particles. The lattice parameter of cadmium telluride, which coexists with an amorphous solid solution of tellurium in cadmium in a coating, is smaller than the tabulated value and reaches it when the cadmium concentration in a coating increases to 70 at %. The lattice parameter of the fcc lattice of cadmium telluride increases with the cadmium concentration in a coating according to the linear relation a = 0.0002CCd + 0.6346 nm (where CCd is the cadmium concentration in the coating, at %), which is likely to indicate a certain broadening of the homogeneity area. The estimation of the particle size shows that the cadmium telluride grain size is 10-15 nm, which implies that the coatings are nanocrystalline. The absorption and transmission spectra of the tellurium—cadmium films at the fundamental absorption edge demonstrate that their energy gaps are larger than that of stoichiometric CdTe, which can be explained by the experimental conditions of crystal structure formation.

  5. Microhardness variation and related microstructure in Al-Cu alloys prepared by HF induction melting and RF sputtering

    NASA Astrophysics Data System (ADS)

    Boukhris, N.; Lallouche, S.; Debili, M. Y.; Draissia, M.

    2009-03-01

    The materials under consideration are binary aluminium-copper alloys (10 at% to 90.3 at%Cu) produced by HF melting and RF magnetron sputtering. The resulting micro structures have been observed by standard metallographic techniques, X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy. Vickers microhardness of bulk Al-Cu alloys reaches a maximum of 1800 MPa at 70.16 at%Cu. An unexpected metastable θ ' phase has been observed within aluminium grain in Al-37 at%Cu. The mechanical properties of a family of homogeneous Al{1-x}Cu{x} (0 < x < 0.92) thin films made by radiofrequency (13.56 MHz) cathodic magnetron sputtering from composite Al-Cu targets have been investigated. The as-deposited microstructures for all film compositions consisted of a mixture of the two expected face-centred-cubic (fcc) Al solid solution and tetragonal θ (Al{2}Cu) phases. The microhardness regularly increases and the grain size decreases both with copper concentration. This phenomenon of significant mechanical strengthening of aluminium by means of copper is essentially due to a combination between solid solution effects and grain size refinement. This paper reports some structural features of different Al-Cu alloys prepared by HF melting and RF magnetron on glass substrate sputtering.

  6. Strain, temperature, and electric-field effects on the phase transition and piezoelectric responses of K0.5Na0.5NbO3 thin films

    NASA Astrophysics Data System (ADS)

    Zhou, Meng-Jun; Wang, Jian-Jun; Chen, Long-Qing; Nan, Ce-Wen

    2018-04-01

    A KNbO3-based solid solution system is environmentally friendly with good electromechanical performance. This work established the misfit strain-strain and temperature-strain phase diagrams for K0.5Na0.5NbO3 thin films and calculated the polarization switching, phase transition, and piezoelectric responses of K0.5Na0.5NbO3 thin films under various strains, temperatures, and electric fields. The results show that the piezoelectric coefficient d33 can be enhanced near the phase boundaries. For the ferroelectric phase with a nonzero out-of-plane polarization component, an optimal electric field is identified for maximizing d33, which is desired in applications such as thin-film piezoelectric micro-electromechanical systems, transducers for ultrasound medical imaging, and energy harvesting. The present results are expected to provide guidance for the future experimental study of KxNa1-xNbO3 thin films and the optimization of ferroelectric thin film-based devices.

  7. Doping effect on SILAR synthesized crystalline nanostructured Cu-doped ZnO thin films grown on indium tin oxide (ITO) coated glass substrates and its characterization

    NASA Astrophysics Data System (ADS)

    Dhaygude, H. D.; Shinde, S. K.; Velhal, Ninad B.; Takale, M. V.; Fulari, V. J.

    2016-08-01

    In the present study, a novel chemical route is used to synthesize the undoped and Cu-doped ZnO thin films in aqueous solution by successive ionic layer adsorption and reaction (SILAR) method. The synthesized thin films are characterized by x-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive x-ray analysis (EDAX), contact angle goniometer and UV-Vis spectroscopic techniques. XRD study shows that the prepared films are polycrystalline in nature with hexagonal crystal structure. The change in morphology for different doping is observed in the studies of FE-SEM. EDAX spectrum shows that the thin films consist of zinc, copper and oxygen elements. Contact angle goniometer is used to measure the contact angle between a liquid and a solid interface and after detection, the nature of the films is initiated from hydrophobic to hydrophilic. The optical band gap energy for direct allowed transition ranging between 1.60-2.91 eV is observed.

  8. Chiral Nematic Structure of Cellulose Nanocrystal Suspensions and Films; Polarized Light and Atomic Force Microscopy

    PubMed Central

    Gray, Derek G.; Mu, Xiaoyue

    2015-01-01

    Cellulosic liquid crystalline solutions and suspensions form chiral nematic phases that show a rich variety of optical textures in the liquid crystalline state. These ordered structures may be preserved in solid films prepared by evaporation of solvent or suspending medium. Film formation from aqueous suspensions of cellulose nanocrystals (CNC) was investigated by polarized light microscopy, optical profilometry and atomic force microscopy (AFM). An attempt is made to interpret qualitatively the observed textures in terms of the orientation of the cellulose nanocrystals in the suspensions and films, and the changes in orientation caused by the evaporative process. Mass transfer within the evaporating droplet resulted in the formation of raised rings whose magnitude depended on the degree of pinning of the receding contact line. AFM of dry films at short length scales showed a radial orientation of the CNC at the free surface of the film, along with a radial height variation with a period of approximately P/2, ascribed to the anisotropic shrinkage of the chiral nematic structure. PMID:28793684

  9. Synthesis of polycarbonate-r-polyethylene glycol copolymer for templated synthesis of mesoporous TiO2 films.

    PubMed

    Patel, Rajkumar; Kim, Jinkyu; Lee, Chang Soo; Kim, Jong Hak

    2014-12-01

    We synthesized a novel polycarbonate Z-r-polyethylene glycol (PCZ-r-PEG) copolymer by solution polycondensation. Successful synthesis of PCZ-r-PEG copolymer was confirmed by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H-NMR), gel permeation chromatography (GPC), and transmission electron microscopy (TEM). PCZ-r-PEG copolymer was used as a structure-directing agent for fabrication of mesoporous thin film containing a titanium dioxide (TiO2) layer. To control the porosity of the resultant inorganic layer, the ratio of titanium(IV) isopropoxide (TTIP) to PCZ-r-PEG copolymer was varied. The structure and porosity of the resulting mesoporous films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses. Mesoporous TiO2 films fabricated on an F-doped tin oxide (FTO) surface were used as photoanodes for quasi-solid-state dye-sensitized solar cells (qssDSSCs). The highest efficiency achieved was 3.3% at 100 mW/cm2 for a film thickness of 750 nm, which is high considering the thickness of TiO2 film, indicating the importance of the structure-directing agent.

  10. Thermodiffusion as a means to manipulate liquid film dynamics on chemically patterned surfaces

    PubMed Central

    Kalpathy, Sreeram K.; Shreyes, Amrita Ravi

    2017-01-01

    The model problem examined here is the stability of a thin liquid film consisting of two miscible components, resting on a chemically patterned solid substrate and heated from below. In addition to surface tension gradients, the temperature variations also induce gradients in the concentration of the film by virtue of thermodiffusion/Soret effects. We study the stability and dewetting behaviour due to the coupled interplay between thermal gradients, Soret effects, long-range van der Waals forces, and wettability gradient-driven flows. Linear stability analysis is first employed to predict growth rates and the critical Marangoni number for chemically homogeneous surfaces. Then, nonlinear simulations are performed to unravel the interfacial dynamics and possible locations of the film rupture on chemically patterned substrates. Results suggest that appropriate tuning of the Soret parameter and its direction, in conjunction with either heating or cooling, can help manipulate the location and time scales of the film rupture. The Soret effect can either potentially aid or oppose film instability depending on whether the thermal and solutal contributions to flow are cooperative or opposed to each other. PMID:28595391

  11. Fire Performance Evaluation of Solid Aqueous Film-Forming Foam (AFFF).

    DTIC Science & Technology

    1986-05-01

    Aqueous Film - Forming Foam ( AFFF ) Concentrates as Firefighting Agents, USAF Report ESL-TR-81-18, Tyndall Air Force Base, Florida...Evaluation of Solid Aqueous Film - Forming Foam ( AFFF ) JOSEPH L. SCHEFFEY HUGHES ASSOCIATES, INC. , EDWIN J. JABLONSKI 2730 UNIVERSITY BLVD. W. JOSEPH T...performance evaluation of the solid agent is the 28-square-foot fire test described in ’L F-24385C, Military Specification for Aqueous Film - Forming

  12. Role of associated defects in oxygen ion conduction and surface exchange reaction for epitaxial samaria-doped ceria thin films as catalytic coatings

    DOE PAGES

    Yang, Nan; Shi, Yanuo; Schweiger, Sebastian; ...

    2016-05-18

    Samaria-doped ceria (SDC) thin films are particularly important for energy and electronic applications such as micro-solid oxide fuel cells, electrolysers, sensors and memristors. In this paper we report a comparative study investigating ionic conductivity and surface reactions for well-grown epitaxial SDC films varying the samaria doping concentration. With increasing doping above 20 mol% of samaria, an enhancement in the defect association was observed by Raman spectroscopy. The role of such defect associates on the films` oxygen ion transport and exchange was investigated by electrochemical impedance spectroscopy and electrochemical strain microscopy (ESM). The measurements reveal that the ionic transport has amore » sharp maximum in ionic conductivity and drop in its activation energy down to 0.6 eV for 20 mol% doping. Increasing the doping concentration further up to 40 mol%, raises the activation energy substantially by a factor of two. We ascribe the sluggish transport kinetics to the "bulk" ionic-near ordering in case of the heavily doped epitaxial films. Analysis of the ESM first order reversal curve measurements indicate that these associated defects may have a beneficial role by lowering the activation of the oxygen exchange "surface" reaction for heavily doped 40 mol% of samaria. We reveal in a model experiment through a solid solution series of samaria doped ceria epitaxial films that the occurrence of associate defects in the bulk affects the surface charging state of the films to increase the exchange rates. Lastly, the implication of these findings are the design of coatings with tuned oxygen surface exchange by control of bulk associate clusters for future electro-catalytic applications.« less

  13. Characterization of electrochemically deposited films from aqueous and ionic liquid cobalt precursors toward hydrogen evolution reactions

    NASA Astrophysics Data System (ADS)

    Dushatinski, Thomas; Huff, Clay; Abdel-Fattah, Tarek M.

    2016-11-01

    Electrodepositions of cobalt films were achieved using an aqueous or an ethylene glycol based non-aqueous solution containing choline chloride (vitamin B4) with cobalt chloride hexahydrate precursor toward hydrogen evolution reactions from sodium borohydride (NaBH4) as solid hydrogen feedstock (SHF). The resulting cobalt films had reflectivity at 550 nm of 2.2% for aqueously deposited films (ACoF) and 1.3% for non-aqueously deposited films (NCoF). Surface morphology studied by scanning electron microscopy showed a positive correlation between particle size and thickness. The film thicknesses were tunable between >100 μm and <300 μm for each film. The roughness (Ra) value measurements by Dektak surface profiling showed that the NCoF (Ra = 165 nm) was smoother than the ACoF (Ra = 418 nm). The NCoFs and ACoFs contained only α phase (FCC) crystallites. The NCoFs were crystalline while the ACoFs were largely amorphous from X-ray diffraction analysis. The NCoF had an average Vickers hardness value of 84 MPa as compared to 176 MPa for ACoF. The aqueous precursor has a single absorption maximum at 510 nm and the non-aqueous precursor had three absorption maxima at 630, 670, and 695 nm. The hydrogen evolution reactions over a 1 cm2 catalytic surface with aqueous NaBH4 solutions generated rate constants (K) = equal to 4.9 × 10-3 min-1, 4.6 × 10-3 min-1, and 3.3 × 10-3 min-1 for ACoF, NCoF, and copper substrate respectively.

  14. Template-assisted mineral formation via an amorphous liquid phase precursor route

    NASA Astrophysics Data System (ADS)

    Amos, Fairland F.

    The search for alternative routes to synthesize inorganic materials has led to the biomimetic route of producing ceramics. In this method, materials are manufactured at ambient temperatures and in aqueous solutions with soluble additives and insoluble matrix, similar to the biological strategy for the formation of minerals by living organisms. Using this approach, an anionic polypeptide additive was used to induce an amorphous liquid-phase precursor to either calcium carbonate or calcium phosphate. This precursor was then templated on either organic or inorganic substrates. Non-equilibrium morphologies, such as two-dimensional calcium carbonate films, one-dimensional calcium carbonate mesostructures and "molten" calcium phosphate spherulites were produced, which are not typical of the traditional (additive-free) solution grown crystals in the laboratory. In the study of calcium carbonate, the amorphous calcium carbonate mineral formed via the liquid-phase precursor, either underwent a dissolution-recrystallization event or a pseudo-solid-state transformation to produce different morphologies and polymorphs of the mineral. Discrete or aggregate calcite crystals were formed via the dissolution of the amorphous phase to allow the reprecipitation of the stable crystal. Non-equilibrium morphologies, e.g., films, mesotubules and mesowires were templated using organic and inorganic substrates and compartments. These structures were generated via an amorphous solid to crystalline solid transformation. Single crystalline tablets and mesowires of aragonite, which are reported to be found only in nature as skeletal structures of marine organisms, such as mollusk nacre and echinoderm teeth, were successfully synthesized. These biomimetic structures were grown via the polymer-induced liquid-phase precursor route in the presence of magnesium. Only low magnesium-bearing calcite was formed in the absence of the polymer. A similar approach of using a polymeric additive was implemented in calcium phosphate. Spherulitic crystals and films, seemingly formed from a molten state, were produced. These structures served as nucleating surfaces for the radial formation of calcium oxalate minerals. The composite calcium phosphate-calcium oxalate assemblies are similar to the core-shell structures found in certain kidney stones.

  15. Free-standing graphene films prepared via foam film method for great capacitive flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhu, Yucan; Ye, Xingke; Tang, Zhonghua; Wan, Zhongquan; Jia, Chunyang

    2017-11-01

    Recently, graphene films have always attracted attention due to their excellent characteristics in energy storage. In this work, a novel graphene oxide (GO) film with excellent mechanical properties, whose thickness was regulated simply via changing the concentration of the surfactant, was successfully prepared by foam film method. After chemical reduction, the reduced GO (rGO) films have excellent electrical conductivity of ∼172 S cm-1. Moreover, the supercapacitors based on the rGO films exhibit satisfied capacitive performance of ∼56 mF cm-2 at 0.2 mA cm-2 in 6 M KOH aqueous solution. Meanwhile, the flexible all solid state supercapacitors (FSSCs) based on the rGO films also show great volumetric capacitance of ∼2810 mF cm-3 at 12 mA cm-3 (∼1607 mF cm-3 at 613 mA cm-3) with polyvinyl alcohol-KOH gel electrolyte. Besides, after 10000 cycles and continuously bent to 180° for 300 times, the volumetric capacitance of the FSSC remains at 81.4% and 90.4% of its initial capacitance value, respectively. Therefore, the free-standing rGO films prepared via foam film method could be considered as promising electrode materials for high performance flexible supercapacitors.

  16. Electrical properties of solid-solution SrZrxTi1-xO3 grown epitaxially on Ge by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Moghadam, Reza; Ahmadi, Kamyar; Xiao, Z.-Y.; Hong, Xia; Ngai, Joseph

    The epitaxial growth of crystalline oxides on semiconductors enables new functionalities to be introduced to semiconductor devices. In particular, dielectric and ferroelectric oxides grown epitaxially on semiconductors provide a pathway to realize ultra-low power logic and memory devices. Here we present electrical characterization of solid-solution SrZrxTi1-xO3 grown epitaxially on Ge through oxide molecular beam epitaxy. SrZrxTi1-xO3 is of particular interest since the band offset with respect to the semiconductor can be tuned through Zr content x. We will present current-voltage, capacitance-voltage and piezoforce microscopy characterization of SrZrxTi1-xO3 -Ge heterojunctions. In particular, we will discuss how the electrical characteristics of SrZrxTi1-xO3 -Ge heterojunctions evolve with respect to composition, annealing and film thickness.

  17. Algal polysaccharides as matrices for the immobilization of urease in lipid ultrathin films studied with tensiometry and vibrational spectroscopy: Physical-chemical properties and implications in the enzyme activity.

    PubMed

    de Brito, Audrey Kalinouski; Nordi, Cristina S F; Caseli, Luciano

    2015-11-01

    Currently, many biological substances extracted from algae have received special attention because of their intrinsic characteristics, which can be applied to different areas of biotechnology. Therefore, in the current study, exopolysaccharides (EPS) from the microalgae Cryptomonas tetrapirenoidosa were employed as an aqueous subphase of a monolayer formed by the lipid dioctadecyldimethylammonium bromide (DODAB). The primary objective of this approach was to evaluate whether EPS could serve as a matrix for the immobilization of the enzyme urease to produce biosensors for urea. After DODAB was spread on the EPS solutions, urease was injected into the aqueous subphase, and the surface was submitted to compression using lateral barriers. The monolayers were subsequently characterized by surface pressure-area isotherms and polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS). The results indicated that EPS enhanced the adsorption of the enzyme on the lipid monolayer. The mixed films were later transferred to solid supports using the Langmuir-Blodgett (LB) technique and were characterized by transfer ratio, PM-IRRAS, quartz crystal microbalance, and atomic force microscopy. The immobilization of the enzyme on solid supports was fundamental for providing an ideal geometrical accommodation of urease because the interaction of EPS with urease in solution causes a decrease of the relative activity of urease. Therefore, these LB films are promising for the fabrication of future urea biosensors, the architecture of which can be manipulated and enhanced at the molecular level. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Third-order nonlinear optical properties of soluble Cr(III)-dioxolene complexes

    NASA Astrophysics Data System (ADS)

    Noro, Shin-ichiro; Sassa, Takafumi; Aoyama, Tetsuya; Chang, Ho-Chol; Kitagawa, Susumu; Wada, Tatsuo

    2004-10-01

    We synthesized novel ligand-based mixed valence (LBMV) CrIII-dioxolene complexes, [Cr(X4SQ)(X4Cat)(4,4'-di-tert-butyl-2,2'-bpy)] (SQ = semiquinone, Cat = catecohol, 2,2'-bpy = 2,2'-bipyridine; X = Cl (2a) and Br (2b)) and [Cr(X4SQ)(X4Cat)(4,4'-dinonyl-2,2'-bpy)] (X = Cl (3a) and Br (3b)), and prepared thin films for investigating their third-order nonlinear optical (NLO) properties in terms of the mixed valence states. Electronic absorption spectra of these complexes in solution and solid states showed an intervalence charge-transfer (IVCT) band from Cat2- to SQ"- at the IR region, indicating of a coexistence of SQ and Cat ligands, namely, LBMV state of the complexes. These complexes were well soluble in nonpolar organic solvent, which allowed us to prepare thin films by spin coating. The obtained films showed the electronic absorption spectra similar to those in solution and were amorphous because of steric hindrance of halogen and alkyl substituents in o-dioxolene and 2,2'-bpy moieties, respectively. The x(3) values of the films of 3a and 3b with a thickness of 30 ~ 40 nm were determined for 1.0 × 10-12 esu at 1.907 μm.

  19. Tailoring Oxygen Sensitivity with Halide Substitution in Difluoroboron Dibenzoylmethane Polylactide Materials

    PubMed Central

    DeRosa, Christopher A.; Kerr, Caroline; Fan, Ziyi; Kolpaczynska, Milena; Mathew, Alexander S.; Evans, Ruffin E.; Zhang, Guoqing; Fraser, Cassandra L.

    2015-01-01

    The dual-emissive properties of solid-state difluoroboron β-diketonate-poly(lactic acid) (BF2bdkPLA) materials have been utilized for biological oxygen sensing. In this work, BF2dbm(X)PLA materials were synthesized, where X = H, F, Cl, Br, and I. The effects of changing the halide substituent and PLA polymer chain length on the optical properties in dilute CH2Cl2 solutions and solid-state polymer films were studied. These luminescent materials show fluorescence, phosphorescence, and lifetime tunability on the basis of molecular weight, as well as lifetime modulation via the halide substituent. Short BF2dbm(Br)PLA (6.0 kDa) and both short and long BF2dbm(I)PLA polymers (6.0 or 20.3 kDa) have fluorescence and intense phosphorescence ideal for ratiometric oxygen sensing. The lighter halide-dye polymers with hydrogen, fluorine, and chlorine substitution have longer phosphorescence lifetimes and can be utilized as ultrasensitive oxygen sensors. Photostability was also analyzed for the polymer films. PMID:26480236

  20. Specific physical and chemical properties of two modifications of poly(N-vinylcaprolcatam)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chihacheva, I. P.; Timaeva, O. I.; Kuz’micheva, G. M., E-mail: galina-kuzmicheva@list.ru

    2016-05-15

    Two modifications of poly(N-vinylcaprolactam)—PVCL25 and PVCL40 (drying of a PVCL solution at 25 and 40°C, respectively)—as powdered films and their solutions were systematically investigated for the first time. Powders were studied by X-ray diffraction, IR spectroscopy, scanning electron microscopy, low-temperature krypton adsorption, and differential scanning calorimetry. Solutions were studied by smallangle X-ray scattering and dynamic light scattering. It was demonstrated that powders of PVCL25 and PVCL40 differ in the characteristics of the sub- and microstructure and in the water content and the solutions differ in the particle size. The relationships between the characteristics of the systems in the solid andmore » liquid state and between the hydrodynamic diameter of PVCL particles in solution and their coagulation time were found.« less

  1. Sol processing of conjugated carbon nitride powders for thin-film fabrication.

    PubMed

    Zhang, Jinshui; Zhang, Mingwen; Lin, Lihua; Wang, Xinchen

    2015-05-18

    The chemical protonation of graphitic carbon nitride (CN) solids with strong oxidizing acids, for example HNO3, is demonstrated as an efficient pathway for the sol processing of a stable CN colloidal suspension, which can be translated into thin films by dip/disperse-coating techniques. The unique features of CN colloids, such as the polymeric matrix and the reversible hydrogen bonding, result in the thin-film electrodes derived from the sol solution exhibiting a high mechanical stability with improved conductivity for charge transport, and thus show a remarkably enhanced photo-electrochemical performance. The polymer system can in principle be broadly tuned by hybridization with desired functionalities, thus paving the way for the application of CN for specific tasks, as exemplified here by coupling with carbon nanotubes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Combination of short-length TiO2 nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengguo; Shi, Chengwu; Chen, Junjun; Xiao, Guannan; Li, Long

    2017-07-01

    Considering the balance of the hole diffusion length and the loading quantity of quantum-dots, the rutile TiO2 nanorod array with the length of 600 nm, the diameter of 20 nm, and the areal density of 500 μm-2 is successfully prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 105 min. The compact PbS quantum-dot thin film on the TiO2 nanorod array is firstly obtained by the spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol (EDT). The result reveals that the strong interaction between lead and EDT is very important to control the crystallite size of PbS quantum-dots and obtain the compact PbS quantum-dot thin film on the TiO2 nanorod array. The all solid-state sensitized solar cell with the combination of the short-length, high-density TiO2 nanorod array and the compact PbS quantum-dot thin film achieves the photoelectric conversion efficiency of 4.10%, along with an open-circuit voltage of 0.52 V, a short-circuit photocurrent density of 13.56 mA cm-2 and a fill factor of 0.58.

  3. Ethylcellulose film coating of guaifenesin-loaded pellets: A comprehensive evaluation of the manufacturing process to prevent drug migration.

    PubMed

    Melegari, Cecilia; Bertoni, Serena; Genovesi, Alberto; Hughes, Kevin; Rajabi-Siahboomi, Ali R; Passerini, Nadia; Albertini, Beatrice

    2016-03-01

    The aim of the research was to investigate the complete process of pellet production in a Wurster fluidized bed coater in order to determine the main factors affecting the migration phenomenon of a soluble API through the ethycellulose film coating (Surelease®) and hence the long-term stability of the controlled release pellets. Guaifenesin (GFN), as BCS class I model drug, was layered on sugar spheres using a binder-polymer solution containing the dissolved GFN. The drug loaded pellets were then coated with Surelease®. The influence of drug loading (4.5-20.0% w/w), curing conditions (40-60°C and dynamic-static equipment), coating level (12-20% theoretical weight gain) and composition of the binder-layering solution (hypromellose versus Na alginate) on process efficiency (RSDW%), GFN content uniformity (RSDC%), GFN solid state (DSC and XRD) and pellet release profiles was evaluated. The effectiveness of the Surelease film was strongly affected by the ability of GFN to cross the coating layer and to recrystallize on the pellet surface. Results indicated that this behaviour was dependent on the polymer used in the binder-layering solution. Using hypromellose as polymer, GFN recrystallized on the coated pellet surface at both drug loadings. The curing step was necessary to stabilize the film effectiveness at the higher drug loading. Increasing the coating level delayed but did not prevent the GFN diffusion. Replacing hypromellose with Na alginate, reduced the migration of GFN through the film to a negligible amount even after six months of storage and the curing step was not necessary to achieve stable controlled release profiles over storage. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sainato, Michela; Shevitski, Brian; Sahu, Ayaskanta

    Self-assembly of semiconductor nanocrystals (NCs) into two-dimensional patterns or three-dimensional (2- 3D) superstructures has emerged as a promising low-cost route to generate thin-film transistors and solar cells with superior charge transport because of enhanced electronic coupling between the NCs. Here, we show that lead sulfide (PbS) NCs solids featuring either short-range (disordered glassy solids, GSs) or long-range (superlattices, SLs) packing order are obtained solely by controlling deposition conditions of colloidal solution of NCs. In this study, we demonstrate the use of the evaporation-driven self-assembly method results in PbS NC SL structures that are observed over an area of 1 mmmore » × 100 μm, with long-range translational order of up to 100 nm. A number of ordered domains appear to have nucleated simultaneously and grown together over the whole area, imparting a polycrystalline texture to the 3D SL films. By contrast, a conventional, optimized spin-coating deposition method results in PbS NC glassy films with no translational symmetry and much shorter-range packing order in agreement with state-of-the-art reports. Further, we investigate the electronic properties of both SL and GS films, using a field-effect transistor configuration as a test platform. The long-range ordering of the PbS NCs into SLs leads to semiconducting NC-based solids, the mobility (μ) of which is 3 orders of magnitude higher than that of the disordered GSs. Furthemore, although spin-cast GSs of PbS NCs have weak ambipolar behavior with limited gate tunability, SLs of PbS NCs show a clear p-type behavior with significantly higher conductivities.« less

  5. High-mobility ultrathin semiconducting films prepared by spin coating.

    PubMed

    Mitzi, David B; Kosbar, Laura L; Murray, Conal E; Copel, Matthew; Afzali, Ali

    2004-03-18

    The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (approximately 50 A), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS(2-x)Se(x) films, which exhibit n-type transport, large current densities (>10(5) A cm(-2)) and mobilities greater than 10 cm2 V(-1) s(-1)--an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).

  6. High-mobility ultrathin semiconducting films prepared by spin coating

    NASA Astrophysics Data System (ADS)

    Mitzi, David B.; Kosbar, Laura L.; Murray, Conal E.; Copel, Matthew; Afzali, Ali

    2004-03-01

    The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (~50Å), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS2-xSex films, which exhibit n-type transport, large current densities (>105Acm-2) and mobilities greater than 10cm2V-1s-1-an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).

  7. Ultrathin free-standing close-packed gold nanoparticle films: conductivity and Raman scattering enhancement.

    PubMed

    Yu, Qing; Huang, Hongwen; Peng, Xinsheng; Ye, Zhizhen

    2011-09-01

    A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post-treatment temperature, and thickness, respectively. The conductivity of the film prepared from 20 nm gold nanoparticles is higher than that of the film prepared from 40 nm gold nanoparticle by filtering the same filtration volume of their solution, respectively. Their conductivities are comparable to that of the 220 nm thick ITO film. Furthermore, these films demonstrated an average surface Raman scattering enhancement up to 6.59 × 10(5) for Rhodamine 6 G molecules on the film prepared from 40 nm gold nanoparticles. Due to a lot of nano interspaces generated from the close-packed structures, two abnormal enhancements and relative stronger intensities of the asymmetrical vibrations at 1534 and 1594 cm(-1) of R6G were observed, respectively. These robust free-standing gold nanoparticle films could be easily transferred onto various solid substrates and hold the potential application for electrodes and surface enhanced Raman detectors. This method is applicable for preparation of other nanoparticle free-standing thin films.

  8. Acoustic wave device using plate modes with surface-parallel displacement

    DOEpatents

    Martin, Stephen J.; Ricco, Antonio J.

    1992-01-01

    Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes therebetween. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them.

  9. Acoustic wave device using plate modes with surface-parallel displacement

    DOEpatents

    Martin, S.J.; Ricco, A.J.

    1992-05-26

    Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes there between. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them. 6 figs.

  10. Acoustic wave device using plate modes with surface-parallel displacement

    DOEpatents

    Martin, S.J.; Ricco, A.J.

    1988-04-29

    Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes therebetween. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them. 6 figs.

  11. Chain polymerization of diacetylene compound multilayer films on the topmost surface initiated by a scanning tunneling microscope tip.

    PubMed

    Takajo, Daisuke; Okawa, Yuji; Hasegawa, Tsuyoshi; Aono, Masakazu

    2007-05-08

    Chain polymerizations of diacetylene compound multilayer films on graphite substrates were examined with a scanning tunneling microscope (STM) at the liquid/solid interface of the phenyloctane solution. The first layer grew very quickly into many small domains. This was followed by the slow formation of the piled up layers into much larger domains. Chain polymerization on the topmost surface layer could be initiated by applying a pulsed voltage between the STM tip and the substrate, usually producing a long polymer of submicrometer length. In contrast, polymerizations on the underlying layer were never observed. This can be explained by a conformation model in which the polymer backbone is lifted up.

  12. 40 CFR 421.122 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Ammonia (as N) 6,712.000 2,951.000 Total suspended solids 2,065.000 981.800 pH (1) (1) 1 Within the range... from precipitation and filtration of film stripping solutions Copper 1.843 .970 Zinc 1.416 .592 Ammonia... silver precipitated Copper 109.400 57.570 Zinc 84.050 35.120 Ammonia (as N) 7,674.000 3,374.000 Total...

  13. 40 CFR 421.122 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Ammonia (as N) 6,712.000 2,951.000 Total suspended solids 2,065.000 981.800 pH (1) (1) 1 Within the range... from precipitation and filtration of film stripping solutions Copper 1.843 .970 Zinc 1.416 .592 Ammonia... silver precipitated Copper 109.400 57.570 Zinc 84.050 35.120 Ammonia (as N) 7,674.000 3,374.000 Total...

  14. 40 CFR 421.122 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Ammonia (as N) 6,712.000 2,951.000 Total suspended solids 2,065.000 981.800 pH (1) (1) 1 Within the range... from precipitation and filtration of film stripping solutions Copper 1.843 .970 Zinc 1.416 .592 Ammonia... silver precipitated Copper 109.400 57.570 Zinc 84.050 35.120 Ammonia (as N) 7,674.000 3,374.000 Total...

  15. Novel adhesive properties of poly(ethylene-oxide) adsorbed nanolayers

    NASA Astrophysics Data System (ADS)

    Zeng, Wenduo

    Solid-polymer interfaces play crucial roles in the multidisciplinary field of nanotechnology and are the confluence of physics, chemistry, biology, and engineering. There is now growing evidence that polymer chains irreversibly adsorb even onto weakly attractive solid surfaces, forming a nanometer-thick adsorbed polymer layer ("adsorbed polymer nanolayers"). It has also been reported that the adsorbed layers greatly impact on local structures and properties of supported polymer thin films. In this thesis, I aim to clarify adhesive and tribological properties of adsorbed poly(ethylene-oxide) (PEO) nanolayers onto silicon (Si) substrates, which remain unsolved so far. The adsorbed nanolayers were prepared by the established protocol: one has to equilibrate the melt or dense solution against a solid surface; the unadsorbed chains can be then removed by a good solvent, while the adsorbed chains are assumed to maintain the same conformation due to the irreversible freezing through many physical solid-segment contacts. I firstly characterized the formation process and the surface/film structures of the adsorbed nanolayers by using X-ray reflectivity, grazing incidence X-ray diffraction, and atomic force microscopy. Secondly, to compare the surface energy of the adsorbed layers with the bulk, static contact angle measurements with two liquids (water and glycerol) were carried out using a optical contact angle meter equipped with a video camera. Thirdly, I designed and constructed a custom-built adhesion-testing device to quantify the adhesive property. The experimental results provide new insight into the microscopic structure - macroscopic property relationship at the solid-polymer interface.

  16. High-reflective colorful films fabricated by all-solid multi-layer cholesteric structures

    NASA Astrophysics Data System (ADS)

    Li, Y.; Luo, D.

    2018-02-01

    We demonstrate all-solid-state film with high-reflectivity based on cholesteric template. The adhesive (NOA81) is both filler and an adhesive, which can be avoids interfacial losses. The reflected right- and left-circularly polarized light has been developed by roll-to-roll method, and the reflectance of the films is more than 78%. Here, the all-solid film was used in distribute feedback laser with dye-doped. In addition, this films also used in include flexible reflective display, color pixels in digital photographs, printing and colored cladding of variety of objects.

  17. Flexible Solar Cells Using Doped Crystalline Si Film Prepared by Self-Biased Sputtering Solid Doping Source in SiCl4/H2 Microwave Plasma.

    PubMed

    Hsieh, Ping-Yen; Lee, Chi-Young; Tai, Nyan-Hwa

    2016-02-01

    We developed an innovative approach of self-biased sputtering solid doping source process to synthesize doped crystalline Si film on flexible polyimide (PI) substrate via microwave-plasma-enhanced chemical vapor deposition (MWPECVD) using SiCl4/H2 mixture. In this process, P dopants or B dopants were introduced by sputtering the solid doping target through charged-ion bombardment in situ during high-density microwave plasma deposition. A strong correlation between the number of solid doping targets and the characteristics of doped Si films was investigated in detail. The results show that both P- and B-doped crystalline Si films possessed a dense columnar structure, and the crystallinity of these structures decreased with increasing the number of solid doping targets. The films also exhibited a high growth rate (>4.0 nm/s). Under optimal conditions, the maximum conductivity and corresponding carrier concentration were, respectively, 9.48 S/cm and 1.2 × 10(20) cm(-3) for P-doped Si film and 7.83 S/cm and 1.5 × 10(20) cm(-3) for B-doped Si film. Such high values indicate that the incorporation of dopant with high doping efficiency (around 40%) into the Si films was achieved regardless of solid doping sources used. Furthermore, a flexible crystalline Si film solar cell with substrate configuration was fabricated by using the structure of PI/Mo film/n-type Si film/i-type Si film/p-type Si film/ITO film/Al grid film. The best solar cell performance was obtained with an open-circuit voltage of 0.54 V, short-circuit current density of 19.18 mA/cm(2), fill factor of 0.65, and high energy conversion of 6.75%. According to the results of bending tests, the critical radius of curvature (RC) was 12.4 mm, and the loss of efficiency was less than 1% after the cyclic bending test for 100 cycles at RC, indicating superior flexibility and bending durability. These results represent important steps toward a low-cost approach to high-performance flexible crystalline Si film-based photovoltaic devices.

  18. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering.

    PubMed

    Pan, Hao; Ma, Jing; Ma, Ji; Zhang, Qinghua; Liu, Xiaozhi; Guan, Bo; Gu, Lin; Zhang, Xin; Zhang, Yu-Jun; Li, Liangliang; Shen, Yang; Lin, Yuan-Hua; Nan, Ce-Wen

    2018-05-08

    Developing high-performance film dielectrics for capacitive energy storage has been a great challenge for modern electrical devices. Despite good results obtained in lead titanate-based dielectrics, lead-free alternatives are strongly desirable due to environmental concerns. Here we demonstrate that giant energy densities of ~70 J cm -3 , together with high efficiency as well as excellent cycling and thermal stability, can be achieved in lead-free bismuth ferrite-strontium titanate solid-solution films through domain engineering. It is revealed that the incorporation of strontium titanate transforms the ferroelectric micro-domains of bismuth ferrite into highly-dynamic polar nano-regions, resulting in a ferroelectric to relaxor-ferroelectric transition with concurrently improved energy density and efficiency. Additionally, the introduction of strontium titanate greatly improves the electrical insulation and breakdown strength of the films by suppressing the formation of oxygen vacancies. This work opens up a feasible and propagable route, i.e., domain engineering, to systematically develop new lead-free dielectrics for energy storage.

  19. A3-Coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films

    PubMed Central

    Huang, Jian-Lin

    2013-01-01

    Summary We decorated HS-functionalized cellulose nanocrystallite (CNC) films with monodisperse Au nanoparticles (AuNPs) to form a novel nanocomposite catalyst AuNPs@HS-CNC. The uniform, fine AuNPs were made by the reduction of HAuCl4 solution with thiol (HS-) group-functionalized CNC films. The AuNPs@HS-CNC nanocomposites were examined by X-ray photoelectron spectroscopy (XPS), TEM, ATR-IR and solid-state NMR. Characterizations suggested that the size of the AuNPs was about 2–3 nm and they were evenly distributed onto the surface of CNC films. Furthermore, the unique nanocomposite Au@HS-CNC catalyst displayed high catalytic efficiency in promoting three-component coupling of an aldehyde, an alkyne, and an amine (A3-coupling) either in water or without solvent. Most importantly, the catalyst could be used repetitively more than 11 times without significant deactivation. Our strategy also promotes the use of naturally renewable cellulose to prepare reusable nanocomposite catalysts for organic synthesis. PMID:23946833

  20. Thickness dependent band gap of Bi{sub 2-x}Sb{sub x}Te{sub 3} (x = 0, 0.05, 0.1) thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, M. M.; Soni, P. H., E-mail: phsoni-msu@yahoo.com; Desai, C. F.

    2016-05-23

    Thin films of Bi{sub 2}Te{sub 3}(Sb) were prepared on alkali halide crystal substrates. Sb content and the film thickness were varied. Bi{sub 2}Te{sub 3} is a narrow gap semiconductor. Bi-Sb is a continuous solid solution of substitutional type and Sb therefore was used to test its effect on the band gap. The film thickness variation was also taken up. The infra-red absorption spectra were used in the wave number range 400 cm{sup −1} to 4000 cm{sup −1}. The band gap obtained from the absorption data was found to increase with decreasing thickness since the thickness range used was from 30more » nm to 170 nm. This is a range corresponding to nanostructures and hence quantum size effect was observed as expected. The band gap also exhibited Sb content dependence. The detail results are have been reported and explained.« less

  1. Various nanoparticle morphologies and surface properties of waterborne polyurethane controlled by water

    PubMed Central

    Zhou, Xing; Fang, Changqing; Lei, Wanqing; Du, Jie; Huang, Tingyi; Li, Yan; Cheng, Youliang

    2016-01-01

    Water plays important roles in organic reactions such as polyurethane synthesis, and the aqueous solution environment affects polymer morphology and other properties. This paper focuses on the morphology and surface properties of waterborne polyurethane resulting from the organic reaction in water involving different forms (solid and liquid), temperatures and aqueous solutions. We provide evidence from TEM observations that the appearance of polyurethane nanoparticles in aqueous solutions presents diverse forms, including imperfect spheres, perfect spheres, perfect and homogenous spheres and tubes. Based on the results on FTIR, GPC, AFM and XRD experiments, we suggest that the shape of the nanoparticles may be decided by the crimp degree (i.e., the degree of polyurethane chains intertangling in the water environment) and order degree, which are determined by the molecular weight (Mn) and hydrogen bonds. Meanwhile, solid water and high-temperature water can both reduce hard segments that gather on the polyurethane film surface to reduce hydrophilic groups and produce a soft surface. Our findings show that water may play key roles in aqueous polymer formation and bring order to molecular chains. PMID:27687001

  2. Self-assembling semiconducting polymers--rods and gels from electronic materials.

    PubMed

    Clark, Andrew P-Z; Shi, Chenjun; Ng, Benny C; Wilking, James N; Ayzner, Alexander L; Stieg, Adam Z; Schwartz, Benjamin J; Mason, Thomas G; Rubin, Yves; Tolbert, Sarah H

    2013-02-26

    In an effort to favor the formation of straight polymer chains without crystalline grain boundaries, we have synthesized an amphiphilic conjugated polyelectrolyte, poly(fluorene-alt-thiophene) (PFT), which self-assembles in aqueous solutions to form cylindrical micelles. In contrast to many diblock copolymer assemblies, the semiconducting backbone runs parallel, not perpendicular, to the long axis of the cylindrical micelle. Solution-phase micelle formation is observed by X-ray and visible light scattering. The micelles can be cast as thin films, and the cylindrical morphology is preserved in the solid state. The effects of self-assembly are also observed through spectral shifts in optical absorption and photoluminescence. Solutions of higher-molecular-weight PFT micelles form gel networks at sufficiently high aqueous concentrations. Rheological characterization of the PFT gels reveals solid-like behavior and strain hardening below the yield point, properties similar to those found in entangled gels formed from surfactant-based micelles. Finally, electrical measurements on diode test structures indicate that, despite a complete lack of crystallinity in these self-assembled polymers, they effectively conduct electricity.

  3. Characterization of the electro-optic effect in styrylpyridinium cyanine dye thin-film crystals by an ac modulation method

    NASA Astrophysics Data System (ADS)

    Yoshimura, Tetsuzo

    1987-09-01

    The electro-optic effect in styrylpyridinium cyanine dye (SPCD) thin-film crystals is characterized by a newly developed ac modulation method that is effective in characterizing thin-film materials of small area. SPCD thin-film crystals 3-10 μm thick were grown from a methanol solution of SPCD. The crystal shows strong dichroism and anisotropy of refractive index, indicating that molecular dipole moments align along a definite direction (z axis). When an electric field is applied along the z axis, SPCD thin-film crystals show a large figure of merit of electro-optic phase retardation of 6.5×10-10 m/V, which is 5 times as large as in LiNbO3 crystal, 2 times that in 2-methyl-4-nitroaniline (MNA) crystal, and is the largest ever reported in organic solids. The electro-optic coefficient r33 of SPCD crystals is estimated to be approximately 4.3×10-10 m/V, which is 6 times larger than that of an MNA crystal. This value is consistent with that expected from second-harmonic generation measurements.

  4. Template-free preparation of crystalline Ge nanowire film electrodes via an electrochemical liquid-liquid-solid process in water at ambient pressure and temperature for energy storage.

    PubMed

    Gu, Junsi; Collins, Sean M; Carim, Azhar I; Hao, Xiaoguang; Bartlett, Bart M; Maldonado, Stephen

    2012-09-12

    The direct electrodeposition of crystalline germanium (Ge) nanowire film electrodes from an aqueous solution of dissolved GeO(2) using discrete 'flux' nanoparticles capable of dissolving Ge(s) has been demonstrated. Electrodeposition of Ge at inert electrode substrates decorated with small (<100 nm), discrete indium (In) nanoparticles resulted in crystalline Ge nanowire films with definable nanowire diameters and densities without the need for a physical or chemical template. The Ge nanowires exhibited strong polycrystalline character as-deposited, with approximate crystallite dimensions of 20 nm and a mixed orientation of the crystallites along the length of the nanowire. Energy dispersive spectroscopic elemental mapping of individual Ge nanowires showed that the In nanoparticles remained at the base of each nanowire, indicating good electrical communication between the Ge nanowire and the underlying conductive support. As-deposited Ge nanowire films prepared on Cu supports were used without further processing as Li(+) battery anodes. Cycling studies performed at 1 C (1624 mA g(-1)) indicated the native Ge nanowire films supported stable discharge capacities at the level of 973 mA h g(-1), higher than analogous Ge nanowire film electrodes prepared through an energy-intensive vapor-liquid-solid nanowire growth process. The cumulative data show that ec-LLS is a viable method for directly preparing a functional, high-activity nanomaterials-based device component. The work presented here is a step toward the realization of simple processes that make fully functional energy conversion/storage technologies based on crystalline inorganic semiconductors entirely through benchtop, aqueous chemistry and electrochemistry without time- or energy-intensive process steps.

  5. A Novel UV-Shielding and Transparent Polymer Film: When Bioinspired Dopamine-Melanin Hollow Nanoparticles Join Polymers.

    PubMed

    Wang, Yang; Su, Jing; Li, Ting; Ma, Piming; Bai, Huiyu; Xie, Yi; Chen, Mingqing; Dong, Weifu

    2017-10-18

    Ultraviolet (UV) light is known to be harmful to human health and cause organic materials to undergo photodegradation. In this Research Article, bioinspired dopamine-melanin solid nanoparticles (Dpa-s NPs) and hollow nanoparticles (Dpa-h NPs) as UV-absorbers were introduced to enhance the UV-shielding performance of polymer. First, Dpa-s NPs were synthesized through autoxidation of dopamine in alkaline aqueous solution. Dpa-h NPs were prepared by the spontaneous oxidative polymerization of dopamine solution onto polystyrene (PS) nanospheres template, followed by removal of the template. Poly(vinyl alcohol) (PVA)/Dpa nanocomposite films were subsequently fabricated by a simple casting solvent. UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of Dpa-s versus Dpa-h NPs. In contrast to PVA/Dpa-s films, PVA/Dpa-h films exhibit stronger UV-shielding capabilities and can almost block the complete UV region (200-400 nm). The excellent UV-shielding performance of the PVA/Dpa-h films mainly arises from multiple absorption because of the hollow structure and large specific area of Dpa-h NPs. Moreover, the wall thickness of Dpa-h NPs can be simply controlled from 28 to 8 nm, depending on the ratio between PS and dopamine. The resulting films with Dpa-h NPs (wall thickness = ∼8 nm) maintained relatively high transparency to visible light because of the thinner wall thickness. The results indicate that the prepared Dpa-h NPs can be used as a novel UV absorber for next-generation transparent UV-shielding materials.

  6. Determination of selenium at trace levels in geologic materials by energy-dispersive X-ray fluorescence spectrometry

    USGS Publications Warehouse

    Wahlberg, J.S.

    1981-01-01

    Low levels of selenium (0.1-500 ppm) in both organic and inorganic geologic materials can be semiquantitatively measured by isolating Se as a thin film for presentation to an energy-dispersive X-ray fluorescence spectrometer. Suitably pulverized samples are first digested by fusing with a mixture of Na2CO3 and Na2O2. The fusion cake is dissolved in distilled water, buffered with NH4Cl, and filtered to remove Si and the R2O3 group. A carrier solution of Na2TeO4, plus solid KI, hydrazine sulfate and Na2SO3, is added to the filtrate. The solution is then vacuum-filtered through a 0.45-??m pore-size filter disc. The filter, with the thin film of precipitate, is supported between two sheets of Mylar?? film for analysis. Good agreement is shown between data reported in this study and literature values reported by epithermal neutron-activation analysis and spectrofluorimetry. The method can be made quantitative by utilizing a secondary precipitation to assure complete recovery of the Se. The X-ray method offers fast turn-around time and a reasonably high production rate. ?? 1981.

  7. Perovskite Quantum Dots with Near Unity Solution and Neat-Film Photoluminescent Quantum Yield by Novel Spray Synthesis.

    PubMed

    Dai, Shu-Wen; Hsu, Bo-Wei; Chen, Chien-Yu; Lee, Chia-An; Liu, Hsiao-Yun; Wang, Hsiao-Fang; Huang, Yu-Ching; Wu, Tien-Lin; Manikandan, Arumugam; Ho, Rong-Ming; Tsao, Cheng-Si; Cheng, Chien-Hong; Chueh, Yu-Lun; Lin, Hao-Wu

    2018-02-01

    In this study, a novel perovskite quantum dot (QD) spray-synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic-shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield ≈100% in the solution and even in the solid-state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD-LED (ccQD-LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W -1 , and extraordinary forward-direction luminescence of 8 500 000 cd m -2 . The conceptual ccQD-OLED hybrid display also successfully demonstrates high-definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives-P3 color gamut. These very-stable, ultra-bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Thickness effect of nickel oxide thin films on associated solution-processed write-once-read-many-times memory devices

    NASA Astrophysics Data System (ADS)

    Wang, Xiao Lin; Liu, Zhen; Wen, Chao; Liu, Yang; Wang, Hong Zhe; Chen, T. P.; Zhang, Hai Yan

    2018-06-01

    With self-prepared nickel acetate based solution, NiO thin films with different thicknesses have been fabricated by spin coating followed by thermal annealing. By forming a two-terminal Ag/NiO/ITO structure on glass, write-once-read-many-times (WORM) memory devices are realized. The WORM memory behavior is based on a permanent switching from an initial high-resistance state (HRS) to an irreversible low-resistance state (LRS) under the application of a writing voltage, due to the formation of a solid bridge across Ag and ITO electrodes by conductive filaments (CFs). The memory performance is investigated as a function of the NiO film thickness, which is determined by the number of spin-coated NiO layers. For devices with 4 and 6 NiO layers, data retention up to 104 s and endurance of 103 reading operations in the measurement range have been obtained with memory window maintained above four orders for both HRS and LRS. Before and after writing, the devices show the hopping and ohmic conduction behaviors, respectively, confirming that the CF formation could be the mechanism responsible for writing in the WORM memory devices.

  9. Long-wave analysis and control of the viscous Rayleigh-Taylor instability with electric fields

    NASA Astrophysics Data System (ADS)

    Cimpeanu, Radu; Anderson, Thomas; Petropoulos, Peter; Papageorgiou, Demetrios

    2016-11-01

    We investigate the electrostatic stabilization of a viscous thin film wetting the underside of a solid surface in the presence of a horizontally acting electric field. The competition between gravity, surface tension and the nonlocal effect of the applied electric field is captured analytically in the form of a nonlinear evolution equation. A semi-spectral solution strategy is employed to resolve the dynamics of the resulting partial differential equation. Furthermore, we conduct direct numerical simulations (DNS) of the Navier-Stokes equations and assess the accuracy of the obtained solutions when varying the electric field strength from zero up to the point when complete stabilization at the target finite wavelengths occurs. We employ DNS to examine the limitations of the asymptotically derived behavior in the context of increasing liquid film heights, with agreement found to be excellent even beyond the target lengthscales. Regimes in which the thin film assumption is no longer valid and droplet pinch-off occurs are then analyzed. Finally, the asymptotic and computational approaches are used in conjunction to identify efficient active control mechanisms allowing the manipulation of the fluid interface in light of engineering applications at small scales, such as mixing.

  10. Structure and growth of the mesoscopic surfactant/silica thin films

    NASA Astrophysics Data System (ADS)

    Zhou, Linbo

    1999-10-01

    We report the study of the structure and the growth of the mesoscopic surfactant/silica thin films. We use X-ray diffraction coupled with Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), Transmission Electron Microscope (TEM) and light scattering techniques to study the structure, lattice strain and the drying effect of the thin films as well as the growth kinetics and mechanism. The surfactant/silica materials are synthesized using the supramolecular assemblies of the surfactant molecules to template the condensation of the inorganic species. The subsequent calcination yields the mesoporous silica materials, which have many application properties such as unusual electronic, optical, magnetic and elastic characteristics. The films are grown on mica, graphite and silicon substrates in an acidic CTAC (Cetyltrimethyl Ammonium Chloride)/TEOS (Tetraethyl Orthosilicate) solution and are found to consist of the hexagonally packed tubules. The substrate plays an important role in the epitaxial arrangement of the film. We use the light scattering and cryo TEM to study the micelle morphology and aggregation in the solution and use synchrotron radiation X-ray diffraction to study the growth of the film at the solid/liquid interfaces in-situ. An induction time is found followed by the growth of the film at a nonlinear growth rate. The induction time depends on the ratio of the concentrations of CTAC to TEOS in the high CTAC concentration regime. The growth kinetics and mechanism are elucidated in a context of a growth model. For the technological application, Micromolding in Capillaries (MIMIC) technique and the field guided growth are used to process the patterned mesoscopic surfactant/silica thin films and align the nanotubules into the desired orientation. X-ray diffraction characterization has been performed to study the structure and orientation of the thin films. The combined influence of the electric field and the confinement of the mold allows the synthesis of the surfactant/silica thin films with the controlled orientation.

  11. Bio-inspired surfactant assisted nano-catalyst impregnation of Solid-Oxide Fuel Cell (SOFC) electrodes

    DOE PAGES

    Ozmen, Ozcan; Zondlo, John W.; Lee, Shiwoo; ...

    2015-11-02

    A bio-inspired surfactant was utilized to assist in the efficient impregnation of a nano-CeO₂ catalyst throughout both porous Solid Oxide Fuel Cells (SOFC’s) electrodes simultaneously. The process included the initial modification of electrode pore walls with a polydopamine film. The cell was then submersed into a cerium salt solution. The amount of nano-CeO₂ deposited per impregnation step increased by 3.5 times by utilizing this two-step protocol in comparison to a conventional drip impregnation method. The impregnated cells exhibited a 20% higher power density than a baseline cell without the nano-catalyst at 750°C (using humid H₂ fuel).

  12. Effect of zirconium oxide nanofiller and dibutyl phthalate plasticizer on ionic conductivity and optical properties of solid polymer electrolyte.

    PubMed

    Yasin, Siti Mariah Mohd; Ibrahim, Suriani; Johan, Mohd Rafie

    2014-01-01

    New solid polymer electrolytes (SPE) based on poly(ethylene oxide) (PEO) doped with lithium trifluoromethanesulfonate (LiCF3SO3), dibutyl phthalate (DBP) plasticizer, and zirconium oxide (ZrO2) nanoparticles were prepared by solution-casting technique. The conductivity was enhanced by addition of dibutyl phthalate (DBP) plasticizer and ZrO2 nanofiller with maximum conductivity (1.38 × 10(-4) Scm(-1)). The absorption edge and band gap values showed decreases upon addition of LiSO3CF3, DBP, and ZrO2 due to the formation of localized states in the SPE and the degree of disorder in the films increased.

  13. Aryl substitution of pentacenes

    PubMed Central

    Waterloo, Andreas R; Sale, Anna-Chiara; Lehnherr, Dan; Hampel, Frank

    2014-01-01

    Summary A series of 11 new pentacene derivatives has been synthesized, with unsymmetrical substitution based on a trialkylsilylethynyl group at the 6-position and various aryl groups appended to the 13-position. The electronic and physical properties of the new pentacene chromophores have been analyzed by UV–vis spectroscopy (solution and thin films), thermoanalytical methods (DSC and TGA), cyclic voltammetry, as well as X-ray crystallography (for 8 derivatives). X-ray crystallography has been specifically used to study the influence of unsymmetrical substitution on the solid-state packing of the pentacene derivatives. The obtained results add to our ability to better predict substitution patterns that might be helpful for designing new semiconductors for use in solid-state devices. PMID:25161729

  14. Effect of Zirconium Oxide Nanofiller and Dibutyl Phthalate Plasticizer on Ionic Conductivity and Optical Properties of Solid Polymer Electrolyte

    PubMed Central

    Yasin, Siti Mariah Mohd; Ibrahim, Suriani

    2014-01-01

    New solid polymer electrolytes (SPE) based on poly(ethylene oxide) (PEO) doped with lithium trifluoromethanesulfonate (LiCF3SO3), dibutyl phthalate (DBP) plasticizer, and zirconium oxide (ZrO2) nanoparticles were prepared by solution-casting technique. The conductivity was enhanced by addition of dibutyl phthalate (DBP) plasticizer and ZrO2 nanofiller with maximum conductivity (1.38 × 10−4 Scm−1). The absorption edge and band gap values showed decreases upon addition of LiSO3CF3, DBP, and ZrO2 due to the formation of localized states in the SPE and the degree of disorder in the films increased. PMID:25133244

  15. Edible films and coatings based on biodegradable residues applied to acerolas (Malpighia punicifolia L.).

    PubMed

    Ferreira, Mariana S L; Fai, Ana Elizabeth C; Andrade, Cristina T; Picciani, Paulo H; Azero, Edwin G; Gonçalves, Édira C B A

    2016-03-30

    This study aimed to produce and characterize edible films and coatings from fruit and vegetable residue (FVR) flour and potato peel (P) flour. Two coating approaches (immersion and film) were studied on the quality of acerolas. Film-forming solutions (FFS) presented a viscoelastic behavior and a gelation process occurring at 70 °C. Maximum density (1.018 g cm(-3) ), viscosity (44.404 cP) and starch content were obtained for FFS based on 8% FVR flour with 4% P flour. This same film presented enhanced mechanical properties such as tensile strength and elongation at break (0.092 MPa and 36% respectively). Solubility of the films averaged 87%, demonstrating high hydrophilicity. Improved performance was obtained for film-packaged acerolas, which exhibited an increase in shelf life of 50% compared with control fruits. A lower loss of weight was observed for these samples by about 30-57% compared with control fruits, but minor modifications of pH, titratable acidity and soluble solid content occurred during storage. This study demonstrated the potential of FVR flour for edible coating and film formulation. Practical application on acerolas constituted a motivating route to evaluate and optimize this process; however, microbiological and sensory analyses are necessary to assess the material acceptability and safety. © 2015 Society of Chemical Industry.

  16. Environmentally stable perovskite film for active material of high stability solid state solar cells

    NASA Astrophysics Data System (ADS)

    Bahtiar, A.; Putri, M.; Nurazizah, E. S.; Risdiana; Furukawa, Y.

    2018-05-01

    We studied new perovskite material lead (II) thiocyanate [Pb(SCN)2] in ambient air with humidity above 90%. We prepared perovskite film by use of two-step method combination of spin-coating and dip-coating technique. The Pb(SCN)2 film was first spin-coated either on bare glass or TiO2 coated glass and then followed by dipping it into methylammonium iodide (MAI) solution. The UV-Vis spectrum of Pb(SCN)2 film shows absorption at wavelength shorter than 400 nm. Meanwhile, perovskite MAPb(SCN)xI3-x film absorps light ranging from 300 nm to 760 nm, which shows that the perovskite film can absorp more light to be converted into free charge carrier for generating electricity in solar cells. The XRD patterns shows that perovskite peaks are clearly observed which confirms that perovskite is already well formed. We also observe no significant changes in XRD pattern of perovskite films after stored for five days at ambient air with humidity exceed 90%. This result shows that perovskite MAPb(SCN)XI3-X film is environmentally stable, therefore high stability perovskite solar cells is expected to be produced in ambient air with high humidity. This is in accordance with the SEM images of surface morphology that shows no “pin-hole”.

  17. Copper(II) tungstate nanoflake array films: sacrificial template synthesis, hydrogen treatment, and their application as photoanodes in solar water splitting.

    PubMed

    Hu, Dianyi; Diao, Peng; Xu, Di; Xia, Mengyang; Gu, Yue; Wu, Qingyong; Li, Chao; Yang, Shubin

    2016-03-21

    We report the preparation of CuWO4 nanoflake (NF) array films by using a solid phase reaction method in which WO3 NFs were employed as sacrificial templates. The SEM, TEM and XRD results demonstrated that the obtained CuWO4 films possessed a network structure that was composed of single crystalline NFs intersected with each other. The CuWO4 NF films showed superior photoelectrochemical (PEC) activity to other CuWO4 photoanodes reported recently for the oxygen evolution reaction (OER). We attributed the high activity to the unique morphological and crystalline structure of the CuWO4 film, which enhanced the photoactivity by providing a large specific area, a short hole transport distance from the inside of CuWO4 to the CuWO4/solution interface, and a low grain boundary density. Hydrogen treatment by annealing the CuWO4 NF film in mixed gases of H2 and Ar could further enhance the photoactivity, as hydrogen treatment significantly increased the electron density of CuWO4 by generating oxygen vacancy in the lattice. The photocurrent density for OER obtained on the hydrogen-treated (H-treated) CuWO4 NF film is the largest ever reported on CuWO4 photoanodes in the literature. Moreover, the CuWO4 photoanodes exhibit good stability in weak alkaline solution, while the H-treated CuWO4 photoanodes exhibit acceptable stability. This work not only reveals the potential of CuWO4 as a photoanode material for solar water splitting but also shows that the construction of nanostructured CuWO4 photoanodes is a promising method to achieve high PEC activity toward OER.

  18. A chlorine precursor route (CPR) to poly(p-phenylene vinylene) light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heieh, B.R.; Antoniadis, H.; Bland, D.C.

    1995-12-01

    We use a chlorine precursor route (CPR) to fabricate PPV based electroluminescent (EL) devices. 1,4- Bis(chloromethyl)-2,3-diphenylbenzene was polymerized with one equivalent amount of potassium t-butoxide (t-BuOK) to give the corresponding chlorine precursor polymer with very high molecular weights. This polymer is soluble in common organic solvents and is highly stable in the solid state and in solution. Thin films of the precursor polymer were spin cast on indiumtin-oxide (ITO) coated glass substrates followed by thermal conversion at 300{degrees}C for 2 h to give DP-PPV thin films. We found that CPR is more convenient and reliable than sulfonium precursor route formore » the fabrication of PPV thin film EL devices. Efficient emission of green light (500 nm) was observed for Mg/DP-PPV/ITO and Al/DP-PPV/ITO single layer devices.« less

  19. Metastable phase equilibria in co-deposited Ni(1-x)Zr(x) thin films

    NASA Astrophysics Data System (ADS)

    Rubin, J. B.; Schwarz, R. B.

    We determine the glass forming range (GFR) of co-deposited Ni(1-x)Zr(x) (0 less than x less than 1) thin films by measuring their electrical resistance during in situ constant-heating-rate anneals. The measured GFR is continuous for 0.10 less than x less than 0.87. We calculate the GFR of Ni-Zr melts as a function of composition and cooling rate using homogeneous nucleation theory and a published CALPHAD-type thermodynamic modeling of the equilibrium phase diagram. Assuming that the main competition to the retention of the amorphous structure during the cooling of the liquid comes from the partitionless crystallization of the terminal solid solutions, we calculate that for dT/dt = 10(exp 12) K/s, the GFR extends to x = 0.05 and x = 0.96. Better agreement with the measured values is obtained assuming a lower effective cooling rate during the condensation of the films.

  20. Three-dimensionally ordered array of air bubbles in a polymer film

    NASA Technical Reports Server (NTRS)

    Srinivasarao, M.; Collings, D.; Philips, A.; Patel, S.; Brown, C. S. (Principal Investigator)

    2001-01-01

    We report the formation of a three-dimensionally ordered array of air bubbles of monodisperse pore size in a polymer film through a templating mechanism based on thermocapillary convection. Dilute solutions of a simple, coil-like polymer in a volatile solvent are cast on a glass slide in the presence of moist air flowing across the surface. Evaporative cooling and the generation of an ordered array of breath figures leads to the formation of multilayers of hexagonally packed water droplets that are preserved in the final, solid polymer film as spherical air bubbles. The dimensions of these bubbles can be controlled simply by changing the velocity of the airflow across the surface. When these three-dimensionally ordered macroporous materials have pore dimensions comparable to the wavelength of visible light, they are of interest as photonic band gaps and optical stop-bands.

  1. Supernormal hardness increase of dilute Ga(As, N) thin films

    NASA Astrophysics Data System (ADS)

    Berggren, Jonas; Hanke, Michael; Luna, Esperanza; Trampert, Achim

    2017-03-01

    Hardness of epitaxial GaAs1-xNx films on GaAs(001) with different film thicknesses, varying from 80 to 700 nm, and nitrogen compositions x between zero (pure GaAs) and 0.031, were studied by means of nano-indentation. As a result, a disproportionate and monotonic increase by 17% in hardness was proved in the dilute range from GaAs to GaAs0.969N0.031. We are tracing this observation to solid solution strengthening, an extrinsic effect based on dislocation pinning due to interstitial nitrogen. On the other hand, intrinsic effects related to different electronegativities of As and N (i.e., altered bonding conditions) could be ruled out. Furthermore, in tensilely strained GaAs1-xNx layers, the appearance of cracks acts as the main strain relieving mechanism. A correlation between cracking and hardness reduction is investigated and discussed as a further relaxation pathway.

  2. "Immortal" liquid film formed by colliding bubble at oscillating solid substrates

    NASA Astrophysics Data System (ADS)

    Zawala, Jan

    2016-05-01

    This paper presents an experimental study of the behavior of an ascending air bubble (equivalent radius 0.74 mm) colliding with a solid substrate. The substrate is either motionless or oscillating with a precisely adjusted acceleration, slightly higher than gravity. It is shown that the stability of the liquid film formed between the striking bubble and the solid surface depends not only on the hydrophobic/hydrophilic properties of the solid but also on the energetic interrelations in the system. The results indicate that the rupture of the bubble and its attachment at a smooth hydrophobic solid surface are related to the viscous dissipation of energy, leading to a gradual decrease in the bubble deformation, and in consequence in the radius of the formed separating liquid film. When the film radius is small enough, the bubble ruptures and attaches to the hydrophobic solid surface. Moreover, it is shown that when the bubble deformations are forced to be constant, by applying properly adjusted oscillations of the solid substrate (energy supply conditions), bubble rupture can be prevented and a constant bubble bouncing is observed, irrespective of the hydrophobic/hydrophilic properties of the solid substrate. Under such energy supply conditions, the liquid film can be considered "immortal." The numerical calculations performed for the respective system, in which constant kinetic energy is induced, confirm that the liquid film can persist indefinitely owing to its constant radius, which is too large to reach the critical thickness for rupture during the collision time.

  3. Polyurethanes from fluoroalkyl propyleneglycol polyethers

    NASA Technical Reports Server (NTRS)

    Trischler, F. D. (Inventor)

    1969-01-01

    A description is given of highly stable polyurethane polymers prepared by reacting a polyether with a diisocyanate. Compounded stocks of these polymers may be shaped and cured in conventional equipment used in the rubber industry. The solutions are dispersed gels prepared from the polymers and may be used for forming supported or unsupported films for coating fabrics or solid surfaces, and for forming adhesive bonds between a wide variety of plastics, elastomers, fabrics, metals, wood, leather, ceramics and the like.

  4. Control of composition and crystallinity in hydroxyapatite films deposited by electron cyclotron resonance plasma sputtering

    NASA Astrophysics Data System (ADS)

    Akazawa, Housei; Ueno, Yuko

    2014-01-01

    Hydroxyapatite (HAp) films were deposited by electron cyclotron resonance plasma sputtering under a simultaneous flow of H2O vapor gas. Crystallization during sputter-deposition at elevated temperatures and solid-phase crystallization of amorphous films were compared in terms of film properties. When HAp films were deposited with Ar sputtering gas at temperatures above 460 °C, CaO byproducts precipitated with HAp crystallites. Using Xe instead of Ar resolved the compositional problem, yielding a single HAp phase. Preferentially c-axis-oriented HAp films were obtained at substrate temperatures between 460 and 500 °C and H2O pressures higher than 1×10-2 Pa. The absorption signal of the asymmetric stretching mode of the PO43- unit (ν3) in the Fourier-transform infrared absorption (FT-IR) spectra was the narrowest for films as-crystallized during deposition with Xe, but widest for solid-phase crystallized films. While the symmetric stretching mode of PO43- (ν1) is theoretically IR-inactive, this signal emerged in the FT-IR spectra of solid-phase crystallized films, but was absent for as-crystallized films, indicating superior crystallinity for the latter. The Raman scattering signal corresponding to ν1 PO43- sensitively reflected this crystallinity. The surface hardness of as-crystallized films evaluated by a pencil hardness test was higher than that of solid-phase crystallized films.

  5. Fourier transform-infrared studies of thin H2SO4/H2O films: Formation, water uptake, and solid-liquid phase changes

    NASA Technical Reports Server (NTRS)

    Middlebrook, Ann M.; Iraci, Laura T.; Mcneill, Laurie S.; Koehler, Birgit G.; Wilson, Margaret A.; Saastad, Ole W.; Tolbert, Margaret A.; Hanson, David R.

    1993-01-01

    Fourier transform-infrared (FTIR) spectroscopy was used to examine films representative of stratospheric sulfuric acid aerosols. Thin films of sulfuric acid were formed in situ by the condensed phase reaction of SO3 with H2O. FTIR spectra show that the sulfuric acid films absorb water while cooling in the presence of water vapor. Using stratospheric water pressures, the most dilute solutions observed were greater than 40 wt % before simultaneous ice formation and sulfuric acid freezing occurred. FTIR spectra also revealed that the sulfuric acid films crystallized mainly as sulfuric acid tetrahydrate (SAT). Crystallization occurred either when the composition was about 60 wt% H2SO4 or after ice formed on the films at temperatures 1-4 K below the ice frost point. Finally, we determined that the melting point for SAT depended on the background water pressure and was 216-219 K in the presence of 4 x 10(exp -4) Torr H2O. Our results suggest that once frozen, sulfuric acid aerosols in the stratosphere are likely to melt at these temperatures, 30 K colder than previously thought.

  6. Carbon Nanotube-Based Ion Selective Sensors for Wearable Applications.

    PubMed

    Roy, Soumyendu; David-Pur, Moshe; Hanein, Yael

    2017-10-11

    Wearable electronics offer new opportunities in a wide range of applications, especially sweat analysis using skin sensors. A fundamental challenge in these applications is the formation of sensitive and stable electrodes. In this article we report the development of a wearable sensor based on carbon nanotube (CNT) electrode arrays for sweat sensing. Solid-state ion selective electrodes (ISEs), sensitive to Na + ions, were prepared by drop coating plasticized poly(vinyl chloride) (PVC) doped with ionophore and ion exchanger on CNT electrodes. The ion selective membrane (ISM) filled the intertubular spaces of the highly porous CNT film and formed an attachment that was stronger than that achieved with flat Au, Pt, or carbon electrodes. Concentration of the ISM solution used influenced the attachment to the CNT film, the ISM surface morphology, and the overall performance of the sensor. Sensitivity of 56 ± 3 mV/decade to Na + ions was achieved. Optimized solid-state reference electrodes (REs), suitable for wearable applications, were prepared by coating CNT electrodes with colloidal dispersion of Ag/AgCl, agarose hydrogel with 0.5 M NaCl, and a passivation layer of PVC doped with NaCl. The CNT-based REs had low sensitivity (-1.7 ± 1.2 mV/decade) toward the NaCl solution and high repeatability and were superior to bare Ag/AgCl, metals, carbon, and CNT films, reported previously as REs. CNT-based ISEs were calibrated against CNT-based REs, and the short-term stability of the system was tested. We demonstrate that CNT-based devices implemented on a flexible support are a very attractive platform for future wearable technology devices.

  7. Direct injection of liquids into low pressure plasmas

    NASA Astrophysics Data System (ADS)

    Goeckner, Matthew; Ogawa, Daisuke; Timmons, Richard; Overzet, Lawrence; Sanchez, Sam

    2006-10-01

    Being forced to use only gaseous precursors in plasma processing reactors is a significant and irrational limitation. Only a small minority of the molecules that could prove useful can be put into the vapor phase. On the other hand, a much greater fraction can be put into solution. We have found that by using a simple fuel injector directly coupled to a heated reactor, one can inject a variety of liquids directly into the plasma environment. A temperature controlled capillary tube can be used to accomplish the same thing. The liquids can also have a variety of solids dispersed in them: metals, dielectrics, aromatics, proteins, viruses, etc. While we have not had time yet to do detailed studies on a very wide range of liquids and dispersed solids, we do have the proof of principle. We have made films from injecting 1] ethanol, 2] hexane 3] iron nanoparticles dispersed in hexane and 4] ferrocene dissolved in benzene into capacitively coupled plasmas at approximately 50 mTorr. The details of the reactor and the films produced to date will be explained in the poster. Briefly: we use capacitively coupled plasma sources. Typical pressures are well below 1 Torr and powers below 10 Watts. The hexane films have growth rates around 10 nm/min.

  8. Enhanced electrical conductivity of poly(methyl methacrylate) filled with graphene and in situ synthesized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Athanassiou, Athanassia; Bonaccorso, Francesco; Fragouli, Despina

    2018-06-01

    The improvement of the electrical conductivity of polymers by incorporating graphene has been intensively studied in recent years. To further boost the electrical conductivity, blending third-party additives into the polymer/graphene systems has been demonstrated as a viable strategy. Herein, we propose a simple route to increase the electrical conductivity of poly(methyl methacrylate) (PMMA)/graphene nanoplatelet (GnP) composites, by the in situ synthesis of gold nanoparticles directly into the solid film. In particular, PMMA, GnPs and a gold precursor are solution blended to form the composite films. The subsequent heat-induced formation of gold nanoparticles directly in the solid state film, cause the significant decrease of the percolation threshold of GnPs loading, from 3% to 1% by weight in the composite. This is attributed to the preferential formation of the gold nanoparticles onto the GnPs, with synergistic effects beneficial for the improvement of the electrical conductivity. The formation procedure of the gold nanoparticles, and their arrangement into the composite matrix are studied. We demonstrate that following this straightforward process it is possible to form nanocomposites able to conduct efficiently electric current even at low graphene loadings preserving at the same time the mechanical properties of the polymer matrix.

  9. The Effect of Inkjet Printing over Polymeric Films as Potential Buccal Biologics Delivery Systems.

    PubMed

    Montenegro-Nicolini, Miguel; Reyes, Patricio E; Jara, Miguel O; Vuddanda, Parameswara R; Neira-Carrillo, Andrónico; Butto, Nicole; Velaga, Sitaram; Morales, Javier O

    2018-06-22

    The buccal mucosa appears as a promissory route for biologic drug administration, and pharmaceutical films are flexible dosage forms that can be used in the buccal mucosa as drug delivery systems for either a local or systemic effect. Recently, thin films have been used as printing substrates to manufacture these dosage forms by inkjet printing. As such, it is necessary to investigate the effects of printing biologics on films as substrates in terms of their physical and mucoadhesive properties. Here, we explored solvent casting as a conventional method with two biocompatible polymers, hydroxypropyl methylcellulose, and chitosan, and we used electrospinning process as an electrospun film fabrication of polycaprolactone fibers due to its potential to elicit mucoadhesion. Lysozyme was used as biologic drug model and was formulated as a solution for printing by thermal inkjet printing. Films were characterized before and after printing by mechanical and mucoadhesive properties, surface, and ultrastructure morphology through scanning electron microscopy and solid state properties by thermal analysis. Although minor differences were detected in micrographs and thermograms in all polymeric films tested, neither mechanical nor mucoadhesive properties were affected by these differences. Thus, biologic drug printing on films was successful without affecting their mechanical or mucoadhesive properties. These results open way to explore biologics loading on buccal films by inkjet printing, and future efforts will include further in vitro and in vivo evaluations.

  10. Nanocrystal-polymer nanocomposite electrochromic device

    DOEpatents

    Milliron, Delia; Runnerstrom, Evan; Helms, Brett; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2015-12-08

    Described is an electrochromic nanocomposite film comprising a solid matrix of an oxide based material, the solid matrix comprising a plurality of transparent conducting oxide (TCO) nanostructures dispersed in the solid matrix and a lithium salt dispersed in the solid matrix. Also described is a near infrared nanostructured electrochromic device having a functional layer comprising the electrochromic nanocomposite film.

  11. A stochastic model of solid state thin film deposition: Application to chalcopyrite growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovelett, Robert J.; Pang, Xueqi; Roberts, Tyler M.

    Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. In this work, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We demonstratemore » the modeling approach with the example of chalcopyrite Cu(InGa)(SeS){sub 2} thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa)(SeS){sub 2} thin films arises and persists. We believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.« less

  12. A stochastic model of solid state thin film deposition: Application to chalcopyrite growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovelett, Robert J.; Pang, Xueqi; Roberts, Tyler M.

    Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. Here, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We also demonstrate themore » modeling approach with the example of chalcopyrite Cu(InGa)(SeS) 2 thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa)(SeS) 2 thin films arises and persists. Finally, we believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.« less

  13. A stochastic model of solid state thin film deposition: Application to chalcopyrite growth

    DOE PAGES

    Lovelett, Robert J.; Pang, Xueqi; Roberts, Tyler M.; ...

    2016-04-01

    Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. Here, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We also demonstrate themore » modeling approach with the example of chalcopyrite Cu(InGa)(SeS) 2 thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa)(SeS) 2 thin films arises and persists. Finally, we believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.« less

  14. Comparison of soil solution speciation and diffusive gradients in thin-films measurement as an indicator of copper bioavailability to plants.

    PubMed

    Zhao, Fang-Jie; Rooney, Corinne P; Zhang, Hao; McGrath, Steve P

    2006-03-01

    The toxicity effect concentrations (10% effective concentration [EC10] and 50% effective concentration [EC50]) of total added Cu derived from barley root elongation and tomato growth assays varied widely among 18 European soils. We investigated whether this variation could be explained by the solubility or speciation of Cu in soil solutions or the diffusive gradients in thin-films (DGT) measurement. Solubility and Cu speciation varied greatly among the soils tested. However, the EC10 and EC50 of soil solution Cu or free Cu2+ activity varied even more widely than those based on the total added Cu, indicating that solubility or soil solution speciation alone could not explain intersoil variation in Cu toxicity. Estimated EC10 and EC50 of free Cu2+ activity correlated closely and negatively with soil pH, indicating a protective effect of H+, which is consistent with the biotic ligand model concept. The DGT measurement was found to narrow the intersoil variation in EC50 considerably and to be a better predictor of plant Cu concentrations than either soil solution Cu or free Cu2+ activity. We conclude that plant bioavailability of Cu in soil depends on Cu speciation, interactions with protective ions (particularly H+), and the resupply from the solid phase, and we conclude that the DGT measurement provides a useful indicator of Cu bioavailability in soil.

  15. Preparation of Ferroelectric Thin Films of Bismuth Layer Structured Compounds

    NASA Astrophysics Data System (ADS)

    Watanabe, Hitoshi; Mihara, Takashi; Yoshimori, Hiroyuki; Araujo, Carlos

    1995-09-01

    Ferroelectric thin films of bismuth layer structured compounds, SrBi2Ta2O9, SrBi2Nb2O9, SrBi4Ti4O15 and their solid solutions, were formed onto a sputtered platinum layer on a silicon substrate using spin-on technique and metal-organic decomposition (MOD) method. X-ray diffraction (XRD) analysis and some electrical measurements were performed on the prepared thin films. XRD results of SrBi2(Ta1- x, Nb x)2O9 films (0≤x≤1) showed that niobium ions substitute for tantalum ions in an arbitrary ratio without any change of the layer structure and lattice constants. Furthermore, XRD results of SrBi2 xTa2O9 films (0≤x≤1.5) indicated that the formation of the bismuth layer structure does not always require an accurate bismuth content. The layer structure was formed above 50% of the stoichiometric bismuth content in the general formula. SrBi2(Ta1- x, Nb x)2O9 films with various Ta/Nb ratios have large enough remanent polarization for nonvolatile memory application and have shown high fatigue resistance against 1011 cycles of full switching of the remanent polarization. Mixture films of the three compounds were also investigated.

  16. Tunable transport property of oxygen ion in metal oxide thin film: Impact of electrolyte orientation on conductivity.

    PubMed

    Arunkumar, P; Ramaseshan, R; Dash, S; Babu, K Suresh

    2017-06-14

    Quest for efficient ion conducting electrolyte thin film operating at intermediate temperature (~600 °C) holds promise for the real-world utilization of solid oxide fuel cells. Here, we report the correlation between mixed as well as preferentially oriented samarium doped cerium oxide electrolyte films fabricated by varying the substrate temperatures (100, 300 and 500 °C) over anode/ quartz by electron beam physical vapor deposition. Pole figure analysis of films deposited at 300 °C demonstrated a preferential (111) orientation in out-off plane direction, while a mixed orientation was observed at 100 and 500 °C. As per extended structural zone model, the growth mechanism of film differs with surface mobility of adatom. Preferential orientation resulted in higher ionic conductivity than the films with mixed orientation, demonstrating the role of growth on electrochemical properties. The superior ionic conductivity upon preferential orientation arises from the effective reduction of anisotropic nature and grain boundary density in highly oriented thin films in out-of-plane direction, which facilitates the hopping of oxygen ion at a lower activation energy. This unique feature of growing an oriented electrolyte over the anode material opens a new approach to solving the grain boundary limitation and makes it as a promising solution for efficient power generation.

  17. Impedance dispersion analysis of drug-membrane interactions

    NASA Astrophysics Data System (ADS)

    Tacheva, Bilyana; Paarvanova, Boyana; Ivanov, Ivan T.; Karabaliev, Miroslav

    2017-11-01

    Thin lipid films modified glassy carbon electrodes (GCE) were used in this work as model system for studying the interactions between two antipsychotic phenothiazine drugs, chlorpromazine and thioridazine, and the lipid fraction of the biomembranes. The lipid films on the electrode surface were obtained through the thinning of film-forming lipid solution deposited between an electrolyte phase and the working GC electrode. The effects of the drugs on the lipid film structure were investigated by electrochemical impedance spectroscopy (EIS). To characterize the electric properties of the lipid film the impedance of the working GCE is modeled with an equivalent circuit consisting of parallel capacitance Cp and resistance Rp. These capacitance and resistance are not frequency independent but could be calculated as equivalent Cp and Rp for each measured frequency of the impedance spectrum and presented as functions of the frequency f, Cp = Cp(f) and Rp= Rp(f). For the lipid films used in this work, it is demonstrated that both Cp(f) and Rp(f) are well approximated with power-law functions. This behavior implies that the impedance Z of the films could be analysed in terms of the well-known constant-phase angle element (CPE), which is often used to describe the interfacial impedance of solid working electrodes.

  18. Synthesis, structure, and photochemistry of a novel rhenium (I) enolate and photochemistry and second harmonic generation in Langmuir-Blodgett films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gron, L.U.

    1987-01-01

    A background of cyclopentadienyl ring-slippage reactions is presented along with a brief discussion of the transformations of the related indenyl and fluorenyl ligands. Subsequently a review of oxygen-bonded transition metal enolate complexes is given. Synthesis, structure, and photochemistry of fac-(CO)/sub 3/(P(CH/sub 3/)/sub 3/)/sub 2/Re(OC(CH/sub 3/)C/sub 5/H/sub 4/), 5, is presented. The Re(I) enolate complex was prepared from the reaction of (eta/sup 5/-C/sub 5/H/sub 4/C(O)CH/sub 3/)Re(CO)/sub 3/, 4, with P(CH/sub 3/)/sub 3/. Compound 5 was characterized structurally in the solid state by x-ray crystallography and in solution by ir, and /sup 1/H, /sup 13/C, and /sup 31/P NMR spectroscopy. Photolysis ofmore » 5 at 337 nm in CH/sub 2/Cl/sub 2/ solution cleaves the Re-O bond: smooth conversion to fac-(CO)/sub 3/(P(CH/sub 3/)/sub 3/)/sub 2/ReCl, 6, is observed with a quantum yield of 0.04. The photochemistry of 5 in benzene solution and the synthesis and photochemistry of fac-(CO)/sub 3/(P(CH/sub 3/)/sub 2/-Re(OC(CH/sub 3/)C/sub 5/H/sub 3/CH/sub 3/), 14, is also presented. The Langmuir-Blodgett method of monolayer film formation, characteristics of good film formation and structure of the supported film are reviewed. The basics of second harmonic generation are also presented along with useful applications of the Langmuir-Blodgett films to these studies. Synthesis, structure, and photochemistry of Langmuir-Blodgett stearate films incorporated the emissive Eu/sup 3 +/ and UO/sub 2//sup 2 +/ cations are described. A mixed film containing UO/sub 2/2/sup +//stearate and Eu/sup 3 +//stearate in alternating layers exhibited energy transfer from the UO/sub 2//sup 2 +/ ions to the Eu/sup 3 +/ ions.« less

  19. Using the Semiconductors Materials of InSb-ZnTe System in Sensors for Gas Control

    NASA Astrophysics Data System (ADS)

    Shubenkova, E. G.

    2017-04-01

    The samples of thin film semiconductor compounds InSb, ZnTe and solid solutions based on them were obtained by vapor deposition of components on a dielectric substrate in a vacuum, followed by annealing and their surface properties in CO, O2 and NH3 gas atmospheres were investigated. Identification of the samples was carried out by X-ray diffraction techniques. In the temperature range 253 ÷ 403 K and a pressure range of 1÷12 Pa the gas adsorption was measured by piezoelectric microbalance technique. In order to establish the basic regularities of processes flowing on samples surface in addition to the electrophisical were used Infrared and Raman spectroscopic measurements. The resulting addiction “surface property - composition” is extreme and have allowed to determine solid solution InSb0,95-ZnTe0,05 as the most sensitive to the presence of ammonia, selective and this sample exhibits a negligible oxidation of surface.

  20. Tethered tertiary amines as solid-state n-type dopants for solution-processable organic semiconductors

    DOE PAGES

    Russ, Boris; Robb, Maxwell J.; Popere, Bhooshan C.; ...

    2015-12-09

    A scarcity of stable n-type doping strategies compatible with facile processing has been a major impediment to the advancement of organic electronic devices. Localizing dopants near the cores of conductive molecules can lead to improved efficacy of doping. We and others recently showed the effectiveness of tethering dopants covalently to an electron-deficient aromatic molecule using trimethylammonium functionalization with hydroxide counterions linked to a perylene diimide core by alkyl spacers. In this work, we demonstrate that, contrary to previous hypotheses, the main driver responsible for the highly effective doping observed in thin films is the formation of tethered tertiary amine moietiesmore » during thin film processing. Furthermore, we demonstrate that tethered tertiary amine groups are powerful and general n-doping motifs for the successful generation of free electron carriers in the solid-state, not only when coupled to the perylene diimide molecular core, but also when linked with other small molecule systems including naphthalene diimide, diketopyrrolopyrrole, and fullerene derivatives. Our findings help expand a promising molecular design strategy for future enhancements of n-type organic electronic materials.« less

  1. Tethered tertiary amines as solid-state n-type dopants for solution-processable organic semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russ, Boris; Robb, Maxwell J.; Popere, Bhooshan C.

    A scarcity of stable n-type doping strategies compatible with facile processing has been a major impediment to the advancement of organic electronic devices. Localizing dopants near the cores of conductive molecules can lead to improved efficacy of doping. We and others recently showed the effectiveness of tethering dopants covalently to an electron-deficient aromatic molecule using trimethylammonium functionalization with hydroxide counterions linked to a perylene diimide core by alkyl spacers. In this work, we demonstrate that, contrary to previous hypotheses, the main driver responsible for the highly effective doping observed in thin films is the formation of tethered tertiary amine moietiesmore » during thin film processing. Furthermore, we demonstrate that tethered tertiary amine groups are powerful and general n-doping motifs for the successful generation of free electron carriers in the solid-state, not only when coupled to the perylene diimide molecular core, but also when linked with other small molecule systems including naphthalene diimide, diketopyrrolopyrrole, and fullerene derivatives. Our findings help expand a promising molecular design strategy for future enhancements of n-type organic electronic materials.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teka, S.; Gaied, A.; Jaballah, N.

    Highlights: • Microwave-assisted synthesis of rotaxane based on anthracene and β-cyclodextrin. • Morphological and optical characterization of thin solid film. • Elaboration of impedimetric gold/rotaxane sensor. • Investigation of the membrane sensitivity towards Hg{sup 2+}, Cu{sup 2+} and Pb{sup 2+} cations. - Abstract: An impedimetric sensor based on a new semi-conducting rotaxane has been described for detection of toxic cations. The rotaxane, consists on a π-conjugated material encapsulated into β-cyclodextrin (β-CD); it has been synthesized via the Williamson reaction under microwaves irradiation. The supramolecular structure of the compound was confirmed by NMR and FT-IR spectroscopies. A thin solid film ofmore » the rotaxane was deposited by spin-coating to develop a new electrochemical sensor. The morphological properties of the organic membrane were evaluated using contact angle measurements and atomic force microscopy. The gold/rotaxane/solution interfaces were investigated by electrochemical impedance spectroscopy and the obtained data were fitted using an equivalent electrical circuit. The response of the gold/rotaxane membrane towards Hg{sup 2+}, Cu{sup 2+} and Pb{sup 2+} cations was studied and the results showed a good sensitivity to the mercury cations.« less

  3. Investigation of Rhodopsin Dynamics in its Signaling State by Solid-State Deuterium NMR Spectroscopy

    PubMed Central

    Struts, Andrey V.; Chawla, Udeep; Perera, Suchithranga M.D.C.; Brown, Michael F.

    2017-01-01

    Site-directed deuterium NMR spectroscopy is a valuable tool to study the structural dynamics of biomolecules in cases where solution NMR is inapplicable. Solid-state 2H NMR spectral studies of aligned membrane samples of rhodopsin with selectively labeled retinal provide information on structural changes of the chromophore in different protein states. In addition, solid-state 2H NMR relaxation time measurements allow one to study the dynamics of the ligand during the transition from the inactive to the active state. Here we describe the methodological aspects of solid-state 2H NMR spectroscopy for functional studies of rhodopsin, with an emphasis on the dynamics of the retinal cofactor. We provide complete protocols for the preparation of NMR samples of rhodopsin with 11-cis-retinal selectively deuterated at the methyl groups in aligned membranes. In addition, we review optimized conditions for trapping the rhodopsin photointermediates; and lastly we address the challenging problem of trapping the signaling state of rhodopsin in aligned membrane films. PMID:25697522

  4. Materials and methods for the preparation of nanocomposites

    DOEpatents

    Talapin, Dmitri V.; Kovalenko, Maksym V.; Lee, Jong-Soo; Jiang, Chengyang

    2016-05-24

    Disclosed herein is an isolable colloidal particle comprising a nanoparticle and an inorganic capping agent bound to the surface of the nanoparticle, a solution of the same, a method for making the same from a biphasic solvent mixture, and the formation of structures and solids from the isolable colloidal particle. The process can yield photovoltaic cells, piezoelectric crystals, thermoelectric layers, optoelectronic layers, light emitting diodes, ferroelectric layers, thin film transistors, floating gate memory devices, imaging devices, phase change layers, and sensor devices.

  5. Laser-ablative fabrication of nanoparticle inks for 3D inkjetprinting of multifunctional coatings

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Ivanova, A. K.; Khmel'nitskii, R. A.; Klevkov, Yu V.; Kudryashov, S. I.; Mel'nik, N. N.; Nastulyavichus, A. A.; Rudenko, A. A.; Saraeva, I. N.; Smirnov, N. A.; Zayarny, D. A.

    2017-12-01

    We report the fabrication of multifunctional coatings via inkjet printing using water-based nanoinks in the form of selenium (Se) and gold (Au) nanoparticle (NP) colloids, prepared by laser ablation of solid targets in deionized water or 50%-isopropyl alcohol solution. Nanoparticles and NP-based coatings were deposited onto silver films, magnetronsputtered to silica-glass substrates, and characterized by means of scanning and transmission electron microscopy (SEM, TEM), UV-vis-IR, Raman and energy-dispersive X-ray spectroscopies.

  6. Photothermal Deflection Spectroscopy of materials for energy applications

    NASA Astrophysics Data System (ADS)

    Johnson, Stephen; Day, James; Couch, Brandon; Heller, Brandon; Hart, Blake; Transylvania University Team

    A new photothermal deflection spectroscopy (PDS) setup has been constructed at Transylvania University. This poster will focus on the photothermal behavior of nanomaterials such as quantum dots as well as organic photovoltaic materials. With respect to organic photovoltaic materials, this work aims to understand differences in photothermal behavior between the solution and solid-film phases, where changes in photothermal spectra give insight into changes in electronic structure. A general overview of the PDS capabilities at Transylvania will also be given.

  7. Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance.

    PubMed

    Lan, Xinzheng; Voznyy, Oleksandr; Kiani, Amirreza; García de Arquer, F Pelayo; Abbas, Abdullah Saud; Kim, Gi-Hwan; Liu, Mengxia; Yang, Zhenyu; Walters, Grant; Xu, Jixian; Yuan, Mingjian; Ning, Zhijun; Fan, Fengjia; Kanjanaboos, Pongsakorn; Kramer, Illan; Zhitomirsky, David; Lee, Philip; Perelgut, Alexander; Hoogland, Sjoerd; Sargent, Edward H

    2016-01-13

    A solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Role of salt concentration in blend polymer for energy storage conversion devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arya, Anil; Sharma, A. L., E-mail: alsharmaiitkgp@gmail.com; Sadiq, M.

    2016-05-06

    Solid Polymer Electrolytes (SPE) are materials of considerable interest worldwide, which serves dual purpose of electrolyte and separator between electrode compartments in renewable energy conversion/storage devices such as; high energy density batteries, electrochromic display devices, and supercapacitors. Polymer blend electrolytes are prepared for various concentration of salt (Ö/Li) with the constant ratio (0.5 gm) of each PEO and PAN polymers (blend polymer) using solution casting technique. Solid polymeric ionic conductor as a separator is the ultimate substitute to eliminate the drawback related to liquid and gel polymer ionic conductors. In the present work, solid polymer electrolyte film consisting of PEO,more » PAN and LiPF{sub 6} are examined for various concentration of lithium salt by keeping PEO/PAN blend ratio as a constant with a view to optimize the dominant salt concentration which could give the maximum conductivity at ambient temperature.« less

  9. Thermal treatment effects imposed on solid DNA cationic lipid complex with hexadecyltrimethylammonium chloride, observed by variable angle spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Nizioł, Jacek

    2014-12-01

    DNA cationic lipid complexes are materials of properties required for applications in organic electronics and optoelectronics. Often, their thermal stability demonstrated by thermogravimetry is cited in the literature as important issue. However, little is known about processes occurring in heated solid DNA cationic lipid complexes. In frame of this work, thin films of Deoxyribonucleic acid-hexadecyltrimethylammonium chloride (DNA-CTMA) were deposited on silicon wafers. Samples were thermally annealed, and simultaneously, their optical functions were measured by spectroscopic ellipsometry. At lower temperatures, thermal expansion coefficient of solid DNA-CTMA was negative, but at higher temperatures positive. Thermally induced modification of absorption spectrum in UV-vis was observed. It occurred at a range of temperatures higher than this of DNA denaturation in solution. The observed phenomenon was irreversible, at least in time scale of the experiment (one day).

  10. Salt induced reduction of lysozyme adsorption at charged interfaces

    NASA Astrophysics Data System (ADS)

    Göhring, Holger; Paulus, Michael; Salmen, Paul; Wirkert, Florian; Kruse, Theresa; Degen, Patrick; Stuhr, Susan; Rehage, Heinz; Tolan, Metin

    2015-06-01

    A study of lysozyme adsorption below a behenic acid membrane and at the solid-liquid interface between aqueous lysozyme solution and a silicon wafer in the presence of sodium chloride is presented. The salt concentration was varied between 1 mmol L-1 and 1000 mmol L-1. X-ray reflectivity data show a clear dependence of the protein adsorption on the salt concentration. Increasing salt concentrations result in a decreased protein adsorption at the interface until a complete suppression at high concentrations is reached. This effect can be attributed to a reduced attractive electrostatic interaction between the positively charged proteins and negatively charged surfaces by charge screening. The measurements at the solid-liquid interfaces show a transition from unoriented order of lysozyme in the adsorbed film to an oriented order with the short protein axis perpendicular to the solid-liquid interface with rising salt concentration.

  11. Quantitative analysis of PMR-15 polyimide resin by HPLC

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Lauver, Richard W.

    1987-01-01

    The concentration of individual components and of total solids of 50 wt pct PMR-15 resin solutions was determined using reverse-phase HPLC to within + or - 8 percent accuracy. Acid impurities, the major source of impurities in 3,3', 4,4'-benzophenonetetracarboxylic acid (BTDE), were eliminated by recrystallizing the BTDE prior to esterification. Triester formation was not a problem because of the high rate of esterification of the anhydride relative to that of the carboxylic acid. Aging of PMR-15 resin solutions resulted in gradual formation of the mononadimide and bisnadimide of 4,4'-methylenedianiline, with the BTDE concentration remaining constant. Similar chemical reactions occurred at a reduced rate in dried films of PMR-15 resin.

  12. Electrochemical corrosion of a noble metal-bearing alloy-oxide composite

    DOE PAGES

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    2017-04-27

    The effects of added Ru and Pd on the microstructure and electrochemical behaviour of a composite material made by melting those metals with AISI 410 stainless steel, Zr, Mo, and lanthanide oxides were assessed using electrochemical and microscopic methods Furthermore, the lanthanide oxides reacted with Zr to form durable lanthanide zirconates and Mo alloyed with steel to form FeMoCr intermetallics. The noble metals alloyed with the steel to provide solid solution strengthening and inhibit carbide/nitride formation. In a passive film formed during electrochemical tests in acidic NaCl solution, but became less effective as corrosion progressed and regions over the intermetallicsmore » eventually failed.« less

  13. Properties of solid polymer electrolyte fluorocarbon film. [used in hydrogen/oxygen fuel cells

    NASA Technical Reports Server (NTRS)

    Alston, W. B.

    1973-01-01

    The ionic fluorocarbon film used as the solid polymer electrolyte in hydrogen/oxygen fuel cells was found to exhibit delamination failures. Polarized light microscopy of as-received film showed a lined region at the center of the film thickness. It is shown that these lines were not caused by incomplete saponification but probably resulted from the film extrusion process. The film lines could be removed by an annealing process. Chemical, physical, and tensile tests showed that annealing improved or sustained the water contents, spectral properties, thermo-oxidative stability, and tensile properties of the film. The resistivity of the film was significantly decreased by the annealing process.

  14. Synthesis and photovoltaic response of a solution-processable dithienyldiketopyrrolopyrrole-based molecular semiconductor with thienylvinylthienyl endgroups

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Hui; Tan, Wan-Yi; Wang, Li-Ping; Li, Qing-Duan; Zhou, Rui; Huang, Ju; Wei, Xin-Feng; Xia, Yan; He, Yi-Feng; Zhu, Xu-Hui; Peng, Junbiao; Cao, Yong

    2015-01-01

    We describe the synthesis and preliminary photovoltaic performance of a solution-processable organic small-molecule electron donor DT that consists of dithienyldiketopyrrolopyrrole (DT-DPP) as the core and thienylvinylthiophene (TVT) as the endgroups. The new compound is a crystalline solid with a Tm of approximately 216°C. Cyclic voltammetry indicates that DT exhibits two quasi-reversible one-electron oxidation waves at ca. 0.68 and 0.90 V versus an Ag/AgCl reference electrode, respectively, leading to an estimated highest occupied molecular orbital (HOMO) level of about -5.08 eV. Introducing the branched 2-hexyldecyl side chain provides DT with a high solubility in chloroform up to ca. 36 mg mL-1 at room temperature. Thermal annealing increases the crystallinity of the as-cast film from chloroform solution, thereby rendering slightly red-shifted charge-transfer absorption maxima. Fitting the space-charge-limited current characteristics of the thermally annealed thin film yields an improved hole mobility of ˜2.14×10-4 cm2 V-1 s-1 at low voltages versus ˜1.46×10-4 cm2 V-1 s-1 of the as-cast film. A first characterization of the solar cell [ITO/PEDOT: PSS/DT: PC61BM/Al] produces a power conversion efficiency of ˜3% with VOC≈0.78 V, JSC≈7.91 mA cm-2, and FF≈48.7%, under simulated AM1.5G with an illumination intensity of 100 mW cm-2. It should be noted that the thermal effect on the thin film absorption of DT does not seem to be completely similar to the molecular donor DPP reported earlier, which bears 6-fluoronaphthyl endgroups.

  15. Multi-element microelectropolishing method

    DOEpatents

    Lee, Peter J.

    1994-01-01

    A method is provided for microelectropolishing a transmission electron microscopy nonhomogeneous multi-element compound foil. The foil is electrolyzed at different polishing rates for different elements by rapidly cycling between different current densities. During a first portion of each cycle at a first voltage a first element electrolyzes at a higher current density than a second element such that the material of the first element leaves the anode foil at a faster rate than the second element and creates a solid surface film, and such that the solid surface film is removed at a faster rate than the first element leaves the anode foil. During a second portion of each cycle at a second voltage the second element electrolyzes at a higher current density than the first element, and the material of the second element leaves the anode foil at a faster rate than the first element and creates a solid surface film, and the solid surface film is removed at a slower rate than the second element leaves the foil. The solid surface film is built up during the second portion of the cycle, and removed during the first portion of the cycle.

  16. Synthesis of thin film containing 4-amino-1,2,4-triazole iron(II) complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onggo, Djulia, E-mail: djulia@Chem.itb.ac.id

    The Iron(II) complex with 4-amino-1,2,4 triazole (NH{sub 2}-trz) ligand has potential applications as smart material since the compounds show a distinct color change from lilac at low temperature to colorless at high temperature. The lilac color of the complex represent the diamagnetic low spin state while the colorless correspond to the paramagnetic high spin state of iron(II). The transition between the two states could be tuned by changing the anionic group. Generally, the complex was synthesized directly from aqueous solution of iron(II) salt with considerable amounts of NH{sub 2}-trz solution produced solid powder compound. For application as an electronic molecularmore » device, the complex should be obtained as a thin film. The transparent [Fe(NH{sub 2}trz){sub 3}]-Nafion film has been successfully obtained, however, no anion variation can be produced since the nafion is an anionic resin. In this work, the [Fe(NH{sub 2}trz){sub 3}]-complexes with several anions have been synthesized inside nata de coco membrane that commonly used as a medium for deposition metal nano-particles. After drying the membrane containing the complex became a thin film. At room temperature, the film containing iron(II) complexes of sulphate and nitrate salts show lilac color, similar to that of the original complexes in the powder form. On heating, the color of the complex film changed to colorless and this color change was observed reversibly. In contrast, the films containing perchlorate and tetrafluoroborate iron(II) complexes are colorless at room temperature and changed to lilac on cooling. The significant color changing of the iron(II)complexes in the nata de coco film can be used for demonstration thermo chromic effect of smart materials with relatively small amount of the compounds.« less

  17. Study of Photosensitive Dry Films Absorption for Printed Circuit Boards by Photoacoustic Technique

    NASA Astrophysics Data System (ADS)

    Hernández, R.; Zaragoza, J. A. Barrientos; Jiménez-Pérez, J. L.; Orea, A. Cruz; Correa-Pacheco, Z. N.

    2017-08-01

    In this work, the study of photosensitive dry-type films by photoacoustic technique is proposed. The dry film photoresist is resistant to chemical etching for printed circuit boards such as ferric chloride, sodium persulfate or ammonium, hydrochloric acid. It is capable of faithfully reproducing circuit pattern exposed to ultraviolet light (UV) through a negative. Once recorded, the uncured portion is removed with alkaline solution. It is possible to obtain good results in surface mount circuits with tracks of 5 mm. Furthermore, the solid resin films are formed by three layers, two protective layers and a UV-sensitive optical absorption layer in the range of 325 nm to 405 nm. By means of optical absorption of UV-visible rays emitted by a low-power Xe lamp, the films transform this energy into thermal waves generated by the absorption of optical radiation and subsequently no-radiative de-excitation occurs. The photoacoustic spectroscopy is a useful technique to measure the transmittance and absorption directly. In this study, the optical absorption spectra of the three layers of photosensitive dry-type films were obtained as a function of the wavelength, in order to have a knowledge of the absorber layer and the protective layers. These analyses will give us the physical properties of the photosensitive film, which are very important in curing the dry film for applications in printed circuit boards.

  18. Substituent effects on the electronic characteristics of pentacene derivatives for organic electronic devices: dioxolane-substituted pentacene derivatives with triisopropylsilylethynyl functional groups.

    PubMed

    Griffith, Olga Lobanova; Anthony, John E; Jones, Adolphus G; Shu, Ying; Lichtenberger, Dennis L

    2012-08-29

    The intramolecular electronic structures and intermolecular electronic interactions of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene), 6,14-bis-(triisopropylsilylethynyl)-1,3,9,11-tetraoxa-dicyclopenta[b,m]-pentacene (TP-5 pentacene), and 2,2,10,10-tetraethyl-6,14-bis-(triisopropylsilylethynyl)-1,3,9,11-tetraoxa-dicyclopenta[b,m]pentacene (EtTP-5 pentacene) have been investigated by the combination of gas-phase and solid-phase photoelectron spectroscopy measurements. Further insight has been provided by electrochemical measurements in solution, and the principles that emerge are supported by electronic structure calculations. The measurements show that the energies of electron transfer such as the reorganization energies, ionization energies, charge-injection barriers, polarization energies, and HOMO-LUMO energy gaps are strongly dependent on the particular functionalization of the pentacene core. The ionization energy trends as a function of the substitution observed for molecules in the gas phase are not reproduced in measurements of the molecules in the condensed phase due to polarization effects in the solid. The electronic behavior of these materials is impacted less by the direct substituent electronic effects on the individual molecules than by the indirect consequences of substituent effects on the intermolecular interactions. The ionization energies as a function of film thickness give information on the relative electrical conductivity of the films, and all three molecules show different material behavior. The stronger intermolecular interactions in TP-5 pentacene films lead to better charge transfer properties versus those in TIPS pentacene films, and EtTP-5 pentacene films have very weak intermolecular interactions and the poorest charge transfer properties of these molecules.

  19. Aqueous Processing for Printed Organic Electronics: Conjugated Polymers with Multistage Cleavable Side Chains

    PubMed Central

    2017-01-01

    The ability to process conjugated polymers via aqueous solution is highly advantageous for reducing the costs and environmental hazards of large scale roll-to-roll processing of organic electronics. However, maintaining competitive electronic properties while achieving aqueous solubility is difficult for several reasons: (1) Materials with polar functional groups that provide aqueous solubility can be difficult to purify and characterize, (2) many traditional coupling and polymerization reactions cannot be performed in aqueous solution, and (3) ionic groups, though useful for obtaining aqueous solubility, can lead to a loss of solid-state order, as well as a screening of any applied bias. As an alternative, we report a multistage cleavable side chain method that combines desirable aqueous processing attributes without sacrificing semiconducting capabilities. Through the attachment of cleavable side chains, conjugated polymers have for the first time been synthesized, characterized, and purified in organic solvents, converted to a water-soluble form for aqueous processing, and brought through a final treatment to cleave the polymer side chains and leave behind the desired electronic material as a solvent-resistant film. Specifically, we demonstrate an organic soluble polythiophene that is converted to an aqueous soluble polyelectrolyte via hydrolysis. After blade coating from an aqueous solution, UV irradiation is used to cleave the polymer’s side chains, resulting in a solvent-resistant, electroactive polymer thin film. In application, this process results in aqueous printed materials with utility for solid-state charge transport in organic field effect transistors (OFETs), along with red to colorless electrochromism in ionic media for color changing displays, demonstrating its potential as a universal method for aqueous printing in organic electronics. PMID:28979937

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chew, K. W.; Chen, S. S.; Pang, W. L.

    The effects of Lithium triflate salt (LiCF{sub 3}SO{sub 3}), on the poly (methyl methacrylate)(PMMA)-based solid polymer electrolytes plasticized with propylene carbonate (PC) solvated in Tetrahydrofuran (THF) have been studied through a.c impedance spectroscopy and infrared spectroscopy. Lithium triflate was incorporated into the predetermined PMMA/PC system that has the highest value of ionic conductivity. In current investigations, four combination systems: Pure PMMA, (PMMA+PC) systems, (PMMA+LiCF{sub 3}SO{sub 3}) and (PMMA+PC+LiCF{sub 3}SO{sub 3}) systems were prepared using the solution cast method. Solutions were stirred for numerous hours to obtain a homogenous solution before it is poured into the petri dishes under ambient temperaturemore » to form the solid electrolyte thin film. The films were then removed from petri discs and transferred into the dessicator for further drying prior to the different tests. From the characterization done through the a.c impedance spectroscopy, the highest room temperature ionic conductivity in the pure PMMA sample, (PMMA+PC) system and (PMMA+LiCF{sub 3}SO{sub 3}) system is 2.83x10{sup -12} Scm{sup -1}, 4.39x10{sup -11} Scm{sup -1} and 3.93x10{sup -6} Scm{sup -1} respectively. The conductivity for (PMMA+PC+LiCF{sub 3}SO{sub 3}) system was obtained with the 30 wt% of lithium triflate, which is 2.48x10{sup -5} Scm{sup -1}. Infrared spectroscopy shows that complexation occurred between the polymer and the plasticizer, and the polymer and plasticizer and salt. The interactions have been studied in the C=O band, C-O-C band and the O-CH{sub 3} band.« less

  1. Aqueous Processing for Printed Organic Electronics: Conjugated Polymers with Multistage Cleavable Side Chains.

    PubMed

    Schmatz, Brian; Yuan, Zhibo; Lang, Augustus W; Hernandez, Jeff L; Reichmanis, Elsa; Reynolds, John R

    2017-09-27

    The ability to process conjugated polymers via aqueous solution is highly advantageous for reducing the costs and environmental hazards of large scale roll-to-roll processing of organic electronics. However, maintaining competitive electronic properties while achieving aqueous solubility is difficult for several reasons: (1) Materials with polar functional groups that provide aqueous solubility can be difficult to purify and characterize, (2) many traditional coupling and polymerization reactions cannot be performed in aqueous solution, and (3) ionic groups, though useful for obtaining aqueous solubility, can lead to a loss of solid-state order, as well as a screening of any applied bias. As an alternative, we report a multistage cleavable side chain method that combines desirable aqueous processing attributes without sacrificing semiconducting capabilities. Through the attachment of cleavable side chains, conjugated polymers have for the first time been synthesized, characterized, and purified in organic solvents, converted to a water-soluble form for aqueous processing, and brought through a final treatment to cleave the polymer side chains and leave behind the desired electronic material as a solvent-resistant film. Specifically, we demonstrate an organic soluble polythiophene that is converted to an aqueous soluble polyelectrolyte via hydrolysis. After blade coating from an aqueous solution, UV irradiation is used to cleave the polymer's side chains, resulting in a solvent-resistant, electroactive polymer thin film. In application, this process results in aqueous printed materials with utility for solid-state charge transport in organic field effect transistors (OFETs), along with red to colorless electrochromism in ionic media for color changing displays, demonstrating its potential as a universal method for aqueous printing in organic electronics.

  2. Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearse, Alexander J.; Schmitt, Thomas E.; Fuller, Elliot J.

    Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiO tBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li 2PO 2N between 250 and 300°C. The P/N ratio of the films is always 1, indicative of a particular polymorph ofmore » LiPON which closely resembles a polyphosphazene. Films grown at 300°C have an ionic conductivity of (6.51 ± 0.36)×10 -7 S/cm at 35°C, and are functionally electrochemically stable in the window from 0 to 5.3V vs. Li/Li +. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO 2 as the cathode and Si as the anode operating at up to 1 mA/cm 2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the fabrication and operation of thin film batteries with the thinnest (<40nm) solid state electrolytes yet reported. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.« less

  3. Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte

    DOE PAGES

    Pearse, Alexander J.; Schmitt, Thomas E.; Fuller, Elliot J.; ...

    2017-04-10

    Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiO tBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li 2PO 2N between 250 and 300°C. The P/N ratio of the films is always 1, indicative of a particular polymorph ofmore » LiPON which closely resembles a polyphosphazene. Films grown at 300°C have an ionic conductivity of (6.51 ± 0.36)×10 -7 S/cm at 35°C, and are functionally electrochemically stable in the window from 0 to 5.3V vs. Li/Li +. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO 2 as the cathode and Si as the anode operating at up to 1 mA/cm 2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the fabrication and operation of thin film batteries with the thinnest (<40nm) solid state electrolytes yet reported. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.« less

  4. Novel Organic Membrane-based Thin-film Microsensors for the Determination of Heavy Metal Cations

    PubMed Central

    Arida, Hassan A.; Kloock, Joachim P.; Schöning, Michael J.

    2006-01-01

    A first step towards the fabrication and electrochemical evaluation of thin-film microsensors based on organic PVC membranes for the determination of Hg(II), Cd(II), Pb(II) and Cu(II) ions in solutions has been realised. The membrane-coating mixture used in the preparation of this new type of microsensors is incorporating PVC as supporting matrix, o-nitrophenyloctylether (o-NPOE) as solvent mediator and a recently synthesized Hg[dimethylglyoxime(phene)]2+ and Bis-(4-hydroxyacetophenone)-ethylenediamine as electroactive materials for Hg(II) and Cd(II), respectively. A set of three commercialised ionophores for Cd(II), Pb(II) and Cu(II) has been also used for comparison. Thin-film microsensors based on these membranes showed a Nernstian response of slope (26-30 mV/dec.) for the respective tested cations. The potentiometric response characteristics (linear range, pH range, detection limit and response time) are comparable with those obtained by conventional membranes as well as coated wire electrodes prepared from the same membrane. The realisation of the new organic membrane-based thin-film microsensors overcomes the problem of an insufficient selectivity of solid-state-based thin-film sensors.

  5. Energy storage properties of Dy3+ doped Sr0.5Ba0.5Nb2O6 thick film with nano-size grains

    NASA Astrophysics Data System (ADS)

    Yang, Daeyeol; Kang, Soo-Bin; Lim, Ji-Ho; Yoon, Songhyeon; Ryu, Jungho; Choi, Jong-Jin; Velayutham, Thamil Selvi; Kim, Hyungsun; Jeong, Dae-Yong

    2017-09-01

    We studied the temperature stable high-energy storage capacitors. Sr0.5Ba0.5Nb2O6 (SBN) is the lead-free ferroelectric solid solution between BaNb2O6 and SrNb2O6. By doping Dy into SBN, the Curie temperature was lowered and dielectric constant was increased. To improve the breakdown behavior of Dy-doped SBN, the aerosoldeposition(AD) was applied to fabricate the dense films with nano-sized grains. These nano-grain give a large number of grain boundaries, suppressing the electron conduction in ceramics. The dielectric constant and breakdown electric field of the AD films annealed at 650 °C were measured as 2307 and 9.9 MV/m, while bulk were 1080 and 4 MV/m. Energy density and efficiency of the AD films annealed at 650 °C were also enhanced as 0.65 J/cc and 90.2% and bulk were 0.08 J/cc and 72.1%, respectively. In addition, the dielectric constant of AD film annealed at 550 °C and 650 °C were quite stable up to 150 °C.

  6. Influence of ZrO2 addition on the microstructure and discharge properties of Mg-Zr-O protective layers in alternating current plasma display panels

    NASA Astrophysics Data System (ADS)

    Guo, Bingang; Liu, Chunliang; Song, Zhongxiao; Liu, Liu; Fan, Yufeng; Xia, Xing; Fan, Duowang

    2005-08-01

    Mg-Zr-O protective layers for alternating current plasma display panels were deposited by e-beam evaporation. The effect of the ZrO2 addition on both the discharge properties [firing voltage Vf, minimum sustaining voltage Vs, and memory coefficient (MC)] and the microstructure of deposited Mg-Zr-O films were investigated. The results show that the film microstructure changes and the electron emission enhancement due to the ZrO2 addition are the main reasons for the improvements of the discharge properties of Mg-Zr-O films. A small amount of Zr solution in MgO under its solid solubility can effectively increase the outer-shell valence electron emission yield so as to decrease Vf and Vs compared with using a pure MgO protective layer. The ZrO2/(MgO +ZrO2) ratio has a great effect on the film surface conditions. Proper surface morphologies make a good contribution to obtain large MC in accordance with lower firing voltage.

  7. Polyoxometalate coordination induced controllable release of quinolone in hybrid film

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Li, Yang; Lv, Yu-Guang; Zhou, Shu-Jing; Li, Si; Gao, Guang-Gang; Liu, Hong

    2018-05-01

    Due to some side effects of quinolones in vivo, it is an urgent issue to extend their new applications in vitro. In this paper, structure-determined vanadium-quinolone functionalized polymolybdates of (NH4)2 [(γ-Mo8O26){VO(CF)2}2] (1) and (NH4)2 [(γ-Mo8O26){VO(NF)2}2] (2) (CF = ciprofloxacin; NF = norfloxacin) have been designed and synthesized. Complex 1 or 2 features a γ-type [Mo8O26]4- polyanion functionalized by two monocapped vanadium-quinolone complexes. Different H-bonds and π···π interactions allow 1 or 2 to form a 2D layered structure at solid state. When complex 1 or 2 is transferred into polyvinyl alcohol (PVA) film, its release rate in solution is lower than that of CF- or NF-PVA film and thus forming a novel quinolone delivery system. This is the first time that slow release effect of quinolone is achieved by polyoxometalate coordination effect. The slow release of 1 or 2 in PVA film is mainly ascribed to the coordination of quinolone with polyoxometalate anions.

  8. Parasitic oscillation suppression in solid state lasers using absorbing thin films

    DOEpatents

    Zapata, L.E.

    1994-08-02

    A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber. 16 figs.

  9. Parasitic oscillation suppression in solid state lasers using absorbing thin films

    DOEpatents

    Zapata, Luis E.

    1994-01-01

    A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber.

  10. Structural, microstructural and electrochemical properties of dispersed-type polymer nanocomposite films

    NASA Astrophysics Data System (ADS)

    Arya, Anil; Sharma, A. L.

    2018-01-01

    Free-standing solid polymer nanocomposite (PEO-PVC)  +  LiPF6-TiO2 films have been prepared through a standard solution-cast technique. The improvement in structural, microstructural and electrochemical properties has been observed on the dispersion of nanofiller in polymer salt complex. X-ray diffraction studies clearly reflect the formation of complex formation, as no corresponding salt peak appeared in the diffractograms. The Fourier transform infrared analysis suggested clear and convincing evidence of polymer-ion, ion-ion and polymer-ion-nanofiller interaction. The highest ionic conductivity of the prepared solid polymer electrolyte (SPE) films is ~5  ×  10-5 S cm-1 for 7 wt.% TiO2. The linear sweep voltammetry provides the electrochemical stability window of the prepared SPE films, about ~3.5 V. The ion transference number has been estimated, t ion  =  0.99 through the DC polarization technique. Dielectric spectroscopic studies were performed to understand the ion transport process in polymer electrolytes. All solid polymer electrolytes possess good thermal stability up to 300 °C. Differential scanning calorimetry analysis confirms the decrease of the melting temperature and signal of glass transition temperature with the addition of nanofiller, which indicates the decrease of crystallinity of the polymer matrix. An absolute correlation between diffusion coefficient (D), ion mobility (µ), number density (n), double-layer capacitance (C dl), glass transition temperature, melting temperature (T m), free ion area (%) and conductivity (σ) has been observed. A convincing model to study the role of nanofiller in a polymer salt complex has been proposed, which supports the experimental findings. The prepared polymer electrolyte system with significant ionic conductivity, high ionic transference number, and good thermal and voltage stability could be suggested as a potential candidate as electrolyte cum separator for the fabrication of a rechargeable lithium-ion battery system.

  11. 2-(4-Ethoxy phenyl)-4-phenyl quinoline organic phosphor for solution processed blue organic light-emitting diodes.

    PubMed

    Ghate, Minakshi; Kalyani, N Thejo; Dhoble, S J

    2018-05-31

    This paper reports the synthesis and characterization of 2-(4-ethoxyphenyl)-4-phenyl quinoline (OEt-DPQ) organic phosphor using an acid-catalyzed Friedlander reaction and the preparation of blended thin films by molecularly doping OEt-DPQ in poly(methyl methacrylate) (PMMA) at different wt%. The molecular structure of the synthesized phosphor was confirmed by Fourier transform infra-red (FTIR) spectroscopy and nuclear magnetic resonance spectra (NMR). Surface morphology and percent composition of the elements were assessed by scanning electron microscopy (SEM) and energy dispersive analysis of X-rays (EDAX). The thermal stability and melting point of OEt-DPQ and thin films were probed by thermo-gravimetric analysis (TGA)/differential thermal analysis (DTA) and were found to be 80°C and 113.6°C, respectively. UV-visible optical absorption spectra of OEt-DPQ in the solid state and blended films produced absorption bands in the range 260-340 nm, while photoluminescence (PL) spectra of OEt-DPQ in the solid state and blended thin films demonstrated blue emission that was registered at 432 nm when excited at 363-369 nm. However, solvated OEt-DPQ in chloroform, tetrahydrofuran or dichloromethane showed a blue shift of 31-43 nm. Optical absorption and emission parameters such as molar extinction coefficient (ε), energy gap (E g ), transmittance (T), reflectance (R), refractive index (n), oscillator energy (E 0 ) and oscillator strength (f), quantum yield (φ f ), oscillator energy (E 0 ), dispersion energy (E d ), Commission Internationale de l'Éclairage (CIE) co-ordinates and energy yield fluorescence (E F ) were calculated to assess the phosphor's suitability as a blue emissive material for opto-electronic applications such as organic light-emitting diodes (OLEDs), flexible displays and solid-state lighting technology. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Evolutions and equilibrium parameters of foam films from individual solutions of Bovine serum albumin, n-dodecyl-β-D-maltoside and from their mixed solutions

    NASA Astrophysics Data System (ADS)

    Gerasimova, Anelia Tsvetanova; Angarska, Jana Krumova; Tachev, Krasimir Dimov

    2017-03-01

    The evolutions of thinning of films from individual solutions of BSA, C12G2 and from their mixed solutions with molar ratios 1:1, 1:7.5, 1:50 and 1:100 with pH = 4.9 were recorded by modified (with video camera) interferometric method. Based on them the stages through which the film goes from its formation to the equilibrium state were distinguished. It was shown that: (i) the difference between the kinetic of drainage of films stabilized by high and low molecular surfactants is drastic; (ii) only the change of the pH solution under or above isoelectric point strongly retards the film drainage; (iii) the transition of the kinetic of thinning of films from mixed solutions from a kinetic typical for high molecular substances towards a kinetic for low substances depends on the molar ratio between the components in the solution. From the picture of film corresponding to its equilibrium state the type of film was determined. From the analysis of this picture the equilibrium thickness and contact angle were calculated. It was found that the criterion for Newtonium black films (based on the values of film thickness and contact angle) is not directly applicable for films from protein solutions or mixed solutions with the participation of proteins.

  13. Polyenamines from aromatic diacetylenic diketones and diamines

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor); Sinsky, Mark S. (Inventor); Connell, John W. (Inventor)

    1988-01-01

    The synthesis and characterization of several polyenamine ketones are discussed wherein conjugated diacetylenic diketones and aromatic diamines are used as a route to the formation of high molecular weight polyenamine ketones which exhibit good mechanical properties and can be cast into creasible films. Typical polymerization conditions involved the reaction of stoichiometric amounts of 1,4- or 1,3-PPPO and a diamine at 60 to 130 C in m-cresol at (w/w) solids content of 8 to 26 percent for a specified period of time under a nitrogen atmosphere. Novel polyenamine ketones were prepared with inherent viscosities as high as 1.99 dl/g and tough, clear amber films with tensile strengths of 12,400 psi and tensile moduli of 397,000 psi were cast from solutions of the polymers in chloroform.

  14. Measuring the Valence of Nanocrystal Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, Jonathan Scharle

    2016-11-30

    The goal of this project is to understand and control the interplay between nanocrystal stoichiometry, surface ligand binding and exchange, and the optoelectronic properties of semiconductor nanocrystals in solution and in thin solid films. We pursued three research directions with this goal in mind: 1) We characterized nanocrystal stoichiometry and its influence on the binding of L-type and X-type ligands, including the thermodynamics of binding and the kinetics of ligand exchange. 2) We developed a quantitative understanding of the relationship between surface ligand passivation and photoluminescence quantum yield. 3) We developed methods to replace the organic ligands on the nanocrystalmore » with halide ligands and controllably deposit these nanocrystals into thin films, where electrical measurements were used to investigate the electrical transport and internanocrystal electronic coupling.« less

  15. Nanopore fabricated in pyramidal HfO2 film by dielectric breakdown method

    NASA Astrophysics Data System (ADS)

    Wang, Yifan; Chen, Qi; Deng, Tao; Liu, Zewen

    2017-10-01

    The dielectric breakdown method provides an innovative solution to fabricate solid-state nanopores on insulating films. A nanopore generation event via this method is considered to be caused by random charged traps (i.e., structural defects) and high electric fields in the membrane. Thus, the position and number of nanopores on planar films prepared by the dielectric breakdown method is hard to control. In this paper, we propose to fabricate nanopores on pyramidal HfO2 films (10-nm and 15-nm-thick) to improve the ability to control the location and number during the fabrication process. Since the electric field intensity gets enhanced at the corners of the pyramid-shaped film, the probability of nanopore occurrence at vertex and edge areas increases. This priority of appearance provides us chance to control the location and number of nanopores by monitoring a sudden irreversible discrete increase in current. The experimental results showed that the probability of nanopore occurrence decreases in an order from the vertex area, the edge area to the side face area. The sizes of nanopores ranging from 30 nm to 10 nm were obtained. Nanopores fabricated on the pyramid-shaped HfO2 film also showed an obvious ion current rectification characteristic, which might improve the nanopore performance as a biomolecule sequencing platform.

  16. Three-Dimensional Microphase Separation and Synergistic Permeability in Stacked Lipid–Polymer Hybrid Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Minjee; Lee, Byeongdu; Leal, Cecilia

    Here, we present new structures of soft-material thin films that augment the functionality of substrate-mediated delivery systems. A hybrid material composed of phospholipids and block copolymers adopts a multilayered membrane structure supported on a solid surface. The hybrid films comprise intentional intramembrane heterogeneities that register across multilayers. These stacked domains convey unprecedented enhancement and control of permeability of solutes across micrometer-thick films. Using grazing incidence X-ray scattering, phase contrast atomic force microscopy, and confocal microscopy, we observed that in each lamella, lipid and polymers partition unevenly within the membrane plane segregating into lipid- or polymer-rich domains. Interestingly, we found evidencemore » that like-domains align in registry across multilayers, thereby making phase separation three-dimensional. Phase boundaries exist over extended length scales to compensate the height mismatch between lipid and polymer molecules. We show that microphase separation in hybrid films can be exploited to augment the capability of drug-eluting substrates. Lipid–polymer hybrid films loaded with paclitaxel show synergistic permeability of drug compared to single-component counterparts. We present a thorough structural study of stacked lipid–polymer hybrid membranes and propose that the presence of registered domains and domain boundaries impart enhanced drug release functionality. This work offers new perspectives in designing thin films for controlled delivery applications« less

  17. Three-Dimensional Microphase Separation and Synergistic Permeability in Stacked Lipid–Polymer Hybrid Membranes

    DOE PAGES

    Kang, Minjee; Lee, Byeongdu; Leal, Cecilia

    2017-10-20

    Here, we present new structures of soft-material thin films that augment the functionality of substrate-mediated delivery systems. A hybrid material composed of phospholipids and block copolymers adopts a multilayered membrane structure supported on a solid surface. The hybrid films comprise intentional intramembrane heterogeneities that register across multilayers. These stacked domains convey unprecedented enhancement and control of permeability of solutes across micrometer-thick films. Using grazing incidence X-ray scattering, phase contrast atomic force microscopy, and confocal microscopy, we observed that in each lamella, lipid and polymers partition unevenly within the membrane plane segregating into lipid- or polymer-rich domains. Interestingly, we found evidencemore » that like-domains align in registry across multilayers, thereby making phase separation three-dimensional. Phase boundaries exist over extended length scales to compensate the height mismatch between lipid and polymer molecules. We show that microphase separation in hybrid films can be exploited to augment the capability of drug-eluting substrates. Lipid–polymer hybrid films loaded with paclitaxel show synergistic permeability of drug compared to single-component counterparts. We present a thorough structural study of stacked lipid–polymer hybrid membranes and propose that the presence of registered domains and domain boundaries impart enhanced drug release functionality. This work offers new perspectives in designing thin films for controlled delivery applications« less

  18. Solid Lubricants for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2005-01-01

    Recent breakthroughs in gas foil bearing solid lubricants and computer based modeling has enabled the development of revolulionary Oil-Free turbomachinery systems. These innovative new and solid lubricants at low speeds (start-up and shut down). Foil bearings are hydrodynamic, self acting fluid film bearings made from thin, flexible sheet metal foils. These thin foils trap a hydrodynamic lubricating air film between their surfaces and moving shaft surface. For low temperature applications, like ainrafl air cycle machines (ACM's), polymer coatings provide important solid lubrication during start-up and shut down prior to the development of the lubricating fluid film. The successful development of Oil-Free gas turbine engines requires bearings which can operate at much higher temperatures (greater than 300 C). To address this extreme solid lubrication need, NASA has invented a new family of compostie solid lubricant coatings, NASA PS300.

  19. Effect of light and heat on the stability of montelukast in solution and in its solid state.

    PubMed

    Al Omari, Mahmoud M; Zoubi, Rufaida M; Hasan, Enas I; Khader, Tariq Z; Badwan, Adnan A

    2007-11-05

    The chemical stability of montelukast (Monte) in solution and in its solid state was studied. A simultaneous measurement of Monte and its degradation products was determined using a selective HPLC method. The HPLC system comprised a reversed phase column (C18) as the stationary phase and a mixture of ammonium acetate buffer of pH 3.5 and methanol (15:85 v/v) as the mobile phase. The UV detection was conducted at 254 nm. Monte in solution showed instability when exposed to light leading to the formation of its cis-isomer as the major photoproduct. The rate of photodegradation of Monte in solution exposed to various light sources increases in the order of; sodium

  20. Solid state electrochromic light modulator

    DOEpatents

    Cogan, Stuart F.; Rauh, R. David

    1993-01-01

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  1. Solid state electrochromic light modulator

    DOEpatents

    Cogan, Stuart F.; Rauh, R. David

    1993-12-07

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  2. Solid state electrochromic light modulator

    DOEpatents

    Cogan, Stuart F.; Rauh, R. David

    1990-01-01

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  3. Solid state electrochromic light modulator

    DOEpatents

    Cogan, S.F.; Rauh, R.D.

    1990-07-03

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counter electrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films. 4 figs.

  4. Structural Characterization of Aluminum (Oxy)hydroxide Films at the Muscovite (001)–Water Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang Soo; Schmidt, Moritz; Fister, Timothy T.

    2016-01-19

    The formation of Al (oxy)hydroxide on the basal surface of muscovite mica was investigated to understand how the structure of the substrate controls the nucleation and growth of secondary phases. Atomic force microscopy images showed that solid phases nucleated on the surface initially as two-dimensional islands that were <= 10 angstrom in height and <= 200 angstrom in diameter after 16-50 h of reaction in a 100 mu M AlCl3 solution at pH 4.2 at room temperature. High-resolution X-ray reflectivity data indicated that these islands were gibbsite layers whose basic unit is composed of a plane of Al ions octahedrallymore » coordinated to oxygen or hydroxyl groups. The formation of gibbsite layers is likely favored because of the structural similarity between its basal plane and the underlying mica surface. After 700-2000 h of reaction, a thicker and continuous film had formed on top of the initial gibbsite layers. X-ray diffraction data showed that this film was composed of diaspore that grew predominantly with its [040] and [140] crystallographic directions oriented along the muscovite [001] direction. These results show the structural characteristics of the muscovite (001) and Al (oxy)hydroxide film interface where presumed epitaxy had facilitated nucleation of metastable gibbsite layers which acted as a structural anchor for the subsequent growth of thermodynamically stable diaspore grown from a mildly acidic and Al-rich solution.« less

  5. Thin film production method and apparatus

    DOEpatents

    Loutfy, Raouf O.; Moravsky, Alexander P.; Hassen, Charles N.

    2010-08-10

    A method for forming a thin film material which comprises depositing solid particles from a flowing suspension or aerosol onto a filter and next adhering the solid particles to a second substrate using an adhesive.

  6. Characterization of film-forming solutions and films incorporating free and nanoencapsulated tea polyphenol prepared by gelatins with different Bloom values

    USDA-ARS?s Scientific Manuscript database

    Gelatin film-forming solutions and their films incorporating tea polyphenol (TP) and chitosan nanoparticles (CSNs) were prepared from gelatins with different Bloom values (100, 150 and 225). Blank gelatin film-forming solutions and films were prepared as controls. Gelatins with higher Bloom values h...

  7. Effect of Surfactant Type and Sonication Energy on the Electrical Conductivity Properties of Nanocellulose-CNT Nanocomposite Films.

    PubMed

    Siljander, Sanna; Keinänen, Pasi; Räty, Anna; Ramakrishnan, Karthik Ram; Tuukkanen, Sampo; Kunnari, Vesa; Harlin, Ali; Vuorinen, Jyrki; Kanerva, Mikko

    2018-06-20

    We present a detailed study on the influence of sonication energy and surfactant type on the electrical conductivity of nanocellulose-carbon nanotube (NFC-CNT) nanocomposite films. The study was made using a minimum amount of processing steps, chemicals and materials, to optimize the conductivity properties of free-standing flexible nanocomposite films. In general, the NFC-CNT film preparation process is sensitive concerning the dispersing phase of CNTs into a solution with NFC. In our study, we used sonication to carry out the dispersing phase of processing in the presence of surfactant. In the final phase, the films were prepared from the dispersion using centrifugal cast molding. The solid films were analyzed regarding their electrical conductivity using a four-probe measuring technique. We also characterized how conductivity properties were enhanced when surfactant was removed from nanocomposite films; to our knowledge this has not been reported previously. The results of our study indicated that the optimization of the surfactant type clearly affected the formation of freestanding films. The effect of sonication energy was significant in terms of conductivity. Using a relatively low 16 wt. % concentration of multiwall carbon nanotubes we achieved the highest conductivity value of 8.4 S/cm for nanocellulose-CNT films ever published in the current literature. This was achieved by optimizing the surfactant type and sonication energy per dry mass. Additionally, to further increase the conductivity, we defined a preparation step to remove the used surfactant from the final nanocomposite structure.

  8. MoS2 solid-lubricating film fabricated by atomic layer deposition on Si substrate

    NASA Astrophysics Data System (ADS)

    Huang, Yazhou; Liu, Lei; Lv, Jun; Yang, Junjie; Sha, Jingjie; Chen, Yunfei

    2018-04-01

    How to reduce friction for improving efficiency in the usage of energy is a constant challenge. Layered material like MoS2 has long been recognized as an effective surface lubricant. Due to low interfacial shear strengths, MoS2 is endowed with nominal frictional coefficient. In this work, MoS2 solid-lubricating film was directly grown by atomic layer deposition (ALD) on Si substrate using MoCl5 and H2S. Various methods were used to observe the grown MoS2 film. Moreover, nanotribological properties of the film were observed by an atomic force microscope (AFM). Results show that MoS2 film can effectively reduce the friction force by about 30-45% under different loads, indicating the huge application value of the film as a solid lubricant. Besides the interlayer-interfaces-sliding, the smaller capillary is another reason why the grown MoS2 film has smaller friction force than that of Si.

  9. Surface and protective properties of dispersions of film-formers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turishcheva, R.A.; Bakaleinikov, M.B.; Minkina, E.N.

    1983-03-01

    This article reports on studies of the surface and protective properties of 20% dispersions of film-formers most typically used in film-forming inhibited petroleum-base compositions (FIPC): solid hydrocarbons, fatty acid soaps, asphalt, polymers, natural resins, modified vegetable oils, and an inorganic thickening agent. Investigates the dispersions of Butosil and lithium stearate at respective concentrations of 10% and 8%, in view of the high thickening power of these film-formers. Classifies all of the studied FIPC film-forming components into 2 groups: those wth little thickening effect, a low level of adhesion-cohesion interaction, and a high level of surface and protective properties (the oxidizedmore » solid hydrocarbons and the polymers); and the film-formers that have a large thickening effect, a high level of adhesion-cohesion interaction, and a low level of surface and protective properties (the fatty acid soaps, the solid hydrocarbons, and Butosil). Recommends combining film-formers of both groups in developing new grades of FIPCs.« less

  10. Multi-element microelectropolishing method

    DOEpatents

    Lee, P.J.

    1994-10-11

    A method is provided for microelectropolishing a transmission electron microscopy nonhomogeneous multi-element compound foil. The foil is electrolyzed at different polishing rates for different elements by rapidly cycling between different current densities. During a first portion of each cycle at a first voltage a first element electrolyzes at a higher current density than a second element such that the material of the first element leaves the anode foil at a faster rate than the second element and creates a solid surface film, and such that the solid surface film is removed at a faster rate than the first element leaves the anode foil. During a second portion of each cycle at a second voltage the second element electrolyzes at a higher current density than the first element, and the material of the second element leaves the anode foil at a faster rate than the first element and creates a solid surface film, and the solid surface film is removed at a slower rate than the second element leaves the foil. The solid surface film is built up during the second portion of the cycle, and removed during the first portion of the cycle. 10 figs.

  11. MOVPE growth and transport characterization of Bi2-xSbxTe3-ySey films

    NASA Astrophysics Data System (ADS)

    Kuznetsov, P. I.; Yakushcheva, G. G.; Shchamkhalova, B. S.; Jitov, V. A.; Temiryazev, A. G.; Sizov, V. E.; Yapaskurt, V. O.

    2018-02-01

    We present a first study of films of the quaternary Bi2-xSbxTe3-ySey solid solutions on (0 0 0 1) sapphire substrates grown by atmospheric pressure MOVPE. Trimethylbismuth, trimethylantimony, diisopropylselenide and diethyltelluride were used as precursors. To passivate the free bonds of the substrate and to improve the epitaxy, a thin (15 nm) ZnTe buffer layer was first grown. EDX analysis of the films grown at a temperature of 445 °C and about 10-fold excess of chalcogen in the vapor phase indicates on their compliance with V2VI3 stoichiometry. AFM and SEM investigations showed that at the initial stage of deposition the Stranski-Krastanov growth mode is dominant. Complete coalescence of nanoislands occurs at a thickness about 60 nm and further film formation is in the 2D layer-by-layer growth mode. A high mole fraction of antimony in the vapor phase leads to bad crystalline quality of the films and even to their discontinuity. Transport properties of the Bi2-xSbxTe3-ySey films were evaluated using Van der Pauw Hall effect measurements in the range of temperatures of 10-300 K. Some films are always n- or p-type; in other samples the change of conductivity from p- to n-type was observed when the temperature decreases.

  12. Enrichment and Viability Inhibition of Circulating Tumor Cells on a Dual Acid-Responsive Composite Nanofiber Film.

    PubMed

    Wang, Wenqian; Cheng, Yaya; Li, Yansheng; Zhou, Hao; Xu, Li-Ping; Wen, Yongqiang; Zhao, Liang; Zhang, Xueji

    2017-04-06

    The formation and metastatic colonization of circulating tumor cells (CTCs) are responsible for the vast majority of cancer-related deaths. Over the last decade, drug-delivery systems (DDSs) have rapidly developed with the emergence of nanotechnology; however, most reported tumor-targeting DDSs are able to deliver drugs only to solid tumor cells and not CTCs. Herein, a novel DDS comprising a composite nanofiber film was constructed to inhibit the viability of CTCs. In this system, gold nanoparticles (Au NPs) were functionalized with doxorubicin (DOX) through an acid-responsive cleavable linker to obtain Au-DOX NPs. Then, the Au-DOX NPs were mixed in a solution of an acid-responsive polymer {i.e., poly[2-(dimethylamino)ethyl methacrylate]} to synthesize the nanofiber film through electrospinning technology. After that, the nanofiber film was modified with a specific antibody (i.e., anti-EpCAM) to enrich the concentration of CTCs on the film. Finally, the Au-DOX NPs were released from the nanofiber film, and they consequently inhibited the viability of CTCs by delivering DOX to the enriched CTCs. This composite nanofiber film was able to decrease the viability of CTCs significantly in the suspended and fluid states, and it is expected to limit the migration and proliferation of tumor cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Investigation of in vitro Hydrophilic and Hydrophobic Dual Drug Release from Polymeric Films Produced by Sodium alginate-MaterBi® Drying Emulsions.

    PubMed

    Setti, Chiara; Suarato, Giulia; Perotto, Giovanni; Athanassiou, Athanassia; Bayer, Ilker S

    2018-06-18

    Emulsions are known to be effective carriers of hydrophobic drugs, and particularly injectable emulsions have been successfully implemented for in vivo controlled drug release. Recently, high internal phase emulsions have also been used to produce porous polymeric templates for pharmaceutical applications. However, emulsions containing dissolved biopolymers both in the oil and water phases are very scarce. In this study, we demonstrate such an emulsion, in which the oil phase contains a hydrophobic biodegradable polymer, MaterBi ® , and the water phase is aqueous sodium alginate dispersion. The two phases were emulsified simply by ultrasonic processing without any surfactants. The emulsions were stable for several days and were dried into composite solid films with varying MaterBi ® /alginate fractions. The films were loaded with two model drugs, a hydrophilic eosin-based cutaneous antiseptic and the hydrophobic curcumin. Drug release capacity of the films was investigated in detail, and controlled release of each model drug was achieved either by tuning the polymer fraction in the films during emulsification or by crosslinking sodium alginate fraction of the films by calcium salt solution immersion. The emulsions can be formulated to carry either a single model drug or both drugs depending on the desired application. Films demonstrate excellent cell biocompatibility against human dermal fibroblast, adult cells. Copyright © 2018. Published by Elsevier B.V.

  14. Proximity to a ferroelectric instability in Ba1-xCaxZrO3

    NASA Astrophysics Data System (ADS)

    Kim, H. S.; Christen, H. M.; Biegalski, M. D.; Singh, D. J.

    2010-09-01

    Ferroelectricity in ABO3 perovskites driven by A-site disorder is seen as a powerful approach toward lead-free piezoelectrics and ferroelectrics as well as to forming multiferroic compounds. Here we investigate the Ba1-xCaxZrO3 solid solution by structural and dielectric measurements on pulsed laser deposition grown films and by first principles calculations. Films on SrRuO3-coated SrTiO3 substrates are studied for x between 0 and 0.44. Despite the expectation that the Ca-ions assume off-center positions in the perovskite lattice, dielectric measurements show no evidence for ferroelectricity. This behavior is explained by first principles supercell calculations that show ferroelectricity at expanded volume but a rapid suppression thereof as the volume is reduced, thus indicating that our paraelectric Ba1-xCaxZrO3 films are close to a ferroelectric instability. These results demonstrate the important interplay between unit cell volume and ferroelectricity arising from off-centered ions.

  15. Swelling and morphology of the skin layer of polyamide composite membranes: an atomic force microscopy study.

    PubMed

    Freger, Viatcheslav

    2004-06-01

    The paper introduces a new methodology for studying polyamide composite membranes for reverse osmosis (RO) and nanofiltration (NF) in liquid environments. The methodology is based on atomic force microscopy of the active layer, which had been separated from the support and placed on a solid substrate. The approach was employed to determine the thickness, interfacial morphology, and dimensional changes in solution (swelling) of polyamide films. The face (active) and back (facing the support) surfaces of the RO films appeared morphologically similar, in agreement with the recently proposed model of skin formation. Measured thickness and swelling data in conjunction with the intrinsic permeability of the membranes suggest that the selective barrier in RO membrane constitutes only a fraction of the polyamide skin, whereas NF membranes behave as nearly uniform films. For NF membranes, there was reasonable correlation between the changes in the swelling and in the permeability of the membrane and the salinity and pH of the feed.

  16. Diels-Alder Trapping of Photochemically Generated o-Quinodimethane Intermediates: An Alternative Route to Photocured Polymer Film Development

    NASA Technical Reports Server (NTRS)

    Tyson, Daniel S.; Ilhan, Faysal; Meador, Mary Ann B.; Smith, Dee Dee; Scheiman, Daniel A.; Meador, Michael A.

    2004-01-01

    Photolysis of o-methylphenyl ketones generates bis-o-quinodimethane intermediates that can be trapped in situ by dienophiles through Diels-Alder cycloadditions. This well-known photochemical process is applied to a series of six new photoreactive monomers containing bis-(o-methylphenyl ketone) functionalities combined with diacrylate and triacrylate ester monomers for the development of acrylic ester copolymer blends. Irradiation of cyclohexanone solutions of the bis-(o-methylphenyl ketone)s and acrylate esters produce thin polymer films. Solid state 13C NMR data indicated 47- 100% reaction of the bis-(o-methylphenyl ketone)s, depending on experimental conditions, to yield the desired products. DSC and TGA analyses were performed to determine the glass transition temperature, T,, and onset of decomposition, Td, of the resulting polymer films. A statistical Design of Experiments approach was used to obtain a systematic understanding of the effects of experimental variables on the extent of polymerization and the final polymer properties.

  17. Thin sol-gel-derived silica coatings on dental pure titanium casting.

    PubMed

    Yoshida, K; Kamada, K; Sato, K; Hatada, R; Baba, K; Atsuta, M

    1999-01-01

    The sol-gel dipping process, in which liquid silicon alkoxide is transformed into a solid silicon-oxygen network, can produce a thin film coating of silica (SiO(2)). The features of this method are high homogeneity and purity of the thin SiO(2) film and a low sinter temperature, which are important in the preparation of coating films that can protect metallic ion release from the metal substrate and prevent attachment of dental plaque. We evaluated the surface properties of dental pure titanium casting coated with a thin SiO(2) or SiO(2)/F-hybrid film by the sol-gel dipping process. The metal specimens were pretreated by dipping in isopropylalcohol solution containing 10 wt% 3-aminopropyl trimethoxysilane and treated by dipping in the silica precursor solution for 5 min, withdrawal at a speed of 2 mm/min, air-drying for 20 min at room temperature, heating at 120 degrees C for 20 min, and then storing at room temperature. Both SiO(2) and SiO(2)/F films bonded strongly (above 55 MPa) to pure titanium substrate by a tensile test. SiO(2(-)) and SiO(2)/F-coated specimens immersed in 1 wt% of lactic acid solution for two weeks showed significantly less release of titanium ions (30. 5 ppb/cm(2) and 9.5 ppb/cm(2), respectively) from the substrate than noncoated specimens (235.2 ppb/cm(2)). Hydrophobilization of SiO(2(-)) and SiO(2)/F-coated surfaces resulted in significant increases of contact angle of water (81.6 degrees and 105.7 degrees, respectively) compared with noncoated metal specimens (62.1 degrees ). The formation of both thin SiO(2) and SiO(2)/F-hybrid films by the sol-gel dipping process on the surface of dental pure titanium casting may be useful clinically in enhancing the bond strength of dental resin cements to titanium, preventing titanium ions release from the substrate, and reducing the accumulation of dental plaque attaching to intraoral dental restorations. Copyright 1999 John Wiley & Sons, Inc.

  18. Non-monotonic swelling of surface grafted hydrogels induced by pH and/or salt concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longo, Gabriel S.; Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208; Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208

    2014-09-28

    We use a molecular theory to study the thermodynamics of a weak-polyacid hydrogel film that is chemically grafted to a solid surface. We investigate the response of the material to changes in the pH and salt concentration of the buffer solution. Our results show that the pH-triggered swelling of the hydrogel film has a non-monotonic dependence on the acidity of the bath solution. At most salt concentrations, the thickness of the hydrogel film presents a maximum when the pH of the solution is increased from acidic values. The quantitative details of such swelling behavior, which is not observed when themore » film is physically deposited on the surface, depend on the molecular architecture of the polymer network. This swelling-deswelling transition is the consequence of the complex interplay between the chemical free energy (acid-base equilibrium), the electrostatic repulsions between charged monomers, which are both modulated by the absorption of ions, and the ability of the polymer network to regulate charge and control its volume (molecular organization). In the absence of such competition, for example, for high salt concentrations, the film swells monotonically with increasing pH. A deswelling-swelling transition is similarly predicted as a function of the salt concentration at intermediate pH values. This reentrant behavior, which is due to the coupling between charge regulation and the two opposing effects triggered by salt concentration (screening electrostatic interactions and charging/discharging the acid groups), is similar to that found in end-grafted weak polyelectrolyte layers. Understanding how to control the response of the material to different stimuli, in terms of its molecular structure and local chemical composition, can help the targeted design of applications with extended functionality. We describe the response of the material to an applied pressure and an electric potential. We present profiles that outline the local chemical composition of the hydrogel, which can be useful information when designing applications that pursue or require the absorption of biomolecules or pH-sensitive molecules within different regions of the film.« less

  19. Properties of edible films based on pullulan-chitosan blended film-forming solutions at different pH

    USDA-ARS?s Scientific Manuscript database

    Influences of solution pH on the properties of pullulan-chitosan blended (Pul-Chi) films and the rheological properties of film-forming solutions were investigated. The extended conformation of chitosan in pH 4.0 solution increased intermolecular interactions with pullulan compared to the more compa...

  20. Modeling cesium ion exchange on fixed-bed columns of crystalline silicotitanate granules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latheef, I.M.; Huckman, M.E.; Anthony, R.G.

    2000-05-01

    A mathematical model is presented to simulate Cs exchange in fixed-bed columns of a novel crystalline silicotitanate (CST) material, UOP IONSIV IE-911. A local equilibrium is assumed between the macropores and the solid crystals for the particle material balance. Axial dispersed flow and film mass-transfer resistance are incorporated into the column model. Cs equilibrium isotherms and diffusion coefficients were measured experimentally, and dispersion and film mass-transfer coefficients were estimated from correlations. Cs exchange column experiments were conducted in 5--5.7 M Na solutions and simulated using the proposed model. Best-fit diffusion coefficients from column simulations were compared with previously reported batchmore » values of Gu et al. and Huckman. Cs diffusion coefficients for the column were between 2.5 and 5.0 x 10{sup {minus}11} m{sup 2}/s for 5--5.7 M Na solutions. The effect of the isotherm shape on the Cs diffusion coefficient was investigated. The proposed model provides good fits to experimental data and may be utilized in designing commercial-scale units.« less

  1. Synthesis and optoelectronic properties of new polyarylates with 2-naphthyldiphenylamine units

    NASA Astrophysics Data System (ADS)

    Cai, Wanan; Wu, Xiaotong; Xiao, Tiandi; Niu, Haijun; Bai, Xuduo; Wang, Cheng; Wang, Wen; Zhang, Yanhong

    2018-02-01

    Herein, five kinds of soluble electrochromic polyarylates were synthesized from the reaction of N,N'-bis(4-carboxyphenyl)-N,N'-di-2-naphthyl-1,4-phenylenediamine with five bisphenols via direct polycondensation process, respectively. These new materials showed no significant decomposition below 400 °C in nitrogen atmosphere. The maximum UV-vis absorption bands of these polyarylates located at 328-348 nm and 327-353 nm for solid films and DMSO solution, respectively. The polyarylate 6a, as an example, exhibited not only aggregation-induced emission (AIE) effect in different fraction tetrahydrofuran/water solution, but also solvatochromism in various polar solvents, markedly. Two reversible pairs of distinct redox peaks were associated with noticeable color changed from original colorless to yellowish orange and green for polymeric film could be observed in the cyclic voltammetry (CV) test. New absorption peaks emerged in near-infrared (NIR) region with increasing voltage in the UV-vis spectra, which indicates these polyarylates can be used as NIR electrochromic materials. These polyarylates performed high contrast of optical transmittance change around 42-53% with the highest coloration efficiency up to 236 cm2C-1.

  2. Resonant Soft X-ray Scattering as a Powerful Probe of Buried Polymer Interfaces

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Jiang, Zhang; Tirrell, Matthew

    Elucidation of polymer interfacial structures provides insights into interfacial molecular mechanisms for coating protection, adhesion, lubrication, friction, wettability, biocompatibility, and even charge transport properties. Resonant Soft X-ray Scattering (RSoXS) offers a unique element, site and valence specific probe to study spatial modulations of molecular orbital degrees of freedom on the nanoscopic length scale. This unique sensitivity is achieved by merging small angle x-ray scattering and x-ray absorption spectroscopy into a single experiment, where the scattering provides information about spatial modulations and the spectroscopy provides sensitivity to the molecular anisotropy. Here we applied RSoXS to polystyrene (PS) films at solid-solid interfaces and poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) brushes at solid-liquid interfaces. It is found that the interfacial width of PS thin film is about one order of magnitude large than those observed by traditional scattering techniques. In addition, although the ion-induced changes of PMPC thickness are not apparent in aqueous solutions, their chain conformations like polyzwitterion distribution and correlation varied, dependent on salt types, ionic strengths and ion valences. Consequently, it is evident that RSoXS is a powerful probe of buried polymer interlaces with both spatial and chemical sensitivities. This work was supported by the U.S. Department of Energy, Office of Science, Program in Basic Energy Sciences, Division of Materials Science and Engineering.

  3. A Study of Eutectic Gallium Indium Liquid Metal in Microsystems and Interfaces

    NASA Astrophysics Data System (ADS)

    Mohammed, Mohammed Gamal Abdel Naser

    This dissertation studies the behavior of the eutectic alloy of gallium and indium (commonly called EGaIn) in microfluidic channels, on thin metal films and with metal powders. EGaIn is a metal alloy that is liquid at room temperature, has high surface tension and low viscosity. EGaIn forms in presence of oxygen a thin robust oxide skin that allows the liquid metal to take non-spherical shapes despite its high surface tension. The first chapter discusses properties and applications of liquid metals in general and EGaIn in more details. The second chapter studies the phenomenon of spectral colors that appear on PDMS microchannels filled with EGaIn upon applying a compression strain on it. The channels are sealed using oxygen plasma which alters the surface chemistry by attaching oxygen atoms to it and forming a thin rigid film. Buckles form on that thin rigid layer when the channel is compressed due to the difference in elastic moduli between the film and the bulk of PDMS. Optical microscopy and AFM confirmed the presence of the buckles. The third chapter presents a new method for producing liquid metal droplets by forcing EGaIn into reservoirs with designed dimensions. The dimensions of the reservoir can be easily manipulated to produce the desired drop size. We can collect the drops or embed them in PDMS. The fourth chapter studies the behavior of these drops upon contacting metal films. EGaIn drops self-run on weakly-bounded metal films to substrate in media that continuously etch its oxide skin like acid solution or under reducing bias. Our experiments show that EGaIn drops achieve the highest velocities on films of Ag over Au on glass substrates. The running mechanism is novel and has not been reported before, the liquid metal drop pulls the film from the substrate while dissolving it and running forward. The contact between the EGaIn drop and the metal film creates an electrochemical cell that leads to formation of hydrogen bubbles beneath the metal film, the bubbles make the film loose and easy for the EGaIn drop to pull. We investigated the role of drop diameter to film width ratio and the degree of saturation with the other metal on the speed of the drop. The velocity we report is higher than that of any self-running liquid metal drop and any aqueous creature. Self-running drops have potential applications such as fabricating self-destroying electronic circuits. The fifth chapter explores a new method to create metal micro and nanostructures at ambient conditions by imprinting a paste made by mixing gallium and metal powders against molds. Gallium and metal powder interdiffuse in a short period of time and form a solid alloy. In this study we use copper powder as it is not expensive, safe to work with and can form a solid alloy with gallium at room temperature. We investigated the optimum mixing ratio (65 wt% Ga and 35 wt% Cu) that allows easy mixing, enough workable time and results in a solid alloy as diffusion proceeds. The paste can replicate relatively big features (features on a penny for instance) and create free standing structures, however imprints of small features suffers from imperfections. Milling and reducing the powder under inert atmosphere helped to enhance mixing. We are currently studying the effect of particle size on replication and homogeneity of the solid alloy.

  4. Molecular-Level Control of Ciclopirox Olamine Release from Poly(ethylene oxide)-Based Mucoadhesive Buccal Films: Exploration of Structure-Property Relationships with Solid-State NMR.

    PubMed

    Urbanova, Martina; Gajdosova, Marketa; Steinhart, Miloš; Vetchy, David; Brus, Jiri

    2016-05-02

    Mucoadhesive buccal films (MBFs) provide an innovative way to facilitate the efficient site-specific delivery of active compounds while simultaneously separating the lesions from the environment of the oral cavity. The structural diversity of these complex multicomponent and mostly multiphase systems as well as an experimental strategy for their structural characterization at molecular scale with atomic resolution were demonstrated using MBFs of ciclopirox olamine (CPX) in a poly(ethylene oxide) (PEO) matrix as a case study. A detailed description of each component of the CPX/PEO films was followed by an analysis of the relationships between each component and the physicochemical properties of the MBFs. Two distinct MBFs were identified by solid-state NMR spectroscopy: (i) at low API (active pharmaceutical ingredient) loading, a nanoheterogeneous solid solution of CPX molecularly dispersed in an amorphous PEO matrix was created; and (ii) at high API loading, a pseudoco-crystalline system containing CPX-2-aminoethanol nanocrystals incorporated into the interlamellar space of a crystalline PEO matrix was revealed. These structural differences were found to be closely related to the mechanical and physicochemical properties of the prepared MBFs. At low API loading, the polymer chains of PEO provided sufficient quantities of binding sites to stabilize the CPX that was molecularly dispersed in the highly amorphous semiflexible polymer matrix. Consequently, the resulting MBFs were soft, with low tensile strength, plasticity, and swelling index, supporting rapid drug release. At high CPX content, however, the active compounds and the polymer chains simultaneously cocrystallized, leaving the CPX to form nanocrystals grown directly inside the spherulites of PEO. Interfacial polymer-drug interactions were thus responsible not only for the considerably enhanced plasticity of the system but also for the exclusive crystallization of CPX in the thermodynamically most stable polymorphic form, Form I, which exhibited reduced dissolution kinetics. The bioavailability of CPX olamine formulated as PEO-based MBFs can thus be effectively controlled by inducing the complete dispersion and/or microsegregation and nanocrystallization of CPX olamine in the polymer matrix. Solid-state NMR spectroscopy is an efficient tool for exploring structure-property relationships in these complex pharmaceutical solids.

  5. YSZ thin films with minimized grain boundary resistivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Edmund M.; Kleine-Boymann, Matthias; Janek, Juergen

    2016-03-31

    In recent years, interface engineering of solid electrolytes has been explored to increase their ionic conductivity and improve the performance of solid oxide fuel cells and other electrochemical power sources. It has been observed that the ionic conductivity of epitaxially grown thin films of some electrolytes is dramatically enhanced, which is often attributed to effects (e. g. strain-induced mobility changes) at the heterophase boundary with the substrate. Still largely unexplored is the possibility of manipulation of grain boundary resistivity in polycrystalline solid electrolyte films, clearly a limiting factor in their ionic conductivity. Here we report that the ionic conductivity ofmore » yttria stabilized zirconia thin films with nano-­ columnar grains grown on a MgO substrate nearly reaches that of the corresponding single crystal when the thickness of the films becomes less than roughly 8 nm (smaller by a factor of three at 500°C). Using impedance spectroscopy, the grain boundary resistivity was probed as a function of film thickness. The resistivity of the grain boundaries near the film- substrate interface and film surface (within 4 nm of each) was almost entirely eliminated. This minimization of grain boundary resistivity is attributed to Mg2+ diffusion from the MgO substrate into the YSZ grain boundaries, which is supported by time of flight secondary ion mass spectroscopy measurements. We suggest grain boundary “design” as an attractive method to obtain highly conductive solid electrolyte thin films.« less

  6. Microstructure and corrosion resistance of a fluorosilane modified silane-graphene film on 2024 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Dun, Yuchao; Zhao, Xuhui; Tang, Yuming; Dino, Sahib; Zuo, Yu

    2018-04-01

    Heptadecafluorodecyl trimethoxysilane (FAS-17) was incorporated into γ-(2,3-epoxypropoxy) propyltrimethoxysilane/graphene (GPTMS/rGO) by adding pre-hydrolyzed FAS-17 solution in GPTMS solution, and a hybrid silane-graphene film (FG/rGO) was prepared on 2024 aluminum alloy surface. The FG/rGO film showed better thermal shock resistance, good adhesion force and high micro-hardness, compared with GPTMS/rGO film. In neutral 3.5 wt% NaCl solution, the corrosion current density for 2024 AA sample with FG/rGO film was 3.40 × 10-3 μA/cm2, which is about one fifth of that for the sample with GPTMS/rGO film. In acidic and alkaline NaCl solutions, the FG/rGO film also showed obviously better corrosion resistance than GPTMS/rGO film. EIS results confirm that the FG/rGO film showed longer performance than GPTMS/rGO film for 2024 AA in NaCl solution. The hydrophobic FAS-17 increased water contact angle of the film surface from 68° to 113°, and changed the stacking structure of graphene in the film. The higher crosslink degree and less interfaces promoted the barrier property of FG/rGO film against aggressive ions and prolonged the performance time in NaCl solution.

  7. Advances in sputtered and ion plated solid film lubrication

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1985-01-01

    The glow discharge or ion assisted vacuum deposition techniques, primarily sputtering and ion plating, have rapidly emerged and offer great potential to deposit solid lubricants. The increased energizing of these deposition processes lead to improved adherence and coherence, favorable morphological growth, higher density, and reduced residual stresses in the film. These techniques are of invaluable importance where high precision machines tribo-components require very thin, uniform lubricating films (0.2 m), which do not interface with component tolerances. The performance of sputtered MoS2 films and ion plated Au and Pb films are described in terms of film thickness, coefficient of friction, and wear lives.

  8. Water at Interfaces.

    PubMed

    Björneholm, Olle; Hansen, Martin H; Hodgson, Andrew; Liu, Li-Min; Limmer, David T; Michaelides, Angelos; Pedevilla, Philipp; Rossmeisl, Jan; Shen, Huaze; Tocci, Gabriele; Tyrode, Eric; Walz, Marie-Madeleine; Werner, Josephina; Bluhm, Hendrik

    2016-07-13

    The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives many electrochemical reactions, and the liquid/vapor interface, which governs the uptake and release of trace gases by the oceans and cloud droplets. In this article we review some of the recent experimental and theoretical advances in our knowledge of the properties of aqueous interfaces and discuss open questions and gaps in our understanding.

  9. Why is hydrofluoric acid a weak acid?

    PubMed

    Ayotte, Patrick; Hébert, Martin; Marchand, Patrick

    2005-11-08

    The infrared vibrational spectra of amorphous solid water thin films doped with HF at 40 K reveal a strong continuous absorbance in the 1000-3275 cm(-1) range. This so-called Zundel continuum is the spectroscopic hallmark for aqueous protons. The extensive ionic dissociation of HF at such low temperature suggests that the reaction enthalpy remains negative down to 40 K. These observations support the interpretation that dilute HF aqueous solutions behave as weak acids largely due to the large positive reaction entropy resulting from the structure making character of the hydrated fluoride ion.

  10. Reactions of CW Agents HD And GD with the Polymer Fabrics PVAM and CHEMCAT 41

    DTIC Science & Technology

    2015-09-01

    analyses of the rates of G agent decomposition were followed by the methods of solids NMR (high resolution magic angle spinning, HR-MAS). A P-31...molecular weight copolymer of 30-35 kDa. The Erkol copolymer forms a pH 12 solution in water and functions as Lewis base when hydrated .6 GD and DFP...Reactions The hydrated PVAm film, containing 20% glycerol, was found to completely deplete and decompose a two-fold excess of DFP vapor (peaks -8 and

  11. Analytical solutions for combined close-contact and natural convection melting in horizontal cylindrical heat storage capsule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saitoh, T.S.; Hoshi, A.

    1998-07-01

    Melting and solidification of a phase change material (PCM) in a capsule is of practical importance in latent heat thermal energy storage (LHTES) systems which are considered to be very promising to reduce a peak demand of electricity in the summer season and carbon dioxide (CO{sub 2}) emissions. Two melting modes are involved in melting of capsules. One is close-contact melting between the solid bulk and the capsule wall, and another is natural convection melting in the liquid region. Close-contact melting processes for a single enclosure have been solved using several numerical methods (e.g., Saitoh and Kato (1994)). In additionmore » close-contact melting heat transfer characteristics including melt flow in the liquid film under inner wall temperature distribution were analyzed and simple approximate equations were already presented by Saitoh and Hoshi (1997). The effects of Stefan number and variable temperature profile etc. were clarified in detail. And the melting velocity of the solid bulk under various conditions was also studied theoretically. In addition the effects of variable inner wall temperature on molten mass fraction were investigated. The present paper reports analytical solutions for combined close-contact and natural convection melting in horizontal cylindrical capsule. Moreover, natural convection melting in the liquid region were analyzed in this report. The upper interface shape of the solid bulk is approximated by a circular arc throughout the melting process. For the sake of verification, close-contact melting heat-transfer characteristics including natural convection in the liquid region were studied experimentally. Apparent shift of upper solid-liquid interface is good agreement with the experiment. The present simple approximate solutions will be useful to facilitate designing of the practical capsule bed LHTES systems.« less

  12. Substrate-Independent Robust and Heparin-Mimetic Hydrogel Thin Film Coating via Combined LbL Self-Assembly and Mussel-Inspired Post-Cross-linking.

    PubMed

    Ma, Lang; Cheng, Chong; He, Chao; Nie, Chuanxiong; Deng, Jie; Sun, Shudong; Zhao, Changsheng

    2015-12-02

    In this work, we designed a robust and heparin-mimetic hydrogel thin film coating via combined layer-by-layer (LbL) self-assembly and mussel-inspired post-cross-linking. Dopamine-grafted heparin-like/-mimetic polymers (DA-g-HepLP) with abundant carboxylic and sulfonic groups were synthesized by the conjugation of adhesive molecule, DA, which exhibited substrate-independent adhesive affinity to various solid surfaces because of the formation of irreversible covalent bonds. The hydrogel thin film coated substrates were prepared by a three-step reaction: First, the substrates were coated with DA-g-HepLP to generate negatively charged surfaces. Then, multilayers were obtained via LbL coating of chitosan and the DA-g-HepLP. Finally, the noncovalent multilayers were oxidatively cross-linked by NaIO4. Surface ATR-FTIR and XPS spectra confirmed the successful fabrication of the hydrogel thin film coatings onto membrane substrates; SEM images revealed that the substrate-independent coatings owned 3D porous morphology. The soaking tests in highly alkaline, acid, and concentrated salt solutions indicated that the cross-linked hydrogel thin film coatings owned high chemical resistance. In comparison, the soaking tests in physiological solution indicated that the cross-linked hydrogel coatings owned excellent long-term stability. The live/dead cell staining and morphology observations of the adhered cells revealed that the heparin-mimetic hydrogel thin film coated substrates had low cell toxicity and high promotion ability for cell proliferation. Furthermore, systematic in vitro investigations of protein adsorption, platelet adhesion, blood clotting, and blood-related complement activation confirmed that the hydrogel film coated substrates showed excellent hemocompatibility. Both the results of inhibition zone and bactericidal activity indicated that the gentamycin sulfate loaded hydrogel thin films had significant inhibition capability toward both Escherichia coli and Staphylococcus aureus bacteria. Combined the above advantages, it is believed that the designed heparin-mimetic hydrogel thin films may show high potential for applications in various biological and clinical fields, such as long-term hemocompatible and drug-loading materials for implants.

  13. A Simple Way to Pattern Mn_12-acetate Thin Films

    NASA Astrophysics Data System (ADS)

    Kim, K.; Seo, D. M.; Means, J.; Viswanathan, M.; Teizer, W.

    2004-03-01

    We have observed that Mn_12-acetate ([Mn_12O_12(CH_3COO)_16(H_2O)_4]ot2CH_3COOHot4H_2O) molecules, dissolved in organic solvents, can be self-assembled along the edge of the Mn_12 solution droplet on a Si/SiO2 substrate as the solvent is evaporated. This phenomenon may be related to the well known "coffee-stain effect"”, which leads to a dense particulate deposit along the edge of a drying droplet of coffee on a solid surface. In our study, we have observed such a deposit of Mn_12-acetate at the perimeter of a droplet, after a dilute solution in various organic solvents has been dried. We investigated how the deposits depend on the evaporation rate. Also, we controlled the concentration of the solution to find its relation to the resulting pattern deposit. By patterning the surface with resist and performing a lift-off we created what are, to our knowledge, the first artificial patterns of Mn_12-acetate. This may allow for convenient thin film devices of Mn_12-acetate and work in this direction is ongoing. This work was supported by the Texas Higher Education Coordinating Board and Texas A University.

  14. Electric field stabilization of viscous liquid layers coating the underside of a surface

    NASA Astrophysics Data System (ADS)

    Anderson, Thomas G.; Cimpeanu, Radu; Papageorgiou, Demetrios T.; Petropoulos, Peter G.

    2017-05-01

    We investigate the electrostatic stabilization of a viscous thin film wetting the underside of a horizontal surface in the presence of an electric field applied parallel to the surface. The model includes the effect of bounding solid dielectric regions above and below the liquid-air system that are typically found in experiments. The competition between gravitational forces, surface tension, and the nonlocal effect of the applied electric field is captured analytically in the form of a nonlinear evolution equation. A semispectral solution strategy is employed to resolve the dynamics of the resulting partial differential equation. Furthermore, we conduct direct numerical simulations (DNS) of the Navier-Stokes equations using the volume-of-fluid methodology and assess the accuracy of the obtained solutions in the long-wave (thin-film) regime when varying the electric field strength from zero up to the point when complete stabilization occurs. We employ DNS to examine the limitations of the asymptotically derived behavior as the liquid layer thickness increases and find excellent agreement even beyond the regime of strict applicability of the asymptotic solution. Finally, the asymptotic and computational approaches are utilized to identify robust and efficient active control mechanisms allowing the manipulation of the fluid interface in light of engineering applications at small scales, such as mixing.

  15. Study of Exciton Hopping Transport in PbS Colloidal Quantum Dot Thin Films Using Frequency- and Temperature-Scanned Photocarrier Radiometry

    NASA Astrophysics Data System (ADS)

    Hu, Lilei; Mandelis, Andreas; Melnikov, Alexander; Lan, Xinzheng; Hoogland, Sjoerd; Sargent, Edward H.

    2017-01-01

    Solution-processed colloidal quantum dots (CQDs) are promising materials for realizing low-cost, large-area, and flexible photovoltaic devices. The study of charge carrier transport in quantum dot solids is essential for understanding energy conversion mechanisms. Recently, solution-processed two-layer oleic-acid-capped PbS CQD solar cells with one layer treated with tetrabutylammonium iodide (TBAI) serving as the main light-absorbing layer and the other treated with 1,2-ethanedithiol (EDT) acting as an electron-blocking/hole-extraction layer were reported. These solar cells demonstrated a significant improvement in power conversion efficiency of 8.55% and long-term air stability. Coupled with photocarrier radiometry measurements, this work used a new trap-state mediated exciton hopping transport model, specifically for CQD thin films, to unveil and quantify exciton transport mechanisms through the extraction of hopping transport parameters including exciton lifetimes, hopping diffusivity, exciton detrapping time, and trap-state density. It is shown that PbS-TBAI has higher trap-state density than PbS-EDT that results in higher PbS-EDT exciton lifetimes. Hopping diffusivities of both CQD thin film types show similar temperature dependence, particularly higher temperatures yield higher hopping diffusivity. The higher diffusivity of PbS-TBAI compared with PbS-EDT indicates that PbS-TBAI is a much better photovoltaic material than PbS-EDT. Furthermore, PCR temperature spectra and deep-level photothermal spectroscopy provided additional insights to CQD surface trap states: PbS-TBAI thin films exhibit a single dominant trap level, while PbS-EDT films with lower trap-state densities show multiple trap levels.

  16. Elastohydrodynamic lubrication of elliptical contacts

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.

    1981-01-01

    The determination of the minimum film thickness within contact is considered for both fully flooded and starved conditions. A fully flooded conjunction is one in which the film thickness is not significantly changed when the amount of lubricant is increased. The fully flooded results presented show the influence of contact geometry on minimum film thickness as expressed by the ellipticity parameter and the dimensionless speed, load, and materials parameters. These results are applied to materials of high elastic modulus (hard EHL), such as metal, and to materials of low elastic modulus(soft EHL), such as rubber. In addition to the film thickness equations that are developed, contour plots of pressure and film thickness are given which show the essential features of elastohydrodynamically lubricated conjunctions. The crescent shaped region of minimum film thickness, with its side lobes in which the separation between the solids is a minimum, clearly emerges in the numerical solutions. In addition to the 3 presented for the fully flooded results, 15 more cases are used for hard EHL contacts and 18 cases are used for soft EHL contacts in a theoretical study of the influence of lubricant starvation on film thickness and pressure. From the starved results for both hard and soft EHL contacts, a simple and important dimensionless inlet boundary distance is specified. This inlet boundary distance defines whether a fully flooded or a starved condition exists in the contact. Contour plots of pressure and film thickness in and around the contact are shown for conditions.

  17. Fundamental aspects of polyimide dry film and composite lubrication: A review

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1982-01-01

    The tribological properties of polyimide dry films and composites are reviewed. Friction coefficients, wear rates, transfer film characteristics, wear surface morphology, and possible wear mechanisms of several different polyimide films, polyimide-bonded solid lubricants, polyimide solid bodies, and polyimide composites are discussed. Such parameters as temperature, type of atmosphere, load, contact stress, and specimen configuration are investigated. Data from an accelerated test device (Pin-on-Disk) are compared to similar data obtained from an end use application test device (plain spherical bearing).

  18. Thin-Film Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex

    2009-01-01

    The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.

  19. Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels.

    PubMed

    Cho, Eugene N; Zhitomirsky, David; Han, Grace G D; Liu, Yun; Grossman, Jeffrey C

    2017-03-15

    Solar thermal fuels (STFs) harvest and store solar energy in a closed cycle system through conformational change of molecules and can release the energy in the form of heat on demand. With the aim of developing tunable and optimized STFs for solid-state applications, we designed three azobenzene derivatives functionalized with bulky aromatic groups (phenyl, biphenyl, and tert-butyl phenyl groups). In contrast to pristine azobenzene, which crystallizes and makes nonuniform films, the bulky azobenzene derivatives formed uniform amorphous films that can be charged and discharged with light and heat for many cycles. Thermal stability of the films, a critical metric for thermally triggerable STFs, was greatly increased by the bulky functionalization (up to 180 °C), and we were able to achieve record high energy density of 135 J/g for solid-state STFs, over a 30% improvement compared to previous solid-state reports. Furthermore, the chargeability in the solid state was improved, up to 80% charged from 40% charged in previous solid-state reports. Our results point toward molecular engineering as an effective method to increase energy storage in STFs, improve chargeability, and improve the thermal stability of the thin film.

  20. Transport of organic solutes through amorphous teflon AF films.

    PubMed

    Zhao, Hong; Zhang, Jie; Wu, Nianqiang; Zhang, Xu; Crowley, Katie; Weber, Stephen G

    2005-11-02

    Fluorous media have great potential for selective extraction (e.g., as applied to organic synthesis). Fluorous polymer films would have significant advantages in fluorous separations. Stable films of Teflon AF 2400 were cast from solution. Films appear defect-free (SEM; AFM). Rigid aromatic solutes are transported (from chloroform solution to chloroform receiving phase) in a size-dependent manner (log permeability is proportional to -0.0067 times critical volume). Benzene's permeability is about 2 orders of magnitude higher than in comparable gas-phase experiments. The films show selectivity for fluorinated solutes in comparison to the hydrogen-containing control. Transport rates are dependent on the solvent making up the source and receiving phases. The effect of solvent is, interestingly, not due to changes in partition ratio, but rather it is due to changes in the solute diffusion coefficient in the film. Solvents plasticize the films. A less volatile compound, -COOH-terminated poly(hexafluoropropylene oxide) (4), plasticizes the films (T(g) = -40 degrees C). Permeabilities are decreased in comparison to 4-free films apparently because of decreased diffusivity of solutes. The slope of dependence of log permeability on critical volume is not changed, however.

  1. 41 CFR 109-27.5107 - Recovery of silver from used hypo solution and scrap film.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... used hypo solution and scrap film. 109-27.5107 Section 109-27.5107 Public Contracts and Property... § 109-27.5107 Recovery of silver from used hypo solution and scrap film. The requirements for the recovery of silver from used hypo solution and scrap film are contained in § 109-45.1003 of this chapter. ...

  2. 41 CFR 109-27.5107 - Recovery of silver from used hypo solution and scrap film.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... used hypo solution and scrap film. 109-27.5107 Section 109-27.5107 Public Contracts and Property... § 109-27.5107 Recovery of silver from used hypo solution and scrap film. The requirements for the recovery of silver from used hypo solution and scrap film are contained in § 109-45.1003 of this chapter. ...

  3. 41 CFR 109-27.5107 - Recovery of silver from used hypo solution and scrap film.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... used hypo solution and scrap film. 109-27.5107 Section 109-27.5107 Public Contracts and Property... § 109-27.5107 Recovery of silver from used hypo solution and scrap film. The requirements for the recovery of silver from used hypo solution and scrap film are contained in § 109-45.1003 of this chapter. ...

  4. 41 CFR 109-27.5107 - Recovery of silver from used hypo solution and scrap film.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... used hypo solution and scrap film. 109-27.5107 Section 109-27.5107 Public Contracts and Property... § 109-27.5107 Recovery of silver from used hypo solution and scrap film. The requirements for the recovery of silver from used hypo solution and scrap film are contained in § 109-45.1003 of this chapter. ...

  5. 41 CFR 109-27.5107 - Recovery of silver from used hypo solution and scrap film.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... used hypo solution and scrap film. 109-27.5107 Section 109-27.5107 Public Contracts and Property... § 109-27.5107 Recovery of silver from used hypo solution and scrap film. The requirements for the recovery of silver from used hypo solution and scrap film are contained in § 109-45.1003 of this chapter. ...

  6. Vertically-aligned Mn(OH) 2 nanosheet films for flexible all-solid-state electrochemical supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ziyuan; Gong, Jiangfeng; Tang, Chunmei

    We report that the arrangement of the electrode materials is a significant contributor for constructing high performance supercapacitor. Here, vertically-aligned Mn(OH) 2 nanosheet thin films were synthesized by cathodic electrodeposition technique on flexible Au coated polyethylene terephthalate substrates. Morphologies, microstructures, chemical compositions and valence state of the nanosheet films were characterized systematically. It shows that the nanosheets arranged vertically to the substrate, forming a porous nanowall structures and creating large open framework, which greatly facilitate the adsorption or diffusion of electrolyte ions for faradaic redox reaction. Electrochemical tests of the films show the specific capacitance as high as 240.2 Fmore » g -1 at 1.0 A g -1. The films were employed to assemble symmetric all-solid-state supercapacitors with LiCl/PVA gel severed as solid electrolyte. Finally, the solid devices exhibit high volumetric capacitance of 39.3 mF cm -3 at the current density 0.3 mA cm -3 with robust cycling stability. The superior performance is attributed to the vertically-aligned configuration.« less

  7. Vertically-aligned Mn(OH) 2 nanosheet films for flexible all-solid-state electrochemical supercapacitors

    DOE PAGES

    Yang, Ziyuan; Gong, Jiangfeng; Tang, Chunmei; ...

    2017-08-28

    We report that the arrangement of the electrode materials is a significant contributor for constructing high performance supercapacitor. Here, vertically-aligned Mn(OH) 2 nanosheet thin films were synthesized by cathodic electrodeposition technique on flexible Au coated polyethylene terephthalate substrates. Morphologies, microstructures, chemical compositions and valence state of the nanosheet films were characterized systematically. It shows that the nanosheets arranged vertically to the substrate, forming a porous nanowall structures and creating large open framework, which greatly facilitate the adsorption or diffusion of electrolyte ions for faradaic redox reaction. Electrochemical tests of the films show the specific capacitance as high as 240.2 Fmore » g -1 at 1.0 A g -1. The films were employed to assemble symmetric all-solid-state supercapacitors with LiCl/PVA gel severed as solid electrolyte. Finally, the solid devices exhibit high volumetric capacitance of 39.3 mF cm -3 at the current density 0.3 mA cm -3 with robust cycling stability. The superior performance is attributed to the vertically-aligned configuration.« less

  8. Effects of developer exhaustion on Kodak EKTASPEED Plus, Ektaspeed, and Ultra-speed dental films.

    PubMed

    Thunthy, K H; Weinberg, R

    1995-01-01

    In 1994, Eastman Kodak Co. (Rochester, N.Y.) replaced its Ektaspeed film with the EKTASPEED Plus film. The manufacturer claims that one of the advantages of the new film is that it is not strongly affected by exhausted (depleted plus aged) processing solutions. The objective of the experiment was to test this claim. In exhausted solutions, EKTASPEED Plus film lost its speed more rapidly than Ultra-speed film but less rapidly than Ektaspeed film; that is, Ultra-speed film had the most stable speed. EKTASPEED Plus film lost contrast for 2 weeks before stabilizing, whereas Ultra-speed and Ektaspeed films continued to lose contrast for 3 weeks. Overall, EKTASPEED Plus film held its contrast over the other two films. EKTASPEED Plus film stopped increasing its film latitude after 2 weeks, whereas Ultra-speed and Ektaspeed films continued to increase film latitudes. In conclusion, for the three films studied, EKTASPEED Plus maintained the most constant levels of contrast and latitude in progressively exhausted solutions. All three films lost speed in exhausted solutions; EKTASPEED Plus film was the fastest but Ultra-speed film had the most stable speed.

  9. Effects of solvent on the solution properties, structural characteristics and properties of silk sericin.

    PubMed

    Jo, Yoon Nam; Um, In Chul

    2015-07-01

    Sericin films have attracted much attention from researchers in biomedical and cosmetic fields because of its unique properties, including good cytocompatibility and its promotion of wound healing. However, poor mechanical properties of sericin films have restricted its application in these fields. In this study, a new solvent, formic acid, was used to fabricate sericin solutions and films. The effects of formic acid on the structural characteristics and mechanical properties of the sericin solutions and films were examined and compared with water. The sericin/formic acid solution showed fewer aggregated sericin molecules, resulting in a lower turbidity than that of the sericin/water solution. In addition, the gelation of the sericin solution was retarded in formic acid compared to that of water. Sericin films cast from the formic acid solution exhibited a much higher crystallinity index than that produced from water. The tensile strength and elongation of the sericin films cast from the formic acid solution were more than double that of the sericin films cast from water. It is expected that the more stable sericin solution and high-crystallinity sericin films, which have significantly improved mechanical properties, produced by using formic acid as the solvent could be utilized in biomedical and cosmetic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Determinants of the efficiency of photon upconversion by triplet-triplet annihilation in the solid state: zinc porphyrin derivatives in PVA.

    PubMed

    Rautela, Ranjana; Joshi, Neeraj K; Novakovic, Sacha; Wong, Wallace W H; White, Jonathan M; Ghiggino, Kenneth P; Paige, Matthew F; Steer, Ronald P

    2017-08-30

    Spectroscopic, photophysical and computational studies designed to expose and explain the differences in the efficiencies of non-coherent photon upconversion (NCPU) by triplet-triplet annihilation (TTA) have been carried out for a new series of alkyl-substituted diphenyl and tetraphenyl zinc porphyrins, both in fluid solution and in solid films. Systematic variations in the alkyl-substitution of the phenyl groups in both the di- and tetraphenyl porphyrins introduces small, but well-understood changes in their spectroscopic and photophysical properties and in their TTA efficiencies. In degassed toluene solution TTA occurs for all derivatives and produces the fluorescent S 2 product states in all cases. In PVA matrices, however, none of the di-phenylporphyrins exhibit measurable NCPU whereas all the tetraphenyl-substituted compounds remain upconversion-active. In PVA the NCPU efficiencies of the zinc tetraphenylporphyrins vary significantly with their steric characteristics; the most sterically crowded tetraphenyl derivative exhibits the greatest efficiency. DFT-D computations have been undertaken and help reveal the sources of these differences.

  11. Organic matter-solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils.

    PubMed

    Williams, Paul N; Zhang, Hao; Davison, William; Meharg, Andrew A; Hossain, Mahmud; Norton, Gareth J; Brammer, Hugh; Islam, M Rafiqul

    2011-07-15

    Agroecological zones within Bangladesh with low levels of arsenic in groundwater and soils produce rice that is high in arsenic with respect to other producing regions of the globe. Little is known about arsenic cycling in these soils and the labile fractions relevant for plant uptake when flooded. Soil porewater dynamics of field soils (n = 39) were recreated under standardized laboratory conditions to investigate the mobility and interplay of arsenic, Fe, Si, C, and other elements, in relation to rice grain element composition, using the dynamic sampling technique diffusive gradients in thin films (DGT). Based on a simple model using only labile DGT measured arsenic and dissolved organic carbon (DOC), concentrations of arsenic in Aman (Monsoon season) rice grain were predicted reliably. DOC was the strongest determinant of arsenic solid-solution phase partitioning, while arsenic release to the soil porewater was shown to be decoupled from that of Fe. This study demonstrates the dual importance of organic matter (OM), in terms of enhancing arsenic release from soils, while reducing bioavailability by sequestering arsenic in solution.

  12. Block copolymer lithography of rhodium nanoparticles for high temperature electrocatalysis.

    PubMed

    Boyd, David A; Hao, Yong; Li, Changyi; Goodwin, David G; Haile, Sossina M

    2013-06-25

    We present a method for forming ordered rhodium nanostructures on a solid support. The approach makes use of a block copolymer to create and assemble rhodium chloride nanoparticles from solution onto a surface; subsequent plasma and thermal processing are employed to remove the polymer and fully convert the nanostructures to metallic rhodium. Films cast from a solution of the triblock copolymer poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) dissolved in toluene with rhodium(III) chloride hydrate were capable of producing a monolayer of rhodium nanoparticles of uniform size and interparticle spacing. The nanostructures were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The electrocatalytic performance of the nanoparticles was investigated with AC impedance spectroscopy. We observed that the addition of the particles to a model solid oxide fuel cell anode provided up to a 14-fold improvement in the anode activity as evidenced by a decrease in the AC impedance resistance. Examination of the anode after electrochemical measurement revealed that the basic morphology and distribution of the particles were preserved.

  13. New NbCd2 Phase in Niobium-Cadmium Coating Films

    NASA Astrophysics Data System (ADS)

    Volodin, V. N.; Tuleushev, Yu. Zh.; Zhakanbaev, E. A.; Tsai, K. V.; Rofman, O. V.

    2018-02-01

    Solid solutions in the form of alloy coatings have been obtained for the first time in the Cd concentration range of 64.5% using ion-plasma sputtering and the codeposition of Nb and Cd ultrafine particles. This supports thermal fluctuation melting and the coalescence of fine particles. A coating of niobium and cadmium layers less than 2 nm thick at 68 at % Cd results in the formation of a new phase identified as NbCd2. The tetragonal fcc phase with lattice parameters a = 0.84357 nm and c = 0.54514 nm forms directly during film coating. XRD data for the identification of the intermetallic compound have been determined. The thermal stability of the NbCd 2 intermetallic compound is limited by 200°C. The properties of the synthesized NbCd 2 phase are typical of semiconductors.

  14. Continuous adjustment of threshold voltage in carbon nanotube field-effect transistors through gate engineering

    NASA Astrophysics Data System (ADS)

    Zhong, Donglai; Zhao, Chenyi; Liu, Lijun; Zhang, Zhiyong; Peng, Lian-Mao

    2018-04-01

    In this letter, we report a gate engineering method to adjust threshold voltage of carbon nanotube (CNT) based field-effect transistors (FETs) continuously in a wide range, which makes the application of CNT FETs especially in digital integrated circuits (ICs) easier. Top-gated FETs are fabricated using solution-processed CNT network films with stacking Pd and Sc films as gate electrodes. By decreasing the thickness of the lower layer metal (Pd) from 20 nm to zero, the effective work function of the gate decreases, thus tuning the threshold voltage (Vt) of CNT FETs from -1.0 V to 0.2 V. The continuous adjustment of threshold voltage through gate engineering lays a solid foundation for multi-threshold technology in CNT based ICs, which then can simultaneously provide high performance and low power circuit modules on one chip.

  15. First report of vertically aligned (Sn,Ir)O2:F solid solution nanotubes: Highly efficient and robust oxygen evolution electrocatalysts for proton exchange membrane based water electrolysis

    NASA Astrophysics Data System (ADS)

    Ghadge, Shrinath Dattatray; Patel, Prasad P.; Datta, Moni K.; Velikokhatnyi, Oleg I.; Shanthi, Pavithra M.; Kumta, Prashant N.

    2018-07-01

    One dimensional (1D) vertically aligned nanotubes (VANTs) of (Sn0.8Ir0.2)O2:10F are synthesized for the first time by a sacrificial template assisted approach. The aim is to enhance the electrocatalytic activity of F doped (Sn,Ir)O2 solid solution electrocatalyst for oxygen evolution reaction (OER) in proton exchange membrane (PEM) based water electrolysis by generating (Sn0.8Ir0.2)O2:10F nanotubes (NTs). The 1D vertical channels and the high electrochemically active surface area (ECSA ∼38.46 m2g-1) provide for facile electron transport. This results in low surface charge transfer resistance (4.2 Ω cm2), low Tafel slope (58.8 mV dec-1) and excellent electrochemical OER performance with ∼2.3 and ∼2.6 fold higher electrocatalytic activity than 2D thin films of (Sn0.8Ir0.2)O2:10F and benchmark IrO2 electrocatalysts, respectively. Furthermore, (Sn0.8Ir0.2)O2:10F NTs exhibit excellent mass activity (21.67 A g-1), specific activity (0.0056 mAcm-2) and TOF (0.016 s-1), which is ∼2-2.6 fold higher than thin film electrocatalysts at an overpotential of 270 mV, with a total mass loading of 0.3 mg cm-2. In addition, (Sn0.8Ir0.2)O2:10F NTs demonstrate remarkable electrochemical durability - comparable to thin films of (Sn0.8Ir0.2)O2:10F and pure IrO2, operated under identical testing conditions in PEM water electrolysis. These results therefore indicate promise of (Sn0.8Ir0.2)O2:10F NTs as OER electrocatalysts for efficient and sustainable hydrogen production.

  16. Graphite fluoride as a solid lubricant in a polyimide binder

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.; Sliney, H. E.

    1972-01-01

    Polyimide resin (PI) was shown to be a suitable binder material for the solid lubricant graphite fluoride, (CF(1.1))n. Comparisons were made to similar tests using PI-bonded MOS2 films, graphite fluoride rubbed films, and MOS2 rubbed films. The results showed that, at any one specific temperature between 25 and 400 C, the wear life of PI-bonded graphite fluoride films exceeded those of the other three films by at least a factor of 2 and by as much as a factor of 60. Minimum friction coefficients for the PI-bonded films were 0.08 for graphite fluoride and 0.04 for MOS2. The rider wear rates for the two PI-bonded films at 25 C were nearly equal.

  17. Intrinsic stress response of low and high mobility solute additions to Cu thin films

    NASA Astrophysics Data System (ADS)

    Kaub, Tyler; Anthony, Ryan; Thompson, Gregory B.

    2017-12-01

    Thin film stress is frequently controlled through adjustments applied to the processing parameters used during film deposition. In this work, we explore how the use of solutes with different intrinsic growth properties influences the residual growth stress development for a common solvent Cu film. The findings demonstrated that the addition of a high atomic mobility solute, Ag, or a low atomic mobility solute, V, results in both alloy films undergoing grain refinement that scaled with increases in the solute content. This grain refinement was associated with solute segregation and was more pronounced in the Cu(Ag) system. The grain size reduction was also associated with an increase in the tensile stresses observed in both alloy sets. These findings indicate that solutes can be used to control the grain size under the same deposition conditions, as well as alter the stress evolution of a growing thin film.

  18. Instability in a system of two interacting liquid films: Formation of liquid bridges between solid surfaces

    NASA Astrophysics Data System (ADS)

    Forcada, Mikel L.

    1993-01-01

    A theoretical study of systems composed of two solid-supported liquid films that are subject to a mutual attractive interaction reveals the existence of a mechanical instability: for distances closer than a certain threshold value, the system composed by two separate liquid films has no stable equilibrium configurations, and the system collapses to form a single liquid body. The sudden condensation of a connecting liquid bridge when two solid surfaces are brought to close proximity inside an undersaturated medium has been observed experimentally using the surface-force apparatus [see, e.g., Christenson et al., Phys. Rev. B 39, 11750 (1989)]. In this paper, these results are explained as follows: first, liquid films condense on the surfaces; then, if the distance is short enough, the films jump to contact, because of a mechanical instability due to attractive interactions.

  19. YSZ thin films with minimized grain boundary resistivity

    DOE PAGES

    Mills, Edmund M.; Kleine-Boymann, Matthias; Janek, Juergen; ...

    2016-03-31

    In recent years, interface engineering of solid electrolytes has been explored to increase their ionic conductivity and improve the performance of solid oxide fuel cells and other electrochemical power sources. It has been observed that the ionic conductivity of epitaxially grown thin films of some electrolytes is dramatically enhanced, which is often attributed to effects (e.g. strain-induced mobility changes) at the heterophase boundary with the substrate. Still largely unexplored is the possibility of manipulation of grain boundary resistivity in polycrystalline solid electrolyte films, clearly a limiting factor in their ionic conductivity. Here in this paper, we report that the ionicmore » conductivity of yttria stabilized zirconia thin films with nano-columnar grains grown on a MgO substrate nearly reaches that of the corresponding single crystal when the thickness of the films becomes less than roughly 8 nm (smaller by a factor of three at 500 °C). Using impedance spectroscopy, the grain boundary resistivity was probed as a function of film thickness. The resistivity of the grain boundaries near the film–substrate interface and film surface (within 4 nm of each) was almost entirely eliminated. This minimization of grain boundary resistivity is attributed to Mg 2+ diffusion from the MgO substrate into the YSZ grain boundaries, which is supported by time of flight secondary ion mass spectroscopy measurements. We suggest grain boundary “design” as an attractive method to obtain highly conductive solid electrolyte thin films.« less

  20. Photocurrent generation in carbon nitride and carbon nitride/conjugated polymer composites.

    PubMed

    Byers, Joshua C; Billon, Florence; Debiemme-Chouvy, Catherine; Deslouis, Claude; Pailleret, Alain; Semenikhin, Oleg A

    2012-09-26

    The semiconductor and photovoltaic properties of carbon nitride (CNx) thin films prepared using a reactive magnetron cathodic sputtering technique were investigated both individually and as composites with an organic conjugated polymer, poly(2,2'-bithiophene) (PBT). The CNx films showed an increasing thickness as the deposition power and/or nitrogen content in the gas mixture increase. At low nitrogen content and low deposition power (25-50 W), the film structure was dominated by the abundance of the graphitic sp(2) regions, whereas at higher nitrogen contents and magnetron power CNx films started to demonstrate semiconductor properties, as evidenced by the occurrence of photoconductivity and the development of a space charge region. However, CNx films alone did not show any reproducible photovoltaic properties. The situation changed, however, when CNx was deposited onto conjugated PBT substrates. In this configuration, CNx was found to function as an acceptor material improving the photocurrent generation both in solution and in solid state photovoltaic devices, with the external quantum efficiencies reaching 1% at high nitrogen contents. The occurrence of the donor-acceptor charge transfer was further evidenced by suppression of the n-doping of the PBT polymer by CNx. Nanoscale atomic force microscopy (AFM) and current-sensing AFM data suggested that CNx may form a bulk heterojunction with PBT.

  1. Palladium-pyridyl catalytic films: a highly active and recyclable catalyst for hydrogenation of styrene under mild conditions.

    PubMed

    Gao, Shuiying; Li, Weijin; Cao, Rong

    2015-03-01

    Palladium-pyridyl catalytic films, (PdCl2/bpy)n, were created by alternating immersions of a substrate in PdCl2 and bpy (bpy=4, 4'-bipyridyl) solutions. The as-prepared (PdCl2/bpy)10 catalyst demonstrated a remarkable catalytic activity toward hydrogenation of styrene under mild conditions and the turnover frequency (TOF) is as high as 6944h(-1). Pd(II) ions of (PdCl2/bpy)n films are in situ reduced to Pd nanoparticles (NPs) during the hydrogenation of styrene process, which results in the catalytic activity of the films. The results of X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) further demonstrate that Pd(II) ions of (PdCl2/bpy)n films were gradually converted to Pd(0) states. The catalytic activity is related to bilayer numbers and the activity increases with the number of bilayers below 10 bilayers. The solid substrates coated with (PdCl2/bpy)n multilayer catalysts were easily removed from the reaction mixture without separation filtration. Moreover, (PdCl2/bpy)n catalysts were reused for 10 consecutive reactions without loss of activity. The present (PdCl2/bpy)n heterogeneous catalysts have the advantages of easy separation and good recyclability. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Phase separation within NiSiN coatings during reactive HiPIMS discharges: A new pathway to grow NixSi nanocrystals composites at low temperature

    NASA Astrophysics Data System (ADS)

    Keraudy, J.; Boyd, R. D.; Shimizu, T.; Helmersson, U.; Jouan, P.-Y.

    2018-10-01

    The precise control of the growth nanostructured thin films at low temperature is critical for the continued development of microelectronic enabled devices. In this study, nanocomposite Ni-Si-N thin films were deposited at low temperature by reactive high-power impulse magnetron sputtering. A composite Ni-Si target (15 at.% Si) in combination with a Ar/N2 plasma were used to deposit films onto Si(0 0 1) substrates, without any additional substrate heating or any post-annealing. The films microstructure changes from a polycrystalline to nanocomposite structure when the nitrogen content exceeds 16 at.%. X-ray diffraction and (scanning) transmission electron microscopy analyses reveal that the microstructure consists of nanocrystals, NixSi (x > 1) 7-8 nm in size, embedded in an amorphous SiNx matrix. It is proposed that this nanostructure is formed at low temperatures due to the repeated-nucleation of NixSi nanocrystals, the growth of which is restricted by the formation of the SiNx phase. X-ray photoelectron spectroscopy revealed the trace presence of a ternary solid solution mainly induced by the diffusion of Ni into the SiNx matrix. Four-probe electrical measurements reveal all the deposited films are electrically conducting.

  3. Friction, Wear, and Surface Damage of Metals as Affected by Solid Surface Films

    NASA Technical Reports Server (NTRS)

    Bisson, Edmond E; Johnson, Robert L; Swikert, Max A; Godfrey, Douglas

    1956-01-01

    As predicted by friction theory, experiments showed that friction and surface damage of metals can be reduced by solid surface films. The ability of materials to form surface films that prevent welding was a very important factor in wear of dry and boundary lubricated surfaces. Films of graphitic carbon on cast irons, nio on nickel alloys, and feo and fe sub 3 o sub 4 on ferrous materials were found to be beneficial. Abrasive films such as fe sub 2 o sub 3 or moo sub 3 were definitely detrimental. It appears that the importance of oxide films to friction and wear processes has not been fully appreciated.

  4. The peculiar behavior of the glass transition temperature of amorphous drug-polymer films coated on inert sugar spheres.

    PubMed

    Dereymaker, Aswin; Van Den Mooter, Guy

    2015-05-01

    Fluid bed coating has been proposed in the past as an alternative technology for manufacturing of drug-polymer amorphous solid dispersions, or so-called glass solutions. It has the advantage of being a one-step process, and thus omitting separate drying steps, addition of excipients, or manipulation of the dosage form. In search of an adequate sample preparation method for modulated differential scanning calorimetry analysis of beads coated with glass solutions, glass transition broadening and decrease of the glass transition temperature (Tg ) were observed with increasing particle size of crushed coated beads and crushed isolated films of indomethacin (INDO) and polyvinylpyrrolidone (PVP). Substituting INDO with naproxen gave comparable results. When ketoconazole was probed or the solvent in INDO-PVP films was switched to dichloromethane (DCM) or a methanol-DCM mixture, two distinct Tg regions were observed. Small particle sizes had a glass transition in the high Tg region, and large particle sizes had a glass transition in the low Tg region. This particle size-dependent glass transition was ascribed to different residual solvent amounts in the bulk and at the surface of the particles. A correlation was observed between the deviation of the Tg from that calculated from the Gordon-Taylor equation and the amount of residual solvent at the Tg of particles with different sizes. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Water repellent porous silica films by sol-gel dip coating method.

    PubMed

    Rao, A Venkateswara; Gurav, Annaso B; Latthe, Sanjay S; Vhatkar, Rajiv S; Imai, Hiroaki; Kappenstein, Charles; Wagh, P B; Gupta, Satish C

    2010-12-01

    The wetting of solid surfaces by water droplets is ubiquitous in our daily lives as well as in industrial processes. In the present research work, water repellent porous silica films are prepared on glass substrate at room temperature by sol-gel process. The coating sol was prepared by keeping the molar ratio of methyltriethoxysilane (MTES), methanol (MeOH), water (H(2)O) constant at 1:12.90:4.74, respectively, with 2M NH(4)OH throughout the experiments and the molar ratio (M) of MTES/Ph-TMS was varied from 0 to 0.22. A simple dip coating technique is adopted to coat silica films on the glass substrates. The static water contact angle as high as 164° and water sliding angle as low as 4° was obtained for silica film prepared from M=0.22. The surface morphological studies of the prepared silica film showed the porous structure with pore sizes typically ranging from 200nm to 1.3μm. The superhydrophobic silica films prepared from M=0.22 retained their superhydrophobicity up to a temperature of 285°C and above this temperature the films became superhydrophilic. The porous and water repellent silica films are prepared by proper alteration of the Ph-TMS in the coating solution. The prepared silica films were characterized by surface profilometer, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier Transform Infrared (FT-IR) spectroscopy, humidity tests, chemical aging tests, static and dynamic water contact angle measurements. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Effect of solid state fermentation of peanut shell on its dye adsorption performance.

    PubMed

    Liu, Jiayang; Wang, Zhixin; Li, Hongyan; Hu, Changwei; Raymer, Paul; Huang, Qingguo

    2018-02-01

    The effect of solid state fermentation of peanut shell to produce beneficial laccase and on its dye adsorption performance was evaluated. The resulting residues from solid fermentation were tested as sorbents (designated as SFs) in comparison to the raw peanut shell (RPS) for their ability to remove crystal violet from water. The fermentation process reduced the adsorption capacity (q m ) of SF by about 50%, and changed the sorptive behavior when compared to the RPS. The Langmuir model was more suitable for fitting adsorption by SFs. q m was positively correlated with the surface area of peanut shell, but negatively correlated with acid detergent lignin content. For all the sorbents tested, the process was spontaneous and endothermic, and the adsorption followed both the pseudo 1st and 2nd order kinetic model and the film diffusion model. Dye adsorption efficiency was greater when SFs dispersed solution than when placed in filter packets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Dosimetry for 131Cs and 125I seeds in solid water phantom using radiochromic EBT film.

    PubMed

    Chiu-Tsao, Sou-Tung; Napoli, John J; Davis, Stephen D; Hanley, Joseph; Rivard, Mark J

    2014-09-01

    To measure the 2D dose distributions with submillimeter resolution for (131)Cs (model CS-1 Rev2) and (125)I (model 6711) seeds in a Solid Water phantom using radiochromic EBT film for radial distances from 0.06cm to 5cm. To determine the TG-43 dosimetry parameters in water by applying Solid Water to liquid water correction factors generated from Monte Carlo simulations. Each film piece was positioned horizontally above and in close contact with a (131)Cs or (125)I seed oriented horizontally in a machined groove at the center of a Solid Water phantom, one film at a time. A total of 74 and 50 films were exposed to the (131)Cs and (125)I seeds, respectively. Different film sizes were utilized to gather data in different distance ranges. The exposure time varied according to the seed air-kerma strength and film size in order to deliver doses in the range covered by the film calibration curve. Small films were exposed for shorter times to assess the near field, while larger films were exposed for longer times in order to assess the far field. For calibration, films were exposed to either 40kV (M40) or 50kV (M50) x-rays in air at 100.0cm SSD with doses ranging from 0.2Gy to 40Gy. All experimental, calibration and background films were scanned at a 0.02cmpixel resolution using a CCD camera-based microdensitometer with a green light source. Data acquisition and scanner uniformity correction were achieved with Microd3 software. Data analysis was performed using ImageJ, FV, IDL and Excel software packages. 2D dose distributions were based on the calibration curve established for 50kV x-rays. The Solid Water to liquid water medium correction was calculated using the MCNP5 Monte Carlo code. Subsequently, the TG-43 dosimetry parameters in liquid water medium were determined. Values for the dose-rate constants using EBT film were 1.069±0.036 and 0.923±0.031cGyU(-1)h(-1) for (131)Cs and (125)I seed, respectively. The corresponding values determined using the Monte Carlo method were 1.053±0.014 and 0.924±0.016cGyU(-1)h(-1) for (131)Cs and (125)I seed, respectively. The radial dose functions obtained with EBT film measurements and Monte Carlo simulations were plotted for radial distances up to 5cm, and agreed within the uncertainty of the two methods. The 2D anisotropy functions obtained with both methods also agreed within their uncertainties. EBT film dosimetry in a Solid Water phantom is a viable method for measuring (131)Cs (model CS-1 Rev2) and (125)I (model 6711) brachytherapy seed dose distributions with submillimeter resolution. With the Solid Water to liquid water correction factors generated from Monte Carlo simulations, the measured TG-43 dosimetry parameters in liquid water for these two seed models were found to be in good agreement with those in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A smoothed particle hydrodynamics model for droplet and film flow on smooth and rough fracture surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kordilla, Jannes; Tartakovsky, Alexandre M.; Geyer, Tobias

    2013-09-01

    Flow on fracture surfaces has been identified by many authors as an important flow process in unsaturated fractured rock formations. Given the complexity of flow dynamics on such small scales, robust numerical methods have to be employed in order to capture the highly dynamic interfaces and flow intermittency. In this work we present microscale free-surface flow simulations using a three-dimensional multiphase Smoothed Particle Hydrodynamics (SPH) code. Pairwise solid-fluid and fluid-fluid interaction forces are used to control the wetting behavior and cover a wide range of static and transient contact angles as well as Reynolds numbers encountered in droplet flow onmore » rock surfaces. We validate our model via comparison with existing empirical and semi-analyical solutions for droplet flow. We use the model to investigate the occurence of adsorbed trailing films of droplets under various flow conditions and its importance for the flow dynamics when films and droplets coexist. We show that flow velocities are higher on prewetted surfaces covered by a thin film which is qualitatively attributed to the enhanced dynamic wetting and dewetting at the trailing and advancing contact line.« less

  9. Theoretical results for fully flooded, elliptical hydrodynamic contacts

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1982-01-01

    The influence of the ellipticity parameter and the dimensionless speed, load, and materials parameters on minimum film thickness was investigated. The ellipticity parameter was varied from 1 (a ball-on-plate configuration) to 8 (a configuration approaching a line contact). The dimensionless speed parameter was varied over a range of nearly two orders of magnitude. Conditions corresponding to the use of solid materials of bronze, steel, and silicon nitride and lubricants of praffinic and naphthemic mineral oils were considered in obtaining the exponent in the dimensionless materials parameter. Thirty-four different cases were used in obtaining the minimum film thickness formula H min = 3.63U to the 0.68 power G to the 0.49 power W to the -0.073 power 1-e to the 0.68K power). A simplified expression for the ellipticity parameter was found where k = 1.03 (r(y)/r(x)) to the 0.64 power. Contour plots were also shown which indicate in detail the pressure spike and two side lobes in which the minimum film thickness occurs. These theoretical solutions of film thickness have all the essential features of the previously reported experimental observations based upon optical interferometry.

  10. Flexible Transparent Supercapacitors Based on Hierarchical Nanocomposite Films.

    PubMed

    Chen, Fanhong; Wan, Pengbo; Xu, Haijun; Sun, Xiaoming

    2017-05-31

    Flexible transparent electronic devices have recently gained immense popularity in smart wearable electronics and touch screen devices, which accelerates the development of the portable power sources with reliable flexibility, robust transparency and integration to couple these electronic devices. For potentially coupled as energy storage modules in various flexible, transparent and portable electronics, the flexible transparent supercapacitors are developed and assembled from hierarchical nanocomposite films of reduced graphene oxide (rGO) and aligned polyaniline (PANI) nanoarrays upon their synergistic advantages. The nanocomposite films are fabricated from in situ PANI nanoarrays preparation in a blended solution of aniline monomers and rGO onto the flexible, transparent, and stably conducting film (FTCF) substrate, which is obtained by coating silver nanowires (Ag NWs) layer with Meyer rod and then coating of rGO layer on polyethylene terephthalate (PET) substrate. Optimization of the transparency, the specific capacitance, and the flexibility resulted in the obtained all-solid state nanocomposite supercapacitors exhibiting enhanced capacitance performance, good cycling stability, excellent flexibility, and superior transparency. It provides promising application prospects for exploiting flexible, low-cost, transparent, and high-performance energy storage devices to be coupled into various flexible, transparent, and wearable electronic devices.

  11. Role of bond adaptability in the passivation of colloidal quantum dot solids.

    PubMed

    Thon, Susanna M; Ip, Alexander H; Voznyy, Oleksandr; Levina, Larissa; Kemp, Kyle W; Carey, Graham H; Masala, Silvia; Sargent, Edward H

    2013-09-24

    Colloidal quantum dot (CQD) solids are attractive materials for photovoltaic devices due to their low-cost solution-phase processing, high absorption cross sections, and their band gap tunability via the quantum size effect. Recent advances in CQD solar cell performance have relied on new surface passivation strategies. Specifically, cadmium cation passivation of surface chalcogen sites in PbS CQDs has been shown to contribute to lowered trap state densities and improved photovoltaic performance. Here we deploy a generalized solution-phase passivation strategy as a means to improving CQD surface management. We connect the effects of the choice of metal cation on solution-phase surface passivation, film-phase trap density of states, minority carrier mobility, and photovoltaic power conversion efficiency. We show that trap passivation and midgap density of states determine photovoltaic device performance and are strongly influenced by the choice of metal cation. Supported by density functional theory simulations, we propose a model for the role of cations, a picture wherein metals offering the shallowest electron affinities and the greatest adaptability in surface bonding configurations eliminate both deep and shallow traps effectively even in submonolayer amounts. This work illustrates the importance of materials choice in designing a flexible passivation strategy for optimum CQD device performance.

  12. Influence of film structure on the dewetting kinetics of thin polymer films in the solvent annealing process.

    PubMed

    Zhang, Huanhuan; Xu, Lin; Lai, Yuqing; Shi, Tongfei

    2016-06-28

    On a non-wetting solid substrate, the solvent annealing process of a thin polymer film includes the swelling process and the dewetting process. Owing to difficulties in the in situ analysis of the two processes simultaneously, a quantitative study on the solvent annealing process of thin polymer films on the non-wetting solid substrate is extremely rare. In this paper, we design an experimental method by combining spectroscopic ellipsometry with optical microscopy to achieve the simultaneous in situ study. Using this method, we investigate the influence of the structure of swollen film on its dewetting kinetics during the solvent annealing process. The results show that for a thin PS film with low Mw (Mw = 4.1 kg mol(-1)), acetone molecules can form an ultrathin enriched layer between the PS film and the solid substrate during the swelling process. The presence of the acetone enriched layer accounts for the exponential kinetic behavior in the case of a thin PS film with low Mw. However, the acetone enriched layer is not observed in the case of a thin PS film with high Mw (Mw = 400 kg mol(-1)) and the slippage effect of polymer chains is valid during the dewetting process.

  13. Exciton-Delocalizing Ligands Can Speed Up Energy Migration in Nanocrystal Solids.

    PubMed

    Azzaro, Michael S; Dodin, Amro; Zhang, Diana Y; Willard, Adam P; Roberts, Sean T

    2018-05-09

    Researchers have long sought to use surface ligands to enhance energy migration in nanocrystal solids by decreasing the physical separation between nanocrystals and strengthening their electronic coupling. Exciton-delocalizing ligands, which possess frontier molecular orbitals that strongly mix with nanocrystal band-edge states, are well-suited for this role because they can facilitate carrier-wave function extension beyond the nanocrystal core, reducing barriers for energy transfer. This report details the use of the exciton-delocalizing ligand phenyldithiocarbamate (PDTC) to tune the transport rate and diffusion length of excitons in CdSe nanocrystal solids. A film composed of oleate-terminated CdSe nanocrystals is subjected to a solid-state ligand exchange to replace oleate with PDTC. Exciton migration in the films is subsequently investigated by femtosecond transient absorption. Our experiments indicate that the treatment of nanocrystal films with PDTC leads to rapid (∼400 fs) downhill energy migration (∼80 meV), while no such migration occurs in oleate-capped films. Kinetic Monte Carlo simulations allow us to extract both rates and length scales for exciton diffusion in PDTC-treated films. These simulations reproduce dynamics observed in transient absorption measurements over a range of temperatures and confirm excitons hop via a Miller-Abrahams mechanism. Importantly, our experiments and simulations show PDTC treatment increases the exciton hopping rate to 200 fs, an improvement of 5 orders of magnitude relative to oleate-capped films. This exciton hopping rate stands as one of the fastest determined for CdSe solids. The facile, room-temperature processing and improved transport properties offered by the solid-state exchange of exciton-delocalizing ligands show they offer promise for the construction of strongly coupled nanocrystal arrays.

  14. Listeria monocytogenes inhibition by defatted mustard meal-based edible films.

    PubMed

    Lee, Hahn-Bit; Noh, Bong Soo; Min, Sea C

    2012-02-01

    An antimicrobial edible film was developed from defatted mustard meal (Sinapis alba) (DMM), a byproduct from the bio-fuel industry, without incorporating external antimicrobials and its antimicrobial activity against Listeria monocytogenes and physical properties were investigated. The DMM colloidal solution consisting of 184 g water, 14 g DMM, and 2g glycerol was homogenized and incubated at 37°C for 0.2, 0.5, 24 or 48 h to prepare a film-forming solution. The pH of a portion of the film-forming solution (pH 5.5) was adjusted to 2.0 or 4.0. Films were formed by drying the film-forming solutions at 23°C for 48 h. The film-forming solution incubated for 48 h inhibited L. monocytogenes in broth and on agar media. Antimicrobial effects of the film prepared from the 48 h-incubated solution increased with decrease in pH of the solution from 5.5 to 2.0. The film from the film forming solution incubated for 48 h (pH 2.0) initially inhibited more than 4.0 log CFU/g of L. monocytogenes inoculated on film-coated salmon. The film-coating retarded the growth of L. monocytogenes in smoked salmon at 5, 10, and 15°C and the antimicrobial effect during storage was more noticeable when the coating was applied before inoculation than when it was applied after inoculation. The tensile strength, percentage elongation, solubility in watercxu, and water vapor permeability of the anti microbial film were 2.44 ± 0.19 MPa, 6.40 ± 1.13%, 3.19 ± 0.90%, and 3.18 ± 0.63 gmm/kPa hm(2), respectively. The antimicrobial DMM films have demonstrated a potential to be applied to foods as wraps or coatings to control the growth of L. monocytogenes. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Solid Lubrication Fundamentals and Applications. Chapter 2

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1998-01-01

    This chapter describes powerful analytical techniques capable of sampling tribological surfaces and solid-film lubricants. Some of these techniques may also be used to determine the locus of failure in a bonded structure or coated substrate; such information is important when seeking improved adhesion between a solid-film lubricant and a substrate and when seeking improved performance and long life expectancy of solid lubricants. Many examples are given here and through-out the book on the nature and character of solid surfaces and their significance in lubrication, friction, and wear. The analytical techniques used include the late spectroscopic methods.

  16. Transparent, flexible supercapacitors from nano-engineered carbon films.

    PubMed

    Jung, Hyun Young; Karimi, Majid B; Hahm, Myung Gwan; Ajayan, Pulickel M; Jung, Yung Joon

    2012-01-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.

  17. Transparent, flexible supercapacitors from nano-engineered carbon films

    PubMed Central

    Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon

    2012-01-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications. PMID:23105970

  18. Transparent, flexible supercapacitors from nano-engineered carbon films

    NASA Astrophysics Data System (ADS)

    Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon

    2012-10-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.

  19. DNA based thin solid films and its application to optical fiber temperature sensor

    NASA Astrophysics Data System (ADS)

    Hong, Seongjin; Jung, Woohyun; Kim, Taeoh; Oh, Kyunghwan

    2017-04-01

    Temperature dependent refractive index of DNA-cetyltrimethylammonium chloride (CTMA) thin-solid-film was measured 20 to 90° to obtain its thermo-optic coefficient of -3.6×10-4 (dn/dT). DNA- CTMA film has high thermosoptic coefficient than other polymers. The film was deposited on coreless silica fiber (CSF) to serve as a multimode interferometer optical fiber temperature sensor. It is immersed in a water that changed temperature from 40 to 90°. It has sensitivity of 0.25nm/℃.

  20. High Power Storage System Based on Thin Film Solid Ionics.

    DTIC Science & Technology

    1988-02-01

    linear sweep voltametry (LSV) technique (Dahn and Hearing, 1981). We observe that in non-annealed film the peak at 1.2 V Is very strong compared to that...1.8V. The redox stability range has been determined by cyclic voltametry for different preparation conditions of the films. Lithium solid state hybrid...Fig. 6 Linear sweep voltagrams at 7gV/s rate of InSe films prepared at Ts=RT (a) non-annealed, (b) annealed at 475 K during 64 hours. 11 1 -’ 1 J, -I

  1. Decomposition of poly(amide-imide) film enameled on solid copper wire using atmospheric pressure non-equilibrium plasma.

    PubMed

    Sugiyama, Kazuo; Suzuki, Katsunori; Kuwasima, Shusuke; Aoki, Yosuke; Yajima, Tatsuhiko

    2009-01-01

    The decomposition of a poly(amide-imide) thin film coated on a solid copper wire was attempted using atmospheric pressure non-equilibrium plasma. The plasma was produced by applying microwave power to an electrically conductive material in a gas mixture of argon, oxygen, and hydrogen. The poly(amide-imide) thin film was easily decomposed by argon-oxygen mixed gas plasma and an oxidized copper surface was obtained. The reduction of the oxidized surface with argon-hydrogen mixed gas plasma rapidly yielded a metallic copper surface. A continuous plasma heat-treatment process using a combination of both the argon-oxygen plasma and argon-hydrogen plasma was found to be suitable for the decomposition of the poly(amide-imide) thin film coated on the solid copper wire.

  2. Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells.

    PubMed

    Shankar, Karthik; Mor, Gopal K; Prakasam, Haripriya E; Varghese, Oomman K; Grimes, Craig A

    2007-11-20

    Films comprised of 4 microm long titanium dioxide nanotube arrays were fabricated by anodizing Ti foils in an ethylene glycol based electrolyte. A carboxylated polythiophene derivative was self-assembled onto the TiO2 nanotube arrays by immersing them in a solution of the polymer. The binding sites of the carboxylate moiety along the polymer chain provide multiple anchoring sites to the substrate, making for a stable rugged film. Backside illuminated liquid junction solar cells based on TiO2 nanotube films sensitized by the self-assembled polymeric layer showed a short-circuit current density of 5.5 mA cm-2, a 0.7 V open circuit potential, and a 0.55 fill factor yielding power conversion efficiencies of 2.1% under AM 1.5 sun. A backside illuminated single heterojunction solid state solar cell using the same self-assembled polymer was demonstrated and yielded a photocurrent density as high as 2.0 mA cm-2. When a double heterojunction was formed by infiltrating a blend of poly(3-hexylthiophene) (P3HT) and C60-methanofullerene into the self-assembled polymer coated nanotube arrays, a photocurrent as high as 6.5 mA cm-2 was obtained under AM 1.5 sun with a corresponding efficiency of 1%. The photocurrent action spectra showed a maximum incident photon-to-electron conversion efficiency (IPCE) of 53% for the liquid junction cells and 25% for the single heterojunction solid state solar cells.

  3. A solid-state thin-film Ag/AgCl reference electrode coated with graphene oxide and its use in a pH sensor.

    PubMed

    Kim, Tae Yong; Hong, Sung A; Yang, Sung

    2015-03-17

    In this study, we describe a novel solid-state thin-film Ag/AgCl reference electrode (SSRE) that was coated with a protective layer of graphene oxide (GO). This layer was prepared by drop casting a solution of GO on the Ag/AgCl thin film. The potential differences exhibited by the SSRE were less than 2 mV for 26 days. The cyclic voltammograms of the SSRE were almost similar to those of a commercial reference electrode, while the diffusion coefficient of Fe(CN)63- as calculated from the cathodic peaks of the SSRE was 6.48 × 10-6 cm2/s. The SSRE was used in conjunction with a laboratory-made working electrode to determine its suitability for practical use. The average pH sensitivity of this combined sensor was 58.5 mV/pH in the acid-to-base direction; the correlation coefficient was greater than 0.99. In addition, an integrated pH sensor that included the SSRE was packaged in a secure digital (SD) card and tested. The average sensitivity of the chip was 56.8 mV/pH, with the correlation coefficient being greater than 0.99. In addition, a pH sensing test was also performed by using a laboratory-made potentiometer, which showed a sensitivity of 55.4 mV/pH, with the correlation coefficient being greater than 0.99.

  4. In Situ Real-Time Mechanical and Morphological Characterization of Electrodes for Electrochemical Energy Storage and Conversion by Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring.

    PubMed

    Shpigel, Netanel; Levi, Mikhael D; Sigalov, Sergey; Daikhin, Leonid; Aurbach, Doron

    2018-01-16

    Quartz crystal microbalance with dissipation monitoring (QCM-D) generates surface-acoustic waves in quartz crystal plates that can effectively probe the structure of films, particulate composite electrodes of complex geometry rigidly attached to quartz crystal surface on one side and contacting a gas or liquid phase on the other side. The output QCM-D characteristics consist of the resonance frequency (MHz frequency range) and resonance bandwidth measured with extra-ordinary precision of a few tenths of Hz. Depending on the electrodes stiffness/softness, QCM-D operates either as a gravimetric or complex mechanical probe of their intrinsic structure. For at least 20 years, QCM-D has been successfully used in biochemical and environmental science and technology for its ability to probe the structure of soft solvated interfaces. Practical battery and supercapacitor electrodes appear frequently as porous solids with their stiffness changing due to interactions with electrolyte solutions or as a result of ion intercalation/adsorption and long-term electrode cycling. Unfortunately, most QCM measurements with electrochemical systems are carried out based on a single (fundamental) frequency and, as such, provided that the resonance bandwidth remains constant, are suitable for only gravimetric sensing. The multiharmonic measurements have been carried out mainly on conducting/redox polymer films rather than on typical composite battery/supercapacitor electrodes. Here, we summarize the most recent publications devoted to the development of electrochemical QCM-D (EQCM-D)-based methodology for systematic characterization of mechanical properties of operating battery/supercapacitor electrodes. By varying the electrodes' composition and structure (thin/thick layers, small/large particles, binders with different mechanical properties, etc.), nature of the electrolyte solutions and charging/cycling conditions, the method is shown to be operated in different application modes. A variety of useful electrode-material properties are assessed noninvasively, in situ, and in real time frames of ion intercalation into the electrodes of interest. A detailed algorithm for the mechanical characterization of battery electrodes kept in the gas phase and immersed into the electrolyte solutions has been developed for fast recognition of stiff and viscoelastic materials in terms of EQCM-D signatures treated by the hydrodynamic and viscoelastic models. Working examples of the use of in situ hydrodynamic spectroscopy to characterize stiff rough/porous solids of complex geometry and viscoelastic characterization of soft electrodes are presented. The most demonstrative example relates to the formation of solid electrolyte interphase on Li 4 Ti 5 O 12 electrodes in the presence of different electrolyte solutions and additives: only a few cycles (an experiment during ∼30 min) were required for screening the electrolyte systems for their ability to form high-quality surface films in experimental EQCM-D cells as compared to 100 cycles (200 h cycling) in conventional coin cells. Thin/small-mass electrodes required for the EQCM-D analysis enable accelerated cycling tests for ultrafast mechanical characterization of these electrodes in different electrolyte solutions. Hence, this methodology can be easily implemented as a highly effective in situ analytical tool in the field of energy storage and conversion.

  5. Fabrication of solution processed 3D nanostructured CuInGaS₂ thin film solar cells.

    PubMed

    Chu, Van Ben; Cho, Jin Woo; Park, Se Jin; Hwang, Yun Jeong; Park, Hoo Keun; Do, Young Rag; Min, Byoung Koun

    2014-03-28

    In this study we demonstrate the fabrication of CuInGaS₂ (CIGS) thin film solar cells with a three-dimensional (3D) nanostructure based on indium tin oxide (ITO) nanorod films and precursor solutions (Cu, In and Ga nitrates in alcohol). To obtain solution processed 3D nanostructured CIGS thin film solar cells, two different precursor solutions were applied to complete gap filling in ITO nanorods and achieve the desirable absorber film thickness. Specifically, a coating of precursor solution without polymer binder material was first applied to fill the gap between ITO nanorods followed by deposition of the second precursor solution in the presence of a binder to generate an absorber film thickness of ∼1.3 μm. A solar cell device with a (Al, Ni)/AZO/i-ZnO/CdS/CIGS/ITO nanorod/glass structure was constructed using the CIGS film, and the highest power conversion efficiency was measured to be ∼6.3% at standard irradiation conditions, which was 22.5% higher than the planar type of CIGS solar cell on ITO substrate fabricated using the same precursor solutions.

  6. Environment-Friendly Post-Treatment of PEDOT-Tos Films by Aqueous Vitamin C Solutions for Tuning of Thermoelectric Properties

    NASA Astrophysics Data System (ADS)

    Khan, Ezaz Hasan; Thota, Sammaiah; Wang, Yiwen; Li, Lian; Wilusz, Eugene; Osgood, Richard; Kumar, Jayant

    2018-04-01

    Aqueous vitamin C solution has been used as an environment-friendly reducing agent for tuning the thermoelectric properties of p-toluenesulfonate-doped poly(3,4-ethylenedioxythiophene) (PEDOT-Tos) films. The de-doping of the PEDOT-Tos films by aqueous vitamin C solutions led to a decrease in the electrical conductivity of the films. The measured ultraviolet-visible-near-infrared and x-ray photoelectron spectra clearly indicated the reduction in the oxidation level from 37 to 23% when the PEDOT-Tos films were treated with 5% (w/v) aqueous vitamin C solutions. An increase in the Seebeck coefficient was measured, resulting in an increase in the figure-of-merit (ZT). A 42% increase in ZT was determined for the 5% aqueous vitamin C solution-treated PEDOT-Tos films with respect to that of the untreated films.

  7. Self-Passivating Lithium/Solid Electrolyte/Iodine Cells

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar; Whitcare, Jay; Narayanan, Sekharipuram; West, William

    2006-01-01

    Robust lithium/solid electrolyte/iodine electrochemical cells that offer significant advantages over commercial lithium/ iodine cells have been developed. At room temperature, these cells can be discharged at current densities 10 to 30 times those of commercial lithium/iodine cells. Moreover, from room temperature up to 80 C, the maximum discharge-current densities of these cells exceed those of all other solid-electrolyte-based cells. A cell of this type includes a metallic lithium anode in contact with a commercial flexible solid electrolyte film that, in turn, is in contact with an iodine/ graphite cathode. The solid electrolyte (the chemical composition of which has not been reported) offers the high ionic conductivity needed for high cell performance. However, the solid electrolyte exhibits an undesirable chemical reactivity to lithium that, if not mitigated, would render the solid electrolyte unsuitable for use in a lithium cell. In this cell, such mitigation is affected by the formation of a thin passivating layer of lithium iodide at the anode/electrolyte interface. Test cells of this type were fabricated from iodine/graphite cathode pellets, free-standing solid-electrolyte films, and lithium-foil anodes. The cathode mixtures were made by grinding together blends of nominally 10 weight percent graphite and 90 weight percent iodine. The cathode mixtures were then pressed into pellets at 36 kpsi (248 MPa) and inserted into coin-shaped stainless-steel cell cases that were coated with graphite paste to minimize corrosion. The solid-electrolyte film material was stamped to form circular pieces to fit in the coin cell cases, inserted in the cases, and pressed against the cathode pellets with polyethylene gaskets. Lithium-foil anodes were placed directly onto the electrolyte films. The layers described thus far were pressed and held together by stainless- steel shims, wave springs, and coin cell caps. The assembled cells were then crimped to form hermetic seals. It was found that the solid electrolyte films became discolored within seconds after they were placed in contact with the cathodes - a result of facile diffusion of iodine through the solid electrolyte material (see figure).

  8. Zwitterionic Hydrogel-Biopolymer Assembly towards Biomimetic Superlubricants

    NASA Astrophysics Data System (ADS)

    Seekell, Raymond; Zhu, Elaine

    2014-03-01

    One superlubricant in nature is the synovial fluid (SF), comprising of a high molecular weight polysaccharide, hyaluronic acid (HA), and a globule protein, lubricin. In this bio-inspired materials research, we have explored hydrogel particles to mimic lubricin as a ``ball-bearing'' and control their interaction with the viscoelastic HA matrix. Biocompatible poly(N-[2-(Methacyloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide) (PMSA) hydrogel particles are synthesized to examine the electrostatic induced assembly of PMSA-HA supramolecular complexes in aqueous solutions. Fluorescence microscopy and rheology experiments have characterized the tunable network structure and viscoelastic properties of PMSA-HA aggregates by HA concentration and ionic conditions in aqueous solution. When being grafted to a solid surface, the PMSA-HA composite thin film exhibits superior low biofouling and friction performance, suggesting great promises as artificial superlubricants.

  9. Structurally integrated organic light emitting device-based sensors for gas phase and dissolved oxygen.

    PubMed

    Shinar, Ruth; Zhou, Zhaoqun; Choudhury, Bhaskar; Shinar, Joseph

    2006-05-24

    A compact photoluminescence (PL)-based O2 sensor utilizing an organic light emitting device (OLED) as the light source is described. The sensor device is structurally integrated. That is, the sensing element and the light source, both typically thin films that are fabricated on separate glass substrates, are attached back-to-back. The sensing elements are based on the oxygen-sensitive dyes Pt- or Pd-octaethylporphyrin (PtOEP or PdOEP, respectively), which are embedded in a polystyrene (PS) matrix, or dissolved in solution. Their performance is compared to that of a sensing element based on tris(4,7-diphenyl-l,10-phenanthroline) Ru II (Ru(dpp)) embedded in a sol-gel film. A green OLED light source, based on tris(8-hydroxy quinoline Al (Alq3), was used to excite the porphyrin dyes; a blue OLED, based on 4,4'-bis(2,2'-diphenylviny1)-1,1'-biphenyl, was used to excite the Ru(dpp)-based sensing element. The O2 level was monitored in the gas phase and in water, ethanol, and toluene solutions by measuring changes in the PL lifetime tau of the O2-sensitive dyes. The sensor performance was evaluated in terms of the detection sensitivity, dynamic range, gas flow rate, and temperature effect, including the temperature dependence of tau in pure Ar and O2 atmospheres. The dependence of the sensitivity on the preparation procedure of the sensing film and on the PS and dye concentrations in the sensing element, whether a solid matrix or solution, were also evaluated. Typical values of the detection sensitivity in the gas phase, S(g) identical with tau(0% O2)/tau(100% O2), at 23 degrees C, were approximately 35 to approximately 50 for the [Alq3 OLED[/[PtOEP dye] pair; S(g) exceeded 200 for the Alq3/PdOEP sensor. For dissolved oxygen (DO) in water and ethanol, S(DO) (defined as the ratio of tau in de-oxygenated and oxygen-saturated solutions) was approximately 9.5 and approximately 11, respectively, using the PtOEP-based film sensor. The oxygen level in toluene was measured with PtOEP dissolved directly in the solution. That sensor exhibited a high sensitivity, but a limited dynamic range. Effects of aggregation of dye molecules, sensing film porosity, and the use of the OLED-based sensor arrays for O2 and multianalyte detection are also discussed.

  10. Characteristics of Kodak Insight, an F-speed intraoral film.

    PubMed

    Ludlow, J B; Platin, E; Mol, A

    2001-01-01

    This study reports film speed, contrast, exposure latitude, resolution, and response to processing solution depletion of Kodak Insight intraoral film. Densitometric curves were generated by using International Standards Organization protocol. Additional curves were generated for Ultra-speed, Ektaspeed Plus, and Insight films developed in progressively depleted processing solutions. Eight observers viewed images of a resolution test tool for maximum resolution assessment. Images of an aluminum step-wedge were reviewed to determine useful exposure latitude. Insight's sensitivity in fresh automatic processor solutions places it in the F-speed group. An average gradient of 1.8 was found with all film types. Insight provided 93% of the useful exposure latitude of Ektaspeed Plus film. Insight maintained contrast in progressively depleted processing solutions. Like Ektaspeed Plus, Insight was able to resolve at least 20 line-pairs per millimeter. Under International Standards Organization conditions, Insight required only 77% of the exposure of Ektaspeed Plus film. Insight film provided stable contrast in depleted processing solutions.

  11. The study of effect of solid electrolyte on charge-discharge characteristics of thin-film lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mazaletskiy, L. A.; Lebedev, M. E.; Mironenko, A. A.; Naumov, V. V.; Novozhilova, A. V.; Fedorov, I. S.; Rudy, A. S.

    2017-11-01

    Results of studies of the solid electrolyte effect on capacitance of thin-film electrodes on the basis of Si-O-Al and VxOy nanocomposites are presented. The studies were carried out by comparing the charge-discharge characteristics of two pairs of the identical electrodes, one of which was covered by LiPON film, within prototypes with two lithium electrodes - the counter and the reference electrode.

  12. Coating of plasma polymerized film

    NASA Technical Reports Server (NTRS)

    Morita, S.; Ishibashi, S.

    1980-01-01

    Plasma polymerized thin film coating and the use of other coatings is suggested for passivation film, thin film used for conducting light, and solid body lubrication film of dielectrics of ultra insulators for electrical conduction, electron accessories, etc. The special features of flow discharge development and the polymerized film growth mechanism are discussed.

  13. SnS2 Thin Film Deposition by Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Jaber, Abdallah Yahia; Alamri, Saleh Noaiman; Aida, Mohammed Salah

    2012-06-01

    Tin disulfide (SnS2) thin films have been synthesized using a simplified spray pyrolysis technique using a perfume atomizer. The films were deposited using two different solutions prepared by the dilution of SnCl2 and thiourea in distilled water and in methanol. The obtained films have a microcrystalline structure. The film deposited using methanol as the solvent is nearly stochiometric SnS2 with a spinel phase having a (001) preferential orientation. The film prepared with an aqueous solution is Sn-rich. Scanning electronic microscopy (SEM) images reveal that the film deposited with the aqueous solution is rough and is formed with large wires. However, the film deposited with methanol is dense and smooth. Conductivity measurements indicate that the aqueous solution leads to an n-type semiconductor, while methanol leads to a p-type semiconductor.

  14. Bismuth pyrochlore-based thin films for dielectric energy storage

    NASA Astrophysics Data System (ADS)

    Michael, Elizabeth K.

    The drive towards the miniaturization of electronic devices has created a need for dielectric materials with large energy storage densities. These materials, which are used in capacitors, are a critical component in many electrical systems. Here, the development of dielectric energy storage materials for pulsed power applications, which require materials with the ability to accumulate a large amount of energy and then deliver it to the system rapidly, is explored. The amount of electrostatic energy that can be stored by a material is a function of the induced polarization and the dielectric breakdown strength of the material. An ideal energy storage dielectric would possess a high relative permittivity, high dielectric breakdown strength, and low loss tangent under high applied electric fields. The bismuth pyrochlores are a compositionally tunable family of materials that meet these requirements. Thin films of cubic pyrochlore bismuth zinc niobate, bismuth zinc tantalate, and bismuth zinc niobate tantalate, were fabricated using a novel solution chemistry based upon the Pechini method. This solution preparation is advantageous because it avoids the use of teratogenic solvents, such as 2-methoxyethanol. Crystalline films fabricated using this solution chemistry had very small grains that were approximately 27 nm in lateral size and 35 nm through the film thickness. Impedance measurements found that the resistivity of the grain boundaries was two orders of magnitude higher than the resistivity of the grain interior. The presence of many resistive grain boundaries impeded conduction through the films, resulting in high breakdown strengths for these materials. In addition to high breakdown strengths, this family of materials exhibited moderate relative permittivities of between 55 +/- 2 and 145 +/- 5, for bismuth zinc tantalate and bismuth zinc niobate, respectively, and low loss tangents on the order of 0.0008 +/- 0.0001. Increases in the concentration of the tantalum end member increased the dielectric breakdown strength. This combination of a high breakdown strength and a moderate permittivity led to a high discharged energy storage density for all film compositions. For example, at a measurement frequency of 10 kHz, bismuth zinc niobate exhibited a maximum recoverable energy storage density of 60.8 +/- 2.0 J/cm 3, while bismuth zinc tantalate exhibited a recoverable energy storage density of 60.7 +/- 2.0 J/cm3. Intermediate compositions of bismuth zinc niobate tantalate were explored to maximize the energy storage density of the substitutional solid solution. At an optimized concentration of ten mole percent tantalum, the maximum recoverable 10 kHz energy storage density was ˜66.9 +/- 2.4 J/cm3. These films of bismuth zinc niobate tantalate (Bi1.5Zn0.9Nb1.35Ta0.15O 6.9) sustained a maximum field of 5.5 MV/cm at 10 kHz, and demonstrated a relative permittivity of 122 +/- 4. The films maintained a high energy storage density above 20 J/cm3 though temperatures of 200°C. The second major objective of this work was to integrate complex oxides processed at temperatures below 350°C onto flexible polyimide substrates for potential use in flexible energy storage applications. Nanocomposite films consisting of a nanocrystalline fluorite related to delta-bismuth oxide in an amorphous matrix were prepared by reducing the citric acid concentration of the precursor solution, relative to the crystalline films. These solutions were batched with the composition Bi1.5Zn0.9Nb 1.35Ta0.15O6.9. The nanocomposite had a relative permittivity of 50 +/- 2 and dielectric losses on the order of 0.03 +/- 0.01. For measurement frequencies of 1 kHz and 10 kHz, the nanocomposite demonstrated a breakdown strength of 3.8 MV/cm, and a room-temperature energy storage density of approximately 40.2 +/- 1.7 J/cm3. To determine the suitability of the nanocomposite films for use in flexible applications, free-standing flexible nanocomposite films underwent repetitive compressive and tensile bending around a minimum bend diameter of 7 mm, which corresponded to a strain of 0.10%. After bending the films 30,000 times, the energy storage density of the films was unchanged, indicating that nanocomposite bismuth zinc niobate tantalate films may be suitable for flexible energy storage applications. To demonstrate the broader applicability of the nanocomposite approach to developing energy storage dielectrics at low processing temperatures, films of nanocomposite lead titanate, Pb1.1TiO3.1, were deposited using an inverted mixing order solution preparation, and annealed at a maximum temperature of 400°C. X-ray diffraction indicated the presence of nanocrystalline ordering, and transmission electron microscopy confirmed the nucleation of isolated nanocrystals of lead oxide in an amorphous lead titanate matrix. (Abstract shortened by UMI.).

  15. Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high-voltage lithium ion batteries and lithium polymer batteries

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Huang, Jie; Li, Yejing; Wang, Yi; Qiu, Jiliang; Zhang, Jienan; Yu, Huigen; Yu, Xiqian; Li, Hong; Chen, Liquan

    2018-06-01

    Surface modification of LiCoO2 with the ultrathin film of solid state electrolyte of Li1.4Al0.4Ti1.6(PO4)3 (LATP) has been realized by a new and facile solution-based method. The coated LiCoO2 reveals enhanced structural and electrochemical stability at high voltage (4.5 V vs Li+/Li) in half-cell with liquid electrolyte. Transmission electron microscopy (TEM) images show that a dense LATP coating layer is covered on the surface of LiCoO2 uniformly with thickness of less than 20 nm. The LATP coating layer is proven to be able to prevent the direct contact between the cathode and the electrolyte effectively and thus to suppress the side reactions of liquid electrolyte with LiCoO2 surface at high charging voltage. As a result, dissolution of Co3+ has been largely suppressed over prolonged cycling as indicated by the X-ray photoelectron spectroscopy (XPS) measurements. Due to this surface passivating feature, the electrochemical performance of 0.5 wt% LATP modified LiCoO2 has also been evaluated in an all solid lithium battery with poly(ethylene oxide)-based polymer electrolyte. The cell exhibits 93% discharge capacity retention of the initial discharge capacity after 50 cycles at the charging cut-off voltage of 4.2 V, suggesting that the LATP coating layer is effective to suppress the oxidation of PEO at high voltage.

  16. Solvent decompositions and physical properties of decomposition compounds in Li-ion battery electrolytes studied by DFT calculations and molecular dynamics simulations.

    PubMed

    Tasaki, Ken

    2005-02-24

    The density functional theory (DFT) calculations have been performed for the reduction decompositions of solvents widely used in Li-ion secondary battery electrolytes, ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonates (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC), including a typical electrolyte additive, vinylene carbonate (VC), at the level of B3LYP/6-311+G(2d,p), both in the gas phase and solution using the polarizable conductor calculation model. In the gas phase, the first electron reduction for the cyclic carbonates and for the linear carbonates is found to be exothermic and endothermic, respectively, while the second electron reduction is endothermic for all the compounds examined. On the contrary, in solution both first and second electron reductions are exothermic for all the compounds. Among the solvents and the additive examined, the likelihood of undergoing the first electron reduction in solution was found in the order of EC > PC > VC > DMC > EMC > DEC with EC being the most likely reduced. VC, on the other hand, is most likely to undergo the second electron reduction among the compounds, in the order of VC > EC > PC. Based on the results, the experimentally demonstrated effectiveness of VC as an excellent electrolyte additive was discussed. The bulk thermodynamic properties of two dilithium alkylene glycol dicarbonates, dilithium ethylene glycol dicarbonate (Li-EDC) and dilithium 1,2-propylene glycol dicarbonate (Li-PDC), as the major component of solid-electrolyte interface (SEI) films were also examined through molecular dynamics (MD) simulations in order to understand the stability of the SEI film. It was found that film produced from a decomposition of EC, modeled by Li-EDC, has a higher density, more cohesive energy, and less solubility to the solvent than the film produced from decomposition of PC, Li-PDC. Further, MD simulations of the interface between the decomposition compound and graphite suggested that Li-EDC has more favorable interactions with the graphite surface than Li-PDC. The difference in the SEI film stability and the behavior of Li-ion battery cycling among the solvents were discussed in terms of the molecular structures.

  17. Effect of gamma radiation on the physico-chemical properties of alginate-based films and beads

    NASA Astrophysics Data System (ADS)

    Huq, Tanzina; Khan, Avik; Dussault, Dominic; Salmieri, Stephane; Khan, Ruhul A.; Lacroix, Monique

    2012-08-01

    Alginate solution (3%, w/v) was prepared using deionized water from its powder. Then the solution was exposed to gamma radiation (0.1-25 kGy). The alginate films were prepared by solution casting. It was found that gamma radiation has strong effect on alginate solution. At low doses, mechanical strength of the alginate films improved but after 5 kGy dose, the strength started to decrease. The mechanism of alginate radiolysis in aqueous solution is discussed. Film formation was not possible from alginate solution at doses >5 kGy. The mechanical properties such as puncture strength (PS), puncture deformation (PD), viscoelasticity (Y) coefficient of the un-irradiated films were investigated. The values of PS, PD and Y coefficient of the films were 333 N/mm, 3.20 mm and 27%, respectively. Alginate beads were prepared from 3% alginate solution (w/v) by ionotropic gelation method in 5% CaCl2 solution. The rate of gel swelling improved in irradiated alginate-based beads at low doses (up to 0.5 kGy).

  18. Comparison of solution-mixed and sequentially processed P3HT: F4TCNQ films: effect of doping-induced aggregation on film morphology

    DOE PAGES

    Jacobs, Ian E.; Aasen, Erik W.; Oliveira, Julia L.; ...

    2016-03-23

    Doping polymeric semiconductors often drastically reduces the solubility of the polymer, leading to difficulties in processing doped films. Here, we compare optical, electrical, and morphological properties of P3HT films doped with F4TCNQ, both from mixed solutions and using sequential solution processing with orthogonal solvents. We demonstrate that sequential doping occurs rapidly (<1 s), and that the film doping level can be precisely controlled by varying the concentration of the doping solution. Furthermore, the choice of sequential doping solvent controls whether dopant anions are included or excluded from polymer crystallites. Atomic force microscopy (AFM) reveals that sequential doping produces significantly moremore » uniform films on the nanoscale than the mixed-solution method. In addition, we show that mixed-solution doping induces the formation of aggregates even at low doping levels, resulting in drastic changes to film morphology. Sequentially coated films show 3–15 times higher conductivities at a given doping level than solution-doped films, with sequentially doped films processed to exclude dopant anions from polymer crystallites showing the highest conductivities. In conclusion, we propose a mechanism for doping induced aggregation in which the shift of the polymer HOMO level upon aggregation couples ionization and solvation energies. To show that the methodology is widely applicable, we demonstrate that several different polymer:dopant systems can be prepared by sequential doping.« less

  19. Comparison of solution-mixed and sequentially processed P3HT: F4TCNQ films: effect of doping-induced aggregation on film morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Ian E.; Aasen, Erik W.; Oliveira, Julia L.

    Doping polymeric semiconductors often drastically reduces the solubility of the polymer, leading to difficulties in processing doped films. Here, we compare optical, electrical, and morphological properties of P3HT films doped with F4TCNQ, both from mixed solutions and using sequential solution processing with orthogonal solvents. We demonstrate that sequential doping occurs rapidly (<1 s), and that the film doping level can be precisely controlled by varying the concentration of the doping solution. Furthermore, the choice of sequential doping solvent controls whether dopant anions are included or excluded from polymer crystallites. Atomic force microscopy (AFM) reveals that sequential doping produces significantly moremore » uniform films on the nanoscale than the mixed-solution method. In addition, we show that mixed-solution doping induces the formation of aggregates even at low doping levels, resulting in drastic changes to film morphology. Sequentially coated films show 3–15 times higher conductivities at a given doping level than solution-doped films, with sequentially doped films processed to exclude dopant anions from polymer crystallites showing the highest conductivities. In conclusion, we propose a mechanism for doping induced aggregation in which the shift of the polymer HOMO level upon aggregation couples ionization and solvation energies. To show that the methodology is widely applicable, we demonstrate that several different polymer:dopant systems can be prepared by sequential doping.« less

  20. Photo- and thermally induced property change in Ag diffusion into Ag/As2Se3 thin films

    NASA Astrophysics Data System (ADS)

    Aparimita, Adyasha; Sripan, C.; Ganesan, R.; Naik, Ramakanta

    2018-03-01

    In the present report, we have prepared As2Se3 and bilayer Ag/As2Se3 chalcogenide thin films prepared by thermal evaporation process. The top Ag layer is being diffused into the bottom As2Se3 layer by 532 nm laser irradiation and thermal annealing process. The photo and thermal energy drives the Ag+ ions into the As2Se3 matrix that enhances the formation of As-Se-Ag solid solution which shows the changes of optical properties such as transmission, absorption power, refractive index, and optical band gap. The transmission power drastically decreased for the thermal-induced film than the laser induced one; and the reverse effect is seen for the absorption coefficient. The non-linear refractive index is found to be increased due to the Ag diffusion into As2Se3 film. The indirect allowed optical band gap is being reduced by a significant amount of 0.17 eV (thermal diffusion) and 0.03 eV (photo diffusion) from the Ag/As2Se3 film. The Ag diffusion creates chemical disorderness in the film observed from the two parameters which measures the degree of disorder such as Urbach energy and Tauc parameter. The structural change is not noticed in the studied film as seen from the X-ray diffraction pattern. Scanning electron microscopy and atomic force microscopy investigations showed that the surface morphology was influenced by the diffusion phenomena. The change in optical constants in such type of film can be used in optical waveguides and optical devices.

  1. Reactive magnetron cosputtering of hard and conductive ternary nitride thin films: Ti-Zr-N and Ti-Ta-N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abadias, G.; Koutsokeras, L. E.; Dub, S. N.

    2010-07-15

    Ternary transition metal nitride thin films, with thickness up to 300 nm, were deposited by dc reactive magnetron cosputtering in Ar-N{sub 2} plasma discharges at 300 deg. C on Si substrates. Two systems were comparatively studied, Ti-Zr-N and Ti-Ta-N, as representative of isostructural and nonisostructural prototypes, with the aim of characterizing their structural, mechanical, and electrical properties. While phase-separated TiN-ZrN and TiN-TaN are the bulk equilibrium states, Ti{sub 1-x}Zr{sub x}N and Ti{sub 1-y}Ta{sub y}N solid solutions with the Na-Cl (B1-type) structure could be stabilized in a large compositional range (up to x=1 and y=0.75, respectively). Substituting Ti atoms by eithermore » Zr or Ta atoms led to significant changes in film texture, microstructure, grain size, and surface morphology, as evidenced by x-ray diffraction, x-ray reflectivity, and scanning electron and atomic force microscopies. The ternary Ti{sub 1-y}Ta{sub y}N films exhibited superior mechanical properties to Ti{sub 1-x}Zr{sub x}N films as well as binary compounds, with hardness as high as 42 GPa for y=0.69. All films were metallic, the lowest electrical resistivity {rho}{approx}65 {mu}{Omega} cm being obtained for pure ZrN, while for Ti{sub 1-y}Ta{sub y}N films a minimum was observed at y{approx}0.3. The evolution of the different film properties is discussed based on microstructrural investigations.« less

  2. CuInSe₂ thin-film solar cells with 7.72 % efficiency prepared via direct coating of a metal salts/alcohol-based precursor solution.

    PubMed

    Ahn, Sejin; Son, Tae Hwa; Cho, Ara; Gwak, Jihye; Yun, Jae Ho; Shin, Keeshik; Ahn, Seoung Kyu; Park, Sang Hyun; Yoon, Kyunghoon

    2012-09-01

    A simple direct solution coating process for forming CuInSe₂ (CIS) thin films was described, employing a low-cost and environmentally friendly precursor solution. The precursor solution was prepared by mixing metal acetates, ethanol, and ethanolamine. The facile formation of a precursor solution without the need to prefabricate nanoparticles enables a rapid and easy processing, and the high stability of the solution in air further ensures the precursor preparation and the film deposition in ambient conditions without a glove box. The thin film solar cell fabricated with the absorber film prepared by this route showed an initial conversion efficiency of as high as 7.72 %. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Method of producing solution-derived metal oxide thin films

    DOEpatents

    Boyle, Timothy J.; Ingersoll, David

    2000-01-01

    A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  4. Plasma-assisted physical vapor deposition surface treatments for tribological control

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1990-01-01

    In any mechanical or engineering system where contacting surfaces are in relative motion, adhesion, wear, and friction affect reliability and performance. With the advancement of space age transportation systems, the tribological requirements have dramatically increased. This is due to the optimized design, precision tolerance requirements, and high reliability expected for solid lubricating films in order to withstand hostile operating conditions (vacuum, high-low temperatures, high loads, and space radiation). For these problem areas the ion-assisted deposition/modification processes (plasma-based and ion beam techniques) offer the greatest potential for the synthesis of thin films and the tailoring of adherence and chemical and structural properties for optimized tribological performance. The present practices and new approaches of applying soft solid lubricant and hard wear resistant films to engineering substrates are reviewed. The ion bombardment treatments have increased film adherence, lowered friction coefficients, and enhanced wear life of the solid lubricating films such as the dichalcogenides (MoS2) and the soft metals (Au, Ag, Pb). Currently, sputtering is the preferred method of applying MoS2 films; and ion plating, the soft metallic films. Ultralow friction coefficients (less than 0.01) were achieved with sputtered MoS2. Further, new diamond-like carbon and BN lubricating films are being developed by using the ion assisted deposition techniques.

  5. An in-vitro evaluation of silicone elastomer latex for topical drug delivery.

    PubMed

    Li, L C; Vu, N T

    1995-06-01

    A silicone elastomer latex was evaluated as a topical drug-delivery system. With the addition of a fumed silica and the removal of water, the latex produced elastomeric solid films. The water vapour permeability of the solid film was found to be a function of the film composition. An increase in silica content and the incorporation of a water-soluble component, PEG 3350, rendered the silicone elastomer-free film even more permeable to water vapour. The release of hydrocortisone from the elastomer film can be described by a matrix-diffusion-controlled mechanism. Drug diffusion is thought to occur through the hydrophobic silicone polymer network and the hydrated hydrophilic silica region in the film matrix. Silicone elastomer film with a higher silica content exhibited a faster drug-release rate. The addition of PEG 3350 to the film further enhanced the drug-release rate.

  6. Metal current collect protected by oxide film

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.

    2004-05-25

    Provided are low-cost, mechanically strong, highly electronically conductive current collects and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical devices having as current interconnects a ferritic steel felt or screen coated with a protective oxide film.

  7. Thin Film Solid Lubricant Development

    NASA Technical Reports Server (NTRS)

    Benoy, Patricia A.

    1997-01-01

    Tribological coatings for high temperature sliding applications are addressed. A sputter-deposited bilayer coating of gold and chromium is investigated as a potential solid lubricant for protection of alumina substrates during sliding at high temperature. Evaluation of the tribological properties of alumina pins sliding against thin sputtered gold films on alumina substrates is presented.

  8. Dual-Chamber/Dual-Anode Proportional Counter Incorporating an Intervening Thin-Foil Solid Neutron Converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boatner, Lynn A; Neal, John S; Blackston, Matthew A

    2012-01-01

    A dual-chamber/dual-anode gas proportional counter utilizing thin solid 6LiF or 10B neutron converters coated on a 2-micon-thick Mylar film that is positioned between the two counter chambers and anodes has been designed, fabricated, and tested using a variety of fill gases including naturally abundant helium. In this device, neutron conversion products emitted from both sides of the coated converter foil are detected rather than having half of the products absorbed in the wall of a conventional tube type counter where the solid neutron converter is deposited on the tube wall. Geant4-based radiation transport calculations were used to determine the optimummore » neutron converter coating thickness for both isotopes. Solution methods for applying these optimized-thickness coatings on a Mylar film were developed that were carried out at room temperature without any specialized equipment and that can be adapted to standard coating methods such as silk screen or ink jet printing. The performance characteristics of the dual-chamber/dual-anode neutron detector were determined for both types of isotopically enriched converters. The experimental performance of the 6LiF converter-based detector was described well by modeling results from Geant4. Additional modeling studies of multiple-foil/multiple-chamber/anode configurations addressed the basic issue of the relatively longer absorption range of neutrons versus the shorter range of the conversion products for 6LiF and 10B. Combined with the experimental results, these simulations indicate that a high-performance neutron detector can be realized in a single device through the application of these multiple-foil/solid converter, multiple-chamber detector concepts.« less

  9. A New Star-shaped Carbazole Derivative with Polyhedral Oligomeric Silsesquioxane Core: Crystal Structure and Unique Photoluminescence Property.

    PubMed

    Xu, Zixuan; Yu, Tianzhi; Zhao, Yuling; Zhang, Hui; Zhao, Guoyun; Li, Jianfeng; Chai, Lanqin

    2016-01-01

    A new inorganic–organic hybrid material based on polyhedral oligomeric silsesquioxane (POSS) capped with carbazolyl substituents, octakis[3-(carbazol-9-yl)propyldimethylsiloxy]-silsesquioxane (POSS-8Cz), was successfully synthesized and characterized. The X-ray crystal structure of POSS-8Cz were described. The photophysical properties of POSS-8Cz were investigated by using UV–vis,photoluminescence spectroscopic analysis. The hybrid material exhibits blue emission in the solution and the solid film.The morphology and thermal stablity properties were measured by X-ray diffraction (XRD) and TG-DTA analysis.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozmen, Ozcan; Zondlo, John W.; Lee, Shiwoo

    A bio-inspired surfactant was utilized to assist in the efficient impregnation of a nano-CeO₂ catalyst throughout both porous Solid Oxide Fuel Cells (SOFC’s) electrodes simultaneously. The process included the initial modification of electrode pore walls with a polydopamine film. The cell was then submersed into a cerium salt solution. The amount of nano-CeO₂ deposited per impregnation step increased by 3.5 times by utilizing this two-step protocol in comparison to a conventional drip impregnation method. The impregnated cells exhibited a 20% higher power density than a baseline cell without the nano-catalyst at 750°C (using humid H₂ fuel).

  11. Distillation Kinetics of Solid Mixtures of Hydrogen Peroxide and Water and the Isolation of Pure Hydrogen Peroxide in Ultrahigh Vacuum

    NASA Technical Reports Server (NTRS)

    Teolis, B. D.; Baragiola, R. A.

    2006-01-01

    We present results of the growth of thin films of crystalline H2O2 and H2O2.2H2O (dihydrate) in ultrahigh vacuum by distilling an aqueous solution of hydrogen peroxide. We traced the process using infrared reflectance spectroscopy, mass loss on a quartz crystal microbalance, and in a few cases ultraviolet-visible reflectance. We find that the different crystalline phases-water, dihydrate, and hydrogen peroxide-have very different sublimation rates, making distillation efficient to isolate the less volatile component, crystalline H2O2.

  12. Solid-solution Zn(O,S) thin films: Potential alternative buffer layer for Cu2ZnSnS4 solar cells

    NASA Astrophysics Data System (ADS)

    Jani, Margi; Raval, Dhyey; Chavda, Arvind; Mukhopadhyay, Indrajit; Ray, Abhijit

    2018-05-01

    This report investigates the alternative buffer material as Zn(O,S) for chalcogenide Cu2ZnSnS4 (CZTS) solar cell application. Using the band gap tailoring (band bowing) properties of Zn(O,S) system, performance of CZTS solar cell is explore in the present study. Reducing the band offsets with the hetero-junction partners plays a deterministic role in the performance of the device using Zn(O,S) as buffer layer. The experimental performance of the device with the CZTS/Zn(O,S) film developed by Spray pyrolysis method and analyze using J-V characterization in dark and illuminated configuration. Device with the best achievable performance shows Voc of 150 mV and Jsc of 0.47 mA/cm2 has been presented with the possibility of application in the energy harvesting.

  13. Electrochemical Liquid Phase Epitaxy (ec-LPE): A New Methodology for the Synthesis of Crystalline Group IV Semiconductor Epifilms.

    PubMed

    Demuth, Joshua; Fahrenkrug, Eli; Ma, Luyao; Shodiya, Titilayo; Deitz, Julia I; Grassman, Tyler J; Maldonado, Stephen

    2017-05-24

    Deposition of epitaxial germanium (Ge) thin films on silicon (Si) wafers has been achieved over large areas with aqueous feedstock solutions using electrochemical liquid phase epitaxy (ec-LPE) at low temperatures (T ≤ 90 °C). The ec-LPE method uniquely blends the simplicity and control of traditional electrodeposition with the material quality of melt growth. A new electrochemical cell design based on the compression of a liquid metal electrode into a thin cavity that enables ec-LPE is described. The epitaxial nature, low strain character, and crystallographic defect content of the resultant solid Ge films were analyzed by electron backscatter diffraction, scanning transmission electron microscopy, high resolution X-ray diffraction, and electron channeling contrast imaging. The results here show the first step toward a manufacturing infrastructure for traditional crystalline inorganic semiconductor epifilms that does not require high temperature, gaseous precursors, or complex apparatus.

  14. Degenerate p-type conductivity in wide-gap LaCuOS1-xSex (x=0-1) epitaxial films

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Hidenori; Ueda, Kazushige; Ohta, Hiromichi; Hirano, Masahiro; Kamiya, Toshio; Hosono, Hideo

    2003-02-01

    Epitaxial films of LaCuOS1-xSex (x=0-1) solid solution were grown on MgO (001) substrates and their electrical and optical properties were examined. Sharp emission due to room-temperature exciton with binding energy of ˜50 meV is observed for all x values. Hall mobility becomes large with an increase in the Se content and it reaches 8.0 cm2V-1s-1 in LaCuOSe, a comparable value to that of p-type GaN:Mg. Doping of Mg2+ ions at La3+ sites enhances a hole concentration up to 2.2×1020 cm-3, while maintaining the Hall mobility as large as 4.0 cm2V-1s-1. Consequently, a degenerate p-type electrical conduction with a conductivity of 140 S cm-1 was achieved.

  15. FIBER AND INTEGRATED OPTICS: Photodetector waveguide structures made of epitaxial InGaAs films and intended for integrated circuits manufactured from III-V semiconductor compounds

    NASA Astrophysics Data System (ADS)

    Shmal'ko, A. V.; Lamekin, V. F.; Smirnov, V. L.; Polyantsev, A. S.; Kogan, Yu I.; Babushkina, T. S.; Kuntsevich, T. S.; Peshkovskaya, O. G.

    1990-08-01

    Photodetector waveguide structures made of epitaxial InxGa1 - xAs solid-solution films were developed and investigated. These structures were intended for optical integrated circuits manufactured from III-V semiconductor compounds for operation in the wavelength range 1.0-1.5 μm. Two types of photodetector waveguide p-i-n structures were developed. They consisted of a composite waveguide and tunnel-coupled waveguides, respectively. A study was made of structural parameters, responsivity, spectral and time characteristics, and dark currents in photodetectors made of the waveguide structures. This investigation was carried out in the wavelength range 1.0-1.3 μm. The maximum spectral responsivity of one of the types of the waveguide photodetector was ~ 0.5 ± 0.1 A/W and the dark current did not exceed 10 - 7-10 - 8 A.

  16. Polyenamines from aromatic diacetylenic diketones and diamines

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor); Sinsky, Mark S. (Inventor); Connell, John W. (Inventor)

    1987-01-01

    The synthesis and characterization of several polyenamine ketones are discussed wherein conjugated diacetylenic diketones and aromatic diamines are used as a route to the formation of high molecular weight polyenamine ketones which exhibit good mechanical properties and can be cast into creasible films. Typical polymerization conditions involved the reaction of stoichiometric amounts of 1,4- or 1,3-PPPO and a diamine at 60 to 130 C in m-cresol at (w/w) solids content of 8 to 26% for a specified period of time under a nitrogen atmosphere. Novel polyenamine ketones were prepared with inherent viscosities as high as 1.99 dl/g and tough, clear amber films with tensile strengths of 12,400 psi and tensile moduli of 397,000 psi were cast from solutions of the polymers in chloroform. In most cases, the elemental analyses for the polyenamine ketones agree within + or - 0.3% of the theoretical values.

  17. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes

    NASA Astrophysics Data System (ADS)

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey J.; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian G.; Maksymovych, Peter; Sargent, Edward H.

    2015-05-01

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite-PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3- antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.

  18. Examining metallic glass formation in LaCe:Nb by ion implantation

    DOE PAGES

    Sisson, Richard; Reinhart, Cameron; Bridgman, Paul; ...

    2017-01-01

    In order to combine niobium (Nb) with lanthanum (La) and cerium (Ce), Nb ions were deposited within a thin film of these two elements. According to the Hume-Rothery rules, these elements cannot be combined into a traditional crystalline metallic solid. The creation of an amorphous metallic glass consisting of Nb, La, and Ce is then investigated. Amorphous metallic glasses are traditionally made using fast cooling of a solution of molten metals. In this paper, we show the results of an experiment carried out to form a metallic glass by implanting 9 MeV Nb 3+ atoms into a thin film ofmore » La and Ce. Prior to implantation, the ion volume distribution is calculated by Monte Carlo simulation using the SRIM tool suite. As a result, using multiple methods of electron microscopy and material characterization, small quantities of amorphous metallic glass are indeed identified.« less

  19. Local hysteresis and grain size effect in Pb(Mg1/3Nb2/3)O3- PbTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Shvartsman, V. V.; Emelyanov, A. Yu.; Kholkin, A. L.; Safari, A.

    2002-07-01

    The local piezoelectric properties of relaxor ferroelectric films of solid solutions 0.9Pb(Mg1/3Nb2/3)O3- 0.1PbTiO3 were investigated by scanning force microscopy (SFM) in a piezoelectric contact mode. The piezoelectric hysteresis loops were acquired in the interior of grains of different sizes. A clear correlation between the values of the effective piezoelectric coefficients, deff, and the size of the respective grains is observed. Small grains exhibit slim piezoelectric hysteresis loops with low remanent deff, whereas relatively strong piezoelectric activity is characteristic of larger grains. Part of the grains (approx20-25%) is strongly polarized without application of a dc field. The nature of both phenomena is discussed in terms of the internal bias field and grain size effects on the dynamics of nanopolar clusters.

  20. End-Member Formulation of Solid Solutions and Reactive Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtner, Peter C.

    2015-09-01

    A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed tomore » correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.« less

Top