NASA Astrophysics Data System (ADS)
Saltas, V.; Horlait, D.; Sgourou, E. N.; Vallianatos, F.; Chroneos, A.
2017-12-01
Modelling solid solutions is fundamental in understanding the properties of numerous materials which are important for a range of applications in various fields including nanoelectronics and energy materials such as fuel cells, nuclear materials, and batteries, as the systematic understanding throughout the composition range of solid solutions for a range of conditions can be challenging from an experimental viewpoint. The main motivation of this review is to contribute to the discussion in the community of the applicability of methods that constitute the investigation of solid solutions computationally tractable. This is important as computational modelling is required to calculate numerous defect properties and to act synergistically with experiment to understand these materials. This review will examine in detail two examples: silicon germanium alloys and MAX phase solid solutions. Silicon germanium alloys are technologically important in nanoelectronic devices and are also relevant considering the recent advances in ternary and quaternary groups IV and III-V semiconductor alloys. MAX phase solid solutions display a palette of ceramic and metallic properties and it is anticipated that via their tuning they can have applications ranging from nuclear to aerospace industries as well as being precursors for particular MXenes. In the final part, a brief summary assesses the limitations and possibilities of the methodologies discussed, whereas there is discussion on the future directions and examples of solid solution systems that should prove fruitful to consider.
Local Structure and Short-Range Order in a NiCoCr Solid Solution Alloy
Zhang, F. X.; Zhao, Shijun; Jin, Ke; ...
2017-05-19
Multi-element solid solution alloys are intrinsically disordered on the atomic scale, and many of their advanced properties originate from the unique local structural characteristics. We measured the local structure of a NiCoCr solid solution alloy with X-ray/neutron total scattering and extended X-ray absorption fine structure (EXAFS) techniques. The atomic pair distribution function analysis (PDF) did not exhibit distinct structural distortion. But, EXAFS analysis suggested that the Cr atoms are favorably bonded with Ni and Co in the solid solution alloys. This short-range order (SRO) plays a role in the distinct low values of electrical and thermal conductivities in Ni-based solidmore » solution alloys when Cr is incorporated. Both the long-range and local structures of the NiCoCr alloy upon Ni ion irradiation were studied and an irradiation-induced enhancement of SRO was found.« less
NASA Astrophysics Data System (ADS)
Kavun, V. Ya.; Uvarov, N. F.; Slobodyuk, A. B.; Merkulov, E. B.; Polyantsev, M. M.
2018-07-01
The ion mobility and conductivity of solid solutions with tysonite-type structure obtained by doping bismuth trifluoride with lead (II) fluoride, and zirconium and bismuth oxides have been studied using 19F NMR, X-ray diffraction analysis, and impedance spectroscopy. The types of ionic motions in the fluoride sublattice of the synthesized solid solutions in the temperature range 150-450 K have been determined and the energy of their activation has been estimated. Due to high ionic conductivity, above 10-2 S/cm at 570 K, these solid solutions can be considered as superionic conductors.
Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit
2016-11-09
Spark plasma sintered transition metal diborides such as HfB 2, ZrB 2 and their solid solutions were investigated as electrode materials for electrochemical hydrogen evolutions reactions (HER) in 1 M H 2SO 4 and 1 M NaOH electrolytes. HfB 2 and ZrB 2 formed complete solid solutions when mixed in 1:1, 1:4, and 4:1 ratios and they were stable in both electrolytes. The HER kinetics of the diborides were slower in the basic solution than in the acidic solutions. The Tafel slopes in 1 M H 2SO 4 were in the range of 0.15 - 0.18 V/decade except for puremore » HfB 2 which showed a Tafel slope of 0.38 V/decade. In 1 M NaOH the Tafel slopes were in the range of 0.12 - 0.27 V/decade. The composition of Hf xZr 1-xB 2 solid solutions with x = 0.2 - 0.8, influenced the exchange current densities, overpotentials and Tafel slopes of the HER. As a result, the EIS data were fitted with a porous film equivalent circuit model in order to better understand the HER behavior. In addition, modeling calculations, using density functional theory approach, were carried out to estimate the density of states and band structure of the boride solid solutions.« less
Surface Defects Enhanced Visible Light Photocatalytic H2 Production for Zn-Cd-S Solid Solution.
Zhang, Xiaoyan; Zhao, Zhao; Zhang, Wanwan; Zhang, Guoqiang; Qu, Dan; Miao, Xiang; Sun, Shaorui; Sun, Zaicheng
2016-02-10
In order to investigate the defect effect on photocatalytic performance of the visible light photocatalyst, Zn-Cd-S solid solution with surface defects is prepared in the hydrazine hydrate. X-ray photoelectron spectra and photoluminescence results confirm the existence of defects, such as sulfur vacancies, interstitial metal, and Zn and Cd in the low valence state on the top surface of solid solutions. The surface defects can be effectively removed by treating with sulfur vapor. The solid solution with surface defect exhibits a narrower band gap, wider light absorption range, and better photocatalytic perfomance. The optimized solid solution with defects exhibits 571 μmol h(-1) for 50 mg photocatalyst without loading Pt as cocatalyst under visible light irradiation, which is fourfold better than that of sulfur vapor treated samples. The wavelength dependence of photocatalytic activity discloses that the enhancement happens at each wavelength within the whole absorption range. The theoretical calculation shows that the surface defects induce the conduction band minimum and valence band maximum shift downward and upward, respectively. This constructs a type I junction between bulk and surface of solid solution, which promotes the migration of photogenerated charges toward the surface of nanostructure and leads to enhanced photocatalytic activity. Thus a new method to construct highly efficient visible light photocatalysts is opened. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bakovets, V. V.; Zolotova, E. S.; Antonova, O. V.; Korol'kov, I. V.; Yushina, I. V.
2016-12-01
The specific features of the photoluminescence of [ nCaWO4-(1- n)CaMoO4]:Eu3+ solid solutions with the scheelite structure are examined using X-ray phase analysis and photoluminescence, Raman scattering, and diffuse reflectance spectroscopy. The studied features are associated with a change in the long- and short-range orders of the crystal lattice upon variations in the composition of solutions in the range n = 0-1.0 (with a pitch of 0.2) at a concentration of red photoluminescence activator Eu3+ of 2 mol %. The mechanism of the modification of photoluminescence of solid solutions upon variations in their composition has been discussed. Anomalies in the variations in parameters of the crystal lattice, its short-range order, and luminescence spectra have been observed in the transition from pure compounds CaMoO4:Eu3+ and CaWO4:Eu3+ to solutions; the concentration of Eu3+ ions in the centrosymmetric localization increases (decreases) in the transition from the molybdate (tungstate). It has been demonstrated that the spectral radiant emittance of solid solution [0.4CaWO4-0.6CaMoO4]:Eu3+ (2 mol %) is the closest to that of an incandescent lamp.
NASA Astrophysics Data System (ADS)
Yamashita, K.; Yoshiasa, A.; Miyazaki, H.; Tokuda, M.; Tobase, T.; Isobe, H.; Nishiyama, T.; Sugiyama, K.; Miyawaki, R.
2017-12-01
Jisyakuyama skarn deposit, Fukuchi, Fukuoka, Japan, shows a simple occurrenceformed by penetration of hot water into limestone cracks. A unique occurrence of scheelite-powellite CaW1-xMoxO4 minerals is observed in the skarn deposit. Many syntheticexperiments for scheelite-powellite solid solutions have been reported as research onfluorescent materials. In this system it is known that a complete continuous solid solution isformed even at room temperature. In this study, we have carried out the chemical analyses,crystal structural refinements and detail description of occurrence on scheelite-powelliteminerals. We have also attempted synthesis of single crystal of solid solution in a widecomposition range. The chemical compositions were determined by JEOL scanningelectron microscope and EDS, INCA system. We have performed the crystal structurerefinements of the scheelite-powellite CaW1-xMoxO4 solid solutions (x=0.0-1.0) byRIGAKU single-crystal structure analysis system RAPID. The R and S values are around0.0s and 1.03. As the result of structural refinements of natural products and many solidsolutions, we confirm that most large natural single crystals have compositions at bothendmembers, and large solid solution crystals are rare. The lattice constants, interatomicdistances and other crystallographic parameters for the solid solution change uniquely withcomposition and it was confirmed as a continuous solid solution. Single crystals of scheeliteendmember + powellite endmember + solid solution with various compositions form anaggregate in the deposit (Figure 1). Crystal shapes of powellite and scheelite arehypidiomorphic and allotriomorphic, respectively. Many solid solution crystals areaccompanied by scheelite endmember and a compositional gap is observed betweenpowellite and solid-solution crystals. The presence of several penetration solutions withsignificantly different W and Mo contents may be assumed. This research can be expectedto lead to giving restrictive conditions to elucidate the mineralization process. Figure1. Scheelite + Powellite + solid solution aggregate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit
Spark plasma sintered transition metal diborides such as HfB 2, ZrB 2 and their solid solutions were investigated as electrode materials for electrochemical hydrogen evolutions reactions (HER) in 1 M H 2SO 4 and 1 M NaOH electrolytes. HfB 2 and ZrB 2 formed complete solid solutions when mixed in 1:1, 1:4, and 4:1 ratios and they were stable in both electrolytes. The HER kinetics of the diborides were slower in the basic solution than in the acidic solutions. The Tafel slopes in 1 M H 2SO 4 were in the range of 0.15 - 0.18 V/decade except for puremore » HfB 2 which showed a Tafel slope of 0.38 V/decade. In 1 M NaOH the Tafel slopes were in the range of 0.12 - 0.27 V/decade. The composition of Hf xZr 1-xB 2 solid solutions with x = 0.2 - 0.8, influenced the exchange current densities, overpotentials and Tafel slopes of the HER. As a result, the EIS data were fitted with a porous film equivalent circuit model in order to better understand the HER behavior. In addition, modeling calculations, using density functional theory approach, were carried out to estimate the density of states and band structure of the boride solid solutions.« less
Diffusion of Chromium in Alpha Cobalt-Chromium Solid Solutions
NASA Technical Reports Server (NTRS)
Weeton, John W
1951-01-01
Diffusion of chromium in cobalt-chromium solid solutions was investigated in the range 0 to 40 atomic percent at temperatures of 1360 degrees, 1300 degrees, 1150 degrees, and 10000 degrees c. The diffusion coefficients were found to be relatively constant within the composition range covered by each specimen. The activation heat of diffusion was determined to be 63,000 calories per mole. This value agrees closely with the value of 63,400 calories per mole calculated by means of the Dushman-Langmuir equation.
Singh, Amol; Li, Xiangyang; Protasenko, Vladimir; Galantai, Gabor; Kuno, Masaru; Xing, Huili Grace; Jena, Debdeep
2007-10-01
Polarization-sensitive photodetectors are demonstrated using solution-synthesized CdSe nanowire (NW) solids. Photocurrent action spectra taken with a tunable white light source match the solution linear absorption spectra of the NWs, showing that the NW network is responsible for the device photoconductivity. Temperature-dependent transport measurements reveal that carriers responsible for the dark current through the nanowire solids are thermally excited across CdSe band gap. The NWs are aligned using dielectrophoresis between prepatterned electrodes using conventional optical photolithography. The photocurrent through the NW solid is found to be polarization-sensitive, consistent with complementary absorption (emission) measurements of both single wires and their ensembles. The range of solution-processed semiconducting NW materials, their facile synthesis, ease of device fabrication, and compatibility with a variety of substrates make them attractive for potential nanoscale polarization-sensitive photodetectors.
High-Solids Polyimide Precursor Solutions
NASA Technical Reports Server (NTRS)
Chuang, Chun-Hua (Inventor)
2004-01-01
The invention is a highly concentrated stable solution of polymide precursors (monometers) having a solids content ranging from about 80 to 98 percent by weight in lower aliphatic alcohols i.e. methyl and/or ethylalcohol. the concentrated polyimide precursos solution comparisons effective amounts of at least one aromatic diamine, at least one aromatic dianhydride, and a monofunctional endcap including monoamines, monoanhydrides and lower alkyl esters of said monoanhydrides. These concentrated polyimide precursor solutions are particularly useful for the preparation of fibrous prepregs and composites for use in structural materials for military and civil applications.
Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.
1994-01-01
A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.
NASA Astrophysics Data System (ADS)
Nikolaev, Anton; Kuz'mina, Maria; Frank-Kamenetskaya, Olga; Zorina, Maina
2015-06-01
The study of the influence of carbonate ions in a solution to Sr-distribution in system «solution-crystal» and to ion substitutions and the non-stoichiometry of formed CaHA-SrHA solid solutions was carried out. The CaHA-SrHA solid solutions were synthesized by precipitation from aqueous solutions with the atomic C/P ratio equal to 0, 0.05 and 0.1 at T = 90 °C. Resulting precipitates were studied using various methods including X-ray powder diffraction, infrared spectroscopy and different chemical analyses. The results of the study have shown that in the range of values of (Ca + Sr)/P in the water solution from 40% to 85%, the presence of carbonate ions (C/P = 0.05-0.1) promotes the incorporation of strontium in the apatite. Crystalline apatite solid solutions formed from water solutions of such composition are more defective compared to apatites that are mainly calcium or strontium. They are characterized by a smaller size coherence scattering domain length along [0 0 1] direction and a greater number of carbonate ions, water molecules and vacancies at the Ca-sites.
NASA Astrophysics Data System (ADS)
Fujimura, Toshio; Takeshita, Kunimasa; Suzuki, Ryosuke O.
2018-04-01
An analytical approximate solution to non-linear solute- and heat-transfer equations in the unsteady-state mushy zone of Fe-C plain steel has been obtained, assuming a linear relationship between the solid fraction and the temperature of the mushy zone. The heat transfer equations for both the solid and liquid zone along with the boundary conditions have been linked with the equations to solve the whole equations. The model predictions ( e.g., the solidification constants and the effective partition ratio) agree with the generally accepted values and with a separately performed numerical analysis. The solidus temperature predicted by the model is in the intermediate range of the reported formulas. The model and Neuman's solution are consistent in the low carbon range. A conventional numerical heat analysis ( i.e., an equivalent specific heat method using the solidus temperature predicted by the model) is consistent with the model predictions for Fe-C plain steels. The model presented herein simplifies the computations to solve the solute- and heat-transfer simultaneous equations while searching for a solidus temperature as a part of the solution. Thus, this model can reduce the complexity of analyses considering the heat- and solute-transfer phenomena in the mushy zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavun, V. Ya., E-mail: kavun@ich.dvo.ru; Uvarov, N.F.; Slobodyuk, A.B.
Ionic mobility and conductivity in the K{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} and Rb{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} (x=0.05, 0.09) solid solutions with the fluorite structure have been investigated using the methods of {sup 19}F NMR, X-ray diffraction and impedance spectroscopy. Types of ionic motions in the fluoride sublattice of solid solutions have been established and temperature ranges of their realization have been determined (150–450 K). Diffusion of fluoride ions is a dominating type of ionic motions in the fluoride sublattice of solid solutions under study above 350 K. Due to high ionic conductivity, above 10{sup –3} S/cm at 450 K,more » these solid solutions can be used as solid electrolytes in various electrochemical devices and systems. - Graphical abstract: Temperature dependence of the concentration of mobile (2, 4) and immobile (1, 3) F ions in the K{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} solid solutions. - Highlights: • Studied the ion mobility, conductivity in M{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} solid solutions (M=K, Rb). • An analysis of {sup 19}F NMR spectra made it possible to identify types of ion mobility. • The main type of ion motion above 300 K in solid solutions is a diffusion of ions F{sup –}. • The ionic conductivity of the solid solutions studied more than 10{sup –3} S/cm at 450 K.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor-Pashow, K.
2011-06-08
H-Canyon will begin dissolving High Aluminum - Low Uranium (High Al/Low U) Used Nuclear Fuel (UNF) following approval by DOE which is anticipated in CY2011. High Al/Low U is an aluminum/enriched uranium UNF with small quantities of uranium relative to aluminum. The maximum enrichment level expected is 93% {sup 235}U. The High Al/Low U UNF will be dissolved in H-Canyon in a nitric acid/mercury/gadolinium solution. The resulting solution will be neutralized and transferred to Tank 39H in the Tank Farm. To confirm that the solution generated could be poisoned with Gd, neutralized, and discarded to the Savannah River Site (SRS)more » high level waste (HLW) system without undue nuclear safety concerns the caustic precipitation of simulant solutions was examined. Experiments were performed with three simulant solutions representative of the H-Canyon estimated concentrations in the final solutions after dissolution. The maximum U, Gd, and Al concentration were selected for testing from the range of solution compositions provided. Simulants were prepared in three different nitric acid concentrations, ranging from 0.5 to 1.5 M. The simulant solutions were neutralized to four different endpoints: (1) just before a solid phase was formed (pH 3.5-4), (2) the point where a solid phase was obtained, (3) 0.8 M free hydroxide, and (4) 1.2 M free hydroxide, using 50 wt % sodium hydroxide (NaOH). The settling behavior of the neutralized solutions was found to be slower compared to previous studies, with settling continuing over a one week period. Due to the high concentration of Al in these solutions, precipitation of solids was observed immediately upon addition of NaOH. Precipitation continued as additional NaOH was added, reaching a point where the mixture becomes almost completely solid due to the large amount of precipitate. As additional NaOH was added, some of the precipitate began to redissolve, and the solutions neutralized to the final two endpoints mixed easily and had expected densities of typical neutralized waste. Based on particle size and scanning electron microscopy analyses, the neutralized solids were found to be homogeneous and less than 20 microns in size. The majority of solids were less than 4 microns in size. Compared to previous studies, a larger percentage of the Gd was found to precipitate in the partially neutralized solutions (at pH 3.5-4). In addition the Gd:U mass ratio was found to be at least 1.0 in all of the solids obtained after partial or full neutralization. The hydrogen to U (H:U) molar ratios for two accident scenarios were also determined. The first was for transient neutralization and agitator failure. Experimentally this scenario was determined by measuring the H:U ratio of the settled solids. The minimum H:U molar ratio for solids from fully neutralized solutions was 388:1. The second accident scenario is for the solids drying out in an unagitiated pump box. Experimentally, this scenario was determined by measuring the H:U molar ratio in centrifuged solids. The minimum H:U atom ratios for centrifuged precipitated solids was 250:1. It was determined previously that a 30:1 H:Pu atom ratio was sufficient for a 1:1 Gd:Pu mass ratio. Assuming a 1:1 equivalence with {sup 239}Pu, the results of these experiments show Gd is a viable poison for neutralizing U/Gd solutions with the tested compositions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taoufyq, A.; Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir; CEA, DEN, Département d'Etudes des Réacteurs, Service de Physique Expérimentale, Laboratoire Dosimétrie Capteurs Instrumentation, 13108 Saint-Paul-lez-Durance
2015-10-15
Highlights: • Luminescence can be modified by chemical substitution in solid solutions Ca{sub 1−x}Cd{sub x}WO{sub 4}. • The various emission spectra (charge transfer) were obtained under X-ray excitation. • Scheelite or wolframite solid solutions presented two types of emission spectra. • A luminescence component depended on cadmium substitution in each solid solution. • A component was only characteristic of oxyanion symmetry in each solid solution. - Abstract: We have investigated the chemical substitution effects on the luminescence properties under X-ray excitation of the solid solutions Ca{sub (1−x)}Cd{sub (x)}WO{sub 4} with 0 ≤ x ≤ 1. Two types of wide spectralmore » bands, associated with scheelite-type or wolframite-type solid solutions, have been observed at room temperature. We decomposed each spectral band into several spectral components characterized by energies and intensities varying with composition x. One Gaussian component was characterized by an energy decreasing regularly with the composition x, while the other Gaussian component was only related to the tetrahedral or octahedral configurations of tungstate groups WO{sub 4}{sup 2−} or WO{sub 6}{sup 6−}. The luminescence intensities exhibited minimum values in the composition range x < 0.5 corresponding to scheelite-type structures, then, they regularly increased for cadmium compositions x > 0.5 corresponding to wolframite-type structures.« less
Continuous supercritical synthesis and dielectric behaviour of the whole BST solid solution.
Reverón, H; Elissalde, C; Aymonier, C; Bousquet, C; Maglione, M; Cansell, F
2006-07-28
In this study we show that pure and well crystallized nanoparticles of Ba(x)Sr(1-x)TiO(3) (BST) can be synthesized over the entire range of composition through the hydrolysis and further crystallization of alkoxide precursors under supercritical conditions. To our knowledge, this is the first time that the whole ferroelectric solid solution has been produced in a continuous way, using the same experimental conditions. The composition of the powder can be easily controlled by adjusting the feed solution composition. The powders consist of soft-aggregated monocrystalline nanoparticles with an average particle size ranging from approximately 20 to 40 nm. Ferroelectric ceramics with accurately adjustable Curie temperature (100-390 K) can thus be obtained by sintering.
Lunar Rotation and the Lunar Interior
NASA Technical Reports Server (NTRS)
Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.; Dickey, J. O.
2003-01-01
Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/ solid-mantle boundary, and tidal Love number k2. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) and fluid core moment of inertia. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core plus Love number. Past detection of CMB flattening has been marginal but is improving, while direct detection of the core moment has not yet been achieved. Three decades of Lunar Laser Ranging (LLR) data are analyzed using a weighted least-squares approach. The lunar solution parameters include dissipation at the fluid-core/solid-mantle boundary, tidal dissipation, dissipation-related coefficients for rotation and orientation terms, potential Love number k2, a correction to the constant term in the tilt of the equator to the ecliptic which is meant to approximate the influence of core-mantle boundary flattening, and displacement Love numbers h2 and l2. Several solutions, with different combinations of solution parameters and constraints, are considered.
NASA Astrophysics Data System (ADS)
Lam, Nghi Q.; Janghorban, K.; Ardell, A. J.
1981-10-01
Irradiation-induced solute redistribution leading to precipitation of coherent γ' particles in undersaturated Ni-based solid solutions containing 6 and 8 at.% Si during 400-keV proton bombardment was modeled, based on the concept of solute segregation in concentrated alloys under spatially-dependent defect production conditions. The combined effects of (i) an extremely large difference between the defect production rates in the peak-damage and mid-range regions during irradiation and (ii) a preferential coupling between the interstitial and solute fluxes generate a net transient flux of Si atoms into the mid-range region, which is much larger than the solute flux out of this location. As a result, the Si concentration exceeds the solubility limit and homogeneous precipitation of the γ' phase occurs in this particular region of the irradiated samples. The spatial, compositional and temperature dependences of irradiation-induced homogeneous precipitation derived from the present theoretical calculations are in good qualitative agreement with experimental observations
Solid state phase change materials for thermal energy storage in passive solar heated buildings
NASA Astrophysics Data System (ADS)
Benson, D. K.; Christensen, C.
1983-11-01
A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.
Energetics of a uranothorite (Th 1–xU xSiO 4) solid solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Xiaofeng; Szenknect, Stephanie; Mesbah, Adel
High-temperature oxide melt solution calorimetric measurements were completed to determine the enthalpies of formation of the uranothorite, (USiO 4) x–(ThSiO 4) 1–x, solid solution. Phase-pure samples with x values of 0, 0.11, 0.21, 0.35, 0.71, and 0.84 were prepared, purified, and characterized by powder X-ray diffraction, electron probe microanalysis, thermogravimetric analysis and differential scanning calorimetry coupled with in situ mass spectrometry, and high-temperature oxide melt solution calorimetry. This work confirms the energetic metastability of coffinite, USiO 4, and U-rich intermediate silicate phases with respect to a mixture of binary oxides. Furthermore, variations in unit cell parameters and negative excess volumesmore » of mixing, coupled with strongly exothermic enthalpies of mixing in the solid solution, suggest short-range cation ordering that can stabilize intermediate compositions, especially near x = 0.5.« less
Energetics of a uranothorite (Th 1–xU xSiO 4) solid solution
Guo, Xiaofeng; Szenknect, Stephanie; Mesbah, Adel; ...
2016-10-11
High-temperature oxide melt solution calorimetric measurements were completed to determine the enthalpies of formation of the uranothorite, (USiO 4) x–(ThSiO 4) 1–x, solid solution. Phase-pure samples with x values of 0, 0.11, 0.21, 0.35, 0.71, and 0.84 were prepared, purified, and characterized by powder X-ray diffraction, electron probe microanalysis, thermogravimetric analysis and differential scanning calorimetry coupled with in situ mass spectrometry, and high-temperature oxide melt solution calorimetry. This work confirms the energetic metastability of coffinite, USiO 4, and U-rich intermediate silicate phases with respect to a mixture of binary oxides. Furthermore, variations in unit cell parameters and negative excess volumesmore » of mixing, coupled with strongly exothermic enthalpies of mixing in the solid solution, suggest short-range cation ordering that can stabilize intermediate compositions, especially near x = 0.5.« less
NASA Technical Reports Server (NTRS)
Carlson, F. M.; Chin, L.-Y.; Fripp, A. L.; Crouch, R. K.
1982-01-01
The effect of solid-liquid interface shape on lateral solute segregation during steady-state unidirectional solidification of a binary mixture is calculated under the assumption of no convection in the liquid. A finite element technique is employed to compute the concentration field in the liquid and the lateral segregation in the solid with a curved boundary between the liquid and solid phases. The computational model is constructed assuming knowledge of the solid-liquid interface shape; no attempt is made to relate this shape to the thermal field. The influence of interface curvature on the lateral compositional variation is investigated over a range of system parameters including diffusivity, growth speed, distribution coefficient, and geometric factors of the system. In the limiting case of a slightly nonplanar interface, numerical results from the finite element technique are in good agreement with the analytical solutions of Coriell and Sekerka obtained by using linear theory. For the general case of highly non-planar interface shapes, the linear theory fails and the concentration field in the liquid as well as the lateral solute segregation in the solid can be calculated by using the finite element method.
Design of high-strength refractory complex solid-solution alloys
Singh, Prashant; Sharma, Aayush; Smirnov, A. V.; ...
2018-03-28
Nickel-based superalloys and near-equiatomic high-entropy alloys containing molybdenum are known for higher temperature strength and corrosion resistance. Yet, complex solid-solution alloys offer a huge design space to tune for optimal properties at slightly reduced entropy. For refractory Mo-W-Ta-Ti-Zr, we showcase KKR electronic structure methods via the coherent-potential approximation to identify alloys over five-dimensional design space with improved mechanical properties and necessary global (formation enthalpy) and local (short-range order) stability. Deformation is modeled with classical molecular dynamic simulations, validated from our first-principle data. We predict complex solid-solution alloys of improved stability with greatly enhanced modulus of elasticity (3× at 300 K)more » over near-equiatomic cases, as validated experimentally, and with higher moduli above 500 K over commercial alloys (2.3× at 2000 K). We also show that optimal complex solid-solution alloys are not described well by classical potentials due to critical electronic effects.« less
Design of high-strength refractory complex solid-solution alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Prashant; Sharma, Aayush; Smirnov, A. V.
Nickel-based superalloys and near-equiatomic high-entropy alloys containing molybdenum are known for higher temperature strength and corrosion resistance. Yet, complex solid-solution alloys offer a huge design space to tune for optimal properties at slightly reduced entropy. For refractory Mo-W-Ta-Ti-Zr, we showcase KKR electronic structure methods via the coherent-potential approximation to identify alloys over five-dimensional design space with improved mechanical properties and necessary global (formation enthalpy) and local (short-range order) stability. Deformation is modeled with classical molecular dynamic simulations, validated from our first-principle data. We predict complex solid-solution alloys of improved stability with greatly enhanced modulus of elasticity (3× at 300 K)more » over near-equiatomic cases, as validated experimentally, and with higher moduli above 500 K over commercial alloys (2.3× at 2000 K). We also show that optimal complex solid-solution alloys are not described well by classical potentials due to critical electronic effects.« less
Phase relations in the system CuMoS
Dawei, H.; Chang, L.L.Y.; Knowles, C.R.
1990-01-01
Phase relations in the system CuMoS were studied in the temperature range 500-1000 ??C by using the conventional sealed, evacuated glass capsule technique. Reflected-light microscopy, X-ray powder diffraction and electron microprobe analysis were used for phase characterization. The chevrel-type phase, CuxMo3S4, is stable above 600??C, and forms equilibrium assemblages with the cubic Cu2S solid solution, copper, molybdenum, Mo2S3 and MoS2. Its solid solution ranges from Cu1.50-2.00Mo3S4 at 700??C to Cu1.22-2.00Mo3S4 at 1000 ??C. ?? 1990.
Accurate solid solution range of BiMnxFe3-xO6 and low temperature magnetism
NASA Astrophysics Data System (ADS)
Jiang, Pengfei; Yue, Mufei; Cong, Rihong; Gao, Wenliang; Yang, Tao
2017-11-01
BiMnxFe3-xO6 (x = 1) represents a new type of oxide structure containing Bi3+ and competing magnetic super-exchanges. In literature, multiple magnetic states were realized at low temperatures in BiMnFe2O6, and the hypothetical parent compounds (BiMn3O6, BiFe3O6) were predicted to be different in magnetism. Herein, we performed a careful study on the syntheses of BiMnxFe3-xO6 at ambient pressure, and the solid solution range was determined to be 0.9 ≤ x ≤ 1.3 by Rietveld refinements on high-quality powder X-ray diffraction data. Due to the very similar cationic size of Mn3+ and Fe3+, and possibly the structural rigidity, there was no significant structure change in the whole range of solid solution. The magnetic behavior of BiMnxFe3-xO6 (x = 1.2, 1.22, 1.26, 1.28 and 1.3) was generally similar to BiMnFe2O6, while the relative higher concentration of Mn3+ led to the decreasing of the antiferromagnetic ordering temperature.
Formation and structure of Al-Zr metallic glasses studied by Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Li, J. H.; Zhao, S. Z.; Dai, Y.; Cui, Y. Y.; Liu, B. X.
2011-06-01
Based on the recently constructed n-body potential, both molecular dynamics and Monte Carlo simulations revealed that the Al-Zr amorphous alloy or metallic glass can be obtained within the composition range of 24-66 at. % Zr. The revealed composition range could be considered the intrinsic glass-forming range and it quantitatively indicates the glass-forming ability of the Al-Zr system. The underlying physics of the finding is that, within the composition range, the amorphous alloys are energetically favored to form. In addition, it is proposed that the energy difference between a solid solution and the amorphous phase could serve as the driving force of the crystalline to amorphous transition and the driving force should be sufficiently large for amorphization to take place. The minimum driving forces for fcc Al-based and hcp Zr-based Al-Zr solid solutions to amorphize are calculated to be about -0.05 and -0.03 eV/atom, respectively, whereas the maximum driving force is found to be -0.23 eV/atom at the alloy stoichiometry of Al60Zr40. A thermodynamics parameter γ¯, defined as the ratio of the driving force to the formation energy of the solid solution, is further proposed to indicate the glass-forming ability of an Al-Zr alloy. Thermodynamics calculations show that the glass-forming ability of the Al56Zr44 alloy is the largest, implying that the Al56Zr44 amorphous alloy is more ready to form than other alloys in the Al-Zr system. Besides, Voronoi analysis found that there exists a strong correlation between the coordinate number and structure. Amorphization could result in increase of coordinate numbers and about 1.5% volume-expansion. The volume-expansion induced by amorphization can be attributed to two factors, i.e., the total bond number of the Al-Zr amorphous phase is greater than that of the corresponding solid solution, and the averaged bond length of the Al-Zr amorphous phase is longer than that of the corresponding solid solution. For the Al-Zr alloys, especially for the Al-Zr amorphous phase, there exists a negative chemical micro-inhomogeneity in the alloys, suggesting that metallic bonds prefer to be formed between the atoms of dissimilar species. Finally, it is found that there is a weak correspondence between the bond-angle distributions of Al-Zr amorphous alloys and the solid solutions. It is further suggested that the configuration of Al-Zr amorphous alloys embodies some hybrid imprint of bcc, fcc, and hcp structures. More interestingly, the short-range order is also observed in the bond-angle distributions.
NASA Astrophysics Data System (ADS)
Teplyakova, N. A.; Titov, S. V.; Verbenko, I. A.; Sidorov, N. V.; Reznichenko, L. A.
2015-09-01
Based on Raman spectra, we have studied structural ordering processes in ceramics of ferroelectromagnetics Bi1- x La x FeO3 ( x = 0.075-0.20). It has been found that the structure of Bi1- x La x FeO3 is close to the structure of the crystal BiFeO3. However, lines in Raman spectra of Bi1- x La x FeO3 are considerably broadened compared to lines in the Raman spectrum of the BiFeO3 single crystal, which indicates that the structure of solid solutions is much more disordered. In Raman spectra of Bi1- x La x FeO3, in the range of librational vibrations of octahedra as a whole (50-90 cm-1), several groups of lines are observed in frequency ranges 59-69, 72-77, and 86-92 cm-1 (depending on the composition of solid solution). This confirms X-ray data that examined solid solutions are not single-phase. At a La content x = 0.120, Raman lines in the low-frequency spectral range narrow, which indicates that the ordering of structural units in cationic sublattices somewhat increases. Upon an increase in the content of La in the Bi1- x La x FeO3 structure, no unambiguous dependence of parameters of spectral lines is observed. It is likely that this is explained by the fact that, as the value of x increases, the character of the incorporation of La into the structure of the solid solution changes.
Thermal effects of carbonated hydroxyapatite modified by glycine and albumin
NASA Astrophysics Data System (ADS)
Gerk, S. A.; Golovanova, O. A.; Kuimova, M. V.
2017-01-01
In this work calcium phosphate powders were obtained by precipitation method from simulated solutions of synovial fluid containing glycine and albumin. X-ray diffraction and IR spectroscopy determined that all samples are single-phase and are presented by carbonate containing hydroxyapatite (CHA). The thermograms of solid phases of CHA were obtained and analyzed; five stages of transformation in the temperature range of 25-1000°C were marked. It is shown that in this temperature range dehydration, decarboxylation and thermal degradation of amino acid and protein connected to the surface of solid phase occur. The tendency of temperature lowering of the decomposition of powders synthesized from a medium containing organic substances was determined. Results demonstrate a direct dependence between the concentration of the amino acid in a model solution and its content in the solid phase.
Effect of Process Parameter on Barium Titanate Stannate (BTS) Materials Sintered at Low Sintering
NASA Astrophysics Data System (ADS)
Shukla, Alok; Bajpai, P. K.
2011-11-01
Ba(Ti1-xSnx)O3 solid solutions with (x = 0.15, 0.20, 0.30 and 0.40) are synthesized using conventional solid state reaction method. Formation of solid solutions in the range 0 ≤ x ≤0.40 is confirmed using X-ray diffraction technique. Single phase solid solutions with homogeneous grain distribution are observed at relatively low sintering by controlling process parameters viz. sintering time. Composition at optimized temperature (1150 °C) sintered by varying the sintering time, stabilize in cubic perovskite phase. The % experimental density increase with increasing the time of sintering instead of increasing sintering temperature. The lattice parameter increases by increasing the tin composition in the material. This demonstrates that process parameter optimization can lead to single phase at relatively lower sintering-a major advantage for the materials used as capacitor element in MLCC.
Elastic and plastic buckling of simply supported solid-core sandwich plates in compression
NASA Technical Reports Server (NTRS)
Seide, Paul; Stowell, Elbridge Z
1950-01-01
A solution is presented for the problem of the compressive buckling of simply supported, flat, rectangular, solid-core sandwich plates stressed either in the elastic range or in the plastic range. Charts for the analysis of long sandwich plates are presented for plates having face materials of 24s-t3 aluminum alloy, 76s-t6 alclad aluminum alloy, and stainless steel. A comparison of computed and experimental buckling stresses of square solid-core sandwich plates indicates fair agreement between theory and experiment.
Supercritical fluid molecular spray thin films and fine powders
Smith, Richard D.
1988-01-01
Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. The solvent is vaporized and pumped away. Solution pressure is varied to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solution temperature is varied in relation to formation of a two-phase system during expansion to control porosity of the film or powder. A wide variety of film textures and powder shapes are produced of both organic and inorganic compounds. Films are produced with regular textural feature dimensions of 1.0-2.0 .mu.m down to a range of 0.01 to 0.1 .mu.m. Powders are formed in very narrow size distributions, with average sizes in the range of 0.02 to 5 .mu.m.
NASA Astrophysics Data System (ADS)
Harvey, Jean-Philippe
In this work, the possibility to calculate and evaluate with a high degree of precision the Gibbs energy of complex multiphase equilibria for which chemical ordering is explicitly and simultaneously considered in the thermodynamic description of solid (short range order and long range order) and liquid (short range order) metallic phases is studied. The cluster site approximation (CSA) and the cluster variation method (CVM) are implemented in a new minimization technique of the Gibbs energy of multicomponent and multiphase systems to describe the thermodynamic behaviour of metallic solid solutions showing strong chemical ordering. The modified quasichemical model in the pair approximation (MQMPA) is also implemented in the new minimization algorithm presented in this work to describe the thermodynamic behaviour of metallic liquid solutions. The constrained minimization technique implemented in this work consists of a sequential quadratic programming technique based on an exact Newton’s method (i.e. the use of exact second derivatives in the determination of the Hessian of the objective function) combined to a line search method to identify a direction of sufficient decrease of the merit function. The implementation of a new algorithm to perform the constrained minimization of the Gibbs energy is justified by the difficulty to identify, in specific cases, the correct multiphase assemblage of a system where the thermodynamic behaviour of the equilibrium phases is described by one of the previously quoted models using the FactSage software (ex.: solid_CSA+liquid_MQMPA; solid1_CSA+solid2_CSA). After a rigorous validation of the constrained Gibbs energy minimization algorithm using several assessed binary and ternary systems found in the literature, the CVM and the CSA models used to describe the energetic behaviour of metallic solid solutions present in systems with key industrial applications such as the Cu-Zr and the Al-Zr systems are parameterized using fully consistent thermodynamic an structural data generated from a Monte Carlo (MC) simulator also implemented in the framework of this project. In this MC simulator, the modified embedded atom model in the second nearest neighbour formalism (MEAM-2NN) is used to describe the cohesive energy of each studied structure. A new Al-Zr MEAM-2NN interatomic potential needed to evaluate the cohesive energy of the condensed phases of this system is presented in this work. The thermodynamic integration (TI) method implemented in the MC simulator allows the evaluation of the absolute Gibbs energy of the considered solid or liquid structures. The original implementation of the TI method allowed us to evaluate theoretically for the first time all the thermodynamic mixing contributions (i.e., mixing enthalpy and mixing entropy contributions) of a metallic liquid (Cu-Zr and Al-Zr) and of a solid solution (face-centered cubic (FCC) Al-Zr solid solution) described by the MEAM-2NN. Thermodynamic and structural data obtained from MC and molecular dynamic simulations are then used to parameterize the CVM for the Al-Zr FCC solid solution and the MQMPA for the Al-Zr and the Cu-Zr liquid phase respectively. The extended thermodynamic study of these systems allow the introduction of a new type of configuration-dependent excess parameters in the definition of the thermodynamic function of solid solutions described by the CVM or the CSA. These parameters greatly improve the precision of these thermodynamic models based on experimental evidences found in the literature. A new parameterization approach of the MQMPA model of metallic liquid solutions is presented throughout this work. In this new approach, calculated pair fractions obtained from MC/MD simulations are taken into account as well as configuration-independent volumetric relaxation effects (regular like excess parameters) in order to parameterize precisely the Gibbs energy function of metallic melts. The generation of a complete set of fully consistent thermodynamic, physical and structural data for solid, liquid, and stoichiometric compounds and the subsequent parameterization of their respective thermodynamic model lead to the first description of the complete Al-Zr phase diagram in the range of composition [0 ≤ XZr ≤ 5 / 9] based on theoretical and fully consistent thermodynamic properties. MC and MD simulations are performed for the Al-Zr system to define for the first time the precise thermodynamic behaviour of the amorphous phase for its entire range of composition. Finally, all the thermodynamic models for the liquid phase, the FCC solid solution and the amorphous phase are used to define conditions based on thermodynamic and volumetric considerations that favor the amorphization of Al-Zr alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moussa, C.; El Sayah, Z.; Chajewski, G.
The phase relations within the U-Al-Ge ternary system were studied for two isothermal sections, at 673 K for the whole Gibbs triangle and at 1173 K for the concentration range 25–100 at% U. The identification of the phases, their composition ranges and stability were determined by x-ray powder diffraction, scanning electron microscopy coupled to energy dispersive spectroscopy and differential thermal analysis. The tie-lines and the solubility domains were determined for the U-Ge and U-Al binaries, the UAl{sub 3}-UGe{sub 3} solid-solution and for the unique ternary intermediate phase U{sub 3}Al{sub 2−x}Ge{sub 3+x}. The experimental isopleth section of the pseudo-binary UAl{sub 3}-UGe{submore » 3} reveals an isomorphous solid solution based on the Cu{sub 3}Au-type below the solidus. The U{sub 3}Al{sub 2−x}Ge{sub 3+x} solid solution extends for −0.1≤x≤1.35 and −0.2≤x≤1.5 at 673 K and 1173 K respectively. It crystallizes in the I-centered tetragonal symmetry. The reciprocal lattice of several compositions of the U{sub 3}Al{sub 2−x}Ge{sub 3+x} solid solution was examined by electron diffraction at room temperature, revealing the presence of a c-glide plane. Their crystal structure was refined by single crystal x-ray diffraction suggesting an isomorphous solid solution best described with the non-centrosymmetric space group I4cm in the paramagnetic domain. The magnetic measurements confirm the ferromagnetic ordering of the solid solution U{sub 3}Al{sub 2−x}Ge{sub 3+x} with an increase of Tc with the Al content. The thermal variation of the specific heat bear out the magnetic transitions with some delocalized character of the uranium 5f electrons. - Graphical abstract: The phase relations within the U-Al-Ge ternary system were experimentally assessed for two isothermal sections, at 673 K for the whole Gibbs triangle and at 1173 K for the concentration range 25–100 at% U. A complete UAl{sub 3}-UGe{sub 3} solid-solution based on the Cu{sub 3}Au-type forms below the solidus. A unique ternary phase showing a large homogeneity domain, U{sub 3}Al{sub 2−x}Ge{sub 3+x} for −0.1≤x≤1.35 and −0.2≤x≤1.5 at 673 K and 1173 K respectively has been evidenced. It is best described with the non-centrosymmetric space group I4cm above room temperature. A linear increase of the ferromagnetic ordering is observed with the Al content. - Highlights: • Isothermal sections of the U-Al-Ge system were investigated for 673 K and 1173 K. • An isomorphous solid-solution UAl{sub 3}-UGe{sub 3} forms for the whole composition range. • U{sub 3}Al{sub 2−x}Ge{sub 3+x} the unique ternary phase to form exists for a large homogeneity domain. • U{sub 3}Al{sub 2−x}Ge{sub 3+x} is best described in I4cm space group above room temperature. • The ferromagnetic transition of U{sub 3}Al{sub 2−x}Ge{sub 3+x} linearly increases with the Al content.« less
NASA Astrophysics Data System (ADS)
Chen, H.; Kauffmann, A.; Laube, S.; Choi, I.-C.; Schwaiger, R.; Huang, Y.; Lichtenberg, K.; Müller, F.; Gorr, B.; Christ, H.-J.; Heilmaier, M.
2018-03-01
We present an experimental approach for revealing the impact of lattice distortion on solid solution strengthening in a series of body-centered-cubic (bcc) Al-containing, refractory high entropy alloys (HEAs) from the Nb-Mo-Cr-Ti-Al system. By systematically varying the Nb and Cr content, a wide range of atomic size difference as a common measure for the lattice distortion was obtained. Single-phase, bcc solid solutions were achieved by arc melting and homogenization as well as verified by means of scanning electron microscopy and X-ray diffraction. The atomic radii of the alloying elements for determination of atomic size difference were recalculated on the basis of the mean atomic radii in and the chemical compositions of the solid solutions. Microhardness (μH) at room temperature correlates well with the deduced atomic size difference. Nevertheless, the mechanisms of microscopic slip lead to pronounced temperature dependence of mechanical strength. In order to account for this particular feature, we present a combined approach, using μH, nanoindentation, and compression tests. The athermal proportion to the yield stress of the investigated equimolar alloys is revealed. These parameters support the universality of this aforementioned correlation. Hence, the pertinence of lattice distortion for solid solution strengthening in bcc HEAs is proven.
Superhard Rhenium/Tungsten Diboride Solid Solutions.
Lech, Andrew T; Turner, Christopher L; Lei, Jialin; Mohammadi, Reza; Tolbert, Sarah H; Kaner, Richard B
2016-11-02
Rhenium diboride (ReB 2 ), containing corrugated layers of covalently bonded boron, is a superhard metallic compound with a microhardness reaching as high as 40.5 GPa (under an applied load of 0.49 N). Tungsten diboride (WB 2 ), which takes a structural hybrid between that of ReB 2 and AlB 2 , where half of the boron layers are planar (as in AlB 2 ) and half are corrugated (as in ReB 2 ), has been shown not to be superhard. Here, we demonstrate that the ReB 2 -type structure can be maintained for solid solutions of tungsten in ReB 2 with tungsten content up to a surprisingly large limit of nearly 50 atom %. The lattice parameters for the solid solutions linearly increase along both the a- and c-axes with increasing tungsten content, as evaluated by powder X-ray and neutron diffraction. From micro- and nanoindentation hardness testing, all of the compositions within the range of 0-48 atom % W are superhard, and the bulk modulus of the 48 atom % solid solution is nearly identical to that of pure ReB 2 . These results further indicate that ReB 2 -structured compounds are superhard, as has been predicted from first-principles calculations, and may warrant further studies into additional solid solutions or ternary compounds taking this structure type.
Ionic Conductivity of TlBr1-xIx(x = 0, 0.2, 1): Candidate Gamma Ray Detector
NASA Astrophysics Data System (ADS)
Bishop, S. R.; Ciampi, G.; Lee, C. D.; Kuhn, M.; Tuller, H. L.; Higgins, W.; Shah, K. S.
2012-10-01
The ionic conductivity of TlBr, TlI and their solid solutions, candidates for high energy radiation detection, was examined using impedance spectroscopy. The orthorhombic to cubic phase change in TlI was observed via a steep change in conductivity with increasing temperature, whereas the TlBr-TlI solid solution was cubic throughout the measured temperature range, in agreement with the literature. The intrinsic conductivity of the cubic phase of each material showed nearly identical behavior, indicating that I substitution for Br has little to no effect on the combined defect formation and transport parameters in the studied range. Additionally, optical transmission was correlated with I concentration.
Local structure of NiPd solid solution alloys and its response to ion irradiation
Zhang, Fuxiang; Ullah, Mohammad Wali; Zhao, Shijun; ...
2018-04-27
The local structure of Ni$-$Pd solid solution alloys with compositions of Ni 80Pd 20 and Ni 50Pd 50 was investigated with anomalous X-ray diffraction, X-ray absorption and theoretical calculation/simulation. The fcc lattice is distorted for both alloys, and the Pd$-$Pd atomic pair distance is +4.4% and +1.4% larger than ideal values in Ni 80Pd 20 and Ni 50Pd 50 alloys, respectively. The corresponding atomic pair distance of Ni$-$Ni is -1.8% and -3.0% less than the ideal values. Different short-range orders in the alloys were quantitatively identified at the atomic level. In Ni 80Pd 20, Pd atoms are likely to formmore » Pd$-$Pd pairs, while Pd atoms are connected with Pd atoms in the second shell in the equiatomic solid solution alloy. Upon ion irradiation, little change of interatomic distance, but modification of chemical short-range order was observed. The number of Pd$-$Pd pairs decreases to the lowest value at 0.1 dpa, and further irradiation make it increase.« less
Local structure of NiPd solid solution alloys and its response to ion irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fuxiang; Ullah, Mohammad Wali; Zhao, Shijun
The local structure of Ni$-$Pd solid solution alloys with compositions of Ni 80Pd 20 and Ni 50Pd 50 was investigated with anomalous X-ray diffraction, X-ray absorption and theoretical calculation/simulation. The fcc lattice is distorted for both alloys, and the Pd$-$Pd atomic pair distance is +4.4% and +1.4% larger than ideal values in Ni 80Pd 20 and Ni 50Pd 50 alloys, respectively. The corresponding atomic pair distance of Ni$-$Ni is -1.8% and -3.0% less than the ideal values. Different short-range orders in the alloys were quantitatively identified at the atomic level. In Ni 80Pd 20, Pd atoms are likely to formmore » Pd$-$Pd pairs, while Pd atoms are connected with Pd atoms in the second shell in the equiatomic solid solution alloy. Upon ion irradiation, little change of interatomic distance, but modification of chemical short-range order was observed. The number of Pd$-$Pd pairs decreases to the lowest value at 0.1 dpa, and further irradiation make it increase.« less
Shirage, Parasharam M; Kihou, Kunihiro; Lee, Chul-Ho; Takeshita, Nao; Eisaki, Hiroshi; Iyo, Akira
2012-09-19
The effect of alloying the two perovskite-type iron-based superconductors (Ca(4)Al(2)O(6))(Fe(2)As(2)) and (Ca(4)Al(2)O(6))(Fe(2)P(2)) was examined. While the two stoichiometric compounds possess relatively high T(c)'s of 28 and 17 K, respectively, their solid solutions of the form (Ca(4)Al(2)O(6))(Fe(2)(As(1-x)P(x))(2)) do not show superconductivity over a wide range from x = 0.50 to 0.95. The resultant phase diagram is thus completely different from those of other typical iron-based superconductors such as BaFe(2)(As,P)(2) and LaFe(As,P)O, in which superconductivity shows up when P is substituted for As in the non-superconducting "parent" compounds. Notably, the solid solutions in the non-superconducting range exhibit resistivity anomalies at temperatures of 50-100 K. The behavior is reminiscent of the resistivity kink commonly observed in various non-superconducting parent compounds that signals the onset of antiferromagnetic/orthorhombic long-range order. The similarity suggests that the suppression of the superconductivity in the present case also has a magnetic and/or structural origin.
Thermodynamic properties of hematite — ilmenite — geikielite solid solutions
NASA Astrophysics Data System (ADS)
Ghiorso, Mark S.
1990-11-01
A solution model is developed for rhombohedral oxide solid solutions having compositions within the ternary system ilmenite [(Fe{2+/ s }Ti{4+/1- s }) A (Fe{2+/1- s }Ti{4+/s}) B O3]-geikielite [(Mg{2+/ t }Ti{4+/1- t }) A (Mg{2+/1- t }Ti{4+/ t }) B O3]-hematite [(Fe3+) A (Fe3+) B O3]. The model incorporates an expression for the configurational entropy of solution, which accounts for varying degrees of structural long-range order (0≤s, t≤1) and utilizes simple regular solution theory to characterize the excess Gibbs free energy of mixing within the five-dimensional composition-ordering space. The 13 model parameters are calibrated from available data on: (1) the degree of long-range order and the composition-temperature dependence of theRbar 3c - Rbar 3 transition along the ilmenite-hematite binary join; (2) the compositions of coexisting olivine and rhombohedral oxide solid solutions close to the Mg-Fe2+ join; (3) the shape of the miscibility gap along the ilmenite-hematite join; (4) the compositions of coexisting spinel and rhombohedral oxide solid solutions along the Fe2+-Fe3+ join. In the course of calibration, estimates are obtained for the reference state enthalpy of formation of ulvöspinel and stoichiometric hematite (-1488.5 and -822.0 kJ/mol at 298 K and 1 bar, respectively). The model involves no excess entropies of mixing nor does it incorporate ternary interaction parameters. The formulation fits the available data and represents an internally consistent energetic model when used in conjuction with the standard state thermodynamic data set of Berman (1988) and the solution theory for orthopyroxenes, olivines and Fe-Mg titanomagnetite-aluminate-chromate spinels developed by Sack and Ghiorso (1989, 1990a, b). Calculated activity-composition relations for the end-members of the series, demonstrate the substantial degree of nonideality associated with interactions between the ordered and disordered structures and the dominant influence of the miscibility gap across much of the ternary system. The predicted shape of the miscibility gap, and the orientation of tie-lines relating the compositions of coexisting phases, display the effects of coupling between the excess enthalpy of solution and the degree of long-range order. One limb of the miscibility gap follows the composititiontemperature surface corresponding to the ternaryRbar 3 - Rbar 3c second-order transition.
Wu, Aimin; Li, Jing; Liu, Baodan; Yang, Wenjin; Jiang, Yanan; Liu, Lusheng; Zhang, Xinglai; Xiong, Changmin; Jiang, Xin
2017-02-21
(GaN) 1-x (ZnO) x solid solution has attracted extensive attention due to its feasible band-gap tunability and excellent photocatalytic performance in overall water splitting. However, its potential application in the photodegradation of organic pollutants and environmental processing has rarely been reported. In this study, we developed a rapid synthesis process to fabricate porous (GaN) 1-x (ZnO) x solid solution with a tunable band gap in the range of 2.38-2.76 eV for phenol photodegradation. Under visible-light irradiation, (GaN) 0.75 (ZnO) 0.25 solid solution achieved the highest photocatalytic performance compared to other (GaN) 1-x (ZnO) x solid solutions with x = 0.45, 0.65 and 0.85 due to its higher redox capability and lower lattice deformation. Slight Ag decoration with a content of 1 wt% on the surface of the (GaN) 0.75 (ZnO) 0.25 solid solution leads to a significant enhancement in phenol degradation, with a reaction rate eight times faster than that of pristine (GaN) 0.75 (ZnO) 0.25 . Interestingly, phenol in aqueous solution (10 mg L -1 ) can also be completely degraded within 60 min, even under the direct exposure of sunlight irradiation. The photocurrent response indicates that the enhanced photocatalytic activity of (GaN) 0.75 (ZnO) 0.25 /Ag is directly induced by the improved transfer efficiency of the photogenerated electrons at the interface. The excellent phenol degradation performance of (GaN) 1-x (ZnO) x /Ag further broadens their promising photocatalytic utilization in environmental processing, besides in overall water splitting for hydrogen production.
Luminescent properties under X-ray excitation of Ba(1-x)PbxWO4 disordered solid solution
NASA Astrophysics Data System (ADS)
Bakiz, B.; Hallaoui, A.; Taoufyq, A.; Benlhachemi, A.; Guinneton, F.; Villain, S.; Ezahri, M.; Valmalette, J.-C.; Arab, M.; Gavarri, J.-R.
2018-02-01
A series of polycrystalline barium-lead tungstate Ba1-xPbxWO4 with 0 ≤ x ≤ 1 was synthesized using a classical solid-state method with thermal treatment at 1000 °C. These materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Raman (FT-Raman) spectroscopy. X-ray diffraction profile analyses were performed using Rietveld method. These materials crystallized in the scheelite tetragonal structure and behaved as quasi ideal solid solution. Raman spectroscopy confirmed the formation of the solid solution. Structural distortions were evidenced in X-ray diffraction profiles and in vibration Raman spectra. The scanning electron microscopy experiments showed large and rounded irregular grains. Luminescence experiments were performed under X-ray excitation. The luminescence emission profiles have been interpreted in terms of four Gaussian components, with a major contribution of blue emission. The integrated intensity of luminescence reached a maximum value in the composition range x = 0.3-0.6, in relation with distortions of crystal lattice.
Schanda, Paul; Ernst, Matthias
2016-01-01
Magic-angle spinning solid-state NMR spectroscopy is an important technique to study molecular structure, dynamics and interactions, and is rapidly gaining importance in biomolecular sciences. Here we provide an overview of experimental approaches to study molecular dynamics by MAS solid-state NMR, with an emphasis on the underlying theoretical concepts and differences of MAS solid-state NMR compared to solution-state NMR. The theoretical foundations of nuclear spin relaxation are revisited, focusing on the particularities of spin relaxation in solid samples under magic-angle spinning. We discuss the range of validity of Redfield theory, as well as the inherent multi-exponential behavior of relaxation in solids. Experimental challenges for measuring relaxation parameters in MAS solid-state NMR and a few recently proposed relaxation approaches are discussed, which provide information about time scales and amplitudes of motions ranging from picoseconds to milliseconds. We also discuss the theoretical basis and experimental measurements of anisotropic interactions (chemical-shift anisotropies, dipolar and quadrupolar couplings), which give direct information about the amplitude of motions. The potential of combining relaxation data with such measurements of dynamically-averaged anisotropic interactions is discussed. Although the focus of this review is on the theoretical foundations of dynamics studies rather than their application, we close by discussing a small number of recent dynamics studies, where the dynamic properties of proteins in crystals are compared to those in solution. PMID:27110043
Zeng, Chao; Huang, Hongwei; Zhang, Tierui; Dong, Fan; Zhang, Yihe; Hu, Yingmo
2017-08-23
Photocatalytic CO 2 reduction into solar fuels illustrates huge charm for simultaneously settling energy and environmental issues. The photoreduction ability of a semiconductor is closely correlated to its conduction band (CB) position. A homogeneous-phase solid-solution with the same crystal system always has a monotonously changed CB position, and the high CB level has to be sacrificed to achieve a benign photoabsorption. Herein, we report the fabrication of heterogeneous-phase solid-solution Zn X Ca 1-X In 2 S 4 between trigonal ZnIn 2 S 4 and cubic CaIn 2 S 4 . The Zn X Ca 1-X In 2 S 4 solid solutions with orderly tuned photoresponsive range from 540 to 640 nm present a more negative CB level and highly enhanced charge-separation efficiency. Profiting from these merits, all of these Zn X Ca 1-X In 2 S 4 solid solutions exhibit remarkably strengthened photocatalytic CO 2 reduction performance under visible light (λ > 420 nm) irradiation. Zn 0.4 Ca 0.6 In 2 S 4 , bearing the most negative CB position and highest charge-separation efficiency, casts the optimal photocatalytic CH 4 and CO evolution rates, which reach 16.7 and 6.8 times higher than that of ZnIn 2 S 4 and 7.2 and 3.9 times higher than that of CaIn 2 S 4 , respectively. To verify the crucial role of the heterogeneous-phase solid solution in promoting the band structure and photocatalytic performance, another heterogeneous-phase solid-solution Zn X Cd 1-X In 2 S 4 has been synthesized. It also displays an upshifted CB level and promoted charge separation. This work may provide a new perspective into the development of an efficient visible-light driven photocatalyst for CO 2 reduction and other photoreduction reactions.
Purification of alkali metal nitrates
Fiorucci, Louis C.; Gregory, Kevin M.
1985-05-14
A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.
NASA Astrophysics Data System (ADS)
Bera, Ganesh; Reddy, V. R.; Rambabu, P.; Mal, P.; Das, Pradip; Mohapatra, N.; Padmaja, G.; Turpu, G. R.
2017-09-01
Phase diagram of FeVO4-CrVO4 solid solutions pertinent with structural and magnetic phases is presented with unambiguous experimental evidences. Solid solutions Fe1-xCrxVO4 (0 ≤ x ≤ 1.0) were synthesized through the standard solid state route and studied by X-ray diffraction, scanning electron microscopy, energy dispersive spectra of X-rays, Raman spectroscopy, d.c. magnetization, and 57Fe Mössbauer spectroscopic studies. FeVO4 and CrVO4 were found to be in triclinic (P-1 space group) and orthorhombic structures (Cmcm space group), respectively. Cr incorporation into the FeVO4 lattice leads to the emergence of a new monoclinic phase dissimilar to the both end members of the solid solutions. In Fe1-xCrxVO4 up to x = 0.10, no discernible changes in the triclinic structure were found. A new structural monoclinic phase (C2/m space group) emerges within the triclinic phase at x = 0.125, and with the increase in Cr content, it gets stabilized with clear single phase signatures in the range of x = 0.175-0.25 as evidenced by the Rietveld analysis of the structures. Beyond x = 0.33, orthorhombic phase similar to CrVO4 (Cmcm space group) emerges and coexists with a monoclinic structure up to x = 0.85, which finally tends to stabilize in the range of x = 0.90-1.00. The Raman spectroscopic studies also confirm the structural transition. FeVO4 Raman spectra show the modes related to three nonequivalent V ions in the triclinic structure, where up to 42 Raman modes are observed in the present study. With the stabilization of structures having higher symmetry, the number of Raman modes decreases and the modes related to symmetry inequivalent sites collate into singular modes from the doublet structure. A systematic crossover from two magnetic transitions in FeVO4, at 21.5 K and 15.4 K to single magnetic transition in CrVO4, at 71 K (antiferromagnetic transition), is observed in magnetization studies. The intermediate solid solution with x = 0.15 shows two magnetic transitions, whereas in the compound with x = 0.33 one of the magnetic transitions disappears. 57Fe Mössbauer spectroscopic studies show a finger print evidence for disappearance of non-equivalent sites of Fe as the structure changes from Triclinic-Monoclinic-Orthorhombic phases with the increasing Cr content in Fe1-xCrxVO4. Comprehensive studies related to the structural changes in Fe1-xCrxVO4 solid solutions lead us to detailed phase diagrams which shall be characteristic for room temperature structural and temperature dependent magnetic transitions in these solid solutions, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du Hongliang; Zhou Wancheng; Luo Fa
The (1-x)(K{sub 0.5}Na{sub 0.5})NbO{sub 3}-x(Ba{sub 0.5}Sr{sub 0.5})TiO{sub 3} (KNN-BST) solid solution has been synthesized by conventional solid-state sintering in order to search for the new lead-free relaxor ferroelectrics for high temperature applications. The phase structure, dielectric properties, and relaxor behavior of the (1-x)KNN-xBST solid solution are systematically investigated. The phase structure of the (1-x)KNN-xBST solid solution gradually changes from pure perovskite phase with an orthorhombic symmetry to the tetragonal symmetry, then to the pseudocubic phase, and to the cubic phase with increasing addition of BST. The 0.90KNN-0.10BST solid solution shows a broad dielectric peak with permittivity maximum near 2500 andmore » low dielectric loss (<4%) in the temperature range of 100-250 deg. C. The result indicates that this material may have great potential for a variety of high temperature applications. The diffuse phase transition and the temperature of the maximum dielectric permittivity shifting toward higher temperature with increasing frequency, which are two typical characteristics for relaxor ferroelectrics, are observed in the (1-x)KNN-xBST solid solution. The dielectric relaxor behavior obeys a modified Curie-Weiss law and a Vogel-Fulcher relationship. The relaxor nature is attributed to the appearance of polar nanoregions owing to the formation of randon fields including local electric fields and elastic fields. These results confirm that the KNN-based relaxor ferroelectrics can be regarded as an alternative direction for the development of high temperature lead-free relaxor ferroelectrics.« less
Asfandiyar; Wei, Tian-Ran; Li, Zhiliang; Sun, Fu-Hua; Pan, Yu; Wu, Chao-Feng; Farooq, Muhammad Umer; Tang, Huaichao; Li, Fu; Li, Bo; Li, Jing-Feng
2017-01-01
P–type SnS compound and SnS1−xSex solid solutions were prepared by mechanical alloying followed by spark plasma sintering (SPS) and their thermoelectric properties were then studied in different compositions (x = 0.0, 0.2, 0.5, 0.8) along the directions parallel (//) and perpendicular (⊥) to the SPS–pressurizing direction in the temperature range 323–823 Κ. SnS compound and SnS1−xSex solid solutions exhibited anisotropic thermoelectric performance and showed higher power factor and thermal conductivity along the direction ⊥ than the // one. The thermal conductivity decreased with increasing contents of Se and fell to 0.36 W m−1 K−1 at 823 K for the composition SnS0.5Se0.5. With increasing selenium content (x) the formation of solid solutions substantially improved the electrical conductivity due to the increased carrier concentration. Hence, the optimized power factor and reduced thermal conductivity resulted in a maximum ZT value of 0.64 at 823 K for SnS0.2Se0.8 along the parallel direction. PMID:28240324
Asfandiyar; Wei, Tian-Ran; Li, Zhiliang; Sun, Fu-Hua; Pan, Yu; Wu, Chao-Feng; Farooq, Muhammad Umer; Tang, Huaichao; Li, Fu; Li, Bo; Li, Jing-Feng
2017-02-27
P-type SnS compound and SnS 1-x Se x solid solutions were prepared by mechanical alloying followed by spark plasma sintering (SPS) and their thermoelectric properties were then studied in different compositions (x = 0.0, 0.2, 0.5, 0.8) along the directions parallel (//) and perpendicular (⊥) to the SPS-pressurizing direction in the temperature range 323-823 Κ. SnS compound and SnS 1-x Se x solid solutions exhibited anisotropic thermoelectric performance and showed higher power factor and thermal conductivity along the direction ⊥ than the // one. The thermal conductivity decreased with increasing contents of Se and fell to 0.36 W m -1 K -1 at 823 K for the composition SnS 0.5 Se 0.5 . With increasing selenium content (x) the formation of solid solutions substantially improved the electrical conductivity due to the increased carrier concentration. Hence, the optimized power factor and reduced thermal conductivity resulted in a maximum ZT value of 0.64 at 823 K for SnS 0.2 Se 0.8 along the parallel direction.
Change in the Magnetocapacity in the Paramagnetic Region in a Cation-Substituted Manganese Selenide
NASA Astrophysics Data System (ADS)
Aplesnin, S. S.; Sitnikov, M. N.; Zhivul'ko, A. M.
2018-04-01
The capacity and the dielectric loss tangent of a Gd x Mn1- x Se ( x ≤ 0.2) solid solution have been measured in the frequency range 1-300 kHz without a magnetic field and in a magnetic field of 8 kOe in the temperature range 100-450 K, and the magnetic moment of the solid solution has been measured in a field of 8.6 kOe. The magnetocapacity effect and the change in the magnetocapacity sign have been observed in room temperature in the paramagnetic region. A correlation of the changes in the dielectric permittivity and the magnetic susceptibility with temperature has been revealed. The magnetocapacity is described using the model with orbital electron ordering and the Maxwell-Wagner model.
A XAS study of the local environments of cations in (U, Ce)O 2
NASA Astrophysics Data System (ADS)
Martin, Philippe; Ripert, Michel; Petit, Thierry; Reich, Tobias; Hennig, Christoph; D'Acapito, Francesco; Hazemann, Jean Louis; Proux, Olivier
2003-01-01
Mixed oxide (MOX) fuel is usually considered as a solid solution formed by uranium and plutonium dioxides. Nevertheless, some physico-chemical properties of (U 1- y, Pu y)O 2 samples manufactured under industrial conditions showed anomalies in the domain of plutonium contents ranging between 3 and 15 at.%. Cerium is commonly used as an inactive analogue of plutonium in preliminary studies on MOX fuels. Extended X-ray Absorption Fine Structure (EXAFS) measurements performed at the European Synchrotron Radiation Facility (ESRF) at the cerium and uranium edges on (U 1- y, Ce y)O 2 samples are presented and discussed. They confirmed on an atomic scale the formation of an ideal solid solution for cerium concentrations ranging between 0 and 50 at.%.
Lapauw, Thomas; Tytko, Darius; Vanmeensel, Kim; Huang, Shuigen; Choi, Pyuck-Pa; Raabe, Dierk; Caspi, El'ad N; Ozeri, Offir; To Baben, Moritz; Schneider, Jochen M; Lambrinou, Konstantina; Vleugels, Jozef
2016-06-06
The solubility of zirconium (Zr) in the Nb4AlC3 host lattice was investigated by combining the experimental synthesis of (Nbx, Zr1-x)4AlC3 solid solutions with density functional theory calculations. High-purity solid solutions were prepared by reactive hot pressing of NbH0.89, ZrH2, Al, and C starting powder mixtures. The crystal structure of the produced solid solutions was determined using X-ray and neutron diffraction. The limited Zr solubility (maximum of 18.5% of the Nb content in the host lattice) in Nb4AlC3 observed experimentally is consistent with the calculated minimum in the energy of mixing. The lattice parameters and microstructure were evaluated over the entire solubility range, while the chemical composition of (Nb0.85, Zr0.15)4AlC3 was mapped using atom probe tomography. The hardness, Young's modulus, and fracture toughness at room temperature as well as the high-temperature flexural strength and E-modulus of (Nb0.85, Zr0.15)4AlC3 were investigated and compared to those of pure Nb4AlC3. Quite remarkably, an appreciable increase in fracture toughness was observed from 6.6 ± 0.1 MPa/m(1/2) for pure Nb4AlC3 to 10.1 ± 0.3 MPa/m(1/2) for the (Nb0.85, Zr0.15)4AlC3 solid solution.
Removal of arsenic compounds from petroliferous liquids
Fish, R.H.
1984-04-06
The present invention in one aspect comprises a process for removing arsenic from petroliferous-derived liquids by contacting said liquid with a divinylbenzene-crosslinked polystyrene polymer (i.e. PS-DVB) having catechol ligands anchored to said polymer, said contacting being at an elevated temperature. In another aspect, the invention is a process for regenerating spent catecholated polystyrene polymer by removal of the arsenic bound to it from contacting petroliferous liquid in accordance with the aspect described above which regenerating process comprises: (a) treating said spent catecholated polystyrene polymer with an aqueous solution of at least one member selected from the group consisting of carbonates and bicarbonates of ammonium, alkali metals, and alkaline earth metals, said solution having a pH between about 8 and 10, and said treating being at a temperature in the range of about 20/sup 0/ to 100/sup 0/C; (b) separating the solids and liquids from each other. In a preferred embodiment the regeneration treatment is in two steps wherein step: (a) is carried out with an aqueous alcoholic carbonate solution which includes at least one lower alkyl alcohol, and, steps (c) and (d) are added. Steps (c) and (d) comprise: (c) treating the solids with an aqueous alcoholic solution of at least one ammonium, alkali or alkaline earth metal bicarbonate at a temperature in the range of about 20 to 100/sup 0/C; and (d) separating the solids from the liquids.
Koczor, Bálint; Rohonczy, János
2015-01-01
Concerning many former liquid or hybrid liquid/solid NMR consoles, the built in Analog-to-Digital Converters (ADCs) are incapable of digitizing the fids at sampling rates in the MHz range. Regarding both strong anisotropic interactions in the solid state and wide chemical shift dispersion nuclei in solution phase such as (195)Pt, (119)Sn, (207)Pb etc., the spectrum range of interest might be in the MHz range. As determining the informative tensor components of anisotropic NMR interactions requires nonlinear fitting over the whole spectrum including the asymptotic baseline, it is prohibited by low sampling rates of the ADCs. Wide spectrum width is also useful in solution NMR, since windowing of wide chemical shift ranges is avoidable. We built an external analog to digital converter with 10 MHz maximal sampling rate, which can work simultaneously with the built in ADC of the spectrometer. The ADC was tested on both Bruker DRX and Avance-I NMR consoles. In addition to the analog channels it only requires three external digital lines of the NMR console. The ADC sends data to PC via USB. The whole process is controlled by software written in JAVA which is implemented under TopSpin. Copyright © 2015 Elsevier Inc. All rights reserved.
The solubility of hydrogen in plutonium in the temperature range 475 to 825 degrees centigrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, T.H.
1991-01-01
The solubility of hydrogen (H) in plutonium metal (Pu) was measured in the temperature range of 475 to 825{degree}C for unalloyed Pu (UA) and in the temperature range of 475 to 625{degree}C for Pu containing two-weight-percent gallium (TWP). For TWP metal, in the temperature range 475 to 600{degree}C, the saturated solution has a maximum hydrogen to plutonium ration (H/Pu) of 0.00998 and the standard enthalpy of formation ({Delta}H{degree}{sub f(s)}) is (-0.128 {plus minus} 0.0123) kcal/mol. The phase boundary of the solid solution in equilibrium with plutonium dihydride (PuH{sub 2}) is temperature independent. In the temperature range 475 to 625{degree}C, UAmore » metal has a maximum solubility at H/Pu = 0.011. The phase boundary between the solid solution region and the metal+PuH{sub 2} two-phase region is temperature dependent. The solubility of hydrogen in UA metal was also measured in the temperature range 650 to 825{degree}C with {Delta}H{degree}{sub f(s)} = (-0.104 {plus minus} 0.0143) kcal/mol and {Delta}S{degree}{sub f(s)} = 0. The phase boundary is temperature dependent and the maximum hydrogen solubility has H/Pu = 0.0674 at 825{degree}C. 52 refs., 28 figs., 9 tabs.« less
Free energy change of off-eutectic binary alloys on solidification
NASA Technical Reports Server (NTRS)
Ohsaka, K.; Trinh, E. H.; Lin, J.-C.; Perepezko, J. H.
1991-01-01
A formula for the free energy difference between the undercooled liquid phase and the stable solid phase is derived for off-eutectic binary alloys in which the equilibrium solid/liquid transition takes place over a certain temperature range. The free energy change is then evaluated numerically for a Bi-25 at. pct Cd alloy modeled as a sub-subregular solution.
DISSOLUTION OF URANIUM FUELS BY MONOOR DIFLUOROPHOSPHORIC ACID
Johnson, R.; Horn, F.L.; Strickland, G.
1963-05-01
A method of dissolving and separating uranium from a uranium matrix fuel element by dissolving the uraniumcontaining matrix in monofluorophosphoric acid and/or difluorophosphoric acid at temperatures ranging from 150 to 275 un. Concent 85% C, thereafter neutralizing the solution to precipitate uranium solids, and converting the solids to uranium hexafluoride by treatment with a halogen trifluoride is presented. (AEC)
NASA Astrophysics Data System (ADS)
Vertueux, M.
2013-09-01
The arrival of additional Space launch vehicles Soyouz and Vega in Guiana Space Center facilities faced a new ground range safety major question: The technical hazards assessment and management related to the preparation of these three launchers simultaneously with the same high level of safety. The objective of this publication is to highlight the new safety solutions that are applied in CSG to reduce the risk of self-propulsion of the stages of VEGA launcher. During all the preparation campaign of VEGA launch vehicle, the explosive risk due to the use of solid propellant is permanent. Uncontrolled propulsion of a solid rocket motor is capable of destruction of other important installations with catastrophic effects. This event could cause loss of human lives and great damages to the CSG launch site structures. Early in the space program development phases of VEGA, the risk of self- propulsion of solid rocket motors and the solutions to avoid the "domino effects" on neighboring facilities have been issued as one of the major concern in term of safety.
Misra, N L; Yadav, A K; Dhara, Sangita; Mishra, S K; Phatak, Rohan; Poswal, A K; Jha, S N; Sinha, A K; Bhattacharyya, D
2013-01-01
The preparation and characterization of Sb-doped Bi(2)UO(6) solid solutions, in a limited composition range, is reported for the first time. The solid solutions were prepared by solid-state reactions of Bi(2)O(3), Sb(2)O(3) and U(3)O(8) in the required stoichiometry. The reaction products were characterized by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) measurements at the Bi and U L(3) edges. The XRD patterns indicate the precipitation of additional phases in the samples when Sb doping exceeds 4 at%. The chemical shifts of the Bi absorption edges in the samples, determined from the XANES spectra, show a systematic variation only up to 4 at% of Sb doping and support the results of XRD measurements. These observations are further supported by the local structure parameters obtained by analysis of the EXAFS spectra. The local structure of U is found to remain unchanged upon Sb doping indicating that Sb(+3) ions replace Bi(+3) during the doping of Bi(2)UO(6) by Sb.
Healy, Thomas W; Fuerstenau, Douglas W
2007-05-01
From our previous work on the role of the electrostatic field strength in controlling the pH of the iso-electric point (iep)/point-of-zero-charge (pzc) of polar solids we have extended the analysis to predict that the pH of the iep/pzc of a nonpolar solid, liquid or gas-aqueous interface should occur at pH 1.0-3.0, dependent on the value assigned to water molecules or clusters at the interface. Consideration of a wide range of experimental results covering nonpolar solids such as molybdenite, stibnite, paraffin, etc. as well as hydrocarbon liquids such as xylene, decalin, and long chain (>C8) alkane oils, as well as nitrogen and hydrogen gases, all in various simple 1:1 electrolyte solutions confirm the general validity of the result. We further consider various models of the origin of the charge on nonpolar material-water interfaces.
Tang, Wan Si; Yoshida, Koji; Soloninin, Alexei V.; ...
2016-09-01
Solid lithium and sodium closo-polyborate-based salts are capable of superionic conductivities surpassing even liquid electrolytes, but often only at above-ambient temperatures where their entropically driven disordered phases become stabilized. Here we show by X-ray diffraction, quasielastic neutron scattering, differential scanning calorimetry, NMR, and AC impedance measurements that by introducing 'geometric frustration' via the mixing of two different closo-polyborate anions, namely, 1-CB 9H 10- and CB 11H 12-, to form solid-solution anion-alloy salts of lithium or sodium, we can successfully suppress the formation of possible ordered phases in favor of disordered, fast-ion-conducting alloy phases over a broad temperature range from subambientmore » to high temperatures. Finally, this result exemplifies an important advancement for further improving on the remarkable conductive properties generally displayed by this class of materials and represents a practical strategy for creating tailored, ambient-temperature, solid, superionic conductors for a variety of upcoming all-solid-state energy devices of the future.« less
Muguruma, Hitoshi; Hotta, Shu
2006-11-23
The titled compound exists as two polymorphic solid phases (denoted form-I and form-II). Form-I obtained by as-synthesized material is a more stable phase. Form-II is a less stable phase. Spontaneous solid-solid transformation from form-II to form-I is observed in the temperature range between room temperature and the melting point of form-I (Tm = 156.5 degrees C), and its activation energy is estimated to be 96 kJ mol-1 by Arrhenius plot. The solid-solute-solid transformation (recrystallization from solution) from form-II to form-I is also observed. In contrast, form-II is obtained only by a solid-melt-solid transformation from form-I. Therefore, the system of two polymorphs is monotropic. The solid-state NMR measurement shows that form-I has the molecular conformation of complete S-syn-anti-syn in the oligothiophene backbone, whereas form-II has that of S-all-anti. With the solution NMR data, the polymorphism could not be observed. Therefore, the polymorphs originate from the different molecular packing involving the conformational change of the molecule. This unique property is attributed to the extra bulky terminal groups of the compounds. However, despite the extra bulky terminal groups, the mentioned polymorphism is not observed in the titled compound analogue which has S-all-anti conformation (like form-II).
Paudel, Amrit; Nies, Erik; Van den Mooter, Guy
2012-11-05
In this work, we investigated the relationship between various intermolecular hydrogen-bonding (H-bonding) interactions and the miscibility of the model hydrophobic drug naproxen with the hydrophilic polymer polyvinylpyrrolidone (PVP) across an entire composition range of solid dispersions prepared by quasi-equilibrium film casting and nonequilibrium melt quench cooling. The binary phase behavior in solid dispersions exhibited substantial processing method dependence. The solid state solubility of crystalline naproxen in PVP to form amorphous solid dispersions was 35% and 70% w/w naproxen in solution-cast films and quench-cooled films, respectively. However, the presence of a single mixed phase glass transition indicated the amorphous miscibility to be 20% w/w naproxen for the films, beyond which amorphous-amorphous and/or crystalline phase separations were apparent. This was further supported by the solution state interactions data such as PVP globular size distribution and solution infrared spectral profiles. The borderline melt composition showed cooling rate dependence of amorphization. The glass transition and melting point depression profiles of the system were treated with the analytical expressions based on Flory-Huggins mixing theory to interpolate the equilibrium solid solubility. FTIR analysis and subsequent spectral deconvolution revealed composition and miscibility dependent variations in the strength of drug-polymer intermolecular H-bonding. Two types of H-bonded populations were evidenced from 25% w/w and 35% w/w naproxen in solution-cast films and quench-cooled films, respectively, with the higher fraction of strongly H-bonded population in the drug rich domains of phase separated amorphous film compositions and highly drug loaded amorphous quench-cooled dispersions.
Shintani, Yukihiro; Kobayashi, Mikinori; Kawarada, Hiroshi
2017-05-05
A fluorine-terminated polycrystalline boron-doped diamond surface is successfully employed as a pH-insensitive SGFET (solution-gate field-effect transistor) for an all-solid-state pH sensor. The fluorinated polycrystalline boron-doped diamond (BDD) channel possesses a pH-insensitivity of less than 3mV/pH compared with a pH-sensitive oxygenated channel. With differential FET (field-effect transistor) sensing, a sensitivity of 27 mv/pH was obtained in the pH range of 2-10; therefore, it demonstrated excellent performance for an all-solid-state pH sensor with a pH-sensitive oxygen-terminated polycrystalline BDD SGFET and a platinum quasi-reference electrode, respectively.
Reduction of mixed Mn-Zr oxides: in situ XPS and XRD studies.
Bulavchenko, O A; Vinokurov, Z S; Afonasenko, T N; Tsyrul'nikov, P G; Tsybulya, S V; Saraev, A A; Kaichev, V V
2015-09-21
A series of mixed Mn-Zr oxides with different molar ratios Mn/Zr (0.1-9) have been prepared by coprecipitation of manganese and zirconium nitrates and characterized by X-ray diffraction (XRD) and BET methods. It has been found that at concentrations of Mn below 30 at%, the samples are single-phase solid solutions (MnxZr1-xO2-δ) based on a ZrO2 structure. X-ray photoelectron spectroscopy (XPS) measurements showed that manganese in these solutions exists mainly in the Mn(4+) state on the surface. An increase in Mn content mostly leads to an increase in the number of Mn cations in the structure of solid solutions; however, a part of the manganese cations form Mn2O3 and Mn3O4 in the crystalline and amorphous states. The reduction of these oxides with hydrogen was studied by a temperature-programmed reduction technique, in situ XRD, and near ambient pressure XPS in the temperature range from 100 to 650 °C. It was shown that the reduction of the solid solutions MnxZr1-xO2-δ proceeds via two stages. During the first stage, at temperatures between 100 and 500 °C, the Mn cations incorporated into the solid solutions MnxZr1-xO2-δ undergo partial reduction. During the second stage, at temperatures between 500 and 700 °C, Mn cations segregate on the surface of the solid solution. In the samples with more than 30 at% Mn, the reduction of manganese oxides was observed: Mn2O3 → Mn3O4 → MnO.
Saljooqi, Asma; Shamspur, Tayebeh; Mohamadi, Maryam; Mostafavi, Ali
2014-07-01
Here, task-specific ionic liquid solid-phase extraction is proposed for the first time. In this approach, a thiourea-functionalized ionic liquid is immobilized on the solid sorbent, multiwalled carbon nanotubes. These modified nanotubes packed into a solid-phase extraction column are used for the selective extraction and preconcentration of ultra-trace amounts of lead(II) from aqueous samples prior to electrothermal atomic absorption spectroscopy determination. The thiourea functional groups act as chelating agents for lead ions retaining them and so, give the selectivity to the sorbent. Elution of the retained ions can be performed using an acidic thiourea solution. The effects of experimental parameters including pH of the aqueous solution, type and amount of eluent, and the flow rates of sample and eluent solutions on the separation efficiency are investigated. The linear dependence of absorbance of lead on its concentration in the initial solution is in the range of 0.5-40.0 ng/mL with the detection limit of 0.13 ng/mL (3(Sb)/m, n = 10). The proposed method is applicable to the analysis of red lipstick, pine leaves, and water samples for their lead contents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural and ferroelectric phase evolution in [KNbO3]1-x[BaNi1/2Nb1/2O3 -δ] x (x =0 ,0.1 )
NASA Astrophysics Data System (ADS)
Hawley, Christopher J.; Wu, Liyan; Xiao, Geoffrey; Grinberg, Ilya; Rappe, Andrew M.; Davies, Peter K.; Spanier, Jonathan E.
2017-08-01
The phase transition evolution for [KNbO3]1-x[BaNi1/2Nb1/2O3 -δ] x(x =0 ,0.1 ) is determined via complementary dielectric permittivity and Raman-scattering measurements. Raman scattering by optical phonons over the range of 100-1000 cm-1 for 83 K
Short-range order in the Ca sub 1-x La sub x F sub 2+x solid solution: 1:0:3 or 1:0:4 clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laval, J.P.; Abaouz, A.; Frit, B.
1989-08-01
The defect structure of the Ca{sub 1-x}La{sub x}F{sub 2+x} solid solution (0 {le} x {le} 0.38) has been examined at room temperature by powder neutron diffraction. Two kinds of (xxx) interstitial anions, whose respective numbers increase linearly with increasing dopant cation concentration, have been found: one labeled F{sup 0} (x {approx} 0.41) is a true interstitial; the other labeled F{sup {prime}{double prime}} (x {approx} 0.31) can be considered a relaxed normal anion. Two 1:0:n defect clusters are compatible, within the experimental errors, with these results: the 1:0:3 (1V{sub F}, OF{prime}, 3F{sup {double prime}}, 2 La{sup 3+}) and the 1:0:4 (1V{submore » F}, OF{prime}, 4F{sup {double prime}}, 3La{sup 3+}) clusters. Charge balance considerations and comparisons with the homologous Ca{sub 1-x}M{sub x}{sup IV}F{sub 2+2x} solid solutions (M{sup IV} = Th, U) allow us to think that the less dense 1:0:3 cluster is present for the whole domain of both kinds of solid solutions.« less
Moyakao, Khwankaew; Santaladchaiyakit, Yanawath; Srijaranai, Supalax; Vichapong, Jitlada
2018-04-11
In this work, we investigated montmorillonite for adsorption of neonicotinoid insecticides in vortex-assisted dispersive micro-solid phase extraction (VA-d-μ-SPE). High-performance liquid chromatography with photodiode array detection was used for quantification and determination of neonicotinoid insecticide residues, including thiamethoxam, clothianidin, imidacloprid, acetamiprid, and thiacloprid. In this method, the solid sorbent was dispersed into the aqueous sample solution and vortex agitation was performed to accelerate the extraction process. Finally, the solution was filtered from the solid sorbent with a membrane filter. The parameters affecting the extraction efficiency of the proposed method were optimized, such as amount of sorbent, sample volume, salt addition, type and volume of extraction solvent, and vortex time. The adsorbing results show that montmorillonite could be reused at least 4 times and be used as an effective adsorbent for rapid extraction/preconcentration of neonicotinoid insecticide residues. Under optimum conditions, linear dynamic ranges were achieved between 0.5 and 1000 ng mL -1 with a correlation of determination ( R² ) greater than 0.99. Limit of detection (LOD) ranged from 0.005 to 0.065 ng mL -1 , while limit of quantification (LOQ) ranged from 0.008 to 0.263 ng mL -1 . The enrichment factor (EF) ranged from 8 to 176-fold. The results demonstrated that the proposed method not only provided a more simple and sensitive method, but also can be used as a powerful alternative method for the simultaneous determination of insecticide residues in natural surface water and fruit juice samples.
Solubility of jarosite solid solutions precipitated from acid mine waters, Iron Mountain, California
Alpers, Charles N.; Nordstrom, D. Kirk; Ball, J.W.
1989-01-01
Because of the common occurrence of 15 to 25 mole percent hydronium substitution on the alkali site in jarosites, it is necessary to consider the hydronium content of jarosites in any attempt at rigorous evaluation of jarosite solubility or of the saturation state of natural waters with respect to jarosite. A Gibbs free energy of 3293.5±2.1 kJ mol-1 is recommended for a jarosite solid solution of composition K.77Na.03(H3O).20Fe3(SO4)2(OH)6. Solubility determinations for a wider range of natural and synthetic jarosite solid solutions will be necessary to quantify the binary and ternary mixing parameters in the (K-Na-H3O) system. In the absence of such studies, molar volume data for endmember minerals indicate that the K-H3O substitution in jarosite is probably closer to ideal mixing than either the Na-K or Na-H3O substitution.
The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fei; Zhang, Shujun; Yang, Tiannan
The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric propertiesmore » is in the range of 50–80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.« less
The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals
Li, Fei; Zhang, Shujun; Yang, Tiannan; ...
2016-12-19
The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric propertiesmore » is in the range of 50–80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.« less
Liu, Qi; He, Hao; Li, Zhe-Fei; Liu, Yadong; Ren, Yang; Lu, Wenquan; Lu, Jun; Stach, Eric A; Xie, Jian
2014-03-12
We have performed operando synchrotron high-energy X-ray diffraction (XRD) to obtain nonintrusive, real-time monitoring of the dynamic chemical and structural changes in commercial 18650 LiFePO4/C cells under realistic cycling conditions. The results indicate a nonequilibrium lithium insertion and extraction in the LiFePO4 cathode, with neither the LiFePO4 phase nor the FePO4 phase maintaining a static composition during lithium insertion/extraction. On the basis of our observations, we propose that the LiFePO4 cathode simultaneously experiences both a two-phase reaction mechanism and a dual-phase solid-solution reaction mechanism over the entire range of the flat voltage plateau, with this dual-phase solid-solution behavior being strongly dependent on charge/discharge rates. The proposed dual-phase solid-solution mechanism may explain the remarkable rate capability of LiFePO4 in commercial cells.
Strengthening Mechanisms in Thermomechanically Processed NbTi-Microalloyed Steel
NASA Astrophysics Data System (ADS)
Kostryzhev, Andrii G.; Marenych, Olexandra O.; Killmore, Chris R.; Pereloma, Elena V.
2015-08-01
The effect of deformation temperature on microstructure and mechanical properties was investigated for thermomechanically processed NbTi-microalloyed steel with ferrite-pearlite microstructure. With a decrease in the finish deformation temperature at 1348 K to 1098 K (1075 °C to 825 °C) temperature range, the ambient temperature yield stress did not vary significantly, work hardening rate decreased, ultimate tensile strength decreased, and elongation to failure increased. These variations in mechanical properties were correlated to the variations in microstructural parameters (such as ferrite grain size, solid solution concentrations, precipitate number density and dislocation density). Calculations based on the measured microstructural parameters suggested the grain refinement, solid solution strengthening, precipitation strengthening, and work hardening contributed up to 32 pct, up to 48 pct, up to 25 pct, and less than 3 pct to the yield stress, respectively. With a decrease in the finish deformation temperature, both the grain size strengthening and solid solution strengthening increased, the precipitation strengthening decreased, and the work hardening contribution did not vary significantly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Bo, E-mail: youqin5912@yahoo.com.cn; Hou, Na; Huang, Shanyan
2013-08-15
The lattice parameters, structural stability and electronic structure of titanium oxycarbides (TiC{sub 1−x}O{sub x}, 0≤x≤1) solid solution were investigated by Rietveld refinement and first-principles calculations. Series of TiC{sub 1−x}O{sub x} were precisely synthesized by sintering process under the vacuum. Rietveld refinement results of XRD patterns show the properties of continuous solid solution in TiC{sub 1−x}O{sub x} over the whole composition range. The lattice parameters vary from 0.4324 nm to 0.4194 nm decreasing with increasing oxygen concentration. Results of first-principles calculations reveal that the disorder C/O structure is stable than the order C/O structure. Further investigations of the vacancy in Ti{submore » 1−Va}(C{sub 1−x}O{sub x}){sub 1−Va} solid solution present that the structure of vacancy segregated in TiO-part is more stable than the disorder C/O structure, which can be ascribed to the Ti–Ti bond across O-vacancy and the charge redistributed around Ti-vacancy via the analysis of the electron density difference plots and PDOS. - Graphical abstract: XRD of series of titanium oxycarbides (TiC{sub 1−x}O{sub x}, 0≤x≤1) solid solution prepared by adjusting the proportion of TiO in the starting material. Highlights: • Titanium oxycarbides were obtained by sintering TiO and TiC under carefully controlled conditions. • Rietveld refinement results show continuous solid solution with FCC structure in TiC{sub 1−x}O{sub x}. • The disorder C/O structure is stable than the order C/O structure. • Introduction of vacancy segregated in TiO-part is more stable than disorder C/O structure. • Ti–Ti bond across O-vacancy and the charge redistributed around Ti-vacancy enhance structural stability.« less
Optimisation of cavity parameters for lasers based on AlGaInAsP/InP solid solutions (λ = 1470 nm)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veselov, D A; Ayusheva, K R; Shashkin, I S
2015-10-31
We have studied the effect of laser cavity parameters on the light–current characteristics of lasers based on the AlGaInAs/GaInAsP/InP solid solution system that emit in the spectral range 1400 – 1600 nm. It has been shown that optimisation of cavity parameters (chip length and front facet reflectivity) allows one to improve heat removal from the laser, without changing other laser characteristics. An increase in the maximum output optical power of the laser by 0.5 W has been demonstrated due to cavity design optimisation. (lasers)
The solubility of hydrogen in rhodium, ruthenium, iridium and nickel.
NASA Technical Reports Server (NTRS)
Mclellan, R. B.; Oates, W. A.
1973-01-01
The temperature variation of the solubility of hydrogen in rhodium, ruthenium, iridium, and nickel in equilibrium with H2 gas at 1 atm pressure has been measured by a technique involving saturating the solvent metal with hydrogen, quenching, and analyzing in resultant solid solutions. The solubilities determined are small (atom fraction of H is in the range from 0.0005 to 0.00001, and the results are consistent with the simple quasi-regular model for dilute interstitial solid solutions. The relative partial enthalpy and excess entropy of the dissolved hydrogen atoms have been calculated from the solubility data and compared with well-known correlations between these quantities.
Raman spectroscopic investigation of thorium dioxide-uranium dioxide (ThO₂-UO₂) fuel materials.
Rao, Rekha; Bhagat, R K; Salke, Nilesh P; Kumar, Arun
2014-01-01
Raman spectroscopic investigations were carried out on proposed nuclear fuel thorium dioxide-uranium dioxide (ThO2-UO2) solid solutions and simulated fuels based on ThO2-UO2. Raman spectra of ThO2-UO2 solid solutions exhibited two-mode behavior in the entire composition range. Variations in mode frequencies and relative intensities of Raman modes enabled estimation of composition, defects, and oxygen stoichiometry in these compounds that are essential for their application. The present study shows that Raman spectroscopy is a simple, promising analytical tool for nondestructive characterization of this important class of nuclear fuel materials.
Asiabi, Hamid; Yamini, Yadollah; Seidi, Shahram; Esrafili, Ali; Rezaei, Fatemeh
2015-06-05
In this work, a novel and efficient on-line in-tube solid phase microextraction method followed by high performance liquid chromatography was developed for preconcentration and determination of trace amounts of parabens. A nanostructured polyaniline-polypyrrole composite was electrochemically deposited on the inner surface of a stainless steel tube and used as the extraction phase. Several important factors that influence the extraction efficiency, including type of solid-phase coating, extraction and desorption times, flow rates of the sample solution and eluent, pH, and ionic strength of the sample solution were investigated and optimized. Under the optimal conditions, the limits of detection were in the range of 0.02-0.04 μg L(-1). This method showed good linearity for parabens in the range of 0.07-50 μg L(-1), with coefficients of determination better than 0.998. The intra- and inter-assay precisions (RSD%, n=3) were in the range of 5.9-7.0% and 4.4-5.7% at three concentration levels of 2, 10, and 20 μg L(-1), respectively. The extraction recovery values for the spiked samples were in the acceptable range of 80.3-90.2%. The validated method was successfully applied for analysis of methyl-, ethyl-, and propyl parabens in some water, milk, and juice samples. Copyright © 2015 Elsevier B.V. All rights reserved.
End-Member Formulation of Solid Solutions and Reactive Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lichtner, Peter C.
2015-09-01
A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed tomore » correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.« less
Effect of Moisture Content of Chitin-Calcium Silicate on Rate of Degradation of Cefotaxime Sodium.
Al-Nimry, Suhair S; Alkhamis, Khouloud A
2018-04-01
Assessment of incompatibilities between active pharmaceutical ingredient and pharmaceutical excipients is an important part of preformulation studies. The objective of the work was to assess the effect of moisture content of chitin calcium silicate of two size ranges (two specific surface areas) on the rate of degradation of cefotaxime sodium. The surface area of the excipient was determined using adsorption method. The effect of moisture content of a given size range on the stability of the drug was determined at 40°C in the solid state. The moisture content was determined at the beginning and the end of the kinetic study using TGA. The degradation in solution was studied for comparison. Increasing the moisture content of the excipient of size range 63-180 μm (surface area 7.2 m 2 /g) from 3.88 to 8.06% increased the rate of degradation of the drug more than two times (from 0.0317 to 0.0718 h -1 ). While an opposite trend was observed for the excipient of size range < 63 μm (surface area 55.4 m 2 /g). The rate of degradation at moisture content < 3% was 0.4547 h -1 , almost two times higher than that (0.2594 h -1 ) at moisture content of 8.54%, and the degradation in solid state at both moisture contents was higher than that in solution (0.0871 h -1 ). In conclusion, the rate of degradation in solid should be studied taking into consideration the specific surface area and moisture content of the excipient at the storage condition and it may be higher than that in solution.
Synthesis, structure, and ionic conductivity of solid solution, Li10+δM1+δP2-δS12 (M = Si, Sn).
Hori, Satoshi; Suzuki, Kota; Hirayama, Masaaki; Kato, Yuki; Saito, Toshiya; Yonemura, Masao; Kanno, Ryoji
2014-01-01
Solid solutions of the silicon and tin analogous phases of the superionic conductor Li(10)MP(2)S(12) (M = Si, Sn) were synthesized by a conventional solid-state reaction in an evacuated silica tube at 823 K. The ranges of the solid solutions were determined to be 0.20 < δ < 0.43 and -0.25 < δ < -0.01 in Li(10+δ)M(1+δ)P(2-δ)S(12) (0.525 ≤k≤ 0.60 and 0.67 ≤k≤ 0.75 in Li(4-k)M(1-k)PkS(4)) for the Si and Sn systems, respectively. The ionic conductivity of these systems varied as a function of the changing M ions: the Si and Sn systems showed lower conductivity than the Ge system, Li(10+δ)Ge(1+δ)P(2-δ)S(12). The conductivity change for different elements might be due to the lattice size and lithium content affecting the ionic conduction. The relationship between ionic conduction, structure, and lithium concentration is discussed based on the structural and electrochemical information for the silicon, germanium, and tin systems.
Influence of Composition on the Thermoelectric Properties of Bi1- x Sb x Thin Films
NASA Astrophysics Data System (ADS)
Rogacheva, E. I.; Nashchekina, O. N.; Orlova, D. S.; Doroshenko, A. N.; Dresselhaus, M. S.
2017-07-01
Bi1- x Sb x solid solutions have attracted much attention as promising thermoelectric (TE) materials for cooling devices at temperatures below ˜200 K and as unique model materials for solid-state science because of a high sensitivity of their band structure to changes in composition, temperature, pressure, etc. Earlier, we revealed a non-monotonic behavior of the concentration dependences of TE properties for polycrystalline Bi1- x Sb x solid solutions and attributed these anomalies to percolation effects in the solid solution, transition to a gapless state, and to a semimetal-semiconductor transition. The goal of the present work is to find out whether the non-monotonic behavior of the concentration dependences of TE properties is observed in the thin film state as well. The objects of the study are Bi1- x Sb x thin films with thicknesses in the range d = 250-300 nm prepared by thermal evaporation of Bi1- x Sb x crystals ( x = 0-0.09) onto mica substrates. It was shown that the anomalies in the dependence of the TE properties on Bi1- x Sb x crystal composition are reproduced in thin films.
Hydrothermal Synthesis of Nanostructured Vanadium Oxides
Livage, Jacques
2010-01-01
A wide range of vanadium oxides have been obtained via the hydrothermal treatment of aqueous V(V) solutions. They exhibit a large variety of nanostructures ranging from molecular clusters to 1D and 2D layered compounds. Nanotubes are obtained via a self-rolling process while amazing morphologies such as nano-spheres, nano-flowers and even nano-urchins are formed via the self-assembling of nano-particles. This paper provides some correlation between the molecular structure of precursors in the solution and the nanostructure of the solid phases obtained by hydrothermal treatment. PMID:28883325
Lunar Science from Lunar Laser Ranging
NASA Technical Reports Server (NTRS)
Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.
2013-01-01
Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, tidal Love number k2, and moment of inertia differences. There is weaker sensitivity to flattening of the core/mantle boundary (CMB) and fluid core moment of inertia. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to variations in lunar rotation, orientation and tidal displacements. Past solutions using the LLR data have given results for Love numbers plus dissipation due to solid-body tides and fluid core. Detection of the fluid core polar minus equatorial moment of inertia difference due to CMB flattening is weakly significant. This strengthens the case for a fluid lunar core. Future approaches are considered to detect a solid inner core.
Fabrication and Performance of All-Solid-State Chloride Sensors in Synthetic Concrete Pore Solutions
Gao, Xiaojian; Zhang, Jian; Yang, Yingzi; Deng, Hongwei
2010-01-01
One type of all-solid-state chloride sensor was fabricated using a MnO2 electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M), and the potential value remains stable with increasing immersion time. The existence of K+, Ca2+, Na+ and SO42− ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments. PMID:22163467
Gao, Xiaojian; Zhang, Jian; Yang, Yingzi; Deng, Hongwei
2010-01-01
One type of all-solid-state chloride sensor was fabricated using a MnO(2) electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M), and the potential value remains stable with increasing immersion time. The existence of K(+), Ca(2+), Na(+) and SO(4) (2-) ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments.
Raman effect in multiferroic Bi5Fe1+xTi3-xO15 solid solutions: A temperature study
NASA Astrophysics Data System (ADS)
Rodríguez Aranda, Ma. Del Carmen; Rodríguez-Vázquez, Ángel G.; Salazar-Kuri, Ulises; Mendoza, María Eugenia; Navarro-Contreras, Hugo R.
2018-02-01
In this work, a Raman study of powder samples of multiferroic Bi5Fe1+xTi3-xO15 solid solutions and Bi6Fe2Ti3O18 as a function of temperature from 27 °C (room temperature) to 850 °C is presented. The values of x (i.e., the Fe composition) for the solid solutions were 1.0, 1.1, 1.3, and 1.4. The temperature coefficients of eight phonon frequencies were determined for all the samples. The large observed phonon broadenings with increasing temperature precluded the observation of several of the phonon bands above defined temperatures in the range of 200-700 °C depending on the sample. These phonon broadenings were explained on the basis of the Klemens model, which considers that the broadenings are due to the thermal expansion of the lattice with a major contribution in terms of magnitude from anharmonic phonon-phonon interactions. However, some evidence for the presence of several of the phonons persisted up to 800-850 °C. These solid solutions are expected to exhibit a ferroelectric-paraelectric phase transition at 742 to 750 °C and a ferromagnetic-antiferromagnetic transition at 426 °C. We also observed changes in the slopes of the temperature dependence of the phonon frequencies for the lines at 228 cm-1 for Bi5FeTi3O15 and 330 cm-1 for Bi6Fe2Ti3O18 at temperatures of 247 °C and 347 °C, respectively. No similar temperature-frequency slope changes indicative of possible phase transitions were observed for any of the phonon lines of the other three Bi5Fe1+xTi3-xO15 solid solutions examined.
Dilute acid pretreatment of corncob for efficient sugar production
G.S. Wang; Jae-Won Lee; Junyong Zhu; Thomas W. Jeffries
2011-01-01
Aqueous dilute acid pretreatments of corncob were conducted using cylindrical pressure vessels in an oil bath. Pretreatments were conducted in a temperature range of 160â190 °C with acid-solution-to-solid-corncob ratio of 2. The acid concentration (v/v) in the pretreatment solution was varied from 0% to 0.7%, depending on temperature. This gives acid charge on ovendry-...
Cavallo, Carmen; Salleo, Alberto; Gozzi, Daniele; Di Pascasio, Francesco; Quaranta, Simone; Panetta, Riccardo; Latini, Alessandro
2015-01-01
Solid solutions of the rare earth (RE) cations Pr3+, Nd3+, Sm3+, Gd3+, Er3+ and Yb3+ in anatase TiO2 have been synthesized as mesoporous beads in the concentration range 0.1–0.3% of metal atoms. The solid solutions were have been characterized by XRD, SEM, diffuse reflectance UV-Vis spectroscopy, BET and BJH surface analysis. All the solid solutions possess high specific surface areas, up to more than 100 m2/g. The amount of adsorbed dye in each photoanode has been determined spectrophotometrically. All the samples were tested as photoanodes in dye-sensitized solar cells (DSSCs) using N719 as dye and a nonvolatile, benzonitrile based electrolyte. All the cells were have been tested by conversion efficiency (J–V), quantum efficiency (IPCE), electrochemical impedance spectroscopy (EIS) and dark current measurements. While lighter RE cations (Pr3+, Nd3+) limit the performance of DSSCs compared to pure anatase mesoporous beads, cations from Sm3+ onwards enhance the performance of the devices. A maximum conversion efficiency of 8.7% for Er3+ at a concentration of 0.2% has been achieved. This is a remarkable efficiency value for a DSSC employing N719 dye without co-adsorbents and a nonvolatile electrolyte. For each RE cation the maximum performances are obtained for a concentration of 0.2% metal atoms. PMID:26577287
Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to calcite
Tesoriero, A.J.; Pankow, J.F.
1996-01-01
Although solid solutions play important roles in controlling the concentrations of minor metal ions in natural waters, uncertainties regarding their compositions, thermodynamics, and kinetics usually prevent them from being considered. A range of precipitation rates was used here to study the nonequilibrium and equilibrium partitioning behaviors of Sr2+, Ba2+, and Cd2+ to calcite (CaCO3(s)). The distribution coefficient of a divalent metal ion Me2+ for partitioning from an aqueous solution into calcite is given by DMe = (XMeCO3(s)/[Me2+])/(XCaCO3(s)/[Ca 2+]). The X values are solid-phase mole fractions; the bracketed values are the aqueous molal concentrations. In agreement with prior work, at intermediate to high precipitation rates R (nmol/mg-min), DSr, DBa, and DCd were found to depend strongly on R. At low R, the values of DSr, DBa, and DCd became constant with R. At 25??C, the equilibrium values for DSr, DBa, and DCd for dilute solid solutions were estimated to be 0.021 ?? 0.003, 0.012 ?? 0.005, and 1240 ?? 300, respectively. Calculations using these values were made to illustrate the likely importance of partitioning of these ions to calcite in groundwater systems. Due to its large equilibrium DMe value, movement of Cd2+ will be strongly retarded in aquifers containing calcite; Sr2+ and Ba2+ will not be retarded nearly as much.
Habibi-Khorasani, Monireh; Mohammadpour, Amir Hooshang; Mohajeri, Seyed Ahmad
2017-02-01
In this work, performance of a molecularly imprinted polymer (MIP) as a selective solid-phase microextraction sorbent for the extraction and enrichment of tramadol in aqueous solution and rabbit brain tissue, is described. Binding properties of MIPs were studied in comparison with their nonimprinted polymer (NIP). Ten milligrams of the optimized MIP was then evaluated as a sorbent, for preconcentration, in molecularly imprinted solid-phase microextraction (MISPME) of tramadol from aqueous solution and rabbit brain tissue. The analytical method was calibrated in the range of 0.004 ppm (4 ng mL -1 ) and 10 ppm (10 μg mL -1 ) in aqueous media and in the ranges of 0.01 and 10 ppm in rabbit brain tissue, respectively. The results indicated significantly higher binding affinity of MIPs to tramadol, in comparison with NIP. The MISPME procedure was developed and optimized with a recovery of 81.12-107.54% in aqueous solution and 76.16-91.20% in rabbit brain tissue. The inter- and intra-day variation values were <8.24 and 5.06%, respectively. Finally the calibrated method was applied for determination of tramadol in real rabbit brain tissue samples after administration of a lethal dose. Our data demonstrated the potential of MISPME for rapid, sensitive and cost-effective sample analysis. Copyright © 2016 John Wiley & Sons, Ltd.
TIDAL HEATING IN A MAGMA OCEAN WITHIN JUPITER’S MOON Io
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler, Robert H.; Henning, Wade G.; Hamilton, Christopher W., E-mail: robert.h.tyler@nasa.gov
Active volcanism observed on Io is thought to be driven by the temporally periodic, spatially differential projection of Jupiter's gravitational field over the moon. Previous theoretical estimates of the tidal heat have all treated Io as essentially a solid, with fluids addressed only through adjustment of rheological parameters rather than through appropriate extension of the dynamics. These previous estimates of the tidal response and associated heat generation on Io are therefore incomplete and possibly erroneous because dynamical aspects of the fluid behavior are not permitted in the modeling approach. Here we address this by modeling the partial-melt asthenosphere as amore » global layer of fluid governed by the Laplace Tidal Equations. Solutions for the tidal response are then compared with solutions obtained following the traditional solid-material approach. It is found that the tidal heat in the solid can match that of the average observed heat flux (nominally 2.25 W m{sup −2}), though only over a very restricted range of plausible parameters, and that the distribution of the solid tidal heat flux cannot readily explain a longitudinal shift in the observed (inferred) low-latitude heat fluxes. The tidal heat in the fluid reaches that observed over a wider range of plausible parameters, and can also readily provide the longitudinal offset. Finally, expected feedbacks and coupling between the solid/fluid tides are discussed. Most broadly, the results suggest that both solid and fluid tidal-response estimates must be considered in exoplanet studies, particularly where orbital migration under tidal dissipation is addressed.« less
Properties of ZnO nanocrystals prepared by radiation method
NASA Astrophysics Data System (ADS)
Čuba, Václav; Gbur, Tomáš; Múčka, Viliam; Nikl, Martin; Kučerková, Romana; Pospíšil, Milan; Jakubec, Ivo
2010-01-01
Zinc oxide nanoparticles were prepared by irradiation of aqueous solutions containing zinc(II) ions, propan-2-ol, polyvinyl alcohol, and hydrogen peroxide. Zinc oxide was found in solid phase either directly after irradiation, or after additional heat treatment. Various physicochemical parameters, including scintillation properties of prepared materials, were studied. After decomposition of impurities and annealing of oxygen vacancies, the samples showed intensive emission in visible spectral range and well-shaped exciton luminescence at 390-400 nm. The best scintillating properties had zinc oxide prepared from aqueous solutions containing zinc formate as initial precursor and hydrogen peroxide. Size of the crystalline particles ranged from tens to hundreds nm, depending on type of irradiated solution and post-irradiation thermal treatment.
NASA Astrophysics Data System (ADS)
Harvey, Jean-Philippe; Gheribi, Aïmen E.; Chartrand, Patrice
2012-10-01
In this work, the glass forming ability of Al-Zr alloys is quantified using Monte Carlo (MC) and molecular dynamic (MD) simulations as well as classical thermodynamic calculations. The total energy of each studied structure of the Al-Zr system is described using the modified embedded atom model in the second-nearest-neighbour formalism. The parameterized Al-Zr cross potential which has been extensively validated using available experimental and ab initio data for several solid structures and for the liquid phase is used to evaluate thermodynamic, structural, and physical properties of the glass state and of the fully disordered (FD) face-centered cubic (FCC) solid solution with no short range order (SRO). The local environment of the Al-Zr amorphous phase is identified to be similar to that of a FCC solid structure with short range chemical order. A new approach to model the Gibbs energy of the amorphous phase based on the cluster variation method in the tetrahedron approximation is presented. The Gibbs energy of the fully disordered FCC solid solution with no short range order is determined and compared to the Gibbs energy of the amorphous phase. According to our volumetric and energetic criteria defined in our work to evaluate the possible formation of a glass structure at room temperature and zero pressure, a glass forming range of (0.25≤XZr≤0.75) and of (0.21≤XZr≤0.75) are identified, respectively. All the available quantitative experimental data regarding the amorphization of Al-Zr alloys are compared to the prediction of our MD/MC simulations throughout this study.
Internal friction and dislocation collective pinning in disordered quenched solid solutions
NASA Astrophysics Data System (ADS)
D'Anna, G.; Benoit, W.; Vinokur, V. M.
1997-12-01
We introduce the collective pinning of dislocations in disordered quenched solid solutions and calculate the macroscopic mechanical response to a small dc or ac applied stress. This work is a generalization of the Granato-Lücke string model, able to describe self-consistently short and long range dislocation motion. Under dc applied stress the long distance dislocation creep has at the microscopic level avalanche features, which result in a macroscopic nonlinear "glassy" velocity-stress characteristic. Under ac conditions the model predicts, in addition to the anelastic internal friction relaxation in the high frequency regime, a linear internal friction background which remains amplitude-independent down to a crossover frequency to a strongly nonlinear internal friction regime.
Corner wetting during the vapor-liquid-solid growth of faceted nanowires
NASA Astrophysics Data System (ADS)
Spencer, Brian; Davis, Stephen
2016-11-01
We consider the corner wetting of liquid drops in the context of vapor-liquid-solid growth of nanowires. Specifically, we construct numerical solutions for the equilibrium shape of a liquid drop on top of a faceted nanowire by solving the Laplace-Young equation with a free boundary determined by mixed boundary conditions. A key result for nanowire growth is that for a range of contact angles there is no equilibrium drop shape that completely wets the corner of the faceted nanowire. Based on our numerical solutions we determine the scaling behavior for the singular surface behavior near corners of the nanowire in terms of the Young contact angle and drop volume.
Ordering-separation phase transitions in a Co3V alloy
NASA Astrophysics Data System (ADS)
Ustinovshchikov, Yu. I.
2017-01-01
The microstructure of the Co3V alloy formed by heat treatment at various temperatures is studied by transmission electron microscopy. Two ordering-separation phase transitions are revealed at temperatures of 400-450 and 800°C. At the high-temperature phase separation, the microstructure consists of bcc vanadium particles and an fcc solid solution; at the low-temperature phase separation, the microstructure is cellular. In the ordering range, the microstructure consists of chemical compound Co3V particles chaotically arranged in the solid solution. The structure of the Co3V alloy is shown not to correspond to the structures indicated in the Co-V phase diagram at any temperatures.
Dai, X D; Li, J H; Liu, B X
2005-03-17
With the aid of ab initio calculations, an n-body potential of the Ni-Nb system is constructed under the Finnis-Sinclair formalism and the constructed potential is capable of not only reproducing some static physical properties but also revealing the atomistic mechanism of crystal-to-amorphous transition and associated kinetics. With application of the constructed potential, molecular dynamics simulations using the solid solution models reveal that the physical origin of crystal-to-amorphous transition is the crystalline lattice collapsing while the solute atoms are exceeding the critical solid solubilities, which are determined to be 19 atom % Ni and 13 atom % Nb for the Nb- and Ni-based solid solutions, respectively. It follows that an intrinsic glass-forming ability of the Ni-Nb system is within 19-87 atom % Ni, which matches well with that observed in ion beam mixing/solid-state reaction experiments. Simulations using the Nb/Ni/Nb (Ni/Nb/Ni) sandwich models indicate that the amorphous layer at the interfaces grows in a layer-by-layer mode and that, upon dissolving solute atoms, the Ni lattice approaches and exceeds its critical solid solubility faster than the Nb lattice, revealing an asymmetric behavior in growth kinetics. Moreover, an energy diagram is obtained by computing the energetic sequence of the Ni(x)Nb(100)(-)(x) alloy in fcc, bcc, and amorphous structures, respectively, over the entire composition range, and the diagram could serve as a guide for predicting the metastable alloy formation in the Ni-Nb system.
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Andras, Maria T.; Bailey, Sheila G.; Duraj, Stan A.
1992-01-01
A novel two-phase synthesis of CuInSe2 at 25 C from Cu2Se and Cp3In in 4-methylpyridine has been discovered. Characterization of the material produced shows it to be platelet-shaped crystallites with an average particle size of 10 microns, less than 2 percent C and H, with a small amount of unidentified crystalline impurity. The results demonstrate that it is possible to produce from solution a material that is ordinarily synthesized in bulk or films at much higher temperatures or using extraneous reagents and/or electrons. The use of a solid-state reagent as a starting material which is converted to another solid-state compound by an organometallic reagent has tremendous potential to produce precursors for a wide range of solid-state materials of interest to the electronics, defense, and aerospace communities.
Dewetting-mediated pattern formation in nanoparticle assemblies
NASA Astrophysics Data System (ADS)
Stannard, Andrew
2011-03-01
The deposition of nanoparticles from solution onto solid substrates is a diverse subfield of current nanoscience research. Complex physical and chemical processes underpin the self-assembly and self-organization of colloidal nanoparticles at two-phase (solid-liquid, liquid-air) interfaces and three-phase (solid-liquid-air) contact lines. This review discusses key recent advances made in the understanding of nonequilibrium dewetting processes of nanoparticle-containing solutions, detailing how such an apparently simple experimental system can give rise to such a strikingly varied palette of two-dimensional self-organized nanoparticle array morphologies. Patterns discussed include worm-like domains, cellular networks, microscale rings, and fractal-like fingering structures. There remain many unresolved issues regarding the role of the solvent dewetting dynamics in assembly processes of this type, with a significant focus on how dewetting can be coerced to produce nanoparticle arrays with desirable characteristics such as long-range order. In addition to these topics, methods developed to control nanofluid dewetting through routes such as confining the geometries of drying solutions, depositing onto pre-patterned heterogeneous substrates, and post-dewetting pattern evolution via local or global manipulation are covered.
Dewetting-mediated pattern formation in nanoparticle assemblies.
Stannard, Andrew
2011-03-02
The deposition of nanoparticles from solution onto solid substrates is a diverse subfield of current nanoscience research. Complex physical and chemical processes underpin the self-assembly and self-organization of colloidal nanoparticles at two-phase (solid-liquid, liquid-air) interfaces and three-phase (solid-liquid-air) contact lines. This review discusses key recent advances made in the understanding of nonequilibrium dewetting processes of nanoparticle-containing solutions, detailing how such an apparently simple experimental system can give rise to such a strikingly varied palette of two-dimensional self-organized nanoparticle array morphologies. Patterns discussed include worm-like domains, cellular networks, microscale rings, and fractal-like fingering structures. There remain many unresolved issues regarding the role of the solvent dewetting dynamics in assembly processes of this type, with a significant focus on how dewetting can be coerced to produce nanoparticle arrays with desirable characteristics such as long-range order. In addition to these topics, methods developed to control nanofluid dewetting through routes such as confining the geometries of drying solutions, depositing onto pre-patterned heterogeneous substrates, and post-dewetting pattern evolution via local or global manipulation are covered.
Synthesis and characterization of cadmium-calcium hydroxyapatite solid solutions
NASA Astrophysics Data System (ADS)
Zhao, Xin; Zhu, Yi-nian; Dai, Liu-qin
2014-06-01
A series of cadmium-calcium hydroxyapatite solid solutions was prepared by an aqueous precipitation method. By various means, the characterizations confirmed the formation of continuous solid solutions over all ranges of Cd/(Cd+Ca) atomic ratio. In the results, both lattice parameters a and c display slight deviations from Vegard's rule when the Cd/(Cd+Ca) atomic ratio is greater than 0.6. The particles change from smaller acicular to larger hexagonal columnar crystals as the Cd/(Cd+Ca) atomic ratio increases from 0-0.60 to 0.60-1.00. The area of the phosphate peak for symmetric P-O stretching decreases with the increase in Cd/(Cd+Ca) atomic ratio, and the peak disappears when the Cd/(Cd+Ca) atomic ratio is greater than 0.6; the two phosphate peaks of P-O stretching gradually merge together for the Cd/(Cd+Ca) atomic ratio near 0.60. These variations can be explained by a slight tendency of larger Cd ions to occupy M(2) sites and smaller Ca ions to prefer M(1) sites in the structure.
The system K2Mg2(SO4)3 (langbeinite)-K2Ca2(SO4)3 (calcium-langbeinite)
Morey, G.W.; Rowe, J.J.; Fournier, R.O.
1964-01-01
The join between the compositions K2Mg2(SO4)3 and K2Ca2(SO4)3 was studied by means of high-temperature equilibrium quenching techniques and by means of a heating stage mounted on an X-ray diffractometer. Complete solid solution exists in the system, but at 25??C members of the solid solution series are isometric only in the composition range 0-73??5 wt. per cent K2Ca2(SO4)3. At compositions richer in K2Ca2(SO4)3 than 73??5 wt. per cent, members of the series are optically biaxial. At higher temperatures members of the solid solution series are isometric at successively more calcium-rich compositions and pure K2Ca2(SO4)3 is isometric above about 200 ?? 2??C. The system is not binary, as mixtures richer in K2Ca2(SO4)3 than 42 wt. per cent decompose with the formation of liquid and CaSO4. ?? 1964.
Practical solution of plastic deformation problems in elastic-plastic range
NASA Technical Reports Server (NTRS)
Mendelson, A; Manson, S
1957-01-01
A practical method for solving plastic deformation problems in the elastic-plastic range is presented. The method is one of successive approximations and is illustrated by four examples which include a flat plate with temperature distribution across the width, a thin shell with axial temperature distribution, a solid cylinder with radial temperature distribution, and a rotating disk with radial temperature distribution.
Salisaeng, Pawina; Arnnok, Prapha; Patdhanagul, Nopbhasinthu; Burakham, Rodjana
2016-03-16
A vortex-assisted dispersive micro-solid phase extraction (VA-D-μ-SPE) based on cetyltrimethylammonium bromide (CTAB)-modified zeolite NaY was developed for preconcentration of carbamate pesticides in fruits, vegetables, and natural surface water prior to analysis by high performance liquid chromatography with photodiode array detection. The small amounts of solid sorbent were dispersed in a sample solution, and extraction occurred by adsorption in a short time, which was accelerated by vortex agitation. Finally, the sorbents were filtered from the solution, and the analytes were subsequently desorbed using an appropriate solvent. Parameters affecting the VA-D-μ-SPE performance including sorbent amount, sample volume, desorption solvent ,and vortex time were optimized. Under the optimum condition, linear dynamic ranges were achieved between 0.004-24.000 mg kg(-1) (R(2) > 0.9946). The limits of detection (LODs) ranged from 0.004-4.000 mg kg(-1). The applicability of the developed procedure was successfully evaluated by the determination of the carbamate residues in fruits (dragon fruit, rambutan, and watermelon), vegetables (cabbage, cauliflower, and cucumber), and natural surface water.
Standard High Solids Vessel Design De-inventory Simulant Qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiskum, Sandra K.; Burns, Carolyn A.M.; Gauglitz, Phillip A.
The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is working to develop a Standard High Solids Vessel Design (SHSVD) process vessel. To support testing of this new design, WTP engineering staff requested that a Newtonian simulant be developed that would represent the de-inventory (residual high-density tank solids cleanout) process. Its basis and target characteristics are defined in 24590-WTP-ES-ENG-16-021 and implemented through PNNL Test Plan TP-WTPSP-132 Rev. 1.0. This document describes the de-inventory Newtonian carrier fluid (DNCF) simulant composition that will satisfy the basis requirement to mimic the density (1.18 g/mL ± 0.1 g/mL) and viscosity (2.8 cP ± 0.5more » cP) of 5 M NaOH at 25 °C.1 The simulant viscosity changes significantly with temperature. Therefore, various solution compositions may be required, dependent on the test stand process temperature range, to meet these requirements. Table ES.1 provides DNCF compositions at selected temperatures that will meet the density and viscosity specifications as well as the temperature range at which the solution will meet the acceptable viscosity tolerance.« less
Yan, Hongyuan; Qiao, Jindong; Pei, Yuning; Long, Tao; Ding, Wen; Xie, Kun
2012-05-01
New molecularly imprinted microspheres synthesized by suspension polymerisation using phenylamine and naphthol as mimic template were successfully applied as selective sorbents for the solid-phase extraction used for the simultaneous determination of four Sudan dyes from preserved beancurd products. The obtained imprinted microspheres showed good recognition and selectivity to the four Sudan dyes in aqueous solution and the affinity could be easily controlled by adjusting the property of the solution. Under the selected experimental condition, the recoveries of the Sudan dyes in preserved beancurds at three spiked levels were ranged between 90.2-104.5% with the relative standard deviation of less than 6.8%. The limit of detection (LOD) and limit of quantification (LOQ) based on a signal-to-noise of 3 and 10 were in the range of 0.005-0.009μgg(-1) and 0.015-0.030μgg(-1), respectively. Comparing with alumina and C18-based extraction, the selectivity and repeatability of molecularly imprinted solid-phase extraction (MISPE) were obviously improved. This method could be potentially applied for the determination of Sudan dyes in complicated food samples. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Choi, Sunho; Lee, Sewook; Park, Jongyeop; Nichols, William T.; Shin, Dongwook
2018-06-01
A lithium ion conductive 75Li2Sṡ25P2S5 glass-ceramics electrolyte is, for the first time, successfully synthesized via a new low-temperature solution technique (LTST) and compared to the conventional mechanical-milling technique. Both samples are composed of the highly lithium ion conductive thio-LISICON III analog phase. Due to the uniform dispersion of reactants in an organic liquid, the use of LTST produced significantly smaller and more uniform particle sizes (2.2 ± 1.68 μm) resulting in a 6.5 times higher specific surface area compared to the mechanically-milled sample. A pronounced enhancement of both the rate capability and cyclability is demonstrated for the LTST solid electrolyte sample due to the more intimate contact with the LiCoO2 active material. Furthermore, the LTST sample shows excellent electrochemical stability throughout the potential range of -1 to 5 V. These results suggest that the proposed technique using the optimized LTST process is promising for the preparation of 75Li2Sṡ25P2S5 solid electrolytes for use in advanced Li-ion batteries.
Precipitation of silicon from splat-cooled Al-Si alloys
NASA Technical Reports Server (NTRS)
Matyja, H.; Russell, K. C.; Grant, N. J.; Giessen, B. C.
1975-01-01
Splat cooled Al-Si solid solutions with 1 to 11 at.% Si were prepared and their precipitation kinetics were studied by transmission electron microscopy. The time required for appearance of particles visible at a magnification of 35,000 times was determined at temperatures between 248 K and 573 K. The resulting Arrhenius plots yielded activation energies ranging from 55 to 40 plus or minus 2kJ/mol over the composition range. Precipitate densities were higher and denuded zones of 100 to 150 nm were narrower than in comparable solid quenched samples. The activation energies are explained in terms of excess point defect concentrations.
Study of liquid?liquid demixing from drug solution
NASA Astrophysics Data System (ADS)
Lafferrère, Laurent; Hoff, Christian; Veesler, Stéphane
2004-09-01
In pharmaceutical industry, a deep understanding of the phase diagram is required in design of crystallization processes. We have investigated the phase diagram of a pharmaceutical compound (C 35H 41Cl 2N 3O 2) in a mixture of ethanol/water. This phase diagram exhibits a solid-solid (polymorphism) and a liquid-liquid-phase separation (LLPS) as a function of temperature and drug substance concentration. This study focuses on the LLPS which is metastable with respect to the crystallization of the two polymorphs FI and FII of C 35H 41Cl 2N 3O 2 in an ethanol/water mixture. The LLPS is metastable towards the solubility curve on the whole solvent-solute concentrations and temperature range studied. The LLPS occurred within the metastable zone for crystallization. In our experiments the liquid-liquid-phase transition prevented the drug from crystallizing, while it changed the medium and the conditions of crystallization, which consequently affected the process. The coexistence curves for the liquid phases, also named TL-L boundary, and the spinodal line were measured for a ternary mixture of water-drug-ethanol at atmospheric pressure over a temperature range of 10-50°C. This temperature range corresponds to that used in the crystallization process. Static Light Scattering, HPLC measurements and Karl-Fischer titration were applied to investigate the drug-phase diagram. The isoplethe section of the phase diagram exhibits four regions: one homogeneous (one liquid) and three two-phases (two regions with one liquid+one solid and one region with two liquids), the two solids phases being two polymorphs.
Neutralization of Plutonium and Enriched Uranium Solutions Containing Gadolinium as a Neutron Poison
DOE Office of Scientific and Technical Information (OSTI.GOV)
BRONIKOWSKI, MG.
2004-04-01
Materials currently being dissolved in the HB-Line Facility will result in an accumulated solution containing an estimated uranium:plutonium (U:Pu) ratio of 4.3:1 and an 235U enrichment estimated at 30 per cent The U:Pu ratio and the enrichment are outside the evaluated concentration range for disposition to high level waste (HLW) using gadolinium (Gd) as a neutron poison. To confirm that the solution generated during the current HB-Line dissolving campaign can be poisoned with Gd, neutralized and discarded to the Savannah River Site (SRS) high level waste (HLW) system without undue nuclear safety concerns the caustic precipitation of surrogate solutions wasmore » examined. Experiments were performed with a U/Pu/Gd solution representative of the HB-Line estimated concentration ratio and also a U/Gd solution. Depleted U was used in the experiments as the enrichment of the U will not affect the chemical behavior during neutralization, but will affect the amount of Gd added to the solution. Settling behavior of the neutralized solutions was found to be comparable to previous studies. The neutralized solutions mixed easily and had expected densities of typical neutralized waste. The neutralized solids were found to be homogeneous and less than 20 microns in size. Partially neutralized solids were more amorphous than the fully neutralized solids. Based on the results of these experiments, Gd was found to be a viable poison for neutralizing a U/Pu/Gd solution with a U:Pu mass ratio of 4.3:1 thus extending the U:Pu mass ratio from the previously investigated 0-3:1 to 4.3:1. However, further work is needed to allow higher U concentrations or U:Pu ratios greater than investigated in this work.« less
Chokshi, Rina J; Zia, Hossein; Sandhu, Harpreet K; Shah, Navnit H; Malick, Waseem A
2007-01-01
The solid dispersions with poloxamer 188 (P188) and solid solutions with polyvinylpyrrolidone K30 (PVPK30) were evaluated and compared in an effort to improve aqueous solubility and bioavailability of a model hydrophobic drug. All preparations were characterized by differential scanning calorimetry, powder X-ray diffraction, intrinsic dissolution rates, and contact angle measurements. Accelerated stability studies also were conducted to determine the effects of aging on the stability of various formulations. The selected solid dispersion and solid solution formulations were further evaluated in beagle dogs for in vivo testing. Solid dispersions were characterized to show that the drug retains its crystallinity and forms a two-phase system. Solid solutions were characterized to be an amorphous monophasic system with transition of crystalline drug to amorphous state. The evaluation of the intrinsic dissolution rates of various preparations indicated that the solid solutions have higher initial dissolution rates compared with solid dispersions. However, after storage at accelerated conditions, the dissolution rates of solid solutions were lower due to partial reversion to crystalline form. The drug in solid dispersion showed better bioavailability in comparison to solid solution. Therefore, considering physical stability and in vivo study results, the solid dispersion was the most suitable choice to improve dissolution rates and hence the bioavailability of the poorly water soluble drug.
Upscaling heterogeneity in aquifer reactivity via exposure-time concept: forward model.
Seeboonruang, Uma; Ginn, Timothy R
2006-03-20
Reactive properties of aquifer solid phase materials play an important role in solute fate and transport in the natural subsurface on time scales ranging from years in contaminant remediation to millennia in dynamics of aqueous geochemistry. Quantitative tools for dealing with the impact of natural heterogeneity in solid phase reactivity on solute fate and transport are limited. Here we describe the use of a structural variable to keep track of solute flux exposure to reactive surfaces. With this approach, we develop a non-reactive tracer model that is useful for determining the signature of multi-scale reactive solid heterogeneity in terms of solute flux distributions at the field scale, given realizations of three-dimensional reactive site density fields. First, a governing Eulerian equation for the non-reactive tracer model is determined by an upscaling technique in which it is found that the exposure time of solution to reactive surface areas evolves via both a macroscopic velocity and a macroscopic dispersion in the artificial dimension of exposure time. Second, we focus on the Lagrangian approach in the context of a streamtube ensemble and demonstrate the use of the distribution of solute flux over the exposure time dimension in modeling two-dimensional transport of a solute undergoing simplified linear reversible reactions, in hypothetical conditions following prior laboratory experiments. The distribution of solute flux over exposure time in a given case is a signature of the impact of heterogeneous aquifer reactivity coupled with a particular physical heterogeneity, boundary conditions, and hydraulic gradient. Rigorous application of this approach in a simulation sense is limited here to linear kinetically controlled reactions.
Zhang, H; Zhao, F J; Sun, B; Davison, W; McGrath, S P
2001-06-15
Risk assessments of metal contaminated soils need to address metal bioavailability. To predict the bioavailability of metals to plants, it is necessary to understand both solution and solid phase supply processes in soils. In striving to find surrogate chemical measurements, scientists have focused either on soil solution chemistry, including free ion activities, or operationally defined fractions of metals. Here we introduce the new concept of effective concentration, CE, which includes both the soil solution concentration and an additional term, expressed as a concentration, that represents metal supplied from the solid phase. CE was measured using the technique of diffusive gradients in thin films (DGT) which, like a plant, locally lowers soil solution concentrations, inducing metal supply from the solid phase, as shown by a dynamic model of the DGT-soil system. Measurements of Cu as CE, soil solution concentration, by EDTA extraction and as free Cu2+ activity in soil solution were made on 29 different soils covering a large range of copper concentrations. Theywere compared to Cu concentrations in the plant material of Lepidium heterophyllum grown on the same soils. Plant concentrations were linearly related and highly correlated with CE but were more scattered and nonlinear with respect to free Cu2+ activity, EDTA extraction, or soil solution concentrations. These results demonstrate that the dominant supply processes in these soils are diffusion and labile metal release, which the DGT-soil system mimics. The quantity CE is shown to have promise as a quantitative measure of the bioavailable metal in soils.
Interdiffusion and Intrinsic Diffusion in the Mg-Al System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennan, Sarah; Bermudez, Katrina; Sohn, Yong Ho
2012-01-01
Solid-to-solid diffusion couples were assembled and annealed to examine the diffusion between pure Mg (99.96%) and Al (99.999%). Diffusion anneals were carried out at 300 , 350 , and 400 C for 720, 360, and 240 hours, respectively. Optical and scanning electron microscopes were utilized to identify the formation of the intermetallic phases, -Al12Mg17 and -Al3Mg2 and absence of the -phase in the diffusion couples. Thicknesses of the -Al12Mg17 and -Al3Mg2 phases were measured and the parabolic growth constants were calculated to determine the activation energies for the growth, 165 and 86 KJ/mole, respectively. Concentration profiles were determined with electronmore » microprobe analysis using pure elemental standards. Composition-dependent interdiffusion coefficients in Mg-solid solution, -Al12Mg17 and - Al3Mg2 and Al-solid solutions were calculated based on the Boltzmann-Matano analysis. Average effective interdiffusion coefficients for each phase were also calculated, and the magnitude was the highest for the -Al3Mg2 phase, followed by -Al12Mg17, Al-solid solution and Mg-solid solution. Intrinsic diffusion coefficients based on Huemann s analysis (e.g., marker plane) were determined for the ~38 at.% Mg in the -Al3Mg2 phase. Activation energies and the pre-exponential factors for the inter- and intrinsic diffusion coefficients were calculated for the temperature range examined. The -Al3Mg2 phase was found to have the lowest activation energies for growth and interdiffusion among all four phases studied. At the marker location in the -Al3Mg2 phase, the intrinsic diffusion of Al was found to be faster than that of Mg. Extrapolations of the impurity diffusion coefficients in the terminal solid solutions were made and compared to the available self- and impurity diffusion data from literature. Thermodynamic factor, tracer diffusion coefficients and atomic mobilities at the marker plane composition were approximated using available literature values of Mg activity in the -Al3Mg2 phase.« less
Polymer diffusion in the interphase between surface and solution.
Weger, Lukas; Weidmann, Monika; Ali, Wael; Hildebrandt, Marcus; Gutmann, Jochen Stefan; Hoffmann-Jacobsen, Kerstin
2018-05-22
Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) is applied to study the self-diffusion of polyethylene glycol solutions in the presence of weakly attractive interfaces. Glass coverslips modified with aminopropyl- and propyl-terminated silanes are used to study the influence of solid surfaces on polymer diffusion. A model of three phases of polymer diffusion allows to describe the experimental fluorescence autocorrelation functions. Besides the two-dimensional diffusion of adsorbed polymer on the substrate and three-dimensional free diffusion in bulk solution, a third diffusion time scale is observed with intermediate diffusion times. This retarded three-dimensional diffusion in solution is assigned to long range effects of solid surfaces on diffusional dynamics of polymers. The respective diffusion constants show Rouse scaling (D~N -1 ) indicating a screening of hydrodynamic interactions by the presence of the surface. Hence, the presented TIR-FCS method proves to be a valuable tool to investigate the effect of surfaces on polymer diffusion beyond the first adsorbed polymer layer on the 100 nm length scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leisinger, Sabine M., E-mail: sabine.leisinger@eawag.ch; Institute of Biogeochemistry and Pollutant Dynamics, ETH, CH-8092 Zurich; Lothenbach, Barbara
2012-01-15
In hydrated cement paste AFm-phases are regarded to play an important role in the binding of the toxic contaminant chromate through isomorphic substitution with sulfate. Solid solutions formation can lower the solubility of the solids, thus reducing chromate leaching concentrations. Solid solutions between monosulfate and monochromate were synthesized and characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX) and inductive coupled plasma optical emission spectroscopy (ICP-OES). Based on the measured ion concentrations in solution total solubility products of the solid solution series were determined. For pure monochromate a logK = - 28.4more » {+-} 0.7 was determined. Results from solid and solution analysis showed that limited solid solutions exist. Based on XRD diffractograms a solid solution with a miscibility gap 0.15 < Crx < 0.85 with a dimensionless Guggenheim parameter of 2.43 was proposed.« less
Zhao, Zong-Yan; Liu, Qing-Lu; Dai, Wen-Wu
2016-08-23
Six BiOX1-xYx (X, Y = F, Cl, Br, and I) solid solutions have been systematically investigated by density functional theory calculations. BiOCl1-xBrx, BiOBr1-xIx, and BiOCl1-xIx solid solutions have very small bowing parameters; as such, some of their properties increase almost linearly with increasing x. For BiOF1-xYx solid solutions, the bowing parameters are very large and it is extremely difficult to fit the related calculated data by a single equation. Consequently, BiOX1-xYx (X, Y = Cl, Br, and I) solid solutions are highly miscible, while BiOF1-xYx (Y = Cl, Br, and I) solid solutions are partially miscible. In other words, BiOF1-xYx solid solutions have miscibility gaps or high miscibility temperature, resulting in phase separation and F/Y inhomogeneity. Comparison and analysis of the calculated results and the related physical-chemical properties with different halogen compositions indicates that the parameters of BiOX1-xYx solid solutions are determined by the differences of the physical-chemical properties of the two halogen compositions. In this way, the large deviation of some BiOX1-xYx solid solutions from Vegard's law observed in experiments can be explained. Moreover, the composition ratio of BiOX1-xYx solid solutions can be measured or monitored using optical measurements.
Application of solution calorimetry in pharmaceutical and biopharmaceutical research.
Royall, P G; Gaisford, S
2005-06-01
In solution calorimetry the heat of solution (Delta(sol)H) is recorded as a solute (usually a solid) dissolves in an excess of solvent. Such measurements are valuable during all the phases of pharmaceutical formulation and the number of applications of the technique is growing. For instance, solution calorimetry is extremely useful during preformulation for the detection and quantification of polymorphs, degrees of crystallinity and percent amorphous content; knowledge of all of these parameters is essential in order to exert control over the manufacture and subsequent performance of a solid pharmaceutical. Careful experimental design and data interpretation also allows the measurement of the enthalpy of transfer (Delta(trans)H) of a solute between two phases. Because solution calorimetry does not require optically transparent solutions, and can be used to study cloudy or turbid solutions or suspensions directly, measurement of Delta(trans)H affords the opportunity to study the partitioning of drugs into, and across, biological membranes. It also allows the in-situ study of cellular systems. Furthermore, novel experimental methodologies have led to the increasing use of solution calorimetry to study a wider range of phenomena, such as the precipitation of drugs from supersaturated solutions or the formation of liposomes from phospholipid films. It is the purpose of this review to discuss some of these applications, in the context of pharmaceutical formulation and preformulation, and highlight some of the potential future areas where solution calorimetry might find applications.
Binning and filtering: the six-color solution
NASA Astrophysics Data System (ADS)
Ashdown, Ian; Robinson, Shane; Salsbury, Marc
2006-08-01
The use of LED backlighting for LCD displays requires careful binning of red, green, and blue LEDs by dominant wavelength to maintain the color gamuts as specified by NTSC, SMPTE, and EBU/ITU standards. This problem also occurs to a lesser extent with RGB and RGBA assemblies for solid-state lighting, where color gamut consistency is required for color-changing luminaires. In this paper, we propose a "six-color solution," based on Grassman's laws, that does not require color binning, but nevertheless guarantees a fixed color gamut that subsumes the color gamuts of carefully-binned RGB assemblies. A further advantage of this solution is that it solves the problem of peak wavelength shifts with varying junction temperatures. The color gamut can thus remain fixed over the full range of LED intensities and ambient temperatures. A related problem occurs with integrated circuit (IC) colorimeters used for optical feedback with LED backlighting and RGB(A) solid-state lighting, wherein it can be difficult to distinguish between peak wavelength shifts and changes in LED intensity. We apply our six-color solution to the design of a novel colorimeter for LEDs that independently measures changes in peak wavelength and intensity. The design is compatible with current manufacturing techniques for tristimulus colorimeter ICs. Together, the six-color solution for LEDs and colorimeters enables less expensive LED backlighting and solid-state lighting systems with improved color stability.
On the refractive index of sodium iodide solutions for index matching in PIV
NASA Astrophysics Data System (ADS)
Bai, Kunlun; Katz, Joseph
2014-04-01
Refractive index matching has become a popular technique for facilitating applications of modern optical diagnostic techniques, such as particle image velocimetry, in complex systems. By matching the refractive index of solid boundaries with that of the liquid, unobstructed optical paths can be achieved for illumination and image acquisition. In this research note, we extend previously provided data for the refractive index of aqueous solutions of sodium iodide (NaI) for concentrations reaching the temperature-dependent solubility limit. Results are fitted onto a quadratic empirical expression relating the concentration to the refractive index. Temperature effects are also measured. The present range of indices, 1.333-1.51, covers that of typical transparent solids, from silicone elastomers to several recently introduced materials that could be manufactured using rapid prototyping. We also review briefly previous measurements of the refractive index, viscosity, and density of NaI solutions, as well as prior research that has utilized this fluid.
Hybrid Circuits with Nanofluidic Diodes and Load Capacitors
NASA Astrophysics Data System (ADS)
Ramirez, P.; Garcia-Morales, V.; Gomez, V.; Ali, M.; Nasir, S.; Ensinger, W.; Mafe, S.
2017-06-01
The chemical and physical input signals characteristic of micro- and nanofluidic devices operating in ionic solutions should eventually be translated into output electric currents and potentials that are monitored with solid-state components. This crucial step requires the design of hybrid circuits showing robust electrical coupling between ionic solutions and electronic elements. We study experimentally and theoretically the connectivity of the nanofluidic diodes in single-pore and multipore membranes with conventional capacitor systems for the cases of constant, periodic, and white-noise input potentials. The experiments demonstrate the reliable operation of these hybrid circuits over a wide range of membrane resistances, electrical capacitances, and solution p H values. The model simulations are based on empirical equations that have a solid physical basis and provide a convenient description of the electrical circuit operation. The results should contribute to advance signal transduction and processing using nanopore-based biosensors and bioelectronic interfaces.
Molecular interactions in high conductive gel electrolytes based on low molecular weight gelator.
Bielejewski, Michał; Łapiński, Andrzej; Demchuk, Oleg
2017-03-15
Organic ionic gel (OIG) electrolytes, also known as gel electrolytes or ionogels are one example of modern functional materials with the potential to use in wide range of electrochemical applications. The functionality of OIGs arises from the thermally reversible solidification of electrolytes or ionic liquids and their superior ionic conductivity. To understand and to predict the properties of these systems it is important to get the knowledge about the interactions on molecular level between the solid gelator matrix and the electrolyte solution. This paper reports the spectroscopic studies (FT-IR, UV-Vis and Raman) of the gel electrolyte based on low molecular weight gelator methyl-4,6-O-(p-nitrobenzylidene)-α-d-glucopyranoside and solution of quaternary ammonium salt, tetramethylammonium bromide. The solidification process was based on sol-gel technique. Below characteristic temperature, defined as gel to sol phase transition temperature, T gs , the samples were solid-like and showed high conductivity values of the same order as observed for pure liquid electrolytes. The investigations were performed for a OIGs in a wide range of molar concentrations of the electrolyte solution. Copyright © 2016 Elsevier Inc. All rights reserved.
Hydration of AMP and ATP molecules in aqueous solution and solid films.
Faizullin, Dzhigangir; Zakharchenko, Nataliya; Zuev, Yuriy; Puzenko, Alexander; Levy, Evgeniya; Feldman, Yuri
2013-11-20
Water enables life and plays a critical role in biology. Considered as a versatile and adaptive component of the cell, water engages a wide range of biomolecular interactions. An organism can exist and function only if its self-assembled molecular structures are hydrated. It was shown recently that switching of AMP/ATP binding to the insulin-independent glucose transporter Human Erythrocyte Glucose Transport Protein (GLUT1) may greatly influence the ratio of bulk and bound water during regulation of glucose uptake by red blood cells. In this paper, we present the results on the hydration properties of AMP/ATP obtained by means of dielectric spectroscopy in aqueous solution and for fully ionized forms in solid amorphous films with the help of gravimetric studies.
A solid dielectric gated graphene nanosensor in electrolyte solutions.
Zhu, Yibo; Wang, Cheng; Petrone, Nicholas; Yu, Jaeeun; Nuckolls, Colin; Hone, James; Lin, Qiao
2015-03-23
This letter presents a graphene field effect transistor (GFET) nanosensor that, with a solid gate provided by a high- κ dielectric, allows analyte detection in liquid media at low gate voltages. The gate is embedded within the sensor and thus is isolated from a sample solution, offering a high level of integration and miniaturization and eliminating errors caused by the liquid disturbance, desirable for both in vitro and in vivo applications. We demonstrate that the GFET nanosensor can be used to measure pH changes in a range of 5.3-9.3. Based on the experimental observations and quantitative analysis, the charging of an electrical double layer capacitor is found to be the major mechanism of pH sensing.
NASA Astrophysics Data System (ADS)
Ceborska, Magdalena; Szwed, Kamila; Asztemborska, Monika; Wszelaka-Rylik, Małgorzata; Kicińska, Ewa; Suwińska, Kinga
2015-11-01
Geraniol and α-terpineol are insoluble in water volatile compounds. α-Terpineol is a potentially important agent for medical applications. Formation of molecular complexes with β-cyclodextrin would lead to the increase of water solubility and bioavailability. β-Cyclodextrin forms 2:2 inclusion complexes with both enantiomers of α-terpineol and their precursor geraniol. Solid state complexes are thoroughly characterized by single X-ray crystallography and their stability over vast range of temperatures is proven by TG analysis. Intermolecular host-guest, host-host and guest-guest interactions give good insight into the nature of formed inclusion complexes. Stability constants of the complexes in solution are determined by HPLC.
NASA Astrophysics Data System (ADS)
Pimenta, M. A.; Oliveira, M. A. S.; Bourson, P.; Crettez, J. M.
1997-09-01
In this work we present a polarized Raman study of 0953-8984/9/37/020/img7 single crystals for several values of the concentration 0953-8984/9/37/020/img8 made using different scattering geometries. The Raman spectra, composed of broad bands, have been fitted in accordance with a symmetry analysis which allowed us to assign the vibrational modes, and determine their frequencies and damping constants. The results are compatible with an average hexagonal symmetry for the solid solutions with x in the range 0953-8984/9/37/020/img9. In each of the spectra we found two bands at about 590 and 0953-8984/9/37/020/img10, probably associated with the existence of 0953-8984/9/37/020/img11 structures in the solid solutions.
Using the Semiconductors Materials of InSb-ZnTe System in Sensors for Gas Control
NASA Astrophysics Data System (ADS)
Shubenkova, E. G.
2017-04-01
The samples of thin film semiconductor compounds InSb, ZnTe and solid solutions based on them were obtained by vapor deposition of components on a dielectric substrate in a vacuum, followed by annealing and their surface properties in CO, O2 and NH3 gas atmospheres were investigated. Identification of the samples was carried out by X-ray diffraction techniques. In the temperature range 253 ÷ 403 K and a pressure range of 1÷12 Pa the gas adsorption was measured by piezoelectric microbalance technique. In order to establish the basic regularities of processes flowing on samples surface in addition to the electrophisical were used Infrared and Raman spectroscopic measurements. The resulting addiction “surface property - composition” is extreme and have allowed to determine solid solution InSb0,95-ZnTe0,05 as the most sensitive to the presence of ammonia, selective and this sample exhibits a negligible oxidation of surface.
Diffuse scattering measurements of static atomic displacements in crystalline binary solid solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ice, G.E.; Sparks, C.J.; Jiang, X.
1997-09-01
Diffuse x-ray scattering from crystalline solid solutions is sensitive to both local chemical order and local bond distances. In short-range ordered alloys, fluctuations of chemistry and bond distances break the long-range symmetry of the crystal within a local region and contribute to the total energy of the alloy. Recent use of tunable synchrotron radiation to change the x-ray scattering contrast between elements has greatly advanced the measurement of bond distances between the three kinds of atom pairs found in crystalline binary alloys. The estimated standard deviation on these recovered static displacements approaches {+-}0.001 {angstrom} (0.0001 nm) which is an ordermore » of magnitude more precise than obtained with EXAFS. In addition, both the radial and tangential displacements can be recovered to five near neighbors and beyond. These static displacement measurements provide new information which challenges the most advanced theoretical models of binary crystalline alloys. 29 refs., 8 figs., 2 tabs.« less
Incorporating technetium in minerals and other solids: A review
NASA Astrophysics Data System (ADS)
Luksic, Steven A.; Riley, Brian J.; Schweiger, Michael; Hrma, Pavel
2015-11-01
Technetium (Tc) can be incorporated into a number of different solids including spinel, sodalite, rutile, tin dioxide, pyrochlore, perovskite, goethite, layered double hydroxides, cements, and alloys. Synthetic routes are possible for each of these phases, ranging from high-temperature ceramic sintering to ball-milling of constituent oxides. However, in practice, Tc has only been incorporated into solid materials by a limited number of the possible syntheses. A review of the diverse ways in which Tc-immobilizing materials can be made shows the wide range of options available. Special consideration is given to hypothetical application to the Hanford Tank Waste and Vitrification Plant, such as adding a Tc-bearing mineral to waste glass melter feed. A full survey of solid Tc waste forms, the common synthesis routes to those waste forms, and their potential for application to vitrification processes are presented. The use of tin dioxide or ferrite spinel precursors to reduce Tc(VII) out of solution and into a durable form are shown to be of especially high potential.
Control of ice chromatographic retention mechanism by changing temperature and dopant concentration.
Tasaki, Yuiko; Okada, Tetsuo
2011-12-15
A liquid phase coexists with solid water ice in a typical binary system, such as NaCl-water, in the temperature range between the freezing point and the eutectic point (t(eu)) of the system. In ice chromatography with salt-doped ice as the stationary phase, both solid and liquid phase can contribute to solute retention in different fashions; that is, the solid ice surface acts as an adsorbent, while a solute can be partitioned into the liquid phase. Thus, both adsorption and partition mechanisms can be utilized for ice chromatographic separation. An important feature in this approach is that the liquid phase volume can be varied by changing the temperature and the concentration of a salt incorporated into the ice stationary phase. Thus, we can control the relative contribution from the partition mechanism in the entire retention because the liquid phase volume can be estimated from the freezing depression curve. Separation selectivity can thereby be modified. The applicability of this concept has been confirmed for the solutes of different adsorption and partition abilities. The predicted retention based on thermodynamics basically agrees well with the corresponding experimental retention. However, one important inconsistency has been found. The calculation predicts a step-like discontinuity of the solute retention at t(eu) because the phase diagram suggests that the liquid phase abruptly appears at t(eu) when the temperature increases. In contrast, the corresponding experimental plots are continuous over the wider range including the subeutectic temperatures. This discrepancy is explained by the existence of the liquid phase below t(eu). A difference between predicted and measured retention factors allows the estimation of the volume of the subeutectic liquid phase.
NASA Technical Reports Server (NTRS)
Bigelow, Glen; Noebe, Ronald; Padula, Santo, II; Garg, Anita; Olson, David
2006-01-01
The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently motivating research in high-temperature shape-memory alloys (HTSMA) with transformation temperatures greater than 100 C. One of the basic high-temperature alloys investigated to fill this need is Ni(19.5)Ti(50.5)Pd30. Initial testing has indicated that this alloy, while having acceptable work characteristics, suffers from significant permanent deformation (or ratcheting) during thermal cycling under load. In an effort to overcome this deficiency, various solid-solution alloying and thermomechanical processing schemes were investigated. Solid-solution strengthening was achieved by substituting 5at% gold or platinum for palladium in Ni(19.5)Ti(50.5)Pd30, the so-called baseline alloy, to strengthen the martensite and austenite phases against slip processes and improve thermomechanical behavior. Tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared. The relative difference in yield strength between the martensite and austenite phases and the dimensional stability of the alloy were improved by the quaternary additions, while work output was only minimally impacted. The three alloys were also thermomechanically processed by cycling repeatedly through the transformation range under a constant stress. This so-called training process dramatically improved the dimensional stability in these samples and also recovered the slight decrease in work output caused by quaternary alloying. An added benefit of the solid-solution strengthening was maintenance of enhanced dimensional stability of the trained material to higher temperatures compared to the baseline alloy, providing a greater measure of over-temperature capability.
How to tackle protein structural data from solution and solid state: An integrated approach.
Carlon, Azzurra; Ravera, Enrico; Andrałojć, Witold; Parigi, Giacomo; Murshudov, Garib N; Luchinat, Claudio
2016-02-01
Long-range NMR restraints, such as diamagnetic residual dipolar couplings and paramagnetic data, can be used to determine 3D structures of macromolecules. They are also used to monitor, and potentially to improve, the accuracy of a macromolecular structure in solution by validating or "correcting" a crystal model. Since crystal structures suffer from crystal packing forces they may not be accurate models for the macromolecular structures in solution. However, the presence of real differences should be tested for by simultaneous refinement of the structure using both crystal and solution NMR data. To achieve this, the program REFMAC5 from CCP4 was modified to allow the simultaneous use of X-ray crystallographic and paramagnetic NMR data and/or diamagnetic residual dipolar couplings. Inconsistencies between crystal structures and solution NMR data, if any, may be due either to structural rearrangements occurring on passing from the solution to solid state, or to a greater degree of conformational heterogeneity in solution with respect to the crystal. In the case of multidomain proteins, paramagnetic restraints can provide the correct mutual orientations and positions of domains in solution, as well as information on the conformational variability experienced by the macromolecule. Copyright © 2016 Elsevier B.V. All rights reserved.
A splitting integration scheme for the SPH simulation of concentrated particle suspensions
NASA Astrophysics Data System (ADS)
Bian, Xin; Ellero, Marco
2014-01-01
Simulating nearly contacting solid particles in suspension is a challenging task due to the diverging behavior of short-range lubrication forces, which pose a serious time-step limitation for explicit integration schemes. This general difficulty limits severely the total duration of simulations of concentrated suspensions. Inspired by the ideas developed in [S. Litvinov, M. Ellero, X.Y. Hu, N.A. Adams, J. Comput. Phys. 229 (2010) 5457-5464] for the simulation of highly dissipative fluids, we propose in this work a splitting integration scheme for the direct simulation of solid particles suspended in a Newtonian liquid. The scheme separates the contributions of different forces acting on the solid particles. In particular, intermediate- and long-range multi-body hydrodynamic forces, which are computed from the discretization of the Navier-Stokes equations using the smoothed particle hydrodynamics (SPH) method, are taken into account using an explicit integration; for short-range lubrication forces, velocities of pairwise interacting solid particles are updated implicitly by sweeping over all the neighboring pairs iteratively, until convergence in the solution is obtained. By using the splitting integration, simulations can be run stably and efficiently up to very large solid particle concentrations. Moreover, the proposed scheme is not limited to the SPH method presented here, but can be easily applied to other simulation techniques employed for particulate suspensions.
Jody, Bassam J.; Arman, Bayram; Karvelas, Dimitrios E.; Pomykala, Jr., Joseph A.; Daniels, Edward J.
1997-01-01
An improved method is provided for separating acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS) plastics from each other. The ABS and HIPS plastics are shredded to provide a selected particle size. The shredded particles of the ABS and HIPS plastics are applied to a solution having a solution density in a predefined range between 1.055 gm/cm.sup.3 and 1.07 gm/cm.sup.3, a predefined surface tension in a range between 22 dynes/cm to 40 dynes/cm and a pH in the range of 1.77 and 2.05. In accordance with a feature of the invention, the novel method is provided for separating ABS and HIPS, two solid thermoplastics which have similar densities by selectively modifying the effective density of the HIPS using a binary solution with the appropriate properties, such as pH, density and surface tension, such as a solution of acetic acid and water or a quaternary solution having the appropriate density, surface tension, and pH.
Patino, Eduardo
1996-01-01
A field experiment was conducted at the Levee 4 canal site below control structure G-88 in the Everglades agricultural area in northwestern Broward County, Florida, to study the relation of acoustic attenuation to suspended-solids concentrations. Acoustic velocity meter and temperature data were obtained with concurrent water samples analyzed for suspended-solids concentrations. Two separate acoustic velocity meter frequencies were used, 200 and 500 kilohertz, to determine the sensitivity of acoustic attenuation to frequency for the measured suspended-solids concentration range. Suspended-solids concentrations for water samples collected at the Levee 4 canal site from July 1993 to September 1994 ranged from 22 to 1,058 milligrams per liter, and organic content ranged from about 30 to 93 percent. Regression analyses showed that attenuation data from the acoustic velocity meter (automatic gain control) and temperature data alone do not provide enough information to adequately describe the concentrations of suspended solids. However, if velocity is also included as one of the independent variables in the regression model, a satisfactory correlation can be obtained. Thus, it is feasible to use acoustic velocity meter instrumentation to estimate suspended-solids concentrations in streams, even when suspended solids are primarily composed of organic material. Using the most comprehensive data set available for the study (500 kiloherz data), the best fit regression model produces a standard error of 69.7 milligrams per liter, with actual errors ranging from 2 to 128 milligrams per liter. Both acoustic velocity meter transmission frequencies of 200 and 500 hilohertz produced similar results, suggesting that transducers of either frequency could be used to collect attenuation data at the study site. Results indicate that calibration will be required for each acoustic velocity meter system to the unique suspended-solids regime existing at each site. More robust solutions may be defined in streams with suspended solids having lower percentages of organic composition.
Magno, Scott; Wang, Ruiping; Derouane, Eric
2003-01-01
The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.
Structure modeling and manufacturing PCFs for the range of 2-25 μm
NASA Astrophysics Data System (ADS)
Lvov, Alexandr; Salimgareev, Dmitrii; Korsakov, Michail; Korsakov, Alexandr; Zhukova, Liya
2017-11-01
Photostable and flexible materials transparent at the wide spectral range are necessary for the development of optical fiber units. Solid solutions of silver and monadic thallium halides are the most suitable crystal media for this purpose. The goal of our research was the search of optimum structure for the fibers with a single mode operation and a rather large core diameter. We modelled fiber structures (solid-core, hollow-core, active-core PCF) with various ratio of inserts diameters and increments between the inserts, basing on two crystal systems: AgCl-AgBr and AgBr-TlI. Then we chose the single mode fiber structure and manufactured it by means of extrusion.
NASA Astrophysics Data System (ADS)
Pavlov, Dmitry A.; Williams, James G.; Suvorkin, Vladimir V.
2016-11-01
The aim of this work is to combine the model of orbital and rotational motion of the Moon developed for DE430 with up-to-date astronomical, geodynamical, and geo- and selenophysical models. The parameters of the orbit and physical libration are determined in this work from lunar laser ranging (LLR) observations made at different observatories in 1970-2013. Parameters of other models are taken from solutions that were obtained independently from LLR. A new implementation of the DE430 lunar model, including the liquid core equations, was done within the EPM ephemeris. The postfit residuals of LLR observations make evident that the terrestrial models and solutions recommended by the IERS Conventions are compatible with the lunar theory. That includes: EGM2008 gravitational potential with conventional corrections and variations from solid and ocean tides; displacement of stations due to solid and ocean loading tides; and precession-nutation model. Usage of these models in the solution for LLR observations has allowed us to reduce the number of parameters to be fit. The fixed model of tidal variations of the geopotential has resulted in a lesser value of Moon's extra eccentricity rate, as compared to the original DE430 model with two fit parameters. A mixed model of lunar gravitational potential was used, with some coefficients determined from LLR observations, and other taken from the GL660b solution obtained from the GRAIL spacecraft mission. Solutions obtain accurate positions for the ranging stations and the five retroreflectors. Station motion is derived for sites with long data spans. Dissipation is detected at the lunar fluid core-solid mantle boundary demonstrating that a fluid core is present. Tidal dissipation is strong at both Earth and Moon. Consequently, the lunar semimajor axis is expanding by 38.20 mm/yr, the tidal acceleration in mean longitude is -25.90 {{}^' ' }}/cy^2, and the eccentricity is increasing by 1.48× 10^{-11} each year.
OuYang, Xiao-Kun; Luo, Yu-Yang; Wang, Yang-Guang; Yang, Li-Ye
2014-01-01
The simultaneous determination of five aromatic amines and their potential migration from packaging bags into seafood simulants were investigated. A validated HPLC method was developed for the separation and qualification of five aromatic amines in seafood simulants. By combining solid-phase extraction (SPE), these amines were efficiently separated on a Halo C18 column (150 × 4.6 mm i.d., 2.7 μm, particle size) using a mobile phase of methanol/phosphate buffer solution (5 mmol l(-1), pH 6.9) with gradient elution. The linear range was 0.1-10.0 mg l(-1); the absolute recoveries ranged from 85.3% to 98.4%; and the limits of detection of the five aromatic amines were between 0.015 and 0.08 mg l(-1). In this work the migration profile of aromatic amines from black plastic bags was investigated at temperatures of 4°C with water, 3% acetic acid solution, 10% ethanol solution and 50% ethanol solution as seafood simulants, respectively. The migration of the five aromatic amines under different conditions showed that residual o-methoxyaniline, p-chloroaniline, aniline and 2,6-dimethylaniline leaching from black plastic bags increased with incubation time. No detectable 3,3´-dimethylbenzidine was found to leach from the bags.
Liu, B.; Aidhy, D. S.; Zhang, Y.; ...
2014-10-16
The thermodynamic stability and the migration energy barriers of oxygen vacancies in ThO 2 –UO 2 solid solutions are investigated by density functional theory calculations. In pure ThO 2, the formation energy of oxygen vacancy is 7.58 eV and 1.46 eV under O rich and O poor conditions, respectively, while its migration energy barrier is 1.97 eV. The addition of UO 2 into ThO 2 significantly decreases the energetics of formation and migration of the oxygen vacancy. Among the range of UO 2-ThO 2 solid solutions studied in this work, UO 2 exhibits the lowest formation energy (5.99 eV andmore » -0.13 eV under O rich and O poor conditions, respectively) and Th 0.25U0 .75O 2 exhibits the lowest migration energy barrier (~ 1 eV). Moreover, by considering chemical potential, the phase diagram of oxygen vacancy as a function of both temperature and oxygen partial pressure is shown, which could help to gain experimental control over oxygen vacancy concentration.« less
Thermal inactivation of alkali phosphatases under various conditions
NASA Astrophysics Data System (ADS)
Atyaksheva, L. F.; Tarasevich, B. N.; Chukhrai, E. S.; Poltorak, O. M.
2009-02-01
The thermal inactivation of alkali phosphatases from bacteria Escherichia coli (ECAP), bovine intestines (bovine IAP), and chicken intestines (chicken IAP) was studied in different buffer solutions and in the solid state. The conclusion was made that these enzymes had maximum stability in the solid state, and, in a carbonate buffer solution, their activity decreased most rapidly. It was found that the bacterial enzyme was more stable than animal phosphatases. It was noted that, for ECAP, four intermediate stages preceded the loss of enzyme activity, and, for bovine and chicken IAPs, three intermediate stages were observed. The activation energy of thermal inactivation of ECAP over the range 25-70°C was determined to be 80 kJ/mol; it corresponded to the dissociation of active dimers into inactive monomers. Higher activation energies (˜200 kJ/mol) observed at the initial stage of thermal inactivation of animal phosphatases resulted from the simultaneous loss of enzyme activity caused by dimer dissociation and denaturation. It was shown that the activation energy of denaturation of monomeric animal alkali phosphatases ranged from 330 to 380 kJ/mol depending on buffer media. It was concluded that the inactivation of solid samples of alkali phosphatases at 95°C was accompanied by an about twofold decrease in the content of β structures in protein molecules.
Wang, Louxiang; Sharp, David; Masliyah, Jacob; Xu, Zhenghe
2013-03-19
A novel device was designed to measure drainage dynamics of thin liquid films confined between a solid particle, an immiscible liquid droplet, and/or gas bubble. Equipped with a bimorph force sensor, a computer-interfaced video capture, and a data acquisition system, the newly designed integrated thin film drainage apparatus (ITFDA) allows for the direct and simultaneous measurements of force barrier, true film drainage time, and bubble/droplet deformation under a well-controlled external force, receding and advancing contact angles, capillary force, and adhesion (detachment) force between an air bubble or oil droplet and a solid, a liquid, or an air bubble in an immiscible liquid. Using the diaphragm of a high-frequency speaker as the drive mechanism for the air bubble or oil droplet attached to a capillary tube, this newly designed device is capable of measuring forces over a wide range of hydrodynamic conditions, including bubble approach and retract velocities up to 50 mm/s and displacement range up to 1 mm. The results showed that the ITFDA was capable of measuring hydrodynamic resistance, film drainage time, and other important physical parameters between air bubbles and solid particles in aqueous solutions. As an example of illustrating the versatility, the ITFDA was also applied to other important systems such as interactions between air bubble and oil droplet, two air bubbles, and two oil droplets in an aqueous solution.
Azadi, Mehdi; Nguyen, Anh V; Yakubov, Gleb E
2015-02-17
Interfacial gas enrichment of dissolved gases (IGE) has been shown to cover hydrophobic solid surfaces in water. The atomic force microscopy (AFM) data has recently been supported by molecular dynamics simulation. It was demonstrated that IGE is responsible for the unexpected stability and large contact angle of gaseous nanobubbles at the hydrophobic solid-water interface. Here we provide further evidence of the significant effect of IGE on an attractive force between hydrophobic solid surfaces in water. The force in the presence of dissolved gas, i.e., in aerated and nonaerated NaCl solutions (up to 4 M), was measured by the AFM colloidal probe technique. The effect of nanobubble bridging on the attractive force was minimized or eliminated by measuring forces on the first approach of the AFM probe toward the flat hydrophobic surface and by using high salt concentrations to reduce gas solubility. Our results confirm the presence of three types of forces, two of which are long-range attractive forces of capillary bridging origin as caused by either surface nanobubbles or gap-induced cavitation. The third type is a short-range attractive force observed in the absence of interfacial nanobubbles that is attributed to the IGE in the form of a dense gas layer (DGL) at hydrophobic surfaces. Such a force was found to increase with increasing gas saturation and to decrease with decreasing gas solubility.
NASA Astrophysics Data System (ADS)
Urusova, A. S.; Cherepanov, V. A.; Aksenova, T. V.; Gavrilova, L. Ya.; Kiselev, E. A.
2013-06-01
The phase equilibria in the Y-Ba-Co-O system were systematically studied at 1373 K in air. The intermediate phases formed in the Y-Ba-Co-O system at 1373 K in air were: YBaCo2O5+δ, YBaCo4O7 and BaCo1-yYyO3-δ (0.09≤y≤0.42). It was shown that YBaCo2O5+δ possesses tetragonal structure with the 3ap×3ap×2ap superstructure (sp. gr. P4/mmm). High-temperature X-ray diffraction analysis of the YBaCo2O5+δ in the temperature range from 298 K up to 1073 K under Po2=0.21 аtm has not shown any phase transformations. The value of oxygen content for the YBaCo2O5+δ at room temperature was estimated as 5.40 and at 1323 K it was equal to 5.04. Thermal expansion of sample shows a linear characteristics and the average thermal expansion coefficient (TEC) is about 13.8×10-6, K-1 in the temperature range 298-1273 K. The homogeneity range and crystal structure of the BaCo1-yYyO3-δ (0.09≤y≤0.42) solid solutions were determined by X-ray diffraction of quenched samples. All BaCo1-yYyO3-δ solid solutions were found to have cubic structure (sp. gr. Pm3m). The unit cell parameters were refined using Rietveld full-profile analysis. Oxygen nonstoichiometry of BaCo1-yYyO3-δ solid solutions with 0.1≤y≤0.4 was measured by means of thermogravimetric technique within the temperature range 298-1373 K in air. Thermal expansion of BaCo1-yYyO3-δ (у=0.0; 0.1; 0.2; 0.3) samples was studied within the temperature range 298-1200 K in air. The projection of isothermal-isobaric phase diagram for the Y-Ba-Co-O system to the compositional triangle of metallic components was presented.
NASA Technical Reports Server (NTRS)
Ettouney, H. M.; Brown, R. A.
1982-01-01
The effects of the heat transfer environment in Edge-Defined Film-Fed Growth on melt-solid interface shape and lateral dopant segregation are studied by finite-element analysis of two-dimensional models for heat and mass transfer. Heat transfer configurations are studied that correspond to the uniform surroundings assumed in previous models and to lowand high-speed growth systems. The maximum growth rate for a silicon sheet is calculated and the range of validity of one-dimensional heat transfer models is established. The lateral segregation that results from curvature of the solidification interface is calculated for two solutes, boron and aluminum. In this way, heat transfer is linked directly to the uniformity of the product crystal.
Carbothermal shock synthesis of high-entropy-alloy nanoparticles
NASA Astrophysics Data System (ADS)
Yao, Yonggang; Huang, Zhennan; Xie, Pengfei; Lacey, Steven D.; Jacob, Rohit Jiji; Xie, Hua; Chen, Fengjuan; Nie, Anmin; Pu, Tiancheng; Rehwoldt, Miles; Yu, Daiwei; Zachariah, Michael R.; Wang, Chao; Shahbazian-Yassar, Reza; Li, Ju; Hu, Liangbing
2018-03-01
The controllable incorporation of multiple immiscible elements into a single nanoparticle merits untold scientific and technological potential, yet remains a challenge using conventional synthetic techniques. We present a general route for alloying up to eight dissimilar elements into single-phase solid-solution nanoparticles, referred to as high-entropy-alloy nanoparticles (HEA-NPs), by thermally shocking precursor metal salt mixtures loaded onto carbon supports [temperature ~2000 kelvin (K), 55-millisecond duration, rate of ~105 K per second]. We synthesized a wide range of multicomponent nanoparticles with a desired chemistry (composition), size, and phase (solid solution, phase-separated) by controlling the carbothermal shock (CTS) parameters (substrate, temperature, shock duration, and heating/cooling rate). To prove utility, we synthesized quinary HEA-NPs as ammonia oxidation catalysts with ~100% conversion and >99% nitrogen oxide selectivity over prolonged operations.
A study of phosphate absorption by magnesium iron hydroxycarbonate.
Du, Yi; Rees, Nicholas; O'Hare, Dermot
2009-10-21
A study of the mechanism of phosphate adsorption by magnesium iron hydroxycarbonate, [Mg(2.25)Fe(0.75)(OH)(6)](CO(3))(0.37).0.65H(2)O over a range of pH has been carried out. The efficiency of the phosphate removal from aqueous solution has been investigated between pH 3-9 and the resulting solid phases have been studied by elemental analysis, XRD, FT-IR, Raman, HRTEM, EDX and solid-state MAS (31)P NMR. The analytical and spectroscopic data suggest that phosphate removal from solution occurs not by anion intercalation of the relevant phosphorous oxyanion (H(2)PO(4)(-) or HPO(4)(2-)) into the LDH but by the precipitation of either an insoluble iron hydrogen phosphate hydrate and/or a magnesium phosphate hydrate.
Solid-Phase and Oscillating Solution Crystallization Behavior of (+)- and (-)-N-Methylephedrine.
Tulashie, Samuel Kofi; Polenske, Daniel; Seidel-Morgenstern, Andreas; Lorenz, Heike
2016-11-01
This work involves the study of the solid-phase and solution crystallization behavior of the N-methylephedrine enantiomers. A systematic investigation of the melt phase diagram of the enantiomeric N-methylephedrine system was performed considering polymorphism. Two monotropically related modifications of the enantiomer were found. Solubilities and the ternary solubility phase diagrams of N-methylephedrine enantiomers in 2 solvents [isopropanol:water, 1:3 (Vol) and (2R, 3R)-diethyl tartrate] were determined in the temperature ranges between 15°C and 25°C, and 25°C and 40°C, respectively. Preferential nucleation and crystallization experiments at higher supersaturation leading to an unusual oscillatory crystallization behavior as well as a successful preferential crystallization experiment at lower supersaturation are presented and discussed. Copyright © 2016. Published by Elsevier Inc.
Luminescence of Co1-xZnxO solid solutions during interband excitation
NASA Astrophysics Data System (ADS)
Gruzdev, N. B.; Sokolov, V. I.; Pustovarov, V. A.; Churmanov, V. N.
2015-03-01
A discussion of the photoluminescence (PL) and photoluminescence excitation (PLE) spectra of CoO, and the solid solution Co0.7Zn0.3O. At low temperatures, the spectra were detected using synchrotron radiation as a source of excitation. The PL and PLE spectra of CoO are more intense than the Co0.7Zn0.3O spectra. It is shown that in the 7.5-10.5 eV energy range, the PLE spectrum of Co0.7Zn0.3O is more intense than the spectrum in the 3.7-6.5 eV region. This could be caused by sufficiently intense optical p-s transitions from the valence zone to the conduction zone, formed by the 4s states of zinc.
Structural, thermodynamic, and mechanical properties of WCu solid solutions
NASA Astrophysics Data System (ADS)
Liang, C. P.; Wu, C. Y.; Fan, J. L.; Gong, H. R.
2017-11-01
Various properties of Wsbnd Cu solid solutions are systematically investigated through a combined use of first-principles calculation, cluster expansion, special quasirandom structures (SQS), and lattice dynamics. It is shown that SQS are effective to unravel the intrinsic nature of solid solutions, and that BCC and FCC W100-xCux solid solutions are energetically more stable when 0 ≤ x ≤ 70 and 70 < x ≤ 100, respectively. Calculations also reveal that the Debye model should be appropriate to derive thermodynamic properties of Wsbnd Cu, and that the coefficients of thermal expansion of W100-xCux solid solutions are much lower than those of corresponding mechanical mixtures. In addition, the G/B values of W100-xCux solid solutions reach a minimum at x = 50, which is fundamentally due to the softening of phonons as well as strong chemical bonding between W and Cu with a mainly metallic feature.
Conversion of depleted uranium hexafluoride to a solid uranium compound
Rothman, Alan B.; Graczyk, Donald G.; Essling, Alice M.; Horwitz, E. Philip
2001-01-01
A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.
Gao, Zhanqi; Deng, Yuehua; Yuan, Wenting; He, Huan; Yang, Shaogui; Sun, Cheng
2014-10-31
A novel method was developed for the determination of organophosphorus flame retardants (PFRs) in fish. The method consists of a combination of pressurized liquid extraction (PLE) using aqueous solutions and solid-phase microextraction (SPME), followed by gas chromatography-flame photometric detector (GC-FPD). The experimental parameters that influenced extraction efficiency were systematically evaluated. The optimal responses were observed by extracting 1g of fish meat with the solution of water:acetonitrile (90:10, v/v) at 150°C for 5min and acid-washed silica gel used as lipid sorbent. The obtained extract was then analyzed by SPME coupled with GC-FPD without any additional clean-up steps. Under the optimal conditions, the proposed procedure showed a wide linear range (0.90-5000ngg(-1)) obtained by analyzing the spiked fish samples with increasing concentrations of PFRs and correlation coefficient (R) ranged from 0.9900 to 0.9992. The detection limits (S/N=3) were in the range of 0.010-0.208ngg(-1) with standard deviations (RSDs) ranging from 2.0% to 9.0%. The intra-day and inter-day variations were less than 9.0% and 7.8%, respectively. The proposed method was successfully applied to the determination of PFRs in real fish samples with recoveries varying from 79.8% to 107.3%. The results demonstrate that the proposed method is highly effective for analyzing PFRs in fish samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Methods for the preparation and analysis of solids and suspended solids for total mercury
Olund, Shane D.; DeWild, John F.; Olson, Mark L.; Tate, Michael T.
2004-01-01
The methods documented in this report are utilized by the Wisconsin District Mercury Lab for analysis of total mercury in solids (soils and sediments) and suspended solids (isolated on filters). Separate procedures are required for the different sample types. For solids, samples are prepared by room-temperature acid digestion and oxidation with aqua regia. The samples are brought up to volume with a 5 percent bromine monochloride solution to ensure complete oxidation and heated at 50?C in an oven overnight. Samples are then analyzed with an automated flow injection system incorporating a cold vapor atomic fluorescence spectrometer. A method detection limit of 0.3 ng of mercury per digestion bomb was established using multiple analyses of an environmental sample. Based on the range of masses processed, the minimum sample reporting limit varies from 0.6 ng/g to 6 ng/g. Suspended solids samples are oxidized with a 5 percent bromine monochloride solution and held at 50?C in an oven for 5 days. The samples are then analyzed with an automated flow injection system incorporating a cold vapor atomic fluorescence spectrometer. Using a certified reference material as a surrogate for an environmental sample, a method detection limit of 0.059 ng of mercury per filter was established. The minimum sample reporting limit varies from 0.059 ng/L to 1.18 ng/L, depending on the volume of water filtered.
NASA Astrophysics Data System (ADS)
Gómez-García, J. Francisco; Bucio, Lauro; Tavizon, Gustavo
2018-01-01
In this work, we present both structural and magnetic (DC magnetization and AC susceptibility) studies of the Dy3-xYxTaO7 solid solution. The structural characterization of samples was performed by Rietveld refinements of the X-ray diffraction data. All compounds crystallized in a weberite-related structure in the orthorhombic C2221 space group (No. 20); the variations of the lattice parameters obey the Vegard´s law in the whole range of composition. DC magnetic measurements of the Dy3-xYxTaO7 system showed a Curie-Weiss paramagnetic behaviour, with antiferromagnetic interactions at T>150 K. Below 3 K a spin glass behaviour in the 0 ≤ x ≤ 1 range of the solid solution was observed. The stoichiometric Dy3TaO7 compound showed spin glass behaviour although there is no evidence of structural disorder. For some Y3+ doped compounds (x = 0.33, 0.66 and 1.0), chemical disorder reduced the freezing temperature (Tg) values with a ×1/3 dependence. Cole-Cole analysis of the AC magnetic field response showed similar phenomenological parameters for the stoichiometric (x = 0) and the Y3+ doped compounds with spin glassiness, suggesting an analogous mechanism for these compounds. For the Dy3-xYxTaO7 system, in which the spin glass behaviour seems to exhibit a critical concentration, a magnetic phase diagram is proposed.
Composition of steam in the system NaCl-KCl-H2O-quartz at 600°C
Fournier, Robert O.; Thompson, J. Michael
1993-01-01
In the system NaCl-KCl-H2O, with and without ??-quartz present, steam was equilibrated in a large-volume reaction vessel with brine and/or precipitated salt at 600??C and pressures ranging from about 100 to 0.4 MPa. Episodically, steam was extracted for chemical analysis, accompanied by a decrease in pressure within the reaction vessel. In the absence of precipitated salt, within the analytical uncertainty stoichiometric quantities of Cl and total alkali, metals (Na + K) dissolve in steam coexisting with chloriderich brine. In contrast, in the presence of precipitated salt (in our experiments halite with some KCl in solid solution), significant excess chloride as associated hydrogen chloride (HCl0??) dissolves in steam. The HCl0 is generated by the reaction of steam with solid NaCl(s), producing solid NaOH(s) that diffuses into halite, forming a solid solution. In our quasistatic experiments, compared to dynamic flow-through experiments of others, higher initial ratios of H2O/NaCl have apparently resulted in higher model fractions of NaOH(s) in solid solution in halite. This, in turn, resulted in incrementally higher concentrations of associated NaOHo dissolved in steam. Addition of quartz to the system NaCl + KC1 + H2O resulted in an order of magnitude increase in the concentration of HCl0 dissolved in steam, apparently as a consequence of the formation of sodium disilicate by reaction of silica with NaOH(s). The measured dissolved silica in steam saturated with alkali halides at 600??C in the pressure range 7-70 MPa agrees nicely with calculated values of the solubility of ??-quartz obtained using the equation of Fournier and Potter (1982), corrected for dissolved salt by the method of fournier (1983). Na K ratios in steam at 600??C tend to be slightly greater than in coexisting brine. When precipitated halite is present, larger mole fractions of NaOH(s) in solid solution in that halite apparently result in even larger Na K ratios in coexisting steam. Precipitation of more halite as a consequence of repeated depressurization episodes results in decreased Na K ratios in both the brine and coexisting steam phases, indicating that the lower pressures begin to favor K over Na in the vapor. When steam is in contact with precipitated salts in the absence of brine, the Na K ratio in the steam is less than that of the bulk composition of the salt-H2O system. ?? 1993.
The thermal stability of the nanograin structure in a weak solute segregation system.
Tang, Fawei; Song, Xiaoyan; Wang, Haibin; Liu, Xuemei; Nie, Zuoren
2017-02-08
A hybrid model that combines first principles calculations and thermodynamic evaluation was developed to describe the thermal stability of a nanocrystalline solid solution with weak segregation. The dependence of the solute segregation behavior on the electronic structure, solute concentration, grain size and temperature was demonstrated, using the nanocrystalline Cu-Zn system as an example. The modeling results show that the segregation energy changes with the solute concentration in a form of nonmonotonic function. The change in the total Gibbs free energy indicates that at a constant solute concentration and a given temperature, a nanocrystalline structure can remain stable when the initial grain size is controlled in a critical range. In experiments, dense nanocrystalline Cu-Zn alloy bulk was prepared, and a series of annealing experiments were performed to examine the thermal stability of the nanograins. The experimental measurements confirmed the model predictions that with a certain solute concentration, a state of steady nanograin growth can be achieved at high temperatures when the initial grain size is controlled in a critical range. The present work proposes that in weak solute segregation systems, the nanograin structure can be kept thermally stable by adjusting the solute concentration and initial grain size.
Preparation of UO2, ThO2 and (Th,U)O2 pellets from photochemically-prepared nano-powders
NASA Astrophysics Data System (ADS)
Pavelková, Tereza; Čuba, Václav; de Visser-Týnová, Eva; Ekberg, Christian; Persson, Ingmar
2016-02-01
Photochemically-induced preparation of nano-powders of crystalline uranium and/or thorium oxides and their subsequent pelletizing has been investigated. The preparative method was based on the photochemically induced formation of amorphous solid precursors in aqueous solution containing uranyl and/or thorium nitrate and ammonium formate. The EXAFS analyses of the precursors shown that photon irradiation of thorium containing solutions yields a compound with little long-range order but likely "ThO2 like" and the irradiation of uranium containing solutions yields the mixture of U(IV) and U(VI) compounds. The U-containing precursors were carbon free, thus allowing direct heat treatment in reducing atmosphere without pre-treatment in the air. Subsequent heat treatment of amorphous solid precursors at 300-550 °C yielded nano-crystalline UO2, ThO2 or solid (Th,U)O2 solutions with high purity, well-developed crystals with linear crystallite size <15 nm. The prepared nano-powders of crystalline oxides were pelletized without any binder (pressure 500 MPa), the green pellets were subsequently sintered at 1300 °C under an Ar:H2 (20:1) mixture (UO2 and (Th,U)O2 pellets) or at 1600 °C in ambient air (ThO2 pellets). The theoretical density of the sintered pellets varied from 91 to 97%.
Lunar Fluid Core and Solid-Body Tides
NASA Technical Reports Server (NTRS)
Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.
2005-01-01
Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2-5] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening has been improving [3,5] and now seems significant. This strengthens the case for a fluid lunar core.
NASA Astrophysics Data System (ADS)
Valderrama, Gustavo; Kiennemann, Alain; Goldwasser, Mireya R.
La 1- xSr xNi 0.4Co 0.6O 3 and La 0.8Sr 0.2Ni 1- yCo yO 3 solid solutions with perovskite-type structure were synthesized by the sol-gel resin method and used as catalytic precursors in the dry reforming of methane with CO 2 to syngas, between 873 and 1073 K at atmospheric pressure under continuous flow of reactant gases with CH 4/CO 2 = 1 ratio. These quaternary oxides were characterized by X-ray diffraction (XRD), BET specific surface area and temperature-programmed reduction (TPR) techniques. XRD analyses of the more intense diffraction peaks and cell parameter measurements showed formation of La-Sr-Ni-Co-O solid solutions with La 0.9Sr 0.1CoO 3 and/or La 0.9Sr 0.1NiO 3 as the main crystallographic phases present on the solids depending on the degree of substitution. TPR analyses showed that Sr doping decreases the temperature of reduction via formation of intermediary species producing Ni 0, Co 0 with particle sizes in the range of nanometers over the SrO and La 2O 3 phases. These metallic nano particles highly dispersed in the solid matrix are responsible for the high activity shown during the reaction and avoid carbon formation. The presence of Sr in doping quantities also promotes the secondary reactions of carbon formation and water-gas shift in a very small extension during the dry reforming reaction.
Melting relations in the system FeCO3-MgCO3 and thermodynamic modelling of Fe-Mg carbonate melts
NASA Astrophysics Data System (ADS)
Kang, Nathan; Schmidt, Max W.; Poli, Stefano; Connolly, James A. D.; Franzolin, Ettore
2016-09-01
To constrain the thermodynamics and melting relations of the siderite-magnesite (FeCO3-MgCO3) system, 27 piston cylinder experiments were conducted at 3.5 GPa and 1170-1575 °C. Fe-rich compositions were also investigated with 13 multi-anvil experiments at 10, 13.6 and 20 GPa, 1500-1890 °C. At 3.5 GPa, the solid solution siderite-magnesite coexists with melt over a compositional range of X Mg (=Mg/(Mg + Fetot)) = 0.38-1.0, while at ≥10 GPa solid solution appears to be complete. At 3.5 GPa, the system is pseudo-binary because of the limited stability of siderite or liquid FeCO3, Fe-rich carbonates decomposing at subsolidus conditions to magnetite-magnesioferrite solid solution, graphite and CO2. Similar reactions also occur with liquid FeCO3 resulting in melt species with ferric iron components, but the decomposition of the liquid decreases in importance with pressure. At 3.5 GPa, the metastable melting temperature of pure siderite is located at 1264 °C, whereas pure magnesite melts at 1629 °C. The melting loop is non-ideal on the Fe side where the dissociation reaction resulting in Fe3+ in the melt depresses melting temperatures and causes a minimum. Over the pressure range of 3.5-20 GPa, this minimum is 20-35 °C lower than the (metastable) siderite melting temperature. By merging all present and previous experimental data, standard state (298.15 K, 1 bar) thermodynamic properties of the magnesite melt (MgCO3L) end member are calculated and the properties of (Fe,Mg)CO3 melt fit by a regular solution model with an interaction parameter of -7600 J/mol. The solution model reproduces the asymmetric melting loop and predicts the thermal minimum at 1240 °C near the siderite side at X Mg = 0.2 (3.5 GPa). The solution model is applicable to pressures reaching to the bottom of the upper mantle and allows calculation of phase relations in the FeO-MgO-O2-C system.
Kojima, Taro; Higashi, Kenjirou; Suzuki, Toyofumi; Tomono, Kazuo; Moribe, Kunikazu; Yamamoto, Keiji
2012-10-01
The stabilization mechanism of a supersaturated solution of mefenamic acid (MFA) from a solid dispersion with EUDRAGIT(®) EPO (EPO) was investigated. The solid dispersions were prepared by cryogenic grinding method. Powder X-ray diffractometry, in vitro dissolution test, in vivo oral absorption study, infrared spectroscopy, and solid- and solution-state NMR spectroscopies were used to characterize the solid dispersions. Dissolution tests in acetate buffer (pH 5.5) revealed that solid dispersion showed > 200-fold higher concentration of MFA. Supersaturated solution was stable over 1 month and exhibited improved oral bioavailability of MFA in rats, with a 7.8-fold higher area under the plasma concentration-versus-time curve. Solid-state (1)H spin-lattice relaxation time (T(1)) measurement showed that MFA was almost monomolecularly dispersed in the EPO polymer matrix. Intermolecular interaction between MFA and EPO was indicated by solid-state infrared and (13)C-T(1) measurements. Solution-state (1)H-NMR measurement demonstrated that MFA existed in monomolecular state in supersaturated solution. (1)H-T(1) and difference nuclear Overhauser effect measurements indicated that cross relaxation occurred between MFA and EPO due to the small distance between them. The formation and high stability of the supersaturated solution were attributable to the specifically formed intermolecular interactions between MFA and EPO.
Thermodynamics of magnesian calcite solid-solutions at 25°C and 1 atm total pressure
Busenberg, Eurybiades; Plummer, Niel
1989-01-01
The stability of magnesian calcites was reexamined, and new results are presented for 28 natural inorganic, 12 biogenic, and 32 synthetic magnesian calcites. The magnesian calcite solid-solutions were separated into two groups on the basis of differences in stoichiometric solubility and other physical and chemical properties. Group I consists of solids of mainly metamorphic and hydrothermal origin, synthetic calcites prepared at high temperatures and pressures, and synthetic solids prepared at low temperature and very low calcite supersaturations () from artificial sea water or NaClMgCl2CaCl2solutions. Group I solids are essentially binary s of CaCO2 and MgCO2, and are thought to be relatively free of structural defects. Group II solid-solutions are of either biogenic origin or are synthetic magnesian calcites and protodolomites (0–20 and ∼ 45 mole percent MgCO3) prepared at high calcite supersaturations () from NaClNa2SO4MgCl2CaCl2 or NaClMgCl2CaCl2 solutions. Group II solid-solutions are treated as massively defective solids. The defects include substitution foreign ions (Na+ and SO42−) in the magnesian calcite lattice (point defects) and dislocations (~2 · 109 cm−2). Within each group, the excess free energy of mixing, GE, is described by the mixing model , where x is the mole fraction of the end-member Ca0.5Mg0.5CO3 in the solid-solution. The values of A0and A1 for Group I and II solids were evaluated at 25°C. The equilibrium constants of all the solids are closely described by the equation ln , where KC and KD are the equilibrium constants of calcite and Ca0.5Mg0.5CO3. Group I magnesian calcites were modeled as sub-regular solid-solutions between calcite and dolomite, and between calcite and “disordered dolomite”. Both models yield almost identical equilibrium constants for these magnesian calcites. The Group II magnesian calcites were modeled as sub-regular solid-solutions between defective calcite and protodolomite. Group I and II solid-solutions differ significantly in stability. The rate of crystal growth and the chemical composition of the aqueous solutions from which the solids were formed are the main factors controlling stoichiometric solubility of the magnesian calcites and the density of crystal defects. The literature on the occurrence and behavior of magnesian calcites in sea water and other aqueous solutions is also examined.
Groves, Kate; Cryar, Adam; Walker, Michael; Quaglia, Milena
2018-01-01
Assessing the recovery of food allergens from solid processed matrixes is one of the most difficult steps that needs to be overcome to enable the accurate quantification of protein allergens by immunoassay and MS. A feasibility study is described herein applying International System of Units (SI)-traceably quantified milk protein solutions to assess recovery by an improved extraction method. Untargeted MS analysis suggests that this novel extraction method can be further developed to provide high recoveries for a broad range of food allergens. A solution of α-casein was traceably quantified to the SI for the content of α-S1 casein. Cookie dough was prepared by spiking a known amount of the SI-traceable quantified solution into a mixture of flour, sugar, and soya spread, followed by baking. A novel method for the extraction of protein food allergens from solid matrixes based on proteolytic digestion was developed, and its performance was compared with the performance of methods reported in the literature.
Adsorption of hydrophobin/β-casein mixtures at the solid-liquid interface.
Tucker, I M; Petkov, J T; Penfold, J; Thomas, R K; Cox, A R; Hedges, N
2016-09-15
The adsorption behaviour of mixtures of the proteins β-casein and hydrophobin at the hydrophilic solid-liquid surface have been studied by neutron reflectivity. The results of measurements from sequential adsorption and co-adsorption from solution are contrasted. The adsorption properties of protein mixtures are important for a wide range of applications. Because of competing factors the adsorption behaviour of protein mixtures at interfaces is often difficult to predict. This is particularly true for mixtures containing hydrophobin as hydrophobin possesses some unusual surface properties. At β-casein concentrations ⩾0.1wt% β-casein largely displaces a pre-adsorbed layer of hydrophobin at the interface, similar to that observed in hydrophobin-surfactant mixtures. In the composition and concentration range studied here for the co-adsorption of β-casein-hydrophobin mixtures the adsorption is dominated by the β-casein adsorption. The results provide an important insight into how the competitive adsorption in protein mixtures of hydrophobin and β-casein can impact upon the modification of solid surface properties and the potential for a wide range of colloid stabilisation applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Single crystals of metal solid solutions
NASA Technical Reports Server (NTRS)
Miller, J. F.; Austin, A. E.; Richard, N.; Griesenauer, N. M.; Moak, D. P.; Mehrabian, M. R.; Gelles, S. H.
1974-01-01
The following definitions were sought in the research on single crystals of metal solid solutions: (1) the influence of convection and/or gravity present during crystallization on the substructure of a metal solid solution; (2) the influence of a magnetic field applied during crystallization on the substructure of a metal solid solution; and (3) requirements for a space flight experiment to verify the results. Growth conditions for the selected silver-zinc alloy system are described, along with pertinent technical and experimental details of the project.
White, A.F.; Schulz, M.S.; Vivit, D.V.; Blum, A.E.; Stonestrom, David A.; Harden, J.W.
2005-01-01
Although long-term changes in solid-state compositions of soil chronosequences have been extensively investigated, this study presents the first detailed description of the concurrent hydrochemical evolution and contemporary weathering rates in such sequences. The most direct linkage between weathering and hydrology over 3 million years of soil development in the Merced chronosequence in Central California relates decreasing permeability and increasing hydrologic heterogeneity to the development of secondary argillic horizons and silica duripans. In a highly permeable, younger soil (40 kyr old), pore water solutes reflect seasonal to decadal-scale variations in rainfall and evapotranspiration (ET). This climate signal is strongly damped in less permeable older soils (250 to 600 kyr old) where solutes increasingly reflect weathering inputs modified by heterogeneous flow. Elemental balances in the soils are described in terms of solid state, exchange and pore water reservoirs and input/output fluxes from precipitation, ET, biomass, solute discharge and weathering. Solute mineral nutrients are strongly dependent on biomass variations as evidenced by an apparent negative K weathering flux reflecting aggradation by grassland plants. The ratios of solute Na to other base cations progressively increase with soil age. Discharge fluxes of Na and Si, when integrated over geologic time, are comparable to solid-state mass losses in the soils, implying similar past weathering conditions. Similarities in solute and sorbed Ca/Mg ratios reflect short-term equilibrium with the exchange reservoir. Long-term consistency in solute ratios, when contrasted against progressive decreases in solid-state Ca/Mg, requires an additional Ca source, probably from dry deposition. Amorphous silica precipitates from thermodynamically-saturated pore waters during periods of high evapotranspiration and result in the formation of duripans in the oldest soils. The degree of feldspar and secondary gibbsite and kaolinite saturation varies both spatially and temporally due to the seasonality of plant-respired CO2 and a decrease in organically complexed Al. In deeper pore waters, K-feldspar is in equilibrium and plagioclase is about an order of magnitude undersaturated. Hydrologic heterogeneity produces a range of weathering gradients that are constrained by solute distributions and matrix and macropore flow regimes. Plagioclase weathering rates, based on precipitation-corrected Na gradients, vary between 3 and 7 ?? 10-16 mol m-2 s-1. These rates are similar to previously determined solid-state rates but are several orders of magnitude slower than for experimental plagioclase dissolution indicating strong inhibitions to natural weathering, partly due to near-equilibrium weathering reactions. Copyright ?? 2005 Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumner, S.C.J.
1986-01-01
Solid state and solution /sup 13/C NMR have been used to study the conformations of the racemic mixtures and single enantiomers of methadone hydrochloride, alpha and beta methadol hydrochloride, and alpha and beta acetylmethadol hydrochloride. The NMR spectra acquired for the compounds as solids, and in polar and nonpolar solvents are compared, in order to determine the conformation of the molecules in solution. To determine the reliability of assigning solution conformations by comparing solution and solid state chemical shift data, three bond coupling constants measured in solution are compared with those calculated from X-ray data. The conformations of the racemicmore » mixture and plus enantiomer of methadone hydrochloride have been shown to be very similar in the solid state, where minor differences in conformation can be seen by comparing NMR spectra obtained for the solids. Also shown is that the molecules of methadone hydrochloride have conformations in polar and in nonpolar solvents which are very similar to the conformation of the molecules in the solid state.« less
Formaldehyde (HCHO) has been of special concern as an indoor air pollutant because of its existence in a wide range of products and its adverse health effects. The air-water partitioning behavior of volatile organic compounds (VOCs) such as formaldehyde is an important process th...
Laplanche, Guillaume; Gadaud, P.; Barsch, C.; ...
2018-02-23
Elastic moduli of a set of equiatomic alloys (CrFeCoNi, CrCoNi, CrFeNi, FeCoNi, MnCoNi, MnFeNi, and CoNi), which are medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy were determined as a function of temperature over the range 293 K–1000 K. Thermal expansion coefficients were determined for these alloys over the temperature range 100 K–673 K. All alloys were single-phase and had the face-centered cubic (FCC) crystal structure, except CrFeNi which is a two-phase alloy containing a small amount of body-centered cubic (BCC) precipitates in a FCC matrix. The temperature dependences of thermal expansion coefficients and elastic moduli obtained here are useful formore » quantifying fundamental aspects such as solid solution strengthening, and for structural analysis/design. Furthermore, using the above results, the yield strengths reported in literature for these alloys were normalized by their shear moduli to reveal the influence of shear modulus on solid solution strengthening.« less
Supramolecular structures and assembly and luminescent properties of quinacridone derivatives.
Ye, Kaiqi; Wang, Jia; Sun, Hui; Liu, Yu; Mu, Zhongcheng; Li, Fei; Jiang, Shimei; Zhang, Jingying; Zhang, Hongxing; Wang, Yue; Che, Chi-Ming
2005-04-28
The synthesis and single-crystal X-ray structures of two quinacridone derivatives, N,N'-di(n-butyl)quinacridone (1) and N,N'-di(n-butyl)-1,3,8,10-tetramethylquinacridone (2), are reported, and the 1H NMR, absorption, photoluminescent (PL), and electroluminescent (EL) characteristics are presented. Both these crystal structures are characterized by intermolecular pi...pi and hydrogen bonding interactions. The intermolecular pi...pi interactions lead to the formation of molecular columns in the solids of 1 and 2, and the interplanar contact distances between two adjacent molecules are 3.48 and 3.55 angstroms, respectively. Crystals of 1 display shorter intermolecular pi...pi contacts and higher density than 2. These results suggest that tighter intermolecular interactions exist in 1. The 1H NMR, absorption, and PL spectra of 1 and 2 in solutions exhibit concentration-dependent properties. The PL quantum yields of 1 in solutions decrease more quickly with the increase of concentration compared to that of 2 in solutions. For solid thin films of Alq3:1 (Alq3 = tris(8-hydroxyquinolinato)aluminum), emission intensities dramatically decrease and obvious red shifts are observed when the dopant concentration is above 4.2%, while for films of Alq3:2, a similar phenomenon occurs when the concentration is above 6.7%. EL devices with Alq3:1 as emitting layer only show high efficiencies (20.3-14.5 cd/A) within the narrow dopant concentration range of 0.5-1.0%. In contrast, high efficiencies (21.5-12.0 cd/A) are achieved for a wider dopant concentration range of 0.5-5.0% when Alq3:2 films are employed as emitting layer. The different PL and EL concentration-dependent properties of the solid thin films Alq3:1 and Alq3:2 are attributed to their different molecular packing characteristics in the solid state.
Davarani, Saied Saeed Hosseiny; Nojavan, Saeed; Asadi, Roghayeh; Banitaba, Mohammad Hossein
2013-07-01
In this study, a platinum wire coated with poly(3,4-ethylenedioxythiophen) was used as an electro-assisted solid-phase microextraction fiber for the quantification of tricyclic antidepressant drugs in biological samples by coupling to GC employing a flame ionization detector. In this study, an electric field increased the extraction rate and recovery. The fiber used as a solid phase was synthesized by the electropolymerization of 3,4-ethylenedioxythiophen monomers onto a platinum wire. The ability of this fiber to extract imipramine, desipramine, and clomipramine by using the electro-assisted solid-phase microextraction technique was evaluated. The effect of various parameters that influence the extraction efficiency, which include solution temperature, extraction time, stirring rate, ionic strength, time and temperature of desorption, and thickness of the fiber, was optimized. Under optimized conditions, the linear ranges and regression coefficients of calibration curves were in the range of 0.5-250 and 0.990-0.998 ng/mL, respectively. Detection limits were in the range of 0.15-0.45 ng/mL. Finally, this method was applied to the determination of drugs in urine and wastewater samples and recoveries were 4.8-108.9%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermodynamic Study of Solid-Liquid Equilibrium in NaCl-NaBr-H2O System at 288.15 K
NASA Astrophysics Data System (ADS)
Li, Dan; Meng, Ling-zong; Deng, Tian-long; Guo, Ya-fei; Fu, Qing-Tao
2018-06-01
The solubility data, composition of the solid solution and refractive indices of the NaCl-NaBr-H2O system at 288.15 K were studied with the isothermal equilibrium dissolution method. The solubility diagram and refractive index diagram of this system were plotted at 288.15 K. The solubility diagram consists of two crystallization zones for solid solution Na(Cl,Br) · 2H2O and Na(Cl,Br), one invariant points cosaturated with two solid solution and two univariant solubility isothermal curves. On the basis of Pitzer and Harvie-Weare (HW) chemical models, the composition equations and solubility equilibrium constant equations of the solid solutions at 288.15 K were acquired using the solubility data, the composition of solid solutions, and binary Pitzer parameters. The solubilities calculated using the new method combining the equations are in good agreement with the experimental data.
NASA Astrophysics Data System (ADS)
Zou, Xiaojun; Shang, Fang; Wang, Sui
2017-02-01
In this paper, a novel electrochemiluminescence (ECL) sensor of sol-gel@graphene luminescent composite film modified electrode for hyperin determination was prepared using graphene (G) as solid-phase microextraction (SPME) material, based on selective preconcentration of target onto an electrode and followed by luminol ECL detection. Hyperin was firstly extracted from aqueous solution through the modified GCE. Hydrogel, electrogenerated chemiluminescence reagents, pH of working solution, extraction time and temperature and scan rate were discussed. Under the optimum conditions, the change of ECL intensity was in proportion to the concentration of hyperin in the range of 0.02-0.24 μg/mL with a detection limit of 0.01 μg/mL. This method showed good performance in stability, reproducibility and precision for the determination of hyperin.
Fixed-node quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Anderson, James B.
Quantum Monte Carlo methods cannot at present provide exact solutions of the Schrödinger equation for systems with more than a few electrons. But, quantum Monte Carlo calculations can provide very low energy, highly accurate solutions for many systems ranging up to several hundred electrons. These systems include atoms such as Be and Fe, molecules such as H2O, CH4, and HF, and condensed materials such as solid N2 and solid silicon. The quantum Monte Carlo predictions of their energies and structures may not be `exact', but they are the best available. Most of the Monte Carlo calculations for these systems have been carried out using approximately correct fixed nodal hypersurfaces and they have come to be known as `fixed-node quantum Monte Carlo' calculations. In this paper we review these `fixed node' calculations and the accuracies they yield.
Conesa, Celia; FitzGerald, Richard J
2013-10-23
The kinetics and thermodynamics of the thermal inactivation of Corolase PP in two different whey protein concentrate (WPC) hydrolysates with degree of hydrolysis (DH) values of ~10 and 21%, and at different total solids (TS) levels (from 5 to 30% w/v), were studied. Inactivation studies were performed in the temperature range from 60 to 75 °C, and residual enzyme activity was quantified using the azocasein assay. The inactivation kinetics followed a first-order model. Analysis of the activation energy, thermodynamic parameters, and D and z values, demonstrated that the inactivation of Corolase PP was dependent on solution TS. The intestinal enzyme preparation was more heat sensitive at low TS. Moreover, it was also found that the enzyme was more heat sensitive in solutions at higher DH.
Barton, Phillip T; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew J
2012-01-11
We have prepared the complete delafossite solid solution series between diamagnetic CuAlO(2) and the t(2g)(3)frustrated antiferromagnet CuCrO(2). The evolution with composition x in CuAl(1-x)Cr(x)O(2) of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Végard law and increase with x as expected. The μ(eff) is equal to the Cr(3+) spin-only S = 3/2 value throughout the entire solid solution. Θ(CW) is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, the nearest-neighbor exchange coupling constant J(BB) was estimated by mean-field theory to be 3.0 meV. Despite the sizable Θ(CW), long-range antiferromagnetic order does not develop until x is almost 1, and is preceded by glassy behavior. The data presented here, and those on dilute Al substitution from Okuda et al, suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO(2) above its Néel temperature, consistent with its magnetic frustration. Uncompensated short-range behavior is present in the Al-substituted samples and is likely a result of chemical disorder.
NASA Astrophysics Data System (ADS)
Barton, Phillip T.; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew J.
2012-01-01
We have prepared the complete delafossite solid solution series between diamagnetic CuAlO2 and the t2g3frustrated antiferromagnet CuCrO2. The evolution with composition x in CuAl1-xCrxO2 of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Végard law and increase with x as expected. The μeff is equal to the Cr3+ spin-only S = 3/2 value throughout the entire solid solution. ΘCW is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, the nearest-neighbor exchange coupling constant JBB was estimated by mean-field theory to be 3.0 meV. Despite the sizable ΘCW, long-range antiferromagnetic order does not develop until x is almost 1, and is preceded by glassy behavior. The data presented here, and those on dilute Al substitution from Okuda et al, suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO2 above its Néel temperature, consistent with its magnetic frustration. Uncompensated short-range behavior is present in the Al-substituted samples and is likely a result of chemical disorder.
NASA Astrophysics Data System (ADS)
Menon, Sumithra Sivadas; Anitha, R.; Gupta, Bhavana; Baskar, K.; Singh, Shubra
2016-05-01
GaN-ZnO solid solution has emerged as a successful and reproducible photocatalyst for overall water splitting by one-step photoexcitation, with a bandgap in visible region. When the solid solution is formed, some of the Zn and O ions are replaced by Ga and N ions respectively and there is a narrowing of bandgap which is hypothesized as due to Zn3d-N2p repulsion. The traditional method of synthesis of GaN-ZnO solid solution is by nitridation of the starting oxides under constant ammonia flow. Here we report a solution combustion technique for the synthesis of the solid solution at a temperature about 500 ° C in a muffle furnace with metal nitrates as precursors and urea as the fuel. The as prepared samples showed change in color with the increased concentration of ZnO in the solution. The structural, microstructural, morphological and optical properties of the samples were realized by Powder X ray diffraction, Scanning electron microscopy, Energy dispersive X ray analysis, Transmission electron microscopy and Photoluminescence. Finally the hydrogen production efficiency of the GaN-ZnO nanopowders by water splitting was found, using methanol as a scavenger. The apparent quantum yield (AQY) of 0.048% is obtained for GaN-ZnO solid solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banks, J.W., E-mail: banksj3@rpi.edu; Henshaw, W.D., E-mail: henshw@rpi.edu; Kapila, A.K., E-mail: kapila@rpi.edu
We describe an added-mass partitioned (AMP) algorithm for solving fluid–structure interaction (FSI) problems involving inviscid compressible fluids interacting with nonlinear solids that undergo large rotations and displacements. The computational approach is a mixed Eulerian–Lagrangian scheme that makes use of deforming composite grids (DCG) to treat large changes in the geometry in an accurate, flexible, and robust manner. The current work extends the AMP algorithm developed in Banks et al. [1] for linearly elasticity to the case of nonlinear solids. To ensure stability for the case of light solids, the new AMP algorithm embeds an approximate solution of a nonlinear fluid–solidmore » Riemann (FSR) problem into the interface treatment. The solution to the FSR problem is derived and shown to be of a similar form to that derived for linear solids: the state on the interface being fundamentally an impedance-weighted average of the fluid and solid states. Numerical simulations demonstrate that the AMP algorithm is stable even for light solids when added-mass effects are large. The accuracy and stability of the AMP scheme is verified by comparison to an exact solution using the method of analytical solutions and to a semi-analytical solution that is obtained for a rotating solid disk immersed in a fluid. The scheme is applied to the simulation of a planar shock impacting a light elliptical-shaped solid, and comparisons are made between solutions of the FSI problem for a neo-Hookean solid, a linearly elastic solid, and a rigid solid. The ability of the approach to handle large deformations is demonstrated for a problem of a high-speed flow past a light, thin, and flexible solid beam.« less
Zhang, Xiaoguang; Liu, Dong; Liu, Hongran; Li, Qiang; Li, Lili; Wang, Lixia; Zhang, Yan
2017-10-08
A high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method based on-line solid phase extraction (SPE) purification was established to determine 10 macrolide antibiotics in pork samples. The samples were extracted with acetonitrile, and the extracts were dried with rotary evaporator at 40℃, then the analytes were dissolved with 2 mL phosphate buffer. The solutions were purified and concentrated by on-line SPE with HLB cartridges. The analytes were eluted with methanol, and then transferred to XBridge BEH C18 column, separated with the mobile phases of 10 mmol/L ammonium acetate aqueous solution and acetonitrile. Finally, the target analytes were detected by tandem mass spectrometry. The results showed that good linearity was obtained in the range of 0.1-200 μg/L for the 10 macrolide antibiotics with correlation coefficients better than 0.990. The limits of detection were in range of 0.05-0.30 μg/kg and the limits of quantitation were in range of 0.10-1.00 μg/kg. The recoveries of the method were in range of 69.6%-115.2% at the spiked levels of 0.10-10.0 μg/kg for all analytes, with the relative standard deviations less than 10%. The developed method can be used for the determination of the 10 macrolide antibiotics in pork samples.
NASA Astrophysics Data System (ADS)
Iida, K.; Babu, N. H.; Shi, Y. H.; Cardwell, D. A.; Murakami, M.
2006-06-01
Single-grain Gd-Ba-Cu-O (GdBCO) bulk superconductors have been grown by a seeded infiltration and growth (SIG) technique under a 1% O2+N2 atmosphere using a generic MgO-doped Nd-Ba-Cu-O (MgO-NdBCO) seed placed on the sample surface at room temperature (the so-called the cold-seeding method). Partial melting of the MgO-NdBCO seeds fabricated in air under notionally identical thermal processing conditions, however, limited the reliability of this bulk GdBCO single-grain process. The observed seed decomposition is attributed to the dependence of the peritectic temperature Tp of MgO-doped Nd1+xBa2-xCu3Oy solid solution (MgO-doped Nd-123ss, where ss indicates solid solution) compounds on both oxygen partial pressure during the melt process and the level of solid solution (x). The peritectic decomposition temperature of MgO-doped Nd-123ss, with x ranging from 0 to 0.5 under p(O2) = 1.00 atm, was observed to remain constant at 1120 °C. Tp was observed to decrease linearly as a function of solid solution level, on the other hand, under oxygen partial pressures of both p(O2) = 0.21 and 0.01 atm. Based on these results, MgO-doped NdBCO seed crystals should be grown under reduced oxygen partial pressure in order to obtain a stable MgO-doped NdBCO seed crystal suitable for cold-seeding processes of large-grain (RE)BCO bulk superconductors (where RE is a rare earth element).
NASA Astrophysics Data System (ADS)
Wirunchit, S.; Vittayakorn, N.
2008-07-01
The solid solution between the antiferroelectric (AFE) PbZrO3 (PZ) and the relaxor ferroelectric (FE) Pb(Ni1/3Nb2/3)O3 (PNN) was synthesized by the columbite precursor method. The crystal structure, phase transformations, and dielectric and thermal properties of (1-x )PZ-xPNN where x =0.00-0.30 were investigated. With these data, the FE phase diagram between PZ and PNN has been established. The crystal structure data obtained from X-ray diffraction indicate that the solid solution PZ-PNN, where x =0.00-0.30, successively transforms from orthorhombic to rhombohedral symmetry with an increase in the PNN concentration. The AFE phase→FE phase transition occurs in compositions of 0.00⩽x⩽0.08. The AFE →FE phase transition shifts to lower temperatures with higher compositions of x. The FE phase temperature range width increases with increased PNN. Apparently the replacement of the Zr4+ ion by Ni2+/Nb5+ ions decreases the driving force for an antiparallel shift of Pb2+ ions because they interrupt the translational symmetry and facilitates the appearance of a rhombohedral FE phase when the amount of PNN is higher than 8mol%.
NASA Technical Reports Server (NTRS)
Wang, J. C.
1982-01-01
Compositional segregation of solid solution semiconducting alloys in the radial direction during unidirectional solidification was investigated by calculating the effect of a curved solid liquid interface on solute concentration at the interface on the solid. The formulation is similar to that given by Coriell, Boisvert, Rehm, and Sekerka except that a more realistic cylindrical coordinate system which is moving with the interface is used. Analytical results were obtained for very small and very large values of beta with beta = VR/D, where V is the velocity of solidification, R the radius of the specimen, and D the diffusivity of solute in the liquid. For both very small and very large beta, the solute concentration at the interface in the solid C(si) approaches C(o) (original solute concentration) i.e., the deviation is minimal. The maximum deviation of C(si) from C(o) occurs for some intermediate value of beta.
Process for recovering chaotropic anions from an aqueous solution also containing other ions
Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.
1999-01-01
A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture.
Process for recovering chaotropic anions from an aqueous solution also containing other ions
Rogers, R.; Horwitz, E.P.; Bond, A.H.
1999-03-30
A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture. 19 figs.
NASA Astrophysics Data System (ADS)
Pradhan, Lagen Kumar; Pandey, Rabichandra; Kumar, Sunil; Supriya, Sweety; Kar, Manoranjan
2018-04-01
Effect of lattice distortion on diffuse phase transition in BNBTO solid solutions near Morphotropic phase boundary (MPB) has been investigated. Solid solutions of (Bi0.5Na0.5)1-xBaxTiO3 (with mole % of x= 0.04, 0.05, 0.06, 0.07 and 0.08) were prepared by the planetary ball mill method in ethanol medium. Rietveld refinement technique with rhombohedral (R3c) and tetragonal (P4bm) crystal symmetry has been employed for structural as well as phase analysis of the solid solutions. Both rhombohedral and tetragonal lattice distortion (c/a) tends toward the pseudo-cubic crystal symmetry with the increase of mole fraction of Ba2+ near MPB (x= 6 mole %). Also, the average crystallite size and grain size decrease with increase of mole fraction of Ba2+ in BNT ceramic are due to larger ionic radius of Ba2+ and grain boundary pinning process in the solid solutions respectively. Additionally, depolarization temperature (Td) and maximum temperature (Tm) reduces due to the lattice distortion of both the phases in BNBTO solid solutions, which is explained extensively. Significant increase of dielectric constant has been observed near MPB composition (x=6%) in BNBTO solid solutions.
Preparation of Sic/AIN Solid Solutions Using Organometallic Precursors
1989-02-15
pyrolysis of organoaluminum and organosilicon compounds was investigated as a potential source of SiC /AUI solid solutions. Using two different co... pyrolysis methods, homogeneous mixtures of organoaluminum amides and both a vinylic polysilane and a poly- carbosilane were convertec to a preceramic ...solid that transformed to crystalline SiC /AiN solid solutions at C. Moreover, the liquid, polymeric , form of these precursor mixtures provides a
NASA Astrophysics Data System (ADS)
Basiev, Tasoltan T.; Fedorov, Vladimir V.; Karasik, Alexander Y.; Lin'kov, S. I.; Orlovskii, Yurii V.; Osiko, Vyacheslav V.; Panov, Vitaly A.; Prokhorov, Alexander M.; Vorob'ev, Ivan N.; Zverev, Peter G.
1996-11-01
Solid state (SS) tunable LiF:F2 color center laser with second and fourth harmonic generation for visible and ultra violet spectral ranges was developed for the laser induced fluorescence spectroscopy (LIFS). The construction and properties of excitation, registration and flame atomization systems for water solution diagnostic are discussed. The testing experiment with low iron concentrated water sample exhibits ultrahigh sensitivity which was estimated to be 0.05 ppb in our set-up. The SS LIFS spectrometer developed is usable to measure more than 42 metal elements in solution on the ppm, ppb level for various medical and biological applications.
Disorder trapping by rapidly moving phase interface in an undercooled liquid
NASA Astrophysics Data System (ADS)
Galenko, Peter; Danilov, Denis; Nizovtseva, Irina; Reuther, Klemens; Rettenmayr, Markus
2017-08-01
Non-equilibrium phenomena such as the disappearance of solute drag, the origin of solute trapping and evolution of disorder trapping occur during fast transformations with originating metastable phases [D.M. Herlach, P.K. Galenko, D. Holland-Moritz, Metastable solids from undrercooled melts (Elsevier, Amsterdam, 2007)]. In the present work, a theoretical investigation of disorder trapping by a rapidly moving phase interface is presented. Using a model of fast phase transformations, a system of governing equations for the diffusion of atoms, and the evolution of both long-range order parameter and phase field variable is formulated. First numerical solutions are carried out for a congruently melting binary alloy system.
The Raman spectrum of Ca-Mg-Fe carbonates; Applications in geobiology
NASA Astrophysics Data System (ADS)
van Zuilen, M. A.; Rividi, N.; Ménez, B.; Philippot, P.
2012-04-01
Carbonates form a very important mineral group in geobiological studies. They are a common mineral matrix for putative carbonaceous microfossils in Archean greenstone belts, form an important chemical deposit in seafloor hydrothermal systems, and are a common product in biomineralization processes. In many geobiological studies there is a specific need for simple characterization of carbonate composition while avoiding complex sample preparation or sample destruction. Raman spectroscopy is a highly versatile non-destructive technique enabling in-situ characterization of minerals and carbonaceous materials. It can be combined with confocal microscopy enabling high-resolution Raman mapping of entire rock thin sections, or can be integrated in submersibles and potentially Mars-rovers for direct field-based mineral identification. It is thus important that well-established spectral databases exist which enable unambiguous identification of a wide variety of carbonate minerals. The most common carbonates in the Ca-Mg-Fe system include the CaCO3 polymorphs calcite, aragonite, and vaterite, as well as the solid solutions CaMg(CO3)2-CaFe(CO3)2 (dolomite-ankerite) and MgCO3-FeCO3 (magnesite-siderite). Although various carbonate end-members have been studied exhaustively by Raman spectroscopy, a simple protocol for rapid distinction of various carbonate solid solutions is still lacking. Here we present a detailed study of Raman shifts in various carbonate standards of known composition in the Ca-Mg-Fe system. Carbonates with rhombohedral symmetry display a Raman spectrum with six characteristic vibrational modes - four of these represent vibrations within the (CO3)2- unit and two represent external vibrations of the crystal lattice. We show that Raman band shifts of internal mode 2ν2 (range 1725-1765 cm-1), and external modes T (range 170-215 cm-1) and L (range 285-330 cm-1) for siderite-magnesite and ankerite-dolomite solid solutions display distinct and well defined positive correlations with Mg number (Mg/Mg+Fe+Mn+Ca). Raman shifts calibrated as a function of Mg number were used in turn to evaluate the chemical composition of natural carbonate samples. In particular it is shown that detailed micron-resolution Raman maps can be generated of carbonate crystal-zonation in hydrothermally altered sedimentary deposits from Archean greenstone belts. Large spectral-range analysis (140-2000 cm-1) in static-mode (centered at 1150 cm-1) allows for combined Raman mapping of both carbonate-composition (2ν2, T, L modes) as well as kerogen structural ordering (D1-D4 and G modes in the range 1100-1700 cm-1), and therefore allows for simultaneous characterization of putative organic microfossils and associated carbonate matrix in metamorphosed Archean rock samples. Finally, it will be shown that these carbonate solid solutions can be distinguished from other end-member carbonates such as calcite, vaterite and the orthorhombic polymorph aragonite.
NASA Astrophysics Data System (ADS)
Barton, Phillip; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew
2012-02-01
We have prepared the complete delafossite solid solution between diamagnetic CuAlO2 and the t2g^3 frustrated antiferromagnet CuCrO2. The crystal structure and magnetism were studied with powder x-ray diffraction and magnetometry. The unit cell parameters follow the V'egard law and μeff is equal to the Cr^3+ spin-only S = 3/2 value. θCW is negative and its magnitude increases with Cr substitution. For dilute Cr compositions, JBB was estimated by mean-field theory to be 3.0,eV. Despite the sizable θCW, long-range antiferromagnetic order does not develop until x is almost 1, and is preceeded by glassy behavior. For all samples, the 5,isothermal magnetization is sub-Brillouin and does not saturate in fields up to 5,. A scaled inverse susceptibility plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO2 above its N'eel temperature. Additionally, the Al-substituted samples exhibit uncompensated short-range behavior and x = 0.75 shows glassy characteristics. It is suggested that reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as do chemical disorder and dilution of magnetic exchange.
Anning, David W
2011-10-01
Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area-normalized reach-catchment delivery rates of dissolved solids to streams ranged from <10 (kg/year)/km(2) for catchments with little or no natural or human-related solute sources in them to 563,000 (kg/year)/km(2) for catchments that were almost entirely cultivated land. For the region as a whole, geologic units contributed 44% of the dissolved-solids deliveries to streams and the remaining 56% of the deliveries came from the release of solutes through irrigation of cultivated and pasture lands, which comprise only 2.5% of the land area. Dissolved-solids accumulation is manifested as precipitated salts in the soil or underlying sediments, and (or) dissolved salts in soil-pore or sediment-pore water, or groundwater, and therefore represents a potential for aquifer contamination. Accumulation rates were <10,000 (kg/year)/km(2) for many hydrologic accounting units (large river basins), but were more than 40,000 (kg/year)/km(2) for the Middle Gila, Lower Gila-Agua Fria, Lower Gila, Lower Bear, Great Salt Lake accounting units, and 247,000 (kg/year)/km(2) for the Salton Sea accounting unit.
Anning, David W
2011-01-01
Abstract Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area-normalized reach-catchment delivery rates of dissolved solids to streams ranged from <10 (kg/year)/km2 for catchments with little or no natural or human-related solute sources in them to 563,000 (kg/year)/km2 for catchments that were almost entirely cultivated land. For the region as a whole, geologic units contributed 44% of the dissolved-solids deliveries to streams and the remaining 56% of the deliveries came from the release of solutes through irrigation of cultivated and pasture lands, which comprise only 2.5% of the land area. Dissolved-solids accumulation is manifested as precipitated salts in the soil or underlying sediments, and (or) dissolved salts in soil-pore or sediment-pore water, or groundwater, and therefore represents a potential for aquifer contamination. Accumulation rates were <10,000 (kg/year)/km2 for many hydrologic accounting units (large river basins), but were more than 40,000 (kg/year)/km2 for the Middle Gila, Lower Gila-Agua Fria, Lower Gila, Lower Bear, Great Salt Lake accounting units, and 247,000 (kg/year)/km2 for the Salton Sea accounting unit. PMID:22457583
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bialy, Agata; Jensen, Peter B.; Center for Atomic-scale Materials Design, Department of Physics, Technical University of Denmark, Fysikvej 311, DK-2800 Kgs. Lyngby
Metal halide ammines are very attractive materials for ammonia absorption and storage—applications where the practically accessible or usable gravimetric and volumetric storage densities are of critical importance. Here we present, that by combining advanced computational materials prediction with spray drying and in situ thermogravimetric and structural characterization, we synthesize a range of new, stable barium-strontium chloride solid solutions with superior ammonia storage densities. By tuning the barium/strontium ratio, different crystallographic phases and compositions can be obtained with different ammonia ab- and desorption properties. In particular it is shown, that in the molar range of 35–50% barium and 65–50% strontium, stablemore » materials can be produced with a practically usable ammonia density (both volumetric and gravimetric) that is higher than any of the pure metal halides, and with a practically accessible volumetric ammonia densities in excess of 99% of liquid ammonia. - Graphical abstract: Thermal desorption curves of ammonia from Ba{sub x}Sr{sub (1−x)}Cl{sub 2} mixtures with x equal to 0.125, 0.25 and 0.5 and atomic structure of Sr(NH{sub 3}){sub 8}Cl{sub 2}. - Highlights: • Solid solutions of strontium and barium chloride were synthesized by spray drying. • Adjusting molar ratios led to different crystallographic phases and compositions. • Different molar ratios led to different ammonia ab-/desorption properties. • 35–50 mol% BaCl{sub 2} in SrCl{sub 2} yields higher ammonia density than any other metal halide. • DFT calculations can be used to predict properties of the mixtures.« less
Tabani, Hadi; Fakhari, Ali Reza; Shahsavani, Abolfath; Behbahani, Mohammad; Salarian, Mani; Bagheri, Akbar; Nojavan, Saeed
2013-07-26
Combination of different extraction methods is an interesting and debatable work in the field of sample preparation. In the current study, for the first time, solid phase extraction combined with electro membrane extraction (SPE-EME) was developed for ultra-preconcentration and determination of chlorophenoxy acid herbicides in environmental samples using capillary electrophoresis (CE). In the mentioned method, first, a 100mL of chlorophenoxy acid herbicides (2-methyl-4-chlorophenoxyacetic acid (MCPA), 2-(2,4-dichlorophenoxy) propanoic acid (2,4-DP) and 2-(4-chloro-2-methylphenoxy) propanoic acid (MCPP)) was passed through a column of graphene oxide as a solid phase, and then the adsorbed herbicides were eluted by 4.0mL of 8% acetic acid (HOAC) in methanol. Then, the elution solvent was evaporated and the herbicides residue was dissolved in 4.0mL of double distilled water (pH 9.0). Afterwards, the herbicides in 4.0mL of the aqueous solution were transferred to an EME glass vial. In the EME step, the herbicides were extracted from the sample solution into the basic acceptor solution (pH 13.0) under electrical potential, which was held inside the lumen of the fiber with 1-octanol as the supported liquid membrane (SLM). Under the optimized conditions, high enrichment factors were obtained in the range of 1950-2000. The limits of quantification (LOQs) and method detection limits (MDLs) were obtained in the range of 1.0-1.5 and 0.3-0.5ngmL(-1), respectively. Finally, the performance of the present method was evaluated for extraction and determination of chlorophenoxy acid herbicides in environmental samples. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Xiuli; Li, Xiaoxia; Yan, Xiao; Liu, Gaofeng; Zhou, Huanfu
2018-02-01
(Ba1-x Bi x )(Ti1-x Ni0.5x Sn0.5x )O3 (BBTNS, 0.02 ≤ x ≤ 0.1) samples have been synthesized by traditional solid-state reaction technique and their structural transformation and dielectric properties investigated. X-ray diffraction (XRD) analysis revealed that BBTNS could form a homogeneous solid solution, and the transformation from tetragonal to pseudocubic phase occurred at 0.04 ≤ &!nbsp;x ≤ 0.06. Optimized properties with stable ɛ r (˜ 1829 to 1838), small Δɛ/ɛ 25°C values (± 15%) over a broad temperature range from -60°C to 140°C, and low tan Δ (≤ 0.02) from 4°C to 194°C were obtained at x = 0.1. The relaxation and conduction process in the high-temperature region are attributed to thermal activation, and oxygen vacancies may be the ionic charge carriers in perovskite ferroelectrics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rai, R.N., E-mail: rn_rai@yahoo.co.in; Kant, Shiva; Reddi, R.S.B.
Urea is an attractive material for frequency conversion of high power lasers to UV (for wavelength down to 190 nm), but its usage is hindered due to its hygroscopic nature, though there is no alternative organic NLO crystal which could be transparent up to 190 nm. The hygroscopic character of urea has been modified by making the solid solution (UCNB) of urea (U) and p-chloronitrobenzene (CNB). The formation of the solid solution of CNB in U is explained on the basis of phase diagram, powder XRD, FTIR, elemental analysis and single crystal XRD studies. The solubility of U, CNB andmore » UCNB in ethanol solution is evaluated at different temperatures. Transparent single crystals of UCNB are grown from its saturated solution in ethanol. Optical properties e.g., second harmonic generation (SHG), refractive index and the band gap for UCNB crystal were measured and their values were compared with the parent compounds. Besides modification in hygroscopic nature, UCNB has also shown the higher SHG signal and mechanical hardness in comparison to urea crystal. - Highlights: • The hygroscopic character of urea was modified by making the solid solution • Solid solution formation is support by elemental, powder- and single crystal XRD • Crystal of solid solution has higher SHG signal and mechanical stability. • Refractive index and band gap of solid solution crystal have determined.« less
Garbage Pollution Has a Solution: The Sanitary Landfill.
ERIC Educational Resources Information Center
Andresen, Ruth
The principle ways in which communities solve the growing problems of solid waste disposal are studied in this set of audio-visual materials prepared for grades 6-12. A 58-frame colored filmstrip, cassette tape narration, and teacher's guide focus upon the Monterey Bay area of California. Topics examined range from types of disposal sites, the…
Plummer, Niel; Busenberg, E.; Glynn, P.D.; Blum, A.E.
1992-01-01
Synthetic strontianite-aragonite solid-solution minerals were dissolved in CO2-saturated non-stoichiometric solutions of Sr(HCO3)2 and Ca(HCO3)2 at 25??C. The results show that none of the dissolution reactions reach thermodynamic equilibrium. Congruent dissolution in Ca(HCO3)2 solutions either attains or closely approaches stoichiometric saturation with respect to the dissolving solid. In Sr(HCO3)2 solutions the reactions usually become incongruent, precipitating a Sr-rich phase before reaching stoichiometric saturation. Dissolution of mechanical mixtures of solids approaches stoichiometric saturation with respect to the least stable solid in the mixture. Surface uptake from subsaturated bulk solutions was observed in the initial minutes of dissolution. This surficial phase is 0-10 atomic layers thick in Sr(HCO3)2 solutions and 0-4 layers thick in Ca(HCO3)2 solutions, and subsequently dissolves and/or recrystallizes, usually within 6 min of reaction. The initial transient surface precipitation (recrystallization) process is followed by congruent dissolution of the original solid which proceeds to stoichiometric saturation, or until the precipitation of a more stable Sr-rich solid. The compositions of secondary precipitates do not correspond to thermodynamic equilibrium or stoichiometric saturation states. X-ray photoelectron spectroscopy (XPS) measurements indicate the formation of solid solutions on surfaces of aragonite and strontianite single crystals immersed in Sr(HCO3)2 and Ca(HCO3)2 solutions, respectively. In Sr(HCO3)2 solutions, the XPS signal from the outer ~ 60 A?? on aragonite indicates a composition of 16 mol% SrCO3 after only 2 min of contact, and 14-18 mol% SrCO3 after 3 weeks of contact. The strontianite surface averages approximately 22 mol% CaCO3 after 2 min of contact with Ca(HCO3)2 solution, and is 34-39 mol% CaCO3 after 3 weeks of contact. XPS analysis suggests the surface composition is zoned with somewhat greater enrichment in the outer ~25 A?? (as much as 26 mol% SrCO3 on aragonite and 44 mol% CaCO3 on strontianite). The results indicate rapid formation of a solid-solution surface phase from subsaturated aqueous solutions. The surface phase continually adjusts in composition in response to changes in composition of the bulk fluid as net dissolution proceeds. Dissolution rates of the endmembers are greatly reduced in nonstoichiometric solutions relative to dissolution rates observed in stoichiometric solutions. All solids dissolve more slowly in solutions spiked with the least soluble component ((Sr(HCO3)2)) than in solutions spiked with the more soluble component (Ca(HCO3)2), an effect that becomes increasingly significant as stoichiometric saturation is approached. It is proposed that the formation of a non-stoichiometric surface reactive zone significantly decreases dissolution rates. ?? 1992.
Precipitation in Al–Mg solid solution prepared by solidification under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jie, J.C., E-mail: jiejc@dlut.edu.cn; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001; Wang, H.W.
2014-01-15
The precipitation in Al–Mg solid solution containing 21.6 at.% Mg prepared by solidification under 2 GPa was investigated. The results show that the γ-Al{sub 12}Mg{sub 17} phase is formed and the β′ phase cannot be observed in the solid solution during ageing process. The precipitation of γ and β phases takes place in a non-uniform manner during heating process, i.e. the γ and β phases are first formed in the interdendritic region, which is caused by the inhomogeneous distribution of Mg atoms in the solid solution solidified under high pressure. Peak splitting of X-ray diffraction patterns of Al(Mg) solid solutionmore » appears, and then disappears when the samples are aged at 423 K for different times, due to the non-uniform precipitation in Al–Mg solid solution. The direct transformation from the γ to β phase is observed after ageing at 423 K for 24 h. It is considered that the β phase is formed through a peritectoid reaction of α + γ → β which needs the diffusion of Mg atoms across the interface of α/γ phases. - Highlights: • The γ phase is formed and the β′ phase is be observed in Al(Mg) solid solution. • Peak splitting of XRD pattern of Al(Mg) solid solution appears during aged at 150 °C. • The β phase is formed through a peritectoid reaction of α + γ → β.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lizhong; Ouyang, Shuxin; Ren, Bofan
2015-10-01
Macroporous GaN/ZnO solid solution photocatalyst is synthesized through a novel sol-gel method under mild conditions. The performance of as-synthesized solid solution photocatalyst is evaluated for decomposition of gaseous 2-propanol (IPA). It is found that due to enhancement in both the adsorption to gaseous IPA and the absorbance to visible light, the porous GaN/ZnO solid solution exhibits a good photocatalytic performance for IPA decomposition. Moreover, the mechanism for photocatalytic degradation IPA over porous GaN/ZnO solid solution is also investigated in comparison with those for the two end materials ZnO and GaN. The trapping effects with different scavengers prove that both themore » photoexcited electrons and holes affect the IPA photodegradation process, simultaneously.« less
Metal separations using aqueous biphasic partitioning systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaiko, D.J.; Zaslavsky, B.; Rollins, A.N.
1996-05-01
Aqueous biphasic extraction (ABE) processes offer the potential for low-cost, highly selective separations. This countercurrent extraction technique involves selective partitioning of either dissolved solutes or ultrafine particulates between two immiscible aqueous phases. The extraction systems that the authors have studied are generated by combining an aqueous salt solution with an aqueous polymer solution. They have examined a wide range of applications for ABE, including the treatment of solid and liquid nuclear wastes, decontamination of soils, and processing of mineral ores. They have also conducted fundamental studies of solution microstructure using small angle neutron scattering (SANS). In this report they reviewmore » the physicochemical fundamentals of aqueous biphase formation and discuss the development and scaleup of ABE processes for environmental remediation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menon, Sumithra Sivadas; Anitha, R.; Baskar, K.
2016-05-23
GaN-ZnO solid solution has emerged as a successful and reproducible photocatalyst for overall water splitting by one-step photoexcitation, with a bandgap in visible region. When the solid solution is formed, some of the Zn and O ions are replaced by Ga and N ions respectively and there is a narrowing of bandgap which is hypothesized as due to Zn3d-N2p repulsion. The traditional method of synthesis of GaN-ZnO solid solution is by nitridation of the starting oxides under constant ammonia flow. Here we report a solution combustion technique for the synthesis of the solid solution at a temperature about 500 °more » C in a muffle furnace with metal nitrates as precursors and urea as the fuel. The as prepared samples showed change in color with the increased concentration of ZnO in the solution. The structural, microstructural, morphological and optical properties of the samples were realized by Powder X ray diffraction, Scanning electron microscopy, Energy dispersive X ray analysis, Transmission electron microscopy and Photoluminescence. Finally the hydrogen production efficiency of the GaN-ZnO nanopowders by water splitting was found, using methanol as a scavenger. The apparent quantum yield (AQY) of 0.048% is obtained for GaN-ZnO solid solution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langner, D.; Canada, T.; Ensslin, N.
1980-08-01
We describe the automated nondestructive assay (NDA) system installed at the Los Alamos Scientific Laboratory (LASL) Group CMB-8 uranium recovery facility. A random driver (RD) is used to measure the /sup 235/U content of various solids while a uranium solution assay system (USAS) measures the /sup 235/U or total uranium content of solutions over a concentration range of a few ppM to 400 g/l. Both instruments are interfaced to and controlled by a single minicomputer. The measurement principles, mechanical specifications, system software description, and operational instructions are described.
Quesada-Moreno, María Mar; Cruz-Cabeza, Aurora J; Avilés-Moreno, Juan Ramón; Cabildo, Pilar; Claramunt, Rosa M; Alkorta, Ibon; Elguero, José; Zúñiga, Francisco J; López-González, Juan Jesús
2017-08-03
2-Propyl-1H-benzimidazole (2PrBzIm) is a small molecule, commercially available, which displays a curious behavior in the solid state. 2PrBzIm, although devoid of chirality by fast rotation about a single bond of the propyl group in solution, crystallizes as a conglomerate showing chiroptical properties. An exhaustive analysis of its crystal structure and a wide range of experiments monitored by vibrational circular dichroism spectroscopy eliminated all possibilities of an artifact. What remains is a new example of the unexplained phenomenon of persistent supramolecular chirality.
X-ray investigation of molten crystal hydrates H2SO4(nH2O) and HNO3(nH2O)
NASA Technical Reports Server (NTRS)
Romanova, A. V.; Skryshevskiy, A. F.
1979-01-01
Integral analysis of the intensity of the electron density distribution curve in molten crystal hydrates provided by X-ray analysis, permits the following conclusions on the structure of the complex SO and NO ions, and the short-range order in the structure of the solution. The SO4 ion in the solution has a tetrahedral structure with an S to O distance equal to 1.5 A. For the NO3 in the solution, a planar triangular shape is probable, with an N to O distance equal to 1.2 A. Preferential distances between each of the oxygens of the SO ion and the nearest molecules of water proved near to the corresponding distances in solid crystal hydrates. For an (H2SO4)(H2O) solution, the average number of water molecules surrounding each oxygen atom of the SO4 (--) ion was on the order of 1.3 molecules. Hence the preferential distances between the water molecules and the oxygen atoms of the SO ion, and the preference of their mutual position, correspond to the fixed position of these same elements of the structure in the solid crystal hydrate.
Sterner, S.M.; Chou, I.-Ming; Downs, R.T.; Pitzer, Kenneth S.
1992-01-01
The Gibbs energies of mixing for NaCl-KCl binary solids and liquids and solid-saturated NaCl-KCl-H2O ternary liquids were modeled using asymmetric Margules treatments. The coefficients of the expressions were calibrated using an extensive array of binary solvus and solidus data, and both binary and ternary liquidus data. Over the PTX range considered, the system exhibits complete liquid miscibility among all three components and extensive solid solution along the anhydrous binary. Solid-liquid and solid-solid phase equilibria were calculated by using the resulting equations and invoking the equality of chemical potentials of NaCl and KCl between appropriate phases at equilibrium. The equations reproduce the ternary liquidus and predict activity coefficients for NaCl and KCl components in the aqueous liquid under solid-saturation conditions between 673 and 1200 K from vapor saturation up to 5 kbar. In the NaCl-KCl anhydrous binary system, the equations describe phase equilibria and predict activity coefficients of the salt components for all stable compositions of solid and liquid phases between room temperature and 1200 K and from 1 bar to 5 kbar. ?? 1992.
Xie, Miao; Mohammadi, Reza; Turner, Christopher L.; ...
2015-07-29
In this paper, we explore the hardening mechanisms in WB4-based solid solutions upon addition of Ta, Mn, and Cr using in situ radial X-ray diffraction techniques under nonhydrostatic pressure. By examining the lattice-supported differential strain, we provide insights into the mechanism for hardness increase in binary solid solutions at low dopant concentrations. Speculations on the combined effects of electronic structure and atomic size in ternary WB 4 solid solutions containing Ta with Mn or Cr are also included to understand the extremely high hardness of these materials.
Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition
An, Zhinan; Jia, Haoling; Wu, Yueying; ...
2015-05-04
The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.
Proven high-performance display solution
NASA Astrophysics Data System (ADS)
Johnson, Rick J.; Shaw, James E.; Mosier, Don; Liss, Raymond L.; Prouty, Todd D.; Davis, Josh; Marzen, Vincent P.; Deloy, Christian T.
2002-08-01
Rockwell Collins serves both the military and the commercial segments by exploiting the common elements of these applications. Rockwell Collins has created a liquid crystal display family capable of 100:1 contrast ratio, 40:1 high ambient contrast, 0.25% specular reflectance, 0.1% diffuse reflectance, enhanced color stability over +/- 55H, 0-30V field of view, 300 fL with 10K:1 dimming range, color NVIS B compliance while exceeding environmental performance requirements though ruggedization. In order to meet the full range of display requirements at a system level, all the components must be understood and managed to meet the end solution of the final system. This paper details Rockwell Collins' optical performance using an avionics grade panel, third generation custom compensation, and solid state backlight.
Viscoelastic love-type surface waves
Borcherdt, Roger D.
2008-01-01
The general theoretical solution for Love-Type surface waves in viscoelastic media provides theoreticalexpressions for the physical characteristics of the waves in elastic as well as anelastic media with arbitraryamounts of intrinsic damping. The general solution yields dispersion and absorption-coefficient curves for the waves as a function of frequency and theamount of intrinsic damping for any chosen viscoelastic model.Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physicalcharacteristics of the waves pertinent to models of Earth materials ranging from small amounts of damping in the Earth’s crust to moderate and large amounts of damping in soft soils and water-saturated sediments. Numerical results, presented herein, are valid for a wide range of solids and applications.
Sample Results from MCU Solids Outage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, T.; Washington, A.; Oji, L.
2014-09-22
Savannah River National Laboratory (SRNL) has received several solid and liquid samples from MCU in an effort to understand and recover from the system outage starting on April 6, 2014. SRNL concludes that the presence of solids in the Salt Solution Feed Tank (SSFT) is the likely root cause for the outage, based upon the following discoveries: A solids sample from the extraction contactor #1 proved to be mostly sodium oxalate; A solids sample from the scrub contactor#1 proved to be mostly sodium oxalate; A solids sample from the Salt Solution Feed Tank (SSFT) proved to be mostly sodium oxalate;more » An archived sample from Tank 49H taken last year was shown to contain a fine precipitate of sodium oxalate; A solids sample from ; A liquid sample from the SSFT was shown to have elevated levels of oxalate anion compared to the expected concentration in the feed. Visual inspection of the SSFT indicated the presence of precipitated or transferred solids, which were likely also in the Salt Solution Receipt Tank (SSRT). The presence of the solids coupled with agitation performed to maintain feed temperature resulted in oxalate solids migration through the MCU system and caused hydraulic issues that resulted in unplanned phase carryover from the extraction into the scrub, and ultimately the strip contactors. Not only did this carryover result in the Strip Effluent (SE) being pushed out of waste acceptance specification, but it resulted in the deposition of solids into several of the contactors. At the same time, extensive deposits of aluminosilicates were found in the drain tube in the extraction contactor #1. However it is not known at this time how the aluminosilicate solids are related to the oxalate solids. The solids were successfully cleaned out of the MCU system. However, future consideration must be given to the exclusion of oxalate solids into the MCU system. There were 53 recommendations for improving operations recently identified. Some additional considerations or additional details are provided below as recommendations. From this point on, IC-Anions analyses of the DSSHT should be part of the monthly routine analysis in order to spot negative trends in the oxalate leaving the MCU system. Care must be taken to monitor the oxalate content to watch for sudden precipitation of oxalate salts in the system; Conduct a study to optimize the cleaning strategy at ARP-MCU through decreasing the concentration or entirely eliminating the oxalic acid; The contents of the SSFT should remain unagitated. Routine visual observation should be maintained to ensure there is not a large buildup of solids. As water with agitation provided sufficient removal of the solids in the feed tank, it should be considered as a good means for dissolving oxalate solids if they are found in the future; Conduct a study to improve prediction of oxalate solubility in salt batch feed materials. As titanium and mercury have been found in various solids in this report, evaluate if either element plays a role in oxalate solubility during processing; Salt batch characterization focuses primarily on characterization and testing of unaltered Tank 21H material; however, non-typical feeds are developed through cleaning, washing, and/or sump transfers. As these solutions are processed through MCU, they may precipitate solids or reduce performance. Salt batch characterization and testing should be expanded to encompass a broader range of feeds that may be processed through ARPMCU.« less
Quench-age method for the fabrication of niobium-aluminum superconductors
Pickus, Milton R.; Ciardella, Robert L.
1978-01-01
A flexible Nb.sub.3 Al superconducting wire is fabricated from a niobium-aluminum composite wire by heating to form a solid solution which is retained at room temperature as a metastable solid solution by quenching. The metastable solid solution is then transformed to the stable superconducting A-15 phase by low temperature aging. The transformation induced by aging can be controlled to yield either a multifilamentary or a solid A-15 core surrounded by ductile niobium.
Production, properties, and applications of hydrocolloid cellular solids.
Nussinovitch, Amos
2005-02-01
Many common synthetic and edible materials are, in fact, cellular solids. When classifying the structure of cellular solids, a few variables, such as open vs. closed cells, flexible vs. brittle cell walls, cell-size distribution, cell-wall thickness, cell shape, the uniformity of the structure of the cellular solid and the different scales of length are taken into account. Compressive stress-strain relationships of most cellular solids can be easily identified according to their characteristic sigmoid shape, reflecting three deformation mechanisms: (i) elastic distortion under small strains, (ii) collapse and/or fracture of the cell walls, and (iii) densification. Various techniques are used to produce hydrocolloid (gum) cellular solids. The products of these include (i) sponges, obtained when the drying gel contains the occasionally produced gas bubbles; (ii) sponges produced by the immobilization of microorganisms; (iii) solid foams produced by drying foamed solutions or gels containing oils, and (iv) hydrocolloid sponges produced by enzymatic reactions. The porosity of the manufactured cellular solid is subject to change and depends on its composition and the processing technique. The porosity is controlled by a range of methods and the resulting surface structures can be investigated by microscopy and analyzed using fractal methods. Models used to describe stress-strain behaviors of hydrocolloid cellular solids as well as multilayered products and composites are discussed in detail in this manuscript. Hydrocolloid cellular solids have numerous purposes, simple and complex, ranging from dried texturized fruits to carriers of vitamins and other essential micronutrients. They can also be used to control the acoustic response of specific dry food products, and have a great potential for future use in countless different fields, from novel foods and packaging to medicine and medical care, daily commodities, farming and agriculture, and the environmental, chemical, and even electronic industries.
NASA Astrophysics Data System (ADS)
Jha, Pardeep K.; Jha, Priyanka A.; Singh, Vikash; Kumar, Pawan; Asokan, K.; Dwivedi, R. K.
2015-01-01
Investigations on the solid solutions (1-x) BiFeO3 - (x) Ba Zr0.025Ti0.975O3 (0.1 ≤ x ≤ 0.3) in the temperature range 300-750 K show colossal permittivity behavior and the occurrence of diffuse phase ferroelectric transition along with frequency dependent anomaly which disappears at temperature ˜450 K. For x = 0.3, these anomalies have been verified through differential scanning calorimetry and dielectric/impedance/conductivity measurements. The occurrence of peak in pyrocurrent (dPs/dT) vs. T plots also supports phase transition. With the increasing x, transition temperature decreases and diffusivity increases. This anomaly is absent at high frequencies (>100 kHz) in conductivity plots, indicating Polomska like surface phase transition, which is supported by modulus study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fei; Zhang, Shujun; Yang, Tiannan
The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric propertiesmore » is in the range of 50–80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.« less
NASA Technical Reports Server (NTRS)
Holanda, R.
1984-01-01
The thermoelectric properties alloys of the nickel-base, iron-base, and cobalt-base groups containing from 1% to 25% 106 chromium were compared and correlated with the following material characteristics: atomic percent of the principle alloy constituent; ratio of concentration of two constituents; alloy physical property (electrical resistivity); alloy phase structure (percent precipitate or percent hardener content); alloy electronic structure (electron concentration). For solid-solution-type alloys the most consistent correlation was obtained with electron concentration, for precipitation-hardenable alloys of the nickel-base superalloy group, the thermoelectric potential correlated with hardener content in the alloy structure. For solid-solution-type alloys, no problems were found with thermoelectric stability to 1000; for precipitation-hardenable alloys, thermoelectric stability was dependent on phase stability. The effects of the compositional range of alloy constituents on temperature measurement uncertainty are discussed.
Exciton Lines in Luminescence Spectra of NixZn1-xO under Inner Shell Excitation
NASA Astrophysics Data System (ADS)
Churmanov, V. N.; Sokolov, V. I.; Gruzdev, N. B.; Ivanov, V. Yu.; Pustovarov, V. A.
The paper presents the results of the study of two narrow luminescence lines I1 and I2 at the energies of 3.339 and 3.393 eV respectively in NiO and solid state solution Ni0.6Zn0.4O. The luminescence spectroscopy with a sub-nanosecond time resolution upon selective photoexcitation in the energy range of absorption of the inner shells Zn M- and Ni L2,3- edges of Zn- and Ni- ions was used to promote proposed earlier mechanism of origin of luminescence lines I1 and I2. Photoluminescence decay kinetics of NiO and solid state solution Ni0.6Zn0.4O under soft x-ray excitation are discussed. The doublet of I1 and I2 lines is believed to arise due to the radiative annihilation of p-d excitons.
The high-temperature heat capacity of the (Th,U)O 2 and (U,Pu)O 2 solid solutions
Valu, S. O.; Benes, O.; Manara, D.; ...
2016-11-09
The enthalpy increment data for the (Th,U)O 2 and (U,Pu)O 2 solid solutions are reviewed and complemented with new experimental data (400–1773 K) and many-body potential model simulations. The results of the review show that from room temperature up to about 2000 K the enthalpy data are in agreement with the additivity rule (Neumann-Kopp) in the whole composition range. Above 2000 K the effect of Oxygen Frenkel Pair (OFP) formation leads to an excess enthalpy (heat capacity) that is modeled using the enthalpy and entropy of OFP formation from the end-members. Here, a good agreement with existing experimental work ismore » observed, and a reasonable agreement with the results of the many-body potential model, which indicate the presence of the diffuse Bredig (superionic) transition that is not found in the experimental enthalpy increment data.« less
NASA Astrophysics Data System (ADS)
Doriguetto, A. C.; Boschi, T. M.; Pizani, P. S.; Mascarenhas, Y. P.; Ellena, J.
2004-08-01
Raman scattering and x-ray diffration were used to characterize the structural and vibrational properties of the Cs2NaGaxSc1-xF6 solid solutions, for x ranging from 0.0 to 1.0. The Raman spectra, taken at room and low temperature, allow us to follow the phase evolution in detail and indicate the breaking of the local symmetry since low Ga concentration levels. Five compositions were studied by x-ray diffraction: x=0.0, 0.2, 0.5, 0.8, and 1.0. A cubic space group, Fm3¯m, was found to x=0.0 and x=0.2 and a trigonal one was found to x=0.5, 0.8, and 1.0. Details of both phases are presented and the correlation between x-ray diffraction and Raman scattering is discussed.
Diffusion and interactions of interstitials in hard-sphere interstitial solid solutions
NASA Astrophysics Data System (ADS)
van der Meer, Berend; Lathouwers, Emma; Smallenburg, Frank; Filion, Laura
2017-12-01
Using computer simulations, we study the dynamics and interactions of interstitial particles in hard-sphere interstitial solid solutions. We calculate the free-energy barriers associated with their diffusion for a range of size ratios and densities. By applying classical transition state theory to these free-energy barriers, we predict the diffusion coefficients, which we find to be in good agreement with diffusion coefficients as measured using event-driven molecular dynamics simulations. These results highlight that transition state theory can capture the interstitial dynamics in the hard-sphere model system. Additionally, we quantify the interactions between the interstitials. We find that, apart from excluded volume interactions, the interstitial-interstitial interactions are almost ideal in our system. Lastly, we show that the interstitial diffusivity can be inferred from the large-particle fluctuations alone, thus providing an empirical relationship between the large-particle fluctuations and the interstitial diffusivity.
Nagata, Maika K C T; Brauchle, Paul S; Wang, Sen; Briggs, Sarah K; Hong, Young Soo; Laorenza, Daniel W; Lee, Andrea G; Westmoreland, T David
2016-08-16
Three new DOTAM (1,4,7,10-tetrakis(acetamido)-1,4,7,10-tetraazacyclododecane) complexes have been synthesized and characterized by X-ray crystallography: [Co(DOTAM)]Cl 2 •3H 2 O, [Ni(DOTAM)]Cl 2 •4H 2 O, and [Cu(DOTAM)](ClO 4 ) 2 •H 2 O. Solid state and solution IR spectroscopic features for a series of [M(DOTAM)] 2+ complexes (M=Mn, Co, Cu, Ni, Ca, Zn) correlate with solid state and solution coordination numbers. [Co(DOTAM)] 2+ , [Ni(DOTAM)] 2+ , and [Zn(DOTAM)] 2+ are demonstrated to be six-coordinate in both the solid state and in solution, while [Mn(DOTAM)] 2+ and [Ca(DOTAM)] 2+ are eight-coordinate in the solid state and remain so in solution. [Cu(DOTAM)] 2+ , which is five-coordinate by X-ray crystallography, is shown to increase its coordination number in solution to six-coordinate.
Solid/liquid interfacial free energies in binary systems
NASA Technical Reports Server (NTRS)
Nason, D.; Tiller, W. A.
1973-01-01
Description of a semiquantitative technique for predicting the segregation characteristics of smooth interfaces between binary solid and liquid solutions in terms of readily available thermodynamic parameters of the bulk solutions. A lattice-liquid interfacial model and a pair-bonded regular solution model are employed in the treatment with an accommodation for liquid interfacial entropy. The method is used to calculate the interfacial segregation and the free energy of segregation for solid-liquid interfaces between binary solutions for the (111) boundary of fcc crystals. The zone of compositional transition across the interface is shown to be on the order of a few atomic layers in width, being moderately narrower for ideal solutions. The free energy of the segregated interface depends primarily upon the solid composition and the heats of fusion of the component atoms, the composition difference of the solutions, and the difference of the heats of mixing of the solutions.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-22
...The U.S. Environmental Protection Agency (EPA or the Agency) is taking final action to revise the manner for applying the threshold planning quantities (TPQs) for those extremely hazardous substances (EHSs) that are non-reactive solid chemicals in solution. This revision allows facilities subject to the Emergency Planning requirements that have a non-reactive solid EHS in solution, to first multiply the amount of the solid chemical in solution on-site by 0.2 before determining if this quantity equals or exceeds the lower published TPQ. This change is based on data that shows less potential for non-reactive solid chemicals in solution to remain airborne and dispersed beyond a facility's fence line in the event of an accidental release. Previously, EPA assumed that 100% of non-reactive solid chemicals in solution could become airborne and dispersed beyond the fenceline in the event of an accidental release.
Crepeau, Kathryn L.; Baker, Lucian M.; Kuivila, Kathryn
2000-01-01
A method of analysis and quality-assurance practices were developed to study the fate and transport of pesticides in the San Francisco Bay-Estuary by the U.S. Geological Survey. Water samples were filtered to remove suspended-particulate matter and pumped through C-8 solid-phase extraction cartridges to extract the pesticides. The cartridges were dried with carbon dioxide and the pesticides were eluted with three cartridge volumes of hexane:diethyl ether (1:1) solution. The eluants were analyzed using capillary-column gas chromatography/mass spectrometry in full-scan mode. Method detection limits for pesticides ranged from 0.002 to 0.025 microgram per liter for 1-liter samples. Recoveries ranged from 44 to 140 percent for 25 pesticides in samples of organic-free reagent water and Sacramento-San Joaquin Delta and Suisun Bay water fortified at 0.05 and 0.50 microgram per liter. The estimated holding time for pesticides after extraction on C-8 solid-phase extraction cartridges ranged from 10 to 257 days.
System and process for dissolution of solids
Liezers, Martin; Farmer, III, Orville T.
2017-10-10
A system and process are disclosed for dissolution of solids and "difficult-to-dissolve" solids. A solid sample may be ablated in an ablation device to generate nanoscale particles. Nanoparticles may then swept into a coupled plasma device operating at atmospheric pressure where the solid nanoparticles are atomized. The plasma exhaust may be delivered directly into an aqueous fluid to form a solution containing the atomized and dissolved solids. The composition of the resulting solution reflects the composition of the original solid sample.
NASA Astrophysics Data System (ADS)
Shan, Zhendong; Ling, Daosheng
2018-02-01
This article develops an analytical solution for the transient wave propagation of a cylindrical P-wave line source in a semi-infinite elastic solid with a fluid layer. The analytical solution is presented in a simple closed form in which each term represents a transient physical wave. The Scholte equation is derived, through which the Scholte wave velocity can be determined. The Scholte wave is the wave that propagates along the interface between the fluid and solid. To develop the analytical solution, the wave fields in the fluid and solid are defined, their analytical solutions in the Laplace domain are derived using the boundary and interface conditions, and the solutions are then decomposed into series form according to the power series expansion method. Each item of the series solution has a clear physical meaning and represents a transient wave path. Finally, by applying Cagniard's method and the convolution theorem, the analytical solutions are transformed into the time domain. Numerical examples are provided to illustrate some interesting features in the fluid layer, the interface and the semi-infinite solid. When the P-wave velocity in the fluid is higher than that in the solid, two head waves in the solid, one head wave in the fluid and a Scholte wave at the interface are observed for the cylindrical P-wave line source.
From in silica to in silico: retention thermodynamics at solid-liquid interfaces.
El Hage, Krystel; Bemish, Raymond J; Meuwly, Markus
2018-06-28
The dynamics of solvated molecules at the solid/liquid interface is essential for a molecular-level understanding for the solution thermodynamics in reversed phase liquid chromatography (RPLC). The heterogeneous nature of the systems and the competing intermolecular interactions makes solute retention in RPLC a surprisingly challenging problem which benefits greatly from modelling at atomistic resolution. However, the quality of the underlying computational model needs to be sufficiently accurate to provide a realistic description of the energetics and dynamics of systems, especially for solution-phase simulations. Here, the retention thermodynamics and the retention mechanism of a range of benzene-derivatives in C18 stationary-phase chains in contact with water/methanol mixtures is studied using point charge (PC) and multipole (MTP) electrostatic models. The results demonstrate that free energy simulations with a faithful MTP representation of the computational model provide quantitative and molecular level insight into the thermodynamics of adsorption/desorption in chromatographic systems while a conventional PC representation fails in doing so. This provides a rational basis to develop more quantitative and validated models for the optimization of separation systems.
Rinaldelli, Mauro; Ravera, Enrico; Calderone, Vito; Parigi, Giacomo; Murshudov, Garib N; Luchinat, Claudio
2014-04-01
The program REFMAC5 from CCP4 was modified to allow the simultaneous use of X-ray crystallographic data and paramagnetic NMR data (pseudocontact shifts and self-orientation residual dipolar couplings) and/or diamagnetic residual dipolar couplings. Incorporation of these long-range NMR restraints in REFMAC5 can reveal differences between solid-state and solution conformations of molecules or, in their absence, can be used together with X-ray crystallographic data for structural refinement. Since NMR and X-ray data are complementary, when a single structure is consistent with both sets of data and still maintains reasonably `ideal' geometries, the reliability of the derived atomic model is expected to increase. The program was tested on five different proteins: the catalytic domain of matrix metalloproteinase 1, GB3, ubiquitin, free calmodulin and calmodulin complexed with a peptide. In some cases the joint refinement produced a single model consistent with both sets of observations, while in other cases it indicated, outside the experimental uncertainty, the presence of different protein conformations in solution and in the solid state.
Ramos-Ramírez, Esthela; Ortega, Norma L Gutiérrez; Soto, Cesar A Contreras; Gutiérrez, Maria T Olguín
2009-12-30
In under-developed countries, industries such as paint and pigment manufacturing, leather tanning, chrome plating and textile processing, usually discharge effluents containing Cr(VI) and Cr(III) into municipal sanitary sewers. It has been reported that Cr(VI) acts as a powerful epithelial irritant and as a human carcinogen. In the present work, hydrotalcite-like compounds with a Mg/Al ratio=2 were synthesized by the sol-gel method. The hydrotalcite-like compounds and their corresponding thermally treated products were characterized by powder X-ray diffraction, infrared spectroscopy and N(2) adsorption. The hydrotalcite-like compounds and the heated solids were used as adsorbents for Cr(VI) in aqueous solutions. Adsorption isotherm studies of Cr(VI) from aqueous solution are described. The adsorbent capacity was determined using the Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherm models. The Cr(VI) adsorption isotherm data fit best to the Langmuir isotherm model. The maximum Cr(VI) uptake by hydrotalcite and the heated solids was determined using the Langmuir equation and was found to range between 26 and 29 mg Cr(VI)/g adsorbent.
Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil.
Padois, Karine; Cantiéni, Céline; Bertholle, Valérie; Bardel, Claire; Pirot, Fabrice; Falson, Françoise
2011-09-15
Solid lipid nanoparticles have been reported as possible carrier for skin drug delivery. Solid lipid nanoparticles are produced from biocompatible and biodegradable lipids. Solid lipid nanoparticles made of semi-synthetic triglycerides stabilized with a mixture of polysorbate and sorbitan oleate were loaded with 5% of minoxidil. The prepared systems were characterized for particle size, pH and drug content. Ex vivo skin penetration studies were performed using Franz-type glass diffusion cells and pig ear skin. Ex vivo skin corrosion studies were realized with a method derived from the Corrositex(®) test. Solid lipid nanoparticles suspensions were compared to commercial solutions in terms of skin penetration and skin corrosion. Solid lipid nanoparticles suspensions have been shown as efficient as commercial solutions for skin penetration; and were non-corrosive while commercial solutions presented a corrosive potential. Solid lipid nanoparticles suspensions would constitute a promising formulation for hair loss treatment. Copyright © 2011 Elsevier B.V. All rights reserved.
Huan, Juan; Liu, Qian; Fei, Airong; Qian, Jing; Dong, Xiaoya; Qiu, Baijing; Mao, Hanping; Wang, Kun
2015-11-15
An amplified solid-state electrochemiluminescence (ECL) biosensor for detection of cholesterol in near-infrared (NIR) range was constructed based on CdTe quantum dots (QDs) decorated multiwalled carbon nanotubes@reduced graphene nanoribbons (CdTe-MWCNTs@rGONRs), which were prepared by electrostatic interactions. The CdTe QDs decorated on the MWCNTs@rGONRs resulted in the amplified ECL intensity by ~4.5 fold and decreased onset potential by ~100 mV. By immobilization of the cholesterol oxidase (ChOx) and NIR CdTe-MWCNTs@rGONRs on the electrode surface, a solid-state ECL biosensor for cholesterol detection was constructed. When cholesterol was added to the detection solution, the immobilized ChOx catalyzed the oxidation of cholesterol to generate H2O2, which could be used as the co-reactant in the ECL system of CdTe-MWCNTs@rGONRs. The as-prepared biosensor exhibited good performance for cholesterol detection including good reproducibility, selectivity, and acceptable linear range from 1 μM to 1mM with a relative low detection limit of 0.33 μM (S/N=3). The biosensor was successfully applied to the determination of cholesterol in biological fluid and food sample, which would open a new possibility for development of solid-state ECL biosensors with NIR emitters. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Xiuli; Li, Xiaoxia; Yan, Xiao; Liu, Gaofeng; Zhou, Huanfu
2018-06-01
Perovskite solid solution ceramics of (Ba1- x Bi0.33 x Sr0.67 x )(Ti1- x Bi0.67 x V0.33 x )O3 and (Ba1- x Bi0.5 x Sr0.5 x )(Ti1- x Bi0.5 x Ti0.5 x )O3 (BBSTBV, BBSTBT, 0.02 ≤ x ≤ 0.2) were prepared by the traditional solid state reaction technique. The phase evolution, microstructure and dielectric properties of BBSTBV and BBSTBT ceramics were researched. X-Ray diffraction results illustrated that both BBSTBV and BBSTBT could form a homogenous solid solution which has a similar structure with BaTiO3. The optimized properties of (Ba0.8Bi0.1Sr0.1)(Ti0.8Bi0.1Ti0.1)O3 ceramics with stable ɛ r ( 1769-2293), small Δ ɛ/ ɛ 25 °C values (± 15%) over a broad temperature range from - 58 to 151 °C and low tan δ ≤ 0.03 from - 11 to 131 °C were obtained. In the high-temperature region, the relaxation and conduction process are attributed to the thermal activation and the oxygen vacancies may be the ionic charge carriers in perovskite ferroelectrics.
NASA Astrophysics Data System (ADS)
Li, Ji-Guang; Ikegami, Takayasu; Wang, Yarong; Mori, Toshiyuki
2002-10-01
A novel carbonate (co)precipitation method, employing nitrates as the starting salts and ammonium carbonate as the precipitant, has been used to synthesize nanocrystalline CeO 2 and Ce 1- xY xO 2- x/2 ( x≤0.35) solid-solutions. The resultant powders are characterized by elemental analysis, differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffractometry (XRD), Brunauer-Emmett-Teller (BET) analysis, and high-resolution scanning electron microscopy (HRSEM). Due to the direct formation of carbonate solid-solutions during precipitation, Ce 1- xY xO 2- x/2 solid-solution oxides are formed directly during calcination at a very low temperature of ˜300°C for 2 h. The thus-produced oxide nanopowders are essentially non-agglomerated, as revealed by BET in conjunction with XRD analysis. The solubility of YO 1.5 in CeO 2 is determined via XRD to be somewhere in the range from 27 to 35 mol%, from which a Y 2O 3-related type-C phase appears in the final product. Y 3+-doping promotes the formation of spherical nanoparticles, retards thermal decomposition of the precursors, and suppresses significantly crystallite coarsening of the oxides during calcination. The activation energy for crystallite coarsening increases gradually from 68.7 kJ mol -1 for pure CeO 2 to 138.6 kJ mol -1 for CeO 2 doped with 35 mol% YO 1.5. The dopant effects on crystallite coarsening is elaborated from the view point of solid-state chemistry.
Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael
Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One systemmore » operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.« less
Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials
Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael
2015-07-14
Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.
Minoxidil (Mx) as a prophylaxis of doxorubicin--induced alopecia.
Rodriguez, R; Machiavelli, M; Leone, B; Romero, A; Cuevas, M A; Langhi, M; Romero Acuña, L; Romero Acuña, J; Amato, S; Barbieri, M
1994-10-01
Minoxidil (Mx) is known to induce hair growth in men with male-pattern baldness. Based on this potential, the effectiveness of Mx 2% topical solution was evaluated in cancer patients (pts) to prevent doxorubicin-induced alopecia. 48 female pts with different types of solid tumors treated with doxorubicin-based chemotherapy in a dose range of 50-60 mg/m2/cycle were randomly assigned to receive Mx 2% topical solution or placebo. 88% and 92% of pts in both arms showed severe alopecia (p = ns). No adverse effects were observed. In this study Mx 2% topical solution was non-toxic but was not effective in the prevention of chemotherapy-induced alopecia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laplanche, Guillaume; Gadaud, P.; Barsch, C.
Elastic moduli of a set of equiatomic alloys (CrFeCoNi, CrCoNi, CrFeNi, FeCoNi, MnCoNi, MnFeNi, and CoNi), which are medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy were determined as a function of temperature over the range 293 K–1000 K. Thermal expansion coefficients were determined for these alloys over the temperature range 100 K–673 K. All alloys were single-phase and had the face-centered cubic (FCC) crystal structure, except CrFeNi which is a two-phase alloy containing a small amount of body-centered cubic (BCC) precipitates in a FCC matrix. The temperature dependences of thermal expansion coefficients and elastic moduli obtained here are useful for quantifying fundamental aspects suchmore » as solid solution strengthening, and for structural analysis/design. Furthermore, using the above results, the yield strengths reported in literature for these alloys were normalized by their shear moduli to reveal the influence of shear modulus on solid solution strengthening.« less
NASA Astrophysics Data System (ADS)
Bailey, Daniel J.; Stennett, Martin C.; Mason, Amber R.; Hyatt, Neil C.
2018-05-01
The geological disposal of high level radioactive waste requires careful budgeting of the heat load produced by radiogenic decay. Removal of high-heat generating radionuclides, such as 137Cs, reduces the heat load in the repository allowing the remaining high level waste to be packed closer together therefore reducing demand for repository space and the cost of the disposal of the remaining wastes. Hollandites have been proposed as a possible host matrix for the long-term disposal of Cs separated from HLW raffinate. The incorporation of Cs into the hollandite phase is aided by substitution of cations on the B-site of the hollandite structure, including iron. A range of Cs containing iron hollandites were synthesised via an alkoxide-nitrate route and the structural environment of Fe in the resultant material characterised by Mössbauer and X-ray Absorption Near Edge Spectroscopy. The results of spectroscopic analysis found that Fe was present as octahedrally co-ordinated Fe (III) in all cases and acts as an effective charge compensator over a wide solid solution range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, D.M.; Johnson, S.B.; Catalano, J.G.
Calcium oxalate monohydrate (CaC{sub 2}O{sub 4}{center_dot}H{sub 2}O -- abbreviated as CaOx) is produced by two-thirds of all plant families, comprising up to 80 wt.% of the plant tissue and found in many surface environments. It is unclear, however, how CaOx in plants and soils interacts with metal ions and possibly sequesters them. This study examines the speciation of Sr(II){sub aq} following its reaction with CaOx. Batch uptake experiments were conducted over the pH range 4--10, with initial Sr solution concentrations, [Sr]{sub aq}, ranging from 1 x 10{sup -4} to 1 x 10{sup -3} M and ionic strengths ranging of 0.001--0.1more » M, using NaCl as the background electrolyte. Experimental results indicate that Sr uptake is independent of pH and ionic strength over these ranges. After exposure of CaOx to Sr{sub aq} for two days, the solution Ca concentration, [Ca]{sup aq}, increased for all samples relative to the control CaOx suspension (with no Sr added). The amount of Sr{sub aq} removed from solution was nearly equal to the total [Ca]{sup aq} after exposure of CaOx to Sr. These results suggest that nearly 90% of the Sr is removed from solution to a solid phase as Ca is released into solution. We suggest that the other 10% is sequestered through surface adsorption on a solid phase, although we have no direct evidence for this. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to determine the molecular-level speciation of Sr in the reaction products. Deconvolutions of the Sr K-edge EXAFS spectra were performed to identify multi-electron excitation (MEE) features. MEE effects were found to give rise to low-frequency peaks in the Fourier transform before the first shell of oxygen atoms and do not affect EXAFS fitting results. Because of potential problems caused by asymmetric distributions of Sr-O distances when fitting Sr K-edge EXAFS data using the standard harmonic model, we also employed a cumulant expansion model and an asymmetric analytical model to account for anharmonic effects in the EXAFS data. For Sr-bearing phases with low to moderate first-shell (Sr-O pair correlation) anharmonicity, the cumulant expansion model is sufficient for EXAFS fitting; however, for higher degrees of anharmonicity, an analytical model is required. Based on batch uptake results and EXAFS analyses of reaction products, we conclude that Sr is dominantly sequestered by a solid phase at the CaOx surface, likely the result of a dissolution-reprecipitation mechanism, to form SrC{sub 2}O{sub 4} of mixed hydration state (i.e. SrO{sub x}{center_dot}nH{sub 2}O, where n = 0, 1, or 2). Surprisingly, no spectroscopic or XRD evidence was found for a (Sr,Ca)Ox solid solution or for a separate SrCO3 phase. In addition, we found no evidence for Sr(II) inner-sphere sorption complexes on CaOx surfaces based on lack of Sr-Ca second-neighbor pair correlations in the EXAFS spectra, although some type of Sr(II) surface complex (perhaps a type B Sr-oxalate ternary complex or an outer-sphere Sr(II) complex) or some as yet undetected Sr-bearing solid phases are needed to account for approximately 10% of Sr uptake by CaOx. The formation of a hydrated SrOx phase in environments under conditions similar to those of our experiments should retard Sr mobility and could be a significant factor in the biogeochemical cycling of Sr in soils and sediments or in plants and plant litter where CaOx is present.« less
Lardhi, Sheikha; Curutchet, Antton; Cavallo, Luigi; Harb, Moussab; Le Bahers, Tangui
2017-05-17
The investigation of the BiCuOCh (Ch = S, Se and Te) semiconductor family for thermoelectric or photovoltaic materials is a topic of increasing research interest. These materials can also be considered for photochemical water splitting if one representative having a bandgap, E g , at around 2 eV can be developed. With this aim, we simulated the solid solutions Bi 1-x RE x CuOS (RE = Y, La, Gd and Lu) from pure BiCuOS (E g ∼ 1.1 eV) to pure RECuOS compositions (E g ∼ 2.9 eV) by DFT calculations based on the HSE06 range-separated hybrid functional with the inclusion of spin-orbit coupling. Starting from the thermodynamic stability of the solid solution, several properties were computed for each system including bandgaps, dielectric constants, effective masses and exciton binding energies. We discussed the variation of these properties based on the relative organization of Bi and RE atoms in their common sublattice to offer a physical understanding of the influence of the RE doping of BiCuOS. Some compositions were found to give appropriate properties for water splitting applications. Furthermore, we found that at low RE fractions the transport properties of BiCuOS are improved that can find applications beyond water splitting.
Diaferia, Carlo; Mercurio, Flavia Anna; Giannini, Cinzia; Sibillano, Teresa; Morelli, Giancarlo; Leone, Marilisa; Accardo, Antonella
2016-01-01
Water soluble fibers of PEGylated tetra-phenylalanine (F4), chemically modified at the N-terminus with the DOTA chelating agent, have been proposed as innovative contrast agent (CA) in Magnetic Resonance Imaging (MRI) upon complexation of the gadolinium ion. An in-depth structural characterization of PEGylated F4-fibers, in presence (DOTA-L6-F4) and in absence of DOTA (L6-F4), is reported in solution and at the solid state, by a multiplicity of techniques including CD, FTIR, NMR, DLS, WAXS and SAXS. This study aims to better understand how the aggregation process influences the performance of nanostructures as MRI CAs. Critical aggregation concentrations for L6-F4 (43 μM) and DOTA-L6-F4 (75 μM) indicate that self-aggregation process occurs in the same concentration range, independently of the presence of the CA. The driving force for the aggregation is the π-stacking between the side chains of the aromatic framework. CD, FTIR and WAXS measurements indicate an antiparallel β-sheet organization of the monomers in the resulting fibers. Moreover, WAXS and FTIR experiments point out that in solution the nanomaterials retain the same morphology and monomer organizations of the solid state, although the addition of the DOTA chelating agent affects the size and the degree of order of the fibers. PMID:27220817
Properties of Poly- and Oligopentacenes Synthesized from Modular Building Blocks
Kumarasamy, Elango; Sanders, Samuel N.; Pun, Andrew B.; ...
2016-02-09
Here, we describe a facile route to well-defined, solution-processable pentacene oligomers (2 to 7) and homopolymer using Suzuki–Miyaura cross-coupling reactions. This synthetic strategy leads to regioisomers, regiopure syn- and anti-trimers were also synthesized, revealing minimal changes in solution properties but significant changes in the solid state arising from differing levels of crystallinity. The materials were characterized by steady state absorption spectroscopy and cyclic voltammetry to study their electronic structure. The steady state absorption spectra exhibit a new high-energy transition in the oligomers, which intensifies as a function of oligomer length, thus increasing the range of absorption to include the entiremore » visible spectrum. Density functional theory calculations indicate that the new peak results directly from the oligomerization. Solid state UV–vis suggests that while the monomer is amorphous, bricklayer packing in the higher oligomers significantly alters the solid state absorption relative to solution. The effect of oligomerization on packing was corroborated by GIWAXS analysis, which revealed crystalline domains in the oligomers. These domains, which are most evident in anti-trimer, become more pronounced upon thermal annealing. Photodegradation studies revealed considerable stability enhancement of oligomers toward oxygen and cycloaddition reactions relative to monomer. The synthesis and characterization of the first higher oligomers and homopolymer of pentacene should pave the way to applications in singlet fission, organic field-effect transistors, and organic photovoltaics.« less
Silva, Arlene S; Brandao, Geovani C; Matos, Geraldo D; Ferreira, Sergio L C
2015-11-01
The present work proposed an analytical method for the direct determination of chromium in infant formulas employing the high-resolution continuum source electrothermal atomic absorption spectrometry combined with the solid sample analysis (SS-HR-CS ET AAS). Sample masses up to 2.0mg were directly weighted on a solid sampling platform and introduced into the graphite tube. In order to minimize the formation of carbonaceous residues and to improve the contact of the modifier solution with the solid sample, a volume of 10 µL of a solution containing 6% (v/v) H2O2, 20% (v/v) ethanol and 1% (v/v) HNO3 was added. The pyrolysis and atomization temperatures established were 1600 and 2400 °C, respectively, using magnesium as chemical modifier. The calibration technique was evaluated by comparing the slopes of calibration curves established using aqueous and solid standards. This test revealed that chromium can be determined employing the external calibration technique using aqueous standards. Under these conditions, the method developed allows the direct determination of chromium with limit of quantification of 11.5 ng g(-1), precision expressed as relative standard deviation (RSD) in the range of 4.0-17.9% (n=3) and a characteristic mass of 1.2 pg of chromium. The accuracy was confirmed by analysis of a certified reference material of tomato leaves furnished by National Institute of Standards and Technology. The method proposed was applied for the determination of chromium in five different infant formula samples. The chromium content found varied in the range of 33.9-58.1 ng g(-1) (n=3). These samples were also analyzed employing ICP-MS. A statistical test demonstrated that there is no significant difference between the results found by two methods. The chromium concentrations achieved are lower than the maximum limit permissible for chromium in foods by Brazilian Legislation. Copyright © 2015. Published by Elsevier B.V.
Dielectric Studies of Samarium Modified (Pb)(Zr, Ti, Fe, Nb)O3 Ceramic System
NASA Astrophysics Data System (ADS)
Singh, Pratibha; Singh, Sangeeta; Juneja, J. K.; Prakash, Chandra; Raina, K. K.
Here we report the investigations on Sm-substituted PZTFN (Pb1-xSmxZr0.588Ti0.392Fe0.01Nb0.01O3) (where x = 0, 0.02, 0.04, 0.06, 0.08, 0.10) polycrystalline solid solutions fabricated by solid-state reaction method. XRD analysis shows all the samples to be single phase with tetragonal structure. Dielectric measurements were carried out in the temperature range 30°C-400°C at different frequencies in the range 100 Hz to 100 kHz. From the temperature variation of dielectric constant (ɛ), Curie temperature (TC) was determined which was found to decrease with increasing x. The room temperature dielectric constant (ɛRT) initially increases with increasing x and then starts decreasing. Dielectric loss improves with Sm-doping.
Chen, Ling; Dang, Xueping; Ai, Youhong; Chen, Huaixia
2018-05-07
An acryloyl β-cyclodextrin-silica hybrid monolithic column for pipette tip solid-phase extraction and high-performance liquid chromatography determination of methyl parathion and fenthion have been prepared through a sol-gel polymerization method. The synthesis conditions, including the volume of cross-linker and the ratio of inorganic solution to organic solution, were optimized. The prepared monolithic column was characterized by thermogravimetric analysis, scanning electron microscopy and Fourier transform infrared spectroscopy. The eluent type, volume and flow rate, sample volume, flow rate, acidity and ionic strength were optimized in detail. Under the optimized conditions, a simple and sensitive pipette tip solid-phase extraction with high-performance liquid chromatography method was developed for the determination of methyl parathion and fenthion in lettuce. The method yielded a linear calibration curve in the concentration ranges of 15-400 μg/kg for methyl parathion and 20-400 μg/kg for fenthion with correlation coefficients of above 0.9957. The limits of detection were 4.5 μg/kg for methyl parathion and 6.0 μg/kg for fenthion, respectively. The recoveries of methyl parathion and fenthion spiked in lettuce ranged from 96.0 to 104.2% with relative standard deviations less than 8.4%. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Penna, Matthew J; Mijajlovic, Milan; Biggs, Mark J
2014-04-09
Although protein adsorption on solids is of immense relevance, experimental limitations mean there is still a remarkable lack of understanding of the adsorption mechanism, particularly at a molecular level. By subjecting 240+ molecular dynamics simulations of two peptide/water/solid surface systems to statistical analysis, a generalized molecular level mechanism for peptide adsorption has been identified for uncharged surfaces that interact strongly with the solution phase. This mechanism is composed of three phases: (1) biased diffusion of the peptide from the bulk phase toward the surface; (2) anchoring of the peptide to the water/solid interface via interaction of a hydrophilic group with the water adjacent to the surface or a strongly interacting hydrophobic group with the surface; and (3) lockdown of the peptide on the surface via a slow, stepwise and largely sequential adsorption of its residues, which we term 'statistical zippering'. The adsorption mechanism is dictated by the existence of water layers adjacent to the solid and orientational ordering therein. By extending the solid into the solution by ~8 Å and endowing it with a charged character, the water layers ensure the peptide feels the effect of the solid at a range well beyond the dispersion force that arises from it, thus inducing biased diffusion from afar. The charging of the interface also facilitates anchoring of the peptide near the surface via one of its hydrophilic groups, allowing it time it would otherwise not have to rearrange and lockdown. Finally, the slowness of the lockdown process is dictated by the need for the peptide groups to replace adjacent tightly bound interfacial water.
Anning, D.W.
2011-01-01
Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area-normalized reach-catchment delivery rates of dissolved solids to streams ranged from <10(kg/year)/km2 for catchments with little or no natural or human-related solute sources in them to 563,000(kg/year)/km2 for catchments that were almost entirely cultivated land. For the region as a whole, geologic units contributed 44% of the dissolved-solids deliveries to streams and the remaining 56% of the deliveries came from the release of solutes through irrigation of cultivated and pasture lands, which comprise only 2.5% of the land area. Dissolved-solids accumulation is manifested as precipitated salts in the soil or underlying sediments, and (or) dissolved salts in soil-pore or sediment-pore water, or groundwater, and therefore represents a potential for aquifer contamination. Accumulation rates were <10,000(kg/year)/km2 for many hydrologic accounting units (large river basins), but were more than 40,000(kg/year)/km2 for the Middle Gila, Lower Gila-Agua Fria, Lower Gila, Lower Bear, Great Salt Lake accounting units, and 247,000(kg/year)/km2 for the Salton Sea accounting unit. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.
Process for Preparing a Tough, Soluble, Aromatic, Thermoplastic Copolyimide
NASA Technical Reports Server (NTRS)
Bryant, Robert G. (Inventor)
1997-01-01
A process for preparing a tough, soluble, aromatic, thermoplastic copolyimide is provided. The process comprises the steps of (a) providing 4.4'-oxydiphthalic anhydride to 3,4,3',4'-biphenyltetracarboxylic dianhydride at a mole ratio ranging from about 25 mole percent to 75 mole percent to 75 mole percent to about 25 mole percent; (b) adding 3,4'-oxydianiline to form a mixture; (c) adding a polar aprotic or polar protic solvent to the mixture to form a solution having a percentage of solids capable of maintaining polymer solubility; (d) stirring the solution to allow it to react; (e) adding an azeotropic solvent to the solution and heating to remove water; (f) cooling the solution of step (e) to room temperature and recovering the tough, soluble, aromatic, thermoplastic copolyimide.
Eutectics as improved pharmaceutical materials: design, properties and characterization.
Cherukuvada, Suryanarayan; Nangia, Ashwini
2014-01-28
Eutectics are a long known class of multi-component solids with important and useful applications in daily life. In comparison to other multi-component crystalline solids, such as salts, solid solutions, molecular complexes and cocrystals, eutectics are less studied in terms of molecular structure organization and bonding interactions. Classically, a eutectic is defined based on its low melting point compared to the individual components. In this article, we attempt to define eutectics not just based on thermal methods but from a structural organization view point, and discuss their microstructures and properties as organic materials vis-a-vis solid solutions and cocrystals. The X-ray crystal structure of a cocrystal is different from that of the individual components whereas the unit cell of a solid solution is similar to that of one of the components. Eutectics are closer to the latter species in that their crystalline arrangement is similar to the parent components but they are different with respect to the structural integrity. A solid solution possesses structural homogeneity throughout the structure (single phase) but a eutectic is a heterogeneous ensemble of individual components whose crystal structures are like discontinuous solid solutions (phase separated). Thus, a eutectic may be better defined as a conglomerate of solid solutions. A structural analysis of cocrystals, solid solutions and eutectics has led to an understanding that materials with strong adhesive (hetero) interactions between the unlike components will lead to cocrystals whereas those having stronger cohesive (homo/self) interactions will more often give rise to solid solutions (for similar structures of components) and eutectics (for different structures of components). We demonstrate that the same crystal engineering principles which have been profitably utilized for cocrystal design in the past decade can now be applied to make eutectics as novel composite materials, illustrated by stable eutectics of the hygroscopic salt of the anti-tuberculosis drug ethambutol as a case study. A current gap in the characterization of eutectic microstructure may be fulfilled through pair distribution function (PDF) analysis of X-ray diffraction data, which could be a rapid signature technique to differentiate eutectics from their components.
Determining the Release of Radionuclides from Tank 18F Waste Residual Solids: FY2016 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, William D.; Hobbs, David T.
Pore water leaching studies were conducted on actual Savannah River Site (SRS) Tank 18F residual waste solids to support Liquid Waste tank closure efforts. A test methodology was developed during previous simulant testing to produce slurries of tank residual solids and grout-representative solids in grout pore water solutions (based on SRS groundwater compositions) with pH and E h values expected during the aging of the closed waste tank. The target conditions are provided below where the initial pore water has a reducing potential and a relatively high pH (Reducing Region II). The pore water is expected to become increasingly oxidizingmore » with time (Oxidizing Region II) and during the latter stages of aging (Oxidizing Region III) the pH is expected to decrease. For the reducing case, tests were conducted with both unwashed and washed Tank 18F residual solids. For the oxidizing cases (Oxidizing Regions II and III), all samples were washed with simulated grout pore water solutions prior to testing, since it is expected that these conditions will occur after considerable pore water solution has passed through the system. For the reducing case, separate tests were conducted with representative ground grout solids and with calcium carbonate reagent, which is the grout phase believed to be controlling the pH. Ferrous sulfide (FeS) solids were also added to the reducing samples to lower the slurry E h value. Calcium carbonate solids were used as the grout-representative solid phase for each of the oxidizing cases. Air purge-gas with and without CO 2 removed was transferred through the oxidizing test samples and nitrogen purge-gas was transferred through the reducing test samples during leach testing. The target pH values were achieved to within 0.5 pH units for all samples. Leaching studies were conducted over an E h range of approximately 0.7 V. However, the highest and lowest E h values achieved of ~+0.5 V and ~-0.2 V were significantly less positive and less negative, respectively, than the target values. Achievement of more positive and more negative E h values is believed to require the addition of non-representative oxidants and reductants, respectively.« less
Gares, Katie L; Bykov, Sergei V; Godugu, Bhaskar; Asher, Sanford A
2014-01-01
We examined the 229 nm deep-ultraviolet resonance Raman (DUVRR) spectra of solution and solid-state trinitrotoluene (TNT) and its solution and solid-state photochemistry. Although TNT photodegrades with a solution quantum yield of ϕ ∼ 0.015, the initial photoproducts show DUVRR spectra extraordinarily similar to pure TNT, due to the similar photoproduct enhancement of the -NO2 stretching vibrations. This results in TNT-like DUVRR spectra even after complete TNT photolysis. These ultraviolet resonance Raman spectral bands enable DUVRR of trace as well as DUVRR standoff TNT detection. We determined the structure of various initial TNT photoproducts by using liquid chromatography-mass spectrometry and tandem mass spectrometry. Similar TNT DUVRR spectra and photoproducts are observed in the solution and solid states.
NASA Astrophysics Data System (ADS)
Chatelain, M.; Rhouzlane, S.; Botton, V.; Albaric, M.; Henry, D.; Millet, S.; Pelletier, D.; Garandet, J. P.
2017-10-01
The present paper focuses on solute segregation occurring in directional solidification processes with sharp solid/liquid interface, like silicon crystal growth. A major difficulty for the simulation of such processes is their inherently multi-scale nature: the impurity segregation problem is controlled at the solute boundary layer scale (micrometers) while the thermal problem is ruled at the crucible scale (meters). The thickness of the solute boundary layer is controlled by the convection regime and requires a specific refinement of the mesh of numerical models. In order to improve numerical simulations, wall functions describing solute boundary layers for convecto-diffusive regimes are derived from a scaling analysis. The aim of these wall functions is to obtain segregation profiles from purely thermo-hydrodynamic simulations, which do not require solute boundary layer refinement at the solid/liquid interface. Regarding industrial applications, various stirring techniques can be used to enhance segregation, leading to fully turbulent flows in the melt. In this context, the scaling analysis is further improved by taking into account the turbulent solute transport. The solute boundary layers predicted by the analytical model are compared to those obtained by transient segregation simulations in a canonical 2D lid driven cavity configuration for validation purposes. Convective regimes ranging from laminar to fully turbulent are considered. Growth rate and molecular diffusivity influences are also investigated. Then, a procedure to predict concentration fields in the solid phase from a hydrodynamic simulation of the solidification process is proposed. This procedure is based on the analytical wall functions and on solute mass conservation. It only uses wall shear-stress profiles at the solidification front as input data. The 2D analytical concentration fields are directly compared to the results of the complete simulation of segregation in the lid driven cavity configuration. Finally, an additional output from the analytical model is also presented. We put in light the correlation between different species convecto-diffusive behaviour; we use it to propose an estimation method for the segregation parameters of various chemical species knowing segregation parameters of one specific species.
Mockus, Linas N; Paul, Timothy W; Pease, Nathan A; Harper, Nancy J; Basu, Prabir K; Oslos, Elizabeth A; Sacha, Gregory A; Kuu, Wei Y; Hardwick, Lisa M; Karty, Jacquelyn J; Pikal, Michael J; Hee, Eun; Khan, Mansoor A; Nail, Steven L
2011-01-01
A case study has been developed to illustrate one way of incorporating a Quality by Design approach into formulation and process development for a small molecule, freeze-dried parenteral product. Sodium ethacrynate was chosen as the model compound. Principal degradation products of sodium ethacrynate result from hydrolysis of the unsaturated ketone in aqueous solution, and dimer formation from a Diels-Alder condensation in the freeze-dried solid state. When the drug crystallizes in a frozen solution, the eutectic melting temperature is above -5°C. Crystallization in the frozen system is affected by pH in the range of pH 6-8 and buffer concentration in the range of 5-50 mM, where higher pH and lower buffer concentration favor crystallization. Physical state of the drug is critical to solid state stability, given the relative instability of amorphous drug. Stability was shown to vary considerably over the ranges of pH and buffer concentration examined, and vial-to-vial variability in degree of crystallinity is a potential concern. The formulation design space was constructed in terms of pH and drug concentration, and assuming a constant 5 mM concentration of buffer. The process design space is constructed to take into account limitations on the process imposed by the product and by equipment capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, D. J.
The activity coefficient of carbon in nickel, nickel-titanium, nickel-titanium-chromium, nickel-titanium-molybdenum and nickel-titanium-molybdenum-chromium alloys has been measured at 900, 1100 and 1215/sup 0/C. The results indicate that carbon obeys Henry's Law over the range studied (0 to 2 at. percent). The literature for the nickel-carbon and iron-carbon systems are reviewed and corrected. For the activity of carbon in iron as a function of composition, a new relationship based on re-evaluation of the thermodynamics of the CO/CO/sub 2/ equilibrium is proposed. Calculations using this relationship reproduce the data to within 2.5 percent, but the accuracy of the calibrating standards used by manymore » investigators to analyze for carbon is at best 5 percent. This explains the lack of agreement between the many precise sets of data. The values of the activity coefficient of carbon in the various solid solutions are used to calculate a set of parameters for the Kohler-Kaufman equation. The calculations indicate that binary interaction energies are not sufficient to describe the thermodynamics of carbon in some of the nickel-based solid solutions. The results of previous workers for carbon in nickel-iron alloys are completely described by inclusion of ternary terms in the Kohler-Kaufman equation. Most of the carbon solid solution at high temperatures in nickel and nickel-titantium alloys precipitates from solution on quenching in water. The precipitate is composed of very small particles (greater than 2.5 nm) of elemental carbon. The results of some preliminary thermomigration experiments are discussed and recommendations for further work are presented.« less
Process for recovering pertechnetate ions from an aqueous solution also containing other ions
Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.
1997-01-01
A solid/liquid process for the separation and recovery of TcO.sub.4.sup.-1 ions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups; whereas the aqueous solution from which the TcO.sub.4.sup.-1 ions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt. A solid/liquid phase admixture of separation particles containing bound TcO.sub.4.sup.-1 ions in such an aqueous solution that is free from MoO.sub.4.sup.-2 ions is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano, Yukio; Sano, Tomokazu
A quadratic equation for the temperature-independent Grueneisen coefficient {gamma} was derived by a method in which the Walsh-Christian and Mie-Grueneisen equations are combined. Some previously existing ab initio temperature Hugoniots for hexagonal close-packed solid Fe are inaccurate because the constant-volume specific heats on the Hugoniots CVH, which are related uniquely to the solutions of the quadratic equation, have values that are too small. A CVH distribution in the solid phase range was demonstrated to agree approximately with a previous ab initio distribution. In contrast, the corresponding {gamma} distribution was significantly different from the ab initio distribution in the lower pressuremore » region. The causes of these disagreements are clarified.« less
Nojavan, Saeed; Yazdanpanah, Mina
2017-11-24
Water-insoluble β-cyclodextrin polymer was synthesized by chemical cross-linking using epichlorohydrin (EPI) as a cross-linker agent. The produced water-insoluble polymer was used as a sorbent for the micro-solid phase extraction (μ-SPE) of benzene, toluene, ethylbenzene and xylenes (BTEX) from water samples. The μ-SPE device consisted of a sealed tea bag envelope containing 15mg of sorbent. For the evaluation of the extraction efficiency, parameters such as extraction and desorption time, desorption solvent and salt concentration were investigated. At an extraction time of 30min in the course of the extraction process, analytes were extracted from a 10mL aqueous sample solution. The analytes were desorbed by ultrasonication in 200μL of acetonitrile for 20min. Analysis of the analytes was done by a gas chromatography-flame ionization detector (GC-FID) system. The enrichment factor (EF) was found to be in the range 23.0-45.4 (EF max =50.0). The method provided linearity ranges of between 0.5 and 500.0ng/mL (depending on the analytes), with good coefficients of determination (r 2 ) ranging between 0.997 and 0.999 under optimized conditions. Detection limits for BTEX were in the range of between 0.15 and 0.60ng/mL, while corresponding recoveries were in the range of 46.0-90.0%. The relative standard deviation of the method for the analytes at 100.0ng/mL concentration level ranged from 5.5 to 11.2% (n=5). The proposed method was concluded to be a cost effective and environmentally-friendly extraction technique with ease of operation and minimal usage of organic solvent. Copyright © 2017 Elsevier B.V. All rights reserved.
Alloy softening in binary iron solid solutions
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.
1976-01-01
An investigation was conducted to determine softening and hardening behavior in 19 binary iron-alloy systems. Microhardness tests were conducted at four temperatures in the range 77 to 411 K. Alloy softening was exhibited by 17 of the 19 alloy systems. Alloy softening observed in 15 of the alloy systems was attributed to an intrinsic mechanism, believed to be lowering of the Peierls (lattice friction) stress. Softening and hardening rates could be correlated with the atomic radius ratio of solute to iron. Softening observed in two other systems was attributed to an extrinsic mechanism, believed to be associated with scavenging of interstitial impurities.
NASA Technical Reports Server (NTRS)
Yaron, I.
1974-01-01
Steady state heat or mass transfer in concentrated ensembles of drops, bubbles or solid spheres in uniform, slow viscous motion, is investigated. Convective effects at small Peclet numbers are taken into account by expanding the nondimensional temperature or concentration in powers of the Peclet number. Uniformly valid solutions are obtained, which reflect the effects of dispersed phase content and rate of internal circulation within the fluid particles. The dependence of the range of Peclet and Reynolds numbers, for which regular expansions are valid, on particle concentration is discussed.
LEACHING OF TITANIUM FROM MONOSODIUM TITANATE AND MODIFIED MST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor-Pashow, K.; Fondeur, F.; Fink, S.
2012-08-01
Analysis of a fouled coalescer and pre-filters from Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU) operations showed evidence of Ti containing solids. Based on these results a series of tests were planned to examine the extent of Ti leaching from monosodium titanate (MST) and modified monosodium titanate (mMST) in various solutions. The solutions tested included a series of salt solutions with varying free hydroxide concentrations, two sodium hydroxide concentrations, 9 wt % and 15 wt %, nitric and oxalic acid solutions. Overall, the amount of Ti leached from the MST and mMST was much greater in the acidmore » solutions compared to the sodium hydroxide or salt solutions, which is consistent with the expected trend. The leaching data also showed that increasing hydroxide concentration, whether pure NaOH solution used for filter cleaning in ARP or the waste salt solution, increased the amount of Ti leached from both the MST and mMST. For the respective nominal contact times with the MST solids - for filter cleaning or the normal filter operation, the dissolved Ti concentrations are comparable suggesting either cause may contribute to the increased Ti fouling on the MCU coalescers. Tests showed that Ti containing solids could be precipitated from solution after the addition of scrub acid and a decrease in temperature similar to expected in MCU operations. FTIR analysis of these solids showed some similarity to the solids observed on the fouled coalescer and pre-filters. Although only a cursory study, this information suggests that the practice of increasing free hydroxide in feed solutions to MCU as a mitigation to aluminosilicate formation may be offset by the impact of formation of Ti solids in the overall process. Additional consideration of this finding from MCU and SWPF operation is warranted.« less
Jawor-Baczynska, Anna; Moore, Barry D; Lee, Han Seung; McCormick, Alon V; Sefcik, Jan
2013-01-01
Aqueous solutions of highly soluble substances such as small amino acids are usually assumed to be essentially homogenous systems with some degree of short range local structuring due to specific interactions on the sub-nanometre scale (e.g. molecular clusters, hydration shells), usually not exceeding several solute molecules. However, recent theoretical and experimental studies have indicated the presence of much larger supramolecular assemblies or mesospecies in solutions of small organic and inorganic molecules as well as proteins. We investigated both supersaturated and undersaturated aqueous solutions of two simple amino acids (glycine and DL-alanine) using Dynamic Light Scattering (DLS), Brownian Microscopy/Nanoparticles Tracking Analysis (NTA) and Cryogenic Transmission Electron Microscopy (Cryo-TEM). Colloidal scale mesospecies (nanodroplets) were previously reported in supersaturated solutions of these amino acids and were implicated as intermediate species on non-classical crystallization pathways. Surprisingly, we have found that the mesospecies are also present in significant numbers in undersaturated solutions even when the solute concentration is well below the solid-liquid equilibrium concentration (saturation limit). Thus, mesopecies can be observed with mean diameters ranging from 100 to 300 nm and a size distribution that broadens towards larger size with increasing solute concentration. We note that the mesospecies are not a separate phase and the system is better described as a thermodynamically stable mesostructured liquid containing solute-rich domains dispersed within bulk solute solution. At a given temperature, solute molecules in such a mesostructured liquid phase are subject to equilibrium distribution between solute-rich mesospecies and the surrounding bulk solution.
Solid lithium ion conducting electrolytes and methods of preparation
Narula, Chaitanya K; Daniel, Claus
2013-05-28
A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.
Solid lithium ion conducting electrolytes and methods of preparation
Narula, Chaitanya K.; Daniel, Claus
2015-11-19
A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.
NASA Astrophysics Data System (ADS)
Nakwaski, W.
1988-11-01
An analysis is made of the thermal conductivity of quaternary solid solutions (alloys) allowing for their disordered structure on the basis of a phenomenological analysis proposed by Abeles. This method is applied to a quaternary solid solution In1 - xGaxAsyP1 - y. A simple analytic expression is derived for the thermal conductivity of this material.
Lattice Parameter Behavior with Different Nd and O Concentrations in (U 1-yNd y)O 2±x Solid Solution
Lee, Seung Min; Knight, Travis W.; Voit, Stwart L.; ...
2016-02-02
The solid solution of (U1-yFPy)O- 2±x, has the same fluorite structure as UO 2±x lambda, and the lattice parameter is affected by dissolved fission product and oxygen concentrations. We investigated the relation between the lattice parameter and the concentrations of neodymium and oxygen in the fluorite structure of (U 1-yNd y)O 2±x using X-ray diffraction. Moreover, the lattice parameter behavior in the (U 1-yNd y)O 2±x, solid solution shows a linear change as a function of the oxygen-to-metal ratio and solubility of neodymium. The lattice parameter depends on the radii of ions forming the fluorite structure and also can bemore » expressed by a particular rule (modified Vegard's law). Furthermore, the numerical analyses of the lattice parameters for the stoichiometric and nonstoichionietric solid solutions were conducted, and the lattice parameter model for the (U1-yNdy)O 2±x, solid solution was assessed. There is a very linear relationship between the lattice parameter and the Nd and O concentration for the stoichiometry and nonstoichiometry of the (U 1-yNd y)O 2±x solid solution was verified.« less
Revisiting HgCl 2: A solution- and solid-state 199Hg NMR and ZORA-DFT computational study
NASA Astrophysics Data System (ADS)
Taylor, R. E.; Carver, Colin T.; Larsen, Ross E.; Dmitrenko, Olga; Bai, Shi; Dybowski, C.
2009-07-01
The 199Hg chemical-shift tensor of solid HgCl 2 was determined from spectra of polycrystalline materials, using static and magic-angle spinning (MAS) techniques at multiple spinning frequencies and field strengths. The chemical-shift tensor of solid HgCl 2 is axially symmetric ( η = 0) within experimental error. The 199Hg chemical-shift anisotropy (CSA) of HgCl 2 in a frozen solution in dimethylsulfoxide (DMSO) is significantly smaller than that of the solid, implying that the local electronic structure in the solid is different from that of the material in solution. The experimental chemical-shift results (solution and solid state) are compared with those predicted by density functional theory (DFT) calculations using the zeroth-order regular approximation (ZORA) to account for relativistic effects. 199Hg spin-lattice relaxation of HgCl 2 dissolved in DMSO is dominated by a CSA mechanism, but a second contribution to relaxation arises from ligand exchange. Relaxation in the solid state is independent of temperature, suggesting relaxation by paramagnetic impurities or defects.
Adsorption of heavy metals by road deposited solids.
Gunawardana, Chandima; Goonetilleke, Ashantha; Egodawatta, Prasanna
2013-01-01
The research study discussed in the paper investigated the adsorption/desorption behaviour of heavy metals commonly deposited on urban road surfaces, namely, Zn, Cu, Cr and Pb, for different particle size ranges of solids. The study outcomes, based on field studies and batch experiments, confirmed that road deposited solids particles contain a significantly high amount of vacant charge sites with the potential to adsorb additional heavy metals. Kinetic studies and adsorption experiments indicated that Cr is the most preferred metal element to associate with solids due to the relatively high electronegativity and high charge density of trivalent cation (Cr(3+)). However, the relatively low availability of Cr in the urban road environment could influence this behaviour. Comparing total adsorbed metals present in solids particles, it was found that Zn has the highest capacity for adsorption to solids. Desorption experiments confirmed that a low concentration of Cu, Cr and Pb in solids was present in water-soluble and exchangeable form, whilst a significant fraction of adsorbed Zn has a high likelihood of being released back into solution. Among heavy metals, Zn is considered to be the most commonly available metal among road surface pollutants.
Magnetism and Solid Solution Effects in NiAI (40% AI) Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chain T; Fu, Chong Long; Chisholm, Matthew F
2007-01-01
The solid solution effects of ternary additions of transition elements in intermetallic Ni-40% Al were investigated by both experimental studies and theoretical calculations. Co solute atoms when sitting at Ni sublattice sites do not affect the lattice parameter and hardening behavior of Ni-40Al. On the other hand, Fe, Mn, and Cr solutes, which are mainly on Al sublattice sites, substantially expand the lattice parameter and produce an unusual solid solution softening effect. First-principles calculations predict that these solute atoms with large unfilled d-band electrons develop large magnetic moments and effectively expand the lattice parameter when occupying Al sublattice sites. Themore » theoretical predictions were verified by both electron loss-energy spectroscopy (EELS) analyses and magnetic susceptibility measurements. The observed softening behavior can be explained quantitatively by the replacement of Ni anti-site defects (potent hardeners) by Fe, Mn, and Cr anti-site defects with smaller atom size mismatch between solute and Al atoms. This study has led to the identification of magnetic interaction as an important physical parameter affecting the solid solution hardening in intermetallic alloys containing transition elements.« less
Electrospraying of polymer solutions: Study of formulation and process parameters.
Smeets, Annelies; Clasen, Christian; Van den Mooter, Guy
2017-10-01
Over the past decade, electrospraying has proven to be a promising method for the preparation of amorphous solid dispersions, an established formulation strategy to improve the oral bioavailability of poorly soluble drug compounds. Due to the lack of fundamental knowledge concerning adequate single nozzle electrospraying conditions, a trial-and-error approach is currently the only option. The objective of this paper is to study/investigate the influence of the different formulation and process parameters, as well as their interplay, on the formation of a stable cone-jet mode as a prerequisite for a reproducible production of monodisperse micro- and nanoparticles. To this purpose, different polymers commonly used in the formulation of solid dispersions were electrosprayed to map out the workable parameter ranges of the process. The experiments evaluate the importance of the experimental parameters as flow rate, electric potential difference and the distance between the tip of the nozzle and collector. Based on this, the type of solvent and the concentration of the polymer solutions, along with their viscosity and conductivity, were identified as determinative formulation parameters. This information is of utmost importance to rationally design further electrospraying methods for the preparation of amorphous solid dispersions. Copyright © 2017 Elsevier B.V. All rights reserved.
Feng, Yuanyuan; Zhao, Faqiong; Zeng, Baizhao
2015-05-01
A polycarbazole film was electrodeposited on a stainless-steel wire from a solution of N,N-dimethylformamide/propylene carbonate (1:9 v/v) containing 0.10 M carbazole and 0.10 M tetrabutylammonium perchlorate. The obtained polycarbazole fiber was immersed into an ionic liquid (1-hydroxyethyl-3-methyl imidazolium bis[(trifluoromethyl)sulfonyl]imide) solution (in dimethylsulfoxide) for 30 min, followed by drying under an infrared lamp. The resulting polycarbazole/ionic liquid fiber was applied to the headspace solid-phase microextraction and determination of aromatic esters by coupling with gas chromatography and flame ionization detection. Under the optimized conditions, the limits of detection were below 61 ng/L (S/N = 3) and the linear ranges were 0.061-500 μg/L with correlation coefficients above 0.9876. The relative standard deviations were below 4.8% (n = 5) for a single fiber, and below 9.9% for multi-fiber (n = 4). This fiber also exhibited good stability. It could be used for more than 160 times of headspace solid-phase microextraction and could withstand a high temperature up to 350°C. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Qiang; Cheng, Long; Liu, Wei; Zheng, Yun; Su, Xianli; Chi, Hang; Liu, Huijun; Yan, Yonggao; Tang, Xinfeng; Uher, Ctirad
2014-11-21
Mg2Si1-xSnx solid solutions are promising thermoelectric materials for power generation applications in the 500-800 K range. Outstanding n-type forms of these solid solutions have been developed in the past few years with the thermoelectric figure of merit ZT as high as 1.4. Unfortunately, no comparable performance has been achieved so far with p-type forms of the structure. In this work, we use Li doping on Mg sites in an attempt to enhance and control the concentration of hole carriers. We show that Li as well as Ga is a far more effective p-type dopant in comparison to Na or K. With the increasing content of Li, the electrical conductivity rises rapidly on account of a significantly enhanced density of holes. While the Seebeck coefficient decreases concomitantly, the power factor retains robust values supported by a rather high mobility of holes. Theoretical calculations indicate that Mg2Si0.3Sn0.7 intrinsically possesses the almost convergent double valence band structure (the light and heavy band), and Li doping retains a low density of states (DOS) on the top of the valence band, contrary to the Ga doping at the sites of Si/Sn. Low temperature specific heat capacity studies attest to a low DOS effective mass in Li-doped samples and consequently their larger hole mobility. The overall effect is a large power factor of Li-doped solid solutions. Although the thermal conductivity increases as more Li is incorporated in the structure, the enhanced carrier density effectively shifts the onset of intrinsic excitations (bipolar effect) to higher temperatures, and the beneficial role of phonon Umklapp processes as the primary limiting factor to the lattice thermal conductivity is thus extended. The final outcome is the figure of merit ZT ∼ 0.5 at 750 K for x = 0.07. This represents a 30% improvement in the figure of merit of p-type Mg2Si1-xSnx solid solutions over the literature values. Hence, designing low DOS near Fermi level EF for given carrier pockets can serve as an effective approach to optimize the PF and thus ZT value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matraszek, Aleksandra, E-mail: aleksandra.matraszek@ue.wroc.pl
2013-07-15
A diagram representing phase relationships in the Sr{sub 3}(PO{sub 4}){sub 2}–CePO{sub 4} phosphate system has been developed on the basis of results obtained by thermal analysis (DTA/DSC/TGA) and X-ray diffraction (XRD) methods. One intermediate compound with the formula Sr{sub 3}Ce(PO{sub 4}){sub 3} occurs in the Sr{sub 3}(PO{sub 4}){sub 2}–CePO{sub 4} system at temperatures exceeding 1045 °C. The compound has a eulytite structure with the following structural parameters: a=b=c=10.1655(8) Å, α=β=γ=90.00°, V=1050.46(6) Å{sup 3}. It's melting point exceeds 1950 °C. A limited solid solution exists in the system, which possesses the structure of a low-temperature form of Sr{sub 3}(PO{sub 4}){sub 2}.more » At 1000 °C the maximal concentration of CePO{sub 4} in the solid solution is below 20 mol%. The solid solution phase field narrows with increased temperature. There is a eutectic point in the (Sr{sub 3}(PO{sub 4}){sub 2}+Sr{sub 3}Ce(PO{sub 4}){sub 3}) phase field at 1765 °C and 15 mol% of CePO{sub 4}. The melting temperature of Sr{sub 3}(PO{sub 4}){sub 2} is 1882±15 °C. - Graphical abstract: The phase diagram of Sr{sub 3}(PO{sub 4}){sub 2}–CePO{sub 4} system showing the stability ranges of limited solid solution and Sr{sub 3}Ce(PO{sub 4}){sub 3} phases. - Highlights: • Sr{sub 3}(PO{sub 4}){sub 2} melts at 1882 °C. • Phase diagram of Sr{sub 3}(PO{sub 4}){sub 2}–CePO{sub 4} system has been proposed. • Limited solid solution of CePO{sub 4} in Sr{sub 3}(PO{sub 4}){sub 2} forms in the system. • The Sr{sub 3}Ce(PO{sub 4}){sub 2} phosphate is stable at temperatures above 1045 °C.« less
Lattice crossover and phase transitions in NdAlO{sub 3}-GdAlO{sub 3} system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasylechko, L., E-mail: crystal-lov@polynet.lviv.ua; Shmanko, H.; Ohon, N.
2013-02-15
Phase and structural behaviour in the (1-x)NdAlO{sub 3}-xGdAlO{sub 3} system in a whole concentration range has been studied by means of in situ high-resolution X-ray synchrotron powder diffraction technique and differential thermal analysis. Two kinds of solid solutions Nd{sub 1-x}Gd{sub x}AlO{sub 3} have been found at room temperature: one with rhombohedral (x<0.15) and one with orthorhombic (x{>=}0.20) symmetry. A morphotropic phase transition occurs at x Almost-Equal-To 0.15, where the co-existence of both phases was observed. Peculiarity of the orthorhombic solid solution is the lattice parameter crossover at the compositions with x=0.33, 0.49 and 0.62. First-order structural transition Pbnm{r_reversible}R3{sup Macron }cmore » has been detected both from in situ powder diffraction and thermal analysis data. Continuous phase transformation R3{sup Macron }c{r_reversible}Pm3{sup Macron }m above 2140 K has been predicted for Nd-rich sample Nd{sub 0.85}Gd{sub 0.15}AlO{sub 3} from the extrapolation of high-temperature behaviour of the lattice parameter ratio of the rhombohedral phase. Based on the experimental data, the phase diagram of the pseudo-binary system NdAlO{sub 3}-GdAlO{sub 3} has been constructed. - Graphical abstract: Concentration dependencies of normalized lattice parameters of Nd{sub 1-x}Gd{sub x}AlO{sub 3} perovskite solid solutions. Highlights: Black-Right-Pointing-Pointer Two kinds of solid solutions Nd{sub 1-x}Gd{sub x}AlO{sub 3} were found in the NdAlO{sub 3}-GdAlO{sub 3} system. Black-Right-Pointing-Pointer Morphotropic transition between both perovskite phases occurs at x Almost-Equal-To 0.15. Black-Right-Pointing-Pointer Lattice parameter crossover was found in orthorhombic solid solution. Black-Right-Pointing-Pointer Temperature driven first-order phase transition Pbnm{r_reversible}R3{sup Macron }c was found in Nd{sub 1-x}Gd{sub x}AlO{sub 3}. Black-Right-Pointing-Pointer Phase diagram of the pseudo-binary system NdAlO{sub 3}-GdAlO{sub 3} has been constructed.« less
NASA Astrophysics Data System (ADS)
Becker, Johanna Sabine
2002-12-01
Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new analytical developments and possible applications of ICP-MS and LA-ICP-MS for the quantitative determination of trace elements and in surface analysis for materials science.
NASA Astrophysics Data System (ADS)
Zhang, Guofang; Li, Yiming; Hou, Zhonghui; Xv, Jianyi; Wang, Qingchun; Zhang, Yanghuan
2018-08-01
The Cu2+ and Zn2+ co-doped CeO2-based solid solutions were synthesized via hydrothermal method. The microstructure and the spectra features of the solid solutions were characterized systematically. The XRD results showed that the dopants were incorporated into the CeO2 lattice to form Ce1-xCu0.5xZn0.5xO2 solid solutions when x was lower than 0.14. The cell parameters and the crystalline size decreased linearly, and the lattice strain gradually increased with increasing the doping level. The TEM patterns showed that the particle size in the solid solution was lower than 10 nm which is in accordance with the XRD results. The ICP analysis indicated that the real doped content in the solid solution was close to the nominal proportion. XPS proved that the Ce3+ component was increased by doping. The Raman and PL spectra indicated that the lattice distortion and the oxygen vacancies also increased following the same trend. At the same time, the synergistic effects of two ions co-doped solid solutions were studied by comparing them with that of single ions doped samples. The catalysis effects of Cu2+ and Zn2+ co-doped CeO2-based solid solutions on the hydrogen storage electrochemical and kinetic properties of Mg2Ni alloys were detected. The electrochemistry properties of the Mg2Ni-Ni-5 wt% Ce1-xCu0.5xZn0.5xO2 composites indicated that the doped catalysts could provide better optimizations to improve the maximum discharge capacities and the discharge potentials. On the other hand, the charge transfer abilities on the surface and diffusion rate of H atoms in the bulk of alloys also got improved. The DSC measurements showed that the hydrogen desorption activation of the hydrogenated composites with Ce0.88Cu0.06Zn0.06O2 solid solutions decreased to 77.03 kJ mol-1, while that of the composites with pure CeO2 was 97.62 kJ mol-1. The catalysis effect was enhanced by the doped content increase that means that the catalysis mechanism had close links to the oxygen vacancy concentration and the lattice defects in the solid solutions. On the other hand, the doped Cu2+ and Zn2+ ions could also play an important role in the catalytic process.
Valizadeh, Hadi; Pourmahmood, Mohammad; Mojarrad, Javid Shahbazi; Nemati, Mahboob; Zakeri-Milani, Parvin
2009-04-01
The objective of this study was to forecast and optimize the glucosamine production yield from chitin (obtained from Persian Gulf shrimp) by means of genetic algorithm (GA), particle swarm optimization (PSO), and artificial neural networks (ANNs) as tools of artificial intelligence methods. Three factors (acid concentration, acid solution to chitin ratio, and reaction time) were used as the input parameters of the models investigated. According to the obtained results, the production yield of glucosamine hydrochloride depends linearly on acid concentration, acid solution to solid ratio, and time and also the cross-product of acid concentration and time and the cross-product of solids to acid solution ratio and time. The production yield significantly increased with an increase of acid concentration, acid solution ratio, and reaction time. The production yield is inversely related to the cross-product of acid concentration and time. It means that at high acid concentrations, the longer reaction times give lower production yields. The results revealed that the average percent error (PE) for prediction of production yield by GA, PSO, and ANN are 6.84, 7.11, and 5.49%, respectively. Considering the low PE, it might be concluded that these models have a good predictive power in the studied range of variables and they have the ability of generalization to unknown cases.
The role of surface elasticity in liquid film formation
NASA Astrophysics Data System (ADS)
Champougny, Lorene; Scheid, Benoit; Restagno, Frederic; Rio, Emmanuelle; Laboratoire de Physique des Solides Team; TIPS-Fluid Physics Unit Team
2014-11-01
The formation of thin liquid films, either free standing (soap films) or deposited on a solid substrate (coated films), is of utmost importance for many applications, ranging from the control of foam stability to surface functionalization. In this work, the behavior of thin liquid films during their generation from a surfactant solution is investigated through comparison between a hydrodynamic model including surface elasticity and experiments. ``Twin'' models are proposed to describe the coating of films onto a solid plate (Landau-Levich-Derjaguin configuration) as well as soap film pulling (Frankel configuration) in a single framework. Experimental data are successfully fitted using the models, surface elasticity being the only adjustable parameter. For a given surfactant solution, the analyses of soap and coated films both yield the same value for the effective surface elasticity, showing that it is an intrinsic parameter of a surfactant solution. Conversely, we demonstrate that Frankel- or Landau-Levich-like experiments can be used in practice as surface rheometers to determine the numerical value of the (effective) surface elasticity of a solution, especially for values lower than those measurable by classical devices. L.C. was supported by ANR F2F. B.S. thanks the F.R.S.-FNRS for funding as well as the IAP-MicroMAST project.
Erping, Li; Haoyun, Chen; Yanyang, Shang; Jun, Pan; Qing, Hu
2017-11-01
In this paper, the pyrolysis characteristics of six typical components in municipal solid waste (MSW) were investigated through a TG-FTIR combined technique and it was concluded that the main pyrolysis process of the biomass components (including food residues, sawdust and paper) occurred at 150-600°C. The main volatiles were multi-component gas including H 2 O, CO 2 , and CO. The main pyrolysis temperatures of three artificial products (PP, PVC and leather) was ranged from 200to 500°C. The wavelength of small molecule gases (CH 4 , CO 2 and CO) and the the chemical bonds (CO and CC) were observed in the infrared spectrum Based on the pyrolysis temperature interval and volatile constituent, a new "double-solution" process of pyrolysis and oxygen-enrichment decomposition MSW was designed. To achieve this process, a double-solution project was built for the direct treatment of MSW (10t/d). The complete setup of equipment and analysis of the byproducts has been reported in this paper to indicate the performance of this process. Energy balance and economic benefits were analysed for the process supporting. It was successfully demonstrated that the double-solution process was the environmentally friendly alternative method for MSW treatment in Chinese rural areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Process for recovering pertechnetate ions from an aqueous solution also containing other ions
Rogers, R.; Horwitz, E.P.; Bond, A.H.
1997-02-18
A solid/liquid process for the separation and recovery of TcO{sub 4}{sup {minus}1} ions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups; whereas the aqueous solution from which the TcO{sub 4}{sup {minus}1} ions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt. A solid/liquid phase admixture of separation particles containing bound TcO{sub 4}{sup {minus}1} ions in such an aqueous solution that is free from MoO{sub 4}{sup {minus}2} ions is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture. 15 figs.
Queen, Wendy L; West, J Palmer; Hudson, Joan; Hwu, Shiou-Jyh
2011-11-07
Polyoxometallates (POMs) are desirable in materials applications ranging from uses as catalysts in selective oxidation reactions to molecular-like building blocks for the preparation of new extended solids. With the use of an unprecedented approach involving high temperature, molten salt methods, a fascinating series of salt-inclusion solids (SISs) that contain high nuclearity POMs has been isolated for the first time. Cs(11)Na(3)(V(15)O(36))Cl(6) (1) was synthesized using the eutectic NaCl/CsCl flux (mp 493 °C) which serves as a reactive solvent in crystal growth and allows for the SIS formation. Its framework can be viewed as an "ionic" lattice composed of alternately packed counterions of Cl-centered [V(15)O(36)Cl](9-) clusters (V15; S = 11/2) and multinuclear [Cs(9)Na(3)Cl(5)](7+) cations. In light of the structural analysis, 1 was proven to be soluble in water giving rise to a dark green solution that is similar in color to single crystals of the title compound. Infrared spectroscopy of the solid formed from fast evaporation of the solution supports the presence of dissolved V15 clusters. Also noteworthy is the magnetization of 1 at 2 K, which reveals an s-shaped plot resembling that of superparamagnetic materials. © 2011 American Chemical Society
Sintering of Lead-Free Piezoelectric Sodium Potassium Niobate Ceramics
Malič, Barbara; Koruza, Jurij; Hreščak, Jitka; Bernard, Janez; Wang, Ke; Fisher, John G.; Benčan, Andreja
2015-01-01
The potassium sodium niobate, K0.5Na0.5NbO3, solid solution (KNN) is considered as one of the most promising, environment-friendly, lead-free candidates to replace highly efficient, lead-based piezoelectrics. Since the first reports of KNN, it has been recognized that obtaining phase-pure materials with a high density and a uniform, fine-grained microstructure is a major challenge. For this reason the present paper reviews the different methods for consolidating KNN ceramics. The difficulties involved in the solid-state synthesis of KNN powder, i.e., obtaining phase purity, the stoichiometry of the perovskite phase, and the chemical homogeneity, are discussed. The solid-state sintering of stoichiometric KNN is characterized by poor densification and an extremely narrow sintering-temperature range, which is close to the solidus temperature. A study of the initial sintering stage revealed that coarsening of the microstructure without densification contributes to a reduction of the driving force for sintering. The influences of the (K + Na)/Nb molar ratio, the presence of a liquid phase, chemical modifications (doping, complex solid solutions) and different atmospheres (i.e., defect chemistry) on the sintering are discussed. Special sintering techniques, such as pressure-assisted sintering and spark-plasma sintering, can be effective methods for enhancing the density of KNN ceramics. The sintering behavior of KNN is compared to that of a representative piezoelectric lead zirconate titanate (PZT). PMID:28793702
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, Erin; Cobb, Angelica; Duke, Anna
Inorganic persistent luminescent phosphors are an excellent class of optical reporters for enabling sensitive point-of-care diagnostics, particularly with smartphone-based biosensing devices in testing formats such as the lateral flow assay (LFA). Here, the development of persistent phosphors for this application is focused on the solid solution (Sr 1-δBa δ) 2MgSi 2O 7:Eu 2+,Dy 3+ (δ = 0, 0.125, 0.25, 0.375), which is prepared using a high-temperature solid-state reaction as confirmed by synchrotron X-ray powder diffraction. The substitution of barium for strontium enables control over the Eu 2+ 5d-orbital crystal field splitting (CFS) as a tool for tuning the emission wavelengthmore » while maintaining luminescence lifetimes >9 min across the composition range. Thermoluminescence measurements of the solid solution provide evidence that trap states contribute to the persistent lifetimes with the trap depths also remaining constant as a function of composition. Time-gated luminescence images of these compounds are captured on a smartphone arranged in a layout to mimic a point-of-care test and demonstrate the viability of using these materials as optical reporters. Moreover, comparing the blue-emitting (Sr 0.625Ba 0.375) 2MgSi 2O 7:Eu 2+,Dy 3+ and the green-emitting SrAl 2O 4:Eu 2+,Dy 3+ in a single LFA-type format shows these two compounds can be detected and resolved simultaneously, thereby permitting the development of a multiplexed LFA.« less
Enhanced oral bioavailability of paclitaxel by solid dispersion granulation.
Shanmugam, Srinivasan; Im, Ho Taek; Sohn, Young Taek; Kim, Yong-Il; Park, Jae-Hyun; Park, Eun-Seok; Woo, Jong Soo
2015-01-01
The main objective of this study was to develop novel orally administrable tablets containing solid dispersion granules (SDG) of amorphous paclitaxel (PTX) prepared by fluid bed technology, and to evaluate its in vitro dissolution and in vivo pharmacokinetics (PK) in beagle dogs. The SDG were prepared using optimized composition by fluid bed technology, and characterized for solid-state properties. The release study of SDG tablet (SDG-T) in simulated gastric fluid showed a rapid release of PTX, reaching maximum dissolution within 20 min. Finally, the PK profile of SDG-T and a reference formulation Oraxol™ (oral solution formulation used in Phase I clinical study) at a dose of 60 mg orally with co-administration of P-gp inhibitor HM38101, and Taxol® at a dose of 10 mg intravenously (i.v.) was investigated in beagle dogs. The mean absolute BA% of PTX following SDG-T and Oraxol™ solution was 8.23 and 6.22% in comparison to i.v. administration of Taxol®. The relative BA% of PTX from SDG-T in comparison to Oraxol™ solution was 132.25% at a dose of 60 mg following oral administration. In conclusion, we have successfully prepared PTX tablets with solid dispersion granules (SDG) of amorphous PTX using fluid bed technology that could provide plasma PTX concentration in the range of 10-150 ng/mL for a period of 24 h following oral administration in dogs with a P-gp inhibitor. Hence, this could be a promising formulation for PTX oral delivery and could be used in our intended clinical studies following pre-clinical efficacy studies.
NASA Technical Reports Server (NTRS)
Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.
2004-01-01
Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2,3,4] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening, which in the past has been marginal but improving [3,4,5], now seems significant. Direct detection of the core moment has not yet been achieved.
Stationary light pulse in solids with long-lived spin coherence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Xiaojun; Wang Haihua; Wang Lei
We present a detailed analysis of stationary light pulses (SLP's) for the case of inhomogeneous broadening in both optical and spin transitions, which is normally found in solid materials with long-lived spin coherence. By solving the Langevin equations of motion for the density matrix elements under the integral over the entire range of the inhomogeneous broadenings, the necessary conditions for creating the SLP in a solid are obtained. Then the decay and diffusion processes that the SLP undergoes are analyzed. The characteristics of such processes are studied based on the analytic solution of the SLP with a slowly varying envelope.more » The dependence of SLP lifetime on inhomogeneous broadenings of spin and optical transitions, which can be regarded as the laser linewidth in the repump scheme, has been discussed.« less
NASA Technical Reports Server (NTRS)
Lewis, J. S.
1974-01-01
The bulk composition and interior structure of Titan required to explain the presence of a substantial methane atmosphere are shown to imply the presence of solid CH4 - 7H2O in Titan's primitive material. Consideration of the possible composition and structure of the present atmosphere shows plausible grounds for considering models with total atmospheric pressures ranging from approximately 20 mb up to approximately 1 kb. Expectations regarding the physical state of the surface and its chemical composition are strongly conditioned by the mass of atmosphere believed to be present. A surface of solid CH4, liquid CH4 solid, CH4 hydrate, H2O ice, aqueous NH3 solution, or even a non-surface of supercritical H2O-NH3-CH4 fluid could be rationalized.
Shimizu, Wataru; Hokka, Junsuke; Sato, Takaaki; Usami, Hisanao; Murakami, Yasushi
2011-08-04
The so-called sol-gel technique has been shown to be a template-free, efficient way to create functional porous silica materials having uniform micropores. This appears to be closely linked with a postulation that the formation of weakly branched polymer-like aggregates in a precursor solution is a key to the uniform micropore generation. However, how such a polymer-like structure can precisely be controlled, and further, how the generated low-fractal dimension solution structure is imprinted on the solid silica materials still remain elusive. Here we present fabrication of microporous silica from tetramethyl orthosilicate (TMOS) using a recently developed catalytic sol-gel process based on a nonionic hydroxyacetone (HA) catalyst. Small angle X-ray scattering (SAXS), nitrogen adsorption porosimetry, and transmission electron microscope (TEM) allowed us to observe the whole structural evolution, ranging from polymer-like aggregates in the precursor solution to agglomeration with heat treatment and microporous morphology of silica powders after drying and hydrolysis. Using the HA catalyst with short chain monohydric alcohols (methanol or ethanol) in the precursor solution, polymer-like aggregates having microscopic correlation length (or mesh-size) < 2 nm and low fractal dimensions ∼2, which is identical to that of an ideal coil polymer, can selectively be synthesized, yielding the uniform micropores with diameters <2 nm in the solid materials. In contrast, the absence of HA or substitution of 1-propanol led to considerably different scattering behavior reflecting the particle-like aggregate formation in the precursor solution, which resulted in the formation of mesopores (diameter >2 nm) in the solid product due to apertures between the particle-like aggregates. The data demonstrate that the extremely fine porous silica architecture comes essentially from a gaussian polymer-like nature of the silica aggregates in the precursor having the microscopic mesh-size and their successful imprint on the solid product. The result offers a general but significantly efficient route to creating precisely designed fine porous silica materials under mild condition that serve as low refractive index and efficient thermal insulation materials in their practical applications.
Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; ...
2014-10-03
We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate heremore » a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10 -3 s -1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due mainly to the temperature dependence of the shear modulus. In all the equiatomic alloys, ductility and strength increase with decreasing temperature down to 77 K. Keywords« less
NASA Astrophysics Data System (ADS)
Yin, Q. H.; Zhu, D. M.; Yang, D. Z.; Hu, Q. F.; Yang, Y. L.
2018-01-01
Clutaraldehyde cross-linked magnetic chitosan nanoparticles were synthesized and used as an adsorbent for the dispersive solid-phase extraction of palladium in active pharmaceutical ingredients (APIs) prior to analysis by a flame atomic absorption spectrophotometer. FT-IR, X-ray diffraction, and TEM were used to characterize the adsorbent. Various parameters of experimental performance, such as adsorbent amount, pH, adsorption time, desorption solutions, coexisting ions, and adsorbent reusability, were investigated and optimized. Under the optimized conditions, good linearity was achieved in the 5.0-500 μg/L concentration range, with correlation coefficients of 0.9989. The limit of detection is 2.8 μg/L and the recoveries of spiked samples ranged from 91.7 to 97.6%. It was confirmed that the GMCNs nanocomposite was a promising adsorbing material for extraction and preconcentration of Pd in APIs.
Zhang, Liyuan; Wang, Changyuan; Li, Zuotong; Zhao, Changjiang; Zhang, Hanqi; Zhang, Dongjie
2018-04-15
Ionic liquid-based matrix solid phase dispersion-solvent flotation coupled with high performance liquid chromatography was developed for the determination of the acetanilide herbicides, including metazachlor, propanil, alachlor, propisochlor, pretilachlor, and butachlor in rice samples. Some experimental parameters, including the type of dispersant, the mass ratio of dispersant to sample, pH of sample solution, the type of extraction solvent, the type of ionic liquid, flotation time, and flow rate of N 2 were optimized. The average recoveries of the acetanilide herbicides at spiked concentrations of 50, 125, and 250 µg/kg ranged from 89.4% to 108.7%, and relative standard deviations were equal to or lower than 7.1%, the limits of quantification were in the range of 38.0 to 84.7 µg/kg. Copyright © 2017 Elsevier Ltd. All rights reserved.
Johnson, C.A.; Grimes, D.J.; Rye, R.O.
2000-01-01
Stable isotope methods have been used to identify the mechanisms responsible for cyanide consumption at three heap-leach operations that process Carlin-type gold ores in Nevada, U.S.A. The reagent cyanide had ??15N values ranging from -5 to -2??? and ??13C values from -60 to -35???. The wide ??13C range reflects the use by different suppliers of isotopically distinct natural-gas feedstocks and indicates that isotopes may be useful in environmental studies where there is a need to trace cyanide sources. In heap-leach circuits displaying from 5 to 98% consumption of cyanide, barren-solution and pregnant-solution cyanide were isotopically indistinguishable. The similarity is inconsistent with cyanide loss predominantly by HCN offgassing (a process that in laboratory experiments caused substantial isotopic changes), but it is consistent with cyanide retention within the heaps as solids, a process that caused minimal isotopic changes in laboratory simulations, or with cyanide oxidation, which also appears to cause minimal changes. In many pregnant solutions cyanide was carried entirely as metal complexes, which is consistent with ferrocyanides having precipitated or cyanocomplexes having been adsorbed within the heaps. It is inferred that gaseous cyanide emissions from operations of this type are less important than has generally been thought and that the dissolution or desorption kinetics of solid species is an important control on cyanide elution when the spent heaps undergo rinsing. Nitrate, nitrite and ammonium had ??15N values of 1-16???. The data reflect isotopic fractionation during ammonia offgassing or denitrification of nitrate - particularly in reclaim ponds - but do not indicate the extent to which nitrate is derived from cyanide or from explosive residues. ?? The Institution of Mining and Metallurgy 2000.
Controls on the quality of harvested rainwater in residential systems
NASA Astrophysics Data System (ADS)
Sojka, S. L.; Phung, D.; Hollingsworth, C.
2014-12-01
Rainwater harvesting systems, in which runoff from roofs is collected and used for irrigation, toilets and other purposes, present a viable solution to limited freshwater supplies and excess stormwater runoff. However, a lack of data on the quality of harvested rainwater hinders adoption of rainwater harvesting systems and makes development of rainwater harvesting regulations difficult. We conducted monthly surveys of 6 existing residential rainwater harvesting systems ranging in age from 1 to 11 years measuring pH, temperature, dissolved oxygen, total suspended solids, dissolved organic carbon, and coliform bacteria. We also examined a subset of the samples for iron, lead, mercury and arsenic. Many of the systems routinely met the water quality requirements for non-potable use without additional treatment, which is often required by regulations. In addition, while previous studies have shown that roof runoff contains heavy metals, the water in all systems showed very low or undetectable levels of metal contamination. Coliform bacteria concentration ranged from 20 to greater than 1400 CFU's per 100 mL and correlated with total suspended solids, which ranged from 2 - 7 mg l-1. The relationship between suspended solids and bacteria population was confirmed in a controlled experiment on the impact of filtering the rainwater before storage. Filtration decreased total suspended solids and total coliforms and increased dissolved oxygen concentration. This project provides insight into the effects of system design and a baseline assessment of the quality of harvested rainwater in existing systems.
Calculation of open and closed system elastic coefficients for multicomponent solids
NASA Astrophysics Data System (ADS)
Mishin, Y.
2015-06-01
Thermodynamic equilibrium in multicomponent solids subject to mechanical stresses is a complex nonlinear problem whose exact solution requires extensive computations. A few decades ago, Larché and Cahn proposed a linearized solution of the mechanochemical equilibrium problem by introducing the concept of open system elastic coefficients [Acta Metall. 21, 1051 (1973), 10.1016/0001-6160(73)90021-7]. Using the Ni-Al solid solution as a model system, we demonstrate that open system elastic coefficients can be readily computed by semigrand canonical Monte Carlo simulations in conjunction with the shape fluctuation approach. Such coefficients can be derived from a single simulation run, together with other thermodynamic properties needed for prediction of compositional fields in solid solutions containing defects. The proposed calculation approach enables streamlined solutions of mechanochemical equilibrium problems in complex alloys. Second order corrections to the linear theory are extended to multicomponent systems.
Ghazaghi, Mehri; Mousavi, Hassan Zavvar; Shirkhanloo, Hamid; Rashidi, Alimorad
2017-01-25
A specific technique is introduced to overcome limitations of classical solidification of floating organic drop microextraction, such as tedious and time-consuming centrifuge step and using disperser solvent, by facile and efficient participation of solid and liquid phases. In this proposed method of stirring-controlled solidified floating solid-liquid drop microextraction (SC-SF-SLDME), magnetic carbon nanotube-nickel hybrid (MNi-CNT) as a solid part of the extractors are dispersed ultrasonically in sample solution, and the procedure followed by dispersion of liquid phase (1-undecanol) through high-rate stirring and easily recollection of MNi-CNT in organic solvent droplets through hydrophobic force. With the reduction in speed of stirring, one solid-liquid drop is formed on top of the solution. MNi-CNT acts as both extractor and the coalescence helper between organic droplets for a facile recollection. MNi-CNT was prepared by spray pyrolysis of nickel oleate/toluene mixture at 1000 °C. Four tyrosine kinase inhibitors were selected as model analytes and the effecting parameters were investigated. The results confirmed that magnetic nanoadsorbent has an important role in the procedure and complete collection of dispersed solvent is not achieved in the absence of the solid phase. Also, short extraction time exhibited success of the proposed method and effect of dispersed solid/liquid phases. The limits of quantification (LOQs) for imatinib, sunitinib, erlotinib, and nilotinib were determined to be as low as 0.7, 1.7, 0.6, and 1.0 μg L -1 , respectively. The intra-day precisions (RSDs) were lower than 4.5%. Method performance was investigated by determination of mentioned tyrosine kinase inhibitors (TKIs) in human serum and cerebrospinal fluid samples with good recoveries in the range of 93-98%. Copyright © 2016 Elsevier B.V. All rights reserved.
Ghazaghi, Mehri; Mousavi, Hassan Zavvar; Rashidi, Ali Morad; Shirkhanloo, Hamid; Rahighi, Reza
2016-01-01
A uniquely novel, fast, and facile technique is introduced for the first time in which a scant amount of graphene oxide (GO), without modification, has been utilized in dispersive mode of solid phase extraction (SPE) for an efficient yet simple separation. The proposed method of coagulating homogenous dispersive micro solid phase extraction (CHD-µSPE) is based on coagulation of homogeneous GO solution with the aid of polyetheneimine (PEI). CHD-µSPE use full adsorption capacity of GO because in this method was used GO solution obtained from synthesis process without drying step and stacking nanosheets. In optimized condition, 30 µL GO solution (7 mg mL(-1)), obtained in synthesis process, was injected into 1.5 mL the sample solution followed by immediate injection of 53 µL PEI solution (1 mg mL(-1)). After inserting PEI, GO sheets aggregate and can be readily separated by centrifugation. PEI not only cause aggregation of GO, but also form three-dimensional network of GO with easy handling in following separation steps. Lead, cadmium, and chromium were selected as model analytes and the effecting parameters including the amount of GO, concentration of PEI, sample pH, extraction time, and type of desorption solvent were investigated and optimized. The results indicate that the proposed CHD-µSPE method can be successfully applied GO in dispersive mode of SPE without effecting on good capability adsorption of GO. The novel method was applied in determination of lead, cadmium, and chromium in water, human saliva, and urine samples by electrothermal atomic absorption spectrometry. The detection limits are as low as 0.035, 0.005, and 0.012 µg L(-1) for Pb, Cd, and Cr respectively. The intra-day precisions (RSDs) were lower than 3.8%. CHD-µSPE method showed a good linear ranges of 0.24-15.6, 0.015-0.95 and 0.039-2.33 µg L(-1) for Pb, Cd and Cr respectively. Method performance was investigated by determination of mentioned metal ions in river water, human urine and saliva sample with good recoveries in range of 94.2-103.0%. The accuracy of the method was underpinned by correct analysis of a standard reference material (SRM: 2668 level I, Urine). Copyright © 2015 Elsevier B.V. All rights reserved.
The use of solid supports to generate nucleic acid carriers.
Unciti-Broceta, Asier; Díaz-Mochón, Juan José; Sánchez-Martín, Rosario M; Bradley, Mark
2012-07-17
Nucleic acids are the foundation stone of all cellular processes. Consequently, the use of DNA or RNA to treat genetic and acquired disorders (so called gene therapy) offers enormous potential benefits. The restitution of defective genes or the suppression of malignant genes could target a range of diseases, including cancers, inherited diseases (cystic fibrosis, muscular dystrophy, etc.), and viral infections. However, this strategy has a major barrier: the size and charge of nucleic acids largely restricts their transit into eukaryotic cells. Potential strategies to solve this problem include the use of a variety of natural and synthetic nucleic acid carriers. Driven by the aim and ambition of translating this promising therapeutic approach into the clinic, researchers have been actively developing advanced delivery systems for nucleic acids for more than 20 years. A decade ago we began our investigations of solid-phase techniques to construct families of novel nucleic acid carriers for transfection. We envisaged that the solid-phase synthesis of polycationic dendrimers and derivatized polyamimes would offer distinct advantages over solution phase techniques. Notably in solid phase synthesis we could take advantage of mass action and streamlined purification procedures, while simplifying the handling of compounds with high polarities and plurality of functional groups. Parallel synthesis methods would also allow rapid access to libraries of compounds with improved purities and yields over comparable solution methodologies and facilitate the development of structure activity relationships. We also twisted the concept of the solid-phase support on its head: we devised miniaturized solid supports that provided an innovative cell delivery vehicle in their own right, carrying covalently conjugated cargos (biomolecules) into cells. In this Account, we summarize the main outcomes of this series of chemically related projects.
NASA Astrophysics Data System (ADS)
Gao, Lisheng; Guo, Hanzheng; Zhang, Shujun; Randall, Clive A.
2018-02-01
We previously reported various solid solution systems that demonstrated the stabilized antiferroelectric (P) phases in NaNbO3 through lowering the tolerance factor. However, all those reported modifications were achieved by adding A2+B4+O3 type solid solutions. A lead-free antiferroelectric (AFE) solid solution xBiScO3-(1-x)NaNbO3 was rationalized by adopting the tolerance factor design rule. Specifically, adding BiScO3 was found to effectively stabilize the AFE phase without changing the crystal symmetry of NaNbO3. Microstructure and electron zone axis diffraction patterns from transmission electron microscopy revealed the stabilized AFE (P) phase in this solid solution. Besides, the electric-field-induced polarization with a double-hysteresis loop was observed. The present results pointed out that the strategy could also be applied while adding A3+B3+O3 type solid solutions. In addition, it expanded the compositional design that can be applied to antiferroelectric materials.
Lithium-Based High Energy Density Flow Batteries
NASA Technical Reports Server (NTRS)
Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)
2014-01-01
Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.
Materials research for passive solar systems: Solid-state phase-change materials
NASA Astrophysics Data System (ADS)
Benson, D. K.; Webb, J. D.; Burrows, R. W.; McFadden, J. D. O.; Christensen, C.
1985-03-01
A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C5H12O4), pentaglycerinve (C5H12O3), and neopentyl glycol (C5H12O2). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature between 25 C and 188 C, and have latent heats of transformation etween 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier.
Physicochemical properties and solubility of alkyl-(2-hydroxyethyl)-dimethylammonium bromide.
Domańska, Urszula; Bogel-Łukasik, Rafał
2005-06-23
Quaternary ammonium salts, which are precursors of ionic liquids, have been prepared from N,N-dimethylethanolamine as a substrate. The paper includes specific basic characterization of synthesized compounds via the following procedures: nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectra, water content, mass spectroscopy (MS) spectra, temperatures of decompositions, basic thermodynamic properties of pure ionic liquids (the melting point, enthalpy of fusion, enthalpy of solid-solid phase transition, glass transition), and the difference in the solute heat capacity between the liquid and solid at the melting temperature determined by differential scanning calorimetry (DSC). The (solid + liquid) phase equilibria of binary mixtures containing (quaternary ammonium salt + water, or + 1-octanol) has been measured by a dynamic method over wide range of temperatures, from 230 K to 560 K. These data were correlated by means of the UNIQUAC ASM and modified nonrandom two-liquid NRTL1 equations utilizing parameters derived from the (solid + liquid) equilibrium. The partition coefficient of ionic liquid in the 1-octanol/water binary system has been calculated from the solubility results. Experimental partition coefficients (log P) were negative at three temperatures.
Analytical Solution for the Critical Velocity of Pushing/Engulfment Transition
NASA Technical Reports Server (NTRS)
Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu
2004-01-01
The distribution of ceramic particles in a metal matrix composite material depends primarily on the interaction of the particles with the solid/liquid interface during the solidification process. A numerical model that describes the evolution of the shape of the solid/liquid interface in the proximity of a foreign particle will presented in this paper. The model accounts for the influence of the temperature gradient and the Gibbs-Thomson and disjoining pressure effects. It shows that for the systems characterized by k(sub p) < k(sub L) the disjoining pressure causes the interface curvature to change its sign in the close-contact particle/interface region. It also shows that the increase of the temperature gradient diminishes the effect of the disjoining pressure. The analysis of the numerical results obtained for a large range of processing conditions and materials parameters has led to the development of an analytical solution for the critical velocity of pushing/engulfinent transition. The theoretical results will be discussed and compared with the experimental measurements performed under microgravity conditions.
Solidification and crystal growth of solid solution semiconducting alloys
NASA Technical Reports Server (NTRS)
Lehoczky, S. L.; Szofran, F. R.
1984-01-01
Problems associated with the solidification and crytal growth of solid-solution semiconducting alloy crystals in a terrestrial environment are described. A detailed description is given of the results for the growth of mercury cadmium telluride (HgCdTe) alloy crystals by directional solidification, because of their considerable technological importance. A series of HgCdTe alloy crystals are grown from pseudobinary melts by a vertical Bridgman method using a wide range of growth rates and thermal conditions. Precision measurements are performed to establish compositional profiles for the crystals. The compositional variations are related to compositional variations in the melts that can result from two-dimensional diffusion or density gradient driven flow effects ahead of the growth interface. These effects are discussed in terms of the alloy phase equilibrium properties, the recent high temperature thermophysical data for the alloys and the highly unusual heat transfer characteristics of the alloy/ampule/furnace system that may readily lead to double diffusive convective flows in a gravitational environment.
NASA Astrophysics Data System (ADS)
Lukyanova, E. A.; Martynenko, N. S.; Serebryany, V. N.; Belyakov, A. N.; Rokhlin, L. L.; Dobatkin, S. V.; Estrin, Yu. Z.
2017-11-01
The structure and the properties of an Mg-Y-Nd-Zr alloy (WE43) are studied after high pressure torsion (HPT) in the temperature range 20-300°C. Structure refinement proceeds mainly by deformation twinning with the formation of a partial nanocrystalline structure with a grain size of 30-100 nm inside deformation twins. The WE43 alloy is shown to be aged during heating after HPT due to the decomposition of a magnesium solid solution. HPT at room temperature and subsequent aging causes maximum hardening. It is shown that HPT significantly accelerates the decomposition of a magnesium solid solution. HPT at all temperatures considerably increases the tensile strength and the yield strength upon tensile tests and significantly decreases plasticity. Subsequent aging additionally hardens the WE43 alloy. A potentiodynamic study shows that the corrosion resistance of this alloy after HPT increases. However, subsequent aging degrades the corrosion properties of the alloy.
NASA Astrophysics Data System (ADS)
Zhang, Xin; Liu, Hongliang; Li, Songhao; Zhang, Feipeng; Lu, Qingmei; Li, Jingfeng
2014-03-01
A series of Sb-doped Mg2(Si0.4Sn0.6)Sbx (0 ≤ x ≤ 0.025) solid solutions were prepared by an induction melting, Melt Spinning (MS) and Spark Plasma Sintering (SPS) method, namely the non-equilibrium technique MS-SPS, using bulks of Magnesium, Silicon, Tin, and Antimony as raw materials. The non-equilibrium technique generates the unique multiscale microstructures of samples containing micronscale grains and nanoscale precipitates, the multiscale microstructures remarkably make the lattice thermal conductivities decreased, particularly for samples with the nanoscale precipitates having the size of 10-20 nm. Meanwhile, Sb-doping greatly increased the electrical performance of samples. Consequently, the Sb-doping combined with the multiscale microstructures strategy remarkably improves the overall thermoelectric (TE) performance of Sb doped samples, and a high dimensionless figure of merit (ZT) value of up to 1.25 at 723 K is obtained with Mg2(Si0.4Sn0.6)Sb0.02 sample in a relatively wide temperature range.
Creep Properties of the As-Cast Al-A319 Alloy: T4 and T7 Heat Treatment Effects
NASA Astrophysics Data System (ADS)
Erfanian-Naziftoosi, Hamid R.; Rincón, Ernesto J.; López, Hugo F.
2016-08-01
In this work, the creep behavior of a commercial Al-A319 alloy was investigated in the temperature range of 413 K to 533 K (140 °C to 260 °C). Tensile creep specimens in the as-cast condition and after heat treating by solid solution (T4) and by aging (T7) were tested in a stress range varying from 60 to 170 MPa. It was found that steady-state creep strain rate was significantly low in the T7 condition when compared with either the T4 or as-cast alloy conditions. As a result, the time to failure behavior considerably increased. The experimentally determined creep exponents measured from the stress-strain curves were 4 for the as-cast alloy, 7.5 in the solid solution, and 9.5 after aging. In particular, after solid solution a grain substructure was found to develop which indicated that creep in a constant subgrain structure was active, thus accounting for the n exponent of 7.5. In the aged condition, a stress threshold is considered to account for the power law creep exponent n of 9.5. Moreover, It was found that the creep activation energy values were rather similar for the alloys in the as-cast (134 kJ/mol) and T4 (146 kJ/mol) conditions. These values are close to the one corresponding to pure Al self-diffusion (143 kJ/mol). In the aged alloy, the apparent creep activation energy (202 kJ/mol) exceeded that corresponding to Al self-diffusion. This deviation in activation energy is attributed to the effect of temperature on the alloy elastic modulus. Microstructural observations using transmission electron microscopy provided further support for the various dislocation-microstructure interactions exhibited by the alloy under the investigated creep conditions and implemented heat treatments.
Exergy optimization in a steady moving bed heat exchanger.
Soria-Verdugo, A; Almendros-Ibáñez, J A; Ruiz-Rivas, U; Santana, D
2009-04-01
This work provides an energy and exergy optimization analysis of a moving bed heat exchanger (MBHE). The exchanger is studied as a cross-flow heat exchanger where one of the phases is a moving granular medium. The optimal MBHE dimensions and the optimal particle diameter are obtained for a range of incoming fluid flow rates. The analyses are carried out over operation data of the exchanger obtained in two ways: a numerical simulation of the steady-state problem and an analytical solution of the simplified equations, neglecting the conduction terms. The numerical simulation considers, for the solid, the convection heat transfer to the fluid and the diffusion term in both directions, and for the fluid only the convection heat transfer to the solid. The results are compared with a well-known analytical solution (neglecting conduction effects) for the temperature distribution in the exchanger. Next, the analytical solution is used to derive an expression for the exergy destruction. The optimal length of the MBHE depends mainly on the flow rate and does not depend on particle diameter unless they become very small (thus increasing sharply the pressure drop). The exergy optimal length is always smaller than the thermal one, although the difference is itself small.
Removal of arsenic, vanadium, and/or nickel compounds from petroliferous liquids
Fish, Richard H.
1986-01-01
Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.
Removal of arsenic, vanadium and/or nickel compounds from spent catecholated polymer
Fish, R.H.
1987-04-21
Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20 to 100 C with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.
Removal of arsenic, vanadium and/or nickel compounds from spent catecholated polymer
Fish, Richard H.
1987-01-01
Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.
Sirolimus formulation with improved pharmacokinetic properties produced by a continuous flow method.
Solymosi, Tamás; Angi, Réka; Basa-Dénes, Orsolya; Ránky, Soma; Ötvös, Zsolt; Glavinas, Hristos; Filipcsei, Genovéva; Heltovics, Gábor
2015-08-01
The oral bioavailability of Sirolimus is limited by poor dissolution of the compound in the gastrointestinal tract resulting in a low bioavailability and large inter-individual differences in blood levels. Several different formulation approaches were applied to overcome these disadvantageous pharmacokinetic properties including the marketed oral solution and a tablet form containing wet milled nanocrystals. These approaches deliver improved pharmacokinetics, yet, they share the characteristics of complex production method and composition. We have developed a nanostructured Sirolimus formulation prepared by the controlled continuous flow precipitation of the compound from its solution in the presence of stabilizers. We have shown that contrary to the batch production the process could be easily intensified and scaled up; apparently the uniformity of the precipitation is heavily dependent on the production parameters, most likely the mixing of the solvent and antisolvent. We compared the physicochemical and pharmacokinetic properties of the nanostructured formula with the marketed nanoformula. We found that our method produces particles in the size range of less than 100nm. The solid form redispersed instantaneously in water and in biorelevant media. Both the solid form and the redispersed colloid solution showed excellent stability even in accelerated test conditions. The oral administration of the nanostructured formula resulted in faster absorption, higher exposure and higher trough concentrations when compared to the marked form. These advantageous properties could allow the development of solid oral Sirolimus formulae with lower strength and gel based topical delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sibi, N.; Subodh, G.
2017-12-01
Garnets are naturally occurring minerals with the general formula X3Y2Z3O12 having various applications. In the present study, the structural and physical properties of a garnet mineral obtained from Indian Rare Earth Ltd., Manavalakurichi, Tamil Nadu, India were comprehensively investigated. The compositional analysis using electron probe micro analysis (EPMA) revealed that the mineral belongs to almandine-pyrope solid solution (Al70Py29) with the chemical formula (Fe1.72Mg0.8Mn0.01Ca0.02) (Fe0.04Al2.36) Si2.93O12. Rietveld refinement of the x-ray diffraction pattern confirms that the space group is Ia{ - }\\overline{3} d with refined cubic lattice parameter a = 11.550(4) Å. The refined occupancy values of multiple cations in the dodecahedral and octahedral sites are in agreement with the EPMA data. Fourier transform infrared and FT Raman spectra show bands corresponding to almandine-pyrope solid solution. Peak splitting of IR and Raman bands confirms presence of multiple cations in the dodecahedral site. Thermogravimetric/differential thermal analysis shows that the mineral is stable up to 600°C in spite of the presence of Fe2+ ions. Low temperature magnetic susceptibility data is in agreement with the amount of Fe2+ ions present in the mineral. The dielectric constant of the mineral varied from 6 to 16.5 when sintered at temperatures ranging from 600°C to 1250°C.
Pum, Dietmar; Toca-Herrera, Jose Luis; Sleytr, Uwe B.
2013-01-01
Crystalline S(urface)-layers are the most commonly observed cell surface structures in prokaryotic organisms (bacteria and archaea). S-layers are highly porous protein meshworks with unit cell sizes in the range of 3 to 30 nm, and thicknesses of ~10 nm. One of the key features of S-layer proteins is their intrinsic capability to form self-assembled mono- or double layers in solution, and at interfaces. Basic research on S-layer proteins laid foundation to make use of the unique self-assembly properties of native and, in particular, genetically functionalized S-layer protein lattices, in a broad range of applications in the life and non-life sciences. This contribution briefly summarizes the knowledge about structure, genetics, chemistry, morphogenesis, and function of S-layer proteins and pays particular attention to the self-assembly in solution, and at differently functionalized solid supports. PMID:23354479
Dielectric Relaxation of CaCu3Ti4O12 synthesized from a pyrolysis method
NASA Astrophysics Data System (ADS)
Liu, Jianjun; Mei, W. N.; Smith, R. W.; Hardy, J. R.
2006-03-01
Giant dielectric constant material CaCu3Ti4O12 has been synthesized by using a pyrolysis method. A stable solution was made by dissolving calcium nitrate, copper nitrate, and titanium isopropoxide in 2-methoxyethanol; the solution was then heated at 500 and 700 ^oC for 2 hours to obtain a pure phase of CaCu3Ti4O12. The frequency and temperature dependences of dielectric permittivity were examined in the ranges of 10-1˜10^6 Hz and -150˜200 ^oC. We found that the dielectric properties of the sample were the same as those made from solid state reaction. Specifically, there is a Debye-like relaxation at low temperature and its giant dielectric constant about 11000 is independent of the temperature and frequency over a wide range.
Yang, Rui; Liu, Yuxin; Yan, Xiangyang; Liu, Shaomin
2016-12-01
A rapid, sensitive and accurate method for the simultaneous extraction and determination of five types of trace phthalate esters (PAEs) in environmental water and beverage samples using magnetic molecularly imprinted solid-phase extraction (MMIP-SPE) coupled with gas chromatography-mass spectrometry (GC-MS) was developed. A novel type of molecularly imprinted polymers on the surface of yolk-shell magnetic mesoporous carbon (Fe 3 O 4 @void@C-MIPs) was used as an efficient adsorbent for selective adsorption of phthalate esters based on magnetic solid-phase extraction (MSPE). The real samples were first preconcentrated by Fe 3 O 4 @void@C-MIPs, subsequently extracted by eluent and finally determined by GC-MS after magnetic separation. Several variables affecting the extraction efficiency of the analytes, including the type and volume of the elution solvent, amount of adsorbent, extraction time, desorption time and pH of the sample solution, were investigated and optimized. Validation experiments indicated that the developed method presented good linearity (R 2 >0.9961), satisfactory precision (RSD<6.7%), and high recovery (86.1-103.1%). The limits of detection ranged from 1.6ng/L to 5.2ng/L and the enrichment factor was in the range of 822-1423. The results indicated that the novel method had the advantages of convenience, good sensitivity, and high efficiency, and it could also be successfully applied to the analysis of PAEs in real samples. Copyright © 2016. Published by Elsevier B.V.
Sajid, Muhammad; Basheer, Chanbasha
2016-07-15
In present work, a new configuration of micro-solid phase extraction was introduced and termed as stir-bar supported micro-solid-phase extraction (SB-μ-SPE). A tiny stir-bar was packed inside the porous polypropylene membrane along with sorbent material and the edges of membrane sheet were heat sealed to secure the contents. The packing of stir-bar inside the μ-SPE device does not allow the device to stick with the wall or any corner of the sample vial during extraction, which is, however, a frequent observation in routine μ-SPE. Moreover, it enhances effective surface area of the sorbent exposed to sample solution through continuous agitation (motion and rotation). It also completely immerses the SB-μ-SPE device in the sample solution even for non-polar sorbents. Polychlorinated biphenyls (PCBs) were selected as model compounds and the method performance was evaluated in human serum samples. After extraction, samples were analyzed by gas chromatography mass spectrometry (GC-MS). The factors that affect extraction efficiency of SB-μ-SPE were optimized. Under optimum conditions, a good linearity (0.1-100ngmL(-1)) with coefficients of determinations ranging from 0.9868 to 0.9992 was obtained. Limits of detections were ranged between 0.003 and 0.047ngmL(-1). Acceptable values for inter-day (3.2-9.1%) and intra-day (3.1-7.2%) relative standard deviations were obtained. The optimized method was successfully applied to determine the concentration of PCB congeners in human serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Amin, Alaa S
2010-12-01
A highly sensitive, selective and rapid method for the determination μg L(-1) level of Au(III) based on the rapid reaction of Au(III) with 2,3-dichloro-6-(3-carboxy-2-hydroxy-1-naphthylazo)quinoxaline (DCHNAQ) and the solid phase extraction of the colored complex with a reversed phase polymer-based C18 cartridge have been developed. The DCHNAQ reacted with Au(III) to form a violet complex of a molar ratio 3:1 [DCHNAQ to Au(III)] in the presence of 5.0 M of phosphoric acid solution and Triton X-100 medium. This complex was enriched by the solid phase extraction with a polymer-based C18 cartridge. The enrichment factor of 100 was achieved. The molar absorptivity of the complex is 2.73×10(5) l mol(-1) cm(-1) at 633 nm in the measured solution. The system obeys Beer's law in the range of 0.02-1.30 μg ml(-1), whereas the optimum concentration ranges obtained from Ringbom plot was 0.08-1.24 μg ml(-1). The relative standard deviation for ten replicates sample of 0.6 μg ml(-1) level is 1.28%. The detection and quantification limits, are 6.1 and 19.5 ng ml(-1) in the original sample. This method was applied to the determination of gold in water, jewel and ore samples with good results comparing to the GFAAS method. Copyright © 2010 Elsevier B.V. All rights reserved.
Raman and Fourier transform infrared spectroscopic study of pyromorphite-vanadinite solid solutions
NASA Astrophysics Data System (ADS)
Solecka, Urszula; Bajda, Tomasz; Topolska, Justyna; Zelek-Pogudz, Sylwia; Manecki, Maciej
2018-02-01
Due to the great range of the application fields for apatites, there is a strong need to complete the data set determining the properties of these minerals. In this study, Raman and Infrared spectra of the phases from pyromorphite Pb5(PO4)3Cl - vanadinite Pb5(VO4)3Cl series were investigated. Totally, 9 samples (2 end-members and 7 solid solutions of the series) were synthesized at 25 °C and pH = 3.5, and analyzed. In the Raman and Infrared spectra of the studied Pb-apatites, the bands typical for the vibrations in the PO4 and the VO4 tetrahedra appeared. The bands attributed to the stretching vibrations (ν1, ν3) occurred in the 1050-910 cm- 1 and 830-720 cm- 1 regions, whereas the bending vibrations (ν2, ν4) were visible at the 580-540 cm- 1, 430-380 cm- 1 and 370-290 cm- 1 range. The position of the bands depended on the P/(P + V) ratio in the analyzed solid, since there are differences in the ionic radii and the atomic mass of P5 + and V5 +, which affect the bong lengths, bond forces and the banding energies of the substituting tetrahedra. The analysis allowed observing gradual shifts of the bands caused by the replacement of phosphorous with vanadium in the studied phases. The positions and the intensities of selected bands are proposed to serve as a semi-quantitative estimation of the chemical composition of the phases from the pyromorphite - vanadinite series.
Electrolyte for batteries with regenerative solid electrolyte interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Jie; Lu, Dongping; Shao, Yuyan
2017-08-01
An energy storage device comprising: an anode; and a solute-containing electrolyte composition wherein the solute concentration in the electrolyte composition is sufficiently high to form a regenerative solid electrolyte interface layer on a surface of the anode only during charging of the energy storage device, wherein the regenerative layer comprises at least one solute or solvated solute from the electrolyte composition.
Design principles for radiation-resistant solid solutions
NASA Astrophysics Data System (ADS)
Schuler, Thomas; Trinkle, Dallas R.; Bellon, Pascal; Averback, Robert
2017-05-01
We develop a multiscale approach to quantify the increase in the recombined fraction of point defects under irradiation resulting from dilute solute additions to a solid solution. This methodology provides design principles for radiation-resistant materials. Using an existing database of solute diffusivities, we identify Sb as one of the most efficient solutes for this purpose in a Cu matrix. We perform density-functional-theory calculations to obtain binding and migration energies of Sb atoms, vacancies, and self-interstitial atoms in various configurations. The computed data informs the self-consistent mean-field formalism to calculate transport coefficients, allowing us to make quantitative predictions of the recombined fraction of point defects as a function of temperature and irradiation rate using homogeneous rate equations. We identify two different mechanisms according to which solutes lead to an increase in the recombined fraction of point defects; at low temperature, solutes slow down vacancies (kinetic effect), while at high temperature, solutes stabilize vacancies in the solid solution (thermodynamic effect). Extension to other metallic matrices and solutes are discussed.
Spider Silk: From Protein-Rich Gland Fluids to Diverse Biopolymer Fibers
2016-01-06
characterize the protein-rich fluid in the various spider silk producing glands. We have been using a battery of magnetic resonance methods including...solution and solid-state nuclear magnetic resonance (NMR) and micro imaging (MRI) in combination with wide angle and small angle X-ray diffraction...range of magnetic resonance methods. We successfully developed magnetic resonance imaging (MRI) techniques with localized spectroscopy to probe the silk
Lipid immiscibility and biophysical properties: Molecular order within and among unit cell volumes
USDA-ARS?s Scientific Manuscript database
Saturated and unsaturated fatty acids clearly have a discrete chemical structure in the solid state. In a saturated solution, the solid state and solution state are in chemical equilibrium. The lipid stearic acid packs in unit cell volumes in the liquid state as well as in the solid state. Normal...
Multiferroic properties in NdFeO3-PbTiO3 solid solutions
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Pal, Jaswinder; Kaur, Shubhpreet; Agrawal, P.; Singh, Mandeep; Singh, Anupinder
2018-05-01
The x(NdFeO3) - 1-x(PbTiO3) where x = 0.2 solid solution was prepared using solid state reaction route. The X-ray diffraction (XRD) data reveals the single phase formation. The microstructure shows grain growth with lesser porosity. The energy dispersive analysis confirms the presence of elements in stochiometric proportion. The polarization vs. Electric field loop estabilished a ferroelectric type behavior but lossy in nature. This lossy nature may be due to the presence of large leakage current in solid solution. The Magnetization vs. Magnetic field plot exhibits a unsaturated hysteriss loop indicates that the sample is not purely ferromagnetic.
Study of low-temperature active rare-earth oxide catalysts for automotive exhaust clean-up.
DOT National Transportation Integrated Search
2014-02-01
We report a facile onepot synthesis of CexZr1-xO2 (0x1) solid solution nanocrystals using hydrothermal reactions. A direct formation of oxide solid solutions in aqueous solution under pressure at low temperatures was clearly revealed by X-ra...
Estimation of the curvature of the solid liquid interface during Bridgman crystal growth
NASA Astrophysics Data System (ADS)
Barat, Catherine; Duffar, Thierry; Garandet, Jean-Paul
1998-11-01
An approximate solution for the solid/liquid interface curvature due to the crucible effect in crystal growth is derived from simple heat flux considerations. The numerical modelling of the problem carried out with the help of the finite element code FIDAP supports the predictions of our analytical expression and allows to identify its range of validity. Experimental interface curvatures, measured in gallium antimonide samples grown by the vertical Bridgman method, are seen to compare satisfactorily to analytical and numerical results. Other literature data are also in fair agreement with the predictions of our models in the case where the amount of heat carried by the crucible is small compared to the overall heat flux.
Yukalang, Nachalida; Clarke, Beverley; Ross, Kirstin
2018-06-21
Municipal solid waste is a significant problem, particularly in developing countries that lack sufficient infrastructure and useable land mass to process it in an appropriate manner. Some developing nations are experiencing a combination of issues that prevent proper management of solid waste. This paper reviews the management of municipal solid waste in northeast Thailand, using the Tha Khon Yang Sub-district Municipality (TKYSM) in Maha Sarakham Province as a case study. The combination of rapid population and economic growth and its associated affluence has led to an increase in the use of consumer items and a concomitant increase in the production of municipal solid waste. In the TKYSM there is pressure on local government to establish a suitable waste management program to resolve the escalating waste crisis. The aim of this study is to provide viable solutions to waste management challenges in the TKYSM, and potentially to offer guidance to other similar localities also facing the same challenges. It is well established that successful changes to waste management require an understanding of local context and consideration of specific issues within a region. Therefore, extensive community consultation and engagement with local experts was undertaken to develop an understanding of the particular waste management challenges of the TKYSM. Research methods included observations, one-on-one interviews and focus groups with a range of different stakeholders. The outcomes of this research highlight a number of opportunities to improve local infrastructure and operational capacity around solid waste management. Waste management in rural and urban areas needs to be approached differently. Solutions include: development of appropriate policy and implementation plans (based around the recommendations of this paper); reduction of the volume of waste going to landfill by establishing a waste separation system; initiation of a collection service that supports waste separation at source; educating the citizens of the municipality; and the local government staff, and for the local government to seek external support from the local temples and expertise from the nearby university.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Miao; Mohammadi, Reza; Turner, Christopher L.
In this paper, we explore the hardening mechanisms in WB4-based solid solutions upon addition of Ta, Mn, and Cr using in situ radial X-ray diffraction techniques under nonhydrostatic pressure. By examining the lattice-supported differential strain, we provide insights into the mechanism for hardness increase in binary solid solutions at low dopant concentrations. Speculations on the combined effects of electronic structure and atomic size in ternary WB 4 solid solutions containing Ta with Mn or Cr are also included to understand the extremely high hardness of these materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Miao; Turner, Christopher L.; Mohammadi, Reza
In this work, we explore the hardening mechanisms in WB{sub 4}-based solid solutions upon addition of Ta, Mn, and Cr using in situ radial X-ray diffraction techniques under non-hydrostatic pressure. By examining the lattice-supported differential strain, we provide insights into the mechanism for hardness increase in binary solid solutions at low dopant concentrations. Speculations on the combined effects of electronic structure and atomic size in ternary WB{sub 4} solid solutions containing Ta with Mn or Cr are also included to understand the extremely high hardness of these materials.
Solid-solution thermodynamics in Al-Li alloys
NASA Astrophysics Data System (ADS)
Alekseev, A. A.; Lukina, E. A.
2016-05-01
The relative equilibrium concentrations of lithium atoms distributed over different electron-structural states has been estimated. The possibility of the existence of various nonequilibrium electron-structural states of Li atoms in the solid solution in Al has been substantiated thermodynamically. Upon the decomposition of the supersaturated solid solution, the supersaturation on three electron-structural states of Li atoms that arises upon the quenching of the alloy can lead to the formation of lithium-containing phases in which the lithium atoms enter in one electron-structural state.
Concentration Dependent Physical Properties of Ge1-xSnx Solid Solution
NASA Astrophysics Data System (ADS)
Jivani, A. R.; Jani, A. R.
2011-12-01
Our own proposed potential is used to investigate few physical properties like total energy, bulk modulus, pressure derivative of bulk modulus, elastic constants, pressure derivative of elastic constants, Poisson's ratio and Young's modulus of Ge1-xSnx solid solution with x is atomic concentration of α-Sn. The potential combines linear plus quadratic types of electron-ion interaction. First time screening function proposed by Sarkar et al is used to investigate the properties of the Ge-Sn solid solution system.
Hirano, Masanori; Ito, Takaharu
2006-12-01
New anatase-type titania solid solutions co-doped with niobium and aluminum (Til-2xNbxAIlxO2 (X = 0 -0.20)) were synthesized as nanoparticles from precursor solutions of TiOSO4, NbCl5, and Al(NO3)3 under mild hydrothermal conditions at 180 degrees C for 5 h using the hydrolysis of urea. The lattice parameters a0 and c0 of anatase slightly and gradually increased, when the content of niobium and aluminum increased from X = 0 to 0.20. The crystallite size of anatase increased from 12 to 28 nm with increasing the value of X from 0 to 0.20. Their photocatalytic activity and adsorptivity were evaluated separately by the measurement of the concentration of methylene blue (MB) remained in the solution in the dark or under UV-light irradiation. The adsorptivity of TiO2 was improved by the formation of anatase-type Til-2xNbxAlxO2 solid solutions. The photocatalytic activity of anatase-type Til-2xNbxAlxO2 solid solutions was superior to that of commercially available anatase-type pure TiO2 (ST-01) and anatase-type pure TiO2 hydrothermally prepared. The new anatase phase of Til-2xNbxAlxO2 (X = 0-0.20) solid solutions existed stably up to 850 0C during heat treatment in air. In comparison with hydrothermal pure TiO2, the starting temperature of anatase-to-rutile phase transformation was delayed by the formation of Ti1-2xNbxAlxO, (X = 0-0.20) solid solutions, although its completing temperature was accelerated.
Hinkley, T.K.; Seeley, J.L.; Tatsumoto, M.
1988-01-01
Three distinct types of solid material are associated with each sample of the hydrothermal fluid that was collected from the vents of the Southern Juan de Fuca Ridge. The solid materials appear to be representative of deposits on ocean floors near mid-ocean ridges, and interpretation of the chemistry of the hydrothermal solutions requires understanding of them. Sr isotopic evidence indicates that at least two and probably all three of these solid materials were removed from the solution with which they are associated, by precipitation or adsorption. This occurred after the "pure" hydrothermal fluid was diluted and thoroughly mixed with ambient seawater. The three types of solid materials, are, respectively, a coarse Zn- and Fe-rich material with small amounts of Na and Ca; a finer material also rich in Zn and Fe, but with alkali and alkaline-earth metals; and a scum composed of Ba or Zn, with either considerable Fe or Si, and Sr. Mineral identification is uncertain because of uncertain anion composition. Only in the cases of Ba and Zn were metal masses greater in solid materials than in the associated fluids. For all other metals measured, masses in fluids dwarf those in solids. The fluids themselves contain greater concentrations of all metals measured, except Mg, than seawater. We discuss in detail the relative merits of two methods of determining the mixing proportions of "pure" hydrothermal solution and seawater in the fluids, one based on Sr isotopes, and another previously used method based on Mg concentrations. Comparison of solute concentrations in the several samples shows that degree of dilution of "pure" hydrothermal solutions by seawater, and amounts of original solutes that were removed from it as solid materials, are not related. There is no clear evidence that appreciable amounts of solid materials were not conserved (lost) either during or prior to sample collection. ?? 1988.
Liu, Fanghui; Zargarzadeh, Leila; Chung, Hyun-Joong; Elliott, Janet A W
2017-10-12
Thermodynamic phase behavior is affected by curved interfaces in micro- and nanoscale systems. For example, capillary freezing point depression is associated with the pressure difference between the solid and liquid phases caused by interface curvature. In this study, the thermal, mechanical, and chemical equilibrium conditions are derived for binary solid-liquid equilibrium with a curved solid-liquid interface due to confinement in a capillary. This derivation shows the equivalence of the most general forms of the Gibbs-Thomson and Ostwald-Freundlich equations. As an example, the effect of curvature on solid-liquid equilibrium is explained quantitatively for the water/glycerol system. Considering the effect of a curved solid-liquid interface, a complete solid-liquid phase diagram is developed over a range of concentrations for the water/glycerol system (including the freezing of pure water or precipitation of pure glycerol depending on the concentration of the solution). This phase diagram is compared with the traditional phase diagram in which the assumption of a flat solid-liquid interface is made. We show the extent to which nanoscale interface curvature can affect the composition-dependent freezing and precipitating processes, as well as the change in the eutectic point temperature and concentration with interface curvature. Understanding the effect of curvature on solid-liquid equilibrium in nanoscale capillaries has applications in the food industry, soil science, cryobiology, nanoporous materials, and various nanoscience fields.
NASA Astrophysics Data System (ADS)
Menon, Sumithra Sivadas; Janani, R.; Baskar, K.; Gupta, Bhavana; Singh, Shubra
2017-05-01
ZnO:GaN (oxy)nitride solid solution has been established as the most efficient non-oxide photocatalyst for water splitting under visible irradiation with one step photoexcitation and also boasts a band gap tunability from 2.8 eV to 2.5 eV[1]. The solid solution of GaN in ZnO is formed by the intersubstitution of few of Zn/O ions by Ga/N ions, and this results in the introduction of new defect levels above the valence band which narrows the effective band gap enabling activity under visible region of spectra. In this work, we report the synthesis of ZnO:GaN solid solution by a solution combustion technique where metal nitrates and urea are used as precursors. The Zn/Ga ratio was varied from 16 to 1 in the precursors. The as synthesized samples were characterized as phase pure by X-ray diffraction, where the wurtzite structure was retained up to Zn/Ga ratio of 5. The Diffuse reflectance spectroscopy studies revealed that as the Ga content in the solid solution increases there is a reduction in band gap, from 2.9 eV to 2.4 eV. The reduced band gap of the samples facilitates its photocatalytic activity under visible region of the spectra as evaluated by photoelectrochemical measurements.
Wang, Na; Liao, Yuan; Wang, Jiamin; Tang, Sheng; Shao, Shijun
2015-12-01
A novel bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes sorbent for solid-phase extraction was designed and synthesized by chemical immobilization of nitro-substituted 3,3'-bis(indolyl)methane on silica modified with multiwalled carbon nanotubes. Coupled with high-performance liquid chromatography analysis, the extraction properties of the sorbent were evaluated for flavonoids and aromatic organic acid compounds. Under optimum conditions, the sorbent can simultaneously extract five flavonoids and two aromatic organic acid preservatives in aqueous solutions in a single-step solid-phase extraction procedure. Wide linear ranges were obtained with correlation coefficients (R(2) ) ranging from 0.9843 to 0.9976, and the limits of detection were in the range of 0.5-5 μg/L for the compounds tested. Compared with the silica modified with multiwalled carbon nanotubes sorbent and the nitro-substituted 3,3'-bis(indolyl)methane-modified silica sorbent, the developed sorbent exhibited higher extraction efficiency toward the selected analytes. The synergistic effect of nitro-substituted 3,3'-bis(indolyl)methane and multiwalled carbon nanotubes not only improved the surface-to-volume ratio but also enhanced multiple intermolecular interactions, such as hydrogen bonds, π-π, and hydrophobic interactions, between the new sorbent and the selected analytes. The as-established solid-phase extraction with high-performance liquid chromatography and diode array detection method was successfully applied to the simultaneous determination of flavonoids and aromatic organic acid preservatives in grape juices with recoveries ranging from 83.9 to 112% for all the selected analytes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method of fabricating lipid bilayer membranes on solid supports
NASA Technical Reports Server (NTRS)
Cho, Nam-Joon (Inventor); Frank, Curtis W. (Inventor); Glenn, Jeffrey S. (Inventor); Cheong, Kwang Ho (Inventor)
2012-01-01
The present invention provides a method of producing a planar lipid bilayer on a solid support. With this method, a solution of lipid vesicles is first deposited on the solid support. Next, the lipid vesicles are destabilized by adding an amphipathic peptide solution to the lipid vesicle solution. This destabilization leads to production of a planar lipid bilayer on the solid support. The present invention also provides a supported planar lipid bilayer, where the planar lipid bilayer is made of naturally occurring lipids and the solid support is made of unmodified gold or titanium oxide. Preferably, the supported planar lipid bilayer is continuous. The planar lipid bilayer may be made of any naturally occurring lipid or mixture of lipids, including, but not limited to phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinsitol, cardiolipin, cholesterol, and sphingomyelin.
Planet Patrol. An Educational Unit on Solid Waste Solutions for Grades 4-6.
ERIC Educational Resources Information Center
Shively, Patti J.; And Others
This educational unit on solid waste solutions is intended to convey to students an understanding of the four methods of solid waste handling, in priority order, as recommended by the Environmental Protection Agency: (1) reduction in the volume of waste produced; (2) recycling and composting; (3) waste combustion, i.e., incineration of waste; and…
Klimenko, Lyudmila S; Maryshev, Boris S
2017-11-24
The paper is devoted to the linear stability analysis within the solute analogue of the Horton-Rogers-Lapwood (HRL) problem. The solid nanoparticles are treated as solute within the continuous approach. Therefore, we consider the infinite horizontal porous layer saturated with a mixture (carrier fluid and solute). Solute transport in porous media is very often complicated by solute immobilization on a solid matrix of porous media. Solute immobilization (solute sorption) is taken into account within the fractal model of the MIM approach. According to this model a solute in porous media immobilizes within random time intervals and the distribution of such random variable does not have a finite mean value, which has a good agreement with some experiments. The solute concentration difference between the layer boundaries is assumed as constant. We consider two cases of horizontal external filtration flux: constant and time-modulated. For the constant flux the system of equations that determines the frequency of neutral oscillations and the critical value of the Rayleigh-Darcy number is derived. Neutral curves of the critical parameters on the governing parameters are plotted. Stability maps are obtained numerically in a wide range of parameters of the system. We have found that taking immobilization into account leads to an increase in the critical value of the Rayleigh-Darcy number with an increase in the intensity of the external filtration flux. The case of weak time-dependent external flux is investigated analytically. We have shown that the modulated external flux leads to an increase in the critical value of the Rayleigh-Darcy number and a decrease in the critical wave number. For moderate time-dependent filtration flux the differential equation with Caputo fractional derivatives has been obtained for the description of the behavior near the convection instability threshold. This equation is analyzed numerically by the Floquet method; the parametric excitation of convection is observed.
NASA Astrophysics Data System (ADS)
Zhao, Hengyu; Uda, Satoshi; Maeda, Kensaku; Nozawa, Jun; Koizumi, Haruhiko; Fujiwara, Kozo
2015-04-01
A lever rule was applied to data concerning the compositions and proportions of secondary phases coexisting with a Ca3TaGa3Si2O14 (CTGS) matrix to determine the boundary compositions of the solid-solution region for CTGS at 1320 °C, as a means of ascertaining the solid-solution for the langasite-type phase in the quaternary CaO-Ta2O5-Ga2O3-SiO2 system. The compositions and proportions of secondary phases were assessed by electron probe micro-analysis as well as through back-scattered electron images. The experimental results showed that the narrow solid-solution region for CTGS is located in a Ta-poor, Ga-poor and Si-rich region relative to its stoichiometric composition.
Zhao, Liyan; Odaka, Hideho; Ono, Hiroshi; Kajimoto, Shinji; Hatanaka, Koji; Hobley, Jonathan; Fukumura, Hiroshi
2005-01-01
The dynamics of Re(2,2'-bipyridine)(CO)3Cl MLCT state formation and decay were determined after femtosecond UV laser excitation and picosecond pulsed X-ray excitation, in an N,N-dimethylformamide (DMF) solution as well as in its solid form. At room temperature, after UV excitation, this MLCT excited state emits both in DMF solution and in the solid form. Transient absorption spectra were measured in solution at various delay times following excitation by a 160 fs, 390 nm laser pulse. There was a prompt absorption increase at around 460 nm occurring within the pump probe convolution (<1 ps), which was assigned to the formation of the 3MLCT state. This transient absorbance was constant over 100 ps. In contrast to the solution state, in the solid state, the emission maximum slightly red-shifts with increasing time after laser excitation. In both solid and solution the emission rises within the system response time. The solid sample exhibited a 1.4 ns emission decay that was not observed for the solution sample. The emission rise from a solid sample after 20 ps pulsed X-ray excitation was significantly slower than the system's time resolution. It is proposed that kinetically energetic electrons are ejected following X-ray induced ionisation, creating ionised tracks in which energetic cations and electrons take time to recombine yielding delayed 3MLCT states that emit.
Ab initio calculation of excess properties of La{sub 1−x}(Ln,An){sub x}PO{sub 4} solid solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yan; JARA High-Performance Computing, Schinkelstrasse 2, 52062 Aachen; Kowalski, Piotr M., E-mail: p.kowalski@fz-juelich.de
2014-12-15
We used ab initio computational approach to predict the excess enthalpy of mixing and the corresponding regular/subregular model parameters for La{sub 1−x}Ln{sub x}PO{sub 4} (Ln=Ce,…, Tb) and La{sub 1−x}An{sub x}PO{sub 4} (An=Pu, Am and Cm) monazite-type solid solutions. We found that the regular model interaction parameter W computed for La{sub 1−x}Ln{sub x}PO{sub 4} solid solutions matches the few existing experimental data. Within the lanthanide series W increases quadratically with the volume mismatch between LaPO{sub 4} and LnPO{sub 4} endmembers (ΔV=V{sub LaPO{sub 4}}−V{sub LnPO{sub 4}}), so that W(kJ/mol)=0.618(ΔV(cm{sup 3}/mol)){sup 2}. We demonstrate that this relationship also fits the interaction parameters computedmore » for La{sub 1−x}An{sub x}PO{sub 4} solid solutions. This shows that lanthanides can be used as surrogates for investigation of the thermodynamic mixing properties of actinide-bearing solid solutions. - Highlights: • The excess enthalpies of mixing for monazite-type solid solutions are computed. • The excess enthalpies increase with the endmembers volume mismatch. • The relationship derived for lanthanides is transferable to La{sub 1−x}An{sub x}PO{sub 4} systems.« less
Zhang, Fuxiang X.; Jin, Ke; Zhao, Shijun; ...
2017-04-27
Defect energetics in structural materials has long been recognized to be affected by specific alloy compositions. Significantly enhanced radiation resistance has recently been observed in concentrated solid-solution alloys. However, the link between local structural disorder and modified defect dynamics in solid solutions remains unclear. To reveal the atomic-level lattice distortion, the local structures of Ni and Fe in Ni 1-xFe x (x=0.1, 0.2, 0.35 and 0.5) solid solution alloys were measured with extended X-ray absorption fine structure (EXAFS) technique. The lattice constant and the first-neighbor distances increase with the increase of Fe content in the solid solutions. EXAFS measurements havemore » revealed that the bond length of Fe with surrounding atoms is 0.01-0.03 larger than that of Ni in the alloy systems. Debye-Waller factor of the Fe-Fe bonds in all the systems is also slightly larger than that of the Ni-Ni bond. EXAFS fitting suggests that the local structural disorder is enhanced with the addition of Fe elements in the solid solution. The local bonding environments from ab initio calculation are in good agreement with the experimental results, which suggest that the Fe has a larger first-neighbor bonding distance than that of Ni, and thus Ni atom inside the Ni-Fe solid solution alloys undergoes compressive strain.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fuxiang X.; Jin, Ke; Zhao, Shijun
Defect energetics in structural materials has long been recognized to be affected by specific alloy compositions. Significantly enhanced radiation resistance has recently been observed in concentrated solid-solution alloys. However, the link between local structural disorder and modified defect dynamics in solid solutions remains unclear. To reveal the atomic-level lattice distortion, the local structures of Ni and Fe in Ni 1-xFe x (x=0.1, 0.2, 0.35 and 0.5) solid solution alloys were measured with extended X-ray absorption fine structure (EXAFS) technique. The lattice constant and the first-neighbor distances increase with the increase of Fe content in the solid solutions. EXAFS measurements havemore » revealed that the bond length of Fe with surrounding atoms is 0.01-0.03 larger than that of Ni in the alloy systems. Debye-Waller factor of the Fe-Fe bonds in all the systems is also slightly larger than that of the Ni-Ni bond. EXAFS fitting suggests that the local structural disorder is enhanced with the addition of Fe elements in the solid solution. The local bonding environments from ab initio calculation are in good agreement with the experimental results, which suggest that the Fe has a larger first-neighbor bonding distance than that of Ni, and thus Ni atom inside the Ni-Fe solid solution alloys undergoes compressive strain.« less
Extraction and quantitative analysis of iodine in solid and solution matrixes.
Brown, Christopher F; Geiszler, Keith N; Vickerman, Tanya S
2005-11-01
129I is a contaminant of interest in the vadose zone and groundwater at numerous federal and privately owned facilities. Several techniques have been utilized to extract iodine from solid matrixes; however, all of them rely on two fundamental approaches: liquid extraction or chemical/heat-facilitated volatilization. While these methods are typically chosen for their ease of implementation, they do not totally dissolve the solid. We defined a method that produces complete solid dissolution and conducted laboratory tests to assess its efficacy to extract iodine from solid matrixes. Testing consisted of potassium nitrate/potassium hydroxide fusion of the sample, followed by sample dissolution in a mixture of sulfuric acid and sodium bisulfite. The fusion extraction method resulted in complete sample dissolution of all solid matrixes tested. Quantitative analysis of 127I and 129I via inductively coupled plasma mass spectrometry showed better than +/-10% accuracy for certified reference standards, with the linear operating range extending more than 3 orders of magnitude (0.005-5 microg/L). Extraction and analysis of four replicates of standard reference material containing 5 microg/g 127I resulted in an average recovery of 98% with a relative deviation of 6%. This simple and cost-effective technique can be applied to solid samples of varying matrixes with little or no adaptation.
Low-frequency dynamic response of the bismuth strontium ferrite (Bi,Sr)FeO3- x
NASA Astrophysics Data System (ADS)
Pronin, A. A.; Torgashev, V. I.; Bush, A. A.; Gorshunov, B. P.; Volkov, A. A.; Prokhorov, A. S.
2009-03-01
Broad-range measurements of the dynamic response of polycrystalline samples of the (Bi,Sr)FeO3- x perovskite-like solid solution are performed over a frequency range from 10 Hz to 1 GHz at temperatures of 100-300 K for the first time. The colossal dielectric constant effect and the influence of electric contacts on the results of measurements are considered. It is shown that the frequency dependences of the permittivity and dynamic conductivity of (Bi,Sr)FeO3- x samples can be described within the universal dielectric response model.
NASA Astrophysics Data System (ADS)
Nizioł, Jacek
2014-12-01
DNA cationic lipid complexes are materials of properties required for applications in organic electronics and optoelectronics. Often, their thermal stability demonstrated by thermogravimetry is cited in the literature as important issue. However, little is known about processes occurring in heated solid DNA cationic lipid complexes. In frame of this work, thin films of Deoxyribonucleic acid-hexadecyltrimethylammonium chloride (DNA-CTMA) were deposited on silicon wafers. Samples were thermally annealed, and simultaneously, their optical functions were measured by spectroscopic ellipsometry. At lower temperatures, thermal expansion coefficient of solid DNA-CTMA was negative, but at higher temperatures positive. Thermally induced modification of absorption spectrum in UV-vis was observed. It occurred at a range of temperatures higher than this of DNA denaturation in solution. The observed phenomenon was irreversible, at least in time scale of the experiment (one day).
Solid-water detoxifying reagents for chemical and biological agents
Hoffman, Dennis M [Livermore, CA; Chiu, Ing Lap [Castro Valley, CA
2006-04-18
Formation of solid-water detoxifying reagents for chemical and biological agents. Solutions of detoxifying reagent for chemical and biological agents are coated using small quantities of hydrophobic nanoparticles by vigorous agitation or by aerosolization of the solution in the presence of the hydrophobic nanoparticles to form a solid powder. For example, when hydrophobic fumed silica particles are shaken in the presence of IN oxone solution in approximately a 95:5-weight ratio, a dry powder results. The hydrophobic silica forms a porous coating of insoluble fine particles around the solution. Since the chemical or biological agent tends to be hydrophobic on contact with the weakly encapsulated detoxifying solution, the porous coating breaks down and the detoxifying reagent is delivered directly to the chemical or biological agent for maximum concentration at the point of need. The solid-water (coated) detoxifying solutions can be blown into contaminated ventilation ducting or other difficult to reach sites for detoxification of pools of chemical or biological agent. Once the agent has been detoxified, it can be removed by flushing the area with air or other techniques.
Transonic Navier-Stokes solutions of three-dimensional afterbody flows
NASA Technical Reports Server (NTRS)
Compton, William B., III; Thomas, James L.; Abeyounis, William K.; Mason, Mary L.
1989-01-01
The performance of a three-dimensional Navier-Stokes solution technique in predicting the transonic flow past a nonaxisymmetric nozzle was investigated. The investigation was conducted at free-stream Mach numbers ranging from 0.60 to 0.94 and an angle of attack of 0 degrees. The numerical solution procedure employs the three-dimensional, unsteady, Reynolds-averaged Navier-Stokes equations written in strong conservation form, a thin layer assumption, and the Baldwin-Lomax turbulence model. The equations are solved by using the finite-volume principle in conjunction with an approximately factored upwind-biased numerical algorithm. In the numerical procedure, the jet exhaust is represented by a solid sting. Wind-tunnel data with the jet exhaust simulated by high pressure air were also obtained to compare with the numerical calculations.
NASA Astrophysics Data System (ADS)
Gromnitskaya, E. L.; Danilov, I. V.; Lyapin, A. G.; Brazhkin, V. V.
2015-10-01
We present a low-temperature and high-pressure ultrasonic study of elastic properties of isotopic H2O-D2O solid solutions, comparing their properties with those of the isotopically pure H2O and D2O ices. Measurements were carried out for solid state amorphization (SSA) from 1h to high-density amorphous (HDA) ice upon compression up to 1.8 GPa at 77 K and for the temperature-induced (77 -190 K ) u-HDA (unrelaxed HDA) → e-HDA (expanded HDA) → low-density amorphous (LDA )→1 c cascade of ice transformations near room pressure. There are many similarities in the elasticity behaviour of H2O ,D2O , and H2O-D2O solid solutions, including the softening of the shear elastic modulus as a precursor of SSA and the HDA →LDA transition. We have found significant isotopic effects during H/D substitution, including elastic softening of H2O -D2O solid solutions with respect to the isotopically pure ices in the case of the bulk moduli of ices 1c and 1h and for both bulk and shear elastic moduli of HDA ice at high pressures (>1 GPa ) . This softening is related to the configurational isotopic disorder in the solid solutions. At low pressures, the isotope concentration dependence of the elastic moduli of u-HDA ice changes remarkably and becomes monotonic with pronounced change of the bulk modulus (≈20 %) .
Lattice thermal expansion of the solid solutions (La{sub 1−x}Sm{sub x}){sub 2}Ce{sub 2}O{sub 7}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hongdan; Lei, Xinrong; Zhang, Jinhua, E-mail: jhzhang1212@126.com
2014-09-15
Highlights: • Sm-doped La{sub 2}Ce{sub 2}O{sub 7} was prepared by the coprecipitation–calcination method. • In situ HT-XRD measurements revealed that is much stable than 8YSZ. • Its thermal expansion is better than 8YSZ. - Abstract: A series of solid solutions with the general formula (La{sub 1−x}Sm{sub x}){sub 2}Ce{sub 2}O{sub 7} (0.0 ≤ x ≤ 1.0) were prepared by the coprecipitation–calcination method. The products obtained were characterized by powder X-ray diffraction for phase purity. It was observed that La{sup 3+} and Sm{sup 3+} can form complete solid solution in (La,Sm){sub 2}Ce{sub 2}O{sub 7} with defect-fluorite-type phase. The unit cell parameters ofmore » these solutions were calculated by a least squares method and the lattice parameters decreased linearly as x increased. The lattice thermal expansion behavior of (La{sub 1−x}Sm{sub x}){sub 2}Ce{sub 2}O{sub 7} (0.0 ≤ x ≤ 1.0) was investigated by high-temperature X-ray diffraction in the temperature range 298–1623 K. The lattice parameters a{sub T} of all the solutions at different temperature can be expressed as a{sub T} = a + bT + cT{sup 2}. As x < 1, the thermal expansion has a sudden decrease at ca. 473 K. The coefficients of lattice thermal expansion of Sm{sub 2}Ce{sub 2}O{sub 7} were 10.2–13.6 × 10{sup −6} K{sup −1} from 298 to 1623 K, and without the thermal contraction at low temperature. The materials show positive or negative thermal expansion due to the asymmetric anharmonic vibration.« less
NASA Astrophysics Data System (ADS)
Evans, A.
2015-12-01
Soil solution anionic composition can impact both plant and microbial activity in alpine tundra soils by altering biochemical cycling within the soil, either through base cation leaching, or shifts in aluminum controlling solid phases. Although anions play a critical role in the aqueous speciation of metals, relatively few high altitude field studies have examined their impact on aluminum controlling solid phases and aluminum speciation in soil water. For this study, thirty sampling sites were selected on Trail Ridge Road in Rocky Mountain National Park, Estes Park, CO, and sampled during July, the middle of the growing season. Sampling elevations ranged from approximately 3560 - 3710 m. Soil samples were collected to a depth of 15.24 cm, and the anions were extracted using a 2:1 D.I. water to soil ratio. Filtered extracts were analyzed using IC and ICP-MS. Soil solution NO3- concentrations were significantly higher for sampling locations east of Iceberg Pass (EIBP) (mean = 86.94 ± 119.8 mg/L) compared to locations west of Iceberg Pass (WIBP) (mean 1.481 ± 2.444 mg/L). Both F- and PO43- soil solution concentrations, 0.533 and 0.440 mg/L, respectively, were substantially lower, for sampling sites located EIBP, while locations WIBP averaged 0.773 and 0.829 mg/L respectively, for F- and PO43-. Sulfate concentration averaged 3.869 ± 3.059 mg/L for locations EIBP, and 3.891 ± 3.1970 for locations WIBP. Geochemical modeling of Al3+ in the soil solution indicated that a suite of aluminum hydroxyl sulfate minerals controlled Al3+ activity in the alpine tundra soil, with shifts between controlling solid phases occurring in the presence of elevated F- concentrations.
Choi, Young Eun; Park, Kern Ho; Kim, Dong Hyeon; Oh, Dae Yang; Kwak, Hi Ram; Lee, Young-Gi; Jung, Yoon Seok
2017-06-22
Bulk-type all-solid-state lithium-ion batteries (ASLBs) for large-scale energy-storage applications have emerged as a promising alternative to conventional lithium-ion batteries (LIBs) owing to their superior safety. However, the electrochemical performance of bulk-type ASLBs is critically limited by the low ionic conductivity of solid electrolytes (SEs) and poor ionic contact between the active materials and SEs. Herein, highly conductive (0.14 mS cm -1 ) and dry-air-stable SEs (Li 4 SnS 4 ) are reported, which are prepared using a scalable aqueous-solution process. An active material (LiCoO 2 ) coated by solidified Li 4 SnS 4 from aqueous solutions results in a significant improvement in the electrochemical performance of ASLBs. Side-effects of the exposure of LiCoO 2 to aqueous solutions are minimized by using predissolved Li 4 SnS 4 solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fluidized bed gasification of extracted coal
Aquino, Dolores C.; DaPrato, Philip L.; Gouker, Toby R.; Knoer, Peter
1986-01-01
Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-15
...EPA is proposing to revise the manner by which the regulated community would apply the threshold planning quantities (TPQs) for those extremely hazardous substances (EHSs) that are non-reactive solid chemicals in solution form. Specifically, facilities with a solid EHS in solution would be subject to the Emergency Planning requirements if the amount of the solid chemical on-site, when multiplied by 0.2, equaled or exceeded the lower published TPQ, based on data that shows less potential for the solid chemical in solution to remain airborne in the event of an accidental release. Previously, EPA assumed that 100% of the chemical could become airborne in the event of an accidental release.
Sinfield, Joseph V; Monwuba, Chike K
2014-01-01
Improvements in diode laser, fiber optic, and data acquisition technologies are enabling increased use of Raman spectroscopic techniques for both in lab and in situ water analysis. Aqueous media encountered in the natural environment often contain suspended solids that can interfere with spectroscopic measurements, yet removal of these solids, for example, via filtration, can have even greater adverse effects on the extent to which subsequent measurements are representative of actual field conditions. In this context, this study focuses on evaluation of turbidity effects on Raman spectroscopic measurements of two common environmental pollutants in aqueous solution: ammonium nitrate and trichloroethylene. The former is typically encountered in the runoff from agricultural operations and is a strong scatterer that has no significant influence on the Raman spectrum of water. The latter is a commonly encountered pollutant at contaminated sites associated with degreasing and cleaning operations and is a weak scatterer that has a significant influence on the Raman spectrum of water. Raman observations of each compound in aqueous solutions of varying turbidity created by doping samples with silica flour with grain sizes ranging from 1.6 to 5.0 μm were employed to develop relationships between observed Raman signal strength and turbidity level. Shared characteristics of these relationships were then employed to define generalized correction methods for the effect of turbidity on Raman observations of compounds in aqueous solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seung Min; Knight, Travis W.; Voit, Stwart L.
The solid solution of (U1-yFPy)O- 2±x, has the same fluorite structure as UO 2±x lambda, and the lattice parameter is affected by dissolved fission product and oxygen concentrations. We investigated the relation between the lattice parameter and the concentrations of neodymium and oxygen in the fluorite structure of (U 1-yNd y)O 2±x using X-ray diffraction. Moreover, the lattice parameter behavior in the (U 1-yNd y)O 2±x, solid solution shows a linear change as a function of the oxygen-to-metal ratio and solubility of neodymium. The lattice parameter depends on the radii of ions forming the fluorite structure and also can bemore » expressed by a particular rule (modified Vegard's law). Furthermore, the numerical analyses of the lattice parameters for the stoichiometric and nonstoichionietric solid solutions were conducted, and the lattice parameter model for the (U1-yNdy)O 2±x, solid solution was assessed. There is a very linear relationship between the lattice parameter and the Nd and O concentration for the stoichiometry and nonstoichiometry of the (U 1-yNd y)O 2±x solid solution was verified.« less
Influence of gas injection on viscous and viscoelastic properties of Xanthan gum.
Bobade, Veena; Cheetham, Madalyn; Hashim, Jamal; Eshtiaghi, Nicky
2018-05-01
Xanthan gum is widely used as a model fluid for sludge to mimic the rheological behaviour under various conditions including impact of gas injection in sludge. However, there is no study to show the influence of gas injection on rheological properties of xanthan gum specifically at the concentrations at which it is used as a model fluid for sludge with solids concentration above 2%. In this paper, the rheological properties of aqueous xanthan gum solutions at different concentrations were measured over a range of gas injection flow rates. The effect of gas injection on both the flow and viscoelastic behaviour of Xanthan gum (using two different methods - a creep test and a time sweep test) was evaluated. The viscosity curve of different solid concentrations of digested sludge and waste activated sludge were compared with different solid concentrations of Xanthan gum and the results showed that Xanthan gum can mimic the flow behaviour of sludge in flow regime. The results in linear viscoelastic regime showed that increasing gas flow rate increases storage modulus (G'), indicating an increase in the intermolecular associations within the material structure leading to an increase in material strength and solid behaviour. Similarly, in creep test an increase in the gas flow rate decreased strain%, signifying that the material has become more resistant to flow. Both observed behaviour is opposite to what occurs in sludge under similar conditions. The results of both the creep test and the time sweep test indicated that choosing Xanthan gum aqueous solution as a transparent model fluid for sludge in viscoelastic regime under similar conditions involving gas injection in a concentration range studied is not feasible. However Xanthan gum can be used as a model material for sludge in flow regime; because it shows a similar behaviour to sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.
DYNAMICS OF SOLIDS IN THE MIDPLANE OF PROTOPLANETARY DISKS: IMPLICATIONS FOR PLANETESIMAL FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai Xuening; Stone, James M., E-mail: xbai@astro.princeton.ed, E-mail: jstone@astro.princeton.ed
2010-10-20
We present local two-dimensional and three-dimensional hybrid numerical simulations of particles and gas in the midplane of protoplanetary disks (PPDs) using the Athena code. The particles are coupled to gas aerodynamically, with particle-to-gas feedback included. Magnetorotational turbulence is ignored as an approximation for the dead zone of PPDs, and we ignore particle self-gravity to study the precursor of planetesimal formation. Our simulations include a wide size distribution of particles, ranging from strongly coupled particles with dimensionless stopping time {tau}{sub s} {identical_to} {Omega}t{sub stop} = 10{sup -4} (where {Omega} is the orbital frequency, t{sub stop} is the particle friction time) tomore » marginally coupled ones with {tau}{sub s} = 1, and a wide range of solid abundances. Our main results are as follows. (1) Particles with {tau}{sub s} {approx}> 10{sup -2} actively participate in the streaming instability (SI), generate turbulence, and maintain the height of the particle layer before Kelvin-Helmholtz instability is triggered. (2) Strong particle clumping as a consequence of the SI occurs when a substantial fraction of the solids are large ({tau}{sub s} {approx}> 10{sup -2}) and when height-integrated solid-to-gas mass ratio Z is super-solar. We construct a toy model to offer an explanation. (3) The radial drift velocity is reduced relative to the conventional Nakagawa-Sekiya-Hayashi (NSH) model, especially at high Z. Small particles may drift outward. We derive a generalized NSH equilibrium solution for multiple particle species which fits our results very well. (4) Collision velocity between particles with {tau}{sub s} {approx}> 10{sup -2} is dominated by differential radial drift, and is strongly reduced at larger Z. This is also captured by the multi-species NSH solution. Various implications for planetesimal formation are discussed. In particular, we show that there exist two positive feedback loops with respect to the enrichment of local disk solid abundance and grain growth. All these effects promote planetesimal formation.« less
NASA Astrophysics Data System (ADS)
Dadami, Sunanda T.; Matteppanvar, Shidaling; Shivaraja, I.; Rayaprol, Sudhindra; Deshapande, S. K.; Angadi, Basavaraj
2018-05-01
In this paper the structural and low temperature dielectric properties of Pb0.8Bi0.2Fe0.6Nb0.4O3 (PBFNO) multiferroic solid solution were reported. PBFNO multiferroic was synthesized by single step solid state reaction method. Calcination was carried out at 700 °/2hr with different sintering temperature (800 °C, 850 °C, 900 °C, 950 °C, 1000 °C and 1050 °C for 1 hr) and time duration (800 °C for 1 to 5 hr). Single phase was confirmed through room temperature (RT) X-ray Diffraction (XRD). It was found that sintering carried out at 800°C/3 hr gives single phase. Rietveld refined lattice parameters using monoclinic structure are: a = 5.6663(1) Å, b = 5.6694(1) Å, c = 4.0112(1) Å and β = 90.038(1)° with the average grain size as 2.987 µm. The dielectric properties studied over a wide range of frequency (100 Hz - 5 MHz) and temperature (133 K - 293 K). Dielectric constant and loss tangent exhibits frequency dispersion nature at low frequency region. AC conductivity increases with increase in temperature corresponds to negative temperature coefficient of resistance (NTCR) behaviour.
Research update: Prediction of high figure of merit plateau in SnS and solid solution of (Pb,Sn)S
Hao, Shiqiang; Dravid, Vinayak P.; Kanatzidis, Mercouri G.; ...
2016-10-17
Direct conversion between thermal and electrical energy can be achieved by thermoelectric materials, which provide a viable route for power generation and solid state refrigeration. Here, we use a combination of energetic, electronic, and vibrational first-principles based results to predict the figure of merit performance in hole doped single crystals of SnS and (Pb,Sn)S. We find high ZT values for both materials, specifically for (Pb,Sn)S along the b-axis. Both SnS and (Pb,Sn)S have excellent power factors when doped, due to a combination of increased electrical conductivity (due to doping) and a significantly enhanced Seebeck coefficient obtained by a doping-induced multibandmore » effect. Anharmonic phonon calculations combined with a Debye-Calloway model show that the lattice thermal conductivity of both compounds is low, due to intrinsic anharmonicity, and is lowered further by the random, solid solution nature of the cation sublattice of (Pb,Sn)S. (Pb,Sn)S exhibits a high ZT plateau ranging from 1.3 at 300 K to 1.9 at 800 K. Finally, the overall ZT of the hole doped (Pb,Sn)S crystals is predicted to outperform most of the current state-of-the-art thermoelectric sulfide materials.« less
Research update: Prediction of high figure of merit plateau in SnS and solid solution of (Pb,Sn)S
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Shiqiang; Dravid, Vinayak P.; Kanatzidis, Mercouri G.
Direct conversion between thermal and electrical energy can be achieved by thermoelectric materials, which provide a viable route for power generation and solid state refrigeration. Here, we use a combination of energetic, electronic, and vibrational first-principles based results to predict the figure of merit performance in hole doped single crystals of SnS and (Pb,Sn)S. We find high ZT values for both materials, specifically for (Pb,Sn)S along the b-axis. Both SnS and (Pb,Sn)S have excellent power factors when doped, due to a combination of increased electrical conductivity (due to doping) and a significantly enhanced Seebeck coefficient obtained by a doping-induced multibandmore » effect. Anharmonic phonon calculations combined with a Debye-Calloway model show that the lattice thermal conductivity of both compounds is low, due to intrinsic anharmonicity, and is lowered further by the random, solid solution nature of the cation sublattice of (Pb,Sn)S. (Pb,Sn)S exhibits a high ZT plateau ranging from 1.3 at 300 K to 1.9 at 800 K. Finally, the overall ZT of the hole doped (Pb,Sn)S crystals is predicted to outperform most of the current state-of-the-art thermoelectric sulfide materials.« less
Peng, Guilong; He, Qiang; Mmereki, Daniel; Lu, Ying; Zhong, Zhihui; Liu, Hanyang; Pan, Weiliang; Zhou, Guangming; Chen, Junhua
2016-04-01
A novel dispersive solid-phase extraction combined with vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet was developed for the determination of eight benzoylurea insecticides in soil and sewage sludge samples before high-performance liquid chromatography with ultraviolet detection. The analytes were first extracted from the soil and sludge samples into acetone under optimized pretreatment conditions. Clean-up of the extract was conducted by dispersive solid-phase extraction using activated carbon as the sorbent. The vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet procedure was performed by using 1-undecanol with lower density than water as the extraction solvent, and the acetone contained in the solution also acted as dispersive solvent. Under the optimum conditions, the linearity of the method was in the range 2-500 ng/g with correlation coefficients (r) of 0.9993-0.9999. The limits of detection were in the range of 0.08-0.56 ng/g. The relative standard deviations varied from 2.16 to 6.26% (n = 5). The enrichment factors ranged from 104 to 118. The extraction recoveries ranged from 81.05 to 97.82% for all of the analytes. The good performance has demonstrated that the proposed methodology has a strong potential for application in the multiresidue analysis of complex matrices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kral, Petr, E-mail: pkral@ipm.cz; CEITEC – IPM ASCR, v.v.i., Zizkova 22, CZ-61662 Brno; Dvorak, Jiri
The deformation kinetics of ultrafine-grained Ti-6Al-4V with mean (sub)grain size about 150 nm (produced by isothermal multiaxial forging) and superplastic properties at the relatively low temperature of 873 K was investigated in compression and tension over a large range of strain rates from 10{sup −7} to 10{sup −2} s{sup −1}. Electron microscopic observations showed that the grains coarsen during deformation towards the quasi-stationary spacing w{sub qs} of strain induced boundaries. In spite of the grain coarsening the grains were generally smaller than w{sub qs} allowing high-angle boundaries to dominate the quasi-stationary strength. Texture measurements indicate that dislocation glide plays amore » large role in deformation. Glide in this alloy is significantly influenced by solid solution strengthening leading to a stress sensitivity of strain rate of n = 3. The present ultrafine-grained Ti alloy displays a stress sensitivity exponent n = 2 over an extended stress range where its superplastic behavior is optimal. While the deformation kinetics of present ultrafine-grained Ti alloy can be roughly explained by the traditional formula for superplastic flow, the significant discrepancy to the measured values suggests that solid solution strengthening must be taken into account to get a complete insight. - Highlights: • The UFG Ti-6Al-4V alloy behaves superplastically at low temperature of 873 K. • Grain coarsening at low stresses limits superplasticity of UFG Ti alloy. • Solute strengthening plays an important role in low-temperature superplasticity. • Acceleration of creep in UFG Ti alloy is caused by processes related to hab.« less
Ab initio investigation of Ti2Al(C,N) solid solutions
NASA Astrophysics Data System (ADS)
Arróyave, Raymundo; Radovic, Miladin
2011-10-01
Mn+1AXn phases (M: early transition metal, A: IIIA- or IVA-group element, X: carbon or nitrogen) are layered ternary compounds that possess both metal- and ceramic-like properties with numerous potential applications in bulk and thin film forms, particularly under high-temperature conditions. In this work, we use the cluster expansion formalism to investigate the energetics of C-N interactions across the entire Ti2AlC-Ti2AlN composition range. It is shown that there is a definite tendency for ordering in the C,N sublattice. However, the molar volume and bulk modulus of the ordered structures found along the Ti2AlC-Ti2AlN composition range show small deviations from the (linear) rule of mixing, indicating that despite the ordering tendencies, the C-N interactions are not strong and the solution becomes disordered at relatively low temperatures. Random solid solutions of Ti2AlC1-xNx are simulated using special quasirandom structures (SQS) with x=0.25, 0.50, and 0.75. The thermodynamic properties of these structures are compared to those of the structures found to belong to the ground state through the cluster expansion approach. It is found that the structural properties of these approximations to random alloys do not deviate significantly from Vegard's law. The trend in the structural parameters of these SQS are found to agree well with available experimental data and the predictions of the bulk modulus suggest a very weak alloying effect—with respect to Vegard's law—on the elastic properties of Ti2AlC1-xNx.
Dissolution of Uranium(IV) Oxide in Solutions of Ammonium Carbonate and Hydrogen Peroxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Steven C.; Peper, Shane M.; Douglas, Matthew
2009-09-12
Understanding the dissolution characteristics of uranium oxides is of fundamental scientific interest. Bench scale experiments were conducted to determine the optimal dissolution parameters of uranium(IV) oxide (UO2) powder in solutions of ammonium carbonate [(NH4)2CO3] and hydrogen peroxide (H2O2). Experimental parameters included variable peroxide and carbonate concentrations, and temperature. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M (1:1 to 40:1 mol ratio H2O2:U), with no apparent maximum rate reached under the limited conditions used in our study. Temperature ranging studies show the dissolution rate of UO2 inmore » 1 M (NH4)2CO3 and 0.1 M H2O2 (2:1 mol ratio H2O2:U) increases linearly from 15 °C to 60 °C, again with no apparent maximum rate reached. Dissolution of UO2 in solutions with constant [H2O2] and [(NH4)2CO3] ranging from 0.5 to 2 M showed no difference in rate; however dissolution was significantly reduced in 0.05 M (NH4)2CO3 solution. The results of this study demonstrate the influence of [H2O2], [(NH4)2CO3], and temperature on the dissolution of UO2 in peroxide-containing (NH4)2CO3 solutions. Future studies are planned to elucidate the solution and solid state complexes in these systems.« less
NASA Astrophysics Data System (ADS)
Bennett, Joseph W.
Perovskite oxides of formula ABO3 have a wide range of structural, electrical and mechanical properties, making them vital materials for many applications, such as catalysis, ultrasound machines and communication devices. Perovskite solid solutions with high piezoelectric response, such as ferroelectrics, are of particular interest as they can be employed as sensors in SONAR devices. Ferroelectric materials are unique in that their chemical and electrical properties can be non-invasively and reversibly changed, by switching the bulk polarization. This makes ferroelectrics useful for applications in non-volatile random access memory (NVRAM) devices. Perovskite solid solutions with a lower piezoelectric response than ferroelectrics are important for communication technology, as they function well as electroceramic capacitors. Also of interest is how these materials act as a component in a solid oxide fuel cell, as they can function as an efficient source of energy. Altering the chemical composition of these solid oxide materials offers an opportunity to change the desired properties of the final ceramic, adding a degree of flexibility that is advantageous for a variety of applications. These solid oxides are complex, sometimes disordered systems that are a challenge to study experimentally. However, as it is their complexity which produces favorable properties, highly accurate modeling which captures the essential features of the disordered structure is necessary to explain the behavior of current materials and predict favorable compositions for new materials. Methodological improvements and faster computer speeds have made first-principles and atomistic calculations a viable tool for understanding these complex systems. Offering a combination of accuracy and computational speed, the density functional theory (DFT) approach can reveal details about the microscopic structure and interactions of complex systems. Using DFT and a combination of principles from both inorganic chemistry and materials science, I have been able to gain insights into solid oxide perovskite-based systems.
Computer simulation of concentrated solid solution strengthening
NASA Technical Reports Server (NTRS)
Kuo, C. T. K.; Arsenault, R. J.
1976-01-01
The interaction forces between a straight edge dislocation moving through a three-dimensional block containing a random array of solute atoms were determined. The yield stress at 0 K was obtained by determining the average maximum solute-dislocation interaction force that is encountered by edge dislocation, and an expression relating the yield stress to the length of the dislocation and the solute concentration is provided. The magnitude of the solid solution strengthening due to solute atoms can be determined directly from the numerical results, provided the dislocation line length that moves as a unit is specified.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Ammonia (as N) 6,712.000 2,951.000 Total suspended solids 2,065.000 981.800 pH (1) (1) 1 Within the range... from precipitation and filtration of film stripping solutions Copper 1.843 .970 Zinc 1.416 .592 Ammonia... silver precipitated Copper 109.400 57.570 Zinc 84.050 35.120 Ammonia (as N) 7,674.000 3,374.000 Total...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Ammonia (as N) 6,712.000 2,951.000 Total suspended solids 2,065.000 981.800 pH (1) (1) 1 Within the range... from precipitation and filtration of film stripping solutions Copper 1.843 .970 Zinc 1.416 .592 Ammonia... silver precipitated Copper 109.400 57.570 Zinc 84.050 35.120 Ammonia (as N) 7,674.000 3,374.000 Total...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Ammonia (as N) 6,712.000 2,951.000 Total suspended solids 2,065.000 981.800 pH (1) (1) 1 Within the range... from precipitation and filtration of film stripping solutions Copper 1.843 .970 Zinc 1.416 .592 Ammonia... silver precipitated Copper 109.400 57.570 Zinc 84.050 35.120 Ammonia (as N) 7,674.000 3,374.000 Total...
Smart Core-Shell Nanowire Architectures for Multifunctional Nanoscale Devices
2014-02-16
Andrew R. Akbashev, Peter K. Davies, Jonathan E. Spanier, Andrew M. Rappe. Perovskite oxides for visible- light -absorbing ferroelectric and...without loss of polar character. Shown for a single phase solid solution ferroelectric oxide perovskite (K,Ba),(Ni,Nb)O_(3-delta), this material...exhibits a compositionally tunable and direct band gap in the range of 1.1 – 3.8 eV, with potential for novel nonlinear light -matter applications in addition
Supercritical fluid molecular spray film deposition and powder formation
Smith, Richard D.
1986-01-01
Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. Upon expansion and supersonic interaction with background gases in the low pressure region, any clusters of solvent are broken up and the solvent is vaporized and pumped away. Solute concentration in the solution is varied primarily by varying solution pressure to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solvent clustering and solute nucleation are controlled by manipulating the rate of expansion of the solution and the pressure of the lower pressure region. Solution and low pressure region temperatures are also controlled.
A solid solution series of atacamite type Ni{sub 2x}Mg{sub 2−2x}Cl(OH){sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bette, Sebastian; Dinnebier, Robert E.; Röder, Christian
2015-08-15
For the first time a complete solid solution series Ni{sub 2x}Mg{sub 2−2x}Cl(OH){sub 3} of an atacamite type alkaline main group metal chloride, Mg{sub 2}Cl(OH){sub 3}, and a transition group metal chloride, Ni{sub 2}Cl(OH){sub 3}, was prepared and characterized by chemical and thermal analysis as well as by Raman and IR spectroscopy, and high resolution laboratory X-ray powder diffraction. All members of the solid solution series crystallize in space group Pnam (62). The main building units of these crystal structures are distorted, edge-linked Ni/MgO{sub 4}Cl{sub 2} and Ni/MgO{sub 5}Cl octahedra. The distribution of Ni{sup 2+}- and Mg{sup 2+}-ions among these twomore » metal-sites within the solid solution series is discussed in detail. The crystallization of the solid solution phases occurs via an intermediate solid solution series, (Ni/Mg)Cl{sub 2x}(OH){sub 2−2x}, with variable Cl: OH ratio up to the 1:3 ratio according to the formula Ni{sub 2x}Mg{sub 2−2x} Cl(OH){sub 3}. For one isolated intermediate solid solution member, Ni{sub 0.70}Mg{sub 0.30}Cl{sub 0.58}(OH){sub 1.42}, the formation and crystal structure is presented as well. - Graphical abstract: For the first time a complete solid solution series, Ni{sub 2x}Mg{sub 2−2x} Cl(OH){sub 3}, was synthesized and characterized. Structure solution by revealed that Ni{sup 2+} prefers to occupy the Jahn–Teller-like distorted hole, out of two available cation sites. Substitution of Ni{sup 2+} by Mg{sup 2+} in atacamite type Ni{sub 2}Cl(OH){sub 3} results in systematic band shifts in Raman and IR spectra as well as in systematic changes in thermal properties. The α-polymorphs M{sub 2}Cl(OH){sub 3} with M=Mg{sup 2+}, Ni{sup 2+} and other divalent transition metal ions, as described in literature, were identified as separate compounds. - Highlights: • First synthesis of solid solution series between main and transition metal chloride. • Ni{sup 2+} prefers to occupy Jahn–Teller-like distorted octahedral holes. • Substitution of Ni{sup 2+} by Mg{sup 2+} results in systematic Raman and IR band shifts. • α-Polymorphs M{sub 2}Cl(OH){sub 3} with M=Mg{sup 2+}, Ni{sup 2+}, … as described in literature do not exist.« less
SOLIDS PRECIPITATION EVENT IN MCU CAUSAL ANALYSIS AND RECOMMENDATIONS FROM SOLIDS RECOVERY TEAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrison, A.; Aponte, C.
A process upset occurred in the Modular Caustic-Side Solvent Extraction Unit (MCU) facility on April 6th, 2014. During recovery efforts, a significant amount of solids were found in the Salt Solution Feed Tank (SSFT), Salt Solution Receipt Tanks (SSRTs), two extraction contactors, and scrub contactors. The solids were identified by Savannah River National Laboratory (SRNL) as primarily sodium oxalate and sodium alumina silicate (NAS) with the presence of some aluminum hydroxide. NAS solids have been present in the SSFT since simulant runs during cold chemical startup of MCU in 2007, and have not hindered operations since that time. During themore » process upset in April 2014, the oxalate solids partially blocked the aqueous outlet of the extraction contactors, causing salt solution to exit through the contactor organic outlet to the scrub contactors with the organic phase. This salt solution overwhelmed the scrub contactors and passed with the organic phase to the strip section of MCU. The partially reversed flow of salt solution resulted in a Strip Effluent (SE) stream that was high in Isopar™ L, pH and sodium. The primary cause of the excessive solids accumulation in the SSRTs and SSFT at MCU is attributed to an increase in the frequency of oxalic acid cleaning of the 512-S primary filter. Agitation in the SSRTs at MCU in response to cold weather likely provided the primary mechanism to transfer the solids to the contactors. Sources of the sodium oxalate solids are attributed to the oxalic acid cleaning solution used to clean the primary filter at the Actinide Removal Process (ARP) filtration at 512-S, as well as precipitation from the salt batch feed, which is at or near oxalate saturation. The Solids Recovery Team was formed to determine the cause of the solids formation and develop recommendations to prevent or mitigate this event in the future. A total of 53 recommendations were generated. These recommendations were organized into 4 focus areas: • Improve understanding of oxalate equilibrium and kinetics in salt solutions • Reduction/elimination of oxalic acid cleaning in 512-S • Flowsheet optimization • Improving diagnostic capability The recommendations implemented prior to resumption of MCU operations provide a risk mitigation or detection function through additional sampling and observation. The longer term recommendations provide a framework to increase the basic process knowledge of both oxalate chemistry and filtration behavior and then facilitate decisions that improve the salt flowsheet as a system.« less
Electrochemical alkaline Fe(VI) water purification and remediation.
Licht, Stuart; Yu, Xingwen
2005-10-15
Fe(VI) is an unusual and strongly oxidizing form of iron, which provides a potentially less hazardous water-purifying agent than chlorine. A novel on-line electrochemical Fe(VI) water purification methodology is introduced. Fe(VI) addition had been a barrier to its effective use in water remediation, because solid Fe(VI) salts require complex (costly) syntheses steps and solutions of Fe(VI) decompose. Online electrochemical Fe(VI) water purification avoids these limitations, in which Fe(VI) is directly prepared in solution from an iron anode as the FeO42- ion, and is added to the contaminant stream. Added FeO42- decomposes, by oxidizing a wide range of water contaminants including sulfides (demonstrated in this study) and other sulfur-containing compounds, cyanides (demonstrated in this study), arsenic (demonstrated in this study), ammonia and other nitrogen-containing compounds (previously demonstrated), a wide range of organics (phenol demonstrated in this study), algae, and viruses (each previously demonstrated).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leinenweber, Kurt, E-mail: kurtl@asu.edu; Gullikson, Amber L.; Stoyanov, Emil
2015-09-15
The accuracy and precision of pressure measurements and the pursuit of reliable and readily available pressure scales at simultaneous high temperatures and pressures are still topics in development in high pressure research despite many years of work. In situ pressure scales based on x-ray diffraction are widely used but require x-ray access, which is lacking outside of x-ray beam lines. Other methods such as fixed points require several experiments to bracket a pressure calibration point. In this study, a recoverable high-temperature pressure gauge for pressures ranging from 3 GPa to 10 GPa is presented. The gauge is based on themore » pressure-dependent solubility of an SiO{sub 2} component in the rutile-structured phase of GeO{sub 2} (argutite), and is valid when the argutite solid solution coexists with coesite. The solid solution varies strongly in composition, mainly in pressure but also somewhat in temperature, and the compositional variations are easily detected by x-ray diffraction of the recovered products because of significant changes in the lattice parameters. The solid solution is measured here on two isotherms, one at 1200 °C and the other at 1500 °C, and is developed as a pressure gauge by calibrating it against three fixed points for each temperature and against the lattice parameter of MgO measured in situ at a total of three additional points. A somewhat detailed thermodynamic analysis is then presented that allows the pressure gauge to be used at other temperatures. This provides a way to accurately and reproducibly evaluate the pressure in high pressure experiments and applications in this pressure-temperature range, and could potentially be used as a benchmark to compare various other pressure scales under high temperature conditions. - Graphical abstract: The saturation curve of SiO{sub 2} in TiO{sub 2} shows a strong pressure dependence and a strong dependence of unit cell volume on composition. This provides an opportunity to use this saturation curve as a measurement of pressure during a high-pressure experiment. The curve is a sensitive measure of pressure from 3 GPa to 10 GPa at high temperatures. The pressure is derived from lattice parameter measurements on the recovered solid solution, meaning that in-situ measurements are not necessary to evaluate the pressure of the experiment. - Highlights: • The unit cell of a saturated GeO{sub 2}–SiO{sub 2} solid solution is used as a pressure sensor. • We measure nine bracketed pressure points on the GeO{sub 2}–SiO{sub 2} saturation surface. • We provide a pressure calibrant from 3 GPa to 10 GPa at two temperatures. • Four points are measured at 1200 °C and five points at 1500 °C. • A thermodynamic model is developed for use of the calibrant at other temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chezhina, N.V., E-mail: chezhina@nc2490.spb.edu; Zhuk, N.A.; Korolev, D.A.
2016-01-15
The comparative analysis of magnetic behavior of manganese-containing solid solutions Bi{sub 3}Nb{sub 1−x}Mn{sub x}O{sub 7−δ} (x=0.01−0.10) of cubic and tetragonal modifications was performed. Based on the results of magnetic susceptibility studies paramagnetic manganese atoms in solid solutions of cubic and tetragonal modifications were found to be in the form of Mn(III), Mn(IV) monomers and exchange-coupled dimers of Mn(III)–O–Mn(III), Mn(IV)–O–Mn(IV), Mn(III)–O–Mn(IV). The exchange parameters and the distribution of monomers and dimers in solid solutions as a function of the content of paramagnetic atoms were calculated. - Graphical abstract: Structural transition of cubic to tetragonal Bi{sub 3}NbO{sub 7−δ}.
Isotope Labeling for Solution and Solid-State NMR Spectroscopy of Membrane Proteins
Verardi, Raffaello; Traaseth, Nathaniel J.; Masterson, Larry R.; Vostrikov, Vitaly V.; Veglia, Gianluigi
2013-01-01
In this chapter, we summarize the isotopic labeling strategies used to obtain high-quality solution and solid-state NMR spectra of biological samples, with emphasis on integral membrane proteins (IMPs). While solution NMR is used to study IMPs under fast tumbling conditions, such as in the presence of detergent micelles or isotropic bicelles, solid-state NMR is used to study the structure and orientation of IMPs in lipid vesicles and bilayers. In spite of the tremendous progress in biomolecular NMR spectroscopy, the homogeneity and overall quality of the sample is still a substantial obstacle to overcome. Isotopic labeling is a major avenue to simplify overlapped spectra by either diluting the NMR active nuclei or allowing the resonances to be separated in multiple dimensions. In the following we will discuss isotopic labeling approaches that have been successfully used in the study of IMPs by solution and solid-state NMR spectroscopy. PMID:23076578
Adachi, Kyoichi; Furuta, Kenji; Aimi, Masahito; Fukazawa, Kousuke; Shimura, Shino; Ohara, Shunji; Nakata, Shuji; Inoue, Yukiko; Ryuko, Kanji; Ishine, Junichi; Katoh, Kyoko; Hirata, Toshiaki; Ohhata, Shuzo; Katoh, Setsushi; Moriyama, Mika; Sumikawa, Masuko; Sanpei, Mari; Kinoshita, Yoshikazu
2012-05-01
The aim of this study was to determine the efficacy of pectin solution, which increases the viscosity of liquid nutrient, for prevention of gastro-esophageal reflux in comparison with half-solid nutrient. The subjects were 10 elderly patients undergoing percutaneous endoscopic gastrostomy feeding. Twenty-four-hour esophageal multichannel intraluminal impedance and pH testing was performed during intake of half-solid nutrient and a combination of pectin solution and liquid nutrient. During 4 h after delivery, there was no significant difference in the total number of gastro-esophageal reflux events between the feeding of the half-solid nutrient and the combination of pectin solution and liquid nutrient (5.7 ± 1.2 vs 5.3 ± 1.0/4 h). Acidic reflux after delivery of the half-solid nutrient was significantly more frequent than that after delivery of the combination of pectin solution and liquid nutrient (80.7% vs 60.4%, p = 0.018). The incidence of gastro-esophageal reflux reaching the upper portion of the esophagus tended to be higher during delivery of the half-solid nutrient than during delivery of the combination of pectin solution and liquid nutrient (47.4% vs 34.0%, p = 0.153). In conclusion, the usage of pectin solution combined with liquid nutrient is effective for preventing acidic gastro-esophageal reflux and gastro-esophageal reflux reaching the upper portion of the esophagus.
Long-Range Order in Nanocrystal Assemblies Determines Charge Transport of Films
Sainato, Michela; Shevitski, Brian; Sahu, Ayaskanta; ...
2017-07-18
Self-assembly of semiconductor nanocrystals (NCs) into two-dimensional patterns or three-dimensional (2- 3D) superstructures has emerged as a promising low-cost route to generate thin-film transistors and solar cells with superior charge transport because of enhanced electronic coupling between the NCs. Here, we show that lead sulfide (PbS) NCs solids featuring either short-range (disordered glassy solids, GSs) or long-range (superlattices, SLs) packing order are obtained solely by controlling deposition conditions of colloidal solution of NCs. In this study, we demonstrate the use of the evaporation-driven self-assembly method results in PbS NC SL structures that are observed over an area of 1 mmmore » × 100 μm, with long-range translational order of up to 100 nm. A number of ordered domains appear to have nucleated simultaneously and grown together over the whole area, imparting a polycrystalline texture to the 3D SL films. By contrast, a conventional, optimized spin-coating deposition method results in PbS NC glassy films with no translational symmetry and much shorter-range packing order in agreement with state-of-the-art reports. Further, we investigate the electronic properties of both SL and GS films, using a field-effect transistor configuration as a test platform. The long-range ordering of the PbS NCs into SLs leads to semiconducting NC-based solids, the mobility (μ) of which is 3 orders of magnitude higher than that of the disordered GSs. Furthemore, although spin-cast GSs of PbS NCs have weak ambipolar behavior with limited gate tunability, SLs of PbS NCs show a clear p-type behavior with significantly higher conductivities.« less
NASA Astrophysics Data System (ADS)
Dravecz, Gabriella; Laczai, Nikoletta; Hajdara, Ivett; Bencs, László
2016-12-01
The vaporization/atomization processes of Mg in high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS) were investigated by evaporating solid (powder) samples of lithium niobate (LiNbO3) optical single crystals doped with various amounts of Mg in a transversally heated graphite atomizer (THGA). Optimal analytical conditions were attained by using the Mg I 215.4353 nm secondary spectral line. An optimal pyrolysis temperature of 1500 °C was found for Mg, while the compromise atomization temperature in THGAs (2400 °C) was applied for analyte vaporization. The calibration was performed against solid (powered) lithium niobate crystal standards. The standards were prepared with exactly known Mg content via solid state fusion of the oxide components of the matrix and analyte. The correlation coefficient (R value) of the linear calibration was not worse than 0.9992. The calibration curves were linear in the dopant concentration range of interest (0.74-7.25 mg/g Mg), when dosing 3-10 mg of the powder samples into the graphite sample insertion boats. The Mg content of the studied 19 samples was in the range of 1.69-4.13 mg/g. The precision of the method was better than 6.3%. The accuracy of the results was verified by means of flame atomic absorption spectrometry with solution sample introduction after digestion of several crystal samples.
Acoustic and electromagnetic wave interaction in the detection and identification of buried objects
NASA Astrophysics Data System (ADS)
Lawrence, Daniel Edward
2002-09-01
In order to facilitate the development of a hybrid acoustic and electromagnetic (EM) system for buried object detection, a number of analytical solutions and a novel numerical technique are developed to analyze the complex interaction between acoustic and EM scattering. The essence of the interaction lies in the fact that identifiable acoustic properties of an object, such as acoustic resonances, can be observed in the scattered EM Doppler spectrum. Using a perturbation approach, analytical solutions are derived for the EM scattering from infinitely long circular cylinders, both metallic and dielectric, under acoustic vibration in a homogeneous background medium. Results indicate that both the shape variation and dielectric constant contribute to the scattered EM Doppler spectrum. To model the effect of a cylinder beneath an acoustically excited half-space, a new analytical solution is presented for EM scattering from a cylinder beneath a slightly rough surface. The solution is achieved by using plane-wave expansion of the fields and an iterative technique to account for the multiple interactions between the cylinder and rough surface. Following a similar procedure, a novel solution for elastic-wave scattering from a solid cylinder embedded in a solid half-space is developed and used to calculate the surface displacement. Simulations indicate that only a finite range of spatial surface frequencies, corresponding to surface roughness on the order of the EM wavelength; affect the EM scattering from buried objects and suggest that object detection can be improved if the acoustic excitation induces surface roughness outside this range. To extend the study to non-canonical scenarios, a novel numerical approach is introduced in which time-varying impedance boundary conditions (IBCs) are used in conjunction with the method of moments (MoM) to model the EM scattering from vibrating metallic objects of arbitrary shape. It is shown that the standard IBC provides a first order solution for TM polarization, but a second order IBC is needed for TE polarization. The crucial factor in the calculation of the potentially small Doppler components is that the time-varying nature of the cylinder boundary, contained within the surface impedance expressions, can be isolated from the unperturbed terms in the scattered field.
Taghani, Abdollah; Goudarzi, Nasser; Bagherian, Ghadamali; Chamjangali, Mansour Arab
2017-01-01
A rapid, simple, and sensitive technique is proposed based on a miniaturized solid-phase extraction method named mictroextraction in a packed syringe coupled with gas chromatography-mass spectrometry for the preconcentration and determination of three organochlorine pesticides. These include hexachlorobenzene, heptachlor and aldrine in aqueous samples. For the first time, the natural nano diatomite is used a sorbent. Based on this technique, 6.0 mg of the nano sorbent is inserted in a syringe between two polypropylene frits. The analytes would be adsorbed on the solid phase, and would subsequently be eluted using organic solvents. The influence of some important parameters, such as the solution pH, type and volume of the organic desorption solvent, and amount of sorbent on the extraction efficiency of the selected pesticides, is investigated. The proposed method shows good linearity in the range of 0.1 - 40.0 μg L -1 , and at low limits of detection in the range of 0.02 - 0.13 μg L -1 using the selected ion-monitoring mode. The reproducibility of this method was found to be in the range of 3.5 - 11.1% for the understudied pesticides. In order to evaluate the matrix effect, the developed method is also applied to the preconcentration and determination of the selected pesticides in different water samples.
NASA Technical Reports Server (NTRS)
Reynolds, G. H.; Lenel, F. V.; Ansell, G. S.
1971-01-01
The effect of solute additions on the steady-state creep behavior of coarse-grained dispersion-strengthened aluminum alloys was studied. Recrystallized dispersion-strengthened solid solutions were found to have stress and temperature sensitivities quite unlike those observed in single-phase solid solutions having the same composition and grain size. The addition of magnesium or copper to the matrix of a recrystallized dispersion-strengthened aluminum causes a decrease in the steady-state creep rate which is much smaller than that caused by similar amounts of solute in single-phase solid solutions. All alloys exhibited essentially a 4.0 power stress exponent in agreement with the model of Ansell and Weertman. The activation energy for steady-state creep in dispersion-strengthened Al-Mg alloys, as well as the stress dependence, was in agreement with the physical model of dislocation climb over the dispersed particles.
High purity polyimide analysis by solid sampling graphite furnace atomic absorption spectrometry
NASA Astrophysics Data System (ADS)
Santos, Rafael F.; Carvalho, Gabriel S.; Duarte, Fabio A.; Bolzan, Rodrigo C.; Flores, Erico M. M.
2017-03-01
In this work, Cr, Cu, Mn, Na and Ni were determined in high purity polyimides (99.5%) by solid sampling graphite furnace atomic absorption spectrometry (SS-GFAAS) using Zeeman effect background correction system with variable magnetic field, making possible the simultaneous measurement at high or low sensitivity. The following analytical parameters were evaluated: pyrolysis and atomization temperatures, feasibility of calibration with aqueous solution, linear calibration range, sample mass range and the use of chemical modifier. Calibration with aqueous standard solutions was feasible for all analytes. No under or overestimated results were observed and up to 10 mg sample could be introduced on the platform for the determination of Cr, Cu, Mn, Na and Ni. The relative standard deviation ranged from 3 to 20%. The limits of detection (LODs) achieved using the high sensitivity mode were as low as 7.0, 2.5, 1.7, 17 and 0.12 ng g- 1 for Cr, Cu, Mn, Na and Ni, respectively. No addition of chemical modifier was necessary, except for Mn determination where Pd was required. The accuracy was evaluated by analyte spike and by comparison of the results with those obtained by inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry after microwave-assisted digestion in a single reaction chamber system and also by neutron activation analysis. No difference among the results obtained by SS-GFAAS and those obtained by alternative analytical methods using independent techniques. SS-GFAAS method showed some advantages, such as the determination of metallic contaminants in high purity polyimides with practically no sample preparation, very low LODs, calibration with aqueous standards and determination in a wide range of concentration.
Chantler, C T; Bourke, J D
2014-04-09
X-ray absorption fine structure (XAFS) spectroscopy is one of the most robust, adaptable, and widely used structural analysis tools available for a range of material classes from bulk solids to aqueous solutions and active catalytic structures. Recent developments in XAFS theory have enabled high-accuracy calculations of spectra over an extended energy range using full-potential cluster modelling, and have demonstrated particular sensitivity in XAFS to a fundamental electron transport property-the electron inelastic mean free path (IMFP). We develop electron IMFP theory using a unique hybrid model that simultaneously incorporates second-order excitation losses, while precisely accounting for optical transitions dictated by the complex band structure of the solid. These advances are coupled with improved XAFS modelling to determine wide energy-range absorption spectra for molybdenum. This represents a critical test case of the theory, as measurements of molybdenum K-edge XAFS represent the most accurate determinations of XAFS spectra for any material. We find that we are able to reproduce an extended range of oscillatory structure in the absorption spectrum, and demonstrate a first-time theoretical determination of the absorption coefficient of molybdenum over the entire extended XAFS range utilizing a full-potential cluster model.
Catalysis and chemical mechanisms of calcite dissolution in seawater.
Subhas, Adam V; Adkins, Jess F; Rollins, Nick E; Naviaux, John; Erez, Jonathan; Berelson, William M
2017-07-18
Near-equilibrium calcite dissolution in seawater contributes significantly to the regulation of atmospheric [Formula: see text] on 1,000-y timescales. Despite many studies on far-from-equilibrium dissolution, little is known about the detailed mechanisms responsible for calcite dissolution in seawater. In this paper, we dissolve 13 C-labeled calcites in natural seawater. We show that the time-evolving enrichment of [Formula: see text] in solution is a direct measure of both dissolution and precipitation reactions across a large range of saturation states. Secondary Ion Mass Spectrometer profiles into the 13 C-labeled solids confirm the presence of precipitated material even in undersaturated conditions. The close balance of precipitation and dissolution near equilibrium can alter the chemical composition of calcite deeper than one monolayer into the crystal. This balance of dissolution-precipitation shifts significantly toward a dissolution-dominated mechanism below about [Formula: see text] Finally, we show that the enzyme carbonic anhydrase (CA) increases the dissolution rate across all saturation states, and the effect is most pronounced close to equilibrium. This finding suggests that the rate of hydration of [Formula: see text] is a rate-limiting step for calcite dissolution in seawater. We then interpret our dissolution data in a framework that incorporates both solution chemistry and geometric constraints on the calcite solid. Near equilibrium, this framework demonstrates a lowered free energy barrier at the solid-solution interface in the presence of CA. This framework also indicates a significant change in dissolution mechanism at [Formula: see text], which we interpret as the onset of homogeneous etch pit nucleation.
Vasylechko, Volodymyr O; Gryshchouk, Galyna V; Zakordonskiy, Victor P; Vyviurska, Olga; Pashuk, Andriy V
2015-01-01
In spite of the fact that terbium is one of the rarest elements in the Earth's crust, it is frequently used for the production of high technological materials. At the result, an effective combination of sample preparation procedure and detection method for terbium ions in different matrices is highly required. The solid-phase extraction procedure with natural Transcarpathian clinoptilolite thermally activated at 350 °C was used to preconcentrate trace amounts of terbium ions in aqueous solutions for a final spectrophotometric determination with arsenazo III. Thermogravimetric investigations confirmed the existence of relations between changes that appeared during dehydratation of calcined zeolite and its sorption affinity. Since the maximum of sorption capacity towards terbium was observed at pH 8.25, a borate buffer medium (2.5 · 10(-4) М) was used to maintain ionic force and solution acidity. Terbium was quantitatively removed from the solid-phase extraction column with a 1.0 M solution of sodium chloride (pH 2.5). The linearity of the proposed method was evaluated in the range of 2.5-200 ng · mL(-1) with detection limit 0.75 ng · mL(-1). Due to acceptable recoveries (93.3-102.0 %) and RSD values (6-7.1) from spiked tap water, the developed method can be successfully applied for the determination of trace amounts of terbium ions in the presence of major components of water. Graphical abstractSorption of terbium(III) ions on clinoptilolite.
Shamsayei, Maryam; Yamini, Yadollah; Asiabi, Hamid; Safari, Meysam
2018-02-22
The authors describe a 3-component nanoparticle system composed of a silica-coated magnetite (Fe 3 O 4 ) core and a layered double (Cu-Cr) hydroxide nanoplatelet shell. The sorbent has a high anion exchange capacity for extraction anionic species. A simple online system, referred to as "on-line packed magnetic-in-tube solid phase microextraction" was designed. The nanoparticles were placed in a stainless steel cartridge via dry packing. The cartridge was then applied to the preconcentration acidic drugs including naproxen and indomethacin from urine and plasma. Extraction and desorption times, pH values of the sample solution and flow rates of sample solution and eluent were optimized. Analytes were then quantified by HPLC with UV detection. Under optimal conditions, the limits of detection range from 70 to 800 ng L -1 , with linear responses from 0.1-500 μg L -1 (water samples), 0.6-500 μg L -1 (spiked urine), and 0.9-500 μg L -1 (spiked plasma). The inter- and intra-assay precisions (RSDs, for n = 5) are in the range of 2.2-5.4%, 2.8-4.9%, and 2.0-5.2% at concentration levels of 5, 25 and 50 μg L -1 , respectively. The method was applied to the analysis of the drugs in spiked human urine and plasma, and good results were achieved. Graphical abstract Fe 3 O 4 @SiO 2 @CuCr-LDH magnetic nanoparticles were synthesized and packed in to a stainless steel column. The column was applied to solid phase microextraction of acidic drugs from biological samples.
Chen, Xiaohong; Yao, Shanshan; Li, Xiaoping; Zhao, Yonggang; Jin, Micong
2012-11-01
Developing a rapid and sensitive analytical method based on ultrafast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) with solid-phase extraction (SPE) for the simultaneous determination of nine estrogens (dienestrol, diethylstilbestrol, estrone, hexestrol, 17-alpha-estradiol, 17-beta-estradiol, estriol, 17alpha-ethinylestradiol and estradiol valerate) in eel. After the sample was extracted by acetonitrile and cleaned by Waters Oasis HLB solid-phase extraction cartridge, the UFLC separation was performed on a Shim-pack XR-ODS II column (100 mm x 2.0 mm, 2.2 microm) with a linear gradient elution program of methanol solution containing 0.04% ammonia (v/v) and 0.04% ammonia aqueous solution (v/v) as the mobile phase. Electrospray ionization was applied and operated in the negative multiple reaction monitoring (MRM) mode. The quantitation was used by isotope internal standard dilution technique. The results showed that the limits of quantitation (LOQs, S/N(10) were in the range of 0.07-0.4 microg/kg, the calibration curves were in good linearities for the nine analytes in the range of 0.5-50.0 microg/L with the correlative coefficients (r2) more than 0.998, the recoveries were between 81.0% and 110.0% with the relative standard deviations (RSDs) of 1.92%-8.24%. Additional, the mass spectra characterization of the nine estrogens was discussed and the fragmentation pathways were speculated. The developed method is rapid, sensitive, specific and reproducible, and adapts not only to the simultaneous determination of the nine trace estrogens including the epimer of 17-alpha-estradiol and 17-beta-estradiol but also to the identified detection in other fish tissues.
Farajzadeh, Mir Ali; Khorram, Parisa; Pazhohan, Azar
2016-04-01
A simple, sensitive, and efficient method has been developed for simultaneous estimation of valsartan and atorvastatin in human plasma by combination of solid-based dispersive liquid-liquid microextraction and high performance liquid chromatography-diode array detection. In the proposed method, 1,2-dibromoethane (extraction solvent) is added on a sugar cube (as a solid disperser) and it is introduced into plasma sample containing the analytes. After manual shaking and centrifugation, the resultant sedimented phase is subjected to back extraction into a small volume of sodium hydrogen carbonate solution using air-assisted liquid-liquid microextraction. Then the cloudy solution is centrifuged and the obtained aqueous phase is transferred into a microtube and analyzed by the separation system. Under the optimal conditions, extraction recoveries are obtained in the range of 81-90%. Calibration curves plotted in drug-free plasma sample are linear in the ranges of 5-5000μgL(-1) for valsartan and 10-5000μgL(-1) for atorvastatin with the coefficients of determination higher than 0.997. Limits of detection and quantification of the studied analytes in plasma sample are 0.30-2.6 and 1.0-8.2μgL(-1), respectively. Intra-day (n=6) and inter-days (n=4) precisions of the method are satisfactory with relative standard deviations less than 7.4% (at three levels of 10, 500, and 2000μgL(-1), each analyte). These data suggest that the method can be successfully applied to determine trace amounts of valsartan and atorvastatin in human plasma samples. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Soderholm, L.; Mitchell, J. F.
2016-05-01
Synthesis of inorganic extended solids is a critical starting point from which real-world functional materials and their consequent technologies originate. However, unlike the rich mechanistic foundation of organic synthesis, with its underlying rules of assembly (e.g., functional groups and their reactivities), the synthesis of inorganic materials lacks an underpinning of such robust organizing principles. In the latter case, any such rules must account for the diversity of chemical species and bonding motifs inherent to inorganic materials and the potential impact of mass transport on kinetics, among other considerations. Without such assembly rules, there is less understanding, less predictive power, and ultimately less control of properties. Despite such hurdles, developing a mechanistic understanding for synthesis of inorganic extended solids would dramatically impact the range of new material discoveries and resulting new functionalities, warranting a broad call to explore what is possible. Here we discuss our recent approaches toward a mechanistic framework for the synthesis of bulk inorganic extended solids, in which either embryonic atomic correlations or fully developed phases in solutions or melts can be identified and tracked during product selection and crystallization. The approach hinges on the application of high-energy x-rays, with their penetrating power and large Q-range, to explore reaction pathways in situ. We illustrate this process using two examples: directed assembly of Zr clusters in aqueous solution and total phase awareness during crystallization from K-Cu-S melts. These examples provide a glimpse of what we see as a larger vision, in which large scale simulations, data-driven science, and in situ studies of atomic correlations combine to accelerate materials discovery and synthesis, based on the assembly of well-defined, prenucleated atomic correlations.
Soderholm, L.; Mitchell, J. F.
2016-05-26
Synthesis of inorganic extended solids is a critical starting point from which real-world functional materials and their consequent technologies originate. However, unlike the rich mechanistic foundation of organic synthesis, with its underlying rules of assembly (e.g., functional groups and their reactivities), the synthesis of inorganic materials lacks an underpinning of such robust organizing principles. In the latter case, any such rules must account for the diversity of chemical species and bonding motifs inherent to inorganic materials and the potential impact of mass transport on kinetics, among other considerations. Without such assembly rules, there is less understanding, less predictive power, andmore » ultimately less control of properties. Despite such hurdles, developing a mechanistic understanding for synthesis of inorganic extended solids would dramatically impact the range of new material discoveries and resulting new functionalities, warranting a broad call to explore what is possible. Here we discuss our recent approaches toward a mechanistic framework for the synthesis of bulk inorganic extended solids, in which either embryonic atomic correlations or fully developed phases in solutions or melts can be identified and tracked during product selection and crystallization. The approach hinges on the application of high-energy x-rays, with their penetrating power and large Q-range, to explore reaction pathways in situ. We illustrate this process using two examples: directed assembly of Zr clusters in aqueous solution and total phase awareness during crystallization from K–Cu–S melts. These examples provide a glimpse of what we see as a larger vision, in which large scale simulations, data-driven science, and in situ studies of atomic correlations combine to accelerate materials discovery and synthesis, based on the assembly of well-defined, prenucleated atomic correlations.« less
Fluidized bed gasification of extracted coal
Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.
1984-07-06
Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.
Suppression of vacancy cluster growth in concentrated solid solution alloys
Zhao, Shijun; Velisa, Gihan; Xue, Haizhou; ...
2016-12-13
Large vacancy clusters, such as stacking-fault tetrahedra, are detrimental vacancy-type defects in ion-irradiated structural alloys. Suppression of vacancy cluster formation and growth is highly desirable to improve the irradiation tolerance of these materials. In this paper, we demonstrate that vacancy cluster growth can be inhibited in concentrated solid solution alloys by modifying cluster migration pathways and diffusion kinetics. The alloying effects of Fe and Cr on the migration of vacancy clusters in Ni concentrated alloys are investigated by molecular dynamics simulations and ion irradiation experiment. While the diffusion coefficients of small vacancy clusters in Ni-based binary and ternary solid solutionmore » alloys are higher than in pure Ni, they become lower for large clusters. This observation suggests that large clusters can easily migrate and grow to very large sizes in pure Ni. In contrast, cluster growth is suppressed in solid solution alloys owing to the limited mobility of large vacancy clusters. Finally, the differences in cluster sizes and mobilities in Ni and in solid solution alloys are consistent with the results from ion irradiation experiments.« less
Nano-particle drag prediction at low Reynolds number using a direct Boltzmann-BGK solution approach
NASA Astrophysics Data System (ADS)
Evans, B.
2018-01-01
This paper outlines a novel approach for solution of the Boltzmann-BGK equation describing molecular gas dynamics applied to the challenging problem of drag prediction of a 2D circular nano-particle at transitional Knudsen number (0.0214) and low Reynolds number (0.25-2.0). The numerical scheme utilises a discontinuous-Galerkin finite element discretisation for the physical space representing the problem particle geometry and a high order discretisation for molecular velocity space describing the molecular distribution function. The paper shows that this method produces drag predictions that are aligned well with the range of drag predictions for this problem generated from the alternative numerical approaches of molecular dynamics codes and a modified continuum scheme. It also demonstrates the sensitivity of flow-field solutions and therefore drag predictions to the wall absorption parameter used to construct the solid wall boundary condition used in the solver algorithm. The results from this work has applications in fields ranging from diagnostics and therapeutics in medicine to the fields of semiconductors and xerographics.
Liquid film drag out in the presence of molecular forces
NASA Astrophysics Data System (ADS)
Schmidhalter, I.; Cerro, R. L.; Giavedoni, M. D.; Saita, F. A.
2013-03-01
From a practical as well as a conceptual point of view, one of the most interesting problems of physicochemical hydrodynamics is the drag out of a liquid film by a moving solid out of a pool of liquid. The basic problem, sometimes denoted the Landau-Levich problem [L. Landau and B. Levich, "Dragging of a liquid by a moving plate," Acta Physicochim. USSR 17, 42-54 (1942)], involves an interesting blend of capillary and viscous forces plus a matching of the static solution for capillary rise with a numerical solution of the film evolution equation, neglecting gravity, on the downstream region of the flow field. The original solution describes experimental data for a wide range of Capillary numbers but fails to match results for large and very small Capillary numbers. Molecular level forces are introduced to create an augmented version of the film evolution equation to show the effect of van der Waals forces at the lower range of Capillary numbers. A closed form solution for static capillary rise, including molecular forces, was matched with a numerical solution of the augmented film evolution equation in the dynamic meniscus region. Molecular forces do not sensibly modify the static capillary rise region, since film thicknesses are larger than the range of influence of van der Waals forces, but are determinant in shaping the downstream dynamic meniscus of the very thin liquid films. As expected, a quantitatively different level of disjoining pressure for different values of molecular constants remains in the very thin liquid film far downstream. Computational results for a wide range of Capillary numbers and Hamaker constants show a clear transition towards a region where the film thickness becomes independent of the coating speed.
NASA Astrophysics Data System (ADS)
Zagorodniy, Yu. O.; Kuzian, R. O.; Kondakova, I. V.; Maryško, M.; Chlan, V.; Štěpánková, H.; Olekhnovich, N. M.; Pushkarev, A. V.; Radyush, Yu. V.; Raevski, I. P.; Zalar, B.; Laguta, V. V.; Stephanovich, V. A.
2018-01-01
We report on the results of magnetic susceptibility, electron paramagnetic resonance, and 207Pb nuclear magnetic resonance (NMR) studies of the magnetoelectric multiferroic Pb (F e1 /2S b1 /2 ) O3 (PFS) ceramic, as well as its solid solution with Pb (F e1 /2N b1 /2) O3 (PFN) of different degrees of the 1:1 ordering of magnetic F e3 + and nonmagnetic S b5 + ions. The ordering has been studied by x-ray diffraction (XRD) and NMR methods. In particular, two spectral lines, originating from the ordered and disordered regions, respectively, are resolved in the 207Pb NMR spectra. This demonstrates the presence of spatially heterogeneous ordering where ordered regions are embedded into a disordered matrix. Combining XRD and NMR data, we have determined both the long-range order parameter s and the volume fraction of ordered regions s' for all investigated samples. The values vary in the range s =0 -0.93 and s'=0 -1 . We have found that the 207Pb Fermi contact interaction strongly depends on the disorder in the Fe/Sb positions: whereas it reaches 7.08 MHz in the ordered lattice, it is almost zero in the disordered environment. These results are further supported by the studies of PFS-PFN solid solutions. The analysis of experimental data in terms of density functional theory reveals a noticeably higher hybridization between Pb 6s and Fe 3d orbitals in the ordered case. The ordering of magnetic and nonmagnetic ions has a strong impact on the magnetic properties of PFS, leading to a transformation of the long-range ordered antiferromagnetic phase in chemically ordered samples to the spin glass state already in partially (s =0.35 ) disordered specimens. In our opinion, the difference in the magnetic properties of PFN and PFS is related to the fact that PFN is completely disordered, in contrast to PFS, which is only partially disordered, with small ordered regions existing in the disordered matrix that prevent the percolation of the nearest-neighbor Fe-Fe exchange interaction across the lattice.
Talio, María Carolina; Alesso, Magdalena; Acosta, Mariano; Wills, Verónica S; Fernández, Liliana P
2017-11-01
In this work, a new procedure was developed for separation and preconcentration of nickel(II) and cadmium(II) in several and varied tobacco samples. Tobacco samples were selected considering the main products consumed by segments of the population, in particular the age (youth) and lifestyle of the consumer. To guarantee representative samples, a randomized strategy of sampling was used. In the first step, a chemofiltration on nylon membrane is carried out employing eosin (Eo) and carbon nanotubes dispersed in sodium dodecylsulfate (SDS) solution (phosphate buffer pH 7). In this condition, Ni(II) was selectively retained on the solid support. After that, the filtrate liquid with Cd(II) was re-conditioned with acetic acid /acetate buffer solution (pH 5) and followed by detection. A spectrofluorimetric determination of both metals was carried out, on the solid support and the filtered aqueous solution, for Ni(II) and Cd(II), respectively. The solid surface fluorescence (SSF) determination was performed at λ em = 545nm (λ ex = 515nm) for Ni(II)-Eo complex and the fluorescence of Cd(II)-Eo was quantified in aqueous solution using λ em = 565nm (λ ex = 540nm). The calibration graphs resulted linear in a range of 0.058-29.35μgL -1 for Ni(II) and 0.124-56.20μgL -1 for Cd(II), with detection limits of 0.019 and 0.041μgL -1 (S/N = 3). The developed methodology shows good sensitivity and adequate selectivity, and it was successfully applied to the determination of trace amounts of nickel and cadmium present in tobacco samples (refill solutions for e-cigarettes, snuff used in narguille (molasses) and traditional tobacco) with satisfactory results. The new methodology was validated by ICP-MS with adequate agreement. The proposed methodology represents a novel fluorescence application to Ni(II) and Cd(II) quantification with sensitivity and accuracy similar to atomic spectroscopies, introducing for the first time the quenching effect on SSF. Copyright © 2017 Elsevier B.V. All rights reserved.
Seasonal multiphase equilibria in the atmospheres of Titan and Pluto
NASA Astrophysics Data System (ADS)
Tan, S. P.; Kargel, J. S.
2017-12-01
At the extremely low temperatures in Titan's upper troposphere and on Pluto's surface, the atmospheres as a whole are subject to freeze into solid solutions, not pure ices. The presence of the solid phases introduces conditions with rich phase equilibria upon seasonal changes, even if the temperature undergoes only small changes. For the first time, the profile of atmospheric methane in Titan's troposphere will be reproduced complete with the solid solutions. This means that the freezing point, i.e. the altitude where the first solid phase appears, is determined. The seasonal change will also be evaluated both at the equator and the northern polar region. For Pluto, also for the first time, the seasonal solid-vapor equilibria will be evaluated. The fate of the two solid phases, the methane-rich and carbon-monoxide-rich solid solutions, will be analyzed upon temperature and pressure changes. Such investigations are enabled by the development of a molecular-based thermodynamic model for cryogenic chemical systems, referred to as CRYOCHEM, which includes solid solutions in its phase-equilibria calculations. The atmospheres of Titan and Pluto are modeled as ternary gas mixtures: nitrogen-methane-ethane and nitrogen-methane-carbon monoxide, respectively. Calculations using CRYOCHEM can provide us with compositions not only in two-phase equilibria, but also that in three-phase equilibria. Densities of all phases involved will also be calculated. For Titan, density inversion between liquid and solid phases will be identified and presented. In the inversion, the density of solid phase is less than that in the liquid phase. The method and results of this work will be useful for further investigations and modeling on the atmospheres of Titan, Pluto, and other bodies with similar conditions in the Solar System and beyond.
Scattering of focused ultrasonic beams by cavities in a solid half-space.
Rahni, Ehsan Kabiri; Hajzargarbashi, Talieh; Kundu, Tribikram
2012-08-01
The ultrasonic field generated by a point focused acoustic lens placed in a fluid medium adjacent to a solid half-space, containing one or more spherical cavities, is modeled. The semi-analytical distributed point source method (DPSM) is followed for the modeling. This technique properly takes into account the interaction effect between the cavities placed in the focused ultrasonic field, fluid-solid interface and the lens surface. The approximate analytical solution that is available in the literature for the single cavity geometry is very restrictive and cannot handle multiple cavity problems. Finite element solutions for such problems are also prohibitively time consuming at high frequencies. Solution of this problem is necessary to predict when two cavities placed in close proximity inside a solid can be distinguished by an acoustic lens placed outside the solid medium and when such distinction is not possible.
Ghosh, Tanushree; Rieger, Jana
2017-01-01
Conventional ion-selective electrodes with a liquid junction have the disadvantage of potential drift. All-solid-state ion-selective electrodes with solid contact in between the metal electrode and the ion-selective membrane offer high capacitance or conductance to enhance potential stability. Solution-casted chitosan/Prussian blue nanocomposite (ChPBN) was employed as the solid contact layer for an all-solid-state sodium ion-selective electrode in a potentiometric sodium ion sensor. Morphological and chemical analyses confirmed that the ChPBN is a macroporous network of chitosan that contains abundant Prussian blue nanoparticles. Situated between a screen-printed carbon electrode and a sodium-ionophore-filled polyvinylchloride ion-selective membrane, the ChPBN layer exhibited high redox capacitance and fast charge transfer capability, which significantly enhanced the performance of the sodium ion-selective electrode. A good Nernstian response with a slope of 52.4 mV/decade in the linear range from 10−4–1 M of NaCl was observed. The stability of the electrical potential of the new solid contact was tested by chronopotentiometry, and the capacitance of the electrode was 154 ± 4 µF. The response stability in terms of potential drift was excellent (1.3 µV/h) for 20 h of continuous measurement. The ChPBN proved to be an efficient solid contact to enhance the potential stability of the all-solid-state ion-selective electrode. PMID:29099804
Chemical potential of carbon in the system UPuCON: Measurements and calculation
NASA Astrophysics Data System (ADS)
Anthonysamy, S.; Ananthasivan, K.; Kahappan, I.; Chandramouli, V.; Vasudeva Rao, P. R.; Mathews, C. K.; Jacob, K. T.
1995-05-01
The carbon potential of (U,Pu) mixed carbides with Pu/(U + Pu) ratios of 0.55 and 0.70 was measured in the temperature range 973 to 1173 K by employing a methane-hydrogen gas equilibration technique. The technique was validated by measuring the Gibbs energy of formation of WC. The compatibility of the mixed carbides with the stainless steel clad was analysed by using the measured carbon potentials. The carbon potentials of mixed carbides of other compositions were calculated theoretically in order to assess their compatibility. The calculations assume ideal solution behavior for all the solid solutions present in the UPuCON system.
Experimental Methods to Estimate Accumulated Solids in Nuclear Waste Tanks - 13313
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duignan, Mark R.; Steeper, Timothy J.; Steimke, John L.
2013-07-01
The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a wastemore » tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: - Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream. - Magnetic wand used to manually remove stainless steel solids from samples and the tank heel. - Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas. - Laser range finders to determine the volume and shape of the solids mounds. - Core sampler to determine the stainless steel solids distribution within the solids mounds. - Computer driven positioner that placed the laser range finders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These devices and techniques were very effective to estimate the movement, location, and concentrations of the solids representing plutonium and are expected to perform well at a larger scale. The operation of the techniques and their measurement accuracies will be discussed as well as the overall results of the accumulated solids test. (authors)« less
Corresponding-states laws for protein solutions.
Katsonis, Panagiotis; Brandon, Simon; Vekilov, Peter G
2006-09-07
The solvent around protein molecules in solutions is structured and this structuring introduces a repulsion in the intermolecular interaction potential at intermediate separations. We use Monte Carlo simulations with isotropic, pair-additive systems interacting with such potentials. We test if the liquid-liquid and liquid-solid phase lines in model protein solutions can be predicted from universal curves and a pair of experimentally determined parameters, as done for atomic and colloid materials using several laws of corresponding states. As predictors, we test three properties at the critical point for liquid-liquid separation: temperature, as in the original van der Waals law, the second virial coefficient, and a modified second virial coefficient, all paired with the critical volume fraction. We find that the van der Waals law is best obeyed and appears more general than its original formulation: A single universal curve describes all tested nonconformal isotropic pair-additive systems. Published experimental data for the liquid-liquid equilibrium for several proteins at various conditions follow a single van der Waals curve. For the solid-liquid equilibrium, we find that no single system property serves as its predictor. We go beyond corresponding-states correlations and put forth semiempirical laws, which allow prediction of the critical temperature and volume fraction solely based on the range of attraction of the intermolecular interaction potential.
Ensafi, Ali A; Shiraz, A Zendegi
2008-02-11
Activated carbon loaded with xylenol orange in a mini-column was used for the highly selective separation and preconcentration of Pb(II) ions. An on-line system for enrichment and the determination of Pb(II) was carried out on flame atomic absorption spectrometry. The conditions of preconcentration and quantitative recovery of Pb(II) from diluted solution, such as pH of aqueous phase, amount of the sorbent, volume of the solutions and flow variables were studied as well as effect of potential interfering ions. Under the optimum conditions, Pb(II) in an aqueous sample was concentrated about 200-fold and the detection limit was 0.4 ng mL(-1) Pb(II). The adsorption capacity of the solid phase was 0.20mg of lead per one gram of the modified activated carbon. The modified activated carbon is stable for several treatments of sample solutions without the need for using any chemical reagent. The recovery of lead(II) from river water, waste water, tap water, and in the following reference materials: SRM 2711 Montana soil and GBW-07605 tea were obtained in the range of 97-104% by the proposed method.
New laser media based on microporous glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altshuler, G.B.; Bakanov, V.A.; Dulneva, E.G.
The results of the investigation of new class of the laser media based on dye solutions impregnated microporous glasses are presented. Based on such media highly effective active elements of tunable dye lasers and passive modulators for solid-state lasers are created. This article is devoted to laser media of the new type - the heterogenous solid-liquid media on the basis of the impregnated by the solutions of the dyes of the microporous glasses. The microporous glasses represent themselves the products of the leaching of heat - treated sodium borosilicate glasses of a certain composition range. As a result of heatmore » treatment is realized the phase separated glass. It consists of two interconnected phases: the silica rich phase and the chemical unstable sodium - borate - rich phase. If we place this glass in the acid then the ions of sodium and borate will be transfered to the solution. As a result we obtain the porous glass and this process produces the continuous claster. Therefore it could be easily impregnated by liquids and gases. We now have the technology that permits us to obtain the samples with the volume porosity from ten to fifty percent and the size of this poroses could be varied from twenty angstroms up to one thousand angstroms.« less
Removal of arsenic, vanadium, and/or nickel compounds from petroliferous liquids
Fish, R.H.
1985-05-17
Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids (shale oil, SRC, etc.) by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20/sup 0/ to 100/sup 0/C with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.
Garnet: featured mineral group at the 1993 Tucson Show
Modreski, P.J.
1993-01-01
The garnets are a common but complex group of minerals. They are perhaps the mineral kingdom's best example of solid solution: a relationship in which minerals have chemical compositions that are intermediate between two or more ideal end-member species. In garnet, we deal with a complex group of solid-solution series between as many as 14 end-member minerals. The varying intergradations of solid solution between these different end-members help to explain the garnet group's variety of color, environment of occurrence, gem use, and variation in such physical properties as specific gravity, refractive index, and hardness. -from Author
Atomic-level simulation of ferroelectricity in perovskite solid solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sepliarsky, M.; Instituto de Fisica Rosario, CONICET-UNR, Rosario,; Phillpot, S. R.
2000-06-26
Building on the insights gained from electronic-structure calculations and from experience obtained with an earlier atomic-level method, we developed an atomic-level simulation approach based on the traditional Buckingham potential with shell model which correctly reproduces the ferroelectric phase behavior and dielectric and piezoelectric properties of KNbO{sub 3}. This approach now enables the simulation of solid solutions and defected systems; we illustrate this capability by elucidating the ferroelectric properties of a KTa{sub 0.5}Nb{sub 0.5}O{sub 3} random solid solution. (c) 2000 American Institute of Physics.
Jiang, Jian-Guo; Zhao, Zhen-Zhen; Du, Xue-Juan; Sui, Ji-Chao; Wu, Shi-Yao
2007-04-01
The straw contains a high content of lignin, which cannot be well utilized by anaerobic bacteria in high solid anaerobic digestion process. This paper presents the experimental investigation of the straw pre-treatment, which aims to destroy the complex structure of the lignin to enhance its high solid anaerobic digestion. The straw is pre-treated in different solutions including NaOH, ammonia, H2SO4, and carbamide. The pre-treating effects are expressed by COD concentration dissolved in the solutions and the 14-day biogas generation in the enhanced aerogenic experiment. Different affecting factors, such as the concentration of the chemical solution, the species of the straw, the pre-treatment reaction time, the reaction temperature and the size of the straw, are investigated. The results show that NaOH solution is the most effective pre-treatment chemical among the four different solutions. The experimental results still indicate that the accumulative biogas production can be 1 500 mL (10 g straw) in 14 days after pre-treatment in 4 mg/L NaOH solution and the dissolved COD in the solution reaches 39 000 mg/L after 24 hours. In addition, the experiment shows that the lignin content in the straw is reduced from 28% to 19% after pre-treatment in 1.5% (in weight) NaOH solution, and it can improve the straw treatment efficiency using high solid anaerobic digestion process.
Xie, Yinghao; Wu, Fangfang; Sun, Xiaoqin; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang
2016-01-01
Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge. PMID:26755070
Xie, Yinghao; Wu, Fangfang; Sun, Xiaoqin; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang
2016-01-12
Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge.
NASA Astrophysics Data System (ADS)
Xie, Yinghao; Wu, Fangfang; Sun, Xiaoqin; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang
2016-01-01
Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge.
Xu, Zhiyuan; Shi, Jingjing; Haroone, Muhammad Sohail; Chen, Wenpeng; Zheng, Shufang; Lu, Jun
2018-04-01
Due to the superiority of metal-doped ZnO compared to TiO 2 , the Zn-M (M = Al 3+ , Ga 3+ , Cr 3+ , Ti 4+ , Ce 4+ ) mixed metal oxide solid solutions have been extensively studied for photocatalytic and photovoltaic applications. In this work, a systematic research has proceeded for the preparation of a zinc-aluminum oxide semiconductor as a photoanode for the dye-sensitized solar cells (DSSCs) by a simple pyrolysis route with the Zn-Al layered double hydroxide (LDH) as a precursor. The Zn-Al oxide solid solution has been applied for DSSCs as an electron acceptor, which is used to study the influence of different Al content and sintering temperature on the device efficiency. Finally, the Zn-Al oxide solid solution with calcination temperature 600 °C and Al 27 at.% content exhibits the best performance. The photoelectric efficiency improved 100 times when the Al 3+ content decreased from 44 to 27 at.%. The Zn x Al y O solid solution show a reasonable efficiency as photoanode materials in DSSCs, with the best preliminary performance reported so far, and shows its potential application for the photovoltaic devices. Copyright © 2018 Elsevier Inc. All rights reserved.
He, Xin; Wang, Geng Nan; Yang, Kun; Liu, Hui Zhi; Wu, Xia Jun; Wang, Jian Ping
2017-04-15
In this study, a magnetic graphene-based dispersive solid phase extraction method was developed that was combined with high performance liquid chromatography to determine the residues of fluoroquinolone drugs in foods of animal origin. During the experiments, several parameters possible influencing the extraction performance were optimized (amount of magnetic graphene, sample pH, extraction time and elution solution). This extraction method showed high absorption capacities (>6800ng) and high enrichment factors (68-79-fold) for seven fluoroquinolones. Furthermore, this absorbent could be reused for at least 40 times. The limits of detection were in the range of 0.05-0.3ng/g, and the recoveries from the standards fortified blank samples (bovine milk, chicken muscle and egg) were in the range of 82.4-108.5%. Therefore, this method could be used as a simple and sensitive tool to determine the residues of fluoroquinolones in foods of animal origin. Copyright © 2016 Elsevier Ltd. All rights reserved.
1980-07-01
Solution of the Nonlinear Eddy Current and Loss Problems in Quasilinear Poisson Equation in a Nonuniform the Solid Rotors of Large Turbogenerators...stable probe support and aiid possibly also for the effect of a nonuniform Scanning mechanisms, especially for test pieces of magnetic field...without specimen): defects such as inclusions, voids, delaminations, 55 db and nonuniform particle distribution. Due to im- Dynamic range: 50 to 70
Low-temperature dielectric behavior of Nb{sub 2}O{sub 5}-SiO{sub 2} solid solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choosuwan, H.; Guo, R.; Bhalla, A. S.
2003-03-01
Dielectric properties of Nb{sub 2}O{sub 5}(0.92):SiO{sub 2}(0.08) ceramic were measured in the temperature range of 10-300 K by the cryostat system. Frequency-dependent dielectric loss suggests the relaxation behavior of this material. The relaxation mechanism was analyzed by the Arrhenius relationship and the Cole-Cole plot. Calculated distribution of relaxation time reveals deviation from the pure Debye relaxation.
Effect of Boron on the Hot Ductility of Resulfurized Low-Carbon Free-Cutting Steel
NASA Astrophysics Data System (ADS)
Liu, Hai-tao; Chen, Wei-qing
2015-09-01
The hot ductility of resulfurized low-carbon free-cutting steel with boron additives is studied in the temperature range 850 - 1200°C with the help of a Gleeble-1500 thermomechanical simulator. The introduction of boron increases hot ductility, especially at 900 - 1050°C. In the single-phase austenitic region, this effect is caused by segregation of boron over grain boundaries, acceleration of dynamic recrystallization, and solid-solution softening of deformed austenite.
Friction and the development of hard alloy surface microstructures during wear
NASA Astrophysics Data System (ADS)
Gnyusov, S. F.; Tarassov, S. Yu.
1997-12-01
Investigations of wear in sliding friction of WC-Hadfield steel hard alloy against cast tool steel have been carried out in a broad range of velocities and pressure values. Structural and phase composition variations have been revealed. Friction-affected zone was found to be 450 µm in depth. Structural γ → α, γ → transformation regions are located within 100 μm of the surface. These transformations contributed to the total solid solution deformation hardening.
Liu, Fang; Wang, Yan; Wang, Yuhong; Zhou, Junyi; Yan, Chao
2012-03-01
A high performance liquid chromatographic method with evaporative light scattering detection (HPLC-ELSD) was developed for the simultaneous determination of five synthetic sweeteners (acesulfame-K, saccharin sodium, sodium cyclamate, sucralose and aspartame) in food. The sweeteners were extracted by 0.1% (v/v) formic acid buffer solution. The extract of sample was cleaned up and concentrated with solid phase extraction (SPE) cartridge. Then the sweeteners were separated on a C18 column (3 microm) using 0.1% (v/v) formic acid buffer (adjusted to pH = 3.5 with aqueous ammonia solution)-methanol (61: 39, v/v) as mobile phase, and finally detected by ELSD. The results showed that the reasonable linearity was achieved for all the analytes over the range of 30 - 1000 mg/L with the correlation coefficients (r) greater than 0.997. The recoveries for the five sweeteners ranged from 85.6% to 109.0% at three spiked concentrations with the relative standard deviations (RSDs) lower than 4.0%. The limits of detection (LODs, S/N = 3) were 2.5 mg/L for both acesulfame-K and sucralose, 3 mg/L for saccharin sodium, 10 mg/L for sodium cyclamate, and 5 mg/L for aspartame. The method is simple, sensitive and low cost, and has been successfully applied to the simultaneous determination of the five synthetic sweeteners in food.
NASA Astrophysics Data System (ADS)
Qin, Hai-Yan; Wang, Wei-Li; Wei, Bing-Bo
2009-11-01
The rapid dendritic growth of primary Ni3Sn phase in undercooled Ni-30.9%Sn-5%Ge alloy is investigated by using the glass fluxing technique. The dendritic growth velocity of Ni3Sn compound is measured as a function of undercooling, and a velocity of 2.47 m/s is achieved at the maximum undercooling of 251 K (0.17TL). The addition of the Ge element reduces its growth velocity as compared with the binary Ni75Sn25 alloy. During rapid solidification, the Ni3Sn compound behaves like a normal solid solution and it displays a morphological transition of “coarse dendrite-equiaxed grain-vermicular structure" with the increase of undercooling. Significant solute trapping of Ge atoms occurs in the whole undercooling range.
Wang, Z; Hennion, B; Urruty, L; Montury, M
2000-11-01
Solid-phase microextraction coupled with high performance liquid chromatography has been studied for the analysis of methiocarb, napropamide, fenoxycarb and bupirimate in strawberries. The strawberries were blended and centrifuged. Then, an aliquot of the resulting extracting solution was subjected to solid-phase microextraction (SPME) on a 60 microns polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre for 45 min at room temperature. The extracted pesticides on the SPME fibre were desorbed into SPME/high performance liquid chromatography (HPLC) interface for HPLC analysis with diode-array detection (DAD). The method is organic solvent-free for the whole extraction process and is simple and easy to manipulate. The detection limits were shown to be at low microgram kg-1 level and the linear response covered the range from 0.05 to 2 mg kg-1 of pesticides in strawberries with a regression coefficient larger than 0.99. A good repeatability with RSDs between 2.92 and 9.25% was obtained, depending on compounds.
Nanobubbles do not sit alone at the solid-liquid interface.
Peng, Hong; Hampton, Marc A; Nguyen, Anh V
2013-05-21
The unexpected stability and anomalous contact angle of gaseous nanobubbles at the hydrophobic solid-liquid interface has been an issue of debate for almost two decades. In this work silicon-nitride tipped AFM cantilevers are used to probe the highly ordered pyrolytic graphite (HOPG)-water interface with and without solvent-exchange (a common nanobubble production method). Without solvent-exchange the force obtained by the single force and force mapping techniques is consistent over the HOPG atomic layers and described by DLVO theory (strong EDL repulsion). With solvent-exchange the force is non-DLVO (no EDL repulsion) and the range of the attractive jump-in (>10 nm) over the surface is grouped into circular areas of longer range, consistent with nanobubbles, and the area of shorter range. The non-DLVO nature of the area between nanobubbles suggests that the interaction is no longer between a silicon-nitride tip and HOPG. Interfacial gas enrichment (IGE) covering the entire area between nanobubbles is suggested to be responsible for the non-DLVO forces. The absence of EDL repulsion suggests that both IGE and nanobubbles are not charged. The coexistence of nanobubbles and IGE provides further evidence of nanobubble stability by dynamic equilibrium. The IGE cannot be removed by contact mode scanning of a cantilever tip in pure water, but in a surfactant (SDS) solution the mechanical action of the tip and the chemical action of the surfactant molecules can successfully remove the enrichment. Strong EDL repulsion between the tip and nanobubbles/IGE in surfactant solutions is due to the polar heads of the adsorbed surfactant molecules.
Method of making supercritical fluid molecular spray films, powder and fibers
Smith, Richard D.
1988-01-01
Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a heated nozzle having a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. In another embodiment, the temperature of the solution and nozzle is elevated above the melting point of the solute, which is preferably a polymer, and the solution is maintained at a pressure such that, during expansion, the solute precipitates out of solution within the nozzle in a liquid state. Alternatively, a secondary solvent mutually soluble with the solute and primary solvent and having a higher critical temperature than that of primary solvent is used in a low concentration (<20%) to maintain the solute in a transient liquid state. The solute is discharged in the form of long, thin fibers. The fibers are collected at sufficient distance from the orifice to allow them to solidify in the low pressure/temperature region.
Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit
2016-09-23
Solid solutions of HfB 2-ZrB 2 mixtures were prepared by high-energy ball milling of diboride and additive powders followed by spark plasma sintering (SPS). A mixture of stoichiometric 1:1 HfB 2-ZrB 2 borides was the base composition to which Hf, Zr, Ta, LaB 6 or Gd 2O 3 was added. Hf, Zr and Ta were added in order to bring the boron-to-metal ratio down to 1.86, rendering the boride as MeB 1.86. In the case of LaB 6 and Gd 2O 3, 1.8 mol% was added. Electroanalytical behavior of hydrogen evolution reactions was evaluated in 1 M H 2SO 4more » and 1 M NaOH solutions. The LaB 6 additive material showed Tafel slopes of 125 and 90 mV/decade in acidic and alkaline solutions respectively. The Hf and Zr rich samples showed Tafel slopes of about 120 mV/decade in both electrolytes. The over potentials of hydrogen evolution reactions (at 10 mA/cm 2) in the alkaline solution were about 100 mV lower than those in acidic solution. The metal-rich diborides and addition of LaB 6 showed better hydrogen evolution reaction (HER) activities than the base 1:1 HfB 2-ZrB 2 stoichiometric diboride solid solution. Furthermore, the higher activity of metal-rich borides could be attributed to the increased electron population at the d-orbitals of the metal shown by band structure modeling calculations using the Density Functional Theory approach.« less
USDA-ARS?s Scientific Manuscript database
Aquatic plants are involved in the storage and release capacity for organic matter and nutrients. In this study, solid 13C and solution 31P nuclear magnetic resonance (NMR) spectroscopy were used to characterize the biomass samples of six aquatic plants. Solid 13C NMR spectroscopy revealed the domin...
The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons.
Rakić, Vesna; Rac, Vladislav; Krmar, Marija; Otman, Otman; Auroux, Aline
2015-01-23
In this study, the adsorption of pharmaceutically active compounds - salicylic acid, acetylsalicylic acid, atenolol and diclofenac-Na onto activated carbons has been studied. Three different commercial activated carbons, possessing ∼650, 900 or 1500m(2)g(-1) surface areas were used as solid adsorbents. These materials were fully characterized - their textural, surface features and points of zero charge have been determined. The adsorption was studied from aqueous solutions at 303K using batch adsorption experiments and titration microcalorimetry, which was employed in order to obtain the heats evolved as a result of adsorption. The maximal adsorption capacities of investigated solids for all target pharmaceuticals are in the range of 10(-4)molg(-1). The obtained maximal retention capacities are correlated with the textural properties of applied activated carbon. The roles of acid/base features of activated carbons and of molecular structures of adsorbate molecules have been discussed. The obtained results enabled to estimate the possibility to use the activated carbons in the removal of pharmaceuticals by adsorption. Copyright © 2014 Elsevier B.V. All rights reserved.
Effects of acid rain on grapevines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsline, P.L.; Musselman, R.C.; Dee, R.J.
1983-01-01
Mature vineyard-growing Concord grapevines were sprayed with simulated acid rain solutions ranging from pH 2.5 to 5.5 both as acute treatments at anthesis and chronically throughout the season in 1980 and 1981. In 1981, 8 additional varieties were also treated with simulated acid rain solutions at pH 2.75 and 3.25. With Concord in 1981, few foliar lesions on leaves were visible at pH 2.75. In contrast, many leaf lesions with decreased fruit soluble solids were observed at pH 2.5 in 1980. The relationship between acid-rain and oxidant stipple, chlorosis, and soluble solids in the absence of acid rain leaf lesionsmore » at pH>2.5 remains unclear. Acute sprays (pH2.75) at anthesis reduced pollen germination in four grape cultivars. However, fruit set was reduced in only one of these. Grape yields were not influenced by acid rain treatments. There was no evidence that acid-rain at ambient pH levels had negative effects on grape production or fruit quality.« less
Solid solution cermet: (Ti,Nb)(CN)-Ni cermet.
Kwon, Hanjung; Jung, Sun-A
2014-11-01
Solid solution powders without W, (Ti,Nb)(CN) powders with a B1 structure (NaCl like), were synthesized by high energy milling and carbothermal reduction in nitrogen. The range of molar ratios of Ti/Nb for forming complete (Ti,Nb)(CN) phase was broader than that of Ti/W for the (Ti,W)(CN) phase because carbide or carbonitride of Nb had a B1 crystal structure identical to Ti(CN) while WC had a hexagonal crystal structure. The results revealed that the hardness of (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,W)(CN)-Ni cermets. The lower density of the (Ti,Nb)(CN) powder contributed to the higher hardness compared to (Ti,W)(CN) because the volumetric ratio of (Ti,Nb)(CN) in the (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,Nb)(CN) in the (Ti,W)(CN)-Ni cermets at the same weight ratio of Ni. Additionally, it was assumed that intrinsic the properties of (Ti,Nb)(CN) could also be the cause for the high hardness of the (Ti,Nb)(CN)-Ni cermets.
Cedillos-Barraza, Omar; Manara, Dario; Boboridis, K; Watkins, Tyson; Grasso, Salvatore; Jayaseelan, Daniel D; Konings, Rudy J M; Reece, Michael J; Lee, William E
2016-12-01
TaC, HfC and their solid solutions are promising candidate materials for thermal protection structures in hypersonic vehicles because of their very high melting temperatures (>4000 K) among other properties. The melting temperatures of slightly hypostoichiometric TaC, HfC and three solid solution compositions (Ta 1-x Hf x C, with x = 0.8, 0.5 and 0.2) have long been identified as the highest known. In the current research, they were reassessed, for the first time in the last fifty years, using a laser heating technique. They were found to melt in the range of 4041-4232 K, with HfC having the highest and TaC the lowest. Spectral radiance of the hot samples was measured in situ, showing that the optical emissivity of these compounds plays a fundamental role in their heat balance. Independently, the results show that the melting point for HfC 0.98 , (4232 ± 84) K, is the highest recorded for any compound studied until now.
Investigating the highest melting temperature materials: A laser melting study of the TaC-HfC system
NASA Astrophysics Data System (ADS)
Cedillos-Barraza, Omar; Manara, Dario; Boboridis, K.; Watkins, Tyson; Grasso, Salvatore; Jayaseelan, Daniel D.; Konings, Rudy J. M.; Reece, Michael J.; Lee, William E.
2016-12-01
TaC, HfC and their solid solutions are promising candidate materials for thermal protection structures in hypersonic vehicles because of their very high melting temperatures (>4000 K) among other properties. The melting temperatures of slightly hypostoichiometric TaC, HfC and three solid solution compositions (Ta1-xHfxC, with x = 0.8, 0.5 and 0.2) have long been identified as the highest known. In the current research, they were reassessed, for the first time in the last fifty years, using a laser heating technique. They were found to melt in the range of 4041-4232 K, with HfC having the highest and TaC the lowest. Spectral radiance of the hot samples was measured in situ, showing that the optical emissivity of these compounds plays a fundamental role in their heat balance. Independently, the results show that the melting point for HfC0.98, (4232 ± 84) K, is the highest recorded for any compound studied until now.
Synthesis, fluorescence, TGA and crystal structure of thiazolyl-pyrazolines derived from chalcones
NASA Astrophysics Data System (ADS)
Suwunwong, T.; Chantrapromma, S.; Fun, H.-K.
2015-04-01
Thiazolyl-pyrazolines 3a-3d were synthesized in a three step procedure using chalcones as starting materials and characterized by FT-IR, UV-Vis, and 1H NMR techniques. The crystal structure of compound 3a was also determined by X-ray diffraction analysis. Compound 3a crystallized out in the orthorhombic P212121 space group with the unit cell dimensions: a = 5.2106(2) Å, b = 12.4341(5) Å, c = 33.3254(13) Å, α = β = γ = 90°, V = 2159.12(15) Å3, Z = 4, D cald = 1.372 M gm-3 and F(000) = 928. Fluorescence of 3a-3d were studied in solid state and acetonitrile solution. It was found that, these compounds exhibit the green fluorescence light (506-508 nm) in both solid and solution states. The pH stability on fluorescence property and the thermal gravimetric analysis of compound 3a were specifically carried out. It was revealed that 3a shows high thermal stability up to around 250°C and presenting high stability in various pH ranges in the acetonitrilewater matrix.
Investigating the highest melting temperature materials: A laser melting study of the TaC-HfC system
Cedillos-Barraza, Omar; Manara, Dario; Boboridis, K.; Watkins, Tyson; Grasso, Salvatore; Jayaseelan, Daniel D.; Konings, Rudy J. M.; Reece, Michael J.; Lee, William E.
2016-01-01
TaC, HfC and their solid solutions are promising candidate materials for thermal protection structures in hypersonic vehicles because of their very high melting temperatures (>4000 K) among other properties. The melting temperatures of slightly hypostoichiometric TaC, HfC and three solid solution compositions (Ta1−xHfxC, with x = 0.8, 0.5 and 0.2) have long been identified as the highest known. In the current research, they were reassessed, for the first time in the last fifty years, using a laser heating technique. They were found to melt in the range of 4041–4232 K, with HfC having the highest and TaC the lowest. Spectral radiance of the hot samples was measured in situ, showing that the optical emissivity of these compounds plays a fundamental role in their heat balance. Independently, the results show that the melting point for HfC0.98, (4232 ± 84) K, is the highest recorded for any compound studied until now. PMID:27905481
NASA Astrophysics Data System (ADS)
Lee, Hanjie; Pearlstein, Arne J.
2000-09-01
We present steady axisymmetric computations of solute distributions and radial segregation for vertical Bridgman growth of pyridine-doped benzene, a binary aromatic system with anisotropic solid-phase thermal conductivity, that serves as a model of solute transport in crystal growth of organic nonlinear optical materials. The radial variation of solid-phase mass fraction ( Cs) of pyridine, which is rejected at the growing interface, depends strongly on growth conditions. High growth velocities tend to increase Cs near the centerline, the ampoule wall, or both, and low growth velocities give more nearly uniform radial distributions. The maximum ampoule-wall temperature gradient also affects radial segregation, with convex-to-the-liquid interfaces at small temperature gradients being associated with radially monotonic Cs distributions, and ridged interfaces at higher gradients being associated with nonmonotonic distributions having maxima at the centerline and ampoule wall. Nonuniformity is strongly determined by both interface shape and the nature of the flow near the interface. Solute is transported down to the interface by a large toroidal vortex, and swept radially inward to the centerline by a second, flattened toroidal cell. When the interface is depressed at its junction with the ampoule wall, rejected solute accumulates in the overlying liquid, where convection is relatively weak, resulting in local solute enrichment of the solid. Computations at normal and zero gravity show that for two very similar interface shapes, a maximum in the radial solid-phase solute distribution at the ampoule wall is associated with the interface shape, while the maximum on the centerline is associated with sweeping of solute to the centerline by a vortical flow on the interface. We also show that radial solute segregation depends significantly on whether account is taken of the anisotropy of the solid-phase thermal conductivity. Finally, the computations provide guidance as to the minimum ampoule length required to produce an axially uniform solute distribution over at least part of the length of a boule.
Moreno-Piraján, Juan Carlos; Blanco, Diego; Giraldo, Liliana
2012-01-01
An activated carbon, Carbochem(TM)-PS230, was modified by chemical and thermal treatment in flow of H(2), in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pK(a). The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 J·g(-1) for catechol aqueous solutions in a range of 20 at 1500 mg·L(-1).
Moreno-Piraján, Juan Carlos; Blanco, Diego; Giraldo, Liliana
2012-01-01
An activated carbon, CarbochemTM—PS230, was modified by chemical and thermal treatment in flow of H2, in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pKa. The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 J·g−1 for catechol aqueous solutions in a range of 20 at 1500 mg·L−1. PMID:22312237
NASA Technical Reports Server (NTRS)
Gupta, D. K.; Seigle, L. L.
1974-01-01
The activity of carbon in the two-phase regions - W + WC and W + W2C was obtained from the carbon content of iron rods equilibrated with mixtures of metal plus carbide powders. From this activity data the standard free energies of formation of WC and W2C were calculated. The temperature of the invariant reaction W2C = W + WC was fixed at 1570 + or - 5K. Using available solubility data for C in solid W, the partial molar free energy of C in the dilute solid solution was also calculated. The heat of solution of C in W, and the excess entropy for the interstitial solid solution, were computed, assuming that the carbon atoms reside in the octahedral interstices of bcc W.
New interpretation of data of the Earth's solid core
NASA Astrophysics Data System (ADS)
Guliyev, H. H.
2017-06-01
The commonly accepted scientific opinions on the inner core as the deformable solid globe are based on the solution of the problem on the distribution of elastic parameters in the inner structures of the Earth. The given solution is obtained within the necessary integral conditions on its self-weight, moment of inertia concerning the axes of rotation and periods of free oscillations of the Earth. It is shown that this solution does not satisfy the mechanics of the deformable solid body with sufficient local conditions following from basic principles concerning the strength, stability and actuality of velocities of propagation of elastic waves. The violation of local conditions shows that the inner core cannot exist in the form of the deformable solid body within the commonly accepted elastic parameters.
Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe.
Peña-Jiménez, Jesús-Alejandro; González, Federico; López-Juárez, Rigoberto; Hernández-Alcántara, José-Manuel; Camarillo, Enrique; Murrieta-Sánchez, Héctor; Pardo, Lorena; Villafuerte-Castrejón, María-Elena
2016-09-28
The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN) co-doped with the La 3+ -Mn 4+ and Eu 3+ -Fe 3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La 3+ -Mn 4+ and Eu 3+ -Fe 3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications.
Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe
Peña-Jiménez, Jesús-Alejandro; González, Federico; López-Juárez, Rigoberto; Hernández-Alcántara, José-Manuel; Camarillo, Enrique; Murrieta-Sánchez, Héctor; Pardo, Lorena; Villafuerte-Castrejón, María-Elena
2016-01-01
The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN) co-doped with the La3+–Mn4+ and Eu3+–Fe3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La3+–Mn4+ and Eu3+–Fe3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications. PMID:28773925
Trace element abundances in single presolar silicon carbide grains by synchrotron X-ray fluorescence
NASA Astrophysics Data System (ADS)
Kashiv, Yoav
2004-12-01
Synchrotron x-ray fluorescence (SXRF) was applied to the study of presolar grains for the first time in this study. 41 single SiC grains of the KJF size fraction (mass-weighted median size of 1.86 μm) from the Murchison (CM2) Meteorite were analyzed. The absolute abundances of the following elements were determined (not every element in every grain): S, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Sr, Y, Zr, Nb, Mo, Ru, Os, Ir and Pt (underlined elements were detected here for the first time in single grains). There is good agreement between the heavier trace element abundances in the grains and s-process nucleosynthesis calculations. It suggests that smaller 13C pocket sizes are needed in the parent stars, a free parameter in the stellar models, than is deduced from isotopic analyses of s-, and s-mainly, elements, such as Zr and Mo. In addition, the data confirms the radiogenic nature of the Nb in the grains, due to the in situ decay of 93Zr (t 1/2 = 1.5 × 106 year). The data suggest that the trace elements condensed into the host SiC grains by a combination of condensation in solid solution and incorporation of subgrains. It seems that many of the trace elements reside mainly in subgrains of two solid solution: (1)a TiC based solid solution, and (2)a Mo-Ru carbide based solid solution. The presence of subgrains of an Fe-Ni alloy solid solution is suggested as well. Subgrains of all 3 solid solutions were observed previously in presolar graphite grains.* *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Adobe Acrobat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chezhina, N.V., E-mail: chezhina@nc2490.spb.edu; Korolev, D.A.; Zhuk, N.A.
On the basis of the results of magnetic susceptibility and ESR studies of the Bi{sub 3}Nb{sub 1−x}Fe{sub x}O{sub 7−δ} solid solutions iron atoms in the solid solutions of cubic modification of bismuth niobate were found to exist as Fe(III) monomers and exchange bound Fe(III)-O-Fe(III) dimers with antiferro- and ferromagnetic type of superexchange. The exchange parameters and the distribution of monomers and dimers in the solid solutions were calculated as a function of paramagnetic atom content. - Graphical abstract: The study of the Bi{sub 3}Nb{sub 1−x}Fe{sub x}O{sub 7−δ} solid solutions showed that the introduction of iron atoms into the structure ofmore » Bi{sub 3}NbO{sub 7} stabilizes the cubic structure of bismuth niobate making the phase transition tetragonal ↔ cubic structure irreversible. In the Bi{sub 3}Nb{sub 1−x}Fe{sub x}O{sub 7−δ} solid solutions we observe the formation of dimers with antiferro- and ferromagnetic exchange. Such clusters are partially retained even at the infinite dilution of the solid solution, which testifies for their rigidity. A sufficiently high parameter of ferromagnetic exchange in a dimer (+53 cm{sup −1}) seems to result from iron atoms being located in the vicinity of oxygen vacancy. - Highlights: • The reversible transition cubic – tetragonal modifications in Bi{sub 3}NbO{sub 7} becomes irreversible. • Only cubic modification of Bi{sub 3}Nb{sub 1-x}Fe{sub x}O{sub 7-δ} is stable due to clusters of Fe atoms. • These clusters are sufficiently strong and retained even at the infinite dilution. • The calculations of magnetic susceptibility give the distribution of the clusters and single atoms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourcier, William L.; Roberts, Sarah K.; Roberts, Jeffery J.
A system for blocking fast flow paths in geological formations includes preparing a solution of colloidal silica having a nonviscous phase and a solid gel phase. The solution of colloidal silica is injected into the geological formations while the solution of colloidal silica is in the nonviscous phase. The solution of colloidal silica is directed into the fast flow paths and reaches the solid gel phase in the fast flow paths thereby blocking flow of fluid in the fast paths.
Containerless synthesis of amorphous and nanophase organic materials
Benmore, Chris J.; Weber, Johann R.
2016-05-03
The invention provides a method for producing a mixture of amorphous compounds, the method comprising supplying a solution containing the compounds; and allowing at least a portion of the solvent of the solution to evaporate while preventing the solute of the solution from contacting a nucleation point. Also provided is a method for transforming solids to amorphous material, the method comprising heating the solids in an environment to form a melt, wherein the environment contains no nucleation points; and cooling the melt in the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sainato, Michela; Shevitski, Brian; Sahu, Ayaskanta
Self-assembly of semiconductor nanocrystals (NCs) into two-dimensional patterns or three-dimensional (2- 3D) superstructures has emerged as a promising low-cost route to generate thin-film transistors and solar cells with superior charge transport because of enhanced electronic coupling between the NCs. Here, we show that lead sulfide (PbS) NCs solids featuring either short-range (disordered glassy solids, GSs) or long-range (superlattices, SLs) packing order are obtained solely by controlling deposition conditions of colloidal solution of NCs. In this study, we demonstrate the use of the evaporation-driven self-assembly method results in PbS NC SL structures that are observed over an area of 1 mmmore » × 100 μm, with long-range translational order of up to 100 nm. A number of ordered domains appear to have nucleated simultaneously and grown together over the whole area, imparting a polycrystalline texture to the 3D SL films. By contrast, a conventional, optimized spin-coating deposition method results in PbS NC glassy films with no translational symmetry and much shorter-range packing order in agreement with state-of-the-art reports. Further, we investigate the electronic properties of both SL and GS films, using a field-effect transistor configuration as a test platform. The long-range ordering of the PbS NCs into SLs leads to semiconducting NC-based solids, the mobility (μ) of which is 3 orders of magnitude higher than that of the disordered GSs. Furthemore, although spin-cast GSs of PbS NCs have weak ambipolar behavior with limited gate tunability, SLs of PbS NCs show a clear p-type behavior with significantly higher conductivities.« less
Chatterjee, Pabitra B.; Goncharov-Zapata, Olga; Quinn, Laurence L.; Hou, Guangjin; Hamaed, Hiyam; Schurko, Robert W.; Polenova, Tatyana; Crans, Debbie C.
2012-01-01
51V solid-state NMR (SSNMR) studies of a series of non-innocent vanadium(V) catechol complexes have been conducted to evaluate the possibility that 51V NMR observables, quadrupolar and chemical shift anisotropies, and electronic structures of such compounds can be used to characterize these compounds. The vanadium(V) catechol complexes described in these studies have relatively small quadrupolar coupling constants, which cover a surprisingly small range from 3.4 to 4.2 MHz. On the other hand, isotropic 51V NMR chemical shifts cover a wide range from −200 ppm to 400 ppm in solution and from −219 to 530 ppm in the solid state. A linear correlation of 51V NMR isotropic solution and solid-state chemical shifts of complexes containing non-innocent ligands is observed. These experimental results provide the information needed for the application of 51V SSNMR spectroscopy in characterizing the electronic properties of a wide variety of vanadium-containing systems, and in particular those containing non-innocent ligands and that have chemical shifts outside the populated range of −300 ppm to −700 ppm. The studies presented in this report demonstrate that the small quadrupolar couplings covering a narrow range of values reflect the symmetric electronic charge distribution, which is also similar across these complexes. These quadrupolar interaction parameters alone are not sufficient to capture the rich electronic structure of these complexes. In contrast, the chemical shift anisotropy tensor elements accessible from 51V SSNMR experiments are a highly sensitive probe of subtle differences in electronic distribution and orbital occupancy in these compounds. Quantum chemical (DFT) calculations of NMR parameters for [VO(hshed)(Cat)] yield 51V CSA tensor in reasonable agreement with the experimental results, but surprisingly, the calculated quadrupolar coupling constant is significantly greater than the experimental value. The studies demonstrate that substitution of the catechol ligand with electron donating groups results in an increase in the HOMO-LUMO gap and can be directly followed by an upfield shift for the vanadium catechol complex. In contrast, substitution of the catechol ligand with electron withdrawing groups results in a decrease in the HOMO-LUMO gap and can directly be followed by a downfield shift for the complex. The vanadium catechol complexes were used in this work because the 51V is a half-integer quadrupolar nucleus whose NMR observables are highly sensitive to the local environment. However, the results are general and could be extended to other redox active complexes that exhibit similar coordination chemistry as the vanadium catechol complexes. PMID:21842875
Qi, Tingting; Curnan, Matthew T.; Kim, Seungchul; ...
2011-12-15
Oxygen vacancies in perovskite oxide solid solutions are fundamentally interesting and technologically important. However, experimental characterization of the vacancy locations and their impact on electronic structure is challenging. We have carried out first-principles calculations on two Zr-modified solid solutions, Pb(Zn 1/3Nb 2/3)O₃ and Pb(Mg 1/3Nb 2/3)O₃, in which vacancies are present. We find that the vacancies are more likely to reside between low-valent cation-cation pairs than high-valent cation-cation pairs. Based on the analysis of our results, we formulate guidelines that can be used to predict the location of oxygen vacancies in perovskite solid solutions. Our results show that vacancies canmore » have a significant impact on both the conduction and valence band energies, in some cases lowering the band gap by ≈0.5 eV. The effects of vacancies on the electronic band structure can be understood within the framework of crystal field theory.« less
Solid solutions of platinum(II) and palladium(II) oxalato-complex salt as precursors of nanoalloys
NASA Astrophysics Data System (ADS)
Zadesenets, A. V.; Asanova, T. I.; Vikulova, E. S.; Filatov, E. Yu.; Plyusnin, P. E.; Baidina, I. A.; Asanov, I. P.; Korenev, S. V.
2013-03-01
A solid solution of platinum (II) and palladium (II) oxalato-complex salt, (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O, has been synthesized and studied as a precursor for preparing bimetallic PtPd nanoparticles through its thermal decomposition. The smallest homogenous bimetallic PtPd nanoparticles were found to form in hydrogen and helium atmospheres. The annealing temperature and time have low effect on the bimetallic particles size. Comparative analysis of structural and thermal properties of the solid solution and individual Pt, Pd oxalato-complex salts was performed to investigate a mechanism of thermal decomposition of (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O. Based on in situ X-ray photoemission spectroscopy investigation it was proposed a mechanism of formation of bimetallic PtPd nanoparticles from the solid-solution oxalato-complex salt during thermal decomposition.
Atomistic simulation of mineral-melt trace-element partitioning
NASA Astrophysics Data System (ADS)
Allan, Neil L.; Du, Zhimei; Lavrentiev, Mikhail Yu.; Blundy, Jon D.; Purton, John A.; van Westrenen, Wim
2003-09-01
We discuss recent advances in computational approaches to trace-element incorporation in minerals and melts. It is crucial to take explicit account of the local structural environment of each ion in the solid and the change in this environment following the introduction of a foreign atom or atoms. Particular attention is paid to models using relaxation (strain) energies and solution energies, and the use of these different models for isovalent and heterovalent substitution in diopside and forsterite. Solution energies are also evaluated for pyrope and grossular garnets, and pyrope-grossular solid solutions. Unfavourable interactions between dodecahedral sites containing ions of the same size and connected by an intervening tetrahedron lead to larger solubilities of trace elements in the garnet solid solution than in either end member compound and to the failure of Goldschmidt's first rule. Our final two examples are the partitioning behaviour of noble gases, which behave as 'ions of zero charge' and the direct calculation of high-temperature partition coefficients between CaO solid and melt via Monte Carlo simulations.
NASA Astrophysics Data System (ADS)
Jing, Zhenzi; Cai, Kunchuan; Li, Yan; Fan, Junjie; Zhang, Yi; Miao, Jiajun; Chen, Yuqian; Jin, Fangming
2017-05-01
Pollucite, as a perfect long-term potential host for radioactive Cs immobilization, barely exists in pure form naturally but in an isomorphism form between pollucite and analcime due to coexistence of Cs and Na. Pollucite could be hydrothermally synthesized with Cs-polluted soil or clay minerals which contain Cs and Na, and it is necessary to study the properties of the synthesis if Cs and Na contained. Pure pollucite, analcime and their solid solutions were hydrothermally synthesized with chemicals, and it was found that the most formed pollucite analcime solid solutions with Cs/(Cs + Na) ratios of 2/6-5/6 had very similar properties in mineral composition, morphology and size, structural water (Cs cations) and coordination environment to pollucite. This also suggests that even coexistence of Cs and Na in nature, pollucite favors to form due to site preference for Cs over Na, which leads to the property and the structure of the most solid solutions similar to that of pollucite.
Elastic constants and pressure derivative of elastic constants of Si1-xGex solid solution
NASA Astrophysics Data System (ADS)
Jivani, A. R.; Baria, J. K.; Vyas, P. S.; Jani, A. R.
2013-02-01
Elastic properties of Si1-xGex solid solution with arbitrary (atomic) concentration (x) are studied using the pseudo-alloy atom model based on the pseudopotential theory and on the higher-order perturbation scheme with the application of our own proposed model potential. We have used local-field correction function proposed by Sarkar et al to study Si-Ge system. The Elastic constants and pressure derivatives of elastic constants of the solid solution is investigated with different concentration x of Ge. It is found in the present study that the calculated numerical values of the aforesaid physical properties of Si-Ge system are function of x. The elastic constants (C11, C12 and C44) decrease linearly with increase in concentration x and pressure derivative of elastic constants (C11, C12 and C44) increase with the concentration x of Ge. This study provides better set of theoretical results for such solid solution for further comparison either with theoretical or experimental results.
Qin, Wen-xia; Gong, Qi; Li, Min; Deng, Li-xin; Mo, Li-shu; Li, Yan-lin
2015-04-01
Determination of arsenic in pure aluminum by inductively coupled plasma atomic emission spectrometry was interfered by aluminum matrix. The experiment showed that when the mass concentration of Al was greater than or equal to 5 000 times the As in the test solution, the measurement error was greater than 5%. In order to eliminate the interference, strong acid cation exchange fiber (SACEF) was used as solid phase extraction agent to adsorb Al(3+). The extraction conditions included amount of SACEF, extraction time, temperature and pH were investigated. The optimal extraction conditions were that 0.9000 g SACEF was used to extract the aluminum from the sample solution of pH 2.0 at 55 °C for 5 min with the ultrasonic assist, and in this case, the arsenic in the form of arsenic acid was not extracted and left in the solution for the determination. The results showed that after treating 10. 00 mL test solution containing 1.00 µg arsenic and 20.0 mg aluminum, arsenic did not lose. The mass concentration of residual aluminum in the raffinate was about 2,000 times the As, which had not interfered the determination of arsenic. The detection limit (3 s) was 0.027 µg · mL(-1) and quantification limit (10 s) was 0.0091 µg · mL(-1). The proposed method was successfully applied to the separation and determination of arsenic in the synthetic samples, the aluminum cans and the barbecue aluminum foil. Recovery was in the range of 98.3%-105% and RSD (n = 3) was in the range of 0.1%-4.3%. The results showed that the content of arsenic in the aluminum cans and the aluminum barbecue foil was below the limited value of national standard (GB/T 3190-2008).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, W.P.
1990-01-01
Concepts for rate limitation of sorptive uptake of hydrophobic organic solutes by aquifer solids are reviewed, emphasizing physical diffusion models and in the context of effects on contaminant transport. Data for the sorption of tetrachloroethene (PCE) and 1,2,4,5-tetrachlorobenzene (TeCB) on Borden sand are presented, showing that equilibrium is attained very slowly, requiring equilibration times on the order of tens of days for PCE and hundreds of days for TeCB. The rate of approach to equilibrium decreased with increasing particle size and sorption distribution coefficient, in accordance with retarded intragranular diffusion models. Pulverization of the samples significantly decreased the required timemore » to equilibrium without changing the sorption capacity of the solids. Batch sorption methodology was refined to allow accurate measurement of long-term distribution coefficients, using purified {sup 14}C-labelled solute spikes and sealed glass ampules. Sorption isotherms for PCE and TeCB were conducted with size fractions of Borden sand over four to five orders of magnitude in aqueous concentration, and were found to be slightly nonlinear (Freundlich exponent = 0.8). A concentrated set of data in the low concentration range (<50 ug/L) revealed that sorption in this range could be equally well described by a linear isotherm. Distribution coefficients of the two solutes with seven size fractions of Borden sand, measured at low concentration and at full equilibrium, were between seven and sixty times the value predicted on the basis of recent correlations with organic carbon content. Rate results for coarse size fractions support a simple pore diffusion model, with pore diffusion coefficients estimated to be approximately 3 {times} 10{sup {minus}8} cm{sup 2}/sec, more than 200{times} lower than the aqueous diffusivities.« less
Groundwater transport of crater-lake brine at Poa´s Volcano, Costa Rica
Sanford, Ward E.; Konikow, Leonard F.; Rowe, Gary L.; Brantley, Susan L.
1995-01-01
Poa´s Volcano is an active stratovolcano in Costa Rica that has a lake in its active crater. The crater lake has high temperatures (50–90 °C), high acidity (pH ≈ 0.0), and a high dissolved-solids content (100 g/kg). The volcano has numerous freshwater springs on its flanks, but a few on the northwestern flank are highly acidic (pH = 1.6–2.5) and have high dissolved-solids concentrations (2–22 g/kg). This study analyzes the regional groundwater system at Poa´s and demonstrates the likelihood that the water discharging from the acidic springs in the Rio Agrio watershed originates at the acidic crater lake. Both heat and solute transport are analyzed on a regional scale through numerical simulations using the HST3D finite-difference model, which solves the coupled equations for fluid flow, heat transport, and solute transport. The code allows fluid viscosity and density to be functions of both temperature and solute concentration. The simulations use estimates for recharge to the mountain and a range of values and various distributions of permeability and porosity. Several sensitivity analyses are performed to test how the uncertainty in many of the model parameters affects the simulation results. These uncertainties yield an estimated range of travel times from the crater lake to the Rio Agrio springs of 1–30 years, which is in close agreement with the results of tritium analyses of the springs. Calculated groundwater fluxes into and out of the crater lake are both about several hundred kg/s. These fluxes must be accounted for in water budgets of the crater lake.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zhenggang; Gao, Yanfei; Bei, Hongbin
To understand the underlying strengthening mechanisms, thermal activation processes are investigated from stress-strain measurements with varying temperatures and strain rates for a family of equiatomic quinary, quaternary, ternary, and binary, face-center-cubic-structured, single phase solid-solution alloys, which are all subsystems of the FeNiCoCrMn high-entropy alloy. Our analysis suggests that the Labusch-type solution strengthening mechanism, rather than the lattice friction (or lattice resistance), governs the deformation behavior in equiatomic alloys. First, upon excluding the Hall-Petch effects, the activation volumes for these alloys are found to range from 10 to 1000 times the cubic power of Burgers vector, which are much larger thanmore » that required for kink pairs (i.e., the thermal activation process for the lattice resistance mechanism in body-center-cubic-structured metals). Second, the Labusch-type analysis for an N-element alloy is conducted by treating M-elements (M < N) as an effective medium and summing the strengthening contributions from the rest of N-M elements as individual solute species. For all equiatomic alloys investigated, a qualitative agreement exists between the measured strengthening effect and the Labusch strengthening factor from arbitrary M to N elements based on the lattice and modulus mismatches. Furthermore, the Labusch strengthening factor provides a practical critique to understand and design such compositionally complex but structurally simple alloys.« less
Wu, Zhenggang; Gao, Yanfei; Bei, Hongbin
2016-11-01
To understand the underlying strengthening mechanisms, thermal activation processes are investigated from stress-strain measurements with varying temperatures and strain rates for a family of equiatomic quinary, quaternary, ternary, and binary, face-center-cubic-structured, single phase solid-solution alloys, which are all subsystems of the FeNiCoCrMn high-entropy alloy. Our analysis suggests that the Labusch-type solution strengthening mechanism, rather than the lattice friction (or lattice resistance), governs the deformation behavior in equiatomic alloys. First, upon excluding the Hall-Petch effects, the activation volumes for these alloys are found to range from 10 to 1000 times the cubic power of Burgers vector, which are much larger thanmore » that required for kink pairs (i.e., the thermal activation process for the lattice resistance mechanism in body-center-cubic-structured metals). Second, the Labusch-type analysis for an N-element alloy is conducted by treating M-elements (M < N) as an effective medium and summing the strengthening contributions from the rest of N-M elements as individual solute species. For all equiatomic alloys investigated, a qualitative agreement exists between the measured strengthening effect and the Labusch strengthening factor from arbitrary M to N elements based on the lattice and modulus mismatches. Furthermore, the Labusch strengthening factor provides a practical critique to understand and design such compositionally complex but structurally simple alloys.« less
Li, Bin; Konecke, Stephanie; Wegiel, Lindsay A; Taylor, Lynne S; Edgar, Kevin J
2013-10-15
Amorphous solid dispersions (ASD) of curcumin (Cur) in cellulose derivative matrices, hydroxypropylmethylcellulose acetate succinate (HPMCAS), carboxymethylcellulose acetate butyrate (CMCAB), and cellulose acetate adipate propionate (CAAdP) were prepared in order to investigate the structure-property relationship and identify polymer properties necessary to effectively increase Cur aqueous solution concentration. XRD results indicated that all investigated solid dispersions were amorphous, even at a 9:1 Cur:polymer ratio. Both stability against crystallization and Cur solution concentration from these ASDs were significantly higher than those from physical mixtures and crystalline Cur. Remarkably, curcumin was also stabilized against chemical degradation in solution. Chemical stabilization was polymer-dependent, with stabilization in CAAdP>CMCAB>HPMCAS>PVP, while matrices enhanced solution concentration as PVP>HPMCAS>CMCAB≈CAAdP. HPMCAS/Cur dispersions have useful combinations of pH-triggered release profile, chemical stabilization, and strong enhancement of Cur solution concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.
The fate of silver nanoparticles in soil solution--Sorption of solutes and aggregation.
Klitzke, Sondra; Metreveli, George; Peters, Andre; Schaumann, Gabriele E; Lang, Friederike
2015-12-01
Nanoparticles enter soils through various pathways. In the soil, they undergo various interactions with the solution and the solid phase. We tested the following hypotheses using batch experiments: i) the colloidal stability of Ag NP increases through sorption of soil-borne dissolved organic matter (DOM) and thus inhibits aggregation; ii) the presence of DOM suppresses Ag oxidation; iii) the surface charge of Ag NP governs sorption onto soil particles. Citrate-stabilized and bare Ag NPs were equilibrated with (colloid-free) soil solution extracted from a floodplain soil for 24h. Nanoparticles were removed through centrifugation. Concentrations of free Ag ions and DOC, the specific UV absorbance at a wavelength of 254 nm, and the absorption ratio α254/α410 were determined in the supernatant. Nanoparticle aggregation was studied using time-resolved dynamic light scattering (DLS) measurement following the addition of soil solution and 1.5mM Ca(2+) solution. To study the effect of surface charge on the adsorption of Ag NP onto soil particles, bare and citrate-stabilized Ag NP, differing in the zeta potential, were equilibrated with silt at a solid-to-solution ratio of 1:10 and an initial Ag concentration range of 30 to 320 μg/L. Results showed that bare Ag NPs sorb organic matter, with short-chained organic matter being preferentially adsorbed over long-chained, aromatic organic matter. Stabilizing effects of organic matter only come into play at higher Ag NP concentrations. Soil solution inhibits the release of Ag(+) ions, presumably due to organic matter coatings. Sorption to silt particles was very similar for the two particle types, suggesting that the surface charge does not control Ag NP sorption. Besides, sorption was much lower than in comparable studies with sand and glass surfaces. Copyright © 2014. Published by Elsevier B.V.
NiF2/NaF:CaF2/Ca Solid-State High-Temperature Battery Cells
NASA Technical Reports Server (NTRS)
West, William; Whitacre, Jay; DelCastillo, Linda
2009-01-01
Experiments and theoretical study have demonstrated the promise of all-solid-state, high-temperature electrochemical battery cells based on NiF2 as the active cathode material, CaF2 doped with NaF as the electrolyte material, and Ca as the active anode material. These and other all-solid-state cells have been investigated in a continuing effort to develop batteries for instruments that must operate in environments much hotter than can be withstood by ordinary commercially available batteries. Batteries of this type are needed for exploration of Venus (where the mean surface temperature is about 450 C), and could be used on Earth for such applications as measuring physical and chemical conditions in geothermal wells and oil wells. All-solid-state high-temperature power cells are sought as alternatives to other high-temperature power cells based, variously, on molten anodes and cathodes or molten eutectic salt electrolytes. Among the all-solid-state predecessors of the present NiF2/NaF:CaF2/Ca cells are those described in "Solid-State High-Temperature Power Cells" (NPO-44396), NASA Tech Briefs, Vol. 32, No. 5 (May 2008), page 40. In those cells, the active cathode material is FeS2, the electrolyte material is a crystalline solid solution of equimolar amounts of Li3PO4 and LiSiO4, and the active anode material is Li contained within an alloy that remains solid in the intended high operational temperature range.
A facile synthesis of Zn(x)Cd(1-x)S/CNTs nanocomposite photocatalyst for H2 production.
Wang, Lei; Yao, Zhongping; Jia, Fangzhou; Chen, Bin; Jiang, Zhaohua
2013-07-21
The sulfide solid solution has become a promising and important visible-light-responsive photocatalyst for hydrogen production nowadays. Zn(x)Cd(1-x)S/CNT nanocomposites were synthesized to improve the dispersion, adjust the energy band gap, and enhance the separation of the photogenerated electrons and holes. The as-prepared photocatalysts were characterized by scanning electron-microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-visible diffuse reflectance spectra (UV-visible), respectively. And the effects of CNTs on structure, composition and optical absorption property of the sulfide solid solutions were investigated along with their inherent relationships. For Zn0.83Cd0.17S/CNTs, sulfide solid solution is assembled along the CNTs orderly, with a diameter of 100 nm or so. XPS analysis shows that there is bonding effect between the solid solutions and the CNTs due to the strong adsorption of Zn(2+) and Cd(2+) on the surface of CNTs. There are two obvious absorption edges for Zn0.83Cd0.17S/CNTs, corresponding to two kinds of sulfide solid solutions with different molar ratios of Zn/Cd. The hybridization of solid solutions with CNTs makes the absorption spectrum red shift. The photocatalytic property was evaluated by splitting Na2S + Na2SO3 solution into H2, and the highest rate of H2 evolution of 6.03 mmol h(-1) g(-1) was achieved over Zn0.83Cd0.17S/CNTs. The high activity of photocatalytic H2 production is attributed to the following factors: (1) the optimum band gap and a moderate position of the conduction band (which needs to match the irradiation spectrum of the Xe lamp best), (2) the efficient separation of photogenerated electrons and holes by hybridization, and (3) the improvement of the dispersion of nanocomposites by assembling along the CNTs as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neeway, James J.; Asmussen, R. Matthew; Lawter, Amanda R.
Many efforts have focused on the sequestration and immobilization of 99Tc because the radionuclide is highly mobile in oxidizing environments and presents serious health risks due to its radiotoxicity and long half-life (t1/2 = 213 000 a). One of the more common methods for Tc removal from solution and immobilization in solids is based on reducing Tc from highly soluble Tc(VII) to sparingly soluble Tc(IV). In order to remove solution Tc through this reduction process, the Tc-sequestering solid must contain a reducing agent and, ideally, the Tc-sequestering material would function in a large range of chemical environments. For long-term stability,more » the reduced Tc would preferentially be incorporated into the resulting mineral structure instead of simply being sorbed onto the mineral surface. Here, we report results obtained from batch sorption experiments performed in anoxic and oxic conditions with two sulfide-containing potassium metal sulfide (KMS) materials, known as KMS-2 and KMS-2-SS. In deionized water in anoxic conditions after 15 d of contact, KMS-2 is capable of removing ~45% of Tc and KMS-2-SS is capable of removing ~90% of Tc. The improved performance of KMS-2-SS compared to KMS-2 in deionized water in anoxic conditions appears to be linked both to a higher pH resulting from the batch sorption experiments performed with KMS-2-SS and a higher overall purity of KMS-2-SS. Both materials perform even better in highly caustic (pH~13.5), high ionic strength (8.0 M) simulated Hanford low-activity waste solutions, removing more than 90% Tc after 15 d of contact in anoxic conditions. Post-reaction solids analysis indicate that Tc(VII) is reduced to Tc(IV) and that Tc(IV) is bonded to S atoms in the resulting KMS-2 structure in a Tc2S7 form. In contrast to previous ion exchange experiments with other KMS materials, the batch sorption experiments examining Tc removal cause the initially crystalline KMS materials to lose much of their initial long-range order.« less
Synthesis, structural and semiconducting properties of Ba(Cu1/3 Sb2/3)O3-PbTiO3 solid solutions
NASA Astrophysics Data System (ADS)
Singh, Chandra Bhal; Kumar, Dinesh; Prashant, Verma, Narendra Kumar; Singh, Akhilesh Kumar
2018-05-01
We report the synthesis and properties of a new solid solution 0.05Ba(Cu1/3Sb2/3)O3-0.95PbTiO3 (BCS-PT) which shows the semiconducting properties. In this study, we have designed new perovskite-type (ABO3) solid solution of BCS-PT that have tunable optical band gap. BCS-PT compounds were prepared by conventional solid-state reaction method and their structural, micro-structural and optical properties were analyzed. The calcination temperature for BCS-PT solid solutions has been optimized to obtain a phase pure system. The Reitveld analysis of X-ray data show that all samples crystallize in tetragonal crystal structure with space group P4mm. X-ray investigation revealed that increase in calcination temperature led to increase of lattice parameter `a' while `c' parameter value lowered. The band gap of PbTiO3 is reduced from 3.2 eV to 2.8 eV with BCS doping and with increasing calcination temperature it further reduces to 2.56 eV. The reduced band gap indicated that the compounds are semiconducting and can be used for photovoltaic device applications.
Wang, Fudong; Buhro, William E
2017-12-26
Crystal-phase control is one of the most challenging problems in nanowire growth. We demonstrate that, in the solution-phase catalyzed growth of colloidal cadmium telluride (CdTe) quantum wires (QWs), the crystal phase can be controlled by manipulating the reaction chemistry of the Cd precursors and tri-n-octylphosphine telluride (TOPTe) to favor the production of either a CdTe solute or Te, which consequently determines the composition and (liquid or solid) state of the Bi x Cd y Te z catalyst nanoparticles. Growth of single-phase (e.g., wurtzite) QWs is achieved only from solid catalysts (y ≪ z) that enable the solution-solid-solid growth of the QWs, whereas the liquid catalysts (y ≈ z) fulfill the solution-liquid-solid growth of the polytypic QWs. Factors that affect the precursor-conversion chemistry are systematically accounted for, which are correlated with a kinetic study of the composition and state of the catalyst nanoparticles to understand the mechanism. This work reveals the role of the precursor-reaction chemistry in the crystal-phase control of catalytically grown colloidal QWs, opening the possibility of growing phase-pure QWs of other compositions.
High temperature resistant cermet and ceramic compositions
NASA Technical Reports Server (NTRS)
Phillips, W. M. (Inventor)
1978-01-01
Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.
Effects of acid rain on grapevines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsline, P.L.; Musselman, R.C.; Dee, R.J.
1983-01-01
Mature vineyard-growing Concord grapevines (Vitis labrusca, Bailey) were sprayed with simulated acid rain solutions ranging from pH 2.5 to pH 5.5 both as acute treatments at anthesis and chronically throughout the season in 1980 and 1981. In 1981, eight additional varieties were also treated with simulated acid rain solutions at pH 2.75 and pH 3.25. With Concord in 1981, few foliar lesions on leaves were visible at pH 2.75. In contrast, many leaf lesions with decreased fruit soluble solids in the absence of acid rain leaf lesions at pH>2.5 remains unclear. Acute sprays (pH 2.75) at anthesis reduced pollen germinationmore » in four grape cultivars. However, fruit set was reduced in only one of these. Only the cultivars de Chaunac and Ives had reduced berry soluble solids with chronic weekly sprays at pH 2.75. Reduction in soluble solids was not associated with increased oxidant stipple (ozone injury) in Concord and de Chaunac cultivars, but this association was observed in Ives. There was no evidence that acid rain in combination with ozone increased oxidant stipple as occurs when ozone and SO/sub 2/ are combined. Grape yields were not influenced by acid rain treatments. There was no evidence that acid rain at ambient pH levels had negative effects on grape production or fruit quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peiteado, M.; Makovec, D.; Villegas, M.
2008-09-15
The solid state interaction of the Zn{sub 1-x}Co{sub x}O nominal system is investigated by means of diffusion couples and analysis of co-precipitated samples. The formation of a homogeneous Co:ZnO solid solution is found to be determined by the crystal structure from which Co{sup II} ions diffuse into the wurtzite lattice. No diffusion is observed whenever the CoO rock-salt structure is formed from the Co{sup II} precursor. On the contrary, the diffusion from the Co{sub 3}O{sub 4} spinel phase is feasible but has a limited temperature range defined by the reduction at a high temperature of Co{sup III}-Co{sup II}, since thismore » process again leads to the formation of the rock-salt structure. However, when using a highly reactive and homogeneous co-precipitated starting powder, neither the spinel phase nor the rock-salt structure is formed, and a Co{sup II}:ZnO solid solution is obtained, which remains stable up to high temperatures. - Graphical abstract: Maximum diffusion distance for the ZnO-CoO{sub x} couple as a function of temperature. Dashed gray lines represent the temperature values at which the transformations between CoO and Co{sub 3}O{sub 4} compounds take place.« less
Fernández, Beatriz; Rodríguez-González, Pablo; García Alonso, J Ignacio; Malherbe, Julien; García-Fonseca, Sergio; Pereiro, Rosario; Sanz-Medel, Alfredo
2014-12-03
We report on the determination of trace elements in solid samples by the combination of on-line double isotope dilution and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method requires the sequential analysis of the sample and a certified natural abundance standard by on-line IDMS using the same isotopically-enriched spike solution. In this way, the mass fraction of the analyte in the sample can be directly referred to the certified standard so the previous characterization of the spike solution is not required. To validate the procedure, Sr, Rb and Pb were determined in certified reference materials with different matrices, including silicate glasses (SRM 610, 612 and 614) and powdered samples (PACS-2, SRM 2710a, SRM 1944, SRM 2702 and SRM 2780). The analysis of powdered samples was carried out both by the preparation of pressed pellets and by lithium borate fusion. Experimental results for the analysis of powdered samples were in agreement with the certified values for all materials. Relative standard deviations in the range of 6-21% for pressed pellets and 3-21% for fused solids were obtained from n=3 independent measurements. Minimal sample preparation, data treatment and consumption of the isotopically-enriched isotopes are the main advantages of the method over previously reported approaches. Copyright © 2014 Elsevier B.V. All rights reserved.
Hu, Qiufen; Chen, Xiubin; Yang, Xiangjun; Huang, Zhangjie; Chen, Jing; Yang, Guangyu
2006-04-01
A new chromogenic reagent, 5-(2-hydroxy-5-nitrophenylazo)thiorhodanine (HNATR) was synthesized. A highly sensitive, selective and rapid method for the determination microg l(-1) level of Au(III) based on the rapid reaction of Au(III) with HNATR and the solid phase extraction of the colored complex with a reversed phase polymer-based C(18) cartridge have been developed. The HNATR reacted with Au(III) to form a red complex of a molar ratio 1:2 (Au(III) to HNATR) in the presence of 0.05 - 0.5 mol l(-1) of phosphoric acid solution and emulsifier-OP medium. This complex was enriched by the solid phase extraction with a polymer-based C(18) cartridge. The enrichment factor of 100 was achieved. The molar absorptivity of the complex is 1.37 x 10(5) l mol(-1) cm(-1) at 520 nm in the measured solution. The system obeys Beer's law in the range of 0.01 - 3 microg ml(-1). The relative standard deviation for eleven replicates sample of 0.5 microg l(-1) level is 2.18%. The detection limit, based on the three times of standard deviation is 0.02 microg l(-1) in the original sample. This method was applied to the determination of gold in water and ore with good results.
Electrical resistivity of the UAs 1- xSex solid solutions
NASA Astrophysics Data System (ADS)
Breandon, C.; Bartholin, H.; Tchapoutian, R.; Therond, P. G.; Schoenes, J.; Vogt, O.
1987-01-01
The electrical resistivity ϱ of UAs 1- xSex solid solutions has been measured between 13 K and room temperature. The magnetic phase diagram has been deduced. Effects of uniaxial stress on ϱ allow to understand some results and to reveal anisotropy of ϱ.
The electrical resistivity meter in fishery investigations
Lennon, Robert E.
1959-01-01
A portable resistivity (or conductivity) meter is easily used in fishery investigations to obtain rapid and precise measurements of the electrical resistance (or conductance) of waters. These measurements can be used to estimate the total dissolved solids content of waters, to facilitate the selection of appropriate gear for efficient electrofishing, and to determine the velocity, stretch-out, dilution, and effective range of a solute over miles of a stream in conjunction with chemical reclamation operations. Applications of resistivity measurements on Appalachian streams are discussed.
2006-04-01
characterize the superconducting properties of powders, field-cooled (FC) Meissner and ZFC measure- ments were performed from 5 to 125 K.46 The SQUID magnet ...measured magnetic susceptibility, and D 0.3333 is the demagnetization factor assuming a spherical particle distribution.6,46 The applied magnetic ...and superconducting properties was studied for a range of partial-melt temperatures. Results were compared to Al203-free films with compositions lying
Antireflective coating for AgBr-TlI and AgBr-TlBr0.46I0.54 solid solution crystals
NASA Astrophysics Data System (ADS)
Korsakov, Alexandr; Salimgareev, Dmitrii; Lvov, Alexandr; Zhukova, Liya
2016-12-01
We researched the process of ultraviolet (UV) irradiation for the crystals of AgBr-TlI and AgBr-TlBr0.46I0.54 systems. It was found that on the surface of irradiated crystals, the film is formed and film grain size depends on exposure time and crystal composition. This film proved to gain the transmission by reducing the reflection from its surface within the 8.0-27.0 μm range.
TANK 26F SUPERNATANT AND 2F EVAPORATOR EDUCTOR PUMP SAMPLE CHARACTERIZATION RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, W.; Hay, M.; Coleman, C.
2011-08-23
In an effort to understand the reasons for system plugging problems in the SRS 2F evaporator, supernatant samples were retrieved from the evaporator feed tank (Tank 26F) and solids were collected from the evaporator eductor feed pump for characterization. The variable depth supernatant samples were retrieved from Tank 26F in early December of 2010 and samples were provided to SRNL and the F/H Area laboratories for analysis. Inspection and analysis of the samples at SRNL was initiated in early March of 2011. During the interim period, samples were frequently exposed to temperatures as low as 12 C with daily temperaturemore » fluctuations as high as 10 C. The temperature at the time of sample collection from the waste tank was 51 C. Upon opening the supernatant bottles at SRNL, many brown solids were observed in both of the Tank 26F supernatant samples. In contrast, no solids were observed in the supernatant samples sent to the F/H Area laboratories, where the analysis was completed within a few days after receipt. Based on these results, it is believed that the original Tank 26F supernatant samples did not contain solids, but solids formed during the interim period while samples were stored at ambient temperature in the SRNL shielded cells without direct climate control. Many insoluble solids (>11 wt. % for one sample) were observed in the Tank 26F supernatant samples after three months of storage at SRNL which would not dissolve in the supernatant solution in two days at 51 C. Characterization of these solids along with the eductor pump solids revealed the presence of sodium oxalate and clarkeite (uranyl oxyhydroxide) as major crystalline phases. Sodium nitrate was the dominant crystalline phase present in the unwashed Eductor Pump solids. Crystalline sodium nitrate may have formed during the drying of the solids after filtration or may have been formed in the Tank 26F supernatant during storage since the solution was found to be very concentrated (9-12 M Na{sup +}). Concentrated mineral acids and elevated temperature were required to dissolve all of these solids. The refractory nature of some of the solids is consistent with the presence of metal oxides such as aluminosilicates (observed as a minor phase by XRD). Characterization of the water wash solutions and the digested solids confirmed the presence of oxalate salts in both solid samples. Sulfate enrichment was also observed in the Tank 26F solids wash solution, indicating the presence of sulfate precipitates such as burkeite. OLI modeling of the Tank 26F filtered supernatant composition revealed that sodium oxalate has a very low solubility in this solution. The model predicts that the sodium oxalate solubility in the Tank 26F supernatant is only 0.0011 M at 50 C. The results indicate that the highly concentrated nature of the evaporator feed solution and the addition of oxalate anion to the waste stream each contribute to the formation of insoluble solids in the 2F evaporator system.« less
Calorimetric determination of energetics of solid solutions of UO 2+ x with CaO and Y 2O 3
NASA Astrophysics Data System (ADS)
Mazeina, Lena; Navrotsky, Alexandra; Greenblatt, Martha
2008-02-01
Quantitative study of thermodynamic properties of solid solutions of UO 2+ x with divalent and trivalent oxides is important for predicting the behavior of oxide fuel. Although early literature work measured vapor pressure in some of these solid solutions, direct calorimetric measurements of enthalpies of formation have been hampered by the refractory nature of such oxides. First measurements of the enthalpies of formation in the systems UO 2+ x-CaO and UO 2+ x-YO 1.5, obtained by high-temperature oxide melt solution calorimetry, are reported. Both systems show significantly negative (exothermic) heats of formation from binary oxides (UO 2, plus O 2 and CaO or YO 1.5, as well as from UO 2 plus UO 3 and CaO or YO 1.5), consistent with reported free energy measurements in the urania-yttria system. The energetic contributions of oxygen content (oxidation of U 4+) and of charge balanced ionic substitution as well as defect clustering are discussed. Behavior of urania-yttria is compared to that of corresponding systems in which the tetravalent ion is Ce, Zr, or Hf. The substantial additional stability in the solid solutions compared to pure UO 2+ x may retard, in both thermodynamic and kinetic sense, the oxidation and leaching of spent fuel to form aqueous U 6+ and solid uranyl phases.
NASA Astrophysics Data System (ADS)
Xiang-Hong, He; Zhao-Lian, Ye; Ming-Yun, Guan; Ning, Lian; Jian-Hua, Sun
2016-02-01
Pr3+-activated barium tungsto-molybdate solid solution phosphor Ba(Mo1-zWz)O4:Pr3+ is successfully fabricated via a facile molten-salt approach. The as-synthesized microcrystal is of truncated octahedron and exhibits deep-red-emitting upon blue light excitation. Powder x-ray diffraction and Raman spectroscopy techniques are utilized to investigate the formation of solid solution phosphor. The luminescence behaviors depend on the resulting composition of the microcrystals with fixed Pr3+-doping concentration, while the host lattices remain in a scheelite structure. The forming solid solution via the substitution of [WO4] for [MoO4] can significantly enhance its luminescence, which may be due to the fact that Ba(Mo1-zWz)O4:Pr3+ owns well-defined facets and uniform morphologies. Owing to its properties of high phase purity, well-defined facets, highly uniform morphologies, exceptional chemical and thermal stabilities, and stronger emission intensity, the resulting solid solution phosphor is expected to find potential applications in phosphor-converted white light-emitting diodes (LEDs). Project supported by the Construction Fund for Science and Technology Innovation Group from Jiangsu University of Technology, China, the Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, China (Grant No. KHK1409), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and the National Natural Science Foundation of China (Grant No. 21373103).
Su, Minhua; Liao, Changzhong; Chan, Tingshan; Shih, Kaimin; Xiao, Tangfu; Chen, Diyun; Kong, Lingjun; Song, Gang
2018-01-16
The feasibility of incorporating Cd and Ni in hematite was studied by investigating the interaction mechanism for the formation of Cd x Ni 1-x Fe 2 O 4 solid solutions (CNFs) from CdO, NiO, and α-Fe 2 O 3 . X-ray diffraction results showed that the CNFs crystallized into spinel structures with increasing lattice parameters as the Cd content in the precursors was increased. Cd 2+ ions were found to occupy the tetrahedral sites, as evidenced by Rietveld refinement and extended X-ray absorption fine structure analyses. The incorporation of Cd and Ni into ferrite spinel solid solution strongly relied on the processing parameters. The incorporation of Cd and Ni into the CNFs was greater at high x values (0.7 < x ≤ 1.0) than at low x values (0.0 ≤ x ≤ 0.7). A feasible treatment technique based on the investigated mechanism of CNF formation was developed, involving thermal treatment of waste sludge containing Cd and Ni. Both of these metals in the waste sludge were successfully incorporated into a ferrite spinel solid solution, and the concentrations of leached Cd and Ni from this solid solution were substantially reduced, stabilizing at low levels. This research offers a highly promising approach for treating the Cd and Ni content frequently encountered in electronic waste and its treatment residues.
Blaesi, Aron H; Saka, Nannaji
2017-11-01
In recent studies, we have introduced melt-processed polymeric cellular dosage forms to achieve both immediate drug release and predictable manufacture. Dosage forms ranging from minimally-porous solids to highly porous, open-cell and thin-walled structures were prepared, and the drug release characteristics investigated as the volume fraction of cells and the excipient molecular weight were varied. In the present study, both minimally-porous solid and cellular dosage forms consisting of various weight fractions of Acetaminophen drug and polyethylene glycol (PEG) excipient are prepared and analyzed. Microstructures of the solid forms and the cell walls range from single-phase solid solutions of the excipient and a small amount of drug molecules to two-phase composites of the excipient and tightly packed drug particles. Results of dissolution experiments show that the minimally-porous solid forms disintegrate and release drug by slow surface erosion. The erosion rate decreases as the drug weight fraction is increased. By contrast, the open-cell structures disintegrate rapidly by viscous exfoliation, and the disintegration time is independent of drug weight fraction. Drug release models suggest that the solid forms erode by convective mass transfer of the faster-eroding excipient if the drug volume fraction is small. At larger drug volume fractions, however, the slower-eroding drug particles hinder access of the free-flowing fluid to the excipient, thus slowing down erosion of the composite. Conversely, the disintegration rate of the cellular forms is limited by diffusion of the dissolution fluid into the excipient phase of the thin cell walls. Because the wall thickness is of the order of the drug particle size, and the particles are enveloped by the excipient during melt-processing, the drug particles cannot hinder diffusion through the excipient across the walls. Thus the disintegration time of the cellular forms is mostly unaffected by the volume fraction of drug in the walls. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Xurui; Tchoukov, Plamen; Manica, Rogerio; Wang, Louxiang; Liu, Qingxia; Xu, Zhenghe
2016-11-09
Interactions involving deformable surfaces reveal a number of distinguishing physicochemical characteristics that do not exist in interactions between rigid solid surfaces. A unique fully custom-designed instrument, referred to as integrated thin liquid film force apparatus (ITLFFA), was developed to study the interactions between one deformable and one solid surface in liquid. Incorporating a bimorph force sensor with interferometry, this device allows for the simultaneous measurement of the time-dependent interaction force and the corresponding spatiotemporal film thickness of the intervening liquid film. The ITLFFA possesses the specific feature of conducting measurement under a wide range of hydrodynamic conditions, with a displacement velocity of deformable surfaces ranging from 2 μm s -1 to 50 mm s -1 . Equipped with a high speed camera, the results of a bubble interacting with hydrophilic and partially hydrophobic surfaces in aqueous solutions indicated that ITLFFA can provide information on interaction forces and thin liquid film drainage dynamics not only in a stable film but also in films of the quick rupture process. The weak interaction force was extracted from a measured film profile. Because of its well-characterized experimental conditions, ITLFFA permits the accurate and quantitative comparison/validation between measured and calculated interaction forces and temporal film profiles.
Yang, Shenghong; Chen, Xiao; Liu, Shuqin; Wang, Fuxin; Ouyang, Gangfeng
2018-08-15
Fluorescent carbon nanoparticles (FCNPs) have been deeply researched and widely applied in recent years due to their good optics performance, chemical stability and biocompatibility. Herein, a green and rapid microwave-assisted solid-phase synthesis (solvent-free) approach was proposed for the fabrication of highly FCNPs in a very short period of time, 4 min. The as-prepared FCNPs can emit a blue emission with quantum yield of up to 63.2% in water solution and show yellow fluorescence in the solid state. The FCNPs also exhibit special solvent effect that the fluorescence emission can be adjusted by controlling the solvent ratio of ethanol and water. Most importantly, the FCNPs possess a narrow-range pH response. The probe responds linearly and rapidly to minor pH fluctuations within the range of 3.47-5.10 and the correlation coefficient is above 0.99. The proposed FCNPs also exhibit high photostability and reusability. As expected, the cell imaging and intracellular pH monitoring was achieved successfully in living SMMC 7721 hepatoma cells by this probe. The FCNPs is promising as a convenient and general fluorescent pH sensor for bioimaging applications. Copyright © 2018. Published by Elsevier B.V.
Solid hemoglobin-polymer phantoms for evaluation of biophotonic systems.
Jang, Hyounguk; Pfefer, T Joshua; Chen, Yu
2015-09-15
Stable tissue phantoms that incorporate the spectral absorption properties of hemoglobin would benefit a wide range of biophotonic technologies. Toward this end, we have developed and validated a novel polymer material incorporating hemoglobin. Our solid hemoglobin-polymer (SHP) material is fabricated by mixing liquid silicone base with a hemoglobin solution, followed by sonication and low temperature curing. The optical properties of samples were determined over 450-1000 nm using the inverse adding-doubling method and the Beer-Lambert law. Measurements indicated SHP optical stability over four months. Near-infrared spectroscopy and hyperspectral imaging measurements of SHP samples were performed to demonstrate the utility of this approach. SHP materials have the potential to improve tissue-simulating phantoms used for development, evaluation, and standardization of optical devices for oximetry and other applications.
Wang, Dan; Wang, Qingtang; Zhang, Zhuomin; Chen, Guonan
2012-01-21
ZnO nanorod array coating is a novel kind of solid-phase microextraction (SPME) fiber coating which shows good extraction capability due to the nanostructure. To prepare the composite coating is a good way to improve the extraction capability. In this paper, the ZnO nanorod array polydimethylsiloxane (PDMS) composite SPME fiber coating has been prepared and its extraction capability for volatile organic compounds (VOCs) has been studied by headspace sampling the typical volatile mixed standard solution of benzene, toluene, ethylbenzene and xylene (BTEX). Improved detection limit and good linear ranges have been achieved for this composite SPME fiber coating. Also, it is found that the composite SPME fiber coating shows good extraction selectivity to the VOCs with alkane radicals.
Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition
Nakayama, Hirokazu; Hayashi, Aki
2014-01-01
The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids. PMID:25080007
Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition.
Nakayama, Hirokazu; Hayashi, Aki
2014-07-30
The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.
Controlling Long-Lived Triplet Generation from Intramolecular Singlet Fission in the Solid State
Pace, Natalie A.; Zhang, Weimin; Arias, Dylan H.; ...
2017-11-30
The conjugated polymer poly(benzothiophene dioxide) (PBTDO1) has recently been shown to exhibit efficient intramolecular singlet fission in solution. We investigate the role of intermolecular interactions in triplet separation dynamics after singlet fission. We use transient absorption spectroscopy to determine the singlet fission rate and triplet yield in two polymers differing only by side-chain motif in both solution and the solid state. Whereas solid-state films show singlet fission rates identical to those measured in solution, the average lifetime of the triplet population increases dramatically and is strongly dependent on side-chain identity. These results show that it may be necessary to carefullymore » engineer the solid-state microstructure of these 'singlet fission polymers' to produce the long-lived triplets needed to realize efficient photovoltaic devices.« less
Controlling Long-Lived Triplet Generation from Intramolecular Singlet Fission in the Solid State
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pace, Natalie A.; Zhang, Weimin; Arias, Dylan H.
The conjugated polymer poly(benzothiophene dioxide) (PBTDO1) has recently been shown to exhibit efficient intramolecular singlet fission in solution. We investigate the role of intermolecular interactions in triplet separation dynamics after singlet fission. We use transient absorption spectroscopy to determine the singlet fission rate and triplet yield in two polymers differing only by side-chain motif in both solution and the solid state. Whereas solid-state films show singlet fission rates identical to those measured in solution, the average lifetime of the triplet population increases dramatically and is strongly dependent on side-chain identity. These results show that it may be necessary to carefullymore » engineer the solid-state microstructure of these 'singlet fission polymers' to produce the long-lived triplets needed to realize efficient photovoltaic devices.« less
Silicon carbide nanomaterial as a coating for solid-phase microextraction.
Tian, Yu; Feng, Juanjuan; Wang, Xiuqin; Sun, Min; Luo, Chuannan
2018-01-26
Silicon carbide has excellent properties, such as corrosion resistance, high strength, oxidation resistance, high temperature, and so on. Based on these properties, silicon carbide was coated on stainless-steel wire and used as a solid-phase microextraction coating, and polycyclic aromatic hydrocarbons were employed as model analytes. Using gas chromatography, some important factors that affect the extraction efficiency were optimized one by one, and an analytical method was established. The analytical method showed wide linear ranges (0.1-30, 0.03-30, and 0.01-30 μg/L) with satisfactory correlation coefficients (0.9922-0.9966) and low detection limits (0.003-0.03 μg/L). To investigate the practical application of the method, rainwater and cigarette ash aqueous solution were collected as real samples for extraction and detection. The results indicate that silicon carbide has excellent application in the field of solid-phase microextraction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhou, Shi-ping; Duan, Chang-qun; Liu, Hong-cheng; Hu, Qiu-fen
2005-10-01
A highly sensitive, selective and rapid method for the determination of zinc based on the rapid reaction of zinc(II) with 2-(2-quinolylazo)-5-dimthylaminophenol (QADMAP) and the solid phase extraction of zinc ion with anion exchange resin cartridge was developed. In the presence of pH 8.5 buffer solution and Triton X-100 medium, QADMAP can react with zinc(II) to form a stable 2 :1 complex (QADMAP:Zn(II)). The molar absorptivity is 1.22 x 10(5)L x moL(-1) x cm(-1) at 590 nm. Beer's law is obeyed in the range of 0-1.0 microg x mL(-1). The zinc ions in the samples can be enriched and separated by solid phase extraction with anion exchange resincartridge. Testing results show that recovery for zinc(II) was from 95% to 104%, and RSD was below 3%. This method was applied to the determination of zinc in water and food with good results.
Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staiger, Merle Daniel; M. C. Swenson
2005-01-01
This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-sitemore » facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.« less
A solid with a hierarchical tetramodal micro-meso-macro pore size distribution
Ren, Yu; Ma, Zhen; Morris, Russell E.; Liu, Zheng; Jiao, Feng; Dai, Sheng; Bruce, Peter G.
2013-01-01
Porous solids have an important role in addressing some of the major energy-related problems facing society. Here we describe a porous solid, α-MnO2, with a hierarchical tetramodal pore size distribution spanning the micro-, meso- and macro pore range, centred at 0.48, 4.0, 18 and 70 nm. The hierarchical tetramodal structure is generated by the presence of potassium ions in the precursor solution within the channels of the porous silica template; the size of the potassium ion templates the microporosity of α-MnO2, whereas their reactivity with silica leads to larger mesopores and macroporosity, without destroying the mesostructure of the template. The hierarchical tetramodal pore size distribution influences the properties of α-MnO2 as a cathode in lithium batteries and as a catalyst, changing the behaviour, compared with its counterparts with only micropores or bimodal micro/mesopores. The approach has been extended to the preparation of LiMn2O4 with a hierarchical pore structure. PMID:23764887
NASA Astrophysics Data System (ADS)
Parshin, D. A.; Manzhirov, A. V.
2018-04-01
Quasistatic mechanical problems on additive manufacturing aging viscoelastic solids are investigated. The processes of piecewise-continuous accretion of such solids are considered. The consideration is carried out in the framework of linear mechanics of growing solids. A theorem about commutativity of the integration over an arbitrary surface increasing in the solid growing process and the time-derived integral operator of viscoelasticity with a limit depending on the solid point is proved. This theorem provides an efficient way to construct on the basis of Saint-Venant principle solutions of nonclassical boundary-value problems for describing the mechanical behaviour of additively formed solids with integral satisfaction of boundary conditions on the surfaces expanding due to the additional material influx to the formed solid. The constructed solutions will retrace the evolution of the stress-strain state of the solids under consideration during and after the processes of their additive formation. An example of applying the proved theorem is given.
Sun, Ting; Sun, Hefeng; Zhao, Feng
2017-09-01
In this work, reduced graphene oxide coated with ZnO nanocomposites was used as an efficient sorbent of dispersive solid-phase extraction and successfully applied for the extraction of organochlorine pesticides from apple juice followed by gas chromatography with mass spectrometry. Several experimental parameters affecting the extraction efficiencies, including the amount of adsorbent, extraction time, and the pH of the sample solution, as well as the type and volume of eluent solvent, were investigated and optimized. Under the optimal experimental conditions, good linearity existed in the range of 1.0-200.0 ng/mL for all the analytes with the correlation coefficients (R 2 ) ranging from 0.9964 to 0.9994. The limits of detection of the method for the compounds were 0.011-0.053 ng/mL. Good reproducibilities were acquired with relative standard deviations below 8.7% for both intraday and interday precision. The recoveries of the method were in the range of 78.1-105.8% with relative standard deviations of 3.3-6.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Lili; Feng, Juanjuan; Li, Jubai; Liu, Xia; Jiang, Shengxiang
2012-01-01
A novel chemically bonded graphene oxide/fused-silica fiber was prepared and applied in solid-phase microextraction of six polycyclic aromatic hydrocarbons from water samples coupled with gas chromatography. It exhibited high extraction efficiency and excellent stability. Effects of extraction time, extraction temperature, ionic strength, stirring rate and desorption conditions were investigated and optimized in our work. Detection limits to the six polycyclic aromatic hydrocarbons were less than 0.08 μg/L, and their calibration curves were all linear (R(2)≥0.9954) in the range from 0.05 to 200 μg/L. Single fiber repeatability and fiber-to-fiber reproducibility were less than 6.13 and 15.87%, respectively. This novel fiber was then utilized to analyze two real water samples from the Yellow River and local waterworks, and the recoveries of samples spiked at 1 and 10 μg/L ranged from 84.48 to 118.24%. Compared with other coating materials, this graphene oxide-coated fiber showed many advantages: wide linear range, low detection limit, and good stability in acid, alkali, organic solutions and at high temperature. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhu, Yinian; Huang, Bin; Zhu, Zongqiang; Liu, Huili; Huang, Yanhua; Zhao, Xin; Liang, Meina
2016-01-01
The interaction between Ca-HAP and Pb(2+) solution can result in the formation of a hydroxyapatite-hydroxypyromorphite solid solution [(PbxCa1-x)5(PO4)3(OH)], which can greatly affect the transport and distribution of toxic Pb in water, rock and soil. Therefore, it's necessary to know the physicochemical properties of (PbxCa1-x)5(PO4)3(OH), predominantly its thermodynamic solubility and stability in aqueous solution. Nevertheless, no experiment on the dissolution and related thermodynamic data has been reported. Dissolution of the hydroxypyromorphite-hydroxyapatite solid solution [(PbxCa1-x)5(PO4)3(OH)] in aqueous solution at 25 °C was experimentally studied. The aqueous concentrations were greatly affected by the Pb/(Pb + Ca) molar ratios (XPb) of the solids. For the solids with high XPb [(Pb0.89Ca0.11)5(PO4)3OH], the aqueous Pb(2+) concentrations increased rapidly with time and reached a peak value after 240-720 h dissolution, and then decreased gradually and reached a stable state after 5040 h dissolution. For the solids with low XPb (0.00-0.80), the aqueous Pb(2+) concentrations increased quickly with time and reached a peak value after 1-12 h dissolution, and then decreased gradually and attained a stable state after 720-2160 h dissolution. The dissolution process of the solids with high XPb (0.89-1.00) was different from that of the solids with low XPb (0.00-0.80). The average K sp values were estimated to be 10(-80.77±0.20) (10(-80.57)-10(-80.96)) for hydroxypyromorphite [Pb5(PO4)3OH] and 10(-58.38±0.07) (10(-58.31)-10(-58.46)) for calcium hydroxyapatite [Ca5(PO4)3OH]. The Gibbs free energies of formation (ΔG f (o) ) were determined to be -3796.71 and -6314.63 kJ/mol, respectively. The solubility decreased with the increasing Pb/(Pb + Ca) molar ratios (XPb) of (PbxCa1‒x)5(PO4)3(OH). For the dissolution at 25 °C with an initial pH of 2.00, the experimental data plotted on the Lippmann diagram showed that the solid solution (PbxCa1-x)5(PO4)3(OH) dissolved stoichiometrically at the early stage of dissolution and moved gradually up to the Lippmann solutus curve and the saturation curve for Pb5(PO4)3OH, and then the data points moved along the Lippmann solutus curve from right to left. The Pb-rich (PbxCa1-x)5(PO4)3(OH) was in equilibrium with the Ca-rich aqueous solution. Graphical abstractLippmann diagrams for dissolution of the hydroxypyromorphite-hydroxyapatite solid solution [(PbxCa1-x)5(PO4)3OH] at 25 ˚C and an initial pH of 2.00.
Fabrication of iron (III) oxide doped polystyrene shells
NASA Astrophysics Data System (ADS)
Cai, Pei-Jun; Tang, Yong-Jian; Zhang, Lin; Du, Kai; Feng, Chang-Gen
2004-03-01
A type of iron (III) oxide doped plastic shell used for inertial confinement fusion experiments has been fabricated by emulsion techniques. Three different phases of solution (W1, O, and W2) are used for the fabrication process. The W1 phase is a 1 wt % of sodium lauryl sulfate in water. This W1 phase solution is mixed with a 3 wt % Fe2O3-polystyrene (PS) solution in benzene-dichloroethane (O phase) while stirring. The resulting emulsion (W1/O) is poured into a 3 wt % aqueous polyvinyl alcohol solution (W2 phase) while stirring. The resulting emulsion (W1/O/W2) is then heated to evaporate benzene and dichloroethane, and thus a solid Fe2O3-PS shell is formed. The diameter and wall thickness of the shells range from 150 to 500 μm and 5 to 15 μm, respectively. The average surface roughness of the shells is 40 nm, similar to that of the usual PS shells. .