Environmental performance evaluation of an advanced-design solid-state television camera
NASA Technical Reports Server (NTRS)
1979-01-01
The development of an advanced-design black-and-white solid-state television camera which can survive exposure to space environmental conditions was undertaken. A 380 x 488 element buried-channel CCD is utilized as the image sensor to ensure compatibility with 525-line transmission and display equipment. Specific camera design approaches selected for study and analysis included: (1) component and circuit sensitivity to temperature; (2) circuit board thermal and mechanical design; and (3) CCD temperature control. Preferred approaches were determined and integrated into the final design for two deliverable solid-state TV cameras. One of these cameras was subjected to environmental tests to determine stress limits for exposure to vibration, shock, acceleration, and temperature-vacuum conditions. These tests indicate performance at the design goal limits can be achieved for most of the specified conditions.
Solid state television camera (CCD-buried channel)
NASA Technical Reports Server (NTRS)
1976-01-01
The development of an all solid state television camera, which uses a buried channel charge coupled device (CCD) as the image sensor, was undertaken. A 380 x 488 element CCD array is utilized to ensure compatibility with 525 line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (a) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (b) techniques for the elimination or suppression of CCD blemish effects, and (c) automatic light control and video gain control (i.e., ALC and AGC) techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a deliverable solid state TV camera which addressed the program requirements for a prototype qualifiable to space environment conditions.
Solid state television camera (CCD-buried channel), revision 1
NASA Technical Reports Server (NTRS)
1977-01-01
An all solid state television camera was designed which uses a buried channel charge coupled device (CCD) as the image sensor. A 380 x 488 element CCD array is utilized to ensure compatibility with 525-line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (1) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (2) techniques for the elimination or suppression of CCD blemish effects, and (3) automatic light control and video gain control techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a deliverable solid state TV camera which addressed the program requirements for a prototype qualifiable to space environment conditions.
Solid state, CCD-buried channel, television camera study and design
NASA Technical Reports Server (NTRS)
Hoagland, K. A.; Balopole, H.
1976-01-01
An investigation of an all solid state television camera design, which uses a buried channel charge-coupled device (CCD) as the image sensor, was undertaken. A 380 x 488 element CCD array was utilized to ensure compatibility with 525 line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (a) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (b) techniques for the elimination or suppression of CCD blemish effects, and (c) automatic light control and video gain control techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a design which addresses the program requirements for a deliverable solid state TV camera.
Solid-state framing camera with multiple time frames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, K. L.; Stewart, R. E.; Steele, P. T.
2013-10-07
A high speed solid-state framing camera has been developed which can operate over a wide range of photon energies. This camera measures the two-dimensional spatial profile of the flux incident on a cadmium selenide semiconductor at multiple times. This multi-frame camera has been tested at 3.1 eV and 4.5 keV. The framing camera currently records two frames with a temporal separation between the frames of 5 ps but this separation can be varied between hundreds of femtoseconds up to nanoseconds and the number of frames can be increased by angularly multiplexing the probe beam onto the cadmium selenide semiconductor.
NASA Technical Reports Server (NTRS)
1976-01-01
The design, fabrication, and tests of a solid state television camera using a new charge-coupled imaging device are reported. An RCA charge-coupled device arranged in a 512 by 320 format and directly compatible with EIA format standards was the sensor selected. This is a three-phase, sealed surface-channel array that has 163,840 sensor elements, which employs a vertical frame transfer system for image readout. Included are test results of the complete camera system, circuit description and changes to such circuits as a result of integration and test, maintenance and operation section, recommendations to improve the camera system, and a complete set of electrical and mechanical drawing sketches.
Zhao, Qiaole; Schelen, Ben; Schouten, Raymond; van den Oever, Rein; Leenen, René; van Kuijk, Harry; Peters, Inge; Polderdijk, Frank; Bosiers, Jan; Raspe, Marcel; Jalink, Kees; Geert Sander de Jong, Jan; van Geest, Bert; Stoop, Karel; Young, Ian Ted
2012-12-01
We have built an all-solid-state camera that is directly modulated at the pixel level for frequency-domain fluorescence lifetime imaging microscopy (FLIM) measurements. This novel camera eliminates the need for an image intensifier through the use of an application-specific charge coupled device design in a frequency-domain FLIM system. The first stage of evaluation for the camera has been carried out. Camera characteristics such as noise distribution, dark current influence, camera gain, sampling density, sensitivity, linearity of photometric response, and optical transfer function have been studied through experiments. We are able to do lifetime measurement using our modulated, electron-multiplied fluorescence lifetime imaging microscope (MEM-FLIM) camera for various objects, e.g., fluorescein solution, fixed green fluorescent protein (GFP) cells, and GFP-actin stained live cells. A detailed comparison of a conventional microchannel plate (MCP)-based FLIM system and the MEM-FLIM system is presented. The MEM-FLIM camera shows higher resolution and a better image quality. The MEM-FLIM camera provides a new opportunity for performing frequency-domain FLIM.
Solid state replacement of rotating mirror cameras
NASA Astrophysics Data System (ADS)
Frank, Alan M.; Bartolick, Joseph M.
2007-01-01
Rotating mirror cameras have been the mainstay of mega-frame per second imaging for decades. There is still no electronic camera that can match a film based rotary mirror camera for the combination of frame count, speed, resolution and dynamic range. The rotary mirror cameras are predominantly used in the range of 0.1 to 100 micro-seconds per frame, for 25 to more than a hundred frames. Electron tube gated cameras dominate the sub microsecond regime but are frame count limited. Video cameras are pushing into the microsecond regime but are resolution limited by the high data rates. An all solid state architecture, dubbed 'In-situ Storage Image Sensor' or 'ISIS', by Prof. Goji Etoh has made its first appearance into the market and its evaluation is discussed. Recent work at Lawrence Livermore National Laboratory has concentrated both on evaluation of the presently available technologies and exploring the capabilities of the ISIS architecture. It is clear though there is presently no single chip camera that can simultaneously match the rotary mirror cameras, the ISIS architecture has the potential to approach their performance.
NASA Astrophysics Data System (ADS)
Takada, Shunji; Ihama, Mikio; Inuiya, Masafumi
2006-02-01
Digital still cameras overtook film cameras in Japanese market in 2000 in terms of sales volume owing to their versatile functions. However, the image-capturing capabilities such as sensitivity and latitude of color films are still superior to those of digital image sensors. In this paper, we attribute the cause for the high performance of color films to their multi-layered structure, and propose the solid-state image sensors with stacked organic photoconductive layers having narrow absorption bands on CMOS read-out circuits.
NASA Technical Reports Server (NTRS)
Irwin, E. L.; Farnsworth, D. L.
1972-01-01
A long term investigation of thin film sensors, monolithic photo-field effect transistors, and epitaxially diffused phototransistors and photodiodes to meet requirements to produce acceptable all solid state, electronically scanned imaging system, led to the production of an advanced engineering model camera which employs a 200,000 element phototransistor array (organized in a matrix of 400 rows by 500 columns) to secure resolution comparable to commercial television. The full investigation is described for the period July 1962 through July 1972, and covers the following broad topics in detail: (1) sensor monoliths; (2) fabrication technology; (3) functional theory; (4) system methodology; and (5) deployment profile. A summary of the work and conclusions are given, along with extensive schematic diagrams of the final solid state imaging system product.
Image intensification; Proceedings of the Meeting, Los Angeles, CA, Jan. 17, 18, 1989
NASA Astrophysics Data System (ADS)
Csorba, Illes P.
Various papers on image intensification are presented. Individual topics discussed include: status of high-speed optical detector technologies, super second generation imge intensifier, gated image intensifiers and applications, resistive-anode position-sensing photomultiplier tube operational modeling, undersea imaging and target detection with gated image intensifier tubes, image intensifier modules for use with commercially available solid state cameras, specifying the components of an intensified solid state television camera, superconducting IR focal plane arrays, one-inch TV camera tube with very high resolution capacity, CCD-Digicon detector system performance parameters, high-resolution X-ray imaging device, high-output technology microchannel plate, preconditioning of microchannel plate stacks, recent advances in small-pore microchannel plate technology, performance of long-life curved channel microchannel plates, low-noise microchannel plates, development of a quartz envelope heater.
Solid state electro-optic color filter and iris
NASA Technical Reports Server (NTRS)
1974-01-01
Test results obtained have confirmed the practicality of the solid state electro-optic filters as an optical control element in a television system. Neutral-density control range in excess of 1000:1 has been obtained on sample filters. Test results, measurements in a complete camera system, discussions of problem areas, analytical comparisons, and recommendations for future investigations are included.
A solid state lightning propagation speed sensor
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Rust, W. David
1989-01-01
A device to measure the propagation speeds of cloud-to-ground lightning has been developed. The lightning propagation speed (LPS) device consists of eight solid state silicon photodetectors mounted behind precision horizontal slits in the focal plane of a 50-mm lens on a 35-mm camera. Although the LPS device produces results similar to those obtained from a streaking camera, the LPS device has the advantages of smaller size, lower cost, mobile use, and easier data collection and analysis. The maximum accuracy for the LPS is 0.2 microsec, compared with about 0.8 microsecs for the streaking camera. It is found that the return stroke propagation speed for triggered lightning is different than that for natural lightning if measurements are taken over channel segments less than 500 m. It is suggested that there are no significant differences between the propagation speeds of positive and negative flashes. Also, differences between natural and triggered dart leaders are discussed.
Solid State Television Camera (CID)
NASA Technical Reports Server (NTRS)
Steele, D. W.; Green, W. T.
1976-01-01
The design, development and test are described of a charge injection device (CID) camera using a 244x248 element array. A number of video signal processing functions are included which maximize the output video dynamic range while retaining the inherently good resolution response of the CID. Some of the unique features of the camera are: low light level performance, high S/N ratio, antiblooming, geometric distortion, sequential scanning and AGC.
NASA Astrophysics Data System (ADS)
Kolstein, M.; De Lorenzo, G.; Mikhaylova, E.; Chmeissani, M.; Ariño, G.; Calderón, Y.; Ozsahin, I.; Uzun, D.
2013-04-01
The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated solid-state technology for nuclear medicine applications. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). For PET scanners, conventional algorithms like Filtered Back-Projection (FBP) and Ordered Subset Expectation Maximization (OSEM) are straightforward to use and give good results. However, FBP presents difficulties for detectors with limited angular coverage like PEM and Compton gamma cameras, whereas OSEM has an impractically large time and memory consumption for a Compton gamma camera with a large number of channels. In this article, the Origin Ensemble (OE) algorithm is evaluated as an alternative algorithm for image reconstruction. Monte Carlo simulations of the PET design are used to compare the performance of OE, FBP and OSEM in terms of the bias, variance and average mean squared error (MSE) image quality metrics. For the PEM and Compton camera designs, results obtained with OE are presented.
Cherk, Martin H; Ky, Jason; Yap, Kenneth S K; Campbell, Patrina; McGrath, Catherine; Bailey, Michael; Kalff, Victor
2012-08-01
To evaluate the reproducibility of serial re-acquisitions of gated Tl-201 and Tc-99m sestamibi left ventricular ejection fraction (LVEF) measurements obtained on a new generation solid-state cardiac camera system during myocardial perfusion imaging and the importance of manual operator optimization of left ventricular wall tracking. Resting blinded automated (auto) and manual operator optimized (opt) LVEF measurements were measured using ECT toolbox (ECT) and Cedars-Sinai QGS software in two separate cohorts of 55 Tc-99m sestamibi (MIBI) and 50 thallium (Tl-201) myocardial perfusion studies (MPS) acquired in both supine and prone positions on a cadmium zinc telluride (CZT) solid-state camera system. Resting supine and prone automated LVEF measurements were similarly obtained in a further separate cohort of 52 gated cardiac blood pool scans (GCBPS) for validation of methodology and comparison. Appropriate use of Bland-Altman, chi-squared and Levene's equality of variance tests was used to analyse the resultant data comparisons. For all radiotracer and software combinations, manual checking and optimization of valve planes (+/- centre radius with ECT software) resulted in significant improvement in MPS LVEF reproducibility that approached that of planar GCBPS. No difference was demonstrated between optimized MIBI/Tl-201 QGS and planar GCBPS LVEF reproducibility (P = .17 and P = .48, respectively). ECT required significantly more manual optimization compared to QGS software in both supine and prone positions independent of radiotracer used (P < .02). Reproducibility of gated sestamibi and Tl-201 LVEF measurements obtained during myocardial perfusion imaging with ECT toolbox or QGS software packages using a new generation solid-state cardiac camera with improved image quality approaches that of planar GCBPS however requires visual quality control and operator optimization of left ventricular wall tracking for best results. Using this superior cardiac technology, Tl-201 reproducibility also appears at least equivalent to sestamibi for measuring LVEF.
Achieving sub-millimetre precision with a solid-state full-field heterodyning range imaging camera
NASA Astrophysics Data System (ADS)
Dorrington, A. A.; Cree, M. J.; Payne, A. D.; Conroy, R. M.; Carnegie, D. A.
2007-09-01
We have developed a full-field solid-state range imaging system capable of capturing range and intensity data simultaneously for every pixel in a scene with sub-millimetre range precision. The system is based on indirect time-of-flight measurements by heterodyning intensity-modulated illumination with a gain modulation intensified digital video camera. Sub-millimetre precision to beyond 5 m and 2 mm precision out to 12 m has been achieved. In this paper, we describe the new sub-millimetre class range imaging system in detail, and review the important aspects that have been instrumental in achieving high precision ranging. We also present the results of performance characterization experiments and a method of resolving the range ambiguity problem associated with homodyne and heterodyne ranging systems.
State of the art in video system performance
NASA Technical Reports Server (NTRS)
Lewis, Michael J.
1990-01-01
The closed circuit television (CCTV) system that is onboard the Space Shuttle has the following capabilities: camera, video signal switching and routing unit (VSU); and Space Shuttle video tape recorder. However, this system is inadequate for use with many experiments that require video imaging. In order to assess the state-of-the-art in video technology and data storage systems, a survey was conducted of the High Resolution, High Frame Rate Video Technology (HHVT) products. The performance of the state-of-the-art solid state cameras and image sensors, video recording systems, data transmission devices, and data storage systems versus users' requirements are shown graphically.
Use of a Non-Metric Digital Camera for Tree Stem Evaluation
Neil Clark; Randolph H. Wynne; Daniel L. Schmoldt; Philip A. Araman; Matthew F. Winn
1998-01-01
We are investigating the use of a commercially-available solid-state matrix camera as a dendrometer for tree stem measurements. Thirty-two images of four hardwood stems were used to measure 54 diameters at various heights on the stems ranging from 1.4 m to 21 m. These measurements were compared to caliper measurements taken at the same heights. The percent inaccuracy...
R&D 100, 2016: Ultrafast X-ray Imager
Porter, John; Claus, Liam; Sanchez, Marcos; Robertson, Gideon; Riley, Nathan; Rochau, Greg
2018-06-13
The Ultrafast X-ray Imager is a solid-state camera capable of capturing a sequence of images with user-selectable exposure times as short as 2 billionths of a second. Using 3D semiconductor integration techniques to form a hybrid chip, this camera was developed to enable scientists to study the heating and compression of fusion targets in the quest to harness the energy process that powers the stars.
R&D 100, 2016: Ultrafast X-ray Imager
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, John; Claus, Liam; Sanchez, Marcos
The Ultrafast X-ray Imager is a solid-state camera capable of capturing a sequence of images with user-selectable exposure times as short as 2 billionths of a second. Using 3D semiconductor integration techniques to form a hybrid chip, this camera was developed to enable scientists to study the heating and compression of fusion targets in the quest to harness the energy process that powers the stars.
Geometrical calibration television measuring systems with solid state photodetectors
NASA Astrophysics Data System (ADS)
Matiouchenko, V. G.; Strakhov, V. V.; Zhirkov, A. O.
2000-11-01
The various optical measuring methods for deriving information about the size and form of objects are now used in difference branches- mechanical engineering, medicine, art, criminalistics. Measuring by means of the digital television systems is one of these methods. The development of this direction is promoted by occurrence on the market of various types and costs small-sized television cameras and frame grabbers. There are many television measuring systems using the expensive cameras, but accuracy performances of low cost cameras are also interested for the system developers. For this reason inexpensive mountingless camera SK1004CP (format 1/3', cost up to 40$) and frame grabber Aver2000 were used in experiments.
1979-12-01
used to reduce costs ). The orbital data from the prototype ion composi- tion telescope will not only be of great scientific interest -pro- viding for...active device whose transfer function may be almost arbitrarily defined, and cost and production trends permit contemplation of networks containing...developing solid-state television camera systems based on CCD imagers. RICA hopes to produce a $500 color camera for consumer use. Fairchild and Texas
NASA Technical Reports Server (NTRS)
1999-01-01
Jet Propulsion Laboratory's research on a second generation, solid-state image sensor technology has resulted in the Complementary Metal- Oxide Semiconductor Active Pixel Sensor (CMOS), establishing an alternative to the Charged Coupled Device (CCD). Photobit Corporation, the leading supplier of CMOS image sensors, has commercialized two products of their own based on this technology: the PB-100 and PB-300. These devices are cameras on a chip, combining all camera functions. CMOS "active-pixel" digital image sensors offer several advantages over CCDs, a technology used in video and still-camera applications for 30 years. The CMOS sensors draw less energy, they use the same manufacturing platform as most microprocessors and memory chips, and they allow on-chip programming of frame size, exposure, and other parameters.
Measurement Capabilities of Single-Pulse Planar Doppler Velocimetry
NASA Technical Reports Server (NTRS)
McKenzie, Robert L.; Kutler, Paul F. (Technical Monitor)
1994-01-01
Preliminary investigations are described of a method that is capable of measuring instantaneous, 3-D, velocity vectors everywhere in a light sheet generated by a pulsed laser. The technique, here called Planar Doppler Velocimetry (PDV), is a variation of a new concept for velocity measurements that was called Doppler Global Velocimetry (DGV) in its original disclosure. The concept relies on the use of a narrowband laser and measurements of the Doppler shift of scattered light from particles moving with a flow. The Doppler shift is recorded as a variation in transmission through a sharp-edged spectral filter provided by iodine vapor in a cell. Entire fields of velocity can be determined by using a solid-state camera to record the intensity variations throughout the field of view. However, the implementation of DGV has been centered principally on the use of high power, continuous-wave, ion lasers and measurement times that are determined by the 30-ms framing times of standard video cameras. Hence, they provide velocity fields that are averaged in time at least over that period. On the other hand, the PDV concept described in this presentation incorporates a high energy, repetitively pulsed, Nd-YAG laser that is injection-seeded to make it narrowband and then frequency-doubled to provide light at frequencies absorbed by the iodine vapor. The duration of each pulse is less than 10 nanoseconds. When used in combination with nonstandard, scientific quality, solid state cameras, a sequence of images can be obtained that provides instantaneous velocity vectors everywhere in the field of view. The investigations described in this paper include an accurate characterization of the iodine cell spectral behavior and its influence on the PDV measurements, a derivation of the PDV signal analysis requirements, and the unique aspects of the pulsed laser behavior related to this application. In addition, PDV measurements are to be demonstrated using data from a rotating wheel target and from the flow of a subsonic jet. Initially, single optical fiber light collection and photomultiplier detectors will be substituted for solid state cameras. Those results will allow the determination of the fundamental limitations of the PDV technique without the complications of image acquisition and processing. They will then be used to provide an analysis of the measurement capabilities of PDV both in small aerodynamic research wind tunnels and in large wind tunnels designed for production airframe and propulsion testing. Future plans include the implementation of solid state cameras and the development of the required image acquisition and processing software. Eventually, the PDV technique will be applied to an aerodynamic research program related to transonic wing flutter.
Bae, Seo-Yoon; Kim, Dongwook; Shin, Dongbin; Mahmood, Javeed; Jeon, In-Yup; Jung, Sun-Min; Shin, Sun-Hee; Kim, Seok-Jin; Park, Noejung; Lah, Myoung Soo; Baek, Jong-Beom
2017-11-17
Solid-state reaction of organic molecules holds a considerable advantage over liquid-phase processes in the manufacturing industry. However, the research progress in exploring this benefit is largely staggering, which leaves few liquid-phase systems to work with. Here, we show a synthetic protocol for the formation of a three-dimensional porous organic network via solid-state explosion of organic single crystals. The explosive reaction is realized by the Bergman reaction (cycloaromatization) of three enediyne groups on 2,3,6,7,14,15-hexaethynyl-9,10-dihydro-9,10-[1,2]benzenoanthracene. The origin of the explosion is systematically studied using single-crystal X-ray diffraction and differential scanning calorimetry, along with high-speed camera and density functional theory calculations. The results suggest that the solid-state explosion is triggered by an abrupt change in lattice energy induced by release of primer molecules in the 2,3,6,7,14,15-hexaethynyl-9,10-dihydro-9,10-[1,2]benzenoanthracene crystal lattice.
1996-01-29
This montage of 11 images taken by NASA Galileo spacecraft as it flew by the asteroid Gaspra on Oct. 1991, shows Gaspra growing progressively larger in the field of view of Galileo solid-state imaging camera as the spacecraft approached the asteroid. http://photojournal.jpl.nasa.gov/catalog/PIA00079
Controlled photomosaic map of Europa Je 15 M CMN
,
2002-01-01
This sheet is one in a series of maps of the Galilean satellites of Jupiter at a nominal scale of 1:15,000,000. This series is based on data from the Galileo Orbiter Solid-State Imaging (SSI) camera and the Voyager 1 and 2 spacecraft.
Hyperspectral imaging polarimeter in the infrared
NASA Astrophysics Data System (ADS)
Jensen, Gary L.; Peterson, James Q.
1998-11-01
The Space Dynamics Laboratory at Utah State University is building an infrared Hyperspectral Imaging Polarimeter (HIP). Designed for high spatial and spectral resolution polarimetry of backscattered sunlight from cloud tops in the 2.7 micrometer water band, it will fly aboard the Flying Infrared Signatures Technology Aircraft (FISTA), an Air Force KC-135. It is a proof-of-concept sensor, combining hyperspectral pushbroom imaging with high speed, solid state polarimetry, using as many off-the-shelf components as possible, and utilizing an optical breadboard design for rapid prototyping. It is based around a 256 X 320 window selectable InSb camera, a solid-state Ferro-electric Liquid Crystal (FLC) polarimeter, and a transmissive diffraction grating.
Controlled color photomosaic map of Ganymede Jg 15M CMNK
,
2003-01-01
This sheet is one in a series of maps of the Galilean satellites of Jupiter at a nominal scale of 1:15,000,000. This series is based on data from the Galileo Orbiter Solid-State Imaging (SSI) camera and the Voyager 1 and 2 spacecraft.
The robot's eyes - Stereo vision system for automated scene analysis
NASA Technical Reports Server (NTRS)
Williams, D. S.
1977-01-01
Attention is given to the robot stereo vision system which maintains the image produced by solid-state detector television cameras in a dynamic random access memory called RAPID. The imaging hardware consists of sensors (two solid-state image arrays using a charge injection technique), a video-rate analog-to-digital converter, the RAPID memory, and various types of computer-controlled displays, and preprocessing equipment (for reflexive actions, processing aids, and object detection). The software is aimed at locating objects and transversibility. An object-tracking algorithm is discussed and it is noted that tracking speed is in the 50-75 pixels/s range.
To catch a comet: Technical overview of CAN DO G-324
NASA Technical Reports Server (NTRS)
Obrien, T. J. (Editor)
1986-01-01
The primary objective of the C. E. Williams Middle School Get Away Special CAN DO is the photographing of Comet Halley. The project will involve middle school students, grades 6 through 8, in the study and interpretation of astronomical photographs and techniques. G-324 is contained in a 5 cubic foot GAS Canister with an opening door and pyrex window for photography. It will be pressurized with one atmosphere of dry nitrogen. Three 35mm still cameras with 250 exposure film backs and different focal length lenses will be fired by a combination of automatic timer and an active comet detector. A lightweight 35mm movie camera will shoot single exposures at about 1/2 minute intervals to give an overlapping skymap of the mission. The fifth camera is a solid state television camera specially constructed for detection of the comet by microprocessor.
Digital imaging with solid state x-ray image intensifiers
NASA Astrophysics Data System (ADS)
Damento, Michael A.; Radspinner, Rachel; Roehrig, Hans
1999-10-01
X-ray cameras in which a CCD is lens coupled to a large phosphor screen are known to suffer from a loss of x-ray signal due to poor light collection from conventional phosphors, making them unsuitable for most medical imaging applications. By replacing the standard phosphor with a solid-state image intensifier, it may be possible to improve the signal-to-noise ratio of the images produced with these cameras. The solid-state x-ray image intensifier is a multi- layer device in which a photoconductor layer controls the light output from an electroluminescent phosphor layer. While prototype devices have been used for direct viewing and video imaging, they are only now being evaluated in a digital imaging system. In the present work, the preparation and evaluation of intensifiers with a 65 mm square format are described. The intensifiers are prepared by screen- printing or doctor blading the following layers onto an ITO coated glass substrate: ZnS phosphor, opaque layer, CdS photoconductor, and carbon conductor. The total thickness of the layers is approximately 350 micrometers , 350 VAC at 400 Hz is applied to the device for operation. For a given x-ray dose, the intensifiers produce up to three times the intensity (after background subtracting) of Lanex Fast Front screens. X-ray images produced with the present intensifiers are somewhat noisy and their resolution is about half that of Lanex screens. Modifications are suggested which could improve the resolution and noise of the intensifiers.
Impact of laser phase and amplitude noises on streak camera temporal resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wlotzko, V., E-mail: wlotzko@optronis.com; Optronis GmbH, Ludwigstrasse 2, 77694 Kehl; Uhring, W.
2015-09-15
Streak cameras are now reaching sub-picosecond temporal resolution. In cumulative acquisition mode, this resolution does not entirely rely on the electronic or the vacuum tube performances but also on the light source characteristics. The light source, usually an actively mode-locked laser, is affected by phase and amplitude noises. In this paper, the theoretical effects of such noises on the synchronization of the streak system are studied in synchroscan and triggered modes. More precisely, the contribution of band-pass filters, delays, and time walk is ascertained. Methods to compute the resulting synchronization jitter are depicted. The results are verified by measurement withmore » a streak camera combined with a Ti:Al{sub 2}O{sub 3} solid state laser oscillator and also a fiber oscillator.« less
NASA Astrophysics Data System (ADS)
Uzun, Sefa Kemal; Demiröz, Işık; Ulus, İzzet
2017-01-01
In this study, an automatic track counting system was developed for solid state nuclear track detectors (SSNTD). Firstly the specifications of required hardware components were determined, and accordingly the CCD camera, microscope and stage motor table was supplied and integrated. The system was completed by developing parametric software with VB.Net language. Finally a set of test intended for radon activity concentration measurement was applied. According to the test results, the system was enabled for routine radon measurement. Whether the parameters of system are adjusted for another SSNTD application, it could be used for other fields of SSNTD like neutron dosimetry or heavy charged particle detection.
Cryogenic solid Schmidt camera as a base for future wide-field IR systems
NASA Astrophysics Data System (ADS)
Yudin, Alexey N.
2011-11-01
Work is focused on study of capability of solid Schmidt camera to serve as a wide-field infrared lens for aircraft system with whole sphere coverage, working in 8-14 um spectral range, coupled with spherical focal array of megapixel class. Designs of 16 mm f/0.2 lens with 60 and 90 degrees sensor diagonal are presented, their image quality is compared with conventional solid design. Achromatic design with significantly improved performance, containing enclosed soft correcting lens behind protective front lens is proposed. One of the main goals of the work is to estimate benefits from curved detector arrays in 8-14 um spectral range wide-field systems. Coupling of photodetector with solid Schmidt camera by means of frustrated total internal reflection is considered, with corresponding tolerance analysis. The whole lens, except front element, is considered to be cryogenic, with solid Schmidt unit to be flown by hydrogen for improvement of bulk transmission.
The DUV Stability of Superlattice-Doped CMOS Detector Arrays
NASA Technical Reports Server (NTRS)
Hoenk, M. E.; Carver, A. G.; Jones, T.; Dickie, M.; Cheng, P.; Greer, H. F.; Nikzad, S.; Sgro, J.; Tsur, S.
2013-01-01
JPL and Alacron have recently developed a high performance, DUV camera with a superlattice doped CMOS imaging detector. Supperlattice doped detectors achieve nearly 100% internal quantum efficiency in the deep and far ultraviolet, and a single layer, Al2O3 antireflection coating enables 64% external quantum efficiency at 263nm. In lifetime tests performed at Applied Materials using 263 nm pulsed, solid state and 193 nm pulsed excimer laser, the quantum efficiency and dark current of the JPL/Alacron camera remained stable to better than 1% precision during long-term exposure to several billion laser pulses, with no measurable degradation, no blooming and no image memory at 1000 fps.
Research on a solid state-streak camera based on an electro-optic crystal
NASA Astrophysics Data System (ADS)
Wang, Chen; Liu, Baiyu; Bai, Yonglin; Bai, Xiaohong; Tian, Jinshou; Yang, Wenzheng; Xian, Ouyang
2006-06-01
With excellent temporal resolution ranging from nanosecond to sub-picoseconds, a streak camera is widely utilized in measuring ultrafast light phenomena, such as detecting synchrotron radiation, examining inertial confinement fusion target, and making measurements of laser-induced discharge. In combination with appropriate optics or spectroscope, the streak camera delivers intensity vs. position (or wavelength) information on the ultrafast process. The current streak camera is based on a sweep electric pulse and an image converting tube with a wavelength-sensitive photocathode ranging from the x-ray to near infrared region. This kind of streak camera is comparatively costly and complex. This paper describes the design and performance of a new-style streak camera based on an electro-optic crystal with large electro-optic coefficient. Crystal streak camera accomplishes the goal of time resolution by direct photon beam deflection using the electro-optic effect which can replace the current streak camera from the visible to near infrared region. After computer-aided simulation, we design a crystal streak camera which has the potential of time resolution between 1ns and 10ns.Some further improvements in sweep electric circuits, a crystal with a larger electro-optic coefficient, for example LN (γ 33=33.6×10 -12m/v) and the optimal optic system may lead to better time resolution less than 1ns.
Tanaka, Hirokazu; Chikamori, Taishiro; Hida, Satoshi; Uchida, Kenji; Igarashi, Yuko; Yokoyama, Tsuyoshi; Takahashi, Masaki; Shiba, Chie; Yoshimura, Mana; Tokuuye, Koichi; Yamashina, Akira
2013-01-01
Cadmium-zinc-telluride (CZT) solid-state detectors have been recently introduced into the field of myocardial perfusion imaging. The aim of this study was to prospectively compare the diagnostic performance of the CZT high-speed gamma camera (Discovery NM 530c) with that of the standard 3-head gamma camera in the same group of patients. The study group consisted of 150 consecutive patients who underwent a 1-day stress-rest (99m)Tc-sestamibi or tetrofosmin imaging protocol. Image acquisition was performed first on a standard gamma camera with a 15-min scan time each for stress and for rest. All scans were immediately repeated on a CZT camera with a 5-min scan time for stress and a 3-min scan time for rest, using list mode. The correlations between the CZT camera and the standard camera for perfusion and function analyses were strong within narrow Bland-Altman limits of agreement. Using list mode analysis, image quality for stress was rated as good or excellent in 97% of the 3-min scans, and in 100% of the ≥4-min scans. For CZT scans at rest, similarly, image quality was rated as good or excellent in 94% of the 1-min scans, and in 100% of the ≥2-min scans. The novel CZT camera provides excellent image quality, which is equivalent to standard myocardial single-photon emission computed tomography, despite a short scan time of less than half of the standard time.
The effects of thermal gradients on the Mars Observer Camera primary mirror
NASA Technical Reports Server (NTRS)
Applewhite, Roger W.; Telkamp, Arthur R.
1992-01-01
The paper discusses the effect of thermal gradients on the optical performance of the primary mirror of Mars Observer Camera (MOC), which will be launched on the Mars Observer spacecraft in September 1992. It was found that mild temperature gradients can have a large effect on the mirror surface figure, even for relatively low coefficient-of-thermal-expansion materials. However, in the case of the MOC primary mirror, it was found that the radius of curvature (ROC) of the reflective surface of the mirror changed in a nearly linear fashion with the radial temperature gradient, with little additional aberration. A solid-state ROC controller using the thermal gradient effect was implemented and verified.
Practical aspects of modern interferometry for optical manufacturing quality control: Part 2
NASA Astrophysics Data System (ADS)
Smythe, Robert
2012-07-01
Modern phase shifting interferometers enable the manufacture of optical systems that drive the global economy. Semiconductor chips, solid-state cameras, cell phone cameras, infrared imaging systems, space based satellite imaging and DVD and Blu-Ray disks are all enabled by phase shifting interferometers. Theoretical treatments of data analysis and instrument design advance the technology but often are not helpful towards the practical use of interferometers. An understanding of the parameters that drive system performance is critical to produce useful results. Any interferometer will produce a data map and results; this paper, in three parts, reviews some of the key issues to minimize error sources in that data and provide a valid measurement.
Practical aspects of modern interferometry for optical manufacturing quality control, Part 3
NASA Astrophysics Data System (ADS)
Smythe, Robert A.
2012-09-01
Modern phase shifting interferometers enable the manufacture of optical systems that drive the global economy. Semiconductor chips, solid-state cameras, cell phone cameras, infrared imaging systems, space-based satellite imaging, and DVD and Blu-Ray disks are all enabled by phase-shifting interferometers. Theoretical treatments of data analysis and instrument design advance the technology but often are not helpful toward the practical use of interferometers. An understanding of the parameters that drive the system performance is critical to produce useful results. Any interferometer will produce a data map and results; this paper, in three parts, reviews some of the key issues to minimize error sources in that data and provide a valid measurement.
Automatic treatment of flight test images using modern tools: SAAB and Aeritalia joint approach
NASA Astrophysics Data System (ADS)
Kaelldahl, A.; Duranti, P.
The use of onboard cine cameras, as well as that of on ground cinetheodolites, is very popular in flight tests. The high resolution of film and the high frame rate of cinecameras are still not exceeded by video technology. Video technology can successfully enter the flight test scenario once the availability of solid-state optical sensors dramatically reduces the dimensions, and weight of TV cameras, thus allowing to locate them in positions compatible with space or operational limitations (e.g., HUD cameras). A proper combination of cine and video cameras is the typical solution for a complex flight test program. The output of such devices is very helpful in many flight areas. Several sucessful applications of this technology are summarized. Analysis of the large amount of data produced (frames of images) requires a very long time. The analysis is normally carried out manually. In order to improve the situation, in the last few years, several flight test centers have devoted their attention to possible techniques which allow for quicker and more effective image treatment.
Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays
Li, David Day-Uei; Ameer-Beg, Simon; Arlt, Jochen; Tyndall, David; Walker, Richard; Matthews, Daniel R.; Visitkul, Viput; Richardson, Justin; Henderson, Robert K.
2012-01-01
We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD)-based cameras for fluorescence lifetime imaging microscopy (FLIM) by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and hardware implementations. The theoretical error equations are derived and their performances are demonstrated on the data obtained from 0.13 μm CMOS SPAD arrays and the multiple-decay data obtained from scanning PMT systems. In vivo two photon fluorescence lifetime imaging data of FITC-albumin labeled vasculature of a P22 rat carcinosarcoma (BD9 rat window chamber) are used to test how different algorithms perform on bi-decay data. The proposed techniques are capable of producing lifetime images with enough contrast. PMID:22778606
NASA Technical Reports Server (NTRS)
Vanderspiegel, Jan
1994-01-01
This report surveys different technologies and approaches to realize sensors for image warping. The goal is to study the feasibility, technical aspects, and limitations of making an electronic camera with special geometries which implements certain transformations for image warping. This work was inspired by the research done by Dr. Juday at NASA Johnson Space Center on image warping. The study has looked into different solid-state technologies to fabricate image sensors. It is found that among the available technologies, CMOS is preferred over CCD technology. CMOS provides more flexibility to design different functions into the sensor, is more widely available, and is a lower cost solution. By using an architecture with row and column decoders one has the added flexibility of addressing the pixels at random, or read out only part of the image.
Solid state electro-optic color filter and iris
NASA Technical Reports Server (NTRS)
1975-01-01
A pair of solid state electro-optic filters (SSEF) in a binocular holder were designed and fabricated for evaluation of field sequential stereo TV applications. The electronic circuitry for use with the stereo goggles was designed and fabricated, requiring only an external video input. A polarizing screen suitable for attachment to various size TV monitors for use in conjunction with the stereo goggles was designed and fabricated. An improved engineering model 2 filter was fabricated using the bonded holder technique developed previously and integrated to a GCTA color TV camera. An engineering model color filter was fabricated and assembled using PLZT control elements. In addition, a ruggedized holder assembly was designed, fabricated and tested. This assembly provides electrical contacts, high voltage protection, and support for the fragile PLZT disk, and also permits mounting and optical alignment of the associated polarizers.
Development of the SEASIS instrument for SEDSAT
NASA Technical Reports Server (NTRS)
Maier, Mark W.
1996-01-01
Two SEASIS experiment objectives are key: take images that allow three axis attitude determination and take multi-spectral images of the earth. During the tether mission it is also desirable to capture images for the recoiling tether from the endmass perspective (which has never been observed). SEASIS must store all its imagery taken during the tether mission until the earth downlink can be established. SEASIS determines attitude with a panoramic camera and performs earth observation with a telephoto lens camera. Camera video is digitized, compressed, and stored in solid state memory. These objectives are addressed through the following architectural choices: (1) A camera system using a Panoramic Annular Lens (PAL). This lens has a 360 deg. azimuthal field of view by a +45 degree vertical field measured from a plan normal to the lens boresight axis. It has been shown in Mr. Mark Steadham's UAH M.S. thesis that his camera can determine three axis attitude anytime the earth and one other recognizable celestial object (for example, the sun) is in the field of view. This will be essentially all the time during tether deployment. (2) A second camera system using telephoto lens and filter wheel. The camera is a black and white standard video camera. The filters are chosen to cover the visible spectral bands of remote sensing interest. (3) A processor and mass memory arrangement linked to the cameras. Video signals from the cameras are digitized, compressed in the processor, and stored in a large static RAM bank. The processor is a multi-chip module consisting of a T800 Transputer and three Zoran floating point Digital Signal Processors. This processor module was supplied under ARPA contract by the Space Computer Corporation to demonstrate its use in space.
Photogrammetric technique for in-flight ranging of trailing vortices using entrained balloons
NASA Technical Reports Server (NTRS)
Snow, Walter L.; Burner, Alpheus W.; Goad, William K.
1989-01-01
A method for experimentally determining the radial distance of a probe aircraft from a trailing vortex is described. The method relies on photogrammetric triangulation of targets entrained in the vortex core. The theory and preliminary testing were described using laboratory mock-ups. Solid state video cameras were to provide data at 300 Hz rates. Practical methods for seeding the vortex are under separate investigation and are not addressed.
Earth orbital teleoperator visual system evaluation program
NASA Technical Reports Server (NTRS)
Frederick, P. N.; Shields, N. L., Jr.; Kirkpatrick, M., III
1977-01-01
Visual system parameters and stereoptic television component geometries were evaluated for optimum viewing. The accuracy of operator range estimation using a Fresnell stereo television system with a three dimensional cursor was examined. An operator's ability to align three dimensional targets using vidicon tube and solid state television cameras as part of a Fresnell stereoptic system was evaluated. An operator's ability to discriminate between varied color samples viewed with a color television system was determined.
NASA Astrophysics Data System (ADS)
Rossi, Marco; Pierron, Fabrice; Forquin, Pascal
2014-02-01
Ultra-high speed (UHS) cameras allow us to acquire images typically up to about 1 million frames s-1 for a full spatial resolution of the order of 1 Mpixel. Different technologies are available nowadays to achieve these performances, an interesting one is the so-called in situ storage image sensor architecture where the image storage is incorporated into the sensor chip. Such an architecture is all solid state and does not contain movable devices as occurs, for instance, in the rotating mirror UHS cameras. One of the disadvantages of this system is the low fill factor (around 76% in the vertical direction and 14% in the horizontal direction) since most of the space in the sensor is occupied by memory. This peculiarity introduces a series of systematic errors when the camera is used to perform full-field strain measurements. The aim of this paper is to develop an experimental procedure to thoroughly characterize the performance of such kinds of cameras in full-field deformation measurement and identify the best operative conditions which minimize the measurement errors. A series of tests was performed on a Shimadzu HPV-1 UHS camera first using uniform scenes and then grids under rigid movements. The grid method was used as full-field measurement optical technique here. From these tests, it has been possible to appropriately identify the camera behaviour and utilize this information to improve actual measurements.
Line following using a two camera guidance system for a mobile robot
NASA Astrophysics Data System (ADS)
Samu, Tayib; Kelkar, Nikhal; Perdue, David; Ruthemeyer, Michael A.; Matthews, Bradley O.; Hall, Ernest L.
1996-10-01
Automated unmanned guided vehicles have many potential applications in manufacturing, medicine, space and defense. A mobile robot has been designed for the 1996 Automated Unmanned Vehicle Society competition which was held in Orlando, Florida on July 15, 1996. The competition required the vehicle to follow solid and dashed lines around an approximately 800 ft. path while avoiding obstacles, overcoming terrain changes such as inclines and sand traps, and attempting to maximize speed. The purpose of this paper is to describe the algorithm developed for the line following. The line following algorithm images two windows and locates their centroid and with the knowledge that the points are on the ground plane, a mathematical and geometrical relationship between the image coordinates of the points and their corresponding ground coordinates are established. The angle of the line and minimum distance from the robot centroid are then calculated and used in the steering control. Two cameras are mounted on the robot with a camera on each side. One camera guides the robot and when it loses track of the line on its side, the robot control system automatically switches to the other camera. The test bed system has provided an educational experience for all involved and permits understanding and extending the state of the art in autonomous vehicle design.
Recent technology and usage of plastic lenses in image taking objectives
NASA Astrophysics Data System (ADS)
Yamaguchi, Susumu; Sato, Hiroshi; Mori, Nobuyoshi; Kiriki, Toshihiko
2005-09-01
Recently, plastic lenses produced by injection molding are widely used in image taking objectives for digital cameras, camcorders, and mobile phone cameras, because of their suitability for volume production and ease of obtaining an advantage of aspherical surfaces. For digital camera and camcorder objectives, it is desirable that there is no image point variation with the temperature change in spite of employing several plastic lenses. At the same time, due to the shrinking pixel size of solid-state image sensor, there is now a requirement to assemble lenses with high accuracy. In order to satisfy these requirements, we have developed 16 times compact zoom objective for camcorder and 3 times class folded zoom objectives for digital camera, incorporating cemented plastic doublet consisting of a positive lens and a negative lens. Over the last few years, production volumes of camera-equipped mobile phones have increased substantially. Therefore, for mobile phone cameras, the consideration of productivity is more important than ever. For this application, we have developed a 1.3-mega pixels compact camera module with macro function utilizing the advantage of a plastic lens that can be given mechanically functional shape to outer flange part. Its objective consists of three plastic lenses and all critical dimensions related to optical performance can be determined by high precise optical elements. Therefore this camera module is manufactured without optical adjustment in automatic assembling line, and achieves both high productivity and high performance. Reported here are the constructions and the technical topics of image taking objectives described above.
NASA Technical Reports Server (NTRS)
Lawson, R. Paul
2000-01-01
SPEC incorporated designed, built and operated a new instrument, called a pi-Nephelometer, on the NASA DC-8 for the SUCCESS field project. The pi-Nephelometer casts an image of a particle on a 400,000 pixel solid-state camera by freezing the motion of the particle using a 25 ns pulsed, high-power (60 W) laser diode. Unique optical imaging and particle detection systems precisely detect particles and define the depth-of-field so that at least one particle in the image is almost always in focus. A powerful image processing engine processes frames from the solid-state camera, identifies and records regions of interest (i.e. particle images) in real time. Images of ice crystals are displayed and recorded with 5 micron pixel resolution. In addition, a scattered light system simultaneously measures the scattering phase function of the imaged particle. The system consists of twenty-eight 1-mm optical fibers connected to microlenses bonded on the surface of avalanche photo diodes (APDs). Data collected with the pi-Nephelometer during the SUCCESS field project was reported in a special issue of Geophysical Research Letters. The pi-Nephelometer provided the basis for development of a commercial imaging probe, called the cloud particle imager (CPI), which has been installed on several research aircraft and used in More than a dozen field programs.
Miniaturized unified imaging system using bio-inspired fluidic lens
NASA Astrophysics Data System (ADS)
Tsai, Frank S.; Cho, Sung Hwan; Qiao, Wen; Kim, Nam-Hyong; Lo, Yu-Hwa
2008-08-01
Miniaturized imaging systems have become ubiquitous as they are found in an ever-increasing number of devices, such as cellular phones, personal digital assistants, and web cameras. Until now, the design and fabrication methodology of such systems have not been significantly different from conventional cameras. The only established method to achieve focusing is by varying the lens distance. On the other hand, the variable-shape crystalline lens found in animal eyes offers inspiration for a more natural way of achieving an optical system with high functionality. Learning from the working concepts of the optics in the animal kingdom, we developed bio-inspired fluidic lenses for a miniature universal imager with auto-focusing, macro, and super-macro capabilities. Because of the enormous dynamic range of fluidic lenses, the miniature camera can even function as a microscope. To compensate for the image quality difference between the central vision and peripheral vision and the shape difference between a solid-state image sensor and a curved retina, we adopted a hybrid design consisting of fluidic lenses for tunability and fixed lenses for aberration and color dispersion correction. A design of the world's smallest surgical camera with 3X optical zoom capabilities is also demonstrated using the approach of hybrid lenses.
Physical principles and current status of emerging non-volatile solid state memories
NASA Astrophysics Data System (ADS)
Wang, L.; Yang, C.-H.; Wen, J.
2015-07-01
Today the influence of non-volatile solid-state memories on persons' lives has become more prominent because of their non-volatility, low data latency, and high robustness. As a pioneering technology that is representative of non-volatile solidstate memories, flash memory has recently seen widespread application in many areas ranging from electronic appliances, such as cell phones and digital cameras, to external storage devices such as universal serial bus (USB) memory. Moreover, owing to its large storage capacity, it is expected that in the near future, flash memory will replace hard-disk drives as a dominant technology in the mass storage market, especially because of recently emerging solid-state drives. However, the rapid growth of the global digital data has led to the need for flash memories to have larger storage capacity, thus requiring a further downscaling of the cell size. Such a miniaturization is expected to be extremely difficult because of the well-known scaling limit of flash memories. It is therefore necessary to either explore innovative technologies that can extend the areal density of flash memories beyond the scaling limits, or to vigorously develop alternative non-volatile solid-state memories including ferroelectric random-access memory, magnetoresistive random-access memory, phase-change random-access memory, and resistive random-access memory. In this paper, we review the physical principles of flash memories and their technical challenges that affect our ability to enhance the storage capacity. We then present a detailed discussion of novel technologies that can extend the storage density of flash memories beyond the commonly accepted limits. In each case, we subsequently discuss the physical principles of these new types of non-volatile solid-state memories as well as their respective merits and weakness when utilized for data storage applications. Finally, we predict the future prospects for the aforementioned solid-state memories for the next generation of data-storage devices based on a comparison of their performance. [Figure not available: see fulltext.
A view of the ET camera on STS-112
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - A view of the camera mounted on the external tank of Space Shuttle Atlantis. The color video camera mounted to the top of Atlantis' external tank will provide a view of the front and belly of the orbiter and a portion of the solid rocket boosters (SRBs) and external tank during the launch of Atlantis on mission STS-112. It will offer the STS-112 team an opportunity to monitor the shuttle's performance from a new angle. The camera will be turned on fifteen minutes prior to launch and will show the orbiter and solid rocket boosters on the launch pad. The video will be downlinked from the external tank during flight to several NASA data-receiving sites and then relayed to the live television broadcast. The camera is expected to operate for about 15 minutes following liftoff. At liftoff, viewers will see the shuttle clearing the launch tower and, at two minutes after liftoff, see the right SRB separate from the external tank. When the external tank separates from Atlantis about eight minutes into the flight, the camera is expected to continue its live feed for about six more minutes although NASA may be unable to pick up the camera's signal because the tank may have moved out of range.
A view of the ET camera on STS-112
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - A closeup view of the camera mounted on the external tank of Space Shuttle Atlantis. The color video camera mounted to the top of Atlantis' external tank will provide a view of the front and belly of the orbiter and a portion of the solid rocket boosters (SRBs) and external tank during the launch of Atlantis on mission STS-112. It will offer the STS-112 team an opportunity to monitor the shuttle's performance from a new angle. The camera will be turned on fifteen minutes prior to launch and will show the orbiter and solid rocket boosters on the launch pad. The video will be downlinked from the external tank during flight to several NASA data-receiving sites and then relayed to the live television broadcast. The camera is expected to operate for about 15 minutes following liftoff. At liftoff, viewers will see the shuttle clearing the launch tower and, at two minutes after liftoff, see the right SRB separate from the external tank. When the external tank separates from Atlantis about eight minutes into the flight, the camera is expected to continue its live feed for about six more minutes although NASA may be unable to pick up the camera's signal because the tank may have moved out of range.
Geiger-mode APD camera system for single-photon 3D LADAR imaging
NASA Astrophysics Data System (ADS)
Entwistle, Mark; Itzler, Mark A.; Chen, Jim; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir
2012-06-01
The unparalleled sensitivity of 3D LADAR imaging sensors based on single photon detection provides substantial benefits for imaging at long stand-off distances and minimizing laser pulse energy requirements. To obtain 3D LADAR images with single photon sensitivity, we have demonstrated focal plane arrays (FPAs) based on InGaAsP Geiger-mode avalanche photodiodes (GmAPDs) optimized for use at either 1.06 μm or 1.55 μm. These state-of-the-art FPAs exhibit excellent pixel-level performance and the capability for 100% pixel yield on a 32 x 32 format. To realize the full potential of these FPAs, we have recently developed an integrated camera system providing turnkey operation based on FPGA control. This system implementation enables the extremely high frame-rate capability of the GmAPD FPA, and frame rates in excess of 250 kHz (for 0.4 μs range gates) can be accommodated using an industry-standard CameraLink interface in full configuration. Real-time data streaming for continuous acquisition of 2 μs range gate point cloud data with 13-bit time-stamp resolution at 186 kHz frame rates has been established using multiple solid-state storage drives. Range gate durations spanning 4 ns to 10 μs provide broad operational flexibility. The camera also provides real-time signal processing in the form of multi-frame gray-scale contrast images and single-frame time-stamp histograms, and automated bias control has been implemented to maintain a constant photon detection efficiency in the presence of ambient temperature changes. A comprehensive graphical user interface has been developed to provide complete camera control using a simple serial command set, and this command set supports highly flexible end-user customization.
Film cameras or digital sensors? The challenge ahead for aerial imaging
Light, D.L.
1996-01-01
Cartographic aerial cameras continue to play the key role in producing quality products for the aerial photography business, and specifically for the National Aerial Photography Program (NAPP). One NAPP photograph taken with cameras capable of 39 lp/mm system resolution can contain the equivalent of 432 million pixels at 11 ??m spot size, and the cost is less than $75 per photograph to scan and output the pixels on a magnetic storage medium. On the digital side, solid state charge coupled device linear and area arrays can yield quality resolution (7 to 12 ??m detector size) and a broader dynamic range. If linear arrays are to compete with film cameras, they will require precise attitude and positioning of the aircraft so that the lines of pixels can be unscrambled and put into a suitable homogeneous scene that is acceptable to an interpreter. Area arrays need to be much larger than currently available to image scenes competitive in size with film cameras. Analysis of the relative advantages and disadvantages of the two systems show that the analog approach is more economical at present. However, as arrays become larger, attitude sensors become more refined, global positioning system coordinate readouts become commonplace, and storage capacity becomes more affordable, the digital camera may emerge as the imaging system for the future. Several technical challenges must be overcome if digital sensors are to advance to where they can support mapping, charting, and geographic information system applications.
A preliminary study on ice shape tracing with a laser light sheet
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Vargas, Mario; Oldenburg, John R.
1993-01-01
Preliminary work towards the development of an automated method of measuring the shape of ice forming on an airfoil during wind tunnel tests has been completed. A thin sheet of light illuminated the front surfaces of rime, glaze, and mixed ice shapes and a solid-state camera recorded images of each. A maximum intensity algorithm extracted the profiles of the ice shapes and the results were compared to hand tracings. Very good general agreement was found in each case.
Image Intensifier Modules For Use With Commercially Available Solid State Cameras
NASA Astrophysics Data System (ADS)
Murphy, Howard; Tyler, Al; Lake, Donald W.
1989-04-01
A modular approach to design has contributed greatly to the success of the family of machine vision video equipment produced by EG&G Reticon during the past several years. Internal modularity allows high-performance area (matrix) and line scan cameras to be assembled with two or three electronic subassemblies with very low labor costs, and permits camera control and interface circuitry to be realized by assemblages of various modules suiting the needs of specific applications. Product modularity benefits equipment users in several ways. Modular matrix and line scan cameras are available in identical enclosures (Fig. 1), which allows enclosure components to be purchased in volume for economies of scale and allows field replacement or exchange of cameras within a customer-designed system to be easily accomplished. The cameras are optically aligned (boresighted) at final test; modularity permits optical adjustments to be made with the same precise test equipment for all camera varieties. The modular cameras contain two, or sometimes three, hybrid microelectronic packages (Fig. 2). These rugged and reliable "submodules" perform all of the electronic operations internal to the camera except for the job of image acquisition performed by the monolithic image sensor. Heat produced by electrical power dissipation in the electronic modules is conducted through low resistance paths to the camera case by the metal plates, which results in a thermally efficient and environmentally tolerant camera with low manufacturing costs. A modular approach has also been followed in design of the camera control, video processor, and computer interface accessory called the Formatter (Fig. 3). This unit can be attached directly onto either a line scan or matrix modular camera to form a self-contained units, or connected via a cable to retain the advantages inherent to a small, light weight, and rugged image sensing component. Available modules permit the bus-structured Formatter to be configured as required by a specific camera application. Modular line and matrix scan cameras incorporating sensors with fiber optic faceplates (Fig 4) are also available. These units retain the advantages of interchangeability, simple construction, ruggedness, and optical precision offered by the more common lens input units. Fiber optic faceplate cameras are used for a wide variety of applications. A common usage involves mating of the Reticon-supplied camera to a customer-supplied intensifier tube for low light level and/or short exposure time situations.
2003-11-06
KENNEDY SPACE CENTER, FLA. - A camera is installed on the aft skirt of a solid rocket booster in preparation for a vibration test of the Mobile Launcher Platform with SRBs and external tank mounted. The MLP will roll from one bay to another in the Vehicle Assembly Building.
2002-09-26
KENNEDY SPACE CENTER, FLA. - A view of the camera mounted on the external tank of Space Shuttle Atlantis. The color video camera mounted to the top of Atlantis' external tank will provide a view of the front and belly of the orbiter and a portion of the solid rocket boosters (SRBs) and external tank during the launch of Atlantis on mission STS-112. It will offer the STS-112 team an opportunity to monitor the shuttle's performance from a new angle. The camera will be turned on fifteen minutes prior to launch and will show the orbiter and solid rocket boosters on the launch pad. The video will be downlinked from the external tank during flight to several NASA data-receiving sites and then relayed to the live television broadcast. The camera is expected to operate for about 15 minutes following liftoff. At liftoff, viewers will see the shuttle clearing the launch tower and, at two minutes after liftoff, see the right SRB separate from the external tank. When the external tank separates from Atlantis about eight minutes into the flight, the camera is expected to continue its live feed for about six more minutes although NASA may be unable to pick up the camera's signal because the tank may have moved out of range.
2002-09-26
KENNEDY SPACE CENTER, FLA. - A closeup view of the camera mounted on the external tank of Space Shuttle Atlantis. The color video camera mounted to the top of Atlantis' external tank will provide a view of the front and belly of the orbiter and a portion of the solid rocket boosters (SRBs) and external tank during the launch of Atlantis on mission STS-112. It will offer the STS-112 team an opportunity to monitor the shuttle's performance from a new angle. The camera will be turned on fifteen minutes prior to launch and will show the orbiter and solid rocket boosters on the launch pad. The video will be downlinked from the external tank during flight to several NASA data-receiving sites and then relayed to the live television broadcast. The camera is expected to operate for about 15 minutes following liftoff. At liftoff, viewers will see the shuttle clearing the launch tower and, at two minutes after liftoff, see the right SRB separate from the external tank. When the external tank separates from Atlantis about eight minutes into the flight, the camera is expected to continue its live feed for about six more minutes although NASA may be unable to pick up the camera's signal because the tank may have moved out of range.
2002-09-26
KENNEDY SPACE CENTER, FLA. - A closeup view of the camera mounted on the external tank of Space Shuttle Atlantis. The color video camera mounted to the top of Atlantis' external tank will provide a view of the front and belly of the orbiter and a portion of the solid rocket boosters (SRBs) and external tank during the launch of Atlantis on mission STS-112. It will offer the STS-112 team an opportunity to monitor the shuttle's performance from a new angle. The camera will be turned on fifteen minutes prior to launch and will show the orbiter and solid rocket boosters on the launch pad. The video will be downlinked from the external tank during flight to several NASA data-receiving sites and then relayed to the live television broadcast. The camera is expected to operate for about 15 minutes following liftoff. At liftoff, viewers will see the shuttle clearing the launch tower and, at two minutes after liftoff, see the right SRB separate from the external tank. When the external tank separates from Atlantis about eight minutes into the flight, the camera is expected to continue its live feed for about six more minutes although NASA may be unable to pick up the camera's signal because the tank may have moved out of range.
Programmable 10 MHz optical fiducial system for hydrodiagnostic cameras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huen, T.
1987-07-01
A solid state light control system was designed and fabricated for use with hydrodiagnostic streak cameras of the electro-optic type. With its use, the film containing the streak images will have on it two time scales simultaneously exposed with the signal. This allows timing and cross timing. The latter is achieved with exposure modulation marking onto the time tick marks. The purpose of using two time scales will be discussed. The design is based on a microcomputer, resulting in a compact and easy to use instrument. The light source is a small red light emitting diode. Time marking can bemore » programmed in steps of 0.1 microseconds, with a range of 255 steps. The time accuracy is based on a precision 100 MHz quartz crystal, giving a divided down 10 MHz system frequency. The light is guided by two small 100 micron diameter optical fibers, which facilitates light coupling onto the input slit of an electro-optic streak camera. Three distinct groups of exposure modulation of the time tick marks can be independently set anywhere onto the streak duration. This system has been successfully used in Fabry-Perot laser velocimeters for over four years in our Laboratory. The microcomputer control section is also being used in providing optical fids to mechanical rotor cameras.« less
NASA Astrophysics Data System (ADS)
Ahn, Y.; Box, J. E.; Balog, J.; Lewinter, A.
2008-12-01
Monitoring Greenland outlet glaciers using remotely sensed data has drawn a great attention in earth science communities for decades and time series analysis of sensory data has provided important variability information of glacier flow by detecting speed and thickness changes, tracking features and acquiring model input. Thanks to advancements of commercial digital camera technology and increased solid state storage, we activated automatic ground-based time-lapse camera stations with high spatial/temporal resolution in west Greenland outlet and collected one-hour interval data continuous for more than one year at some but not all sites. We believe that important information of ice dynamics are contained in these data and that terrestrial mono-/stereo-photogrammetry can provide theoretical/practical fundamentals in data processing along with digital image processing techniques. Time-lapse images over periods in west Greenland indicate various phenomenon. Problematic is rain, snow, fog, shadows, freezing of water on camera enclosure window, image over-exposure, camera motion, sensor platform drift, and fox chewing of instrument cables, and the pecking of plastic window by ravens. Other problems include: feature identification, camera orientation, image registration, feature matching in image pairs, and feature tracking. Another obstacle is that non-metric digital camera contains large distortion to be compensated for precise photogrammetric use. Further, a massive number of images need to be processed in a way that is sufficiently computationally efficient. We meet these challenges by 1) identifying problems in possible photogrammetric processes, 2) categorizing them based on feasibility, and 3) clarifying limitation and alternatives, while emphasizing displacement computation and analyzing regional/temporal variability. We experiment with mono and stereo photogrammetric techniques in the aide of automatic correlation matching for efficiently handling the enormous data volumes.
A smart telerobotic system driven by monocular vision
NASA Technical Reports Server (NTRS)
Defigueiredo, R. J. P.; Maccato, A.; Wlczek, P.; Denney, B.; Scheerer, J.
1994-01-01
A robotic system that accepts autonomously generated motion and control commands is described. The system provides images from the monocular vision of a camera mounted on a robot's end effector, eliminating the need for traditional guidance targets that must be predetermined and specifically identified. The telerobotic vision system presents different views of the targeted object relative to the camera, based on a single camera image and knowledge of the target's solid geometry.
A laser-based ice shape profilometer for use in icing wind tunnels
NASA Technical Reports Server (NTRS)
Hovenac, Edward A.; Vargas, Mario
1995-01-01
A laser-based profilometer was developed to measure the thickness and shape of ice accretions on the leading edge of airfoils and other models in icing wind tunnels. The instrument is a hand held device that is connected to a desk top computer with a 10 meter cable. It projects a laser line onto an ice shape and used solid state cameras to detect the light scattered by the ice. The instrument corrects the image for camera angle distortions, displays an outline of the ice shape on the computer screen, saves the data on a disk, and can print a full scale drawing of the ice shape. The profilometer has undergone extensive testing in the laboratory and in the NASA Lewis Icing Research Tunnel. Results of the tests show very good agreement between profilometer measurements and known simulated ice shapes and fair agreement between profilometer measurements and hand tracing techniques.
Thermal Transfer Compared To The Fourteen Other Imaging Technologies
NASA Astrophysics Data System (ADS)
O'Leary, John W.
1989-07-01
A quiet revolution in the world of imaging has been underway for the past few years. The older technologies of dot matrix, daisy wheel, thermal paper and pen plotters have been increasingly displaced by laser, ink jet and thermal transfer. The net result of this revolution is improved technologies that afford superior imaging, quiet operation, plain paper usage, instant operation, and solid state components. Thermal transfer is one of the processes that incorporates these benefits. Among the imaging application for thermal transfer are: 1. Bar code labeling and scanning. 2. New systems for airline ticketing, boarding passes, reservations, etc. 3. Color computer graphics and imaging. 4. Copying machines that copy in color. 5. Fast growing communications media such as facsimile. 6. Low cost word processors and computer printers. 7. New devices that print pictures from video cameras or television sets. 8. Cameras utilizing computer chips in place of film.
Furenlid, Lars R.; Barrett, Harrison H.; Barber, H. Bradford; Clarkson, Eric W.; Kupinski, Matthew A.; Liu, Zhonglin; Stevenson, Gail D.; Woolfenden, James M.
2015-01-01
During the past two decades, researchers at the University of Arizona’s Center for Gamma-Ray Imaging (CGRI) have explored a variety of approaches to gamma-ray detection, including scintillation cameras, solid-state detectors, and hybrids such as the intensified Quantum Imaging Device (iQID) configuration where a scintillator is followed by optical gain and a fast CCD or CMOS camera. We have combined these detectors with a variety of collimation schemes, including single and multiple pinholes, parallel-hole collimators, synthetic apertures, and anamorphic crossed slits, to build a large number of preclinical molecular-imaging systems that perform Single-Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), and X-Ray Computed Tomography (CT). In this paper, we discuss the themes and methods we have developed over the years to record and fully use the information content carried by every detected gamma-ray photon. PMID:26236069
NASA Technical Reports Server (NTRS)
Kiplinger, Alan L.; Dennis, Brian R.; Orwig, Larry E.; Chen, P. C.
1988-01-01
A solid-state digital camera was developed for obtaining H alpha images of solar flares with 0.1 s time resolution. Beginning in the summer of 1988, this system will be operated in conjunction with SMM's hard X-ray burst spectrometer (HXRBS). Important electron time-of-flight effects that are crucial for determining the flare energy release processes should be detectable with these combined H alpha and hard X-ray observations. Charge-injection device (CID) cameras provide 128 x 128 pixel images simultaneously in the H alpha blue wing, line center, and red wing, or other wavelength of interest. The data recording system employs a microprocessor-controlled, electronic interface between each camera and a digital processor board that encodes the data into a serial bitstream for continuous recording by a standard video cassette recorder. Only a small fraction of the data will be permanently archived through utilization of a direct memory access interface onto a VAX-750 computer. In addition to correlations with hard X-ray data, observations from the high speed H alpha camera will also be correlated and optical and microwave data and data from future MAX 1991 campaigns. Whether the recorded optical flashes are simultaneous with X-ray peaks to within 0.1 s, are delayed by tenths of seconds or are even undetectable, the results will have implications on the validity of both thermal and nonthermal models of hard X-ray production.
Precise color images a high-speed color video camera system with three intensified sensors
NASA Astrophysics Data System (ADS)
Oki, Sachio; Yamakawa, Masafumi; Gohda, Susumu; Etoh, Takeharu G.
1999-06-01
High speed imaging systems have been used in a large field of science and engineering. Although the high speed camera systems have been improved to high performance, most of their applications are only to get high speed motion pictures. However, in some fields of science and technology, it is useful to get some other information, such as temperature of combustion flame, thermal plasma and molten materials. Recent digital high speed video imaging technology should be able to get such information from those objects. For this purpose, we have already developed a high speed video camera system with three-intensified-sensors and cubic prism image splitter. The maximum frame rate is 40,500 pps (picture per second) at 64 X 64 pixels and 4,500 pps at 256 X 256 pixels with 256 (8 bit) intensity resolution for each pixel. The camera system can store more than 1,000 pictures continuously in solid state memory. In order to get the precise color images from this camera system, we need to develop a digital technique, which consists of a computer program and ancillary instruments, to adjust displacement of images taken from two or three image sensors and to calibrate relationship between incident light intensity and corresponding digital output signals. In this paper, the digital technique for pixel-based displacement adjustment are proposed. Although the displacement of the corresponding circle was more than 8 pixels in original image, the displacement was adjusted within 0.2 pixels at most by this method.
Niskanen, Ilpo; Sutinen, Veijo; Thungström, Göran; Räty, Jukka
2018-06-01
The refractive index is a fundamental physical property of a medium, which can be used for the identification and purity issues of all media. Here we describe a refractive index measurement technique to determine simultaneously the refractive index of different solid particles by monitoring the transmittance of light from a suspension using a charge-coupled device (CCD) camera. An important feature of the measurement is the liquid evaporation process for the refractive index matching of the solid particle and the immersion liquid; this was realized by using a pair of volatile and non-volatile immersion liquids. In this study, refractive indices of calcium fluoride (CaF 2 ) and barium fluoride (BaF 2 ) were determined using the proposed method.
Usachev with Solid Waste Container in Service Module
2001-04-10
ISS002-E-5336 (10 April 2001) --- As part of routine procedures, cosmonaut Yury V. Usachev, Expedition Two mission commander, changes out a solid waste container in the Zvezda / Service Module. This image was recorded with a digital still camera.
Remote sensing of atmospheric pressure and sea state using laser altimeters
NASA Technical Reports Server (NTRS)
Gardner, C. S.
1985-01-01
Short-pulse multicolor laser ranging systems are currently being developed for satellite ranging applications. These systems use Q-switched pulsed lasers and streak-tube cameras to provide timing accuracies approaching a few picoseconds. Satellite laser ranging systems have been used to evaluate many important geophysical phenomena such as fault motion, polar motion and solid earth tides, by measuring the orbital perturbations of retroreflector equipped satellites. Some existing operational systems provide range resolution approaching a few millimeters. There is currently considerable interest in adapting these highly accurate systems for use as airborne and satellite based altimeters. Potential applications include the measurement of sea state, ground topography and atmospheric pressure. This paper reviews recent progress in the development of multicolor laser altimeters for use in monitoring sea state and atmospheric pressure.
Low-cost digital dynamic visualization system
NASA Astrophysics Data System (ADS)
Asundi, Anand K.; Sajan, M. R.
1995-05-01
High speed photographic systems like the image rotation camera, the Cranz Schardin camera and the drum camera are typically used for recording and visualization of dynamic events in stress analysis, fluid mechanics, etc. All these systems are fairly expensive and generally not simple to use. Furthermore they are all based on photographic film recording systems requiring time consuming and tedious wet processing of the films. Currently digital cameras are replacing to certain extent the conventional cameras for static experiments. Recently, there is lot of interest in developing and modifying CCD architectures and recording arrangements for dynamic scene analysis. Herein we report the use of a CCD camera operating in the Time Delay and Integration (TDI) mode for digitally recording dynamic scenes. Applications in solid as well as fluid impact problems are presented.
Rovero, Francesco; Martin, Emanuel; Rosa, Melissa; Ahumada, Jorge A.; Spitale, Daniel
2014-01-01
Medium-to-large mammals within tropical forests represent a rich and functionally diversified component of this biome; however, they continue to be threatened by hunting and habitat loss. Assessing these communities implies studying species’ richness and composition, and determining a state variable of species abundance in order to infer changes in species distribution and habitat associations. The Tropical Ecology, Assessment and Monitoring (TEAM) network fills a chronic gap in standardized data collection by implementing a systematic monitoring framework of biodiversity, including mammal communities, across several sites. In this study, we used TEAM camera trap data collected in the Udzungwa Mountains of Tanzania, an area of exceptional importance for mammal diversity, to propose an example of a baseline assessment of species’ occupancy. We used 60 camera trap locations and cumulated 1,818 camera days in 2009. Sampling yielded 10,647 images of 26 species of mammals. We estimated that a minimum of 32 species are in fact present, matching available knowledge from other sources. Estimated species richness at camera sites did not vary with a suite of habitat covariates derived from remote sensing, however the detection probability varied with functional guilds, with herbivores being more detectable than other guilds. Species-specific occupancy modelling revealed novel ecological knowledge for the 11 most detected species, highlighting patterns such as ‘montane forest dwellers’, e.g. the endemic Sanje mangabey (Cercocebus sanjei), and ‘lowland forest dwellers’, e.g. suni antelope (Neotragus moschatus). Our results show that the analysis of camera trap data with account for imperfect detection can provide a solid ecological assessment of mammal communities that can be systematically replicated across sites. PMID:25054806
An imaging system for PLIF/Mie measurements for a combusting flow
NASA Technical Reports Server (NTRS)
Wey, C. C.; Ghorashi, B.; Marek, C. J.; Wey, C.
1990-01-01
The equipment required to establish an imaging system can be divided into four parts: (1) the light source and beam shaping optics; (2) camera and recording; (3) image acquisition and processing; and (4) computer and output systems. A pulsed, Nd:YAG-pummped, frequency-doubled dye laser which can freeze motion in the flowfield is used for an illumination source. A set of lenses is used to form the laser beam into a sheet. The induced fluorescence is collected by an UV-enhanced lens and passes through an UV-enhanced microchannel plate intensifier which is optically coupled to a gated solid state CCD camera. The output of the camera is simultaneously displayed on a monitor and recorded on either a laser videodisc set of a Super VHS VCR. This videodisc set is controlled by a minicomputer via a connection to the RS-232C interface terminals. The imaging system is connected to the host computer by a bus repeater and can be multiplexed between four video input sources. Sample images from a planar shear layer experiment are presented to show the processing capability of the imaging system with the host computer.
George, Edward V.; Oster, Yale; Mundinger, David C.
1990-01-01
Deep UV projection lithography can be performed using an e-beam pumped solid excimer UV source, a mask, and a UV reduction camera. The UV source produces deep UV radiation in the range 1700-1300A using xenon, krypton or argon; shorter wavelengths of 850-650A can be obtained using neon or helium. A thin solid layer of the gas is formed on a cryogenically cooled plate and bombarded with an e-beam to cause fluorescence. The UV reduction camera utilizes multilayer mirrors having high reflectivity at the UV wavelength and images the mask onto a resist coated substrate at a preselected demagnification. The mask can be formed integrally with the source as an emitting mask.
2003-11-06
KENNEDY SPACE CENTER, FLA. - The camera installed on the aft skirt of a solid rocket booster is seen here, framed by the railing. The installation is in preparation for a vibration test of the Mobile Launcher Platform with SRBs and external tank mounted. The MLP will roll from one bay to another in the Vehicle Assembly Building.
Cameras in the Courtroom: A U.S. Survey. Journalism Monographs No. 60.
ERIC Educational Resources Information Center
White, Frank Wm.
Changes in the prohibition against cameras in state courtrooms are examined in this report. It provides a historical sketch of camera usage in the courtroom since 1935 and reports on the states permitting still, videotape, film cameras, and other electronic equipment in courtrooms since 1978, on the states now experimenting with the matter, and on…
Electrically actuatable temporal tristimulus-color device
Koehler, Dale R.
1992-01-01
The electrically actuated light filter operates in a cyclical temporal mode to effect a tristimulus-color light analyzer. Construction is based on a Fabry-Perot interferometer comprised of a high-speed movable mirror pair and cyclically powered electrical actuators. When combined with a single vidicon tube or a monochrome solid state image sensor, a temporally operated tristimulus-color video camera is effected. A color-generated is accomplished when constructed with a companion light source and is a flicker-free colored-light source for transmission type display systems. Advantages of low cost and small physical size result from photolithographic batch-processing manufacturability.
An Inexpensive Optical Absorption Experiment
NASA Astrophysics Data System (ADS)
Greenslade, Thomas B.
2006-09-01
This optical absorption experiment can be put together in only a few minutes with materials found in most secondary or undergraduate stockrooms. The absorption material is the partly transparent flexible anti-static plastic material used to package solid-state devices. The detector is a hand-held photographic exposure meter of the type that was in common use before the advent of point-and-shoot cameras. A graph of the intensity of the transmitted light as a function of the number of sheets of the material is a decreasing exponential. The emphasis of the experiment is on the mathematical form.
George, E.V.; Oster, Y.; Mundinger, D.C.
1990-12-25
Deep UV projection lithography can be performed using an e-beam pumped solid excimer UV source, a mask, and a UV reduction camera. The UV source produces deep UV radiation in the range 1,700--1,300A using xenon, krypton or argon; shorter wavelengths of 850--650A can be obtained using neon or helium. A thin solid layer of the gas is formed on a cryogenically cooled plate and bombarded with an e-beam to cause fluorescence. The UV reduction camera utilizes multilayer mirrors having high reflectivity at the UV wavelength and images the mask onto a resist coated substrate at a preselected demagnification. The mask can be formed integrally with the source as an emitting mask. 6 figs.
NASA Astrophysics Data System (ADS)
Köhler, M.; Boxx, I.; Geigle, K. P.; Meier, W.
2011-05-01
We describe a newly developed combustion diagnostic for the simultaneous planar imaging of soot structure and velocity fields in a highly sooting, lifted turbulent jet flame at 3000 frames per second, or two orders of magnitude faster than "conventional" laser imaging systems. This diagnostic uses short pulse duration (8 ns), frequency-doubled, diode-pumped solid state (DPSS) lasers to excite laser-induced incandescence (LII) at 3 kHz, which is then imaged onto a high framerate CMOS camera. A second (dual-cavity) DPSS laser and CMOS camera form the basis of a particle image velocity (PIV) system used to acquire 2-component velocity field in the flame. The LII response curve (measured in a laminar propane diffusion flame) is presented and the combined diagnostics then applied in a heavily sooting lifted turbulent jet flame. The potential challenges and rewards of application of this combined imaging technique at high speeds are discussed.
Nuclear Cardiology: Are We Using the Right Protocols and Tracers the Right Way?
Dondi, Maurizio; Pascual, Thomas; Paez, Diana; Einstein, Andrew J
2017-12-01
The field of nuclear cardiology has changed considerably over recent years, with greater attention paid to safety and radiation protection issues. The wider usage of technetium-99m (Tc-99m)-labeled radiopharmaceuticals for single-photon emission computed tomography (SPECT) imaging using gamma cameras has contributed to better quality studies and lower radiation exposure to patients. Increased availability of tracers and scanners for positron emission tomography (PET) will help further improve the quality of studies and quantify myocardial blood flow and myocardial flow reserve, thus enhancing the contribution of non-invasive imaging to the management of coronary artery disease. The introduction of new instrumentation such as solid state cameras and new software will help reduce further radiation exposure to patients undergoing nuclear cardiology studies. Results from recent studies, focused on assessing the relationship between best practices and radiation risk, provide useful insights on simple measures to improve the safety of nuclear cardiology studies without compromising the quality of results.
Production and characterization of pure cryogenic inertial fusion targets
NASA Astrophysics Data System (ADS)
Boyd, B. A.; Kamerman, G. W.
An experimental cryogenic inertial fusion target generator and two optical techniques for automated target inspection are described. The generator produces 100 microns diameter solid hydrogen spheres at a rate compatible with fueling requirements of conceptual inertial fusion power plants. A jet of liquified hydrogen is disrupted into droplets by an ultrasonically excited nozzle. The droplets solidify into microspheres while falling through a chamber maintained below the hydrogen triple point pressure. Stable operation of the generator has been demonstrated for up to three hours. The optical inspection techniques are computer aided photomicrography and coarse diffraction pattern analysis (CDPA). The photomicrography system uses a conventional microscope coupled to a computer by a solid state camera and digital image memory. The computer enhances the stored image and performs feature extraction to determine pellet parameters. The CDPA technique uses Fourier transform optics and a special detector array to perform optical processing of a target image.
Assessment of the DoD Embedded Media Program
2004-09-01
Classified and Sensitive Information ................... VII-22 3. Weapons Systems Video, Gun Camera Video, and Lipstick Cameras...Weapons Systems Video, Gun Camera Video, and Lipstick Cameras A SECDEF and CJCS message to commanders stated, “Put in place mechanisms and processes...of public communication activities.”126 The 10 February 2003 PAG stated, “Use of lipstick and helmet-mounted cameras on combat sorties is approved
Ultrafast electron microscopy in materials science, biology, and chemistry
NASA Astrophysics Data System (ADS)
King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.
2005-06-01
The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental knowledge for discovery-class science.
Tunable femtosecond lasers with low pump thresholds
NASA Astrophysics Data System (ADS)
Oppo, Karen
The work in this thesis is concerned with the development of tunable, femtosecond laser systems, exhibiting low pump threshold powers. The main motive for this work was the development of a low threshold, self-modelocked Ti:Al2O3 laser in order to replace the conventional large-frame argon-ion pump laser with a more compact and efficient all-solid-state alternative. Results are also presented for an all-solid-state, self-modelocked Cr:LiSAF laser, however most of this work is concerned with self-modelocked Ti:Al2O3 laser systems. In chapter 2, the operation of a regeneratively-initiated, and a hard-aperture self- modelocked Ti:Al2O3 laser, pumped by an argon-ion laser, is discussed. Continuous- wave oscillation thresholds as low as 160mW have been demonstrated, along with self-modelocked threshold powers as low as 500mW. The measurement and suppression of phase noise on modelocked lasers is discussed in chapter 3. This is followed by a comparison of the phase noise characteristics of the regeneratively-initiated, and hard-aperture self-modelocked Ti:Al2O3 lasers. The use of a synchronously-operating, high resolution electron-optical streak camera in the evaluation of timing jitter is also presented. In chapter 4, the construction and self-modelocked operation of an all-solid-state Ti:Al2O3 laser is described. The all-solid-state alternative to the conventional argon-ion pump laser was a continuous-wave, intracavity-frequency doubled, diode-laser pumped Nd:YLF ring laser. At a total diode-laser pump power of 10W, this minilaser was capable of producing a single frequency output of 1W, at 523.5nm in a TEM00 beam. The remainder of this thesis looks at the operation of a self-modelocked Ti:Al2O3 laser generating ultrashort pulses at wavelengths as long as 1053nm. The motive for this work was the development of an all-solid-state, self- modelocked Ti:Al2O3 laser operating at 1053nm, for use as a master oscillator in a Nd:glass power chain.
7. VAL CAMERA CAR, DETAIL OF 'FLARE' OR TRAJECTORY CAMERA ...
7. VAL CAMERA CAR, DETAIL OF 'FLARE' OR TRAJECTORY CAMERA INSIDE CAMERA CAR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
6. VAL CAMERA CAR, DETAIL OF COMMUNICATION EQUIPMENT INSIDE CAMERA ...
6. VAL CAMERA CAR, DETAIL OF COMMUNICATION EQUIPMENT INSIDE CAMERA CAR WITH CAMERA MOUNT IN FOREGROUND. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
NASA Technical Reports Server (NTRS)
Short, David A.; Lane, Robert E., Jr.; Winters, Katherine A.; Madura, John T.
2004-01-01
Clouds are highly effective in obscuring optical images of the Space Shuttle taken during its ascent by ground-based and airborne tracking cameras. Because the imagery is used for quick-look and post-flight engineering analysis, the Columbia Accident Investigation Board (CAIB) recommended the return-to-flight effort include an upgrade of the imaging system to enable it to obtain at least three useful views of the Shuttle from lift-off to at least solid rocket booster (SRB) separation (NASA 2003). The lifetimes of individual cloud elements capable of obscuring optical views of the Shuttle are typically 20 minutes or less. Therefore, accurately observing and forecasting cloud obscuration over an extended network of cameras poses an unprecedented challenge for the current state of observational and modeling techniques. In addition, even the best numerical simulations based on real observations will never reach "truth." In order to quantify the risk that clouds would obscure optical imagery of the Shuttle, a 3D model to calculate probabilistic risk was developed. The model was used to estimate the ability of a network of optical imaging cameras to obtain at least N simultaneous views of the Shuttle from lift-off to SRB separation in the presence of an idealized, randomized cloud field.
NASA Astrophysics Data System (ADS)
Vandenbroucke, J.; BenZvi, S.; Bravo, S.; Jensen, K.; Karn, P.; Meehan, M.; Peacock, J.; Plewa, M.; Ruggles, T.; Santander, M.; Schultz, D.; Simons, A. L.; Tosi, D.
2016-04-01
Solid-state camera image sensors can be used to detect ionizing radiation in addition to optical photons. We describe the Distributed Electronic Cosmic-ray Observatory (DECO), an app and associated public database that enables a network of consumer devices to detect cosmic rays and other ionizing radiation. In addition to terrestrial background radiation, cosmic-ray muon candidate events are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of candidate muon events detected by DECO to measure the thickness of the depletion region of the camera image sensor in a particular consumer smartphone model, the HTC Wildfire S. The track length distribution is fit better by a cosmic-ray muon angular distribution than an isotropic distribution, demonstrating that DECO can detect and identify cosmic-ray muons despite a background of other particle detections. Using the cosmic-ray distribution, we measure the depletion thickness to be 26.3 ± 1.4 μm. With additional data, the same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with a determination of the incident azimuthal angle directly from the track orientation in the sensor plane, this enables direction reconstruction of individual cosmic-ray events using a single consumer device. The results simultaneously validate the use of cell phone camera image sensors as cosmic-ray muon detectors and provide a measurement of a parameter of camera image sensor performance which is not otherwise publicly available.
This overview displays the concentration of JPL solid propellant production ...
This overview displays the concentration of JPL solid propellant production buildings as seen looking directly north (6 degrees) from the roof of the Administration Building (4231-E-32). The structures closest to the camera contain the equipment for weighing, grinding, mixing, and casting solid propellant grain for motors. Structures in the distance generally house curing or inspection activities. - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA
An Acoustic Charge Transport Imager for High Definition Television
NASA Technical Reports Server (NTRS)
Hunt, William D.; Brennan, Kevin; May, Gary; Glenn, William E.; Richardson, Mike; Solomon, Richard
1999-01-01
This project, over its term, included funding to a variety of companies and organizations. In addition to Georgia Tech these included Florida Atlantic University with Dr. William E. Glenn as the P.I., Kodak with Mr. Mike Richardson as the P.I. and M.I.T./Polaroid with Dr. Richard Solomon as the P.I. The focus of the work conducted by these organizations was the development of camera hardware for High Definition Television (HDTV). The focus of the research at Georgia Tech was the development of new semiconductor technology to achieve a next generation solid state imager chip that would operate at a high frame rate (I 70 frames per second), operate at low light levels (via the use of avalanche photodiodes as the detector element) and contain 2 million pixels. The actual cost required to create this new semiconductor technology was probably at least 5 or 6 times the investment made under this program and hence we fell short of achieving this rather grand goal. We did, however, produce a number of spin-off technologies as a result of our efforts. These include, among others, improved avalanche photodiode structures, significant advancement of the state of understanding of ZnO/GaAs structures and significant contributions to the analysis of general GaAs semiconductor devices and the design of Surface Acoustic Wave resonator filters for wireless communication. More of these will be described in the report. The work conducted at the partner sites resulted in the development of 4 prototype HDTV cameras. The HDTV camera developed by Kodak uses the Kodak KAI-2091M high- definition monochrome image sensor. This progressively-scanned charge-coupled device (CCD) can operate at video frame rates and has 9 gm square pixels. The photosensitive area has a 16:9 aspect ratio and is consistent with the "Common Image Format" (CIF). It features an active image area of 1928 horizontal by 1084 vertical pixels and has a 55% fill factor. The camera is designed to operate in continuous mode with an output data rate of 5MHz, which gives a maximum frame rate of 4 frames per second. The MIT/Polaroid group developed two cameras under this program. The cameras have effectively four times the current video spatial resolution and at 60 frames per second are double the normal video frame rate.
2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK ...
2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING WEST TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
1. VARIABLEANGLE LAUNCHER CAMERA CAR, VIEW OF CAMERA CAR AND ...
1. VARIABLE-ANGLE LAUNCHER CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING NORTH TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
7. VAL CAMERA STATION, INTERIOR VIEW OF CAMERA MOUNT, COMMUNICATION ...
7. VAL CAMERA STATION, INTERIOR VIEW OF CAMERA MOUNT, COMMUNICATION EQUIPMENT AND STORAGE CABINET. - Variable Angle Launcher Complex, Camera Stations, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
Camera flash heating of a three-layer solid composite: An approximate solution
NASA Astrophysics Data System (ADS)
Jibrin, Sani; Moksin, Mohd Maarof; Husin, Mohd Shahril; Zakaria, Azmi; Hassan, Jumiah; Talib, Zainal Abidin
2014-03-01
Camera flash heating and the subsequent thermal wave propagation in a solid composite material is studied using the Laplace transform technique. Full-field rear surface temperature for a single-layer, two-layer and three-layer solid composites are obtained directly from the Laplace transform conversion tables as opposed to the tedious inversion process by integral transform method. This is achieved by first expressing the hyperbolic-transcendental equation in terms of negative exponentials of square root of s/α and expanded same in a series by the binomial theorem. Electrophoretic deposition (EPD) and dip coating processes were used to prepare three-layer solid composites consisting ZnO/Cu/ZnO and starch/Al/starch respectively. About 0.5ml of deionized water enclosed within an air-tight aluminium container serves as the third three layer sample (AL/water/AL). Thermal diffusivity experiments were carried out on all the three samples prepared. Using Scaled Levenberg-Marquardt algorithm, the approximate temperature curve for the three-layer solid composite is fitted with the corresponding experimental result. The agreement between the theoretical curve and the experimental data as well as that between the obtained thermal diffusivity values for the ZnO, aluminium and deionized water in this work and similar ones found in literature is found to be very good.
3. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK ...
3. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH THE VAL TO THE RIGHT, LOOKING NORTHEAST. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
NASA Astrophysics Data System (ADS)
Boxx, I.; Carter, C. D.; Meier, W.
2014-08-01
Tomographic particle image velocimetry (tomographic-PIV) is a recently developed measurement technique used to acquire volumetric velocity field data in liquid and gaseous flows. The technique relies on line-of-sight reconstruction of the rays between a 3D particle distribution and a multi-camera imaging system. In a turbulent flame, however, index-of-refraction variations resulting from local heat-release may inhibit reconstruction and thereby render the technique infeasible. The objective of this study was to test the efficacy of tomographic-PIV in a turbulent flame. An additional goal was to determine the feasibility of acquiring usable tomographic-PIV measurements in a turbulent flame at multi-kHz acquisition rates with current-generation laser and camera technology. To this end, a setup consisting of four complementary metal oxide semiconductor cameras and a dual-cavity Nd:YAG laser was implemented to test the technique in a lifted turbulent jet flame. While the cameras were capable of kHz-rate image acquisition, the laser operated at a pulse repetition rate of only 10 Hz. However, use of this laser allowed exploration of the required pulse energy and thus power for a kHz-rate system. The imaged region was 29 × 28 × 2.7 mm in size. The tomographic reconstruction of the 3D particle distributions was accomplished using the multiplicative algebraic reconstruction technique. The results indicate that volumetric velocimetry via tomographic-PIV is feasible with pulse energies of 25 mJ, which is within the capability of current-generation kHz-rate diode-pumped solid-state lasers.
NASA Astrophysics Data System (ADS)
Ozolinsh, Maris; Paulins, Paulis
2017-09-01
An experimental setup allowing the modeling of conditions in optical devices and in the eye at various degrees of scattering such as cataract pathology in human eyes is presented. The scattering in cells of polymer-dispersed liquid crystals (PDLCs) and ‘Smart Glass’ windows is used in the modeling experiments. Both applications are used as optical obstacles placed in different positions of the optical information flow pathway either directly on the stimuli demonstration computer screen or mounted directly after the image-formation lens of a digital camera. The degree of scattering is changed continuously by applying an AC voltage of up to 30-80 V to the PDLC cell. The setup uses a camera with 14 bit depth and a 24 mm focal length lens. Light-emitting diodes and diode-pumped solid-state lasers emitting radiation of different wavelengths are used as portable small-divergence light sources in the experiments. Image formation, optical system point spread function, modulation transfer functions, and system resolution limits are determined for such sample optical systems in student optics and optometry experimental exercises.
DeCicco, Anthony E; Sokil, Alexis B; Marhefka, Gregary D; Reist, Kirk; Hansen, Christopher L
2015-04-01
Obesity is not only associated with an increased risk of coronary artery disease, but also decreases the accuracy of many diagnostic modalities pertinent to this disease. Advances in myocardial perfusion imaging (MPI) have mitigated somewhat the effects of obesity, although the feasibility of MPI in the super-obese (defined as a BMI > 50) is currently untested. We undertook this study to assess the practicality of MPI in the super-obese using a multi-headed solid-state gamma camera with attenuation correction. We retrospectively identified consecutive super-obese patients referred for MPI at our institution. The images were interpreted by 3 blinded, experienced readers and graded for quality and diagnosis, and subjectively evaluated the contribution of attenuation correction. Clinical follow-up was obtained from review of medical records. 72 consecutive super-obese patients were included. Their BMI ranged from 50 to 67 (55.7 ± 5.1). Stress image quality was considered good or excellent in 45 (63%), satisfactory in 24 (33%), poor in 3 (4%), and uninterpretable in 0 patients. Rest images were considered good or excellent in 34 (49%), satisfactory in 23 (33%), poor in 13 (19%), and uninterpretable in 0 patients. Attenuation correction changed the interpretation in 34 (47%) of studies. MPI is feasible and provides acceptable image quality for super-obese patients, although it may be camera and protocol dependent.
Ben-Haim, Simona; Kacperski, Krzysztof; Hain, Sharon; Van Gramberg, Dean; Hutton, Brian F; Erlandsson, Kjell; Sharir, Tali; Roth, Nathaniel; Waddington, Wendy A; Berman, Daniel S; Ell, Peter J
2010-08-01
We compared simultaneous dual-radionuclide (DR) stress and rest myocardial perfusion imaging (MPI) with a novel solid-state cardiac camera and a conventional SPECT camera with separate stress and rest acquisitions. Of 27 consecutive patients recruited, 24 (64.5+/-11.8 years of age, 16 men) were injected with 74 MBq of (201)Tl (rest) and 250 MBq (99m)Tc-MIBI (stress). Conventional MPI acquisition times for stress and rest are 21 min and 16 min, respectively. Rest (201)Tl for 6 min and simultaneous DR 15-min list mode gated scans were performed on a D-SPECT cardiac scanner. In 11 patients DR D-SPECT was performed first and in 13 patients conventional stress (99m)Tc-MIBI SPECT imaging was performed followed by DR D-SPECT. The DR D-SPECT data were processed using a spill-over and scatter correction method. DR D-SPECT images were compared with rest (201)Tl D-SPECT and with conventional SPECT images by visual analysis employing the 17-segment model and a five-point scale (0 normal, 4 absent) to calculate the summed stress and rest scores. Image quality was assessed on a four-point scale (1 poor, 4 very good) and gut activity was assessed on a four-point scale (0 none, 3 high). Conventional MPI studies were abnormal at stress in 17 patients and at rest in 9 patients. In the 17 abnormal stress studies DR D-SPECT MPI showed 113 abnormal segments and conventional MPI showed 93 abnormal segments. In the nine abnormal rest studies DR D-SPECT showed 45 abnormal segments and conventional MPI showed 48 abnormal segments. The summed stress and rest scores on conventional SPECT and DR D-SPECT were highly correlated (r=0.9790 and 0.9694, respectively). The summed scores of rest (201)Tl D-SPECT and DR-DSPECT were also highly correlated (r=0.9968, p<0.0001 for all). In six patients stress perfusion defects were significantly larger on stress DR D-SPECT images, and five of these patients were imaged earlier by D-SPECT than by conventional SPECT. Fast and high-quality simultaneous DR MPI is feasible with D-SPECT in a single imaging session with comparable diagnostic performance and image quality to conventional SPECT and to a separate rest (201)Tl D-SPECT acquisition.
2011-12-01
10,11 There has been a recent report on the photoignition of graphene oxide for fuel ignition applications.12 In this report, we will describe the...slide Aluminum foil Glass petri dish Xe flash Camera Sample Black spray paint Figure 2- Schematic and photographs of the experimental setup...Gilje, Sergey Dubin, Alireza Badakhshan, Jabari Farrar, Stephen. A. Danczyk, Richard B. Kaner, “Photothermal Deoxygenation of Graphene Oxide for
Velocity visualization in gaseous flows
NASA Technical Reports Server (NTRS)
Hanson, R. K.; Hiller, B.; Hassa, C.; Booman, R. A.
1984-01-01
Techniques yielding simultaneous, multiple-point measurements of velocity in reacting or nonreacting flow fields have the potential to significantly impact basic and applied studies of fluid mechanics. This research program is aimed at investigating several candidate schemes which could provide such measurement capability. The concepts under study have in common the use of a laser source (to illuminate a column, a grid, a plane or a volume in the flow) and the collection of light at right angles (from Mie scattering, fluorescence, phosphorescence or chemiluminescence) using a multi-element solid-state camera (100 x 100 array of photodiodes). The work will include an overview and a status report of work in progress with particular emphasis on the method of Doppler-modulated absorption.
Absolute Hugoniot measurements from a spherically convergent shock using x-ray radiography
NASA Astrophysics Data System (ADS)
Swift, Damian C.; Kritcher, Andrea L.; Hawreliak, James A.; Lazicki, Amy; MacPhee, Andrew; Bachmann, Benjamin; Döppner, Tilo; Nilsen, Joseph; Collins, Gilbert W.; Glenzer, Siegfried; Rothman, Stephen D.; Kraus, Dominik; Falcone, Roger W.
2018-05-01
The canonical high pressure equation of state measurement is to induce a shock wave in the sample material and measure two mechanical properties of the shocked material or shock wave. For accurate measurements, the experiment is normally designed to generate a planar shock which is as steady as possible in space and time, and a single state is measured. A converging shock strengthens as it propagates, so a range of shock pressures is induced in a single experiment. However, equation of state measurements must then account for spatial and temporal gradients. We have used x-ray radiography of spherically converging shocks to determine states along the shock Hugoniot. The radius-time history of the shock, and thus its speed, was measured by radiographing the position of the shock front as a function of time using an x-ray streak camera. The density profile of the shock was then inferred from the x-ray transmission at each instant of time. Simultaneous measurement of the density at the shock front and the shock speed determines an absolute mechanical Hugoniot state. The density profile was reconstructed using the known, unshocked density which strongly constrains the density jump at the shock front. The radiographic configuration and streak camera behavior were treated in detail to reduce systematic errors. Measurements were performed on the Omega and National Ignition Facility lasers, using a hohlraum to induce a spatially uniform drive over the outside of a solid, spherical sample and a laser-heated thermal plasma as an x-ray source for radiography. Absolute shock Hugoniot measurements were demonstrated for carbon-containing samples of different composition and initial density, up to temperatures at which K-shell ionization reduced the opacity behind the shock. Here we present the experimental method using measurements of polystyrene as an example.
8. VAL CAMERA CAR, CLOSEUP VIEW OF 'FLARE' OR TRAJECTORY ...
8. VAL CAMERA CAR, CLOSE-UP VIEW OF 'FLARE' OR TRAJECTORY CAMERA ON SLIDING MOUNT. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
NASA Technical Reports Server (NTRS)
Vaughan, Andrew T. (Inventor); Riedel, Joseph E. (Inventor)
2016-01-01
A single, compact, lower power deep space positioning system (DPS) configured to determine a location of a spacecraft anywhere in the solar system, and provide state information relative to Earth, Sun, or any remote object. For example, the DPS includes a first camera and, possibly, a second camera configured to capture a plurality of navigation images to determine a state of a spacecraft in a solar system. The second camera is located behind, or adjacent to, a secondary reflector of a first camera in a body of a telescope.
SPARTAN Near-IR Camera SPARTAN Cookbook Ohio State Infrared Imager/Spectrograph (OSIRIS) - NO LONGER Instrumentation at SOAR»SPARTAN Near-IR Camera SPARTAN Near-IR Camera System Overview The Spartan Infrared Camera is a high spatial resolution near-IR imager. Spartan has a focal plane conisisting of four "
Time-diagnostics for improved dynamics experiments at XUV FELs
NASA Astrophysics Data System (ADS)
Drescher, Markus; Frühling, Ulrike; Krikunova, Maria; Maltezopoulos, Theophilos; Wieland, Marek
2010-10-01
Significantly structured and fluctuating temporal profiles of pulses from self-amplified spontaneous emission free electron lasers as well as their unstable timing require time diagnostics on a single-shot basis. The duration and structure of extreme-ultraviolet (XUV) pulses from the Free Electron Laser (FEL) in Hamburg (FLASH) are becoming accessible using a variation of the streak camera principle, where photoemitted electrons are energetically streaked in the electric field component of a terahertz electromagnetic wave. The timing with respect to an independently generated laser pulse can be measured in an XUV/laser cross-correlator, based on a non-collinear superposition of both pulses on a solid state surface and detection of XUV-induced modulations of its reflectivity for visible light. Sorting of data according to the measured timing dramatically improves the temporal resolution of an experiment sampling the relaxation of transient electronic states in xenon after linear- as well as nonlinear excitation with intense XUV pulses from FLASH.
NASA Technical Reports Server (NTRS)
Piltch, Nancy D.; Pettegrew, Richard D.; Ferkul, Paul; Sacksteder, K. (Technical Monitor)
2001-01-01
Surface radiometry is an established technique for noncontact temperature measurement of solids. We adapt this technique to the study of solid surface combustion where the solid fuel undergoes physical and chemical changes as pyrolysis proceeds, and additionally may produce soot. The physical and chemical changes alter the fuel surface emissivity, and soot contributes to the infrared signature in the same spectral band as the signal of interest. We have developed a measurement that isolates the fuel's surface emissions in the presence of soot, and determine the surface emissivity as a function of temperature. A commercially available infrared camera images the two-dimensional surface of ashless filter paper burning in concurrent flow. The camera is sensitive in the 2 to 5 gm band, but spectrally filtered to reduce the interference from hot gas phase combustion products. Results show a strong functional dependence of emissivity on temperature, attributed to the combined effects of thermal and oxidative processes. Using the measured emissivity, radiance measurements from several burning samples were corrected for the presence of soot and for changes in emissivity, to yield quantitative surface temperature measurements. Ultimately the results will be used to develop a full-field, non-contact temperature measurement that will be used in spacebased combustion investigations.
Koulikov, Victoria; Lerman, Hedva; Kesler, Mikhail; Even-Sapir, Einat
2015-12-01
Cadmium zinc telluride (CZT) solid-state detectors have been recently introduced in the field of nuclear medicine in cardiology and breast imaging. The aim of the current study was to evaluate the performance of the novel detectors (CZT) compared to that of the routine NaI(Tl) in bone scintigraphy. A dual-headed CZT-based camera dedicated originally to breast imaging has been used, and in view of the limited size of the detectors, the hands were chosen as the organ for assessment. This is a clinical study. Fifty-eight consecutive patients (total 116 hands) referred for bone scan for suspected hand pathology gave their informed consent to have two acquisitions, using the routine camera and the CZT-based camera. The latter was divided into full-dose full-acquisition time (FD CZT) and reduced-dose short-acquisition time (RD CZT) on CZT technology, so three image sets were available for analysis. Data analysis included comparing the detection of hot lesions and identification of the metacarpophalangeal, proximal interphalangeal, and distal interphalangeal joints. A total of 69 hot lesions were detected on the CZT image sets; of these, 61 were identified as focal sites of uptake on NaI(Tl) data. On FD CZT data, 385 joints were identified compared to 168 on NaI(Tl) data (p < 0.001). There was no statistically significant difference in delineation of joints between FD and RD CZT data as the latter identified 383 joints. Bone scintigraphy using a CZT-based gamma camera is associated with improved lesion detection and anatomic definition. The superior physical characteristics of this technique raised a potential reduction in administered dose and/or acquisition time without compromising image quality.
Photodiode Camera Measurement of Surface Strains on Tendons during Multiple Cyclic Tests
NASA Astrophysics Data System (ADS)
Chun, Keyoung Jin; Hubbard, Robert Philip
The objectives of this study are to introduce the use of a photodiode camera for measuring surface strain on soft tissue and to present some representative responses of the tendon. Tendon specimens were obtained from the hindlimbs of canines and frozen to -70°C. After thawing, specimens were mounted in the immersion bath at a room temperature (22°C), preloaded to 0.13N and then subjected to 3% of the initial length at a strain rate of 2%/sec. In tendons which were tested in two blocks of seven repeated extensions to 3% strain with a 120 seconds wait period between, the surface strains were measured with a photodiode camera and near the gripped ends generally were greater than the surface strains in the middle segment of the tendon specimens. The recovery for peak load after the rest period was consistent but the changes in patterns of surface strains after the rest period were not consistent. The advantages of a photodiode measurement of surface strains include the followings: 1) it is a noncontacting method which eliminates errors and distortions caused by clip gauges or mechanical/electronic transducers; 2) it is more accurate than previous noncontact methods, e.g. the VDA and the high speed photographic method; 3) it is a fully automatic, thus reducing labor for replaying video tapes or films and potential errors from human judgement which can occur during digitizing data from photographs. Because the photodiode camera, employs a solid state photodiode array to sense black and white images, scan targets (black image) on the surface of the tendon specimen and back lighting system (white image), and stored automatically image data for surface strains of the tendon specimen on the computer during cyclic extensions.
Menéndez, Cammie Chaumont; Amandus, Harlan; Damadi, Parisa; Wu, Nan; Konda, Srinivas; Hendricks, Scott
2014-05-01
Driving a taxicab remains one of the most dangerous occupations in the United States, with leading homicide rates. Although safety equipment designed to reduce robberies exists, it is not clear what effect it has on reducing taxicab driver homicides. Taxicab driver homicide crime reports for 1996 through 2010 were collected from 20 of the largest cities (>200,000) in the United States: 7 cities with cameras installed in cabs, 6 cities with partitions installed, and 7 cities with neither cameras nor partitions. Poisson regression modeling using generalized estimating equations provided city taxicab driver homicide rates while accounting for serial correlation and clustering of data within cities. Two separate models were constructed to compare (1) cities with cameras installed in taxicabs versus cities with neither cameras nor partitions and (2) cities with partitions installed in taxicabs versus cities with neither cameras nor partitions. Cities with cameras installed in cabs experienced a significant reduction in homicides after cameras were installed (adjRR = 0.11, CL 0.06-0.24) and compared to cities with neither cameras nor partitions (adjRR = 0.32, CL 0.15-0.67). Cities with partitions installed in taxicabs experienced a reduction in homicides (adjRR = 0.78, CL 0.41-1.47) compared to cities with neither cameras nor partitions, but it was not statistically significant. The findings suggest cameras installed in taxicabs are highly effective in reducing homicides among taxicab drivers. Although not statistically significant, the findings suggest partitions installed in taxicabs may be effective.
The Galileo Solid-State Imaging experiment
Belton, M.J.S.; Klaasen, K.P.; Clary, M.C.; Anderson, J.L.; Anger, C.D.; Carr, M.H.; Chapman, C.R.; Davies, M.E.; Greeley, R.; Anderson, D.; Bolef, L.K.; Townsend, T.E.; Greenberg, R.; Head, J. W.; Neukum, G.; Pilcher, C.B.; Veverka, J.; Gierasch, P.J.; Fanale, F.P.; Ingersoll, A.P.; Masursky, H.; Morrison, D.; Pollack, James B.
1992-01-01
The Solid State Imaging (SSI) experiment on the Galileo Orbiter spacecraft utilizes a high-resolution (1500 mm focal length) television camera with an 800 ?? 800 pixel virtual-phase, charge-coupled detector. It is designed to return images of Jupiter and its satellites that are characterized by a combination of sensitivity levels, spatial resolution, geometric fiedelity, and spectral range unmatched by imaging data obtained previously. The spectral range extends from approximately 375 to 1100 nm and only in the near ultra-violet region (??? 350 nm) is the spectral coverage reduced from previous missions. The camera is approximately 100 times more sensitive than those used in the Voyager mission, and, because of the nature of the satellite encounters, will produce images with approximately 100 times the ground resolution (i.e., ??? 50 m lp-1) on the Galilean satellites. We describe aspects of the detector including its sensitivity to energetic particle radiation and how the requirements for a large full-well capacity and long-term stability in operating voltages led to the choice of the virtual phase chip. The F/8.5 camera system can reach point sources of V(mag) ??? 11 with S/N ??? 10 and extended sources with surface brightness as low as 20 kR in its highest gain state and longest exposure mode. We describe the performance of the system as determined by ground calibration and the improvements that have been made to the telescope (same basic catadioptric design that was used in Mariner 10 and the Voyager high-resolution cameras) to reduce the scattered light reaching the detector. The images are linearly digitized 8-bits deep and, after flat-fielding, are cosmetically clean. Information 'preserving' and 'non-preserving' on-board data compression capabilities are outlined. A special "summation" mode, designed for use deep in the Jovian radiation belts, near Io, is also described. The detector is 'preflashed' before each exposure to ensure the photometric linearity. The dynamic range is spread over 3 gain states and an exposure range from 4.17 ms to 51.2 s. A low-level of radial, third-order, geometric distortion has been measured in the raw images that is entirely due to the optical design. The distortion is of the pincushion type and amounts to about 1.2 pixels in the corners of the images. It is expected to be very stable. We discuss the measurement objectives of the SSI experiment in the Jupiter system and emphasize their relationships to those of other experiments in the Galileo project. We outline objectives for Jupiter atmospheric science, noting the relationship of SSI data to that to be returned by experiments on the atmospheric entry Probe. We also outline SSI objectives for satellite surfaces, ring structure, and 'darkside' (e.g., aurorae, lightning, etc.) experiments. Proposed cruise measurement objectives that relate to encounters at Venus, Moon, Earth, Gaspra, and, possibly, Ida are also briefly outlined. The article concludes with a description of a 'fully distributed' data analysis system (HIIPS) that SSI team members intend to use at their home institutions. We also list the nature of systematic data products that will become available to the scientific community. Finally, we append a short 'historical' note outlining the responsibilities and roles of institutions and individuals that have been involved in the 14 year development of the SSI experiment so far. ?? 1992 Kluwer Academic Publishers.
Micrometer-level naked-eye detection of caesium particulates in the solid state
NASA Astrophysics Data System (ADS)
Mori, Taizo; Akamatsu, Masaaki; Okamoto, Ken; Sumita, Masato; Tateyama, Yoshitaka; Sakai, Hideki; Hill, Jonathan P.; Abe, Masahiko; Ariga, Katsuhiko
2013-02-01
Large amounts of radioactive material were released from the Fukushima Daiichi nuclear plant in Japan, contaminating the local environment. During the early stages of such nuclear accidents, iodine I-131 (half-life 8.02 d) is usually detectable in the surrounding atmosphere and bodies of water. On the other hand, in the long-term, soil and water contamination by Cs-137, which has a half-life of 30.17 years, is a serious problem. In Japan, the government is planning and carrying out radioactive decontamination operations not only with public agencies but also non-governmental organizations, making radiation measurements within Japan. If caesium (also radiocaesium) could be detected by the naked eye then its environmental remediation would be facilitated. Supramolecular material approaches, such as host-guest chemistry, are useful in the design of high-resolution molecular sensors and can be used to convert molecular-recognition processes into optical signals. In this work, we have developed molecular materials (here, phenols) as an optical probe for caesium cation-containing particles with implementation based on simple spray-on reagents and a commonly available fluorescent lamp for naked-eye detection in the solid state. This chemical optical probe provides a higher spatial resolution than existing radioscopes and gamma-ray cameras.
Single-Photon Detectors for Time-of-Flight Range Imaging
NASA Astrophysics Data System (ADS)
Stoppa, David; Simoni, Andrea
We live in a three-dimensional (3D) world and thanks to the stereoscopic vision provided by our two eyes, in combination with the powerful neural network of the brain we are able to perceive the distance of the objects. Nevertheless, despite the huge market volume of digital cameras, solid-state image sensors can capture only a two-dimensional (2D) projection, of the scene under observation, losing a variable of paramount importance, i.e., the scene depth. On the contrary, 3D vision tools could offer amazing possibilities of improvement in many areas thanks to the increased accuracy and reliability of the models representing the environment. Among the great variety of distance measuring techniques and detection systems available, this chapter will treat only the emerging niche of solid-state, scannerless systems based on the TOF principle and using a detector SPAD-based pixels. The chapter is organized into three main parts. At first, TOF systems and measuring techniques will be described. In the second part, most meaningful sensor architectures for scannerless TOF distance measurements will be analyzed, focusing onto the circuital building blocks required by time-resolved image sensors. Finally, a performance summary is provided and a perspective view for the near future developments of SPAD-TOF sensors is given.
Toward 1-mm depth precision with a solid state full-field range imaging system
NASA Astrophysics Data System (ADS)
Dorrington, Adrian A.; Carnegie, Dale A.; Cree, Michael J.
2006-02-01
Previously, we demonstrated a novel heterodyne based solid-state full-field range-finding imaging system. This system is comprised of modulated LED illumination, a modulated image intensifier, and a digital video camera. A 10 MHz drive is provided with 1 Hz difference between the LEDs and image intensifier. A sequence of images of the resulting beating intensifier output are captured and processed to determine phase and hence distance to the object for each pixel. In a previous publication, we detailed results showing a one-sigma precision of 15 mm to 30 mm (depending on signal strength). Furthermore, we identified the limitations of the system and potential improvements that were expected to result in a range precision in the order of 1 mm. These primarily include increasing the operating frequency and improving optical coupling and sensitivity. In this paper, we report on the implementation of these improvements and the new system characteristics. We also comment on the factors that are important for high precision image ranging and present configuration strategies for best performance. Ranging with sub-millimeter precision is demonstrated by imaging a planar surface and calculating the deviations from a planar fit. The results are also illustrated graphically by imaging a garden gnome.
The Alfred Nobel rocket camera. An early aerial photography attempt
NASA Astrophysics Data System (ADS)
Ingemar Skoog, A.
2010-02-01
Alfred Nobel (1833-1896), mainly known for his invention of dynamite and the creation of the Nobel Prices, was an engineer and inventor active in many fields of science and engineering, e.g. chemistry, medicine, mechanics, metallurgy, optics, armoury and rocketry. Amongst his inventions in rocketry was the smokeless solid propellant ballistite (i.e. cordite) patented for the first time in 1887. As a very wealthy person he actively supported many Swedish inventors in their work. One of them was W.T. Unge, who was devoted to the development of rockets and their applications. Nobel and Unge had several rocket patents together and also jointly worked on various rocket applications. In mid-1896 Nobel applied for patents in England and France for "An Improved Mode of Obtaining Photographic Maps and Earth or Ground Measurements" using a photographic camera carried by a "…balloon, rocket or missile…". During the remaining of 1896 the mechanical design of the camera mechanism was pursued and cameras manufactured. In April 1897 (after the death of Alfred Nobel) the first aerial photos were taken by these cameras. These photos might be the first documented aerial photos taken by a rocket borne camera. Cameras and photos from 1897 have been preserved. Nobel did not only develop the rocket borne camera but also proposed methods on how to use the photographs taken for ground measurements and preparing maps.
Estimating Residual Solids Volume In Underground Storage Tanks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.
2014-01-08
The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved andmore » treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to accurately determine a volume is a function of the quantity and quality of the waste tank images. Currently, mapping is performed remotely with closed circuit video cameras and still photograph cameras due to the hazardous environment. There are two methods that can be used to create a solids volume map. These methods are: liquid transfer mapping / post transfer mapping and final residual solids mapping. The task is performed during a transfer because the liquid level (which is a known value determined by a level measurement device) is used as a landmark to indicate solids accumulation heights. The post transfer method is primarily utilized after the majority of waste has been removed. This method relies on video and still digital images of the waste tank after the liquid transfer is complete to obtain the relative height of solids across a waste tank in relation to known and usable landmarks within the waste tank (cooling coils, column base plates, etc.). In order to accurately monitor solids over time across various cleaning campaigns, and provide a technical basis to support final waste tank closure, a consistent methodology for volume determination has been developed and implemented at SRS.« less
Application of PLZT electro-optical shutter to diaphragm of visible and mid-infrared cameras
NASA Astrophysics Data System (ADS)
Fukuyama, Yoshiyuki; Nishioka, Shunji; Chonan, Takao; Sugii, Masakatsu; Shirahata, Hiromichi
1997-04-01
Pb0.9La0.09(Zr0.65,Ti0.35)0.9775O3 9/65/35) commonly used as an electro-optical shutter exhibits large phase retardation with low applied voltage. This shutter features as follows; (1) high shutter speed, (2) wide optical transmittance, and (3) high optical density in 'OFF'-state. If the shutter is applied to a diaphragm of video-camera, it could protect its sensor from intense lights. We have tested the basic characteristics of the PLZT electro-optical shutter and resolved power of imaging. The ratio of optical transmittance at 'ON' and 'OFF'-states was 1.1 X 103. The response time of the PLZT shutter from 'ON'-state to 'OFF'-state was 10 micro second. MTF reduction when putting the PLZT shutter in from of the visible video- camera lens has been observed only with 12 percent at a spatial frequency of 38 cycles/mm which are sensor resolution of the video-camera. Moreover, we took the visible image of the Si-CCD video-camera. The He-Ne laser ghost image was observed at 'ON'-state. On the contrary, the ghost image was totally shut out at 'OFF'-state. From these teste, it has been found that the PLZT shutter is useful for the diaphragm of the visible video-camera. The measured optical transmittance of PLZT wafer with no antireflection coating was 78 percent over the range from 2 to 6 microns.
NASA Technical Reports Server (NTRS)
1994-01-01
A commercially available ANDROS Mark V-A robot was used by Jet Propulsion Laboratory (JPL) as the departure point in the development of the HAZBOT III, a prototype teleoperated mobile robot designed for response to emergencies. Teleoperated robots contribute significantly to reducing human injury levels by performing tasks too hazardous for humans. ANDROS' manufacturer, REMOTEC, Inc., in turn, adopted some of the JPL concepts, particularly the control panel. HAZBOT III has exceptional mobility, employs solid state electronics and brushless DC motors for safer operation, and is designed so combustible gases cannot penetrate areas containing electronics and motors. Other features include the six-degree-of-freedom manipulator, the 30-pound squeeze force parallel jaw gripper and two video cameras, one for general viewing and navigation and the other for manipulation/grasping.
Laser designator protection filter for see-spot thermal imaging systems
NASA Astrophysics Data System (ADS)
Donval, Ariela; Fisher, Tali; Lipman, Ofir; Oron, Moshe
2012-06-01
In some cases the FLIR has an open window in the 1.06 micrometer wavelength range; this capability is called 'see spot' and allows seeing a laser designator spot using the FLIR. A problem arises when the returned laser energy is too high for the camera sensitivity, and therefore can cause damage to the sensor. We propose a non-linear, solid-state dynamic filter solution protecting from damage in a passive way. Our filter blocks the transmission, only if the power exceeds a certain threshold as opposed to spectral filters that block a certain wavelength permanently. In this paper we introduce the Wideband Laser Protection Filter (WPF) solution for thermal imaging systems possessing the ability to see the laser spot.
Solid Hydrogen Experiments for Atomic Propellants
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2001-01-01
This paper illustrates experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Solid particles of hydrogen were frozen in liquid helium, and observed with a video camera. The solid hydrogen particle sizes, their molecular structure transitions, and their agglomeration times were estimated. article sizes of 1.8 to 4.6 mm (0.07 to 0. 18 in.) were measured. The particle agglomeration times were 0.5 to 11 min, depending on the loading of particles in the dewar. These experiments are the first step toward visually characterizing these particles, and allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.
NASA Astrophysics Data System (ADS)
Krivina, L. A.; Tarasenko, Yu P.; Fel, Ya A.
2017-05-01
Influence of variable technological factors (arch current, fractional pressure of gas in the camera) on structure, physic-mechanical and tribological features of an ion-plasma coating of titanium nitride has been investigated. The adhesion solidity has been put to the test and the mechanism of destruction of a covering has been also researched by a skretch-test method. The optimal mode of spraying at which the formation of the nanostructured bar coating of TiN has been defined. The covering offers an optimal combination of physic-mechanical, tribological and solidity features.
Solid Rocket Boosters Separation
NASA Technical Reports Server (NTRS)
1982-01-01
This view, taken by a motion picture tracking camera for the STS-3 mission, shows both left and right solid rocket boosters (SRB's) at the moment of separation from the external tank (ET). After impact to the ocean, they were retrieved and refurbished for reuse. The Shuttle's SRB's and solid rocket motors (SRM's) are the largest ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds. That is equivalent to 44 million horsepower, or the combined power of 400,000 subcompact cars.
Serial-to-parallel color-TV converter
NASA Technical Reports Server (NTRS)
Doak, T. W.; Merwin, R. B.; Zuckswert, S. E.; Sepper, W.
1976-01-01
Solid analog-to-digital converter eliminates flicker and problems with time base stability and gain variation in sequential color TV cameras. Device includes 3-bit delta modulator; two-field memory; timing, switching, and sync network; and three 3-bit delta demodulators
InfraCAM (trade mark): A Hand-Held Commercial Infrared Camera Modified for Spaceborne Applications
NASA Technical Reports Server (NTRS)
Manitakos, Daniel; Jones, Jeffrey; Melikian, Simon
1996-01-01
In 1994, Inframetrics introduced the InfraCAM(TM), a high resolution hand-held thermal imager. As the world's smallest, lightest and lowest power PtSi based infrared camera, the InfraCAM is ideal for a wise range of industrial, non destructive testing, surveillance and scientific applications. In addition to numerous commercial applications, the light weight and low power consumption of the InfraCAM make it extremely valuable for adaptation to space borne applications. Consequently, the InfraCAM has been selected by NASA Lewis Research Center (LeRC) in Cleveland, Ohio, for use as part of the DARTFire (Diffusive and Radiative Transport in Fires) space borne experiment. In this experiment, a solid fuel is ignited in a low gravity environment. The combustion period is recorded by both visible and infrared cameras. The infrared camera measures the emission from polymethyl methacrylate, (PMMA) and combustion products in six distinct narrow spectral bands. Four cameras successfully completed all qualification tests at Inframetrics and at NASA Lewis. They are presently being used for ground based testing in preparation for space flight in the fall of 1995.
Data analysis for GOPEX image frames
NASA Technical Reports Server (NTRS)
Levine, B. M.; Shaik, K. S.; Yan, T.-Y.
1993-01-01
The data analysis based on the image frames received at the Solid State Imaging (SSI) camera of the Galileo Optical Experiment (GOPEX) demonstration conducted between 9-16 Dec. 1992 is described. Laser uplink was successfully established between the ground and the Galileo spacecraft during its second Earth-gravity-assist phase in December 1992. SSI camera frames were acquired which contained images of detected laser pulses transmitted from the Table Mountain Facility (TMF), Wrightwood, California, and the Starfire Optical Range (SOR), Albuquerque, New Mexico. Laser pulse data were processed using standard image-processing techniques at the Multimission Image Processing Laboratory (MIPL) for preliminary pulse identification and to produce public release images. Subsequent image analysis corrected for background noise to measure received pulse intensities. Data were plotted to obtain histograms on a daily basis and were then compared with theoretical results derived from applicable weak-turbulence and strong-turbulence considerations. Processing steps are described and the theories are compared with the experimental results. Quantitative agreement was found in both turbulence regimes, and better agreement would have been found, given more received laser pulses. Future experiments should consider methods to reliably measure low-intensity pulses, and through experimental planning to geometrically locate pulse positions with greater certainty.
Camera-Only Kinematics for Small Lunar Rovers
NASA Astrophysics Data System (ADS)
Fang, E.; Suresh, S.; Whittaker, W.
2016-11-01
Knowledge of the kinematic state of rovers is critical. Existing methods add sensors and wiring to moving parts, which can fail and adds mass and volume. This research presents a method to optically determine kinematic state using a single camera.
STS-37 Breakfast / Ingress / Launch & ISO Camera Views
NASA Technical Reports Server (NTRS)
1991-01-01
The primary objective of the STS-37 mission was to deploy the Gamma Ray Observatory. The mission was launched at 9:22:44 am on April 5, 1991, onboard the space shuttle Atlantis. The mission was led by Commander Steven Nagel. The crew was Pilot Kenneth Cameron and Mission Specialists Jerry Ross, Jay Apt, and Linda Godwing. This videotape shows the crew having breakfast on the launch day, with the narrator introducing them. It then shows the crew's final preparations and the entry into the shuttle, while the narrator gives information about each of the crew members. The countdown and launch is shown including the shuttle separation from the solid rocket boosters. The launch is reshown from 17 different camera views. Some of the other camera views were in black and white.
NASA Astrophysics Data System (ADS)
Yu, Liping; Pan, Bing
2016-12-01
A low-cost, easy-to-implement but practical single-camera stereo-digital image correlation (DIC) system using a four-mirror adapter is established for accurate shape and three-dimensional (3D) deformation measurements. The mirrors assisted pseudo-stereo imaging system can convert a single camera into two virtual cameras, which view a specimen from different angles and record the surface images of the test object onto two halves of the camera sensor. To enable deformation measurement in non-laboratory conditions or extreme high temperature environments, an active imaging optical design, combining an actively illuminated monochromatic source with a coupled band-pass optical filter, is compactly integrated to the pseudo-stereo DIC system. The optical design, basic principles and implementation procedures of the established system for 3D profile and deformation measurements are described in detail. The effectiveness and accuracy of the established system are verified by measuring the profile of a regular cylinder surface and displacements of a translated planar plate. As an application example, the established system is used to determine the tensile strains and Poisson's ratio of a composite solid propellant specimen during stress relaxation test. Since the established single-camera stereo-DIC system only needs a single camera and presents strong robustness against variations in ambient light or the thermal radiation of a hot object, it demonstrates great potential in determining transient deformation in non-laboratory or high-temperature environments with the aid of a single high-speed camera.
5. VAL CAMERA CAR, DETAIL OF HOIST AT SIDE OF ...
5. VAL CAMERA CAR, DETAIL OF HOIST AT SIDE OF BRIDGE AND ENGINE CAR ON TRACKS, LOOKING NORTHEAST. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garfield, B.R.; Rendell, J.T.
1991-01-01
The present conference discusses the application of schlieren photography in industry, laser fiber-optic high speed photography, holographic visualization of hypervelocity explosions, sub-100-picosec X-ray grating cameras, flash soft X-radiography, a novel approach to synchroballistic photography, a programmable image converter framing camera, high speed readout CCDs, an ultrafast optomechanical camera, a femtosec streak tube, a modular streak camera for laser ranging, and human-movement analysis with real-time imaging. Also discussed are high-speed photography of high-resolution moire patterns, a 2D electron-bombarded CCD readout for picosec electrooptical data, laser-generated plasma X-ray diagnostics, 3D shape restoration with virtual grating phase detection, Cu vapor lasers for highmore » speed photography, a two-frequency picosec laser with electrooptical feedback, the conversion of schlieren systems to high speed interferometers, laser-induced cavitation bubbles, stereo holographic cinematography, a gatable photonic detector, and laser generation of Stoneley waves at liquid-solid boundaries.« less
The integrated design and archive of space-borne signal processing and compression coding
NASA Astrophysics Data System (ADS)
He, Qiang-min; Su, Hao-hang; Wu, Wen-bo
2017-10-01
With the increasing demand of users for the extraction of remote sensing image information, it is very urgent to significantly enhance the whole system's imaging quality and imaging ability by using the integrated design to achieve its compact structure, light quality and higher attitude maneuver ability. At this present stage, the remote sensing camera's video signal processing unit and image compression and coding unit are distributed in different devices. The volume, weight and consumption of these two units is relatively large, which unable to meet the requirements of the high mobility remote sensing camera. This paper according to the high mobility remote sensing camera's technical requirements, designs a kind of space-borne integrated signal processing and compression circuit by researching a variety of technologies, such as the high speed and high density analog-digital mixed PCB design, the embedded DSP technology and the image compression technology based on the special-purpose chips. This circuit lays a solid foundation for the research of the high mobility remote sensing camera.
A state observer for using a slow camera as a sensor for fast control applications
NASA Astrophysics Data System (ADS)
Gahleitner, Reinhard; Schagerl, Martin
2013-03-01
This contribution concerns about a problem that often arises in vision based control, when a camera is used as a sensor for fast control applications, or more precisely, when the sample rate of the control loop is higher than the frame rate of the camera. In control applications for mechanical axes, e.g. in robotics or automated production, a camera and some image processing can be used as a sensor to detect positions or angles. The sample time in these applications is typically in the range of a few milliseconds or less and this demands the use of a camera with a high frame rate up to 1000 fps. The presented solution is a special state observer that can work with a slower and therefore cheaper camera to estimate the state variables at the higher sample rate of the control loop. To simplify the image processing for the determination of positions or angles and make it more robust, some LED markers are applied to the plant. Simulation and experimental results show that the concept can be used even if the plant is unstable like the inverted pendulum.
The Engineer Topographic Laboratories /ETL/ hybrid optical/digital image processor
NASA Astrophysics Data System (ADS)
Benton, J. R.; Corbett, F.; Tuft, R.
1980-01-01
An optical-digital processor for generalized image enhancement and filtering is described. The optical subsystem is a two-PROM Fourier filter processor. Input imagery is isolated, scaled, and imaged onto the first PROM; this input plane acts like a liquid gate and serves as an incoherent-to-coherent converter. The image is transformed onto a second PROM which also serves as a filter medium; filters are written onto the second PROM with a laser scanner in real time. A solid state CCTV camera records the filtered image, which is then digitized and stored in a digital image processor. The operator can then manipulate the filtered image using the gray scale and color remapping capabilities of the video processor as well as the digital processing capabilities of the minicomputer.
Safety Evaluation of Red Light Running Camera Intersections in Illinois
DOT National Transportation Integrated Search
2017-04-01
As a part of this research, the safety performance of red light running (RLR) camera systems was evaluated for a sample of 41 intersections and 60 RLR camera approaches located on state routes under IDOTs jurisdiction in the Chicago suburbs. Compr...
Nanotribology Investigations of Solid and Liquid Lubricants Using Scanned Probe Microscopies
2000-01-28
Kai Rose, postdoctoral fellow (external fellowship support; supplies on AFOSR) 7. Ernesto Joselevich, postdoctoral fellow (external fellowship...scale friction measurements", European Semiconductor, July/August 1997. 2. I. Amato , "Candid Cameras for the Nanoworld," Science 276, 1982-1985 (1997
NASA Astrophysics Data System (ADS)
Kadobayashi, H.; Hirai, H.; Ohfuji, H.; Kojima, Y.; Ohishi, Y.; Hirao, N.; Ohtake, M.; Yamamoto, Y.
2017-10-01
The phase transition mechanism of methane hydrate from sH to filled-ice Ih structure was examined using a combination of time-resolved X-ray diffractometry (XRD) and Raman spectroscopy in conjunction with charge-coupled device (CCD) camera observation under fixed pressure conditions. Prior to time-resolved Raman experiments, the typical C-H vibration modes and their pressure dependence of three methane hydrate structures, fluid methane and solid methane were measured using Raman spectroscopy to distinguish the phase transitions of methane hydrates from decomposition to solid methane and ice VI or VII. Experimental results by XRD, Raman spectroscopy and CCD camera observation revealed that the structural transition of sH to filled-ice Ih occurs through a collapse of the sH framework followed by the release of fluid methane that is then gradually incorporated into the filled-ice Ih to reconstruct its structure. These observations suggest that the phase transition of sH to filled-ice Ih takes place by a typical reconstructive mechanism.
Zhu, Banghe; Rasmussen, John C.; Litorja, Maritoni
2017-01-01
To date, no emerging preclinical or clinical near-infrared fluorescence (NIRF) imaging devices for non-invasive and/or surgical guidance have their performances validated on working standards with SI units of radiance that enable comparison or quantitative quality assurance. In this work, we developed and deployed a methodology to calibrate a stable, solid phantom for emission radiance with units of mW · sr−1 · cm−2 for use in characterizing the measurement sensitivity of ICCD and IsCMOS detection, signal-to-noise ratio, and contrast. In addition, at calibrated radiances, we assess transverse and lateral resolution of ICCD and IsCMOS camera systems. The methodology allowed determination of superior SNR of the ICCD over the IsCMOS camera system and superior resolution of the IsCMOS over the ICCD camera system. Contrast depended upon the camera settings (binning and integration time) and gain of intensifier. Finally, because of architecture of CMOS and CCD camera systems resulting in vastly different performance, we comment on the utility of these systems for small animal imaging as well as clinical applications for non-invasive and surgical guidance. PMID:26552078
Application of real-time single camera SLAM technology for image-guided targeting in neurosurgery
NASA Astrophysics Data System (ADS)
Chang, Yau-Zen; Hou, Jung-Fu; Tsao, Yi Hsiang; Lee, Shih-Tseng
2012-10-01
In this paper, we propose an application of augmented reality technology for targeting tumors or anatomical structures inside the skull. The application is a combination of the technologies of MonoSLAM (Single Camera Simultaneous Localization and Mapping) and computer graphics. A stereo vision system is developed to construct geometric data of human face for registration with CT images. Reliability and accuracy of the application is enhanced by the use of fiduciary markers fixed to the skull. The MonoSLAM keeps track of the current location of the camera with respect to an augmented reality (AR) marker using the extended Kalman filter. The fiduciary markers provide reference when the AR marker is invisible to the camera. Relationship between the markers on the face and the augmented reality marker is obtained by a registration procedure by the stereo vision system and is updated on-line. A commercially available Android based tablet PC equipped with a 320×240 front-facing camera was used for implementation. The system is able to provide a live view of the patient overlaid by the solid models of tumors or anatomical structures, as well as the missing part of the tool inside the skull.
Superheated liquid carbon dioxide jets: setting up and phenomena
NASA Astrophysics Data System (ADS)
Engelmeier, Lena; Pollak, Stefan; Peters, Franz; Weidner, Eckhard
2018-01-01
We present an experimental investigation on liquid, superheated carbon dioxide jets. Our main goal is to identify the setting up requirements for generating coherent jets because these raise expectations on applications in the cleaning and cutting industry. The study leads us through a number of phenomena, which are described, categorized and explained. The experiments are based on compressed (350 MPa) and cooled carbon dioxide, which expands through a cylindrical nozzle into the atmosphere. The nozzle provokes hydraulic flip by a sharp-edge inlet leading to separation and constriction. Upstream-temperature and pressure are varied and the jet's structure and phase state are monitored by a high-speed camera. We observe coherent, liquid jets far from equilibrium, which demands the solid or gaseous state. Therefore, these jets are superheated. Carbon dioxide jets, like water jets, below certain nozzle diameters are subject to fluid dynamic instabilities resulting in breakup. Above certain diameters flashing jet breakup appears, which is associated with nucleation.
Radiation from advanced solid rocket motor plumes
NASA Technical Reports Server (NTRS)
Farmer, Richard C.; Smith, Sheldon D.; Myruski, Brian L.
1994-01-01
The overall objective of this study was to develop an understanding of solid rocket motor (SRM) plumes in sufficient detail to accurately explain the majority of plume radiation test data. Improved flowfield and radiation analysis codes were developed to accurately and efficiently account for all the factors which effect radiation heating from rocket plumes. These codes were verified by comparing predicted plume behavior with measured NASA/MSFC ASRM test data. Upon conducting a thorough review of the current state-of-the-art of SRM plume flowfield and radiation prediction methodology and the pertinent data base, the following analyses were developed for future design use. The NOZZRAD code was developed for preliminary base heating design and Al2O3 particle optical property data evaluation using a generalized two-flux solution to the radiative transfer equation. The IDARAD code was developed for rapid evaluation of plume radiation effects using the spherical harmonics method of differential approximation to the radiative transfer equation. The FDNS CFD code with fully coupled Euler-Lagrange particle tracking was validated by comparison to predictions made with the industry standard RAMP code for SRM nozzle flowfield analysis. The FDNS code provides the ability to analyze not only rocket nozzle flow, but also axisymmetric and three-dimensional plume flowfields with state-of-the-art CFD methodology. Procedures for conducting meaningful thermo-vision camera studies were developed.
Time-resolved X-ray excited optical luminescence using an optical streak camera
NASA Astrophysics Data System (ADS)
Ward, M. J.; Regier, T. Z.; Vogt, J. M.; Gordon, R. A.; Han, W.-Q.; Sham, T. K.
2013-03-01
We report the development of a time-resolved XEOL (TR-XEOL) system that employs an optical streak camera. We have conducted TR-XEOL experiments at the Canadian Light Source (CLS) operating in single bunch mode with a 570 ns dark gap and 35 ps electron bunch pulse, and at the Advanced Photon Source (APS) operating in top-up mode with a 153 ns dark gap and 33.5 ps electron bunch pulse. To illustrate the power of this technique we measured the TR-XEOL of solid-solution nanopowders of gallium nitride - zinc oxide, and for the first time have been able to resolve near-band-gap (NBG) optical luminescence emission from these materials. Herein we will discuss the development of the streak camera TR-XEOL technique and its application to the study of these novel materials.
In-flight Video Captured by External Tank Camera System
NASA Technical Reports Server (NTRS)
2005-01-01
In this July 26, 2005 video, Earth slowly fades into the background as the STS-114 Space Shuttle Discovery climbs into space until the External Tank (ET) separates from the orbiter. An External Tank ET Camera System featuring a Sony XC-999 model camera provided never before seen footage of the launch and tank separation. The camera was installed in the ET LO2 Feedline Fairing. From this position, the camera had a 40% field of view with a 3.5 mm lens. The field of view showed some of the Bipod area, a portion of the LH2 tank and Intertank flange area, and some of the bottom of the shuttle orbiter. Contained in an electronic box, the battery pack and transmitter were mounted on top of the Solid Rocker Booster (SRB) crossbeam inside the ET. The battery pack included 20 Nickel-Metal Hydride batteries (similar to cordless phone battery packs) totaling 28 volts DC and could supply about 70 minutes of video. Located 95 degrees apart on the exterior of the Intertank opposite orbiter side, there were 2 blade S-Band antennas about 2 1/2 inches long that transmitted a 10 watt signal to the ground stations. The camera turned on approximately 10 minutes prior to launch and operated for 15 minutes following liftoff. The complete camera system weighs about 32 pounds. Marshall Space Flight Center (MSFC), Johnson Space Center (JSC), Goddard Space Flight Center (GSFC), and Kennedy Space Center (KSC) participated in the design, development, and testing of the ET camera system.
Multi-MGy Radiation Hardened Camera for Nuclear Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Girard, Sylvain; Boukenter, Aziz; Ouerdane, Youcef
There is an increasing interest in developing cameras for surveillance systems to monitor nuclear facilities or nuclear waste storages. Particularly, for today's and the next generation of nuclear facilities increasing safety requirements consecutive to Fukushima Daiichi's disaster have to be considered. For some applications, radiation tolerance needs to overcome doses in the MGy(SiO{sub 2}) range whereas the most tolerant commercial or prototypes products based on solid state image sensors withstand doses up to few kGy. The objective of this work is to present the radiation hardening strategy developed by our research groups to enhance the tolerance to ionizing radiations ofmore » the various subparts of these imaging systems by working simultaneously at the component and system design levels. Developing radiation-hardened camera implies to combine several radiation-hardening strategies. In our case, we decided not to use the simplest one, the shielding approach. This approach is efficient but limits the camera miniaturization and is not compatible with its future integration in remote-handling or robotic systems. Then, the hardening-by-component strategy appears mandatory to avoid the failure of one of the camera subparts at doses lower than the MGy. Concerning the image sensor itself, the used technology is a CMOS Image Sensor (CIS) designed by ISAE team with custom pixel designs used to mitigate the total ionizing dose (TID) effects that occur well below the MGy range in classical image sensors (e.g. Charge Coupled Devices (CCD), Charge Injection Devices (CID) and classical Active Pixel Sensors (APS)), such as the complete loss of functionality, the dark current increase and the gain drop. We'll present at the conference a comparative study between these radiation-hardened pixel radiation responses with respect to conventional ones, demonstrating the efficiency of the choices made. The targeted strategy to develop the complete radiation hard camera electronics will be exposed. Another important element of the camera is the optical system that transports the image from the scene to the image sensor. This arrangement of glass-based lenses is affected by radiations through two mechanisms: the radiation induced absorption and the radiation induced refractive index changes. The first one will limit the signal to noise ratio of the image whereas the second one will directly affect the resolution of the camera. We'll present at the conference a coupled simulation/experiment study of these effects for various commercial glasses and present vulnerability study of typical optical systems to radiations at MGy doses. The last very important part of the camera is the illumination system that can be based on various technologies of emitting devices like LED, SLED or lasers. The most promising solutions for high radiation doses will be presented at the conference. In addition to this hardening-by-component approach, the global radiation tolerance of the camera can be drastically improve by working at the system level, combining innovative approaches eg. for the optical and illumination systems. We'll present at the conference the developed approach allowing to extend the camera lifetime up to the MGy dose range. (authors)« less
9. COMPLETED ROLLING CAMERA CAR ON RAILROAD TRACK AND BRIDGE ...
9. COMPLETED ROLLING CAMERA CAR ON RAILROAD TRACK AND BRIDGE LOOKING WEST, APRIL 26, 1948. (ORIGINAL PHOTOGRAPH IN POSSESSION OF DAVE WILLIS, SAN DIEGO, CALIFORNIA.) - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
NASA Astrophysics Data System (ADS)
Servin, Manuel; Padilla, Moises; Garnica, Guillermo; Gonzalez, Adonai
2016-12-01
In this work we review and combine two techniques that have been recently published for three-dimensional (3D) fringe projection profilometry and phase unwrapping, namely: co-phased profilometry and 2-steps temporal phase-unwrapping. By combining these two methods we get a more accurate, higher signal-to-noise 3D profilometer for discontinuous industrial objects. In single-camera single-projector (standard) profilometry, the camera and the projector must form an angle between them. The phase-sensitivity of the profilometer depends on this angle, so it cannot be avoided. This angle produces regions with self-occluding shadows and glare from the solid as viewed from the camera's perspective, making impossible the demodulation of the fringe-pattern there. In other words, the phase data is undefined at those shadow regions. As published recently, this limitation can be solved by using several co-phased fringe-projectors and a single camera. These co-phased projectors are positioned at different directions towards the object, and as a consequence most shadows are compensated. In addition to this, most industrial objects are highly discontinuous, which precludes the use of spatial phase-unwrappers. One way to avoid spatial unwrapping is to decrease the phase-sensitivity to a point where the demodulated phase is bounded to one lambda, so the need for phase-unwrapping disappears. By doing this, however, the recovered non-wrapped phase contains too much harmonic distortion and noise. Using our recently proposed two-step temporal phase-unwrapping technique, the high-sensitivity phase is unwrapped using the low-frequency one as initial gross estimation. This two-step unwrapping technique solves the 3D object discontinuities while keeping the accuracy of the high-frequency profilometry data. In scientific research, new art are derived as logical and consistent result of previous efforts in the same direction. Here we present a new 3D-profilometer combining these two recently published methods: co-phased profilometry and two-steps temporal phase-unwrapping. By doing this, we obtain a new and more powerful 3D profilometry technique which overcomes the two main limitations of previous fringe-projection profilometers namely: high phase-sensitivity digitalization of discontinuous objects and solid's self-generated shadow minimization. This new 3D profilometer is demonstrated by an experiment digitizing a discontinuous 3D industrial-solid where the advantages of this new profilometer with respect to previous art are clearly shown.
Einstein, Andrew J.; Blankstein, Ron; Andrews, Howard; Fish, Mathews; Padgett, Richard; Hayes, Sean W.; Friedman, John D.; Qureshi, Mehreen; Rakotoarivelo, Harivony; Slomka, Piotr; Nakazato, Ryo; Bokhari, Sabahat; Di Carli, Marcello; Berman, Daniel S.
2015-01-01
SPECT myocardial perfusion imaging (MPI) plays a central role in coronary artery disease diagnosis; but concerns exist regarding its radiation burden. Compared to standard Anger-SPECT (A-SPECT) cameras, new high-efficiency (HE) cameras with specialized collimators and solid-state cadmium-zinc-telluride detectors offer potential to maintain image quality (IQ), while reducing administered activity and thus radiation dose to patients. No previous study has compared IQ, interpretation, total perfusion deficit (TPD), or ejection fraction (EF) in patients receiving both ultra-low-dose (ULD) imaging on a HE-SPECT camera and standard low-dose (SLD) A-SPECT imaging. Methods We compared ULD-HE-SPECT to SLD-A-SPECT imaging by dividing the rest dose in 101 patients at 3 sites scheduled to undergo clinical A-SPECT MPI using a same day rest/stress Tc-99m protocol. Patients received HE-SPECT imaging following an initial ~130 MBq (3.5mCi) dose, and SLD-A-SPECT imaging following the remainder of the planned dose. Images were scored visually by 2 blinded readers for IQ and summed rest score (SRS). TPD and EF were assessed quantitatively. Results Mean activity was 134 MBq (3.62 mCi) for ULD-HE-SPECT (effective dose 1.15 mSv) and 278 MBq (7.50 mCi, 2.39 mSv) for SLD-A-SPECT. Overall IQ was superior for ULD-HE-SPECT (p<0.0001), with twice as many studies graded excellent quality. Extracardiac activity and overall perfusion assessment were similar. Between-method correlations were high for SRS (r=0.87), TPD (r=0.91), and EF (r=0.88). Conclusion ULD-HE-SPECT rest imaging correlates highly with SLD-A-SPECT. It has improved image quality, comparable extracardiac activity, and achieves radiation dose reduction to 1 mSv for a single injection. PMID:24982439
Solid Hydrogen Experiments for Atomic Propellants: Image Analyses
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2002-01-01
This paper presents the results of detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Solid particles of hydrogen were frozen in liquid helium, and observed with a video camera. The solid hydrogen particle sizes, their agglomerates, and the total mass of hydrogen particles were estimated. Particle sizes of 1.9 to 8 mm (0.075 to 0.315 in.) were measured. The particle agglomerate sizes and areas were measured, and the total mass of solid hydrogen was computed. A total mass of from 0.22 to 7.9 grams of hydrogen was frozen. Compaction and expansion of the agglomerate implied that the particles remain independent particles, and can be separated and controlled. These experiment image analyses are one of the first steps toward visually characterizing these particles, and allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.
13. 22'X34' original vellum, VariableAngle Launcher, 'SIDEVIEW CAMERA CAR TRACK ...
13. 22'X34' original vellum, Variable-Angle Launcher, 'SIDEVIEW CAMERA CAR TRACK DETAILS' drawn at 1/4'=1'-0' (BUORD Sketch # 208078, PAPW 908). - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
10. 22'X34' original blueprint, VariableAngle Launcher, 'SIDE VIEW CAMERA CARSTEEL ...
10. 22'X34' original blueprint, Variable-Angle Launcher, 'SIDE VIEW CAMERA CAR-STEEL FRAME AND AXLES' drawn at 1/2'=1'-0'. (BOURD Sketch # 209124). - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
Development of solid tunable optics for ultra-miniature imaging systems
NASA Astrophysics Data System (ADS)
Yongchao, Zou
This thesis focuses on the optimal design, fabrication and testing of solid tunable optics and exploring their applications in miniature imaging systems. It starts with the numerical modelling of such lenses, followed by the optimum design method and alignment tolerance analysis. A miniature solid tunable lens driven by a piezo actuator is then developed. To solve the problem of limited maximum optical power and tuning range in conventional lens designs, a novel multi-element solid tunable lens is proposed and developed. Inspired by the Alvarez principle, a novel miniature solid tunable dual-focus lens, which is designed using freeform surfaces and driven by one micro-electro-mechanical-systems (MEMS) rotary actuator, is demonstrated. To explore the applications of these miniature solid tunable lenses, a miniature adjustable-focus endoscope and one compact adjustable-focus camera module are developed. The adjustable-focus capability of these two miniature imaging systems is fully proved by electrically focusing targets placed at different positions.
A curve fitting method for extrinsic camera calibration from a single image of a cylindrical object
NASA Astrophysics Data System (ADS)
Winkler, A. W.; Zagar, B. G.
2013-08-01
An important step in the process of optical steel coil quality assurance is to measure the proportions of width and radius of steel coils as well as the relative position and orientation of the camera. This work attempts to estimate these extrinsic parameters from single images by using the cylindrical coil itself as the calibration target. Therefore, an adaptive least-squares algorithm is applied to fit parametrized curves to the detected true coil outline in the acquisition. The employed model allows for strictly separating the intrinsic and the extrinsic parameters. Thus, the intrinsic camera parameters can be calibrated beforehand using available calibration software. Furthermore, a way to segment the true coil outline in the acquired images is motivated. The proposed optimization method yields highly accurate results and can be generalized even to measure other solids which cannot be characterized by the identification of simple geometric primitives.
Device for wavelength-selective imaging
Frangioni, John V.
2010-09-14
An imaging device captures both a visible light image and a diagnostic image, the diagnostic image corresponding to emissions from an imaging medium within the object. The visible light image (which may be color or grayscale) and the diagnostic image may be superimposed to display regions of diagnostic significance within a visible light image. A number of imaging media may be used according to an intended application for the imaging device, and an imaging medium may have wavelengths above, below, or within the visible light spectrum. The devices described herein may be advantageously packaged within a single integrated device or other solid state device, and/or employed in an integrated, single-camera medical imaging system, as well as many non-medical imaging systems that would benefit from simultaneous capture of visible-light wavelength images along with images at other wavelengths.
The new MSFC Solar vector magnetograph. Center director's discretionary fund
NASA Technical Reports Server (NTRS)
Hagyard, M. J.; West, E. A.; Cumings, N. P.
1984-01-01
The unique MSFC solar vector magnetograph allows measurements of all three components of the Sun's photospheric magnetic field over a wide field-of-view with spatial resolution determined by a 2.7 x 2.7 arc second pixel size. This system underwent extensive modifications to improve its sensitivity and temporal response. The modifications included replacing an SEC vidicon detector with a solid-state CCD camera; replacing the original digital logic circuitry with an electronic controller and a computer to provide complete, programmable control over the entire operation of the magnetograph; and installing a new polarimeter which consists of a single electro-optical modulator coupled with interchangeable waveplates mounted on a rotating assembly. The system is described and results of calibrations and tests are presented. Initial observations of solar magnetic fields with the new magnetograph are presented.
Portable, stand-off spectral imaging camera for detection of effluents and residues
NASA Astrophysics Data System (ADS)
Goldstein, Neil; St. Peter, Benjamin; Grot, Jonathan; Kogan, Michael; Fox, Marsha; Vujkovic-Cvijin, Pajo; Penny, Ryan; Cline, Jason
2015-06-01
A new, compact and portable spectral imaging camera, employing a MEMs-based encoded imaging approach, has been built and demonstrated for detection of hazardous contaminants including gaseous effluents and solid-liquid residues on surfaces. The camera is called the Thermal infrared Reconfigurable Analysis Camera for Effluents and Residues (TRACER). TRACER operates in the long wave infrared and has the potential to detect a wide variety of materials with characteristic spectral signatures in that region. The 30 lb. camera is tripod mounted and battery powered. A touch screen control panel provides a simple user interface for most operations. The MEMS spatial light modulator is a Texas Instruments Digital Microarray Array with custom electronics and firmware control. Simultaneous 1D-spatial and 1Dspectral dimensions are collected, with the second spatial dimension obtained by scanning the internal spectrometer slit. The sensor can be configured to collect data in several modes including full hyperspectral imagery using Hadamard multiplexing, panchromatic thermal imagery, and chemical-specific contrast imagery, switched with simple user commands. Matched filters and other analog filters can be generated internally on-the-fly and applied in hardware, substantially reducing detection time and improving SNR over HSI software processing, while reducing storage requirements. Results of preliminary instrument evaluation and measurements of flame exhaust are presented.
Emerging applications of spark plasma sintering in all solid-state lithium-ion batteries and beyond
NASA Astrophysics Data System (ADS)
Zhu, Hongzheng; Liu, Jian
2018-07-01
Solid-state batteries have received increasing attention due to their high safety aspect and high energy and power densities. However, the development of solid-state batteries is hindered by inferior solid-solid interfaces between the solid-state electrolyte and electrode, which cause high interfacial resistance, reduced Li-ion and electron transfer rate, and limited battery performance. Recently, spark plasma sintering (SPS) is emerging as a promising technique for fabricating solid-state electrolyte and electrode pellets with clean and intimate solid-solid interfaces. During the SPS process, the unique reaction mechanism through the combination of current, pressure and high heating rate allow the formation of desirable solid-solid interfaces between active material particles. Herein, this work focuses on the overview of the application of SPS for fabricating solid-state electrolyte and electrode in all solid-state Li-ion batteries, and beyond, such as solid-state Li-S and Na-ion batteries. The correlations among SPS parameters, interfacial resistance, and electrochemical properties of solid-state electrolytes and electrodes are discussed for different material systems. In the end, we point out future opportunities and challenges associated with SPS application in the hot area of solid-state batteries. It is expected that this timely review will stimulate more fundamental and applied research in the development of solid-state batteries by SPS.
Seeing Red: Discourse, Metaphor, and the Implementation of Red Light Cameras in Texas
ERIC Educational Resources Information Center
Hayden, Lance Alan
2009-01-01
This study examines the deployment of automated red light camera systems in the state of Texas from 2003 through late 2007. The deployment of new technologies in general, and surveillance infrastructures in particular, can prove controversial and challenging for the formation of public policy. Red light camera surveillance during this period in…
Progress and prospect on failure mechanisms of solid-state lithium batteries
NASA Astrophysics Data System (ADS)
Ma, Jun; Chen, Bingbing; Wang, Longlong; Cui, Guanglei
2018-07-01
By replacing traditional liquid organic electrolyte with solid-state electrolyte, the solid-state lithium batteries powerfully come back to the energy storage field due to their eminent safety and energy density. In recent years, a variety of solid-state lithium batteries based on excellent solid-state electrolytes are developed. However, the performance degradation of solid-state lithium batteries during cycling and storing is still a serious challenge for practical application. Therefore, this review summarizes the research progress of solid-state lithium batteries from the perspectives of failure phenomena and failure mechanisms. Additionally, the development of methodologies on studying the failure mechanisms of solid-state lithium batteries is also reviewed. Moreover, some perspectives on the remaining questions for understanding the failure behaviors and achieving long cycle life, high safety and high energy density solid-state lithium batteries are presented. This review will help researchers to recognize the status of solid-state lithium batteries objectively and attract much more research interest in conquering the failure issues of solid-state lithium batteries.
Low cost 3D scanning process using digital image processing
NASA Astrophysics Data System (ADS)
Aguilar, David; Romero, Carlos; Martínez, Fernando
2017-02-01
This paper shows the design and building of a low cost 3D scanner, able to digitize solid objects through contactless data acquisition, using active object reflection. 3D scanners are used in different applications such as: science, engineering, entertainment, etc; these are classified in: contact scanners and contactless ones, where the last ones are often the most used but they are expensive. This low-cost prototype is done through a vertical scanning of the object using a fixed camera and a mobile horizontal laser light, which is deformed depending on the 3-dimensional surface of the solid. Using digital image processing an analysis of the deformation detected by the camera was done; it allows determining the 3D coordinates using triangulation. The obtained information is processed by a Matlab script, which gives to the user a point cloud corresponding to each horizontal scanning done. The obtained results show an acceptable quality and significant details of digitalized objects, making this prototype (built on LEGO Mindstorms NXT kit) a versatile and cheap tool, which can be used for many applications, mainly by engineering students.
Solid oxide fuel cells fueled with reducible oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, Steven S.; Fan, Liang Shih
A direct-electrochemical-oxidation fuel cell for generating electrical energy includes a cathode provided with an electrochemical-reduction catalyst that promotes formation of oxygen ions from an oxygen-containing source at the cathode, a solid-state reduced metal, a solid-state anode provided with an electrochemical-oxidation catalyst that promotes direct electrochemical oxidation of the solid-state reduced metal in the presence of the oxygen ions to produce electrical energy, and an electrolyte disposed to transmit the oxygen ions from the cathode to the solid-state anode. A method of operating a solid oxide fuel cell includes providing a direct-electrochemical-oxidation fuel cell comprising a solid-state reduced metal, oxidizing themore » solid-state reduced metal in the presence of oxygen ions through direct-electrochemical-oxidation to obtain a solid-state reducible metal oxide, and reducing the solid-state reducible metal oxide to obtain the solid-state reduced metal.« less
Real-time depth camera tracking with geometrically stable weight algorithm
NASA Astrophysics Data System (ADS)
Fu, Xingyin; Zhu, Feng; Qi, Feng; Wang, Mingming
2017-03-01
We present an approach for real-time camera tracking with depth stream. Existing methods are prone to drift in sceneries without sufficient geometric information. First, we propose a new weight method for an iterative closest point algorithm commonly used in real-time dense mapping and tracking systems. By detecting uncertainty in pose and increasing weight of points that constrain unstable transformations, our system achieves accurate and robust trajectory estimation results. Our pipeline can be fully parallelized with GPU and incorporated into the current real-time depth camera tracking system seamlessly. Second, we compare the state-of-the-art weight algorithms and propose a weight degradation algorithm according to the measurement characteristics of a consumer depth camera. Third, we use Nvidia Kepler Shuffle instructions during warp and block reduction to improve the efficiency of our system. Results on the public TUM RGB-D database benchmark demonstrate that our camera tracking system achieves state-of-the-art results both in accuracy and efficiency.
Imagers for digital still photography
NASA Astrophysics Data System (ADS)
Bosiers, Jan; Dillen, Bart; Draijer, Cees; Manoury, Erik-Jan; Meessen, Louis; Peters, Inge
2006-04-01
This paper gives an overview of the requirements for, and current state-of-the-art of, CCD and CMOS imagers for use in digital still photography. Four market segments will be reviewed: mobile imaging, consumer "point-and-shoot cameras", consumer digital SLR cameras and high-end professional camera systems. The paper will also present some challenges and innovations with respect to packaging, testing, and system integration.
Extrinsic Calibration of Camera Networks Based on Pedestrians
Guan, Junzhi; Deboeverie, Francis; Slembrouck, Maarten; Van Haerenborgh, Dirk; Van Cauwelaert, Dimitri; Veelaert, Peter; Philips, Wilfried
2016-01-01
In this paper, we propose a novel extrinsic calibration method for camera networks by analyzing tracks of pedestrians. First of all, we extract the center lines of walking persons by detecting their heads and feet in the camera images. We propose an easy and accurate method to estimate the 3D positions of the head and feet w.r.t. a local camera coordinate system from these center lines. We also propose a RANSAC-based orthogonal Procrustes approach to compute relative extrinsic parameters connecting the coordinate systems of cameras in a pairwise fashion. Finally, we refine the extrinsic calibration matrices using a method that minimizes the reprojection error. While existing state-of-the-art calibration methods explore epipolar geometry and use image positions directly, the proposed method first computes 3D positions per camera and then fuses the data. This results in simpler computations and a more flexible and accurate calibration method. Another advantage of our method is that it can also handle the case of persons walking along straight lines, which cannot be handled by most of the existing state-of-the-art calibration methods since all head and feet positions are co-planar. This situation often happens in real life. PMID:27171080
Aerial views of the STS-2 launch from Pad 39A at Kennedy Space Center
1981-11-12
S81-39440 (12 Nov. 1981) --- The tiny image of the space shuttle Columbia, its two solid rocket boosters and an external fuel tank feeding Columbia?s engines was captured on camera by one who can truly relate to the thoughts of the astronauts aboard ? John W. Young who was aboard the same spacecraft for its successful debut in April of this year. Young was flying NASA?s shuttle training aircraft (STA) when he used a hand-held camera to record this scene on 70mm film. Astronauts Joe H. Engle, STS-2 commander, and Richard H. Truly, pilot, were aboard Columbia. Photo credit: NASA
Time-resolved x-ray spectra from laser-generated high-density plasmas
NASA Astrophysics Data System (ADS)
Andiel, U.; Eidmann, Klaus; Witte, Klaus-Juergen
2001-04-01
We focused frequency doubled ultra short laser pulses on solid C, F, Na and Al targets, K-shell emission was systematically investigated by time resolved spectroscopy using a sub-ps streak camera. A large number of laser shots can be accumulated when triggering the camera with an Auston switch system at very high temporal precision. The system provides an outstanding time resolution of 1.7ps accumulating thousands of laser shots. The time duration of the He-(alpha) K-shell resonance lines was observed in the range of (2-4)ps and shows a decrease with the atomic number. The experimental results are well reproduced by hydro code simulations post processed with an atomic kinetics code.
LAUNCH (SOLID ROCKET BOOSTER [SRB]) - STS-1
1981-04-12
S81-30505 (12 April 1981) --- Separation of space shuttle Columbia?s external tank, photographed by motion picture cameras in the umbilical bays, occurred following the shutdown of the vehicle?s three main engines. Columbia?s cameras were able to record the bottom side of the tank as the orbiter headed toward its Earth-orbital mission with astronauts John W. Young and Robert L. Crippen aboard and the fuel tank fell toward Earth, passing through the atmosphere rapidly. Liquid oxygen and liquid hydrogen umbilical connectors can be seen at the bottom of the tank. For orientation, the photo should be held with the rounded end at bottom of the frame. Photo credit: NASA
Solid Hydrogen Experiments for Atomic Propellants: Particle Formation Energy and Imaging Analyses
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2002-01-01
This paper presents particle formation energy balances and detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium during the Phase II testing in 2001. Solid particles of hydrogen were frozen in liquid helium and observed with a video camera. The solid hydrogen particle sizes and the total mass of hydrogen particles were estimated. The particle formation efficiency is also estimated. Particle sizes from the Phase I testing in 1999 and the Phase II testing in 2001 were similar. Though the 2001 testing created similar particles sizes, many new particle formation phenomena were observed. These experiment image analyses are one of the first steps toward visually characterizing these particles and it allows designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.
NASA Astrophysics Data System (ADS)
Townsend, D. W.
1988-06-01
In 1982 the first prototype high density avalanche chamber (HIDAC) positron camera became operational in the Division of Nuclear Medicine of Geneva University Hospital. The camera consisted of dual 20 cm × 20 cm HIDAC detectors mounted on a rotating gantry. In 1984, these detectors were replaced by 30 cm × 30 cm detectors with improved performance and reliability. Since then, the larger detectors have undergone clinical evaluation. This article discusses certain aspects of the evaluation program and the conclusions that can be drawn from the results. The potential of the HIDAC camera for quantitative positron emission tomography (PET) is critically examined, and its performance compared with a state-of-the-art, commercial ring camera. Guidelines for the design of a future HIDAC camera are suggested.
High Speed Digital Camera Technology Review
NASA Technical Reports Server (NTRS)
Clements, Sandra D.
2009-01-01
A High Speed Digital Camera Technology Review (HSD Review) is being conducted to evaluate the state-of-the-shelf in this rapidly progressing industry. Five HSD cameras supplied by four camera manufacturers participated in a Field Test during the Space Shuttle Discovery STS-128 launch. Each camera was also subjected to Bench Tests in the ASRC Imaging Development Laboratory. Evaluation of the data from the Field and Bench Tests is underway. Representatives from the imaging communities at NASA / KSC and the Optical Systems Group are participating as reviewers. A High Speed Digital Video Camera Draft Specification was updated to address Shuttle engineering imagery requirements based on findings from this HSD Review. This draft specification will serve as the template for a High Speed Digital Video Camera Specification to be developed for the wider OSG imaging community under OSG Task OS-33.
RxPATROL: a Web-based tool for combating pharmacy theft.
Smith, Meredith Y; Graham, J Aaron; Haddox, J David; Steffey, Amy
2009-01-01
To report the incidence of pharmacy-related burglaries and robberies and characteristics of pharmacies where such crimes have occurred using recent data from Rx Pattern Analysis Tracking Robberies & Other Losses (RxPATROL), a national Web-based information clearinghouse on pharmacy-related theft of prescription medications and over-the-counter products. Descriptive, nonexperimental study. United States between 2005 and 2006. Not applicable. Not applicable. Number of pharmacy theft reports received; incident type, date, and location; point of entry; and pharmacy security features. Between 2005 and 2006, 202 pharmacy burglary and 299 pharmacy robbery reports from 45 different states were filed with RxPATROL. More than 70% of pharmacies reporting such crimes lacked a security camera. Among those reporting a burglary, 60% lacked dead bolt locks, a solid exterior door, a motion detector device, or a safe or vault for storage of controlled substances. Burglars most often obtained access to the pharmacy via the front door. RxPATROL is a Web-based tool that can assist pharmacies and law enforcement in collaborating more effectively to combat and prevent pharmacy-related crimes.
STS-71, Space Shuttle Mission Report
NASA Technical Reports Server (NTRS)
Frike, Robert W., Jr.
1995-01-01
The STS-71 Space Shuttle Program Mission Report summarizes the Payload activities and provides detailed data on the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance. STS-71 is the 100th United States manned space flight, the sixty-ninth Space Shuttle flight, the forty-fourth flight since the return-to-flight, the fourteenth flight of the OV-104 Orbiter vehicle Atlantis, and the first joint United States (U.S.)-Russian docking mission since 1975. In addition to the OV-104 Orbiter vehicle, the flight vehicle consisted of an ET that was designated ET-70; three SSMEs that were designated 2028, 2034, and 2032 in positions 1, 2, and 3, respectively; and two SRBs that were designated Bl-072. The RSRMs that were an integral part of the SRBs were designated 360L045A for the left SRB and 360W045B for the right SRB. The STS-71 mission was planned as a 1 0-day plus 1-day-extension mission plus 2 additional days for contingency operations and weather avoidance. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and perform on-orbit joint U.S.-Russian life sciences investigations, logistical resupply of the Mir Space Station, return of the United States astronaut flying on the Mir, the replacement of the Mir-18 crew with the two-cosmonaut Mir-19 crew, and the return of the Mir-18 crew to Earth. The secondary objectives were to perform the requirements of the IMAX Camera and the Shuttle Amateur Radio experiment-2 (SAREX-2).
Solid state electro-optic color filter and iris
NASA Technical Reports Server (NTRS)
1974-01-01
The electro-optic properties of lanthanum-modified lead zirconate titanate (PLZT) ferroelectric ceramic material are evaluated when utilized as a variable density and/or spectral filter in conjunction with a television scanning system. Emphasis was placed on the development of techniques and procedures for processing the PLZT disks and for applying efficient electrode structures. A number of samples were processed using different combinations of cleaning, electrode material, and deposition process. Best overall performance resulted from the direct evaporation of gold over chrome electrodes. A ruggedized mounting holder assembly was designed, fabricated, and tested. The assembly provides electrical contacts, high voltage protection, and support for the fragile PLZT disk, and permits mounting and optical alignment of the associated polarizers. Operational measurements of a PLZT sample mounted in the holder assembly were performed in conjunction with a television camera and the associated drive circuits. The data verified achievement of the elimination of the observed white-line effect.
NASA Technical Reports Server (NTRS)
1982-01-01
A project to develop an effective mobility aid for blind pedestrians which acquires consecutive images of the scenes before a moving pedestrian, which locates and identifies the pedestrian's path and potential obstacles in the path, which presents path and obstacle information to the pedestrian, and which operates in real-time is discussed. The mobility aid has three principal components: an image acquisition system, an image interpretation system, and an information presentation system. The image acquisition system consists of a miniature, solid-state TV camera which transforms the scene before the blind pedestrian into an image which can be received by the image interpretation system. The image interpretation system is implemented on a microprocessor which has been programmed to execute real-time feature extraction and scene analysis algorithms for locating and identifying the pedestrian's path and potential obstacles. Identity and location information is presented to the pedestrian by means of tactile coding and machine-generated speech.
Lightweight helmet-mounted eye movement measurement system
NASA Technical Reports Server (NTRS)
Barnes, J. A.
1978-01-01
The helmet-mounted eye movement measuring system, weighs 1,530 grams; the weight of the present aviators' helmet in standard form with the visor is 1,545 grams. The optical head is standard NAC Eye-Mark. This optical head was mounted on a magnesium yoke which in turn was attached to a slide cam mounted on the flight helmet. The slide cam allows one to adjust the eye-to-optics system distance quite easily and to secure it so that the system will remain in calibration. The design of the yoke and slide cam is such that the subject can, in an emergency, move the optical head forward and upward to the stowed and locked position atop the helmet. This feature was necessary for flight safety. The television camera that is used in the system is a solid state General Electric TN-2000 with a charged induced device imager used as the vidicon.
Cardio-oncology: the Nuclear Option.
Alvarez, Jorge A; Russell, Raymond R
2017-04-01
Cardio-oncology focuses increased effort to decrease cancer treatment-related cardiotoxicity while continuing to improve outcomes. We sought to synthesize the latest in nuclear cardiology as it pertains to the assessment of left ventricular function in preventative guidelines and comparison to other modalities, novel molecular markers of pre-clinical cardiotoxicity, and its role in cardiac amyloid diagnosis. Planar ERNA (equilibrium radionuclide angiocardiography) provides a reliable and proven means of monitoring and preventing anthracycline cardiotoxicity, and SPECT ERNA using solid-state gamma cameras may provide reproducible assessments of left ventricular function with reduced radiation exposure. While certain chemotherapeutics have vascular side effects, the use of stress perfusion imaging has still not been adequately studied for routine use. Similarly, markers of apoptosis, inflammation, and sympathetic nerve dysfunction are promising, but are still not ready for uniform usage. SPECT tracers can assist in nonbiopsy diagnosis of cardiac amyloid. Nuclear cardiology is a significant contributor to the multimodality approach to cardio-oncology.
Coupled fluid and solid evolution in analogue volcanic vents
NASA Astrophysics Data System (ADS)
Solovitz, Stephen A.; Ogden, Darcy E.; Kim, Dave (Dae-Wook); Kim, Sang Young
2014-07-01
Volcanic eruptions emit rock particulates and gases at high speed and pressure, which change the shape of the surrounding rock. Simplified analytical solutions, field studies, and numerical models suggest that this process plays an important role in the behavior and hazards associated with explosive volcanic eruptions. Here we present results from a newly developed laboratory-scale apparatus designed to study this coupled process. The experiments used compressed air jets expanding into the laboratory through fabricated rock analogue material, which evolves through time during the experiment. The compressed air was injected at approximately 2.5 times atmospheric pressure. We fabricated rock analogues from sand and steel powder samples with a three-dimensional printing process. We studied the fluid development using phase-locked particle image velocimetry, while simultaneously observing the solid development via a video camera. We found that the fluid response was much more rapid than that of the solid, permitting a quasi-steady approximation. In most cases, the solid vent flared out rapidly, increasing its diameter by 20 to 100%. After the initial expansion, the vent and flow field achieved a near-steady condition for a long duration. The new expanded vent shapes permitted lower vent exit pressures and larger jet radii. In one experiment, after an initial vent shape development and establishment of steady flow behavior, rock failure occurred a second time, resulting in a new exit diameter and new steady state. This second failure was not precipitated by changes in the nozzle flow condition, and it radically changed the downstream flow dynamics. This experiment suggests that the brittle nature of volcanic host rock enables sudden vent expansion in the middle of an eruption without requiring a change in the conduit flow.
Vandenbroucke, A.; Innes, D.; Lau, F. W. Y.; Hsu, D. F. C.; Reynolds, P. D.; Levin, Craig S.
2015-01-01
Purpose: Silicon photodetectors are of significant interest for use in positron emission tomography (PET) systems due to their compact size, insensitivity to magnetic fields, and high quantum efficiency. However, one of their main disadvantages is fluctuations in temperature cause strong shifts in gain of the devices. PET system designs with high photodetector density suffer both increased thermal density and constrained options for thermally regulating the devices. This paper proposes a method of thermally regulating densely packed silicon photodetectors in the context of a 1 mm3 resolution, high-sensitivity PET camera dedicated to breast imaging. Methods: The PET camera under construction consists of 2304 units, each containing two 8 × 8 arrays of 1 mm3 LYSO crystals coupled to two position sensitive avalanche photodiodes (PSAPD). A subsection of the proposed camera with 512 PSAPDs has been constructed. The proposed thermal regulation design uses water-cooled heat sinks, thermoelectric elements, and thermistors to measure and regulate the temperature of the PSAPDs in a novel manner. Active cooling elements, placed at the edge of the detector stack due to limited access, are controlled based on collective leakage current and temperature measurements in order to keep all the PSAPDs at a consistent temperature. This thermal regulation design is characterized for the temperature profile across the camera and for the time required for cooling changes to propagate across the camera. These properties guide the implementation of a software-based, cascaded proportional-integral-derivative control loop that controls the current through the Peltier elements by monitoring thermistor temperature and leakage current. The stability of leakage current, temperature within the system using this control loop is tested over a period of 14 h. The energy resolution is then measured over a period of 8.66 h. Finally, the consistency of PSAPD gain between independent operations of the camera over 10 days is tested. Results: The PET camera maintains a temperature of 18.00 ± 0.05 °C over the course of 12 h while the ambient temperature varied 0.61 °C, from 22.83 to 23.44 °C. The 511 keV photopeak energy resolution over a period of 8.66 h is measured to be 11.3% FWHM with a maximum photopeak fluctuation of 4 keV. Between measurements of PSAPD gain separated by at least 2 day, the maximum photopeak shift was 6 keV. Conclusions: The proposed thermal regulation scheme for tightly packed silicon photodetectors provides for stable operation of the constructed subsection of a PET camera over long durations of time. The energy resolution of the system is not degraded despite shifts in ambient temperature and photodetector heat generation. The thermal regulation scheme also provides a consistent operating environment between separate runs of the camera over different days. Inter-run consistency allows for reuse of system calibration parameters from study to study, reducing the time required to calibrate the system and hence to obtain a reconstructed image. PMID:25563270
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freese, D. L.; Vandenbroucke, A.; Innes, D.
2015-01-15
Purpose: Silicon photodetectors are of significant interest for use in positron emission tomography (PET) systems due to their compact size, insensitivity to magnetic fields, and high quantum efficiency. However, one of their main disadvantages is fluctuations in temperature cause strong shifts in gain of the devices. PET system designs with high photodetector density suffer both increased thermal density and constrained options for thermally regulating the devices. This paper proposes a method of thermally regulating densely packed silicon photodetectors in the context of a 1 mm{sup 3} resolution, high-sensitivity PET camera dedicated to breast imaging. Methods: The PET camera under constructionmore » consists of 2304 units, each containing two 8 × 8 arrays of 1 mm{sup 3} LYSO crystals coupled to two position sensitive avalanche photodiodes (PSAPD). A subsection of the proposed camera with 512 PSAPDs has been constructed. The proposed thermal regulation design uses water-cooled heat sinks, thermoelectric elements, and thermistors to measure and regulate the temperature of the PSAPDs in a novel manner. Active cooling elements, placed at the edge of the detector stack due to limited access, are controlled based on collective leakage current and temperature measurements in order to keep all the PSAPDs at a consistent temperature. This thermal regulation design is characterized for the temperature profile across the camera and for the time required for cooling changes to propagate across the camera. These properties guide the implementation of a software-based, cascaded proportional-integral-derivative control loop that controls the current through the Peltier elements by monitoring thermistor temperature and leakage current. The stability of leakage current, temperature within the system using this control loop is tested over a period of 14 h. The energy resolution is then measured over a period of 8.66 h. Finally, the consistency of PSAPD gain between independent operations of the camera over 10 days is tested. Results: The PET camera maintains a temperature of 18.00 ± 0.05 °C over the course of 12 h while the ambient temperature varied 0.61 °C, from 22.83 to 23.44 °C. The 511 keV photopeak energy resolution over a period of 8.66 h is measured to be 11.3% FWHM with a maximum photopeak fluctuation of 4 keV. Between measurements of PSAPD gain separated by at least 2 day, the maximum photopeak shift was 6 keV. Conclusions: The proposed thermal regulation scheme for tightly packed silicon photodetectors provides for stable operation of the constructed subsection of a PET camera over long durations of time. The energy resolution of the system is not degraded despite shifts in ambient temperature and photodetector heat generation. The thermal regulation scheme also provides a consistent operating environment between separate runs of the camera over different days. Inter-run consistency allows for reuse of system calibration parameters from study to study, reducing the time required to calibrate the system and hence to obtain a reconstructed image.« less
Coordinated garbage collection for raid array of solid state disks
Dillow, David A; Ki, Youngjae; Oral, Hakki S; Shipman, Galen M; Wang, Feiyi
2014-04-29
An optimized redundant array of solid state devices may include an array of one or more optimized solid-state devices and a controller coupled to the solid-state devices for managing the solid-state devices. The controller may be configured to globally coordinate the garbage collection activities of each of said optimized solid-state devices, for instance, to minimize the degraded performance time and increase the optimal performance time of the entire array of devices.
NASA Astrophysics Data System (ADS)
Ri, Shien; Tsuda, Hiroshi; Yoshida, Takeshi; Umebayashi, Takashi; Sato, Akiyoshi; Sato, Eiichi
2015-07-01
Optical methods providing full-field deformation data have potentially enormous interest for mechanical engineers. In this study, an in-plane and out-of-plane displacement measurement method based on a dual-camera imaging system is proposed. The in-plane and out-of-plane displacements are determined simultaneously using two measured in-plane displacement data observed from two digital cameras at different view angles. The fundamental measurement principle and experimental results of accuracy confirmation are presented. In addition, we applied this method to the displacement measurement in a static loading and bending test of a solid rocket motor case (CFRP material; 2.2 m diameter and 2.3 m long) for an up-to-date Epsilon rocket developed by JAXA. The effectiveness and measurement accuracy is confirmed by comparing with conventional displacement sensor. This method could be useful to diagnose the reliability of large-scale space structures in the rocket development.
Mounted Video Camera Captures Launch of STS-112, Shuttle Orbiter Atlantis
NASA Technical Reports Server (NTRS)
2002-01-01
A color video camera mounted to the top of the External Tank (ET) provided this spectacular never-before-seen view of the STS-112 mission as the Space Shuttle Orbiter Atlantis lifted off in the afternoon of October 7, 2002, The camera provided views as the the orbiter began its ascent until it reached near-orbital speed, about 56 miles above the Earth, including a view of the front and belly of the orbiter, a portion of the Solid Rocket Booster, and ET. The video was downlinked during flight to several NASA data-receiving sites, offering the STS-112 team an opportunity to monitor the shuttle's performance from a new angle. Atlantis carried the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts. Landing on October 18, 2002, the Orbiter Atlantis ended its 11-day mission.
Mounted Video Camera Captures Launch of STS-112, Shuttle Orbiter Atlantis
NASA Technical Reports Server (NTRS)
2002-01-01
A color video camera mounted to the top of the External Tank (ET) provided this spectacular never-before-seen view of the STS-112 mission as the Space Shuttle Orbiter Atlantis lifted off in the afternoon of October 7, 2002. The camera provided views as the orbiter began its ascent until it reached near-orbital speed, about 56 miles above the Earth, including a view of the front and belly of the orbiter, a portion of the Solid Rocket Booster, and ET. The video was downlinked during flight to several NASA data-receiving sites, offering the STS-112 team an opportunity to monitor the shuttle's performance from a new angle. Atlantis carried the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts. Landing on October 18, 2002, the Orbiter Atlantis ended its 11-day mission.
NASA Astrophysics Data System (ADS)
Göhler, Benjamin; Lutzmann, Peter
2017-10-01
Primarily, a laser gated-viewing (GV) system provides range-gated 2D images without any range resolution within the range gate. By combining two GV images with slightly different gate positions, 3D information within a part of the range gate can be obtained. The depth resolution is higher (super-resolution) than the minimal gate shift step size in a tomographic sequence of the scene. For a state-of-the-art system with a typical frame rate of 20 Hz, the time difference between the two required GV images is 50 ms which may be too long in a dynamic scenario with moving objects. Therefore, we have applied this approach to the reset and signal level images of a new short-wave infrared (SWIR) GV camera whose read-out integrated circuit supports correlated double sampling (CDS) actually intended for the reduction of kTC noise (reset noise). These images are extracted from only one single laser pulse with a marginal time difference in between. The SWIR GV camera consists of 640 x 512 avalanche photodiodes based on mercury cadmium telluride with a pixel pitch of 15 μm. A Q-switched, flash lamp pumped solid-state laser with 1.57 μm wavelength (OPO), 52 mJ pulse energy after beam shaping, 7 ns pulse length and 20 Hz pulse repetition frequency is used for flash illumination. In this paper, the experimental set-up is described and the operating principle of CDS is explained. The method of deriving super-resolution depth information from a GV system by using CDS is introduced and optimized. Further, the range accuracy is estimated from measured image data.
2003-05-15
KENNEDY SPACE CENTER, FLA. - The Delta II rocket on Launch Complex 17-A, Cape Canaveral Air Force Station, is having solid rocket boosters (SRBs) installed that will help launch Mars Exploration Rover 2 (MER-2) on June 5. In the center are three more solid rocket boosters that will be added to the Delta, which will carry nine in all. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch as MER-A. MER-1 (MER-B) will launch June 25.
Dense depth maps from correspondences derived from perceived motion
NASA Astrophysics Data System (ADS)
Kirby, Richard; Whitaker, Ross
2017-01-01
Many computer vision applications require finding corresponding points between images and using the corresponding points to estimate disparity. Today's correspondence finding algorithms primarily use image features or pixel intensities common between image pairs. Some 3-D computer vision applications, however, do not produce the desired results using correspondences derived from image features or pixel intensities. Two examples are the multimodal camera rig and the center region of a coaxial camera rig. We present an image correspondence finding technique that aligns pairs of image sequences using optical flow fields. The optical flow fields provide information about the structure and motion of the scene, which are not available in still images but can be used in image alignment. We apply the technique to a dual focal length stereo camera rig consisting of a visible light-infrared camera pair and to a coaxial camera rig. We test our method on real image sequences and compare our results with the state-of-the-art multimodal and structure from motion (SfM) algorithms. Our method produces more accurate depth and scene velocity reconstruction estimates than the state-of-the-art multimodal and SfM algorithms.
Compact streak camera for the shock study of solids by using the high-pressure gas gun
NASA Astrophysics Data System (ADS)
Nagayama, Kunihito; Mori, Yasuhito
1993-01-01
For the precise observation of high-speed impact phenomena, a compact high-speed streak camera recording system has been developed. The system consists of a high-pressure gas gun, a streak camera, and a long-pulse dye laser. The gas gun installed in our laboratory has a muzzle of 40 mm in diameter, and a launch tube of 2 m long. Projectile velocity is measured by the laser beam cut method. The gun is capable of accelerating a 27 g projectile up to 500 m/s, if helium gas is used as a driver. The system has been designed on the principal idea that the precise optical measurement methods developed in other areas of research can be applied to the gun study. The streak camera is 300 mm in diameter, with a rectangular rotating mirror which is driven by an air turbine spindle. The attainable streak velocity is 3 mm/microsecond(s) . The size of the camera is rather small aiming at the portability and economy. Therefore, the streak velocity is relatively slower than the fast cameras, but it is possible to use low-sensitivity but high-resolution film as a recording medium. We have also constructed a pulsed dye laser of 25 - 30 microsecond(s) in duration. The laser can be used as a light source of observation. The advantage for the use of the laser will be multi-fold, i.e., good directivity, almost single frequency, and so on. The feasibility of the system has been demonstrated by performing several experiments.
Safety evaluation of red-light cameras
DOT National Transportation Integrated Search
2005-04-01
The objective of this final study was to determine the effectiveness of red-light-camera (RLC) systems in reducing crashes. The study used empirical Bayes before-and-after research using data from seven jurisdictions across the United States at 132 t...
Rapid orthophoto development system.
DOT National Transportation Integrated Search
2013-06-01
The DMC system procured in the project represented state-of-the-art, large-format digital aerial camera systems at the start of : project. DMC is based on the frame camera model, and to achieve large ground coverage with high spatial resolution, the ...
Cinematic camera emulation using two-dimensional color transforms
NASA Astrophysics Data System (ADS)
McElvain, Jon S.; Gish, Walter
2015-02-01
For cinematic and episodic productions, on-set look management is an important component of the creative process, and involves iterative adjustments of the set, actors, lighting and camera configuration. Instead of using the professional motion capture device to establish a particular look, the use of a smaller form factor DSLR is considered for this purpose due to its increased agility. Because the spectral response characteristics will be different between the two camera systems, a camera emulation transform is needed to approximate the behavior of the destination camera. Recently, twodimensional transforms have been shown to provide high-accuracy conversion of raw camera signals to a defined colorimetric state. In this study, the same formalism is used for camera emulation, whereby a Canon 5D Mark III DSLR is used to approximate the behavior a Red Epic cinematic camera. The spectral response characteristics for both cameras were measured and used to build 2D as well as 3x3 matrix emulation transforms. When tested on multispectral image databases, the 2D emulation transforms outperform their matrix counterparts, particularly for images containing highly chromatic content.
A review of lithium and non-lithium based solid state batteries
NASA Astrophysics Data System (ADS)
Kim, Joo Gon; Son, Byungrak; Mukherjee, Santanu; Schuppert, Nicholas; Bates, Alex; Kwon, Osung; Choi, Moon Jong; Chung, Hyun Yeol; Park, Sam
2015-05-01
Conventional lithium-ion liquid-electrolyte batteries are widely used in portable electronic equipment such as laptop computers, cell phones, and electric vehicles; however, they have several drawbacks, including expensive sealing agents and inherent hazards of fire and leakages. All solid state batteries utilize solid state electrolytes to overcome the safety issues of liquid electrolytes. Drawbacks for all-solid state lithium-ion batteries include high resistance at ambient temperatures and design intricacies. This paper is a comprehensive review of all aspects of solid state batteries: their design, the materials used, and a detailed literature review of various important advances made in research. The paper exhaustively studies lithium based solid state batteries, as they are the most prevalent, but also considers non-lithium based systems. Non-lithium based solid state batteries are attaining widespread commercial applications, as are also lithium based polymeric solid state electrolytes. Tabular representations and schematic diagrams are provided to underscore the unique characteristics of solid state batteries and their capacity to occupy a niche in the alternative energy sector.
An Example-Based Super-Resolution Algorithm for Selfie Images
William, Jino Hans; Venkateswaran, N.; Narayanan, Srinath; Ramachandran, Sandeep
2016-01-01
A selfie is typically a self-portrait captured using the front camera of a smartphone. Most state-of-the-art smartphones are equipped with a high-resolution (HR) rear camera and a low-resolution (LR) front camera. As selfies are captured by front camera with limited pixel resolution, the fine details in it are explicitly missed. This paper aims to improve the resolution of selfies by exploiting the fine details in HR images captured by rear camera using an example-based super-resolution (SR) algorithm. HR images captured by rear camera carry significant fine details and are used as an exemplar to train an optimal matrix-value regression (MVR) operator. The MVR operator serves as an image-pair priori which learns the correspondence between the LR-HR patch-pairs and is effectively used to super-resolve LR selfie images. The proposed MVR algorithm avoids vectorization of image patch-pairs and preserves image-level information during both learning and recovering process. The proposed algorithm is evaluated for its efficiency and effectiveness both qualitatively and quantitatively with other state-of-the-art SR algorithms. The results validate that the proposed algorithm is efficient as it requires less than 3 seconds to super-resolve LR selfie and is effective as it preserves sharp details without introducing any counterfeit fine details. PMID:27064500
OOM - OBJECT ORIENTATION MANIPULATOR, VERSION 6.1
NASA Technical Reports Server (NTRS)
Goza, S. P.
1994-01-01
The Object Orientation Manipulator (OOM) is an application program for creating, rendering, and recording three-dimensional computer-generated still and animated images. This is done using geometrically defined 3D models, cameras, and light sources, referred to collectively as animation elements. OOM does not provide the tools necessary to construct 3D models; instead, it imports binary format model files generated by the Solid Surface Modeler (SSM). Model files stored in other formats must be converted to the SSM binary format before they can be used in OOM. SSM is available as MSC-21914 or as part of the SSM/OOM bundle, COS-10047. Among OOM's features are collision detection (with visual and audio feedback), the capability to define and manipulate hierarchical relationships between animation elements, stereographic display, and ray-traced rendering. OOM uses Euler angle transformations for calculating the results of translation and rotation operations. OOM provides an interactive environment for the manipulation and animation of models, cameras, and light sources. Models are the basic entity upon which OOM operates and are therefore considered the primary animation elements. Cameras and light sources are considered secondary animation elements. A camera, in OOM, is simply a location within the three-space environment from which the contents of the environment are observed. OOM supports the creation and full animation of cameras. Light sources can be defined, positioned and linked to models, but they cannot be animated independently. OOM can simultaneously accommodate as many animation elements as the host computer's memory permits. Once the required animation elements are present, the user may position them, orient them, and define any initial relationships between them. Once the initial relationships are defined, the user can display individual still views for rendering and output, or define motion for the animation elements by using the Interp Animation Editor. The program provides the capability to save still images, animated sequences of frames, and the information that describes the initialization process for an OOM session. OOM provides the same rendering and output options for both still and animated images. OOM is equipped with a robust model manipulation environment featuring a full screen viewing window, a menu-oriented user interface, and an interpolative Animation Editor. It provides three display modes: solid, wire frame, and simple, that allow the user to trade off visual authenticity for update speed. In the solid mode, each model is drawn based on the shading characteristics assigned to it when it was built. All of the shading characteristics supported by SSM are recognized and properly rendered in this mode. If increasing model complexity impedes the operation of OOM in this mode, then wireframe and simple modes are available. These provide substantially faster screen updates than solid mode. The creation and placement of cameras and light sources is under complete control of the user. One light source is provided in the default element set. It is modeled as a direct light source providing a type of lighting analogous to that provided by the Sun. OOM can accommodate as many light sources as the memory of the host computer permits. Animation is created in OOM using a technique called key frame interpolation. First, various program functions are used to load models, load or create light sources and cameras, and specify initial positions for each element. When these steps are completed, the Interp function is used to create an animation sequence for each element to be animated. An animation sequence consists of a user-defined number of frames (screen images) with some subset of those being defined as key frames. The motion of the element between key frames is interpolated automatically by the software. Key frames thus act as transition points in the motion of an element. This saves the user from having to individually define element data at each frame of a sequence. Animation frames and still images can be output to videotape recorders, film recorders, color printers, and disk files. OOM is written in C-language for implementation on SGI IRIS 4D series workstations running the IRIX operating system. A minimum of 8Mb of RAM is recommended for this program. The standard distribution medium for OOM is a .25 inch streaming magnetic IRIX tape cartridge in UNIX tar format. OOM is also offered as a bundle with a related program, SSM (Solid Surface Modeler). Please see the abstract for SSM/OOM (COS-10047) for information about the bundled package. OOM was released in 1993.
Development of high precision and cryogenic lens holders
NASA Astrophysics Data System (ADS)
Reutlinger, A.; Boesz, Anton; Mottaghibonab, A.; Eckert, P.; Dubowy, M.; Gebler, H.; Grupp, F.; Geis, N.; Bode, A.; Katterloher, R.; Bender, R.
2017-11-01
The optical system of the Near Infrared Spectrometer and Photometer (NISP) of the EUCLID mission consists mainly of a filter and grism wheel and 4 aspherical lenses with large diameters up to 170 mm. The single lenses require a high precision positioning at the operational temperature of 150 K. An additional design driver represents the CaF2 material of a lens, which is very sensitive wrt brittleness. The technical maturity of the combination of single features such as CaF2, large diameter (and mass), high precision and cryogenic conditions is considered as low. Therefore, a dedicated pre-development program has been launched to design and develop a first prototype of lens holder and to demonstrate the functional performance at representative operational conditions. The 4 lenses are divided into 3x lenses for the Camera Lens Assembly (CaLA) and 1x lens for the Corrector Lens Assembly (CoLA). Each lens is glue mounted onto solid state springs, part of an adaption ring. The adaption ring shall provide protection against vibration loads, high accuracy positioning, as well as quasi load free mounting of the lens under operational conditions. To reduce thermomechanical loads on the lens, the CTE of the adaption ring is adapted to that of the lens. The glue between lens and solid state spring has to withstand high tension loads during vibration. At the operational temperature the deviating CTE between glue and lens/adaption ring introduces shear loads into the glue interface, which are critical, in particular for the fragile CaF2 lens material. For the case of NISP the shear loads are controlled with the glue pad diameter and the glue thickness. In the context of the development activity many technology aspects such as various solid state spring designs, glue selection and glue handling have been investigated. A parametric structural model was developed to derive the specific design feature of each ring, such as spring force, number of springs, eigenfrequency, etc. This paper presents the design of the adaption ring in conjunction with test results from functional verification. These results are presented on behalf of the EUCLID consortium.
Contact Angle Measurements Using a Simplified Experimental Setup
ERIC Educational Resources Information Center
Lamour, Guillaume; Hamraoui, Ahmed; Buvailo, Andrii; Xing, Yangjun; Keuleyan, Sean; Prakash, Vivek; Eftekhari-Bafrooei, Ali; Borguet, Eric
2010-01-01
A basic and affordable experimental apparatus is described that measures the static contact angle of a liquid drop in contact with a solid. The image of the drop is made with a simple digital camera by taking a picture that is magnified by an optical lens. The profile of the drop is then processed with ImageJ free software. The ImageJ contact…
Ceramic Electrolyte Membrane Technology: Enabling Revolutionary Electrochemical Energy Storage
2015-10-05
ion batteries . Solid-state Li- ion batteries could significantly improve safety and eliminate the need for complex...advancing ceramic electrolyte technology for use in solid-state Li- ion batteries . Solid-state Li- ion batteries could significantly improve safety and...technology for use in solid-state Li- ion batteries and high specific energy Li-S and Li- air batteries . Solid-state Li- ion batteries could
Thermal imagers: from ancient analog video output to state-of-the-art video streaming
NASA Astrophysics Data System (ADS)
Haan, Hubertus; Feuchter, Timo; Münzberg, Mario; Fritze, Jörg; Schlemmer, Harry
2013-06-01
The video output of thermal imagers stayed constant over almost two decades. When the famous Common Modules were employed a thermal image at first was presented to the observer in the eye piece only. In the early 1990s TV cameras were attached and the standard output was CCIR. In the civil camera market output standards changed to digital formats a decade ago with digital video streaming being nowadays state-of-the-art. The reasons why the output technique in the thermal world stayed unchanged over such a long time are: the very conservative view of the military community, long planning and turn-around times of programs and a slower growth of pixel number of TIs in comparison to consumer cameras. With megapixel detectors the CCIR output format is not sufficient any longer. The paper discusses the state-of-the-art compression and streaming solutions for TIs.
Packaging of solid state devices
Glidden, Steven C.; Sanders, Howard D.
2006-01-03
A package for one or more solid state devices in a single module that allows for operation at high voltage, high current, or both high voltage and high current. Low thermal resistance between the solid state devices and an exterior of the package and matched coefficient of thermal expansion between the solid state devices and the materials used in packaging enables high power operation. The solid state devices are soldered between two layers of ceramic with metal traces that interconnect the devices and external contacts. This approach provides a simple method for assembling and encapsulating high power solid state devices.
NASA Technical Reports Server (NTRS)
Felsentreger, T. L.; Marsh, J. G.; Agreen, R. W.
1976-01-01
Perturbations in the inclination of the Geos 1 and Geos 2 satellite orbits have been analyzed for the solid earth and ocean tide contributions. Precision reduced camera and Tranet Doppler observations spanning periods of over 600 days for each satellite were used to derive mean orbital elements. Perturbations due to the earth's gravity field, solar radiation pressure, and atmospheric drag were modeled, and the resulting inclination residuals were analyzed for tidal effects. The amplitudes of the observed total tidal effects were about 1.2 arc sec (36 m) in the inclination of Geos 1 and 4.5 arc sec (135 m) for Geos 2. The solid earth tides were then modeled by using the Love number 0.30. The resulting inclination residuals were then analyzed for ocean tide spherical harmonic parameters.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2005-01-01
This report presents particle formation observations and detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Hydrogen was frozen into particles in liquid helium, and observed with a video camera. The solid hydrogen particle sizes and the total mass of hydrogen particles were estimated. These newly analyzed data are from the test series held on February 28, 2001. Particle sizes from previous testing in 1999 and the testing in 2001 were similar. Though the 2001 testing created similar particles sizes, many new particle formation phenomena were observed: microparticles and delayed particle formation. These experiment image analyses are some of the first steps toward visually characterizing these particles, and they allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.
Hoang, Toan Minh; Hong, Hyung Gil; Vokhidov, Husan; Park, Kang Ryoung
2016-08-18
With the increasing need for road lane detection used in lane departure warning systems and autonomous vehicles, many studies have been conducted to turn road lane detection into a virtual assistant to improve driving safety and reduce car accidents. Most of the previous research approaches detect the central line of a road lane and not the accurate left and right boundaries of the lane. In addition, they do not discriminate between dashed and solid lanes when detecting the road lanes. However, this discrimination is necessary for the safety of autonomous vehicles and the safety of vehicles driven by human drivers. To overcome these problems, we propose a method for road lane detection that distinguishes between dashed and solid lanes. Experimental results with the Caltech open database showed that our method outperforms conventional methods.
Hoang, Toan Minh; Hong, Hyung Gil; Vokhidov, Husan; Park, Kang Ryoung
2016-01-01
With the increasing need for road lane detection used in lane departure warning systems and autonomous vehicles, many studies have been conducted to turn road lane detection into a virtual assistant to improve driving safety and reduce car accidents. Most of the previous research approaches detect the central line of a road lane and not the accurate left and right boundaries of the lane. In addition, they do not discriminate between dashed and solid lanes when detecting the road lanes. However, this discrimination is necessary for the safety of autonomous vehicles and the safety of vehicles driven by human drivers. To overcome these problems, we propose a method for road lane detection that distinguishes between dashed and solid lanes. Experimental results with the Caltech open database showed that our method outperforms conventional methods. PMID:27548176
Effect of synthetic prostaglandin E1 analog on gastric emptying of meals in man.
Moore, J G; Alazraki, N; Clay, G D
1986-01-01
Forty-five subjects with healed duodenal ulcer were administered either a placebo or a low-dose or high-dose regimen of misoprostol, a synthetic PGE1 analog, in a double-blind, random, parallel-group design to assess the effect of this prostaglandin compound on the gastric emptying of liquid-solid meals. A dual-radionuclide technique to measure liquid- and solid-phase gastric emptying rates of physiological meals by external gamma camera imaging was used. All subjects had a pretreatment control (baseline) evaluation, followed one week later by a treatment-influenced emptying study. The results demonstrated that misoprostol did not significantly alter gastric emptying of either liquids or solids; however, these results cannot be extrapolated to other prostaglandin compounds because of the diverse and sometimes paradoxical effects of different prostaglandins on gastric motility.
APS 6BM-B Large Volume High Pressure Beamline: A Workhorse for Rock and Mineral Physics
NASA Astrophysics Data System (ADS)
Chen, H.; Whitaker, M. L.; Baldwin, K. J.; Huebsch, W. R.; Vaughan, M. T.; Weidner, D. J.
2017-12-01
With the inheritance of decades of technical innovations at the NSLS X17B2 Beamline, APS 6BM-B Beamline was established in 2015 and is a dedicated beamline for synchrotron-based large volume high pressure research in earth sciences, especially rock and mineral physics. Currently a 250-ton hydraulic press equipped with a D-DIA module is installed and a Rotational Drickamer Apparatus from Yale University is hosted every cycle, covering a pressure range from crust to lower mantle. 6BM-B operates in white beam mode with an effective energy range of 20-100 keV. Energy dispersive X-ray diffraction data is collected using a 10-element solid state Ge array detector arranged in a circular geometry to allow for the real time assessment of stress. Direct radiographic imaging using Prosillica CCD camera and scintillating YAG crystals yields sample strain and strain rate. In addition to applications in phase transitions, equation of states measurements, sound velocity measurements, this setup is ideal for studies of steady state and dynamic deformation process. In this presentation, technical features and strengths of 6BM-B will be discussed. Most recent progress and science highlights of our user community will be showcased.
Camera Layout Design for the Upper Stage Thrust Cone
NASA Technical Reports Server (NTRS)
Wooten, Tevin; Fowler, Bart
2010-01-01
Engineers in the Integrated Design and Analysis Division (EV30) use a variety of different tools to aid in the design and analysis of the Ares I vehicle. One primary tool in use is Pro-Engineer. Pro-Engineer is a computer-aided design (CAD) software that allows designers to create computer generated structural models of vehicle structures. For the Upper State thrust cone, Pro-Engineer was used to assist in the design of a layout for two camera housings. These cameras observe the separation between the first and second stage of the Ares I vehicle. For the Ares I-X, one standard speed camera was used. The Ares I design calls for two separate housings, three cameras, and a lighting system. With previous design concepts and verification strategies in mind, a new layout for the two camera design concept was developed with members of the EV32 team. With the new design, Pro-Engineer was used to draw the layout to observe how the two camera housings fit with the thrust cone assembly. Future analysis of the camera housing design will verify the stability and clearance of the camera with other hardware present on the thrust cone.
NASA Astrophysics Data System (ADS)
Bo, Nyan Bo; Deboeverie, Francis; Veelaert, Peter; Philips, Wilfried
2017-09-01
Occlusion is one of the most difficult challenges in the area of visual tracking. We propose an occlusion handling framework to improve the performance of local tracking in a smart camera view in a multicamera network. We formulate an extensible energy function to quantify the quality of a camera's observation of a particular target by taking into account both person-person and object-person occlusion. Using this energy function, a smart camera assesses the quality of observations over all targets being tracked. When it cannot adequately observe of a target, a smart camera estimates the quality of observation of the target from view points of other assisting cameras. If a camera with better observation of the target is found, the tracking task of the target is carried out with the assistance of that camera. In our framework, only positions of persons being tracked are exchanged between smart cameras. Thus, communication bandwidth requirement is very low. Performance evaluation of our method on challenging video sequences with frequent and severe occlusions shows that the accuracy of a baseline tracker is considerably improved. We also report the performance comparison to the state-of-the-art trackers in which our method outperforms.
Port Needs Study (Vessel Traffic Services Benefits). Volume 2: Appendices. Part 2
1991-08-01
their pilots near Execution Rocks. Pilots for Long Island Sound are available from the Constitution State Pilots Association (Hartford, CT) , Northeast...conditions of weather and for dangerous cargoes, and may become a mandatory system in the near future. Recreational craft are asked to monitor VHF-FM...cameras have been installed atop the tower at Yerba Buena Island ( near VTC). One of the cameras is a Low Light Level (LLTV) type. These cameras
User guide for the USGS aerial camera Report of Calibration.
Tayman, W.P.
1984-01-01
Calibration and testing of aerial mapping cameras includes the measurement of optical constants and the check for proper functioning of a number of complicated mechanical and electrical parts. For this purpose the US Geological Survey performs an operational type photographic calibration. This paper is not strictly a scientific paper but rather a 'user guide' to the USGS Report of Calibration of an aerial mapping camera for compliance with both Federal and State mapping specifications. -Author
Solid state recorders for airborne reconnaissance
NASA Astrophysics Data System (ADS)
Klang, Mark R.
2003-08-01
Solid state recorders have become the recorder of choice for meeting airborne ruggedized requirements for reconnaissance and flight test. The cost of solid state recorders have decreased over the past few years that they are now less expense than the traditional high speed tape recorders. CALCULEX, Inc manufactures solid state recorders called MONSSTR (Modular Non-volatile Solid State Recorder). MONSSTR is being used on many different platforms such as F/A-22, Global Hawk, F-14, F-15, F-16, U-2, RF-4, and Tornado. This paper will discuss the advantages of using solid state recorders to meet the airborne reconnaissance requirement and the ability to record instrumentation data. The CALCULEX recorder has the ability to record sensor data and flight test data in the same chassis. This is an important feature because it eliminates additional boxes on the aircraft. The major advantages to using a solid state recorder include; reliability, small size, light weight, and power. Solid state recorders also have a larger storage capacity and higher bandwidth capability than other recording devices.
NASA Astrophysics Data System (ADS)
Allis, Damian G.; Hakey, Patrick M.; Korter, Timothy M.
2008-10-01
The terahertz (THz, far-infrared) spectrum of 3,4-methylene-dioxymethamphetamine hydrochloride (Ecstasy) is simulated using solid-state density functional theory. While a previously reported isolated-molecule calculation is noteworthy for the precision of its solid-state THz reproduction, the solid-state calculation predicts that the isolated-molecule modes account for only half of the spectral features in the THz region, with the remaining structure arising from lattice vibrations that cannot be predicted without solid-state molecular modeling. The molecular origins of the internal mode contributions to the solid-state THz spectrum, as well as the proper consideration of the protonation state of the molecule, are also considered.
Advanced High-Definition Video Cameras
NASA Technical Reports Server (NTRS)
Glenn, William
2007-01-01
A product line of high-definition color video cameras, now under development, offers a superior combination of desirable characteristics, including high frame rates, high resolutions, low power consumption, and compactness. Several of the cameras feature a 3,840 2,160-pixel format with progressive scanning at 30 frames per second. The power consumption of one of these cameras is about 25 W. The size of the camera, excluding the lens assembly, is 2 by 5 by 7 in. (about 5.1 by 12.7 by 17.8 cm). The aforementioned desirable characteristics are attained at relatively low cost, largely by utilizing digital processing in advanced field-programmable gate arrays (FPGAs) to perform all of the many functions (for example, color balance and contrast adjustments) of a professional color video camera. The processing is programmed in VHDL so that application-specific integrated circuits (ASICs) can be fabricated directly from the program. ["VHDL" signifies VHSIC Hardware Description Language C, a computing language used by the United States Department of Defense for describing, designing, and simulating very-high-speed integrated circuits (VHSICs).] The image-sensor and FPGA clock frequencies in these cameras have generally been much higher than those used in video cameras designed and manufactured elsewhere. Frequently, the outputs of these cameras are converted to other video-camera formats by use of pre- and post-filters.
Solid state lighting devices and methods with rotary cooling structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P.
Solid state lighting devices and methods for heat dissipation with rotary cooling structures are described. An example solid state lighting device includes a solid state light source, a rotating heat transfer structure in thermal contact with the solid state light source, and a mounting assembly having a stationary portion. The mounting assembly may be rotatably coupled to the heat transfer structure such that at least a portion of the mounting assembly remains stationary while the heat transfer structure is rotating. Examples of methods for dissipating heat from electrical devices, such as solid state lighting sources are also described. Heat dissipationmore » methods may include providing electrical power to a solid state light source mounted to and in thermal contact with a heat transfer structure, and rotating the heat transfer structure through a surrounding medium.« less
19 CFR 210.39 - In camera treatment of confidential information.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 3 2010-04-01 2010-04-01 false In camera treatment of confidential information. 210.39 Section 210.39 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE ADJUDICATION AND ENFORCEMENT Prehearing Conferences and Hearings § 210...
Isochromatic photoelasticity fringe patterns of PMMA in various shapes and stress applications
NASA Astrophysics Data System (ADS)
Manjit, Y.; Limpichaipanit, A.; Ngamjarurojana, A.
2018-03-01
The research focuses on isochromatic photoelastic fringe patterns in solid materials by using reflection mode in dark field polariscope. The optical setup consists of light source, polarizers, quarter wave plates, 577 nm optical pass filter, compensator and digital camera system. The fringe patterns were produced on the sample and fractional / integer number of fringe order was observed using Babinet compensator and digital camera system. The samples were circular and rectangular shape of PMMA coated with silver spray and compressed by hydraulic system at the top and the bottom. The results of the isochromatic fringe pattern were analyzed in horizontal and vertical positions. It was found that force and the number of isochromatic photoelastic fringe order depended on shape of sample, which reflects stress distribution behavior.
Adaptive optics at the Subaru telescope: current capabilities and development
NASA Astrophysics Data System (ADS)
Guyon, Olivier; Hayano, Yutaka; Tamura, Motohide; Kudo, Tomoyuki; Oya, Shin; Minowa, Yosuke; Lai, Olivier; Jovanovic, Nemanja; Takato, Naruhisa; Kasdin, Jeremy; Groff, Tyler; Hayashi, Masahiko; Arimoto, Nobuo; Takami, Hideki; Bradley, Colin; Sugai, Hajime; Perrin, Guy; Tuthill, Peter; Mazin, Ben
2014-08-01
Current AO observations rely heavily on the AO188 instrument, a 188-elements system that can operate in natural or laser guide star (LGS) mode, and delivers diffraction-limited images in near-IR. In its LGS mode, laser light is transported from the solid state laser to the launch telescope by a single mode fiber. AO188 can feed several instruments: the infrared camera and spectrograph (IRCS), a high contrast imaging instrument (HiCIAO) or an optical integral field spectrograph (Kyoto-3DII). Adaptive optics development in support of exoplanet observations has been and continues to be very active. The Subaru Coronagraphic Extreme-AO (SCExAO) system, which combines extreme-AO correction with advanced coronagraphy, is in the commissioning phase, and will greatly increase Subaru Telescope's ability to image and study exoplanets. SCExAO currently feeds light to HiCIAO, and will soon be combined with the CHARIS integral field spectrograph and the fast frame MKIDs exoplanet camera, which have both been specifically designed for high contrast imaging. SCExAO also feeds two visible-light single pupil interferometers: VAMPIRES and FIRST. In parallel to these direct imaging activities, a near-IR high precision spectrograph (IRD) is under development for observing exoplanets with the radial velocity technique. Wide-field adaptive optics techniques are also being pursued. The RAVEN multi-object adaptive optics instrument was installed on Subaru telescope in early 2014. Subaru Telescope is also planning wide field imaging with ground-layer AO with the ULTIMATE-Subaru project.
Automated assembly of fast-axis collimation (FAC) lenses for diode laser bar modules
NASA Astrophysics Data System (ADS)
Miesner, Jörn; Timmermann, Andre; Meinschien, Jens; Neumann, Bernhard; Wright, Steve; Tekin, Tolga; Schröder, Henning; Westphalen, Thomas; Frischkorn, Felix
2009-02-01
Laser diodes and diode laser bars are key components in high power semiconductor lasers and solid state laser systems. During manufacture, the assembly of the fast axis collimation (FAC) lens is a crucial step. The goal of our activities is to design an automated assembly system for high volume production. In this paper the results of an intermediate milestone will be reported: a demonstration system was designed, realized and tested to prove the feasibility of all of the system components and process features. The demonstration system consists of a high precision handling system, metrology for process feedback, a powerful digital image processing system and tooling for glue dispensing, UV curing and laser operation. The system components as well as their interaction with each other were tested in an experimental system in order to glean design knowledge for the fully automated assembly system. The adjustment of the FAC lens is performed by a series of predefined steps monitored by two cameras concurrently imaging the far field and the near field intensity distributions. Feedback from these cameras processed by a powerful and efficient image processing algorithm control a five axis precision motion system to optimize the fast axis collimation of the laser beam. Automated cementing of the FAC to the diode bar completes the process. The presentation will show the system concept, the algorithm of the adjustment as well as experimental results. A critical discussion of the results will close the talk.
Laser-induced incandescence measurements in a fired diesel engine at 3 kHz
NASA Astrophysics Data System (ADS)
Boxx, I. G.; Heinold, O.; Geigle, K. P.
2015-01-01
Laser-induced incandescence (LII) was performed at 3 kHz in an optically accessible cylinder of a fired diesel engine using a commercially available diode-pumped solid-state laser and an intensified CMOS camera. The resulting images, acquired every 3° of crank angle, enabled the spatiotemporal tracking of soot structures during the expansion/exhaust stroke of the engine cycle. The image sequences demonstrate that soot tends to form in thin sheets that propagate and interact with the in-cylinder flow. These sheets tend to align parallel to the central axis of the cylinder and are frequently wrapped into conical spirals by aerodynamic swirl. Most of the soot is observed well away from the cylinder walls. Quantitative soot measurements were beyond the scope of this study but the results demonstrate the practical utility of using kHz-rate LII to acquire ensemble-averaged statistical data with high crank angle resolution over a complete engine cycle. Based on semi-quantitative measures of soot distribution, it was possible to identify soot dynamics related to incomplete charge exchange. This study shows that long-duration, multi-kHz acquisition rate LII measurements are viable in a fired diesel engine with currently available laser and camera technology, albeit only in the expansion and exhaust phase of the cycle at present. Furthermore, such measurements yield useful insight into soot dynamics and therefore constitute an important new tool for the development and optimization of diesel engine technology.
LED-based endoscopic light source for spectral imaging
NASA Astrophysics Data System (ADS)
Browning, Craig M.; Mayes, Samuel; Favreau, Peter; Rich, Thomas C.; Leavesley, Silas J.
2016-03-01
Colorectal cancer is the United States 3rd leading cancer in death rates.1 The current screening for colorectal cancer is an endoscopic procedure using white light endoscopy (WLE). There are multiple new methods testing to replace WLE, for example narrow band imaging and autofluorescence imaging.2 However, these methods do not meet the need for a higher specificity or sensitivity. The goal for this project is to modify the presently used endoscope light source to house 16 narrow wavelength LEDs for spectral imaging in real time while increasing sensitivity and specificity. The process to do such was to take an Olympus CLK-4 light source, replace the light and electronics with 16 LEDs and new circuitry. This allows control of the power and intensity of the LEDs. This required a larger enclosure to house a bracket system for the solid light guide (lightpipe), three new circuit boards, a power source and National Instruments hardware/software for computer control. The results were a successfully designed retrofit with all the new features. The LED testing resulted in the ability to control each wavelength's intensity. The measured intensity over the voltage range will provide the information needed to couple the camera for imaging. Overall the project was successful; the modifications to the light source added the controllable LEDs. This brings the research one step closer to the main goal of spectral imaging for early detection of colorectal cancer. Future goals will be to connect the camera and test the imaging process.
STS-61 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1994-01-01
The STS-61 Space Shuttle Program Mission Report summarizes the Hubble Space Telescope (HST) servicing mission as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-ninth flight of the Space Shuttle Program and fifth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-60; three SSME's which were designated as serial numbers 2019, 2033, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-063. The RSRM's that were installed in each SRB were designated as 360L023A (lightweight) for the left SRB, and 360L023B (lightweight) for the right SRB. This STS-61 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-61 mission was to perform the first on-orbit servicing of the Hubble Space Telescope. The servicing tasks included the installation of new solar arrays, replacement of the Wide Field/Planetary Camera I (WF/PC I) with WF/PC II, replacement of the High Speed Photometer (HSP) with the Corrective Optics Space Telescope Axial Replacement (COSTAR), replacement of rate sensing units (RSU's) and electronic control units (ECU's), installation of new magnetic sensing systems and fuse plugs, and the repair of the Goddard High Resolution Spectrometer (GHRS). Secondary objectives were to perform the requirements of the IMAX Cargo Bay Camera (ICBC), the IMAX Camera, and the Air Force Maui Optical Site (AMOS) Calibration Test.
STS-31 crew activity on the middeck of the Earth-orbiting Discovery, OV-103
1990-04-29
STS031-05-002 (24-29 April 1990) --- A 35mm camera with a "fish eye" lens captured this high angle image on Discovery's middeck. Astronaut Kathryn D. Sullivan works with the IMAX camera in foreground, while Astronaut Steven A. Hawley consults a checklist in corner. An Arriflex motion picture camera records student ion arc experiment in apparatus mounted on stowage locker. The experiment was the project of Gregory S. Peterson, currently a student at Utah State University.
Impact of the Freedom of Information Act on the National Intelligence Agencies.
1982-04-16
previously placed on the open record. This has led some courts to refuse to even consider in camera evidence until more is stated on the open record. Sworn...read an in camera affidavit and awarded summary judgement to the plaintiff because the government’s proof was not, therefore, in evidence. 5 Courts...which perceive a dilemma in these in camera procedures have been giving serious consideration to solving it by permitting plaintiffs or their attorneys
Architecture and method for a burst buffer using flash technology
Tzelnic, Percy; Faibish, Sorin; Gupta, Uday K.; Bent, John; Grider, Gary Alan; Chen, Hsing-bung
2016-03-15
A parallel supercomputing cluster includes compute nodes interconnected in a mesh of data links for executing an MPI job, and solid-state storage nodes each linked to a respective group of the compute nodes for receiving checkpoint data from the respective compute nodes, and magnetic disk storage linked to each of the solid-state storage nodes for asynchronous migration of the checkpoint data from the solid-state storage nodes to the magnetic disk storage. Each solid-state storage node presents a file system interface to the MPI job, and multiple MPI processes of the MPI job write the checkpoint data to a shared file in the solid-state storage in a strided fashion, and the solid-state storage node asynchronously migrates the checkpoint data from the shared file in the solid-state storage to the magnetic disk storage and writes the checkpoint data to the magnetic disk storage in a sequential fashion.
NASA Technical Reports Server (NTRS)
2006-01-01
10 May 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a summertime view of the south polar residual cap of Mars. In this image, mesas composed largely of solid carbon dioxide are separated from one another by irregularly-shaped depressions. The variation in brightness across this scene is a function of several factors including, but not limited to, varying proportions of dust and solid carbon dioxide, undulating topography, and differences in the roughness of the slopes versus the flat surfaces. Location near: 86.7oS, 343.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SummerNASA Technical Reports Server (NTRS)
Johnson, J. D.; Braddock, W. F.; Praharaj, S. C.
1975-01-01
A force test of a scale model of the Space Shuttle Solid Rocket Booster was conducted in a trisonic wind tunnel. The model was tested with such protuberances as a camera capsule, electrical tunnel, attach rings, aft separation rockets, ET attachment structure, and hold-down struts. The model was also tested with the nozzle at gimbal angles of 0, 2.5, and 5 degrees. The influence of a unique heat shield configuration was also determined. Some photographs of model installations in the tunnel were taken and are included. Schlieren photography was utilized for several angles of attack.
Instantaneous phase-shifting Fizeau interferometry with high-speed pixelated phase-mask camera
NASA Astrophysics Data System (ADS)
Yatagai, Toyohiko; Jackin, Boaz Jessie; Ono, Akira; Kiyohara, Kosuke; Noguchi, Masato; Yoshii, Minoru; Kiyohara, Motosuke; Niwa, Hayato; Ikuo, Kazuyuki; Onuma, Takashi
2015-08-01
A Fizeou interferometer with instantaneous phase-shifting ability using a Wollaston prism is designed. to measure dynamic phase change of objects, a high-speed video camera of 10-5s of shutter speed is used with a pixelated phase-mask of 1024 × 1024 elements. The light source used is a laser of wavelength 532 nm which is split into orthogonal polarization states by passing through a Wollaston prism. By adjusting the tilt of the reference surface it is possible to make the reference and object beam with orthogonal polarizations states to coincide and interfere. Then the pixelated phase-mask camera calculate the phase changes and hence the optical path length difference. Vibration of speakers and turbulence of air flow were successfully measured in 7,000 frames/sec.
What Is the Emissivity of Active Basaltic Lava Flows?
NASA Astrophysics Data System (ADS)
Lee, R.; Ramsey, M. S.
2016-12-01
The emissivity of molten lava surfaces has been a topic of study for some time because it directly affects the cooling efficiency of the flow, thermo-rheological models of flow evolution, as well as the accurate interpretation of the bulk composition. Despite past studies, it remains unclear whether the emissivity of molten lava truly is different than that of the cooled surface. Measuring emissivity on flows is complicated with errors arising due to changes in the surface glass content and vesicularity, as well as mixing of multiple temperatures, as the lava cools. We therefore see determination of correct surface emissivity and its change with time to be of great importance to anyone working with thermal infrared (TIR) data or modeling of lava flows. A series of high-resolution melting experiments on basalts has been conducted using a novel micro-furnace and TIR spectrometer, producing high-resolution accurate emissivity measurements at known temperatures transitioning from molten to solid state. These results are compared to data from active analog and natural lava surfaces acquired from a newly-developed field-based multispectral camera system, which is capable of generating lower-resolution emissivity spectra. We present the results of these comparative studies conducted at the Syracuse University Lava Project facility in order to test and calibrate the camera system under controlled conditions. The facility conducts large-scale pours of degassed Palisades Sill basalt, an acceptable analog for natural basalt. In addition, several samples of the analog lava were re-melted in the micro-furnace/spectrometer setup to provide a direct comparison of higher and lower resolution IR spectral data. These results, together with data from the Kilauea lava lake, have allowed us to calibrate and fully test the efficacy of this camera system in a field environment for future deployments as well as provide a means of constraining TIR data from satellite observations.
ERIC Educational Resources Information Center
Floren, Leola
After the Lindbergh kidnapping trial in 1935, the American Bar Association sought to eliminate electronic equipment from courtroom proceedings. Eventually, all but two states adopted regulations applying that ban to some extent, and a 1965 Supreme Court decision encouraged the banning of television cameras at trials as well. Currently, some states…
Making Connections with Digital Data
ERIC Educational Resources Information Center
Leonard, William; Bassett, Rick; Clinger, Alicia; Edmondson, Elizabeth; Horton, Robert
2004-01-01
State-of-the-art digital cameras open up enormous possibilities in the science classroom, especially when used as data collectors. Because most high school students are not fully formal thinkers, the digital camera can provide a much richer learning experience than traditional observation. Data taken through digital images can make the…
Person re-identification over camera networks using multi-task distance metric learning.
Ma, Lianyang; Yang, Xiaokang; Tao, Dacheng
2014-08-01
Person reidentification in a camera network is a valuable yet challenging problem to solve. Existing methods learn a common Mahalanobis distance metric by using the data collected from different cameras and then exploit the learned metric for identifying people in the images. However, the cameras in a camera network have different settings and the recorded images are seriously affected by variability in illumination conditions, camera viewing angles, and background clutter. Using a common metric to conduct person reidentification tasks on different camera pairs overlooks the differences in camera settings; however, it is very time-consuming to label people manually in images from surveillance videos. For example, in most existing person reidentification data sets, only one image of a person is collected from each of only two cameras; therefore, directly learning a unique Mahalanobis distance metric for each camera pair is susceptible to over-fitting by using insufficiently labeled data. In this paper, we reformulate person reidentification in a camera network as a multitask distance metric learning problem. The proposed method designs multiple Mahalanobis distance metrics to cope with the complicated conditions that exist in typical camera networks. We address the fact that these Mahalanobis distance metrics are different but related, and learned by adding joint regularization to alleviate over-fitting. Furthermore, by extending, we present a novel multitask maximally collapsing metric learning (MtMCML) model for person reidentification in a camera network. Experimental results demonstrate that formulating person reidentification over camera networks as multitask distance metric learning problem can improve performance, and our proposed MtMCML works substantially better than other current state-of-the-art person reidentification methods.
Vision-based control for flight relative to dynamic environments
NASA Astrophysics Data System (ADS)
Causey, Ryan Scott
The concept of autonomous systems has been considered an enabling technology for a diverse group of military and civilian applications. The current direction for autonomous systems is increased capabilities through more advanced systems that are useful for missions that require autonomous avoidance, navigation, tracking, and docking. To facilitate this level of mission capability, passive sensors, such as cameras, and complex software are added to the vehicle. By incorporating an on-board camera, visual information can be processed to interpret the surroundings. This information allows decision making with increased situational awareness without the cost of a sensor signature, which is critical in military applications. The concepts presented in this dissertation facilitate the issues inherent to vision-based state estimation of moving objects for a monocular camera configuration. The process consists of several stages involving image processing such as detection, estimation, and modeling. The detection algorithm segments the motion field through a least-squares approach and classifies motions not obeying the dominant trend as independently moving objects. An approach to state estimation of moving targets is derived using a homography approach. The algorithm requires knowledge of the camera motion, a reference motion, and additional feature point geometry for both the target and reference objects. The target state estimates are then observed over time to model the dynamics using a probabilistic technique. The effects of uncertainty on state estimation due to camera calibration are considered through a bounded deterministic approach. The system framework focuses on an aircraft platform of which the system dynamics are derived to relate vehicle states to image plane quantities. Control designs using standard guidance and navigation schemes are then applied to the tracking and homing problems using the derived state estimation. Four simulations are implemented in MATLAB that build on the image concepts present in this dissertation. The first two simulations deal with feature point computations and the effects of uncertainty. The third simulation demonstrates the open-loop estimation of a target ground vehicle in pursuit whereas the four implements a homing control design for the Autonomous Aerial Refueling (AAR) using target estimates as feedback.
Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries
Kerman, Kian; Luntz, Alan; Viswanathan, Venkatasubramanian; ...
2017-06-09
Solid state electrolyte systems boasting Li+ conductivity of >10 mS cm -1 at room temperature have opened the potential for developing a solid state battery with power and energy densities that are competitive with conventional liquid electrolyte systems. The primary focus of this review is twofold. First, differences in Li penetration resistance in solid state systems are discussed, and kinetic limitations of the solid state interface are highlighted. Second, technological challenges associated with processing such systems in relevant form factors are elucidated, and architectures needed for cell level devices in the context of product development are reviewed. Specific research vectorsmore » that provide high value to advancing solid state batteries are outlined and discussed.« less
Effect of solid-meal caloric content on gastric emptying kinetics of solids and liquids.
Urbain, J L; Siegel, J A; Mortelmans, L; van Cutsem, E; van den Maegdenbergh, V; de Roo, M
1989-08-01
In this study, we have evaluated the effect of the caloric content of a physiological test meal on the gastric emptying kinetics of solids and liquids. 22 healthy male volunteers were studied in two groups matched for age. After an overnight fast, each volunteer underwent the same test procedure; in the first group (G I), 10 volunteers received a meal consisting of bread, 111In-DTPA water and 1 scrambled egg labeled with 99mTc-labelled sulphur colloid; in the second group (G II) 12 volunteers were given the same meal but with 2 labeled eggs in order to increase the caloric content of the solid phase meal. Simultaneous anterior and posterior images were recorded using a dual-headed gamma camera. Solid and liquid geometric mean data were analyzed to determine the lag phase, the emptying rate and the half-emptying time for both solids and liquids. Solid and liquid gastric half-emptying times were significantly prolonged in G II compared to G I volunteers. For the solid phased, the delay was accounted for by a longer lag phase and a decrease in the equilibrium emptying rate. The emptying rate of the liquid phase was significantly decreased in G II compared to G I. Within each group, no statistically significant difference was observed between solid and liquid emptying rates. We conclude that the caloric content of the solid portion of a meal not only alters the emptying of the solid phase but also affects the emptying of the liquid component of the meal.
Practical vision based degraded text recognition system
NASA Astrophysics Data System (ADS)
Mohammad, Khader; Agaian, Sos; Saleh, Hani
2011-02-01
Rapid growth and progress in the medical, industrial, security and technology fields means more and more consideration for the use of camera based optical character recognition (OCR) Applying OCR to scanned documents is quite mature, and there are many commercial and research products available on this topic. These products achieve acceptable recognition accuracy and reasonable processing times especially with trained software, and constrained text characteristics. Even though the application space for OCR is huge, it is quite challenging to design a single system that is capable of performing automatic OCR for text embedded in an image irrespective of the application. Challenges for OCR systems include; images are taken under natural real world conditions, Surface curvature, text orientation, font, size, lighting conditions, and noise. These and many other conditions make it extremely difficult to achieve reasonable character recognition. Performance for conventional OCR systems drops dramatically as the degradation level of the text image quality increases. In this paper, a new recognition method is proposed to recognize solid or dotted line degraded characters. The degraded text string is localized and segmented using a new algorithm. The new method was implemented and tested using a development framework system that is capable of performing OCR on camera captured images. The framework allows parameter tuning of the image-processing algorithm based on a training set of camera-captured text images. Novel methods were used for enhancement, text localization and the segmentation algorithm which enables building a custom system that is capable of performing automatic OCR which can be used for different applications. The developed framework system includes: new image enhancement, filtering, and segmentation techniques which enabled higher recognition accuracies, faster processing time, and lower energy consumption, compared with the best state of the art published techniques. The system successfully produced impressive OCR accuracies (90% -to- 93%) using customized systems generated by our development framework in two industrial OCR applications: water bottle label text recognition and concrete slab plate text recognition. The system was also trained for the Arabic language alphabet, and demonstrated extremely high recognition accuracy (99%) for Arabic license name plate text recognition with processing times of 10 seconds. The accuracy and run times of the system were compared to conventional and many states of art methods, the proposed system shows excellent results.
Solid state division progress report, period ending February 29, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-09-01
Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials.
Versatile microsecond movie camera
NASA Astrophysics Data System (ADS)
Dreyfus, R. W.
1980-03-01
A laboratory-type movie camera is described which satisfies many requirements in the range 1 microsec to 1 sec. The camera consists of a He-Ne laser and compatible state-of-the-art components; the primary components are an acoustooptic modulator, an electromechanical beam deflector, and a video tape system. The present camera is distinct in its operation in that submicrosecond laser flashes freeze the image motion while still allowing the simplicity of electromechanical image deflection in the millisecond range. The gating and pulse delay circuits of an oscilloscope synchronize the modulator and scanner relative to the subject being photographed. The optical table construction and electronic control enhance the camera's versatility and adaptability. The instant replay video tape recording allows for easy synchronization and immediate viewing of the results. Economy is achieved by using off-the-shelf components, optical table construction, and short assembly time.
Photographic Analysis Technique for Assessing External Tank Foam Loss Events
NASA Technical Reports Server (NTRS)
Rieckhoff, T. J.; Covan, M.; OFarrell, J. M.
2001-01-01
A video camera and recorder were placed inside the solid rocket booster forward skirt in order to view foam loss events over an area on the external tank (ET) intertank surface. In this Technical Memorandum, a method of processing video images to allow rapid detection of permanent changes indicative of foam loss events on the ET surface was defined and applied to accurately count, categorize, and locate such events.
NASA Technical Reports Server (NTRS)
2008-01-01
We can determine distances between objects and points of interest in 3-D space to a useful degree of accuracy from a set of camera images by using multiple camera views and reference targets in the camera s field of view (FOV). The core of the software processing is based on the previously developed foreign-object debris vision trajectory software (see KSC Research and Technology 2004 Annual Report, pp. 2 5). The current version of this photogrammetry software includes the ability to calculate distances between any specified point pairs, the ability to process any number of reference targets and any number of camera images, user-friendly editing features, including zoom in/out, translate, and load/unload, routines to help mark reference points with a Find function, while comparing them with the reference point database file, and a comprehensive output report in HTML format. In this system, scene reference targets are replaced by a photogrammetry cube whose exterior surface contains multiple predetermined precision 2-D targets. Precise measurement of the cube s 2-D targets during the fabrication phase eliminates the need for measuring 3-D coordinates of reference target positions in the camera's FOV, using for example a survey theodolite or a Faroarm. Placing the 2-D targets on the cube s surface required the development of precise machining methods. In response, 2-D targets were embedded into the surface of the cube and then painted black for high contrast. A 12-inch collapsible cube was developed for room-size scenes. A 3-inch, solid, stainless-steel photogrammetry cube was also fabricated for photogrammetry analysis of small objects.
Fiber-optic projected-fringe digital interferometry
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Beheim, Glenn
1990-01-01
A phase-stepped projected-fringe interferometer was developed which uses a closed-loop fiber-optic phase-control system to make very accurate surface profile measurements. The closed-loop phase-control system greatly reduces phase-stepping error, which is frequently the dominant source of error in digital interferometers. Two beams emitted from a fiber-optic coupler are combined to form an interference fringe pattern on a diffusely reflecting object. Reflections off of the fibers' output faces are used to create a phase-indicating signal for the closed-loop optical phase controller. The controller steps the phase difference between the two beams by pi/2 radians in order to determine the object's surface profile using a solid-state camera and a computer. The system combines the ease of alignment and automated data reduction of phase-stepping projected-fringe interferometry with the greatly improved phase-stepping accuracy of our closed-loop phase-controller. The system is demonstrated by measuring the profile of a plate containing several convex surfaces whose heights range from 15 to 25 micron high.
Solid-state modeling of the terahertz spectrum of the high explosive HMX.
Allis, Damian G; Prokhorova, Darya A; Korter, Timothy M
2006-02-09
The experimental solid-state terahertz (THz) spectrum (3-120 cm(-1)) of the beta-crystal form of the high explosive octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been analyzed using solid-state density functional theory calculations. Various density functionals (both generalized gradient approximation and local density approximation) are compared in terms of their abilities to reproduce the experimentally observed solid-state structure and low-frequency vibrational motions. Good-to-excellent agreement between solid-state theory and experiment can be achieved in the THz region where isolated-molecule calculations fail to reproduce the observed spectral features, demonstrating a clear limitation of using isolated-molecule calculations for the assignment of THz frequency motions in molecular solids. The deficiency of isolated-molecule calculations is traced to modification of the molecular structure in the solid state through crystal packing effects and the formation of weak C-H...O hydrogen bonds.
Optofluidic devices with integrated solid-state nanopores
Hawkins, Aaron R.; Schmidt, Holger
2016-01-01
This review (with 90 refs.) covers the state of the art in optofluidic devices with integrated solid-state nanopores for use in detection and sensing. Following an introduction into principles of optofluidics and solid-state nanopore technology, we discuss features of solid-state nanopore based assays using optofluidics. This includes the incorporation of solid-state nanopores into optofluidic platforms based on liquid-core anti-resonant reflecting optical waveguides (ARROWs), methods for their fabrication, aspects of single particle detection and particle manipulation. We then describe the new functionalities provided by solid-state nanopores integrated into optofluidic chips, in particular acting as smart gates for correlated electro-optical detection and discrimination of nanoparticles. This enables the identification of viruses and λ-DNA, particle trajectory simulations, enhancing sensitivity by tuning the shape of nanopores. The review concludes with a summary and an outlook. PMID:27046940
Real-time multiple objects tracking on Raspberry-Pi-based smart embedded camera
NASA Astrophysics Data System (ADS)
Dziri, Aziz; Duranton, Marc; Chapuis, Roland
2016-07-01
Multiple-object tracking constitutes a major step in several computer vision applications, such as surveillance, advanced driver assistance systems, and automatic traffic monitoring. Because of the number of cameras used to cover a large area, these applications are constrained by the cost of each node, the power consumption, the robustness of the tracking, the processing time, and the ease of deployment of the system. To meet these challenges, the use of low-power and low-cost embedded vision platforms to achieve reliable tracking becomes essential in networks of cameras. We propose a tracking pipeline that is designed for fixed smart cameras and which can handle occlusions between objects. We show that the proposed pipeline reaches real-time processing on a low-cost embedded smart camera composed of a Raspberry-Pi board and a RaspiCam camera. The tracking quality and the processing speed obtained with the proposed pipeline are evaluated on publicly available datasets and compared to the state-of-the-art methods.
Field-Sequential Color Converter
NASA Technical Reports Server (NTRS)
Studer, Victor J.
1989-01-01
Electronic conversion circuit enables display of signals from field-sequential color-television camera on color video camera. Designed for incorporation into color-television monitor on Space Shuttle, circuit weighs less, takes up less space, and consumes less power than previous conversion equipment. Incorporates state-of-art memory devices, also used in terrestrial stationary or portable closed-circuit television systems.
Television Cameras in Congress. Freedom of Information Center Report No. 483.
ERIC Educational Resources Information Center
Watt, Phyllis
While the United States Senate debates the merits of televising its proceedings, it might consider as a model the House of Representatives, which has televised floor activities since 1979 with no dramatic changes in those activities or in members' behavior. The House system consists of inconspicuously placed cameras and microphones operated by…
Caught on Camera: Special Education Classrooms and Video Surveillance
ERIC Educational Resources Information Center
Heintzelman, Sara C.; Bathon, Justin M.
2017-01-01
In Texas, state policy anticipates that installing video cameras in special education classrooms will decrease student abuse inflicted by teachers. Lawmakers assume that collecting video footage will prevent teachers from engaging in malicious actions and prosecute those who choose to harm children. At the request of a parent, Section 29.022 of…
Upgrades and Modifications of the NASA Ames HFFAF Ballistic Range
NASA Technical Reports Server (NTRS)
Bogdanoff, David W.; Wilder, Michael C.; Cornelison, Charles J.; Perez, Alfredo J.
2017-01-01
The NASA Ames Hypervelocity Free Flight Aerodynamics Facility ballistic range is described. The various configurations of the shadowgraph stations are presented. This includes the original stations with film and configurations with two different types of digital cameras. Resolution tests for the 3 shadowgraph station configurations are described. The advantages of the digital cameras are discussed, including the immediate availability of the shadowgraphs. The final shadowgraph station configuration is a mix of 26 Nikon cameras and 6 PI-MAX2 cameras. Two types of trigger light sheet stations are described visible and IR. The two gunpowders used for the NASA Ames 6.251.50 light gas guns are presented. These are the Hercules HC-33-FS powder (no longer available) and the St. Marks Powder WC 886 powder. The results from eight proof shots for the two powders are presented. Both muzzle velocities and piston velocities are 5 9 lower for the new St. Marks WC 886 powder than for the old Hercules HC-33-FS powder (no longer available). The experimental and CFD (computational) piston and muzzle velocities are in good agreement. Shadowgraph-reading software that employs template-matching pattern recognition to locate the ballistic-range model is described. Templates are generated from a 3D solid model of the ballistic-range model. The accuracy of the approach is assessed using a set of computer-generated test images.
Zhu, Yizhou; He, Xingfeng; Mo, Yifei
2015-12-11
All-solid-state Li-ion batteries based on ceramic solid electrolyte materials are a promising next-generation energy storage technology with high energy density and enhanced cycle life. The poor interfacial conductance is one of the key limitations in enabling all-solid-state Li-ion batteries. However, the origin of this poor conductance has not been understood, and there is limited knowledge about the solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. In this paper, we performed first principles calculations to evaluate the thermodynamics of the interfaces between solid electrolyte and electrode materials and to identify the chemical and electrochemical stabilities of these interfaces. Our computation results revealmore » that many solid electrolyte–electrode interfaces have limited chemical and electrochemical stability, and that the formation of interphase layers is thermodynamically favorable at these interfaces. These formed interphase layers with different properties significantly affect the electrochemical performance of all-solid-state Li-ion batteries. The mechanisms of applying interfacial coating layers to stabilize the interface and to reduce interfacial resistance are illustrated by our computation. This study demonstrates a computational scheme to evaluate the chemical and electrochemical stability of heterogeneous solid interfaces. Finally, the enhanced understanding of the interfacial phenomena provides the strategies of interface engineering to improve performances of all-solid-state Li-ion batteries.« less
QuadCam - A Quadruple Polarimetric Camera for Space Situational Awareness
NASA Astrophysics Data System (ADS)
Skuljan, J.
A specialised quadruple polarimetric camera for space situational awareness, QuadCam, has been built at the Defence Technology Agency (DTA), New Zealand, as part of collaboration with the Defence Science and Technology Laboratory (Dstl), United Kingdom. The design was based on a similar system originally developed at Dstl, with some significant modifications for improved performance. The system is made up of four identical CCD cameras looking in the same direction, but in a different plane of polarisation at 0, 45, 90 and 135 degrees with respect to the reference plane. A standard set of Stokes parameters can be derived from the four images in order to describe the state of polarisation of an object captured in the field of view. The modified design of the DTA QuadCam makes use of four small Raspberry Pi computers, so that each camera is controlled by its own computer in order to speed up the readout process and ensure that the four individual frames are taken simultaneously (to within 100-200 microseconds). In addition, a new firmware was requested from the camera manufacturer so that an output signal is generated to indicate the state of the camera shutter. A specialised GPS unit (also developed at DTA) is then used to monitor the shutter signals from the four cameras and record the actual time of exposure to an accuracy of about 100 microseconds. This makes the system well suited for the observation of fast-moving objects in the low Earth orbit (LEO). The QuadCam is currently mounted on a Paramount MEII robotic telescope mount at the newly built DTA space situational awareness observatory located on Whangaparaoa Peninsula near Auckland, New Zealand. The system will be used for tracking satellites in low Earth orbit and geostationary belt as well. The performance of the camera has been evaluated and a series of test images have been collected in order to derive the polarimetric signatures for selected satellites.
NASA Technical Reports Server (NTRS)
1997-01-01
The dark-floored crater, Khensu, is the target of this image of Ganymede. The solid state imaging camera on NASA's Galileo spacecraft imaged this region as it passed Ganymede during its second orbit through the Jovian system. Khensu is located at 2 degrees latitude and 153 degrees longitude in a region of bright terrain known as Uruk Sulcus, and is about 13 kilometers (8 miles) in diameter. Like some other craters on Ganymede, it possesses an unusually dark floor and a bright ejecta blanket. The dark component may be residual material from the impactor that formed the crater. Another possibility is that the impactor may have punched through the bright surface to reveal a dark layer beneath.
Another large crater named El is partly visible in the top-right corner of the image. This crater is 54 kilometers (34 miles) in diameter and has a small 'pit' in its center. Craters with such a 'central pit' are common across Ganymede and are especially intriguing since they may reveal secrets about the structure of the satellite's shallow subsurface.North is to the top-left of the picture and the sun illuminates the surface from nearly overhead. The image covers an area about 100 kilometers (62 miles) by 86 kilometers (54 miles) across at a resolution of 111 meters (370 feet) per picture element. The image was taken on September 6, 1996 by the solid state imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.Nonlinear excitation fluorescence microscopy: source considerations for biological applications
NASA Astrophysics Data System (ADS)
Wokosin, David L.
2008-02-01
Ultra-short-pulse solid-state laser sources have improved contrast within fluorescence imaging and also opened new windows of investigation in biological imaging applications. Additionally, the pulsed illumination enables harmonic scattering microscopy which yields intrinsic structure, symmetry and contrast from viable embryos, cells and tissues. Numerous human diseases are being investigated by the combination of (more) intact dynamic tissue imaging of cellular function with gene-targeted specificity and electrophysiology context. The major limitation to more widespread use of multi-photon microscopy has been the complete system cost and added complexity above and beyond commercial camera and confocal systems. The current status of all-solid-state ultrafast lasers as excitation sources will be reviewed since these lasers offer tremendous potential for affordable, reliable, "turnkey" multiphoton imaging systems. This effort highlights the single box laser systems currently commercially available, with defined suggestions for the ranges for individual laser parameters as derived from a biological and fluorophore limited perspective. The standard two-photon dose is defined by 800nm, 10mW, 200fs, and 80Mhz - at the sample plane for tissue culture cells, i.e. after the full scanning microscope system. Selected application-derived excitation wavelengths are well represented by 700nm, 780nm, ~830nm, ~960nm, 1050nm, and 1250nm. Many of the one-box lasers have fixed or very limited excitation wavelengths available, so the lasers will be lumped near 780nm, 800nm, 900nm, 1050nm, and 1250nm. The following laser parameter ranges are discussed: average power from 200mW to 2W, pulse duration from 70fs to 700fs, pulse repetition rate from 20MHz to 200MHz, with the laser output linearly polarized with an extinction ratio at least 100:1.
An extrapolation scheme for solid-state NMR chemical shift calculations
NASA Astrophysics Data System (ADS)
Nakajima, Takahito
2017-06-01
Conventional quantum chemical and solid-state physical approaches include several problems to accurately calculate solid-state nuclear magnetic resonance (NMR) properties. We propose a reliable computational scheme for solid-state NMR chemical shifts using an extrapolation scheme that retains the advantages of these approaches but reduces their disadvantages. Our scheme can satisfactorily yield solid-state NMR magnetic shielding constants. The estimated values have only a small dependence on the low-level density functional theory calculation with the extrapolation scheme. Thus, our approach is efficient because the rough calculation can be performed in the extrapolation scheme.
The Mount Wilson Optical Shop during the Second World War
NASA Astrophysics Data System (ADS)
Abrahams, P.
2004-12-01
During the Second World War, the Optical Shop of Mount Wilson Observatory, located in Pasadena, engaged in a variety of exacting and pioneering ventures in optical design and fabrication. Roof prisms for military optics were produced on a large scale, leading to the production of an instruction manual, for guidance in other workshops. Triple mirrors, or autocollimating corner cubes, were another precision part made in large numbers. Aerial photography was extensively developed. Test procedures for measuring resolution of lenses were researched. Various camera shutters and film sweep mechanisms were devised. The most significant work concerned Schmidt cameras, for possible use in night-time aerial photography. Variations included a solid Schmidt, and the Schmidt Cassegrain, which was fabricated for the first time at MWO. Key figures include Don Hendrix, Roger Hayward, Aden Meinel, and Walter Adams.
PRISM Spectrograph Optical Design
NASA Technical Reports Server (NTRS)
Chipman, Russell A.
1995-01-01
The objective of this contract is to explore optical design concepts for the PRISM spectrograph and produce a preliminary optical design. An exciting optical configuration has been developed which will allow both wavelength bands to be imaged onto the same detector array. At present the optical design is only partially complete because PRISM will require a fairly elaborate optical system to meet its specification for throughput (area*solid angle). The most complex part of the design, the spectrograph camera, is complete, providing proof of principle that a feasible design is attainable. This camera requires 3 aspheric mirrors to fit inside the 20x60 cm cross-section package. A complete design with reduced throughput (1/9th) has been prepared. The design documents the optical configuration concept. A suitable dispersing prism material, CdTe, has been identified for the prism spectrograph, after a comparison of many materials.
Solid-state rechargeable magnesium battery
Shao, Yuyan; Liu, Jun; Liu, Tianbiao; Li, Guosheng
2016-09-06
Embodiments of a solid-state electrolyte comprising magnesium borohydride, polyethylene oxide, and optionally a Group IIA or transition metal oxide are disclosed. The solid-state electrolyte may be a thin film comprising a dispersion of magnesium borohydride and magnesium oxide nanoparticles in polyethylene oxide. Rechargeable magnesium batteries including the disclosed solid-state electrolyte may have a coulombic efficiency .gtoreq.95% and exhibit cycling stability for at least 50 cycles.
1980-02-15
ESD-TR-79-325 H 1 Solid State Research 1980 Prepared under Electronic Systems Division Contract FI%28-80-C-0002 by Lincoln Laboratory MASSkCHIISETTS...it is no longer needed. MASSACHUSETTS IN*STITUTE OF TECHNOLOGY LINCOLN LABORATORY V SOLID STATE RESEARCH QUARTERLY TECHNICAL SUMMARY REPORT I NOVEMBER...January 1990. The topics covered a-e Solid State Device Research , Quantum Electronics, Materials Rese.rch, Microelec- tronics, and Analog Device
Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries.
Ju, Jiangwei; Wang, Yantao; Chen, Bingbing; Ma, Jun; Dong, Shanmu; Chai, Jingchao; Qu, Hongtao; Cui, Longfei; Wu, Xiuxiu; Cui, Guanglei
2018-04-25
Solid-state lithium batteries have drawn wide attention to address the safety issues of power batteries. However, the development of solid-state lithium batteries is substantially limited by the poor electrochemical performances originating from the rigid interface between solid electrodes and solid-state electrolytes. In this work, a composite of poly(vinyl carbonate) and Li 10 SnP 2 S 12 solid-state electrolyte is fabricated successfully via in situ polymerization to improve the rigid interface issues. The composite electrolyte presents a considerable room temperature conductivity of 0.2 mS cm -1 , an electrochemical window exceeding 4.5 V, and a Li + transport number of 0.6. It is demonstrated that solid-state lithium metal battery of LiFe 0.2 Mn 0.8 PO 4 (LFMP)/composite electrolyte/Li can deliver a high capacity of 130 mA h g -1 with considerable capacity retention of 88% and Coulombic efficiency of exceeding 99% after 140 cycles at the rate of 0.5 C at room temperature. The superior electrochemical performance can be ascribed to the good compatibility of the composite electrolyte with Li metal and the integrated compatible interface between solid electrodes and the composite electrolyte engineered by in situ polymerization, which leads to a significant interfacial impedance decrease from 1292 to 213 Ω cm 2 in solid-state Li-Li symmetrical cells. This work provides vital reference for improving the interface compatibility for room temperature solid-state lithium batteries.
Modified Reference SPS with Solid State Transmitting Antenna
NASA Technical Reports Server (NTRS)
Woodcock, G. R.; Sperber, B. R.
1980-01-01
The development of solid state microwave power amplifiers for a solar power satellite transmitting antenna is discussed. State-of-the-art power-added efficiency, gain, and single device power of various microwave solid state devices are compared. The GaAs field effect transistors and the Si-bipolar transistors appear potentially feasible for solar power satellite use. The integration of solid state devices into antenna array elements is examined and issues concerning antenna integration and consequent satellite configurations are examined.
Color constancy by characterization of illumination chromaticity
NASA Astrophysics Data System (ADS)
Nikkanen, Jarno T.
2011-05-01
Computational color constancy algorithms play a key role in achieving desired color reproduction in digital cameras. Failure to estimate illumination chromaticity correctly will result in invalid overall colour cast in the image that will be easily detected by human observers. A new algorithm is presented for computational color constancy. Low computational complexity and low memory requirement make the algorithm suitable for resource-limited camera devices, such as consumer digital cameras and camera phones. Operation of the algorithm relies on characterization of the range of possible illumination chromaticities in terms of camera sensor response. The fact that only illumination chromaticity is characterized instead of the full color gamut, for example, increases robustness against variations in sensor characteristics and against failure of diagonal model of illumination change. Multiple databases are used in order to demonstrate the good performance of the algorithm in comparison to the state-of-the-art color constancy algorithms.
Integrated technologies for solid waste bin monitoring system.
Arebey, Maher; Hannan, M A; Basri, Hassan; Begum, R A; Abdullah, Huda
2011-06-01
The integration of communication technologies such as radio frequency identification (RFID), global positioning system (GPS), general packet radio system (GPRS), and geographic information system (GIS) with a camera are constructed for solid waste monitoring system. The aim is to improve the way of responding to customer's inquiry and emergency cases and estimate the solid waste amount without any involvement of the truck driver. The proposed system consists of RFID tag mounted on the bin, RFID reader as in truck, GPRS/GSM as web server, and GIS as map server, database server, and control server. The tracking devices mounted in the trucks collect location information in real time via the GPS. This information is transferred continuously through GPRS to a central database. The users are able to view the current location of each truck in the collection stage via a web-based application and thereby manage the fleet. The trucks positions and trash bin information are displayed on a digital map, which is made available by a map server. Thus, the solid waste of the bin and the truck are being monitored using the developed system.
The Measurement of the Surface Energy of Solids by Sessile Drop Accelerometry
NASA Astrophysics Data System (ADS)
Calvimontes, Alfredo
2018-05-01
A new physical method, the sessile drop accelerometry (SDACC) for the study and measurement of the interfacial energies of solid-liquid-gas systems, is tested and discussed in this study. The laboratory instrument and technique—a combination of a drop shape analyzer with high-speed camera and a laboratory drop tower- and the evaluation algorithms, were designed to calculate the interfacial energies as a function of the geometrical changes of a sessile droplet shape due to the effect of "switching off" gravity during the experiment. The method bases on Thermodynamics of Interfaces and differs from the conventional approach of the two hundred-years-old Young's equation in that it assumes a thermodynamic equilibrium between interfaces, rather than a balance of tensions on a point of the solid-liquid-gas contour line. A comparison of the mathematical model that supports the method with the widely accepted Young`s equation is discussed in detail in this study. The method opens new possibilities to develop surface characterization procedures by submitting the solid-liquid-system to artificial generated and uniform force fields.
NASA Technical Reports Server (NTRS)
Miller, W. F.; Whisler, F. D.; Robinette, H. R.; Finnie, D.; Cannon, T.
1975-01-01
A cost-effective aerial surveillance technique is proposed for detection and identification of suspended solids which would be operational for both governmental monitoring organizations and private individuals operating catfish farms. Sixteen catfish ponds were flown daily for seven days using two hand-held 35 mm cameras with both Kodachrome X and Ektachrome infrared film. Hue, value, and chroma designations were recorded for each pond on each date by three interpreters, and the accepted color was that recorded by at least two of the interpreters, or if there was a three hue range, the median was accepted. Relations between suspended solids and color designations were analyzed graphically, and chroma was discarded due to an apparent lack of correlation. The data obtained were then analyzed by multiple regression. Significant correlations were revealed between hue and value and total and inorganic suspended solids. If perfected, this technique could be developed to sufficent accuracy for large-scale reconnaissance surveys to monitor the quality of rivers and streams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terry, P.L.
1989-01-01
Whether upgrading or developing a security system, investing in a solid state video recorder may prove to be quite prudent. Even though the initial cost of a solid state recorder may be more expensive, when comparing it to a disc recorder it is practically maintenance free. Thus, the cost effectiveness of a solid state video recorder over an extended period of time more than justifies the initial expense. This document illustrates the use of a solid state video recorder as a direct replacement. It replaces a mechanically driven disc recorder that existed in a synchronized video recording system. The originalmore » system was called the Universal Video Disc Recorder System. The modified system will now be referred to as the Solid State Video Recording System. 5 figs.« less
A Fast and Robust Extrinsic Calibration for RGB-D Camera Networks.
Su, Po-Chang; Shen, Ju; Xu, Wanxin; Cheung, Sen-Ching S; Luo, Ying
2018-01-15
From object tracking to 3D reconstruction, RGB-Depth (RGB-D) camera networks play an increasingly important role in many vision and graphics applications. Practical applications often use sparsely-placed cameras to maximize visibility, while using as few cameras as possible to minimize cost. In general, it is challenging to calibrate sparse camera networks due to the lack of shared scene features across different camera views. In this paper, we propose a novel algorithm that can accurately and rapidly calibrate the geometric relationships across an arbitrary number of RGB-D cameras on a network. Our work has a number of novel features. First, to cope with the wide separation between different cameras, we establish view correspondences by using a spherical calibration object. We show that this approach outperforms other techniques based on planar calibration objects. Second, instead of modeling camera extrinsic calibration using rigid transformation, which is optimal only for pinhole cameras, we systematically test different view transformation functions including rigid transformation, polynomial transformation and manifold regression to determine the most robust mapping that generalizes well to unseen data. Third, we reformulate the celebrated bundle adjustment procedure to minimize the global 3D reprojection error so as to fine-tune the initial estimates. Finally, our scalable client-server architecture is computationally efficient: the calibration of a five-camera system, including data capture, can be done in minutes using only commodity PCs. Our proposed framework is compared with other state-of-the-arts systems using both quantitative measurements and visual alignment results of the merged point clouds.
A Fast and Robust Extrinsic Calibration for RGB-D Camera Networks †
Shen, Ju; Xu, Wanxin; Luo, Ying
2018-01-01
From object tracking to 3D reconstruction, RGB-Depth (RGB-D) camera networks play an increasingly important role in many vision and graphics applications. Practical applications often use sparsely-placed cameras to maximize visibility, while using as few cameras as possible to minimize cost. In general, it is challenging to calibrate sparse camera networks due to the lack of shared scene features across different camera views. In this paper, we propose a novel algorithm that can accurately and rapidly calibrate the geometric relationships across an arbitrary number of RGB-D cameras on a network. Our work has a number of novel features. First, to cope with the wide separation between different cameras, we establish view correspondences by using a spherical calibration object. We show that this approach outperforms other techniques based on planar calibration objects. Second, instead of modeling camera extrinsic calibration using rigid transformation, which is optimal only for pinhole cameras, we systematically test different view transformation functions including rigid transformation, polynomial transformation and manifold regression to determine the most robust mapping that generalizes well to unseen data. Third, we reformulate the celebrated bundle adjustment procedure to minimize the global 3D reprojection error so as to fine-tune the initial estimates. Finally, our scalable client-server architecture is computationally efficient: the calibration of a five-camera system, including data capture, can be done in minutes using only commodity PCs. Our proposed framework is compared with other state-of-the-arts systems using both quantitative measurements and visual alignment results of the merged point clouds. PMID:29342968
Lipid immiscibility and biophysical properties: Molecular order within and among unit cell volumes
USDA-ARS?s Scientific Manuscript database
Saturated and unsaturated fatty acids clearly have a discrete chemical structure in the solid state. In a saturated solution, the solid state and solution state are in chemical equilibrium. The lipid stearic acid packs in unit cell volumes in the liquid state as well as in the solid state. Normal...
Solid-state optical refrigeration to sub-100 Kelvin regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melgaard, Seth D.; Albrecht, Alexander R.; Hehlen, Markus P.
We report that since the first demonstration of net cooling twenty years ago, optical refrigeration of solids has progressed to outperform all other solid-state cooling processes. It has become the first and only solid-state refrigerator capable of reaching cryogenic temperatures, and now the first solid-state cooling below 100 K. Such substantial progress required a multi-disciplinary approach of pump laser absorption enhancement, material characterization and purification, and thermal management. Here we present the culmination of two decades of progress, the record cooling to ≈91K from room temperature.
Solid-state optical refrigeration to sub-100 Kelvin regime
Melgaard, Seth D.; Albrecht, Alexander R.; Hehlen, Markus P.; ...
2016-02-05
We report that since the first demonstration of net cooling twenty years ago, optical refrigeration of solids has progressed to outperform all other solid-state cooling processes. It has become the first and only solid-state refrigerator capable of reaching cryogenic temperatures, and now the first solid-state cooling below 100 K. Such substantial progress required a multi-disciplinary approach of pump laser absorption enhancement, material characterization and purification, and thermal management. Here we present the culmination of two decades of progress, the record cooling to ≈91K from room temperature.
Solid-state optical refrigeration to sub-100 Kelvin regime
Melgaard, Seth D.; Albrecht, Alexander R.; Hehlen, Markus P.; Sheik-Bahae, Mansoor
2016-01-01
Since the first demonstration of net cooling twenty years ago, optical refrigeration of solids has progressed to outperform all other solid-state cooling processes. It has become the first and only solid-state refrigerator capable of reaching cryogenic temperatures, and now the first solid-state cooling below 100 K. Such substantial progress required a multi-disciplinary approach of pump laser absorption enhancement, material characterization and purification, and thermal management. Here we present the culmination of two decades of progress, the record cooling to ≈ 91 K from room temperature. PMID:26847703
Spallation and fracture resulting from reflected and intersecting stress waves.
NASA Technical Reports Server (NTRS)
Kinslow, R.
1973-01-01
Discussion of the effects of stress waves produced in solid by explosions or high-velocity impacts. These waves rebound from free surfaces in the form of tensile waves that are capable of causing internal fractures or spallation of the material. The high-speed framing camera is shown to be an important tool for observing the stress waves and fracture in transparent targets, and its photographs provide valuable information on the mechanics of fracture.
EVA 4 activity on Flight Day 7 to service the Hubble Space Telescope
1997-02-17
S82-E-5652 (17 Feb. 1997) --- Astronaut Gregory J. Harbaugh (solid stripe on EMU) uses Remote Manipulator System (RMS) as a cherry-picker device to service Hubble Space Telescope (HST). In cooperation with astronaut Joseph R. Tanner, nearby, the mission specialist was in the process of replacing the HST's Magnetic Sensing System (MSS) protective caps with new, permanent covers. This view was taken with an Electronic Still Camera (ESC).
Jain, Abhiney; Morlok, Charles K; Henson, J Michael
2013-01-01
The conversion of sustainable energy crops using microbiological fermentation to biofuels and bioproducts typically uses submerged-state processes. Alternatively, solid-state fermentation processes have several advantages when compared to the typical submerged-state processes. This study compares the use of solid-state versus submerged-state fermentation using the mesophilic anaerobic bacterium Clostridium phytofermentans in the conversion of switchgrass to the end products of ethanol, acetate, and hydrogen. A shift in the ratio of metabolic products towards more acetate and hydrogen production than ethanol production was observed when C. phytofermentans was grown under solid-state conditions as compared to submerged-state conditions. Results indicated that the end product concentrations (in millimolar) obtained using solid-state fermentation were higher than using submerged-state fermentation. In contrast, the total fermentation products (in weight of product per weight of carbohydrates consumed) and switchgrass conversion were higher for submerged-state fermentation. The conversion of xylan was greater than glucan conversion under both fermentation conditions. An initial pH of 7 and moisture content of 80 % resulted in maximum end products formation. Scanning electron microscopy study showed the presence of biofilm formed by C. phytofermentans growing on switchgrass under submerged-state fermentation whereas bacterial cells attached to surface and no apparent biofilm was observed when grown under solid-state fermentation. To our knowledge, this is the first study reporting consolidated bioprocessing of a lignocellulosic substrate by a mesophilic anaerobic bacterium under solid-state fermentation conditions.
Inventory of terrestrial mammals in the Rincon Mountains using camera traps
Don E. Swann; Nic Perkins
2013-01-01
The Sky Island region of the southwestern United States and northwestern Mexico is well-known for its diversity of mammals, including endemic species and species representing several different biogeographic provinces. Camera trap studies have provided important insight into mammalian distribution and diversity in the Sky Islands in recent years, but few studies have...
Using Surveillance Camera Systems to Monitor Public Domains: Can Abuse Be Prevented
2006-03-01
relationship with a 16-year old girl failed. The incident was captured by a New York City Police Department surveillance camera. Although the image...administrators stated that the images recorded were “…nothing more than images of a few bras and panties .”17 The use of CCTV surveillance systems for
Zhang, Dechao; Zhang, Long; Yang, Kun; Wang, Hongqiang; Yu, Chuang; Xu, Di; Xu, Bo; Wang, Li-Min
2017-10-25
Exploration of advanced solid electrolytes with good interfacial stability toward electrodes is a highly relevant research topic for all-solid-state batteries. Here, we report PCL/SN blends integrating with PAN-skeleton as solid polymer electrolyte prepared by a facile method. This polymer electrolyte with hierarchical architectures exhibits high ionic conductivity, large electrochemical windows, high degree flexibility, good flame-retardance ability, and thermal stability (workable at 80 °C). Additionally, it demonstrates superior compatibility and electrochemical stability toward metallic Li as well as LiFePO 4 cathode. The electrolyte/electrode interfaces are very stable even subjected to 4.5 V at charging state for long time. The LiFePO 4 /Li all-solid-state cells based on this electrolyte deliver high capacity, outstanding cycling stability, and superior rate capability better than those based on liquid electrolyte. This solid polymer electrolyte is eligible for next generation high energy density all-solid-state batteries.
Science, conservation, and camera traps
Nichols, James D.; Karanth, K. Ullas; O'Connel, Allan F.; O'Connell, Allan F.; Nichols, James D.; Karanth, K. Ullas
2011-01-01
Biologists commonly perceive camera traps as a new tool that enables them to enter the hitherto secret world of wild animals. Camera traps are being used in a wide range of studies dealing with animal ecology, behavior, and conservation. Our intention in this volume is not to simply present the various uses of camera traps, but to focus on their use in the conduct of science and conservation. In this chapter, we provide an overview of these two broad classes of endeavor and sketch the manner in which camera traps are likely to be able to contribute to them. Our main point here is that neither photographs of individual animals, nor detection history data, nor parameter estimates generated from detection histories are the ultimate objective of a camera trap study directed at either science or management. Instead, the ultimate objectives are best viewed as either gaining an understanding of how ecological systems work (science) or trying to make wise decisions that move systems from less desirable to more desirable states (conservation, management). Therefore, we briefly describe here basic approaches to science and management, emphasizing the role of field data and associated analyses in these processes. We provide examples of ways in which camera trap data can inform science and management.
Synthesis of azines in solid state: reactivity of solid hydrazine with aldehydes and ketones.
Lee, Byeongno; Lee, Kyu Hyung; Cho, Jaeheung; Nam, Wonwoo; Hur, Nam Hwi
2011-12-16
Highly conjugated azines were prepared by solid state grinding of solid hydrazine and carbonyl compounds such as aldehydes and ketones, using a mortar and a pestle. Complete conversion to the azine product is generally achieved at room temperature within 24 h, without using solvents or additives. The solid-state reactions afford azines as the sole products with greater than 97% yield, producing only water and carbon dioxide as waste.
40 CFR 256.23 - Requirements for closing or upgrading open dumps.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid... classification of existing solid waste disposal facilities according to the criteria. This classification shall... solid waste disposal facility; (2) The availability of State regulatory and enforcement powers; and (3...
40 CFR 256.23 - Requirements for closing or upgrading open dumps.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid... classification of existing solid waste disposal facilities according to the criteria. This classification shall... solid waste disposal facility; (2) The availability of State regulatory and enforcement powers; and (3...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. George C. Vradis; Dr. Hagen Schempf
2003-04-01
This program is undertaken in order to construct and field-demonstrate EXPLORER, a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6-inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows formore » the live inspection of gas distribution pipes. This module, which incorporates technology developed by NASA, has already been designed, constructed and tested, having exceeded performance expectations. The full prototype system will be comprehensively tested in the laboratory followed by two field demonstrations in real applications in NGA member utilities' pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. The present report summarizes the accomplishments of the project during its third six-month period. The project has in general achieved its goals for this period as outlined in the report. The fabrication of the prototype is complete and is now been tested in the laboratory mainly focusing on the last system integration issues and on software development for the turning and launching routines. Testing of the prototype in the lab is expected to be completed by Summer 2003, to be followed by two field demonstrations in early Fall 2003.« less
Atomistic Simulation of Interfaces in Materials of Solid State Ionics
NASA Astrophysics Data System (ADS)
Ivanov-Schitz, A. K.; Mazo, G. N.
2018-01-01
The possibilities of describing correctly interfaces of different types in solids within a computer experiment using molecular statics simulation, molecular dynamics simulation, and quantum chemical calculations are discussed. Heterophase boundaries of various types, including grain boundaries and solid electrolyte‒solid electrolyte and ionic conductor‒electrode material interfaces, are considered. Specific microstructural features and mechanisms of the ion transport in real heterophase structures (cationic conductor‒metal anode and anionic conductor‒cathode) existing in solid state ionics devices (such as solid-state batteries and fuel cells) are discussed.
NASA Technical Reports Server (NTRS)
Byer, R. L. (Editor); Trebino, R. (Editor); Gustafson, E. K. (Editor)
1985-01-01
Papers are presented on solid-state lasers for remote sensing, diode-pumped Nd:YAG lasers, and tunable solid-state-laser systems. Topics discussed include titanium-sapphire tunable laser systems, the performance of slab geometry, and the development of slab lasers. Consideration is given to garnet host solid-state lasers, the growth of lasers and nonlinear materials, and nonlinear frequency conversion and tunable sources.
Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-01-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.
NASA Astrophysics Data System (ADS)
Yang, Yong; Wang, Peng-Peng; Zhang, Zhi-Cheng; Liu, Hui-Ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-04-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-21
... Activities; Proposed Collection; Comment Request; State Program Adequacy Determination: Municipal Solid Waste... States. Title: State Program Adequacy Determination: Municipal Solid Waste Landfills (MSWLFs) and Non... 4004(a) and Section 1008(a)(3). Section 4005(c) of RCRA, as amended by the Hazardous Solid Waste...
Calibration Procedures in Mid Format Camera Setups
NASA Astrophysics Data System (ADS)
Pivnicka, F.; Kemper, G.; Geissler, S.
2012-07-01
A growing number of mid-format cameras are used for aerial surveying projects. To achieve a reliable and geometrically precise result also in the photogrammetric workflow, awareness on the sensitive parts is important. The use of direct referencing systems (GPS/IMU), the mounting on a stabilizing camera platform and the specific values of the mid format camera make a professional setup with various calibration and misalignment operations necessary. An important part is to have a proper camera calibration. Using aerial images over a well designed test field with 3D structures and/or different flight altitudes enable the determination of calibration values in Bingo software. It will be demonstrated how such a calibration can be performed. The direct referencing device must be mounted in a solid and reliable way to the camera. Beside the mechanical work especially in mounting the camera beside the IMU, 2 lever arms have to be measured in mm accuracy. Important are the lever arms from the GPS Antenna to the IMU's calibrated centre and also the lever arm from the IMU centre to the Camera projection centre. In fact, the measurement with a total station is not a difficult task but the definition of the right centres and the need for using rotation matrices can cause serious accuracy problems. The benefit of small and medium format cameras is that also smaller aircrafts can be used. Like that, a gyro bases stabilized platform is recommended. This causes, that the IMU must be mounted beside the camera on the stabilizer. The advantage is, that the IMU can be used to control the platform, the problematic thing is, that the IMU to GPS antenna lever arm is floating. In fact we have to deal with an additional data stream, the values of the movement of the stabiliser to correct the floating lever arm distances. If the post-processing of the GPS-IMU data by taking the floating levers into account, delivers an expected result, the lever arms between IMU and camera can be applied. However, there is a misalignment (bore side angle) that must be evaluated by photogrammetric process using advanced tools e.g. in Bingo. Once, all these parameters have been determined, the system is capable for projects without or with only a few ground control points. But which effect has the photogrammetric process when directly applying the achieved direct orientation values compared with an AT based on a proper tiepoint matching? The paper aims to show the steps to be done by potential users and gives a kind of quality estimation about the importance and quality influence of the various calibration and adjustment steps.
NASA Astrophysics Data System (ADS)
Jarvis, S.; Hargrave, G. K.
2006-01-01
Experimental data obtained using a new multiple-camera digital particle image velocimetry (PIV) technique are presented for the interaction between a propagating flame and the turbulent recirculating velocity field generated during flame-solid obstacle interaction. The interaction between the gas movement and the obstacle creates turbulence by vortex shedding and local wake recirculations. The presence of turbulence in a flammable gas mixture can wrinkle a flame front, increasing the flame surface area and enhancing the burning rate. To investigate propagating flame/turbulence interaction, a novel multiple-camera digital PIV technique was used to provide high spatial and temporal characterization of the phenomenon for the turbulent flow field in the wake of three sequential obstacles. The technique allowed the quantification of the local flame speed and local flow velocity. Due to the accelerating nature of the explosion flow field, the wake flows develop 'transient' turbulent fields. Multiple-camera PIV provides data to define the spatial and temporal variation of both the velocity field ahead of the propagating flame and the flame front to aid the understanding of flame-vortex interaction. Experimentally obtained values for flame displacement speed and flame stretch are presented for increasing vortex complexity.
KAPAO Prime: Design and Simulation
NASA Astrophysics Data System (ADS)
McGonigle, Lorcan
2012-11-01
KAPAO (KAPAO A Pomona Adaptive Optics instrument) is a dual-band natural guide star adaptive optics system designed to measure and remove atmospheric aberration from Pomona College's telescope atop Table Mountain. We present here, the final optical system, referred to as Prime, designed in Zemax Optical Design Software. Prime is characterized by diffraction limited imaging over the full 73'' field of view of our Andor Camera at f/33 as well as for our NIR Xenics camera at f/50. In Zemax, tolerances of 1% on OAP focal length and off-axis distance were shown to contribute an additional 4 nm of wavefront error (98% confidence) over the field of view of the Andor camera; the contribution from surface irregularity was determined analytically to be 40nm for OAPs specified to l/10 surface irregularity. Modeling of the temperature deformation of the breadboard in SolidWorks revealed 70 micron contractions along the edges of the board for a decrease of 75 F; when applied to OAP positions such displacements from the optimal layout are predicted to contribute an additional 20 nanometers of wavefront error. Flexure modeling of the breadboard due to gravity is on-going. We hope to begin alignment and testing of ``Prime'' in Q1 2013.
Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stradling, G.L.
New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 ..mu..g/cm/sup 2/) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolvedmore » x-ray diagnostic capability are applied to energy-transport investigations of 1.06-..mu..m laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10/sup 14/ W/cm/sup 2/ and 1 x 10/sup 15/ W/cm/sup 2/.« less
Yeh, Yi-Jou; Black, Adam J; Akkin, Taner
2013-10-10
We describe a method for differential phase measurement of Faraday rotation from multiple depth locations simultaneously. A polarization-maintaining fiber-based spectral-domain interferometer that utilizes a low-coherent light source and a single camera is developed. Light decorrelated by the orthogonal channels of the fiber is launched on a sample as two oppositely polarized circular states. These states reflect from sample surfaces and interfere with the corresponding states of the reference arm. A custom spectrometer, which is designed to simplify camera alignment, separates the orthogonal channels and records the interference-related oscillations on both spectra. Inverse Fourier transform of the spectral oscillations in k-space yields complex depth profiles, whose amplitudes and phase difference are related to reflectivity and Faraday rotation within the sample, respectively. Information along a full depth profile is produced at the camera speed without performing an axial scan for a multisurface sample. System sensitivity for the Faraday rotation measurement is 0.86 min of arc. Verdet constants of clear liquids and turbid media are measured at 687 nm.
Solid state phase change materials for thermal energy storage in passive solar heated buildings
NASA Astrophysics Data System (ADS)
Benson, D. K.; Christensen, C.
1983-11-01
A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.
Solid-State Cloud Radar System (CRS) Upgrade and Deployment
NASA Technical Reports Server (NTRS)
McLinden, Matt; Heymsfield, Gerald; Li, Lihua; Racette, Paul; Coon, Michael; Venkatesh, Vijay
2015-01-01
The recent decade has brought rapid development in solid-state power amplifier (SSPA) technology. This has enabled the use of solid-state precipitation radar in place of high-power and high-voltage systems such as those that use Klystron or Magnetron transmitters. The NASA Goddard Space Flight Center has recently completed a comprehensive redesign of the 94 gigahertz Cloud Radar System (CRS) to incorporate a solid-state transmitter. It is the first cloud radar to achieve sensitivity comparable to that of a high-voltage transmitter using solid-state. The NASA Goddard Space Flight Center's Cloud Radar System (CRS) is a 94 gigahertz Doppler radar that flies on the NASA ER-2 high-altitude aircraft. The upgraded CRS system utilizes a state-of-the-art solid-state 94 gigahertz power amplifier with a peak transmit power of 30 watts. The modernized CRS system is detailed here with data results from its deployment during the 2014 Integrated Precipitation and Hydrology Experiment (IPHEX).
NASA Technical Reports Server (NTRS)
Bailey, R. F.
1982-01-01
Glass film has low intrinsic compressive stress for isolating active layers of magnetic-bubble and other solid-state devices. Solid-state device structure incorporates low-stress glasses as barrier and spacer layers. Glass layers mechanically isolate substrate, conductor, and nickel/iron layers.
Finite-time tracking control for multiple non-holonomic mobile robots based on visual servoing
NASA Astrophysics Data System (ADS)
Ou, Meiying; Li, Shihua; Wang, Chaoli
2013-12-01
This paper investigates finite-time tracking control problem of multiple non-holonomic mobile robots via visual servoing. It is assumed that the pinhole camera is fixed to the ceiling, and camera parameters are unknown. The desired reference trajectory is represented by a virtual leader whose states are available to only a subset of the followers, and the followers have only interaction. First, the camera-objective visual kinematic model is introduced by utilising the pinhole camera model for each mobile robot. Second, a unified tracking error system between camera-objective visual servoing model and desired reference trajectory is introduced. Third, based on the neighbour rule and by using finite-time control method, continuous distributed cooperative finite-time tracking control laws are designed for each mobile robot with unknown camera parameters, where the communication topology among the multiple mobile robots is assumed to be a directed graph. Rigorous proof shows that the group of mobile robots converges to the desired reference trajectory in finite time. Simulation example illustrates the effectiveness of our method.
Technical and instrumental prerequisites for single-port laparoscopic solo surgery: state of art.
Kim, Say-June; Lee, Sang Chul
2015-04-21
With the aid of advanced surgical techniques and instruments, single-port laparoscopic surgery (SPLS) can be accomplished with just two surgical members: an operator and a camera assistant. Under these circumstances, the reasonable replacement of a human camera assistant by a mechanical camera holder has resulted in a new surgical procedure termed single-port solo surgery (SPSS). In SPSS, the fixation and coordinated movement of a camera held by mechanical devices provides fixed and stable operative images that are under the control of the operator. Therefore, SPSS primarily benefits from the provision of the operator's eye-to-hand coordination. Because SPSS is an intuitive modification of SPLS, the indications for SPSS are the same as those for SPLS. Though SPSS necessitates more actions than the surgery with a human assistant, these difficulties seem to be easily overcome by the greater provision of static operative images and the need for less lens cleaning and repositioning of the camera. When the operation is expected to be difficult and demanding, the SPSS process could be assisted by the addition of another instrument holder besides the camera holder.
Current status of solid-state lithium batteries employing solid redox polymerization cathodes
NASA Astrophysics Data System (ADS)
Visco, S. J.; Doeff, M. M.; Dejonghe, L. C.
1991-03-01
The rapidly growing demand for secondary batteries having high specific energy and power has naturally led to increased efforts in lithium battery technology. Still, the increased safety risks associated with high energy density systems has tempered the enthusiasm of proponents of such systems for use in the consumer marketplace. The inherent advantages of all-solid-state batteries in regards to safety and reliability are strong factors in advocating their introduction to the marketplace. However, the low ionic conductivity of solid electrolytes relative to nonaqueous liquid electrolytes implies low power densities for solid state systems operating at ambient temperatures. Recent advances in polymer electrolytes have led to the introduction of solid electrolytes having conductivities in the range of 10(exp -4)/ohm cm at room temperature; this is still two orders of magnitude lower than liquid electrolytes. Although these improved ambient conductivities put solid state batteries in the realm of practical devices, it is clear that solid state batteries using such polymeric separators will be thin film devices. Fortunately, thin film fabrication techniques are well established in the plastics and paper industry, and present the possibility of continuous web-form manufacturing. This style of battery manufacture should make solid polymer batteries very cost-competitive with conventional secondary cells. In addition, the greater geometric flexibility of thin film solid state cells should provide benefits in terms of the end-use form factor in device design. This work discusses the status of solid redox polymerization cathodes.
Graphical user interface for a dual-module EMCCD x-ray detector array
NASA Astrophysics Data System (ADS)
Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K.; Bednarek, Daniel R.; Rudin, Stephen
2011-03-01
A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000x to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2kx1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.
Moussa, Ehab M; Wilson, Nathan E; Zhou, Qi Tony; Singh, Satish K; Nema, Sandeep; Topp, Elizabeth M
2018-01-03
Lyophilization and spray drying are widely used to manufacture solid forms of therapeutic proteins. Lyophilization is used to stabilize proteins vulnerable to degradation in solution, whereas spray drying is mainly used to prepare inhalation powders or as an alternative to freezing for storing bulk drug substance. Both processes impose stresses that may adversely affect protein structure, stability and bioactivity. Here, we compared lyophilization with and without controlled ice nucleation, and spray drying for their effects on the solid-state conformation and matrix interactions of a model IgG1 monoclonal antibody (mAb). Solid-state conformation and matrix interactions of the mAb were probed using solid-state hydrogen-deuterium exchange with mass spectrometric analysis (ssHDX-MS), and solid-state Fourier transform infrared (ssFTIR) and solid-state fluorescence spectroscopies. mAb conformation and/or matrix interactions were most perturbed in mannitol-containing samples and the distribution of states was more heterogeneous in sucrose and trehalose samples that were spray dried. The findings demonstrate the sensitivity of ssHDX-MS to changes weakly indicated by spectroscopic methods, and support the broader use of ssHDX-MS to probe formulation and process effects on proteins in solid samples.
Modeling of digital information optical encryption system with spatially incoherent illumination
NASA Astrophysics Data System (ADS)
Bondareva, Alyona P.; Cheremkhin, Pavel A.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Rostislav S.; Starikov, Sergey N.
2015-10-01
State of the art micromirror DMD spatial light modulators (SLM) offer unprecedented framerate up to 30000 frames per second. This, in conjunction with high speed digital camera, should allow to build high speed optical encryption system. Results of modeling of digital information optical encryption system with spatially incoherent illumination are presented. Input information is displayed with first SLM, encryption element - with second SLM. Factors taken into account are: resolution of SLMs and camera, holograms reconstruction noise, camera noise and signal sampling. Results of numerical simulation demonstrate high speed (several gigabytes per second), low bit error rate and high crypto-strength.
In-Situ Cameras for Radiometric Correction of Remotely Sensed Data
NASA Astrophysics Data System (ADS)
Kautz, Jess S.
The atmosphere distorts the spectrum of remotely sensed data, negatively affecting all forms of investigating Earth's surface. To gather reliable data, it is vital that atmospheric corrections are accurate. The current state of the field of atmospheric correction does not account well for the benefits and costs of different correction algorithms. Ground spectral data are required to evaluate these algorithms better. This dissertation explores using cameras as radiometers as a means of gathering ground spectral data. I introduce techniques to implement a camera systems for atmospheric correction using off the shelf parts. To aid the design of future camera systems for radiometric correction, methods for estimating the system error prior to construction, calibration and testing of the resulting camera system are explored. Simulations are used to investigate the relationship between the reflectance accuracy of the camera system and the quality of atmospheric correction. In the design phase, read noise and filter choice are found to be the strongest sources of system error. I explain the calibration methods for the camera system, showing the problems of pixel to angle calibration, and adapting the web camera for scientific work. The camera system is tested in the field to estimate its ability to recover directional reflectance from BRF data. I estimate the error in the system due to the experimental set up, then explore how the system error changes with different cameras, environmental set-ups and inversions. With these experiments, I learn about the importance of the dynamic range of the camera, and the input ranges used for the PROSAIL inversion. Evidence that the camera can perform within the specification set for ELM correction in this dissertation is evaluated. The analysis is concluded by simulating an ELM correction of a scene using various numbers of calibration targets, and levels of system error, to find the number of cameras needed for a full-scale implementation.
Optical Meteor Systems Used by the NASA Meteoroid Environment Office
NASA Technical Reports Server (NTRS)
Kingery, A. M.; Blaauw, R. C.; Cooke, W. J.; Moser, D. E.
2015-01-01
The NASA Meteoroid Environment Office (MEO) uses two main meteor camera networks to characterize the meteoroid environment: an all sky system and a wide field system to study cm and mm size meteors respectively. The NASA All Sky Fireball Network consists of fifteen meteor video cameras in the United States, with plans to expand to eighteen cameras by the end of 2015. The camera design and All-Sky Guided and Real-time Detection (ASGARD) meteor detection software [1, 2] were adopted from the University of Western Ontario's Southern Ontario Meteor Network (SOMN). After seven years of operation, the network has detected over 12,000 multi-station meteors, including meteors from at least 53 different meteor showers. The network is used for speed distribution determination, characterization of meteor showers and sporadic sources, and for informing the public on bright meteor events. The NASA Wide Field Meteor Network was established in December of 2012 with two cameras and expanded to eight cameras in December of 2014. The two camera configuration saw 5470 meteors over two years of operation with two cameras, and has detected 3423 meteors in the first five months of operation (Dec 12, 2014 - May 12, 2015) with eight cameras. We expect to see over 10,000 meteors per year with the expanded system. The cameras have a 20 degree field of view and an approximate limiting meteor magnitude of +5. The network's primary goal is determining the nightly shower and sporadic meteor fluxes. Both camera networks function almost fully autonomously with little human interaction required for upkeep and analysis. The cameras send their data to a central server for storage and automatic analysis. Every morning the servers automatically generates an e-mail and web page containing an analysis of the previous night's events. The current status of the networks will be described, alongside with preliminary results. In addition, future projects, CCD photometry and broadband meteor color camera system, will be discussed.
X-rays only when you want them: optimized pump–probe experiments using pseudo-single-bunch operation
Hertlein, M. P.; Scholl, A.; Cordones, A. A.; Lee, J. H.; Engelhorn, K.; Glover, T. E.; Barbrel, B.; Sun, C.; Steier, C.; Portmann, G.; Robin, D. S.
2015-01-01
Laser pump–X-ray probe experiments require control over the X-ray pulse pattern and timing. Here, the first use of pseudo-single-bunch mode at the Advanced Light Source in picosecond time-resolved X-ray absorption experiments on solutions and solids is reported. In this mode the X-ray repetition rate is fully adjustable from single shot to 500 kHz, allowing it to be matched to typical laser excitation pulse rates. Suppressing undesired X-ray pulses considerably reduces detector noise and improves signal to noise in time-resolved experiments. In addition, dose-induced sample damage is considerably reduced, easing experimental setup and allowing the investigation of less robust samples. Single-shot X-ray exposures of a streak camera detector using a conventional non-gated charge-coupled device (CCD) camera are also demonstrated. PMID:25931090
Height Control and Deposition Measurement for the Electron Beam Free Form Fabrication (EBF3) Process
NASA Technical Reports Server (NTRS)
Hafley, Robert A. (Inventor); Seufzer, William J. (Inventor)
2017-01-01
A method of controlling a height of an electron beam gun and wire feeder during an electron freeform fabrication process includes utilizing a camera to generate an image of the molten pool of material. The image generated by the camera is utilized to determine a measured height of the electron beam gun relative to the surface of the molten pool. The method further includes ensuring that the measured height is within the range of acceptable heights of the electron beam gun relative to the surface of the molten pool. The present invention also provides for measuring a height of a solid metal deposit formed upon cooling of a molten pool. The height of a single point can be measured, or a plurality of points can be measured to provide 2D or 3D surface height measurements.
X-rays only when you want them: Optimized pump–probe experiments using pseudo-single-bunch operation
Hertlein, M. P.; Scholl, A.; Cordones, A. A.; ...
2015-04-02
Laser pump–X-ray probe experiments require control over the X-ray pulse pattern and timing. Here, the first use of pseudo-single-bunch mode at the Advanced Light Source in picosecond time-resolved X-ray absorption experiments on solutions and solids is reported. In this mode the X-ray repetition rate is fully adjustable from single shot to 500 kHz, allowing it to be matched to typical laser excitation pulse rates. Suppressing undesired X-ray pulses considerably reduces detector noise and improves signal to noise in time-resolved experiments. In addition, dose-induced sample damage is considerably reduced, easing experimental setup and allowing the investigation of less robust samples. Single-shotmore » X-ray exposures of a streak camera detector using a conventional non-gated charge-coupled device (CCD) camera are also demonstrated.« less
NASA Technical Reports Server (NTRS)
2006-01-01
15 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a mid-summer view of a portion of the south polar residual cap of Mars. The large, relatively flat-lying, puzzle-like pieces in this scene are mesas composed largely of solid carbon dioxide. Location near: 85.5oS, 76.8oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SummerLiftoff of shuttle Challenger and mission STS 51-B
NASA Technical Reports Server (NTRS)
1985-01-01
Liftoff of shuttle Challenger and mission STS 51-B. The shuttle orbiter, its external tank and one of the solid rocket boosters (SRB) are still visible as it leaves the pad. This photo was taken from across the water over the top of a grove of trees (051); Photo taken from camera on the launch complex, showing the orbiter just clearing the tower (052); Side view of the liftoff as the SRBs begin to fire (053).
NASA Astrophysics Data System (ADS)
Xu, R. C.; Wang, X. L.; Zhang, S. Z.; Xia, Y.; Xia, X. H.; Wu, J. B.; Tu, J. P.
2018-01-01
Large interfacial resistance between electrode and electrolyte limits the development of high-performance all-solid-state batteries. Herein we report a uniform coating of Li7P3S11 solid electrolyte on MoS2 to form a MoS2/Li7P3S11 composite electrode for all-solid-state lithium ion batteries. The as-synthesized Li7P3S11 processes a high ionic of 2.0 mS cm-1 at room temperature. Due to homogeneous union and reduced interfacial resistance, the assembled all-solid-state batteries with the MoS2/Li7P3S11 composite electrode exhibit higher reversible capacity of 547.1 mAh g-1 at 0.1 C and better cycling stability than the counterpart based on untreated MoS2. Our study provides a new reference for design/fabrication of advanced electrode materials for high-performance all-solid-state batteries.
KAPAO Prime: Design and Simulation
NASA Astrophysics Data System (ADS)
McGonigle, Lorcan; Choi, P. I.; Severson, S. A.; Spjut, E.
2013-01-01
KAPAO (KAPAO A Pomona Adaptive Optics instrument) is a dual-band natural guide star adaptive optics system designed to measure and remove atmospheric aberration over UV-NIR wavelengths from Pomona College’s telescope atop Table Mountain. We present here, the final optical system, KAPAO Prime, designed in Zemax Optical Design Software that uses custom off-axis paraboloid mirrors (OAPs) to manipulate light appropriately for a Shack-Hartman wavefront sensor, deformable mirror, and science cameras. KAPAO Prime is characterized by diffraction limited imaging over the full 81” field of view of our optical camera at f/33 as well as over the smaller field of view of our NIR camera at f/50. In Zemax, tolerances of 1% on OAP focal length and off-axis distance were shown to contribute an additional 4 nm of wavefront error (98% confidence) over the field of view of our optical camera; the contribution from surface irregularity was determined analytically to be 40nm for OAPs specified to λ/10 surface irregularity (632.8nm). Modeling of the temperature deformation of the breadboard in SolidWorks revealed 70 micron contractions along the edges of the board for a decrease of 75°F when applied to OAP positions such displacements from the optimal layout are predicted to contribute an additional 20 nanometers of wavefront error. Flexure modeling of the breadboard due to gravity is on-going. We hope to begin alignment and testing of KAPAO Prime in Q1 2013.
Advanced solid-state NMR spectroscopy of natural organic matter
USDA-ARS?s Scientific Manuscript database
Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially the systematic approach to NOM characterization, and their ...
Quantitative secondary electron detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Jyoti; Joy, David C.; Nayak, Subuhadarshi
Quantitative Secondary Electron Detection (QSED) using the array of solid state devices (SSD) based electron-counters enable critical dimension metrology measurements in materials such as semiconductors, nanomaterials, and biological samples (FIG. 3). Methods and devices effect a quantitative detection of secondary electrons with the array of solid state detectors comprising a number of solid state detectors. An array senses the number of secondary electrons with a plurality of solid state detectors, counting the number of secondary electrons with a time to digital converter circuit in counter mode.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false State-Specific Volatile Solids (VS) and Nitrogen (N) Excretion Rates for Cattle JJ Table JJ-3 to Subpart JJ of Part 98 Protection of... Volatile Solids (VS) and Nitrogen (N) Excretion Rates for Cattle State Volatile solids excretion rate (kg...
A survey of current solid state star tracker technology
NASA Astrophysics Data System (ADS)
Armstrong, R. W.; Staley, D. A.
1985-12-01
This paper is a survey of the current state of the art in design of star trackers for spacecraft attitude determination systems. Specific areas discussed are sensor technology, including the current state-of-the-art solid state sensors and techniques of mounting and cooling the sensor, analog image preprocessing electronics performance, and digital processing hardware and software. Three examples of area array solid state star tracker development are presented - ASTROS, developed by the Jet Propulsion Laboratory, the Retroreflector Field Tracker (RFT) by Ball Aerospace, and TRW's MADAN. Finally, a discussion of solid state line arrays explores the possibilities for one-dimensional imagers which offer simplified scan control electronics.
Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams
Bang, W.; Albright, B. J.; Bradley, P. A.; ...
2015-09-22
With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has beenmore » unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.« less
Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams.
Bang, W; Albright, B J; Bradley, P A; Gautier, D C; Palaniyappan, S; Vold, E L; Santiago Cordoba, M A; Hamilton, C E; Fernández, J C
2015-09-22
With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. Here we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.
Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bang, W.; Albright, B. J.; Bradley, P. A.
With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has beenmore » unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.« less
Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams
NASA Astrophysics Data System (ADS)
Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Cordoba, M. A. Santiago; Hamilton, C. E.; Fernández, J. C.
2015-09-01
With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. Here we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.
Zhang, Wei; Wang, Zhong-Sheng
2014-07-09
Replacing liquid-state electrolytes with solid-state electrolytes has been proven to be an effective way to improve the durability of dye-sensitized solar cells (DSSCs). We report herein the synthesis of amorphous ionic conductors based on polyhedral oligomeric silsesquioxane (POSS) with low glass transition temperatures for solid-state DSSCs. As the ionic conductor is amorphous and in the elastomeric state at the operating temperature of DSSCs, good pore filling in the TiO2 film and good interfacial contact between the solid-state electrolyte and the TiO2 film can be guaranteed. When the POSS-based ionic conductor containing an allyl group is doped with only iodine as the solid-state electrolyte without any other additives, power conversion efficiency of 6.29% has been achieved with good long-term stability under one-sun soaking for 1000 h.
9. EMPIRE STATE MINE, BOTTOM ORE BIN/SHOOT. TIN ROOF OF ...
9. EMPIRE STATE MINE, BOTTOM ORE BIN/SHOOT. TIN ROOF OF SOUTHERN MOST BUILDING AND UPPER ORE SHOOT VISIBLE. CAMERA POINTED EAST-NORTHEAST. - Florida Mountain Mining Sites, Empire State Mine, West side of Florida Mountain, Silver City, Owyhee County, ID
Modeling solid-state transformations occurring in dissolution testing.
Laaksonen, Timo; Aaltonen, Jaakko
2013-04-15
Changes in the solid-state form can occur during dissolution testing of drugs. This can often complicate interpretation of results. Additionally, there can be several mechanisms through which such a change proceeds, e.g. solvent-mediated transformation or crystal growth within the drug material itself. Here, a mathematical model was constructed to study the dissolution testing of a material, which undergoes such changes. The model consisted of two processes: the recrystallization of the drug from a supersaturated liquid state caused by the dissolution of the more soluble solid form and the crystal growth of the stable solid form at the surface of the drug formulation. Comparison to experimental data on theophylline dissolution showed that the results obtained with the model matched real solid-state changes and that it was able to distinguish between cases where the transformation was controlled either by solvent-mediated crystallization or solid-state crystal growth. Copyright © 2013 Elsevier B.V. All rights reserved.
40 CFR 256.22 - Recommendations for State regulatory powers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Recommendations for State regulatory powers. 256.22 Section 256.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 256.22 - Recommendations for State regulatory powers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Recommendations for State regulatory powers. 256.22 Section 256.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 256.21 - Requirements for State regulatory powers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Requirements for State regulatory powers. 256.21 Section 256.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 256.21 - Requirements for State regulatory powers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Requirements for State regulatory powers. 256.21 Section 256.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 256.20 - Requirements for State legal authority.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Requirements for State legal authority. 256.20 Section 256.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 256.20 - Requirements for State legal authority.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Requirements for State legal authority. 256.20 Section 256.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 256.21 - Requirements for State regulatory powers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Requirements for State regulatory powers. 256.21 Section 256.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 256.20 - Requirements for State legal authority.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Requirements for State legal authority. 256.20 Section 256.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 256.22 - Recommendations for State regulatory powers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Recommendations for State regulatory powers. 256.22 Section 256.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 256.20 - Requirements for State legal authority.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Requirements for State legal authority. 256.20 Section 256.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 256.20 - Requirements for State legal authority.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Requirements for State legal authority. 256.20 Section 256.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
A zwitterionic gel electrolyte for efficient solid-state supercapacitors
Peng, Xu; Liu, Huili; Yin, Qin; Wu, Junchi; Chen, Pengzuo; Zhang, Guangzhao; Liu, Guangming; Wu, Changzheng; Xie, Yi
2016-01-01
Gel electrolytes have attracted increasing attention for solid-state supercapacitors. An ideal gel electrolyte usually requires a combination of advantages of high ion migration rate, reasonable mechanical strength and robust water retention ability at the solid state for ensuring excellent work durability. Here we report a zwitterionic gel electrolyte that successfully brings the synergic advantages of robust water retention ability and ion migration channels, manifesting in superior electrochemical performance. When applying the zwitterionic gel electrolyte, our graphene-based solid-state supercapacitor reaches a volume capacitance of 300.8 F cm−3 at 0.8 A cm−3 with a rate capacity of only 14.9% capacitance loss as the current density increases from 0.8 to 20 A cm−3, representing the best value among the previously reported graphene-based solid-state supercapacitors, to the best of our knowledge. We anticipate that zwitterionic gel electrolyte may be developed as a gel electrolyte in solid-state supercapacitors. PMID:27225484
NASA Astrophysics Data System (ADS)
Chen, Y.-R.; Chiu, K.-F.; Lin, H. C.; Chen, C.-L.; Hsieh, C. Y.; Tsai, C. B.; Chu, B. T. T.
2014-11-01
Sulfonated polyetheretherketone (SPEEK) has been synthesised by sulphonation process and used as the solid-state electrolyte, binder and surfactant for supercapacitors. Reduced graphene dispersed by SPEEK is used as a high-efficiency conducting additive in solid-state supercapacitors. It is found that SPEEK can improve the stability of the reduced graphene dispersion significantly, and therefore, the solid-state supercapacitors show a large decrease in IR drop and charge-transfer resistance (Rct), resulting in a higher rate capability. The solid-state supercapacitors with the activated carbon/reduced graphene/SPEEK/electrode can be operated from 1 to 8 A/g and exhibit capacity retention of 93%. The noteworthy is more than twice higher value for capacity retention by comparison with the solid-state supercapacitors using activated carbon/reduced graphene/PVDF electrode (capacity retention is 36%). The cell of reduced graphene with SPEEK can be cycled over 5000 times at 5 A/g with no capacitance fading.
Hakey, Patrick M; Allis, Damian G; Ouellette, Wayne; Korter, Timothy M
2009-04-30
The cryogenic terahertz spectrum of (+)-methamphetamine hydrochloride from 10.0 to 100.0 cm(-1) is presented, as is the complete structural analysis and vibrational assignment of the compound using solid-state density functional theory. This cryogenic investigation reveals multiple spectral features that were not previously reported in room-temperature terahertz studies of the title compound. Modeling of the compound employed eight density functionals utilizing both solid-state and isolated-molecule methods. The results clearly indicate the necessity of solid-state simulations for the accurate assignment of solid-state THz spectra. Assignment of the observed spectral features to specific atomic motions is based on the BP density functional, which provided the best-fit solid-state simulation of the experimental spectrum. The seven experimental spectral features are the result of thirteen infrared-active vibrational modes predicted at a BP/DNP level of theory with more than 90% of the total spectral intensity associated with external crystal vibrations.
Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-01-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants. PMID:23603809
Temperature and melt solid interface control during crystal growth
NASA Technical Reports Server (NTRS)
Batur, Celal
1990-01-01
Findings on the adaptive control of a transparent Bridgman crystal growth furnace are summarized. The task of the process controller is to establish a user specified axial temperature profile by controlling the temperatures in eight heating zones. The furnace controller is built around a computer. Adaptive PID (Proportional Integral Derivative) and Pole Placement control algorithms are applied. The need for adaptive controller stems from the fact that the zone dynamics changes with respect to time. The controller was tested extensively on the Lead Bromide crystal growth. Several different temperature profiles and ampoule's translational rates are tried. The feasibility of solid liquid interface quantification by image processing was determined. The interface is observed by a color video camera and the image data file is processed to determine if the interface is flat, convex or concave.
United States Homeland Security and National Biometric Identification
2002-04-09
security number. Biometrics is the use of unique individual traits such as fingerprints, iris eye patterns, voice recognition, and facial recognition to...technology to control access onto their military bases using a Defense Manpower Management Command developed software application. FACIAL Facial recognition systems...installed facial recognition systems in conjunction with a series of 200 cameras to fight street crime and identify terrorists. The cameras, which are
High temperature solid state storage cell
Rea, Jesse R.; Kallianidis, Milton; Kelsey, G. Stephen
1983-01-01
A completely solid state high temperature storage cell comprised of a solid rechargeable cathode such as TiS.sub.2, a solid electrolyte which remains solid at the high temperature operating conditions of the cell and which exhibits high ionic conductivity at such elevated temperatures such as an electrolyte comprised of lithium iodide, and a solid lithium or other alkali metal alloy anode (such as a lithium-silicon alloy) with 5-50% by weight of said anode being comprised of said solid electrolyte.
40 CFR 256.22 - Recommendations for State regulatory powers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste... prohibit new open dumps and close or upgrade all existing open dumps. (a) Solid waste disposal standards... solid waste disposal facility. These procedures should include identification of future land use or the...
40 CFR 256.22 - Recommendations for State regulatory powers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste... prohibit new open dumps and close or upgrade all existing open dumps. (a) Solid waste disposal standards... solid waste disposal facility. These procedures should include identification of future land use or the...
40 CFR 256.21 - Requirements for State regulatory powers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste... be adequate to enforce solid waste disposal standards which are equivalent to or more stringent than the criteria for classification of solid waste disposal facilities (40 CFR part 257). Such authority...
40 CFR 256.21 - Requirements for State regulatory powers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste... be adequate to enforce solid waste disposal standards which are equivalent to or more stringent than the criteria for classification of solid waste disposal facilities (40 CFR part 257). Such authority...
Megapixel mythology and photospace: estimating photospace for camera phones from large image sets
NASA Astrophysics Data System (ADS)
Hultgren, Bror O.; Hertel, Dirk W.
2008-01-01
It is a myth that more pixels alone result in better images. The marketing of camera phones in particular has focused on their pixel numbers. However, their performance varies considerably according to the conditions of image capture. Camera phones are often used in low-light situations where the lack of a flash and limited exposure time will produce underexposed, noisy and blurred images. Camera utilization can be quantitatively described by photospace distributions, a statistical description of the frequency of pictures taken at varying light levels and camera-subject distances. If the photospace distribution is known, the user-experienced distribution of quality can be determined either directly by direct measurement of subjective quality, or by photospace-weighting of objective attributes. The population of a photospace distribution requires examining large numbers of images taken under typical camera phone usage conditions. ImagePhi was developed as a user-friendly software tool to interactively estimate the primary photospace variables, subject illumination and subject distance, from individual images. Additionally, subjective evaluations of image quality and failure modes for low quality images can be entered into ImagePhi. ImagePhi has been applied to sets of images taken by typical users with a selection of popular camera phones varying in resolution. The estimated photospace distribution of camera phone usage has been correlated with the distributions of failure modes. The subjective and objective data show that photospace conditions have a much bigger impact on image quality of a camera phone than the pixel count of its imager. The 'megapixel myth' is thus seen to be less a myth than an ill framed conditional assertion, whose conditions are to a large extent specified by the camera's operational state in photospace.
Widdifield, Cory M; Bryce, David L
2009-09-07
Solid-state NMR spectroscopy and GIPAW DFT calculations reveal the pronounced sensitivity of (79/81)Br and (25)Mg quadrupolar coupling constants to subtle aspects of solid state structure which were not previously detected by pXRD methods.
Method and system for making integrated solid-state fire-sets and detonators
O'Brien, Dennis W.; Druce, Robert L.; Johnson, Gary W.; Vogtlin, George E.; Barbee, Jr., Troy W.; Lee, Ronald S.
1998-01-01
A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques.
Schwartz, Michael; White, James H.; Sammells, Anthony F.
2005-09-27
This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.
Schwartz, Michael; White, James H.; Sammels, Anthony F.
2000-01-01
This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.
NASA Astrophysics Data System (ADS)
Martin, Joseph D.
2015-03-01
When solid state physics emerged in the 1940s, its name was controversial. By the 1970s, some physicists came to prefer "condensed matter" as a way to identify the discipline of physics examining complex matter. Physicists and historians often gloss this transition as a simple rebranding of a problematically named field, but attention to the motives behind these names reveals telling nuances. "Solid state physics" and "condensed matter physics"—along with "materials science," which also emerged during the Cold War—were named in accordance with ideological commitments about the identity of physics. Historians, therefore, can profitably understand solid state and condensed matter physics as distinct disciplines. Condensed matter, rather than being continuous with solid state physics, should be considered alongside materials science as an outlet for specific frustrations with the way solid state was organized.
Solid-State Powered X-band Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Othman, Mohamed A.K.; Nann, Emilio A.; Dolgashev, Valery A.
2017-03-06
In this report we disseminate the hot test results of an X-band 100-W solid state amplifier chain for linear accelerator (linac) applications. Solid state power amplifiers have become increasingly attractive solutions for achieving high power in radar and maritime applications. Here the performance of solid state amplifiers when driving an RF cavity is investigated. Commercially available, matched and fully-packaged GaN on SiC HEMTs are utilized, comprising a wideband driver stage and two power stages. The amplifier chain has a high poweradded- efficiency and is able to supply up to ~1.2 MV/m field gradient at 9.2 GHz in a simple testmore » cavity, with a peak power exceeding 100 W. These findings set forth the enabling technology for solid-state powered linacs.« less
Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A
2016-01-01
Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.
STS-99 Commander Kregel poses with EARTHKAM camera on OV-105's flight deck
2000-03-30
STS099-314-035 (11-22 February 2000) ---Astronaut Kevin R. Kregel, mission commander, works with camera equipment, which was used for the EarthKAM project. The camera stayed busy throughout the 11-day mission taking vertical imagery of the Earth points of opportunity for the project. Students across the United States and in France, Germany and Japan took photos throughout the STS-99 mission. And they are using these new photos, plus all the images already available in the EarthKAM system, to enhance their classroom learning in Earth and space science, social studies, geography, mathematics and more.
Nonholonomic camera-space manipulation using cameras mounted on a mobile base
NASA Astrophysics Data System (ADS)
Goodwine, Bill; Seelinger, Michael J.; Skaar, Steven B.; Ma, Qun
1998-10-01
The body of work called `Camera Space Manipulation' is an effective and proven method of robotic control. Essentially, this technique identifies and refines the input-output relationship of the plant using estimation methods and drives the plant open-loop to its target state. 3D `success' of the desired motion, i.e., the end effector of the manipulator engages a target at a particular location with a particular orientation, is guaranteed when there is camera space success in two cameras which are adequately separated. Very accurate, sub-pixel positioning of a robotic end effector is possible using this method. To date, however, most efforts in this area have primarily considered holonomic systems. This work addresses the problem of nonholonomic camera space manipulation by considering the problem of a nonholonomic robot with two cameras and a holonomic manipulator on board the nonholonomic platform. While perhaps not as common in robotics, such a combination of holonomic and nonholonomic degrees of freedom are ubiquitous in industry: fork lifts and earth moving equipment are common examples of a nonholonomic system with an on-board holonomic actuator. The nonholonomic nature of the system makes the automation problem more difficult due to a variety of reasons; in particular, the target location is not fixed in the image planes, as it is for holonomic systems (since the cameras are attached to a moving platform), and there is a fundamental `path dependent' nature of nonholonomic kinematics. This work focuses on the sensor space or camera-space-based control laws necessary for effectively implementing an autonomous system of this type.
Applications of Action Cam Sensors in the Archaeological Yard
NASA Astrophysics Data System (ADS)
Pepe, M.; Ackermann, S.; Fregonese, L.; Fassi, F.; Adami, A.
2018-05-01
In recent years, special digital cameras called "action camera" or "action cam", have become popular due to their low price, smallness, lightness, strength and capacity to make videos and photos even in extreme environment surrounding condition. Indeed, these particular cameras have been designed mainly to capture sport actions and work even in case of dirt, bumps, or underwater and at different external temperatures. High resolution of Digital single-lens reflex (DSLR) cameras are usually preferred to be employed in photogrammetric field. Indeed, beyond the sensor resolution, the combination of such cameras with fixed lens with low distortion are preferred to perform accurate 3D measurements; at the contrary, action cameras have small and wide-angle lens, with a lower performance in terms of sensor resolution, lens quality and distortions. However, by considering the characteristics of the action cameras to acquire under conditions that may result difficult for standard DSLR cameras and because of their lower price, these could be taken into consideration as a possible and interesting approach during archaeological excavation activities to document the state of the places. In this paper, the influence of lens radial distortion and chromatic aberration on this type of cameras in self-calibration mode and an evaluation of their application in the field of Cultural Heritage will be investigated and discussed. Using a suitable technique, it has been possible to improve the accuracy of the 3D model obtained by action cam images. Case studies show the quality and the utility of the use of this type of sensor in the survey of archaeological artefacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flaugher, B.; Diehl, H. T.; Alvarez, O.
2015-11-15
The Dark Energy Camera is a new imager with a 2.°2 diameter field of view mounted at the prime focus of the Victor M. Blanco 4 m telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five-element optical corrector, seven filters, a shutter with a 60 cm aperture, and a charge-coupled device (CCD) focal plane of 250 μm thick fully depleted CCDs cooled inside a vacuummore » Dewar. The 570 megapixel focal plane comprises 62 2k × 4k CCDs for imaging and 12 2k × 2k CCDs for guiding and focus. The CCDs have 15 μm × 15 μm pixels with a plate scale of 0.″263 pixel{sup −1}. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 s with 6–9 electron readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.« less
Technical and instrumental prerequisites for single-port laparoscopic solo surgery: State of art
Kim, Say-June; Lee, Sang Chul
2015-01-01
With the aid of advanced surgical techniques and instruments, single-port laparoscopic surgery (SPLS) can be accomplished with just two surgical members: an operator and a camera assistant. Under these circumstances, the reasonable replacement of a human camera assistant by a mechanical camera holder has resulted in a new surgical procedure termed single-port solo surgery (SPSS). In SPSS, the fixation and coordinated movement of a camera held by mechanical devices provides fixed and stable operative images that are under the control of the operator. Therefore, SPSS primarily benefits from the provision of the operator’s eye-to-hand coordination. Because SPSS is an intuitive modification of SPLS, the indications for SPSS are the same as those for SPLS. Though SPSS necessitates more actions than the surgery with a human assistant, these difficulties seem to be easily overcome by the greater provision of static operative images and the need for less lens cleaning and repositioning of the camera. When the operation is expected to be difficult and demanding, the SPSS process could be assisted by the addition of another instrument holder besides the camera holder. PMID:25914453
Flaugher, B.
2015-04-11
The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250-μm thick fully depleted CCDs cooled inside a vacuum Dewar.more » The 570 Mpixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15μm x 15μm pixels with a plate scale of 0.263" per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumner, S.C.J.
1986-01-01
Solid state and solution /sup 13/C NMR have been used to study the conformations of the racemic mixtures and single enantiomers of methadone hydrochloride, alpha and beta methadol hydrochloride, and alpha and beta acetylmethadol hydrochloride. The NMR spectra acquired for the compounds as solids, and in polar and nonpolar solvents are compared, in order to determine the conformation of the molecules in solution. To determine the reliability of assigning solution conformations by comparing solution and solid state chemical shift data, three bond coupling constants measured in solution are compared with those calculated from X-ray data. The conformations of the racemicmore » mixture and plus enantiomer of methadone hydrochloride have been shown to be very similar in the solid state, where minor differences in conformation can be seen by comparing NMR spectra obtained for the solids. Also shown is that the molecules of methadone hydrochloride have conformations in polar and in nonpolar solvents which are very similar to the conformation of the molecules in the solid state.« less
An Application Of High-Speed Photography To The Real Ignition Course Of Composite Propellants
NASA Astrophysics Data System (ADS)
Fusheng, Zhang; Gongshan, Cheng; Yong, Zhang; Fengchun, Li; Fanpei, Lei
1989-06-01
That the actual solid rocket motor behavior and delay time of the ignition of Ap/HTPB composite propellant ignited by high energy pyrotechics contained condensed particles have been investigated is the key of this paper. In experiments, using high speed camera, the pressure transducer, the photodiode and synchro circuit control system designed by us synchronistically observe and record all course and details of the ignition. And pressure signal, photodiode signal and high speed photography frame are corresponded one by one.
SSCE, Rominger works with middeck experiment
1997-08-29
STS085-339-006 (7 - 19 August 1997) --- Astronaut Kent V. Rominger, pilot, checks on the Solid Surface Combustion Experiment (SSCE) on the mid-deck of the Space Shuttle Discovery. The experiment, which occupies the space of four lockers, consists of a Polymethyl Methacrylate (PMMA) fuel sample internally mounted in the center of a pressurized chamber. Two windows orthogonal to each other in the chamber wall allow viewing by a 16mm camera of the side edge and top of the PMMA sample.
NASA Technical Reports Server (NTRS)
2006-01-01
14 June 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the outer edge of the south polar residual cap of Mars. During summer, the scarps that delineate the sides of the mesas, retreat (on average) by about 3 meters (10 feet) owing to the sublimation of solid carbon dioxide. Location near: 85.6oS, 349.8oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern SummerProgress on Development of the New FDIRC PID Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vavra, Jerry
2012-08-03
We present a progress status of a new concept of PID detector called FDIRC, intended to be used at the SuperB experiment, which requires {pi}/K separation up to a few GeV/c. The new photon camera is made of the solid fused-silica optics with a volume 25x smaller and speed increased by a factor of ten compared to the BaBar DIRC, and therefore will be much less sensitive to electromagnetic and neutron background
Launching of the Shuttle Discovery and the STS 51-G mission
1985-06-17
51G-S-100 (17 June 1985) --- A low-angle 35mm tracking view of the Space Shuttle Discovery, its external tank and two solid rocket boosters speeding from the KSC launch facility to begin NASA STS 51-G. The camera has captured the diamond shock effect associated with the launch phase or orbiter vehicles. Inside the Discovery are seven crewmembers and a variety of payloads representing international interests. Liftoff for 51-G occurred at 7:33:043 a.m. (EDT), June 17, 1985.
Forbes, Ruaridh; Makhija, Varun; Veyrinas, Kévin; Stolow, Albert; Lee, Jason W L; Burt, Michael; Brouard, Mark; Vallance, Claire; Wilkinson, Iain; Lausten, Rune; Hockett, Paul
2017-07-07
The Pixel-Imaging Mass Spectrometry (PImMS) camera allows for 3D charged particle imaging measurements, in which the particle time-of-flight is recorded along with (x, y) position. Coupling the PImMS camera to an ultrafast pump-probe velocity-map imaging spectroscopy apparatus therefore provides a route to time-resolved multi-mass ion imaging, with both high count rates and large dynamic range, thus allowing for rapid measurements of complex photofragmentation dynamics. Furthermore, the use of vacuum ultraviolet wavelengths for the probe pulse allows for an enhanced observation window for the study of excited state molecular dynamics in small polyatomic molecules having relatively high ionization potentials. Herein, preliminary time-resolved multi-mass imaging results from C 2 F 3 I photolysis are presented. The experiments utilized femtosecond VUV and UV (160.8 nm and 267 nm) pump and probe laser pulses in order to demonstrate and explore this new time-resolved experimental ion imaging configuration. The data indicate the depth and power of this measurement modality, with a range of photofragments readily observed, and many indications of complex underlying wavepacket dynamics on the excited state(s) prepared.
Instruments for Planetary Exploration with CubeSats and SmallSats
NASA Astrophysics Data System (ADS)
Raymond, Carol; Jaumann, Ralf; Vane, Gregg; Baker, John; Castillo-Rogez, Julie; Yano, Hajime
2016-07-01
Planetary sensors and instruments are undergoing a revolutionary transformation as solid-state electronics and advanced detectors allow drastic reductions in size, mass and power relative to instruments flown in the past. Given their reduced resource needs, these capable new systems are potentially compatible with use on smallsats. New built-in processing techniques further enable increased science return in constrained resource environments. In the summer of 2014 an international group of scientists, engineers, and technologists started a study to define investigations to be carried out by nano-spacecraft, and instruments that would enable breakthrough science from these small platforms were identified. The possibilities include passive remote sensing instruments such as imagers, spectrometers, magnetometers, dust analyzers; active instruments such as radar, lidar, laser-induced breakdown spectroscopy (LIBS), muonography, projectiles; and landed packages and in-situ probes such as instrumented penetrators, seismometers, and in-situ sample analysis packages. Many of the passive and active instruments could be used in-situ for very high-resolution measurements over limited areas. Smallsats lend themselves to observing strategies that allow dense spatial and temporal sampling using multiple flight system elements, covering a range of observing conditions, and multi-scale measurements with concurrent surface and remote observations. The lower cost of smallsats allows visiting a large range of targets and provides an architecture for cooperating distributed networks of sensors. The current state-of-the-art in smallsat payloads includes instrument suites on the Philae lander (Rosetta), and the MINERVA-II rovers and MASCOT on Hayabusa-2. Many Cubesat form factor instruments are either built or in development, including impactors and penetrators, and several new technologies are making their debut in the smallsat arena. The Philae payload included the CONSERT active radar experiment, MUPUS hammer and heat flow probes, magnetometer, ROLIS cameras and ROSINA mass spectrometer. MASCOT carries MicrOmega (NIR spectrometer), magnetometer, camera, and radiometer. The INSPIRE Cubesat mission carries a 1/2U Vector Helium Magnetometer. An intelligent camera maturing for flight in 2018 on the NEA Scout Cubesat mission promises to deliver a low-cost dual-use navigation and science capability at Cubesat scale. Cubesat versions of VIS-IR imaging spectrometers, neutron and gamma-ray spectrometers, mass spectrometers, tunable laser diode spectrometer and active radar are under development. Acknowledgements: This study is sponsored by the International Academy of Astronautics (IAA). Part of this work is being carried out at the Jet Propulsion Lab, California Institute of Technology, under contract to NASA.
Solid State Division annual progress report for period ending December 31, 1975
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkinson, M.K.; Young, F.W. Jr.
1976-05-01
Research activities are reported in programs on theoretical solid state physics, physical properties of solids, radiation effects in metals, neutron scattering, research materials, and isotope research materials. (JRD)
Research on range-gated laser active imaging seeker
NASA Astrophysics Data System (ADS)
You, Mu; Wang, PengHui; Tan, DongJie
2013-09-01
Compared with other imaging methods such as millimeter wave imaging, infrared imaging and visible light imaging, laser imaging provides both a 2-D array of reflected intensity data as well as 2-D array of range data, which is the most important data for use in autonomous target acquisition .In terms of application, it can be widely used in military fields such as radar, guidance and fuse. In this paper, we present a laser active imaging seeker system based on range-gated laser transmitter and sensor technology .The seeker system presented here consist of two important part, one is laser image system, which uses a negative lens to diverge the light from a pulse laser to flood illuminate a target, return light is collected by a camera lens, each laser pulse triggers the camera delay and shutter. The other is stabilization gimbals, which is designed to be a rotatable structure both in azimuth and elevation angles. The laser image system consists of transmitter and receiver. The transmitter is based on diode pumped solid-state lasers that are passively Q-switched at 532nm wavelength. A visible wavelength was chosen because the receiver uses a Gen III image intensifier tube with a spectral sensitivity limited to wavelengths less than 900nm.The receiver is image intensifier tube's micro channel plate coupled into high sensitivity charge coupled device camera. The image has been taken at range over one kilometer and can be taken at much longer range in better weather. Image frame frequency can be changed according to requirement of guidance with modifiable range gate, The instantaneous field of views of the system was found to be 2×2 deg. Since completion of system integration, the seeker system has gone through a series of tests both in the lab and in the outdoor field. Two different kinds of buildings have been chosen as target, which is located at range from 200m up to 1000m.To simulate dynamic process of range change between missile and target, the seeker system has been placed on the truck vehicle running along the road in an expected speed. The test result shows qualified image and good performance of the seeker system.
Basic performance and stability of a CdTe solid-state detector panel.
Tsuchiya, Katsutoshi; Takahashi, Isao; Kawaguchi, Tsuneaki; Yokoi, Kazuma; Morimoto, Yuuichi; Ishitsu, Takafumi; Suzuki, Atsurou; Ueno, Yuuichirou; Kobashi, Keiji
2010-05-01
We have developed a prototype gamma camera system (R1-M) using a cadmium telluride (CdTe) detector panel and evaluated the basic performance and the spectral stability. The CdTe panel consists of 5-mm-thick crystals. The field of view is 134 x 268 mm comprising 18,432 pixels with a pixel pitch of 1.4 mm. Replaceable small CdTe modules are mounted on to the circuit board by dedicated zero insertion force connectors. To make the readout circuit compact, the matrix read out is processed by dedicated ASICs. The panel is equipped with a cold-air cooling system. The temperature and humidity in the panel were kept at 20 degrees C and below 70% relative humidity. CdTe polarization was suppressed by the bias refresh technique to stabilize the detector. We also produced three dedicated square pixel-matched collimators: LEGP (20 mm-thick), LEHR (27 mm-thick), and LEUHR (35 mm-thick). We evaluated their basic performance (energy resolution, system resolution, and sensitivity) and the spectral stability in terms of short-term (several hours of continuous acquisition) and long-term (infrequent measurements over more than a year) activity. The intrinsic energy resolution (FWHM) acquired with Tc-99m (140.5 keV) was 6.6%. The spatial resolutions (FWHM at a distance of 100 mm) with LEGP, LEHR, and LEUHR collimators were 5.7, 4.9, and 4.2 mm, and the sensitivities were 71, 39, and 23 cps/MBq, respectively. The energy peak position and the intrinsic energy resolution after several hours of operation were nearly the same as the values a few minutes after the system was powered on; the variation of the peak position was <0.2%, and that of the resolution was about 0.3%. Infrequent measurements conducted over a year showed that the variations of the energy peak position and the intrinsic energy resolution of the system were at a similar level to those described above. The basic performance of the CdTe-gamma camera system was evaluated, and its stability was verified. It was shown that the camera could be operated daily for several months without calibration.
Tribological properties of surfaces
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1978-01-01
The real area of contact between two solid surfaces is only a small portion of the apparent area. Deformation of these areas can result in solid state contact through surface films. For clean solid to solid contact strong adhesive bonding occurs across the interface. Under these conditions many properties of the solid such as the metallurgical and chemical nature of metals can influence adhesion, friction, and wear behavior. The presence of gases, liquids, and solid films on the surface of solids alter markedly tribological characteristics. These surface films can also considerably change the mechanical effects of solid state contact on bulk material behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma
Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less
Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma; ...
2018-02-15
Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less
Novel health monitoring method using an RGB camera.
Hassan, M A; Malik, A S; Fofi, D; Saad, N; Meriaudeau, F
2017-11-01
In this paper we present a novel health monitoring method by estimating the heart rate and respiratory rate using an RGB camera. The heart rate and the respiratory rate are estimated from the photoplethysmography (PPG) and the respiratory motion. The method mainly operates by using the green spectrum of the RGB camera to generate a multivariate PPG signal to perform multivariate de-noising on the video signal to extract the resultant PPG signal. A periodicity based voting scheme (PVS) was used to measure the heart rate and respiratory rate from the estimated PPG signal. We evaluated our proposed method with a state of the art heart rate measuring method for two scenarios using the MAHNOB-HCI database and a self collected naturalistic environment database. The methods were furthermore evaluated for various scenarios at naturalistic environments such as a motion variance session and a skin tone variance session. Our proposed method operated robustly during the experiments and outperformed the state of the art heart rate measuring methods by compensating the effects of the naturalistic environment.
Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu
2016-03-07
The formation mechanism of drug nanoparticles was investigated using solid-state nuclear magnetic resonance (NMR) techniques for the efficient discovery of an optimized nanoparticle formulation. The cogrinding of nifedipine (NIF) with polymers, including hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP), and sodium dodecyl sulfate (SDS) was performed to prepare the NIF nanoparticle formulations. Then, solid-state NMR relaxometry was used for the nanometer-order characterization of NIF in the polymer matrix. Solid-state NMR measurements revealed that the crystal size of NIF was reduced to several tens of nanometers with amorphization of NIF by cogrinding with HPMC and SDS for 100 min. Similarly, the size of the NIF crystal was reduced to less than 90 nm in the 40 min ground mixture of NIF/PVP/SDS. Furthermore, 100 min grinding of NIF/PVP/SDS induced amorphization of almost all the NIF crystals followed by nanosizing. The hydrogen bond between NIF and PVP led to the efficient amorphization of NIF in the NIF/PVP/SDS system compared with NIF/HPMC/SDS system. The efficient nanosizing of the NIF crystal in the solid state, revealed by the solid-state NMR relaxation time measurements, enabled the formation of large amounts of NIF nanoparticles in water followed by the polymer dissolution. In contrast, excess amorphization of the NIF crystals failed to efficiently prepare the NIF nanoparticles. The solid-state characterization of the crystalline NIF revealed good correlation with the NIF nanoparticles formation during aqueous dispersion. Furthermore, the solid-state NMR measurements including relaxometry successfully elucidated the nanometer-order dispersion state of NIF in polymer matrix, leading to the discovery of optimized conditions for the preparation of suitable drug nanoparticles.
Method and system for making integrated solid-state fire-sets and detonators
O`Brien, D.W.; Druce, R.L.; Johnson, G.W.; Vogtlin, G.E.; Barbee, T.W. Jr.; Lee, R.S.
1998-03-24
A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques. 13 figs.
CO2-Doped Diamond: A Potential Solid-State CO2 Laser Material?
NASA Technical Reports Server (NTRS)
Tratt, D.
1994-01-01
This paper describes a novel concept for a solid-state CO subscript 2 laser medium which, by eschewing the gas-phase approach, may offer prospects for a compact, robust 9 - 11 (micro)m coherent source, coupled with the potentially superior frequency stability characteristics afforded by monolithic solid-state construction.
40 CFR 256.02 - Scope of the State solid waste management plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., General Requirements, Definitions § 256.02 Scope of the State solid waste management plan. (a)(1) The... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Scope of the State solid waste management plan. 256.02 Section 256.02 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...
40 CFR 256.02 - Scope of the State solid waste management plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., General Requirements, Definitions § 256.02 Scope of the State solid waste management plan. (a)(1) The... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Scope of the State solid waste management plan. 256.02 Section 256.02 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...
40 CFR 256.02 - Scope of the State solid waste management plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., General Requirements, Definitions § 256.02 Scope of the State solid waste management plan. (a)(1) The... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Scope of the State solid waste management plan. 256.02 Section 256.02 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...
40 CFR 256.02 - Scope of the State solid waste management plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., General Requirements, Definitions § 256.02 Scope of the State solid waste management plan. (a)(1) The... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Scope of the State solid waste management plan. 256.02 Section 256.02 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...
40 CFR 256.02 - Scope of the State solid waste management plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., General Requirements, Definitions § 256.02 Scope of the State solid waste management plan. (a)(1) The... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Scope of the State solid waste management plan. 256.02 Section 256.02 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...
Du, Pengcheng; Liu, Huckleberry C; Yi, Chao; Wang, Kai; Gong, Xiong
2015-11-04
In this study, we report polyaniline (PANI)-modified oriented graphene hydrogel (OGH) films as the free-standing electrode for flexible solid-state supercapacitors (SCs). The OGH films are prepared by a facile filtration method using chemically converted graphene sheets and then introduced to PANI on the surface of OGH films by in situ chemical polymerization. The PANI-modified OGH films possess high flexibility, high electrical conductivity, and mechanical robustness. The flexible solid-state SCs based on the PANI-modified OGH films exhibit a specific capacitance of 530 F/g, keeping 80% of its original value up to 10 000 charge-discharge cycles at the current density of 10 A/g. Remarkably, the flexible solid-state SCs maintain ∼100% capacitance retention bent at 180° for 250 cycles. Moreover, the flexible solid-state SCs are further demonstrated to be able to light up a red-light-emitting diode. These results indicate that the flexible solid-state SCs based on PANI-modified OGH films as the free-standing electrode have potential applications as energy-storage devices.
Modular nonvolatile solid state recorder (MONSSTR) update
NASA Astrophysics Data System (ADS)
Klang, Mark R.; Small, Martin B.; Beams, Tom
2001-12-01
Solid state recorders have begun replacing traditional tape recorders in fulfilling the requirement to record images on airborne platforms. With the advances in electro-optical, IR, SAR, Multi and Hyper-spectral sensors and video recording requirements, solid state recorders have become the recorder of choice. Solid state recorders provide the additional storage, higher sustained bandwidth, less power, less weight and smaller footprint to meet the current and future recording requirements. CALCULEX, Inc., manufactures a non-volatile flash memory solid state recorder called the MONSSTR (Modular Non-volatile Solid State Recorder). MONSSTR is being used to record images from many different digital sensors on high performance aircraft such as the RF- 4, F-16 and the Royal Air Force Tornado. MONSSTR, with its internal multiplexer, is also used to record instrumentation data. This includes multiple streams of PCM and multiple channels of 1553 data. Instrumentation data is being recorded by MONSSTR systems in a range of platforms including F-22, F-15, F-16, Comanche Helicopter and US Navy torpedos. MONSSTR can also be used as a cockpit video recorder. This paper will provide an update of the MONSSTR.
1997-01-16
KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility prepare a solid state recorder for installation in a protective enclosure as part of the prelaunch preparations for STS-82, the second Hubble Space Telescope servicing mission. The digital solid state recorder will replace one of three engineering/science tape recorders on Hubble. The solid state recorder has no moving parts to wear out. It also is more flexible than a reel-to-reel recorder and can store 10 times as much data. Liftoff aboard Discovery is targeted Feb. 11 with a crew of seven.
1997-01-16
KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility install a solid state recorder into a transport assembly in its protective enclosure as part of the prelaunch preparations for STS-82, the second Hubble Space Telescope servicing mission. The digital solid state recorder will replace one of three engineering/science tape recorders on Hubble. The solid state recorder has no moving parts to wear out. It also is more flexible than a reel-to-reel recorder and can store 10 times as much data. Liftoff aboard Discovery is targeted Feb. 11 with a crew of seven.
Nonvolatile memory chips: critical technology for high-performance recce systems
NASA Astrophysics Data System (ADS)
Kaufman, Bruce
2000-11-01
Airborne recce systems universally require nonvolatile storage of recorded data. Both present and next generation designs make use of flash memory chips. Flash memory devices are in high volume use for a variety of commercial products ranging form cellular phones to digital cameras. Fortunately, commercial applications call for increasing capacities and fast write times. These parameters are important to the designer of recce recorders. Of economic necessity COTS devices are used in recorders that must perform in military avionics environments. Concurrently, recording rates are moving to $GTR10Gb/S. Thus to capture imagery for even a few minutes of record time, tactically meaningful solid state recorders will require storage capacities in the 100s of Gbytes. Even with memory chip densities at present day 512Mb, such capacities require thousands of chips. The demands on packaging technology are daunting. This paper will consider the differing flash chip architectures, both available and projected and discuss the impact on recorder architecture and performance. Emerging nonvolatile memory technologies, FeRAM AND MIRAM will be reviewed with regard to their potential use in recce recorders.
NASA Astrophysics Data System (ADS)
West, Patricia; Baker, Lionel R.
1989-03-01
This paper is a review of the applications of laser scanning in inspection. The reasons for the choice of a laser in flying spot scanning and the optical properties of a laser beam which are of value in a scanning instrument will be given. The many methods of scanning laser beams in both one and two dimensions will be described. The use of one dimensional laser scanners for automatic surface inspection for transmitting and reflective products will be covered in detail, with particular emphasis on light collection techniques. On-line inspection applications which will be mentioned include: photographic film web, metal strip products, paper web, glass sheet, car body paint surfaces and internal cylinder bores. Two dimensional laser scanning is employed in applications where increased resolution, increased depth of focus, and better contrast are required compared with conventional vidicon TV or solid state array cameras. Such examples as special microscope laser scanning systems and a TV compatible system for use in restricted areas of a nuclear reactor will be described. The technical and economic benefits and limitations of laser scanning video systems will be compared with conventional TV and CCD array devices.
1997-12-18
This view of Jupiter's moon Europa shows a portion of the surface that has been highly disrupted by fractures and ridges. This picture covers an area about 238 kilometers (150 miles) wide by 225 kilometers (140 miles), or about the distance between Los Angeles and San Diego. Symmetric ridges in the dark bands suggest that the surface crust was separated and filled with darker material, somewhat analogous to spreading centers in the ocean basins of Earth. Although some impact craters are visible, their general absence indicates a youthful surface. The youngest ridges, such as the two features that cross the center of the picture, have central fractures, aligned knobs, and irregular dark patches. These and other features could indicate cryovolcanism, or processes related to eruption of ice and gases. This picture, centered at 16 degrees south latitude, 196 degrees west longitude, was taken at a distance of 40,973 kilometers (25,290 mi) on November 6, 1996 by the Galileo spacecraft solid state imaging television camera onboard the Galileo spacecraft during its third orbit around Jupiter. http://photojournal.jpl.nasa.gov/catalog/PIA00518
Spatial EPR entanglement in atomic vapor quantum memory
NASA Astrophysics Data System (ADS)
Parniak, Michal; Dabrowski, Michal; Wasilewski, Wojciech
Spatially-structured quantum states of light are staring to play a key role in modern quantum science with the rapid development of single-photon sensitive cameras. In particular, spatial degree of freedom holds a promise to enhance continous-variable quantum memories. Here we present the first demonstration of spatial entanglement between an atomic spin-wave and a photon measured with an I-sCMOS camera. The system is realized in a warm atomic vapor quantum memory based on rubidium atoms immersed in inert buffer gas. In the experiment we create and characterize a 12-dimensional entangled state exhibiting quantum correlations between a photon and an atomic ensemble in position and momentum bases. This state allows us to demonstrate the Einstein-Podolsky-Rosen paradox in its original version, with an unprecedented delay time of 6 μs between generation of entanglement and detection of the atomic state.
Astronaut Susan J. Helms Mounts a Videao Camera in Zarya
NASA Technical Reports Server (NTRS)
2001-01-01
Astronaut Susan J. Helms, Expedition Two flight engineer, mounts a video camera onto a bracket in the Russian Zarya or Functional Cargo Block (FGB) of the International Space Station (ISS). Launched by a Russian Proton rocket from the Baikonu Cosmodrome on November 20, 1998, the Unites States-funded and Russian-built Zarya was the first element of the ISS, followed by the U.S. Unity Node.
The Status of the NASA All Sky Fireball Network
NASA Technical Reports Server (NTRS)
Cooke, William J.; Moser, Danielle E.
2011-01-01
Established by the NASA Meteoroid Environment Office, the NASA All Sky Fireball Network consists of 6 meteor video cameras in the southern United States, with plans to expand to 15 cameras by 2013. As of mid-2011, the network had detected 1796 multi-station meteors, including meteors from 43 different meteor showers. The current status of the NASA All Sky Fireball Network is described, alongside preliminary results.
Fabrication, testing and simulation of all solid state three dimensional Li-ion batteries
Talin, Albert Alec; Ruzmetov, Dmitry; Kolmakov, Andrei; ...
2016-11-10
Realization of safe, long cycle life and simple to package solid-state rechargeable batteries with high energy and power density has been a long-standing goal of the energy storage community. [1,2] Much of the research activity has been focused on developing new solid electrolytes with high Li ionic conductivity. In addition, LiPON, the only solid electrolyte currently used in commercial thin film solid state Li-ion batteris (SSLIBs), has a conductivity of ~10 -6 S/cm, compared to ~0.01 S/cm typically observed for liquid organic electrolytes [3].
Charge transport in strongly coupled quantum dot solids
NASA Astrophysics Data System (ADS)
Kagan, Cherie R.; Murray, Christopher B.
2015-12-01
The emergence of high-mobility, colloidal semiconductor quantum dot (QD) solids has triggered fundamental studies that map the evolution from carrier hopping through localized quantum-confined states to band-like charge transport in delocalized and hybridized states of strongly coupled QD solids, in analogy with the construction of solids from atoms. Increased coupling in QD solids has led to record-breaking performance in QD devices, such as electronic transistors and circuitry, optoelectronic light-emitting diodes, photovoltaic devices and photodetectors, and thermoelectric devices. Here, we review the advances in synthesis, assembly, ligand treatments and doping that have enabled high-mobility QD solids, as well as the experiments and theory that depict band-like transport in the QD solid state. We also present recent QD devices and discuss future prospects for QD materials and device design.
Charge transport in strongly coupled quantum dot solids.
Kagan, Cherie R; Murray, Christopher B
2015-12-01
The emergence of high-mobility, colloidal semiconductor quantum dot (QD) solids has triggered fundamental studies that map the evolution from carrier hopping through localized quantum-confined states to band-like charge transport in delocalized and hybridized states of strongly coupled QD solids, in analogy with the construction of solids from atoms. Increased coupling in QD solids has led to record-breaking performance in QD devices, such as electronic transistors and circuitry, optoelectronic light-emitting diodes, photovoltaic devices and photodetectors, and thermoelectric devices. Here, we review the advances in synthesis, assembly, ligand treatments and doping that have enabled high-mobility QD solids, as well as the experiments and theory that depict band-like transport in the QD solid state. We also present recent QD devices and discuss future prospects for QD materials and device design.
Solid state SPS microwave generation and transmission study. Volume 2, phase 2: Appendices
NASA Technical Reports Server (NTRS)
Maynard, O. E.
1980-01-01
The solid state sandwich concept for SPS was further defined. The design effort concentrated on the spacetenna, but did include some system analysis for parametric comparison reasons. Basic solid state microwave devices were defined and modeled. An initial conceptual subsystems and system design was performed as well as sidelobe control and system selection. The selected system concept and parametric solid state microwave power transmission system data were assessed relevant to the SPS concept. Although device efficiency was not a goal, the sensitivities to design of this efficiency were parametrically treated. Sidelobe control consisted of various single step tapers, multistep tapers and Gaussian tapers. A hybrid concept using tubes and solid state was evaluated. Thermal analyses are included with emphasis on sensitivities to waste heat radiator form factor, emissivity, absorptivity, amplifier efficiency, material and junction temperature.
Xu, Ruochen; Zhang, Shengzhao; Wang, Xiuli; Xia, Yan; Xia, Xinhui; Wu, Jianbo; Gu, Changdong; Tu, Jiangping
2018-04-20
Due to the increasing demand of security and energy density, all-solid-state lithium ion batteries have become the promising next-generation energy storage devices to replace the traditional liquid batteries with flammable organic electrolytes. In this Minireview, we focus on the recent developments of sulfide inorganic electrolytes for all-solid-state batteries. The challenges of assembling bulk-type all-solid-state batteries for industrialization are discussed, including low ionic conductivity of the present sulfide electrolytes, high interfacial resistance and poor compatibility between electrolytes and electrodes. Many efforts have been focused on the solutions for these issues. Although some progresses have been achieved, it is still far away from practical application. The perspectives for future research on all-solid-state lithium ion batteries are presented. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microfluidic multiplexing of solid-state nanopores
NASA Astrophysics Data System (ADS)
Jain, Tarun; Rasera, Benjamin C.; Guerrero, Ricardo Jose S.; Lim, Jong-Min; Karnik, Rohit
2017-12-01
Although solid-state nanopores enable electronic analysis of many clinically and biologically relevant molecular structures, there are few existing device architectures that enable high-throughput measurement of solid-state nanopores. Herein, we report a method for microfluidic integration of multiple solid-state nanopores at a high density of one nanopore per (35 µm2). By configuring microfluidic devices with microfluidic valves, the nanopores can be rinsed from a single fluid input while retaining compatibility for multichannel electrical measurements. The microfluidic valves serve the dual purpose of fluidic switching and electric switching, enabling serial multiplexing of the eight nanopores with a single pair of electrodes. Furthermore, the device architecture exhibits low noise and is compatible with electroporation-based in situ nanopore fabrication, providing a scalable platform for automated electronic measurement of a large number of integrated solid-state nanopores.
40 CFR 256.63 - Requirements for public participation in the permitting of facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE... solid waste disposal facility the State shall hold a public hearing to solicit public reaction and...
3D-Printing Electrolytes for Solid-State Batteries.
McOwen, Dennis W; Xu, Shaomao; Gong, Yunhui; Wen, Yang; Godbey, Griffin L; Gritton, Jack E; Hamann, Tanner R; Dai, Jiaqi; Hitz, Gregory T; Hu, Liangbing; Wachsman, Eric D
2018-05-01
Solid-state batteries have many enticing advantages in terms of safety and stability, but the solid electrolytes upon which these batteries are based typically lead to high cell resistance. Both components of the resistance (interfacial, due to poor contact with electrolytes, and bulk, due to a thick electrolyte) are a result of the rudimentary manufacturing capabilities that exist for solid-state electrolytes. In general, solid electrolytes are studied as flat pellets with planar interfaces, which minimizes interfacial contact area. Here, multiple ink formulations are developed that enable 3D printing of unique solid electrolyte microstructures with varying properties. These inks are used to 3D-print a variety of patterns, which are then sintered to reveal thin, nonplanar, intricate architectures composed only of Li 7 La 3 Zr 2 O 12 solid electrolyte. Using these 3D-printing ink formulations to further study and optimize electrolyte structure could lead to solid-state batteries with dramatically lower full cell resistance and higher energy and power density. In addition, the reported ink compositions could be used as a model recipe for other solid electrolyte or ceramic inks, perhaps enabling 3D printing in related fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dendritic copper phthalocyanine with aggregation induced blue emission and solid-state fluorescence
NASA Astrophysics Data System (ADS)
Wang, Jiayi; Pan, Lin; Zhou, Xuefei; Jia, Kun; Liu, Xiaobo
2016-09-01
In this work, dendritic copper phthalocyanine (CuPc) showing obvious aggregation induced emission (AIE) and strong solid-state fluorescence was synthesized. It was found that synthesized CuPc can be easily solubilized in polar aprotic solvent, where no fluorescence signal was detected. Interestingly, both the CuPc aggregates in solution and solid-state powder exhibited strong fluorescence emission around 480 nm, which should be attributed to the restriction of intramolecular rotation as rationalized in aggregation induced emission framework. Meanwhile the obvious crystalline enhanced solid-state fluorescent emission is observed for CuPc powder.
Solar Power Satellite (SPS) solid-state antenna power combiner
NASA Technical Reports Server (NTRS)
1980-01-01
A low loss power-combining microstrip antenna suitable for solid state solar power satellite (SPS) application was developed. A unique approach for performing both the combining and radiating function in a single cavity-type circuit was verified, representing substantial refinements over previous demonstration models in terms of detailed geometry to obtain good matching and adequate bandwidth at the design frequency. The combiner circuit was designed, built, and tested and the overall results support the view that the solid state power-combining antenna approach is a viable candidate for a solid state SPS antenna building block.
NASA Technical Reports Server (NTRS)
Benet, James
1993-01-01
The final report describes the work performed from 9 Jun. 1992 to 31 Jul. 1993 on the NASA Satellite Communications Application Research (SCAR) Phase 2 program, Efficient High Power, Solid State Amplifier for EHF Communications. The purpose of the program was to demonstrate the feasibility of high-efficiency, high-power, EHF solid state amplifiers that are smaller, lighter, more efficient, and less costly than existing traveling wave tube (TWT) amplifiers by combining the output power from up to several hundred solid state amplifiers using a unique orthomode spatial power combiner (OSPC).
[The design of all solid-state tunable pulsed Ti:sapphire laser system].
Chen, Zhe; Ku, Geng; Wan, Junchao; Wang, Wei; Zhou, Chuanqing
2013-05-01
This paper presented a design of broadly all solid-state tunable pulsed Ti:sapphire laser with high power and stable performance. The laser was pumped by custom-made Nd:YAG laser which had water cooling system and amplified by two stage amplifier. The method accomplished tunable output of all solid-state tunable pulsed Ti:sapphire laser by modifying the reflection angle of the back mirror. We investigated the relationship between the power of the pumping laser and the all solid-state tunable pulsed Ti: sapphire laser by changing the power of the pumping source.
A compact 300 kV solid-state high-voltage nanosecond generator for dielectric wall accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yi; Wang, Wei; Liu, Yi
2015-05-15
Compact solid-state system is the main development trend in pulsed power technologies. A compact solid-state high-voltage nanosecond pulse generator with output voltage of 300 kV amplitude, 10 ns duration (FWHM), and 3 ns rise-time was designed for a dielectric wall accelerator. The generator is stacked by 15 planar-plate Blumlein pulse forming lines (PFL). Each Blumlein PFL consists of two solid-state planar transmission lines, a GaAs photoconductive semiconductor switch, and a laser diode trigger. The key components of the generator and the experimental results are reported in this paper.
Solid State Division progress report for period ending September 30, 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, P.H.; Watson, D.M.
1985-03-01
During the reporting period, relatively minor changes have occurred in the research areas of interest to the Division. Nearly all the research of the Division can be classified broadly as mission-oriented basic research. Topics covered include: theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; and preparation and characterization of research materials. (GHT)
Solid state electrochemical current source
Potanin, Alexander Arkadyevich; Vedeneev, Nikolai Ivanovich
2002-04-30
A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.
Chen, Ru-Jun; Zhang, Yi-Bo; Liu, Ting; Xu, Bing-Qing; Lin, Yuan-Hua; Nan, Ce-Wen; Shen, Yang
2017-03-22
All-solid-state bulk-type lithium ion batteries (LIBs) are considered ultimate solutions to the safety issues associated with conventional LIBs using flammable liquid electrolyte. The development of bulk-type all-solid-state LIBs has been hindered by the low loading of active cathode materials, hence low specific surface capacity, and by the high interface resistance, which results in low rate and cyclic performance. In this contribution, we propose and demonstrate a synergistic all-composite approach to fabricating flexible all-solid-state LIBs. PEO-based composite cathode layers (filled with LiFePO 4 particles) of ∼300 μm in thickness and composite electrolyte layers (filled with Al-LLZTO particles) are stacked layer-by-layer with lithium foils as negative layer and hot-pressed into a monolithic all-solid-state LIB. The flexible LIB delivers a high specific discharge capacity of 155 mAh/g, which corresponds to an ultrahigh surface capacity of 10.8 mAh/cm 2 , exhibits excellent capacity retention up to at least 10 cycles and could work properly under harsh operating conditions such as bending or being sectioned into pieces. The all-composite approach is favorable for improving both mesoscopic and microscopic interfaces inside the all-solid-state LIB and may provide a new toolbox for design and fabrication of all-solid-state LIBs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Identification of Responsibilities... guidelines for identification of regions and agencies for solid waste management (40 CFR part 255), the State...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Identification of Responsibilities... guidelines for identification of regions and agencies for solid waste management (40 CFR part 255), the State...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Identification of Responsibilities... guidelines for identification of regions and agencies for solid waste management (40 CFR part 255), the State...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Identification of Responsibilities... guidelines for identification of regions and agencies for solid waste management (40 CFR part 255), the State...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Identification of Responsibilities... guidelines for identification of regions and agencies for solid waste management (40 CFR part 255), the State...
On the Lennard-Jones and Devonshire theory for solid state thermodynamics
NASA Astrophysics Data System (ADS)
Lustig, Rolf
2017-06-01
The Lennard-Jones and Devonshire theory is developed into a self-consistent scheme for essentially complete thermodynamic information. The resulting methodology is compared with molecular simulation of the Lennard-Jones system in the face-centred-cubic solid state over an excessive range of state points. The thermal and caloric equations of state are in almost perfect agreement along the entire fluid-solid coexistence lines over more than six orders of magnitude in pressure. For homogeneous densities greater than twice the solid triple point density, the theory is essentially exact for derivatives of the Helmholtz energy. However, the fluid-solid phase equilibria are in disagreement with simulation. It is shown that the theory is in error by an additive constant to the Helmholtz energy A/(NkBT). Empirical inclusion of the error term makes all fluid-solid equilibria indistinguishable from exact results. Some arguments about the origin of the error are given.
Kojima, Taro; Higashi, Kenjirou; Suzuki, Toyofumi; Tomono, Kazuo; Moribe, Kunikazu; Yamamoto, Keiji
2012-10-01
The stabilization mechanism of a supersaturated solution of mefenamic acid (MFA) from a solid dispersion with EUDRAGIT(®) EPO (EPO) was investigated. The solid dispersions were prepared by cryogenic grinding method. Powder X-ray diffractometry, in vitro dissolution test, in vivo oral absorption study, infrared spectroscopy, and solid- and solution-state NMR spectroscopies were used to characterize the solid dispersions. Dissolution tests in acetate buffer (pH 5.5) revealed that solid dispersion showed > 200-fold higher concentration of MFA. Supersaturated solution was stable over 1 month and exhibited improved oral bioavailability of MFA in rats, with a 7.8-fold higher area under the plasma concentration-versus-time curve. Solid-state (1)H spin-lattice relaxation time (T(1)) measurement showed that MFA was almost monomolecularly dispersed in the EPO polymer matrix. Intermolecular interaction between MFA and EPO was indicated by solid-state infrared and (13)C-T(1) measurements. Solution-state (1)H-NMR measurement demonstrated that MFA existed in monomolecular state in supersaturated solution. (1)H-T(1) and difference nuclear Overhauser effect measurements indicated that cross relaxation occurred between MFA and EPO due to the small distance between them. The formation and high stability of the supersaturated solution were attributable to the specifically formed intermolecular interactions between MFA and EPO.
Xu, Kailin; Xiong, Xinnuo; Zhai, Yuanming; Wang, Lili; Li, Shanshan; Yan, Jin; Wu, Di; Ma, Xiaoli; Li, Hui
2016-09-10
In this study, the amorphization of glipizide was systematically investigated through high-energy ball milling at different temperatures. The results of solid-state amorphization through milling indicated that glipizide underwent direct crystal-to-glass transformation at 15 and 25°C and crystal-to-glass-to-crystal conversion at 35°C; hence, milling time and temperature had significant effects on the amorphization of glipizide, which should be effectively controlled to obtain totally amorphous glipizide. Solid forms of glipizide were detailedly characterized through analyses of X-ray powder diffraction, morphology, thermal curves, vibrational spectra, and solid-state nuclear magnetic resonance. The physical stability of solid forms was investigated under different levels of relative humidity (RH) at 25°C. Forms I and III are kinetically stable and do not form any new solid-state forms at various RH levels. By contrast, Form II is kinetically unstable, undergoing direct glass-to-crystal transformation when RH levels higher than 32.8%. Therefore, stability investigation indicated that Form II should be stored under relatively dry conditions to prevent rapid crystallization. High temperatures can also induce the solid-state transformation of Form II; the conversion rate increased with increasing temperature. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Huang, Adam
2016-01-01
The goal of the Solid State Inflation Balloon Active Deorbiter project is to develop and demonstrate a scalable, simple, reliable, and low-cost active deorbiting system capable of controlling the downrange point of impact for the full-range of small satellites from 1 kg to 180 kg. The key enabling technology being developed is the Solid State Gas Generator (SSGG) chip, generating pure nitrogen gas from sodium azide (NaN3) micro-crystals. Coupled with a metalized nonelastic drag balloon, the complete Solid State Inflation Balloon (SSIB) system is capable of repeated inflation/deflation cycles. The SSGG minimizes size, weight, electrical power, and cost when compared to the current state of the art.
Takeda, Jun; Ishida, Akihiro; Makishima, Yoshinori; Katayama, Ikufumi
2010-01-01
In this review, we demonstrate a real-time time-frequency two-dimensional (2D) pump-probe imaging spectroscopy implemented on a single shot basis applicable to excited-state dynamics in solid-state organic and biological materials. Using this technique, we could successfully map ultrafast time-frequency 2D transient absorption signals of β-carotene in solid films with wide temporal and spectral ranges having very short accumulation time of 20 ms per unit frame. The results obtained indicate the high potential of this technique as a powerful and unique spectroscopic tool to observe ultrafast excited-state dynamics of organic and biological materials in solid-state, which undergo rapid photodegradation. PMID:22399879
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldenbuerger, S.; Brandt, C.; Brochard, F.
2010-06-15
Fast visible imaging is used on a cylindrical magnetized argon plasma produced by thermionic discharge in the Mirabelle device. To link the information collected with the camera to a physical quantity, fast camera movies of plasma structures are compared to Langmuir probe measurements. High correlation is found between light fluctuations and plasma density fluctuations. Contributions from neutral argon and ionized argon to the overall light intensity are separated by using interference filters and a light intensifier. Light emitting transitions are shown to involve a metastable neutral argon state that can be excited by thermal plasma electrons, thus explaining the goodmore » correlation between light and density fluctuations. The propagation velocity of plasma structures is calculated by adapting velocimetry methods to the fast camera movies. The resulting estimates of instantaneous propagation velocity are in agreement with former experiments. The computation of mean velocities is discussed.« less
NASA Astrophysics Data System (ADS)
Oldenbürger, S.; Brandt, C.; Brochard, F.; Lemoine, N.; Bonhomme, G.
2010-06-01
Fast visible imaging is used on a cylindrical magnetized argon plasma produced by thermionic discharge in the Mirabelle device. To link the information collected with the camera to a physical quantity, fast camera movies of plasma structures are compared to Langmuir probe measurements. High correlation is found between light fluctuations and plasma density fluctuations. Contributions from neutral argon and ionized argon to the overall light intensity are separated by using interference filters and a light intensifier. Light emitting transitions are shown to involve a metastable neutral argon state that can be excited by thermal plasma electrons, thus explaining the good correlation between light and density fluctuations. The propagation velocity of plasma structures is calculated by adapting velocimetry methods to the fast camera movies. The resulting estimates of instantaneous propagation velocity are in agreement with former experiments. The computation of mean velocities is discussed.
Re-identification of persons in multi-camera surveillance under varying viewpoints and illumination
NASA Astrophysics Data System (ADS)
Bouma, Henri; Borsboom, Sander; den Hollander, Richard J. M.; Landsmeer, Sander H.; Worring, Marcel
2012-06-01
The capability to track individuals in CCTV cameras is important for surveillance and forensics alike. However, it is laborious to do over multiple cameras. Therefore, an automated system is desirable. In literature several methods have been proposed, but their robustness against varying viewpoints and illumination is limited. Hence performance in realistic settings is also limited. In this paper, we present a novel method for the automatic re-identification of persons in video from surveillance cameras in a realistic setting. The method is computationally efficient, robust to a wide variety of viewpoints and illumination, simple to implement and it requires no training. We compare the performance of our method to several state-of-the-art methods on a publically available dataset that contains the variety of viewpoints and illumination to allow benchmarking. The results indicate that our method shows good performance and enables a human operator to track persons five times faster.
NASA Technical Reports Server (NTRS)
Murty, A. N.
1976-01-01
A straightforward self-consistent method was developed to estimate solid state electrostatic potentials, fields and field gradients in ionic solids. The method is a direct practical application of basic electrostatics to solid state and also helps in the understanding of the principles of crystal structure. The necessary mathematical equations, derived from first principles, were presented and the systematic computational procedure developed to arrive at the solid state electrostatic field gradients values was given.
The Iron-Iron Carbide Phase Diagram: A Practical Guide to Some Descriptive Solid State Chemistry.
ERIC Educational Resources Information Center
Long, Gary J.; Leighly, H. P., Jr.
1982-01-01
Discusses the solid state chemistry of iron and steel in terms of the iron-iron carbide phase diagram. Suggests that this is an excellent way of introducing the phase diagram (equilibrium diagram) to undergraduate students while at the same time introducing the descriptive solid state chemistry of iron and steel. (Author/JN)
Method of forming emitters for a back-contact solar cell
Li, Bo; Cousins, Peter J.; Smith, David D.
2015-09-29
Methods of forming emitters for back-contact solar cells are described. In one embodiment, a method includes forming a first solid-state dopant source above a substrate. The first solid-state dopant source includes a plurality of regions separated by gaps. Regions of a second solid-state dopant source are formed above the substrate by printing.
Method of forming emitters for a back-contact solar cell
Li, Bo; Cousins, Peter J; Smith, David D
2014-12-16
Methods of forming emitters for back-contact solar cells are described. In one embodiment, a method includes forming a first solid-state dopant source above a substrate. The first solid-state dopant source includes a plurality of regions separated by gaps. Regions of a second solid-state dopant source are formed above the substrate by printing.
Method or forming emitters for a back-contact solar cell
Li, Bo; Cousins, Peter J.; Smith, David D.
2014-08-12
Methods of forming emitters for back-contact solar cells are described. In one embodiment, a method includes forming a first solid-state dopant source above a substrate. The first solid-state dopant source includes a plurality of regions separated by gaps. Regions of a second solid-state dopant source are formed above the substrate by printing.
The use of small unmanned aircraft by the Washington State Department of Transportation
DOT National Transportation Integrated Search
2008-06-01
Small, unmanned aerial vehicles (UAVs) are increasingly affordable, easy to transport and launch, : and can be equipped with cameras that provide information usable for transportation agencies. The : Washington State Department of Transportation cond...
Antennas for Terahertz Applications: Focal Plane Arrays and On-chip Non-contact Measurement Probes
NASA Astrophysics Data System (ADS)
Trichopoulos, Georgios C.
The terahertz (THz) band provides unique sensing opportunities that enable several important applications such as biomedical imaging, remote non-destructive inspection of packaged goods, and security screening. THz waves can penetrate most materials and can provide unique spectral information in the 0.1--10 THz band with high resolution. In contrast, other imaging modalities, like infrared (IR), suffer from low penetration depths and are thus not attractive for non-destructive evaluation. However, state-of-the-art THz imaging systems typically employ mechanical raster scans using a single detector to acquire two-dimensional images. Such devices tend to be bulky and complicated due to the mechanical parts, and are thus rather expensive to develop and operate. Thus, large-format (e.g. 100x100 pixels) and all-electronics based THz imaging systems are badly needed to alleviate the space, weight and power (SWAP) factors and enable cost effective utilization of THz waves for sensing and high-data-rate communications. In contrast, photonic sensors are very compact because light can couple directly to the photodiode without residing to radiation coupling topologies. However, in the THz band, due to the longer wavelengths and much lower photon energies, highly efficient antennas with optimized input impedance have to be integrated with THz sensors. Here, we implement novel antenna engineering techniques that are optimized to take advantage of recent technological advances in solid-state THz sensing devices. For example, large-format focal plane arrays (FPAs) have been the Achilles' heel of THz imaging systems. Typically, optical components (lenses, mirrors) are employed in order to improve the optical performance of FPAs, however, antenna sensors suffer from degraded performance when they are far from the optical axis, thus minimizing the number of useful FPA elements. By modifying the radiation pattern of FPA antennas we manage to alleviate the off-axis aberration. Additionally, a butterfly-shaped antenna layout is introduced that enables broadband imaging. The alternative design presented here, allows for video-rate imaging in the 0.6--1.2 THz band and maintains a small antenna footprint, resulting in densely packed FPAs. In both antenna designs, we optimize the impedance matching between the antennas and the integrated electronic devices, thus achieving optimum responsivity levels for high sensitivity and low noise performance. Subsequently, we present the design details of the first THz camera and the first THz camera images captured. With the realized THz camera, imaging of concealed objects is achieved with <1mm diffraction limited spatial resolution. Moreover, motivated by the THz camera's real-time image acquisition, we developed the first camera-based THz computer tomography system that allows rapid cross-sectional imaging (˜2 min). For the design and analysis of the THz camera performance, we developed an in-house hybrid electromagnetic model, combining full-wave and high-frequency computational methods. The antenna radiation and impedance computation is first carried out using full-wave modeling of the FPA. Subsequently, we employ scalar diffraction theory to compute the field distribution at any point in space. Thus, the hybrid electromagnetic model allows fast and accurate design of THz antennas and modeling of the complete THz imaging system. Finally, motivated by the novel THz antenna layouts and the quasioptical techniques, we developed a novel non-contact probe measurement method for on-chip device characterization. In the THz regime, traditional contact probes are too small and fragile, thus inhibiting accurate and reliable circuit measurements. By integrating the device under test (DUT) with THz antennas that act as the measurement probes, we may couple the incident and reflected signal from and to the network analyzer without residing to any physical connection.
Lubach, Joseph W; Hau, Jonathan
2018-02-20
To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems. Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (T g ). 13 C and 15 N solid-state NMR was utilized to investigate changes in local structure and protonation state, while 1 H T 1 and T 1ρ relaxation measurements were used to probe miscibility and phase behavior of the dispersions. T g values for IMC-EE solid dispersions showed significant positive deviations from predicted values in the drug loading range of 40-90%, indicating a relatively strong drug-excipient interaction. 15 N solid-state NMR exhibited a change in protonation state of the EE basic amine, with two distinct populations for the EE amine at -360.7 ppm (unprotonated) and -344.4 ppm (protonated). Additionally, 1 H relaxation measurements showed phase separation at high drug load, indicating an amorphous ionic complex and free IMC-rich phase. PXRD data showed all ASDs up to 90% drug load remained physically stable after 2 years. 15 N solid-state NMR experiments show a change in protonation state of EE, indicating that an ionic complex indeed forms between IMC and EE in amorphous solid dispersions. Phase behavior was determined to exhibit nanoscale phase separation at high drug load between the amorphous ionic complex and excess free IMC.
Workers in the VAB test SRB cables on STS-98 solid rocket boosters
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Working near the top of a solid rocket booster, NASA and United Space Alliance SRB technicians hook up SRB cables to a Cirris Signature Touch 1 cable tester. From left are Steve Swichkow, with NASA, and Jim Silviano (back to camera) and Jeff Suter, with USA. The SRB is part of Space Shuttle Atlantis, rolled back from Launch Pad 39A in order to conduct tests on the cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.
Wegener, M; Börsch, G; Schaffstein, J; Lüth, I; Rickels, R; Ricken, D
1988-01-01
Gastro-intestinal transit of a mixed solid-liquid meal containing wheat bread, scrambled eggs, coffee labelled with 99mTc, orange juice with lactulose and indigocarmine was evaluated in 21 young control (mean age 33.5 years) and 25 elderly subjects (mean age 81.7 years) without gastrointestinal complaints or severe medical illness. The rate of gastric emptying was determined by an anterior gamma camera technique, mouth-to-caecum transit by the hydrogen breath test and whole-gut transit by the first stool passage of indigocarmine. Gastric emptying was significantly prolonged in older subjects: t1/2 = 136 +/- (SEM) 13 versus 81 +/- 4 min; p less than 0.001. Concerning mouth-to-caecum or whole-gut transit time, significant differences between the two study groups were not detected.
Flame front propagation in a channel with porous walls
NASA Astrophysics Data System (ADS)
Golovastov, S. V.; Bivol, G. Yu
2016-11-01
Propagation of the detonation front in hydrogen-air mixture was investigated in rectangular cross-section channels with sound-absorbing boundaries. The front of luminescence was detected in a channel with acoustically absorbing walls as opposed to a channel with solid walls. Flame dynamics was recorded using a high-speed camera. The flame was observed to have a V-shaped profile in the acoustically absorbing section. The possible reason for the formation of the V-shaped flame front is friction under the surface due to open pores. In these shear flows, the kinetic energy of the flow on the surface can be easily converted into heat. A relatively small disturbance may eventually lead to significant local stretching of the flame front surface. Trajectories of the flame front along the axis and the boundary are presented for solid and porous surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamoto, Y.; Ishii, Y.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp
2016-07-06
Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.
MACSAT - A Near Equatorial Earth Observation Mission
NASA Astrophysics Data System (ADS)
Kim, B. J.; Park, S.; Kim, E.-E.; Park, W.; Chang, H.; Seon, J.
MACSAT mission was initiated by Malaysia to launch a high-resolution remote sensing satellite into Near Equatorial Orbit (NEO). Due to its geographical location, Malaysia can have large benefits from NEO satellite operation. From the baseline circular orbit of 685 km altitude with 7 degrees of inclination, the neighboring regions around Malaysian territory can be frequently monitored. The equatorial environment around the globe can also be regularly observed with unique revisit characteristics. The primary mission objective of MACSAT program is to develop and validate technologies for a near equatorial orbit remote sensing satellite system. MACSAT is optimally designed to accommodate an electro-optic Earth observation payload, Medium-sized Aperture Camera (MAC). Malaysian and Korean joint engineering teams are formed for the effective implementation of the satellite system. An integrated team approach is adopted for the joint development for MACSAT. MAC is a pushbroom type camera with 2.5 m of Ground Sampling Distance (GSD) in panchromatic band and 5 m of GSD in four multi-spectral bands. The satellite platform is a mini-class satellite. Including MAC payload, the satellite weighs under 200 kg. Spacecraft bus is designed optimally to support payload operations during 3 years of mission life. The payload has 20 km of swath width with +/- 30 o of tilting capability. 32 Gbits of solid state recorder is implemented as the mass image storage. The ground element is an integrated ground station for mission control and payload operation. It is equipped with S- band up/down link for commanding and telemetry reception as well as 30 Mbps class X-band down link for image reception and processing. The MACSAT system is capable of generating 1:25,000-scale image maps. It is also anticipated to have capability for cross-track stereo imaging for Digital elevation Model (DEM) generation.
NASA Technical Reports Server (NTRS)
2010-01-01
Topics covered include: Burnishing Techniques Strengthen Hip Implants; Signal Processing Methods Monitor Cranial Pressure; Ultraviolet-Blocking Lenses Protect, Enhance Vision; Hyperspectral Systems Increase Imaging Capabilities; Programs Model the Future of Air Traffic Management; Tail Rotor Airfoils Stabilize Helicopters, Reduce Noise; Personal Aircraft Point to the Future of Transportation; Ducted Fan Designs Lead to Potential New Vehicles; Winglets Save Billions of Dollars in Fuel Costs; Sensor Systems Collect Critical Aerodynamics Data; Coatings Extend Life of Engines and Infrastructure; Radiometers Optimize Local Weather Prediction; Energy-Efficient Systems Eliminate Icing Danger for UAVs; Rocket-Powered Parachutes Rescue Entire Planes; Technologies Advance UAVs for Science, Military; Inflatable Antennas Support Emergency Communication; Smart Sensors Assess Structural Health; Hand-Held Devices Detect Explosives and Chemical Agents; Terahertz Tools Advance Imaging for Security, Industry; LED Systems Target Plant Growth; Aerogels Insulate Against Extreme Temperatures; Image Sensors Enhance Camera Technologies; Lightweight Material Patches Allow for Quick Repairs; Nanomaterials Transform Hairstyling Tools; Do-It-Yourself Additives Recharge Auto Air Conditioning; Systems Analyze Water Quality in Real Time; Compact Radiometers Expand Climate Knowledge; Energy Servers Deliver Clean, Affordable Power; Solutions Remediate Contaminated Groundwater; Bacteria Provide Cleanup of Oil Spills, Wastewater; Reflective Coatings Protect People and Animals; Innovative Techniques Simplify Vibration Analysis; Modeling Tools Predict Flow in Fluid Dynamics; Verification Tools Secure Online Shopping, Banking; Toolsets Maintain Health of Complex Systems; Framework Resources Multiply Computing Power; Tools Automate Spacecraft Testing, Operation; GPS Software Packages Deliver Positioning Solutions; Solid-State Recorders Enhance Scientific Data Collection; Computer Models Simulate Fine Particle Dispersion; Composite Sandwich Technologies Lighten Components; Cameras Reveal Elements in the Short Wave Infrared; Deformable Mirrors Correct Optical Distortions; Stitching Techniques Advance Optics Manufacturing; Compact, Robust Chips Integrate Optical Functions; Fuel Cell Stations Automate Processes, Catalyst Testing; Onboard Systems Record Unique Videos of Space Missions; Space Research Results Purify Semiconductor Materials; and Toolkits Control Motion of Complex Robotics.
Graphical User Interface for a Dual-Module EMCCD X-ray Detector Array.
Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K; Bednarek, Daniel R; Rudin, Stephen
2011-03-16
A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000× to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2k×1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.
The First Light of the Subaru Laser Guide Star Adaptive Optics System
NASA Astrophysics Data System (ADS)
Takami, H.; Hayano, Y.; Oya, S.; Hattori, M.; Watanabe, M.; Guyon, O.; Eldred, M.; Colley, S.; Saito, Y.; Itoh, M.; Dinkins, M.
Subaru Telescope has been operating 36 element curvature sensor AO system for the Cassegrain focus since 2000. We have developed a new AO system for the Nasmyth focus. The AO system has 188 element curvature wavefront sensor and bimorph deformable mirror. It is the largest format system for this type of sensor . The deformable mirror has also 188 element with 90 mm effective aperture and 130 mm blank size. The real time controller is 4 CPU real time Linux OS computer and the update speed is now 1.5 kHz. The AO system also has laser guide star system. The laser is sum frequency solid state laser generating 589 nm light. We have achieved 4.7 W output power with excellent beam quality of M^2=1.1 and good stability. The laser is installed in a clean room on the Nasmyth platform. The laser beam is transferred by photonic crystal optical fiber with 35 m to the 50 cm laser launching telescope mounted behind the Subaru 2ry mirror. The field of view of the low order wavefront sensor for tilt guide star in LGS mode is 2.7 arcmin in diameter. The AO system had the first light with natural guide star in October 2006. The Strehl ratio was > 0.5 at K band under the 0.8 arcsec visible seeing. We also has projected laser beam on the sky during the same engineering run. Three instruments will be used with the AO system. Infrared camera and spectrograph (IRCS), High dynamic range IR camera (HiCIAO) for exosolar planet detection, and visible 3D spectrograph.
Electronic camera-management system for 35-mm and 70-mm film cameras
NASA Astrophysics Data System (ADS)
Nielsen, Allan
1993-01-01
Military and commercial test facilities have been tasked with the need for increasingly sophisticated data collection and data reduction. A state-of-the-art electronic control system for high speed 35 mm and 70 mm film cameras designed to meet these tasks is described. Data collection in today's test range environment is difficult at best. The need for a completely integrated image and data collection system is mandated by the increasingly complex test environment. Instrumentation film cameras have been used on test ranges to capture images for decades. Their high frame rates coupled with exceptionally high resolution make them an essential part of any test system. In addition to documenting test events, today's camera system is required to perform many additional tasks. Data reduction to establish TSPI (time- space-position information) may be performed after a mission and is subject to all of the variables present in documenting the mission. A typical scenario would consist of multiple cameras located on tracking mounts capturing the event along with azimuth and elevation position data. Corrected data can then be reduced using each camera's time and position deltas and calculating the TSPI of the object using triangulation. An electronic camera control system designed to meet these requirements has been developed by Photo-Sonics, Inc. The feedback received from test technicians at range facilities throughout the world led Photo-Sonics to design the features of this control system. These prominent new features include: a comprehensive safety management system, full local or remote operation, frame rate accuracy of less than 0.005 percent, and phase locking capability to Irig-B. In fact, Irig-B phase lock operation of multiple cameras can reduce the time-distance delta of a test object traveling at mach-1 to less than one inch during data reduction.
Solid state SPS microwave generation and transmission study. Volume 1: Phase 2
NASA Technical Reports Server (NTRS)
Maynard, O. E.
1980-01-01
The solid state sandwich concept for Solar Power Station (SPS) was investigated. The design effort concentrated on the spacetenna, but did include some system analysis for parametric comparison reasons. The study specifically included definition and math modeling of basic solid state microwave devices, an initial conceptual subsystems and system design, sidelobe control and system selection, an assessment of selected system concept and parametric solid state microwave power transmission system data relevant to the SPS concept. Although device efficiency was not a goal, the sensitivities to design of this efficiency were parametrically treated. Sidelobe control consisted of various single step tapers, multistep tapers, and Gaussian tapers. A preliminary assessment of a hybrid concept using tubes and solid state is also included. There is a considerable amount of thermal analysis provided with emphasis on sensitivities to waste heat radiator form factor, emissivity, absorptivity, amplifier efficiency, material and junction temperature.
Solid state laser technology - A NASA perspective
NASA Technical Reports Server (NTRS)
Allario, F.
1985-01-01
NASA's program for developing solid-state laser technology and applying it to the Space Shuttle and Space Platform is discussed. Solid-state lasers are required to fulfill the Earth Observation System's requirements. The role of the Office of Aeronautics and Space Technology in developing a NASA tunable solid-state laser program is described. The major goals of the program involve developing a solid-state pump laser in the green, using AlGaAs array technology, pumping a Nd:YAG/SLAB crystal or glass, and fabricating a lidar system, with either a CO2 laser at 10.6 microns or a Nd:YAG laser at 1.06 microns, to measure tropospheric winds to an accuracy of + or - 1 m/s and a vertical resolution of 1 km. The procedures to be followed in order to visualize this technology plan include: (1) material development and characterization, (2) laser development, and (3) implementation of the lasers.
NASA Technical Reports Server (NTRS)
Allario, F.; Taylor, L. V.
1986-01-01
Current plans for the Earth Observing System (EOS) include development of a lidar facility to conduct scientific experiments from a polar orbiting platforms. A recommended set of experiments were scoped, which includes techniques of atmospheric backscatter (Lidar), Differential Absorption Lidar (DIAL), altimetry, and retroranging. Preliminary assessments of the resources (power, weight, volume) required by the Eos Lidar Facility were conducted. A research program in tunable solid state laser technology was developed, which includes laser materials development, modeling and experiments on the physics of solid state laser materials, and development of solid state laser transmitters with a strong focus on Eos scientific investigations. Some of the system studies that were conducted which highlight the payoff of solid state laser technology for the Eos scientific investigations will be discussed. Additionally, a summary of some promising research results which have recently emerged from the research program will be presented.
Solid-state Bonding of Superplastic Aluminum Alloy 7475 Sheet
NASA Technical Reports Server (NTRS)
Byun, T. D. S.; Vastava, R. B.
1985-01-01
Experimental works were carried out to study the feasibility of solid state bonding of superplastic aluminum 7475 sheet. Amount of deformation, bonding time, surface cleaning method and intermediate layer were the process parameters investigated. Other parameters, held constant by the superplastic forming condition which is required to obtain a concurrent solid state bonding, are bonding temperature, bonding pressure and atmosphere. Bond integrity was evaluated through metallographic examination, X-ray line scan analysis, SEM fractographic analysis and lap shear tests. The early results of the development program indicated that sound solid state bonding was accomplished for this high strength 7475 alloy with significant amounts of deformation. A thin intermediate layer of the soft 5052 aluminum alloy aided in achieving a solid state bonding by reducing the required amount of plastic deformation at the interface. Bond strength was substantially increased by a post bond heat treatment.
Chu, Qiulu; Li, Xin; Ma, Bin; Xu, Yong; Ouyang, Jia; Zhu, Junjun; Yu, Shiyuan; Yong, Qiang
2012-11-01
An integrated process of enzymatic hydrolysis and fermentation was investigated for high ethanol production. The combination of enzymatic hydrolysis at low substrate loading, liquid fermentation of high sugars concentration and solid state fermentation of enzymatic hydrolysis residue was beneficial for conversion of steam explosion pretreated corn stover to ethanol. The results suggested that low substrate loading hydrolysis caused a high enzymatic hydrolysis yield; the liquid fermentation of about 200g/L glucose by Saccharomyces cerevisiae provided a high ethanol concentration which could significantly decrease cost of the subsequent ethanol distillation. A solid state fermentation of enzymatic hydrolysis residue was combined, which was available to enhance ethanol production and cellulose-to-ethanol conversion. The results of solid state fermentation demonstrated that the solid state fermentation process accompanied by simultaneous saccharification and fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Solid-state diffusion in amorphous zirconolite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, C.; Dove, M. T.; Trachenko, K.
2014-11-14
We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also findmore » that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.« less
Nanoscale solid-state cooling: a review.
Ziabari, Amirkoushyar; Zebarjadi, Mona; Vashaee, Daryoosh; Shakouri, Ali
2016-09-01
The recent developments in nanoscale solid-state cooling are reviewed. This includes both theoretical and experimental studies of different physical concepts, as well as nanostructured material design and device configurations. We primarily focus on thermoelectric, thermionic and thermo-magnetic coolers. Particular emphasis is given to the concepts based on metal-semiconductor superlattices, graded materials, non-equilibrium thermoelectric devices, Thomson coolers, and photon assisted Peltier coolers as promising methods for efficient solid-state cooling. Thermomagnetic effects such as magneto-Peltier and Nernst-Ettingshausen cooling are briefly described and recent advances and future trends in these areas are reviewed. The ongoing progress in solid-state cooling concepts such as spin-calorimetrics, electrocalorics, non-equilibrium/nonlinear Peltier devices, superconducting junctions and two-dimensional materials are also elucidated and practical achievements are reviewed. We explain the thermoreflectance thermal imaging microscopy and the transient Harman method as two unique techniques developed for characterization of thermoelectric microrefrigerators. The future prospects for solid-state cooling are briefly summarized.
Hou, Huidan; Xu, Qingkai; Pang, Yaokun; Li, Lei; Wang, Jiulin; Zhang, Chi; Sun, Chunwen
2017-08-01
Storing energy harvested by triboelectric nanogenerators (TENGs) from ambient mechanical motion is still a great challenge for achieving low-cost and environmental benign power sources. Here, an all-solid-state Na-ion battery with safe and durable performance used for efficient storing pulsed energy harvested by the TENG is demonstrated. The solid-state sodium-ion batteries are charged by galvanostatic mode and pulse mode with the TENG, respectively. The all-solid-state sodium-ion battery displays excellent cyclic performance up to 1000 cycles with a capacity retention of about 85% even at a high charge and discharge current density of 48 mA g -1 . When charged by the TENG, an energy conversion efficiency of 62.3% is demonstrated. The integration of TENGs with the safe and durable all-solid-state sodium-ion batteries is potential for providing more stable power output for self-powered systems.
Andreozzi, Jacqueline M; Zhang, Rongxiao; Glaser, Adam K; Jarvis, Lesley A; Pogue, Brian W; Gladstone, David J
2015-02-01
To identify achievable camera performance and hardware needs in a clinical Cherenkov imaging system for real-time, in vivo monitoring of the surface beam profile on patients, as novel visual information, documentation, and possible treatment verification for clinicians. Complementary metal-oxide-semiconductor (CMOS), charge-coupled device (CCD), intensified charge-coupled device (ICCD), and electron multiplying-intensified charge coupled device (EM-ICCD) cameras were investigated to determine Cherenkov imaging performance in a clinical radiotherapy setting, with one emphasis on the maximum supportable frame rate. Where possible, the image intensifier was synchronized using a pulse signal from the Linac in order to image with room lighting conditions comparable to patient treatment scenarios. A solid water phantom irradiated with a 6 MV photon beam was imaged by the cameras to evaluate the maximum frame rate for adequate Cherenkov detection. Adequate detection was defined as an average electron count in the background-subtracted Cherenkov image region of interest in excess of 0.5% (327 counts) of the 16-bit maximum electron count value. Additionally, an ICCD and an EM-ICCD were each used clinically to image two patients undergoing whole-breast radiotherapy to compare clinical advantages and limitations of each system. Intensifier-coupled cameras were required for imaging Cherenkov emission on the phantom surface with ambient room lighting; standalone CMOS and CCD cameras were not viable. The EM-ICCD was able to collect images from a single Linac pulse delivering less than 0.05 cGy of dose at 30 frames/s (fps) and pixel resolution of 512 × 512, compared to an ICCD which was limited to 4.7 fps at 1024 × 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths [30% quantum efficiency (QE) vs previous 19%] promises at least 8.6 fps at a resolution of 1024 × 1024 and lower monetary cost than the EM-ICCD. The ICCD with an intensifier better optimized for red wavelengths was found to provide the best potential for real-time display (at least 8.6 fps) of radiation dose on the skin during treatment at a resolution of 1024 × 1024.
Complete tomography of a high-fidelity solid-state entangled spin-photon qubit pair.
De Greve, Kristiaan; McMahon, Peter L; Yu, Leo; Pelc, Jason S; Jones, Cody; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa
2013-01-01
Entanglement between stationary quantum memories and photonic qubits is crucial for future quantum communication networks. Although high-fidelity spin-photon entanglement was demonstrated in well-isolated atomic and ionic systems, in the solid-state, where massively parallel, scalable networks are most realistically conceivable, entanglement fidelities are typically limited due to intrinsic environmental interactions. Distilling high-fidelity entangled pairs from lower-fidelity precursors can act as a remedy, but the required overhead scales unfavourably with the initial entanglement fidelity. With spin-photon entanglement as a crucial building block for entangling quantum network nodes, obtaining high-fidelity entangled pairs becomes imperative for practical realization of such networks. Here we report the first results of complete state tomography of a solid-state spin-photon-polarization-entangled qubit pair, using a single electron-charged indium arsenide quantum dot. We demonstrate record-high fidelity in the solid-state of well over 90%, and the first (99.9%-confidence) achievement of a fidelity that will unambiguously allow for entanglement distribution in solid-state quantum repeater networks.
Electrochemical properties of all solid state Li/S battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Ji-Hyun; Park, Jin-Woo; Wang, Qing
All-solid-state lithium/sulfur (Li/S) battery is prepared using siloxane cross-linked network solid electrolyte at room temperature. The solid electrolytes show high ionic conductivity and good electrochemical stability with lithium and sulfur. In the first discharge curve, all-solid-state Li/S battery shows three plateau potential regions of 2.4 V, 2.12 V and 2.00 V, respectively. The battery shows the first discharge capacity of 1044 mAh g{sup −1}-sulfur at room temperature. This first discharge capacity rapidly decreases in 4th cycle and remains at 512 mAh g{sup −1}-sulfur after 10 cycles.
Determining Sala mango qualities with the use of RGB images captured by a mobile phone camera
NASA Astrophysics Data System (ADS)
Yahaya, Ommi Kalsom Mardziah; Jafri, Mohd Zubir Mat; Aziz, Azlan Abdul; Omar, Ahmad Fairuz
2015-04-01
Sala mango (Mangifera indicia) is one of the Malaysia's most popular tropical fruits that are widely marketed within the country. The degrees of ripeness of mangoes have conventionally been evaluated manually on the basis of color parameters, but a simple non-destructive technique using the Samsung Galaxy Note 1 mobile phone camera is introduced to replace the destructive technique. In this research, color parameters in terms of RGB values acquired using the ENVI software system were linked to detect Sala mango quality parameters. The features of mango were extracted from the acquired images and then used to classify of fruit skin color, which relates to the stages of ripening. A multivariate analysis method, multiple linear regression, was employed with the purpose of using RGB color parameters to estimate the pH, soluble solids content (SSC), and firmness. The relationship between these qualities parameters of Sala mango and its mean pixel values in the RGB system is analyzed. Findings show that pH yields the highest accuracy with a correlation coefficient R = 0.913 and root mean square of error RMSE = 0.166 pH. Meanwhile, firmness has R = 0.875 and RMSE = 1.392 kgf, whereas soluble solid content has the lowest accuracy with R = 0.814 and RMSE = 1.218°Brix with the correlation between color parameters. Therefore, this non-invasive method can be used to determine the quality attributes of mangoes.
2003-05-15
KENNEDY SPACE CENTER, FLA. - In the foreground, three solid rocket boosters (SRBs) suspended in the launch tower flank the Delta II rocket (in the background) that will launch Mars Exploration Rover 2 (MER-2). NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.
Review of intelligent video surveillance with single camera
NASA Astrophysics Data System (ADS)
Liu, Ying; Fan, Jiu-lun; Wang, DianWei
2012-01-01
Intelligent video surveillance has found a wide range of applications in public security. This paper describes the state-of- the-art techniques in video surveillance system with single camera. This can serve as a starting point for building practical video surveillance systems in developing regions, leveraging existing ubiquitous infrastructure. In addition, this paper discusses the gap between existing technologies and the requirements in real-world scenario, and proposes potential solutions to reduce this gap.
Gastric emptying and intragastric distribution of lipids in man. A new scintigraphic method of study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jian, R.; Vigneron, N.; Najean, Y.
1982-08-01
We measured gastric emptying of fat and water from a solid-liquid meal in healthy volunteers using a tubeless scintigraphic method. /sup 75/Se glycerol triether, incorporated in butter, was the lipid-phase marker, and /sup 99m/Tcm, ingested with 250 ml water, the non-lipid phase marker. In seven of these subjects we also measured the gastric emptying of solids and liquids with /sup 99m/Tc bound to cooked egg whites as the solid-phase marker and /sup 111/In ingested with 250 ml water as the marker of the solid and aqueous phases. Emptying and intragastric repartition of each marker were measured by detection of radioactivitymore » changes over the abdominal area using a gamma-camera. The stability and the specificity of the labeling was checked for each marker. Mean gastric emptying rate (expressed as percentage ingested marker emptied per hr) of lipids (17.4 +/- 2.4) was much lower than that of the rest of the meal (34.2 +/- 1.8) and slightly, but significantly, lower than that of solids (22.8 +/- 1.8). An intragastric layering of fat above nonlipids was observed only after the first postprandial hour and remained moderate. Thus, lipids are emptied more slowly than any other component of an ordinary meal, and this is not due only to layering of fat above water.« less
Hu, Wen; McCartt, Anne T
2016-09-01
In May 2007, Montgomery County, Maryland, implemented an automated speed enforcement program, with cameras allowed on residential streets with speed limits of 35 mph or lower and in school zones. In 2009, the state speed camera law increased the enforcement threshold from 11 to 12 mph over the speed limit and restricted school zone enforcement hours. In 2012, the county began using a corridor approach, in which cameras were periodically moved along the length of a roadway segment. The long-term effects of the speed camera program on travel speeds, public attitudes, and crashes were evaluated. Changes in travel speeds at camera sites from 6 months before the program began to 7½ years after were compared with changes in speeds at control sites in the nearby Virginia counties of Fairfax and Arlington. A telephone survey of Montgomery County drivers was conducted in Fall 2014 to examine attitudes and experiences related to automated speed enforcement. Using data on crashes during 2004-2013, logistic regression models examined the program's effects on the likelihood that a crash involved an incapacitating or fatal injury on camera-eligible roads and on potential spillover roads in Montgomery County, using crashes in Fairfax County on similar roads as controls. About 7½ years after the program began, speed cameras were associated with a 10% reduction in mean speeds and a 62% reduction in the likelihood that a vehicle was traveling more than 10 mph above the speed limit at camera sites. When interviewed in Fall 2014, 95% of drivers were aware of the camera program, 62% favored it, and most had received a camera ticket or knew someone else who had. The overall effect of the camera program in its modified form, including both the law change and the corridor approach, was a 39% reduction in the likelihood that a crash resulted in an incapacitating or fatal injury. Speed cameras alone were associated with a 19% reduction in the likelihood that a crash resulted in an incapacitating or fatal injury, the law change was associated with a nonsignificant 8% increase, and the corridor approach provided an additional 30% reduction over and above the cameras. This study adds to the evidence that speed cameras can reduce speeding, which can lead to reductions in speeding-related crashes and crashes involving serious injuries or fatalities.
NASA Astrophysics Data System (ADS)
Obeidat, Amr M.
Clean and renewable energy systems have emerged as an important area of research having diverse and significant new applications. These systems utilize different energy storage methods such as the batteries and supercapacitors. Supercapacitors are electrochemical energy storage devices that are designed to bridge the gap between batteries and conventional capacitors. Supercapacitors which store electrical energy by electrical double layer capacitance are based on large surface area structured carbons. The materials systems in which the Faradaic reversible redox reactions store electrical energy are the transition metal oxides and electronically conducting polymers. Among the different types of conducting polymers, poly (3, 4- ethylenedioxythiophene) (PEDOT) is extensively investigated owing to its chemical and mechanical stability. Due to instability of aqueous electrolytes at high voltages and toxicity of organic electrolytes, potential of supercapacitors has not been fully exploited. A novel aspect of this work is in utilizing the ionic liquid gel polymer electrolyte to design solid-state supercapacitors for energy storage. Various electrochemical systems were investigated including graphene, PEDOT, PEDOT-carbon nanotubes, PEDOT-manganese oxide, and PEDOT-iron oxide nanocomposites. The electrochemical performance of solid-state supercapacitor devices was evaluated based on cyclic voltammetry (CV), charge-discharge (CD), prolonged cyclic tests, and electrochemical impedance spectroscopy (EIS) techniques. Raman spectroscopy technique was also utilized to analyze the bonding structure of the electrode materials. The graphene solid-state supercapacitor system displayed areal capacitance density of 141.83 mF cm-2 based on high potential window up to 4V. The PEDOT solid-state supercapacitor system was synthesized in acetonitrile and aqueous mediums achieving areal capacitance density of 219.17 mF cm-2. The hybrid structure of solid-state supercapacitors was also studied in solid-state design based on PEDOT and graphene electrodes that produced areal capacitance density of 198.26 mF cm-2. Symmetrical PEDOT-manganese oxide nanocomposites were synthesized by co-deposition and dip-coating techniques to fabricate solid-state supercapacitor systems achieving areal capacitance density of 122.08 mF cm-2 credited to the PEDOT-MnO2 supercapacitor that was synthesized by dipping the PEDOT electrode in pure KMnO4 solution. The electrochemical performance of PEDOT-carbon nanotube solid-state supercapacitors was also investigated in both acetonitrile and aqueous medium showing good dispersion characteristics with optimum CNT content of 1 mg. The PEDOT-CNT solid-state supercapacitor system synthesized in acetonitrile displayed areal capacitance density of 297.43 mF cm-2. PEDOT-Fe2O3 nanocomposites were synthesized by single-step co-deposition techniques, and these were used to fabricate solid-state supercapacitors achieving areal capacitance density of 96.89 mF cm-2. Furthermore, some of these thin flexible solid-state supercapacitors were integrated with solar cells for direct storage of solar electricity, which proved to be promising as autonomous power source for flexible and wearable electronics. This dissertation describes the electrode synthesis, design and properties of solid-state supercapacitors, and their electrochemical performance in the storage of electrical energy.
NiF2/NaF:CaF2/Ca Solid-State High-Temperature Battery Cells
NASA Technical Reports Server (NTRS)
West, William; Whitacre, Jay; DelCastillo, Linda
2009-01-01
Experiments and theoretical study have demonstrated the promise of all-solid-state, high-temperature electrochemical battery cells based on NiF2 as the active cathode material, CaF2 doped with NaF as the electrolyte material, and Ca as the active anode material. These and other all-solid-state cells have been investigated in a continuing effort to develop batteries for instruments that must operate in environments much hotter than can be withstood by ordinary commercially available batteries. Batteries of this type are needed for exploration of Venus (where the mean surface temperature is about 450 C), and could be used on Earth for such applications as measuring physical and chemical conditions in geothermal wells and oil wells. All-solid-state high-temperature power cells are sought as alternatives to other high-temperature power cells based, variously, on molten anodes and cathodes or molten eutectic salt electrolytes. Among the all-solid-state predecessors of the present NiF2/NaF:CaF2/Ca cells are those described in "Solid-State High-Temperature Power Cells" (NPO-44396), NASA Tech Briefs, Vol. 32, No. 5 (May 2008), page 40. In those cells, the active cathode material is FeS2, the electrolyte material is a crystalline solid solution of equimolar amounts of Li3PO4 and LiSiO4, and the active anode material is Li contained within an alloy that remains solid in the intended high operational temperature range.
40 CFR 256.42 - Recommendations for assuring facility development.
Code of Federal Regulations, 2010 CFR
2010-07-01
... development. 256.42 Section 256.42 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Facility... unrestricted movement of solid and hazardous waste across State and local boundaries. ...
Qifeng Zheng; Zhiyong Cai; Zhenqiang Ma; Shaoqin Gong
2015-01-01
A novel type of highly flexible and all-solid-state supercapacitor that uses cellulose nanofibril (CNF)/reduced graphene oxide (RGO)/carbon nanotube (CNT) hybrid aerogels as electrodes and H2SO4 poly (vinyl alcohol) PVA gel as the electrolyte was developed and is reported here. These flexible solid-state supercapacitors...
USDA-ARS?s Scientific Manuscript database
In this study, the efficacy of several fungal strains to reduce GLS (GLS) content and enhance protein content during solid state fermentation (SSF) of carinata meal was evaluated. Solid state fermentation of hexane extracted (HE) and cold pressed (CP) carinata meals were performed at 50% moisture co...
Solid state protein monolayers: Morphological, conformational, and functional properties
NASA Astrophysics Data System (ADS)
Pompa, P. P.; Biasco, A.; Frascerra, V.; Calabi, F.; Cingolani, R.; Rinaldi, R.; Verbeet, M. Ph.; de Waal, E.; Canters, G. W.
2004-12-01
We have studied the morphological, conformational, and electron-transfer (ET) function of the metalloprotein azurin in the solid state, by a combination of physical investigation methods, namely atomic force microscopy, intrinsic fluorescence spectroscopy, and scanning tunneling microscopy. We demonstrate that a "solid state protein film" maintains its nativelike conformation and ET function, even after removal of the aqueous solvent.
ERIC Educational Resources Information Center
Fitzgerald, Anne; Slichter, Charles P.
This is the fifth chapter of a six chapter report which discusses Chinese research and education in solid state physics, and their relations to technology and the other sciences. This specific chapter concerns the communication of information in the scientific community and the transfer of information to students and practical users…
The solid state detector technology for picosecond laser ranging
NASA Technical Reports Server (NTRS)
Prochazka, Ivan
1993-01-01
We developed an all solid state laser ranging detector technology, which makes the goal of millimeter accuracy achievable. Our design and construction philosophy is to combine the techniques of single photon ranging, ultrashort laser pulses, and fast fixed threshold discrimination while avoiding any analog signal processing within the laser ranging chain. The all solid state laser ranging detector package consists of the START detector and the STOP solid state photon counting module. Both the detectors are working in an optically triggered avalanche switching regime. The optical signal is triggering an avalanche current buildup which results in the generation of a uniform, fast risetime output pulse.
Cho, Eugene N; Zhitomirsky, David; Han, Grace G D; Liu, Yun; Grossman, Jeffrey C
2017-03-15
Solar thermal fuels (STFs) harvest and store solar energy in a closed cycle system through conformational change of molecules and can release the energy in the form of heat on demand. With the aim of developing tunable and optimized STFs for solid-state applications, we designed three azobenzene derivatives functionalized with bulky aromatic groups (phenyl, biphenyl, and tert-butyl phenyl groups). In contrast to pristine azobenzene, which crystallizes and makes nonuniform films, the bulky azobenzene derivatives formed uniform amorphous films that can be charged and discharged with light and heat for many cycles. Thermal stability of the films, a critical metric for thermally triggerable STFs, was greatly increased by the bulky functionalization (up to 180 °C), and we were able to achieve record high energy density of 135 J/g for solid-state STFs, over a 30% improvement compared to previous solid-state reports. Furthermore, the chargeability in the solid state was improved, up to 80% charged from 40% charged in previous solid-state reports. Our results point toward molecular engineering as an effective method to increase energy storage in STFs, improve chargeability, and improve the thermal stability of the thin film.
Yi, Jin; Zhou, Haoshen
2016-09-08
In the context of the development of electric vehicle to solve the contemporary energy and environmental issues, the possibility of pushing future application of Li-O2 batteries as a power source for electric vehicles is particularly attractive. However, safety concerns, mainly derived from the use of flammable organic liquid electrolytes, become a major bottleneck for the strategically crucial applications of Li-O2 batteries. To overcome this issue, rechargeable solid-state Li-O2 batteries with enhanced safety is regarded as an appealing candidate. In this study, a hybrid quasi-solid-state electrolyte combing a polymer electrolyte with a ceramic electrolyte is first designed and explored for Li-O2 batteries. The proposed rechargeable solid-state Li-O2 battery delivers improved cycle life (>100 cycles) and safety. The feasibility study demonstrates that the hybrid quasi-solid-state electrolytes could be employed as a promising alternative strategy for the development of rechargeable Li-O2 batteries, hence encouraging more efforts devoted to explore other hybrid solid-state electrolytes for Li-O2 batteries upon future application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wurden, G.A.
1999-01-19
Radiation-hard, steady-state imaging bolometer is disclosed. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas. 2 figs.
Wurden, Glen A.
1999-01-01
Radiation-hard, steady-state imaging bolometer. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas.
The Golden Age of Radio: Solid State's Debt to the Rad Lab
NASA Astrophysics Data System (ADS)
Martin, Joseph D.
2011-03-01
While MIT's Radiation Laboratory is rightly celebrated for its contributions to World War II radar research, its legacy extended beyond the war. The Rad Lab provided a model for interdisciplinary collaboration that continued to influence research at MIT in the post-war decades. The Rad Lab's institutional legacy--MIT's interdepartmental laboratories--drove the Institute's postwar research agenda. This talk examines how solid state physics research at MIT was shaped by a laboratory structure that encouraged cross-disciplinary collaboration. As the sub-discipline of solid state physics emerged through the late-1940s and 1950s, MIT was unique among universities in its laboratory structure, made possible by a large degree of government and military funding. Nonetheless, the manner in which MIT research groups from physics, chemistry, engineering, and metallurgy interfaced through the medium of solid state physics exemplified how the discipline of solid state physics came to be structured in the rest of the country. Through examining the Rad Lab's institutional legacy, I argue that World War II radar research, by establishing precedent for a particular mode of interdisciplinary collaboration, shaped the future structure of solid state research in the United States. Research supported by a grant-in-aid from the Friends of the Center for the History of Physics, American Institute of Physics.
Plenoptic Image Motion Deblurring.
Chandramouli, Paramanand; Jin, Meiguang; Perrone, Daniele; Favaro, Paolo
2018-04-01
We propose a method to remove motion blur in a single light field captured with a moving plenoptic camera. Since motion is unknown, we resort to a blind deconvolution formulation, where one aims to identify both the blur point spread function and the latent sharp image. Even in the absence of motion, light field images captured by a plenoptic camera are affected by a non-trivial combination of both aliasing and defocus, which depends on the 3D geometry of the scene. Therefore, motion deblurring algorithms designed for standard cameras are not directly applicable. Moreover, many state of the art blind deconvolution algorithms are based on iterative schemes, where blurry images are synthesized through the imaging model. However, current imaging models for plenoptic images are impractical due to their high dimensionality. We observe that plenoptic cameras introduce periodic patterns that can be exploited to obtain highly parallelizable numerical schemes to synthesize images. These schemes allow extremely efficient GPU implementations that enable the use of iterative methods. We can then cast blind deconvolution of a blurry light field image as a regularized energy minimization to recover a sharp high-resolution scene texture and the camera motion. Furthermore, the proposed formulation can handle non-uniform motion blur due to camera shake as demonstrated on both synthetic and real light field data.
Hanrahan, Michael P; Venkatesh, Amrit; Carnahan, Scott L; Calahan, Julie L; Lubach, Joseph W; Munson, Eric J; Rossini, Aaron J
2017-10-25
We demonstrate that natural isotopic abundance 2D heteronuclear correlation (HETCOR) solid-state NMR spectra can be used to significantly reduce or eliminate the broadening of 1 H and 13 C solid-state NMR spectra of organic solids due to anisotropic bulk magnetic susceptibility (ABMS). ABMS often manifests in solids with aromatic groups, such as active pharmaceutical ingredients (APIs), and inhomogeneously broadens the NMR peaks of all nuclei in the sample. Inhomogeneous peaks with full widths at half maximum (FWHM) of ∼1 ppm typically result from ABMS broadening and the low spectral resolution impedes the analysis of solid-state NMR spectra. ABMS broadening of solid-state NMR spectra has previously been eliminated using 2D multiple-quantum correlation experiments, or by performing NMR experiments on diluted materials or single crystals. However, these experiments are often infeasible due to their poor sensitivity and/or provide limited gains in resolution. 2D 1 H- 13 C HETCOR experiments have previously been applied to reduce susceptibility broadening in paramagnetic solids and we show that this strategy can significantly reduce ABMS broadening in diamagnetic organic solids. Comparisons of 1D solid-state NMR spectra and 1 H and 13 C solid-state NMR spectra obtained from 2D 1 H- 13 C HETCOR NMR spectra show that the HETCOR spectrum directly increases resolution by a factor of 1.5 to 8. The direct gain in resolution is determined by the ratio of the inhomogeneous 13 C/ 1 H linewidth to the homogeneous 1 H linewidth, with the former depending on the magnitude of the ABMS broadening and the strength of the applied field and the latter on the efficiency of homonuclear decoupling. The direct gains in resolution obtained using the 2D HETCOR experiments are better than that obtained by dilution. For solids with long proton longitudinal relaxation times, dynamic nuclear polarization (DNP) was applied to enhance sensitivity and enable the acquisition of 2D 1 H- 13 C HETCOR NMR spectra. 2D 1 H- 13 C HETCOR experiments were applied to resolve and partially assign the NMR signals of the form I and form II polymorphs of aspirin in a sample containing both forms. These findings have important implications for ultra-high field NMR experiments, optimization of decoupling schemes and assessment of the fundamental limits on the resolution of solid-state NMR spectra.
Rapid Thermal Annealing of Cathode-Garnet Interface toward High-Temperature Solid State Batteries.
Liu, Boyang; Fu, Kun; Gong, Yunhui; Yang, Chunpeng; Yao, Yonggang; Wang, Yanbin; Wang, Chengwei; Kuang, Yudi; Pastel, Glenn; Xie, Hua; Wachsman, Eric D; Hu, Liangbing
2017-08-09
High-temperature batteries require the battery components to be thermally stable and function properly at high temperatures. Conventional batteries have high-temperature safety issues such as thermal runaway, which are mainly attributed to the properties of liquid organic electrolytes such as low boiling points and high flammability. In this work, we demonstrate a truly all-solid-state high-temperature battery using a thermally stable garnet solid-state electrolyte, a lithium metal anode, and a V 2 O 5 cathode, which can operate well at 100 °C. To address the high interfacial resistance between the solid electrolyte and cathode, a rapid thermal annealing method was developed to melt the cathode and form a continuous contact. The resulting interfacial resistance of the solid electrolyte and V 2 O 5 cathode was significantly decreased from 2.5 × 10 4 to 71 Ω·cm 2 at room temperature and from 170 to 31 Ω·cm 2 at 100 °C. Additionally, the diffusion resistance in the V 2 O 5 cathode significantly decreased as well. The demonstrated high-temperature solid-state full cell has an interfacial resistance of 45 Ω·cm 2 and 97% Coulombic efficiency cycling at 100 °C. This work provides a strategy to develop high-temperature all-solid-state batteries using garnet solid electrolytes and successfully addresses the high contact resistance between the V 2 O 5 cathode and garnet solid electrolyte without compromising battery safety or performance.
All-solid-state lithium-ion and lithium metal batteries - paving the way to large-scale production
NASA Astrophysics Data System (ADS)
Schnell, Joscha; Günther, Till; Knoche, Thomas; Vieider, Christoph; Köhler, Larissa; Just, Alexander; Keller, Marlou; Passerini, Stefano; Reinhart, Gunther
2018-04-01
Challenges and requirements for the large-scale production of all-solid-state lithium-ion and lithium metal batteries are herein evaluated via workshops with experts from renowned research institutes, material suppliers, and automotive manufacturers. Aiming to bridge the gap between materials research and industrial mass production, possible solutions for the production chains of sulfide and oxide based all-solid-state batteries from electrode fabrication to cell assembly and quality control are presented. Based on these findings, a detailed comparison of the production processes for a sulfide based all-solid-state battery with conventional lithium-ion cell production is given, showing that processes for composite electrode fabrication can be adapted with some effort, while the fabrication of the solid electrolyte separator layer and the integration of a lithium metal anode will require completely new processes. This work identifies the major steps towards mass production of all-solid-state batteries, giving insight into promising manufacturing technologies and helping stakeholders, such as machine engineering, cell producers, and original equipment manufacturers, to plan the next steps towards safer batteries with increased storage capacity.
Real-time monitoring of ischemia inside stomach.
Tahirbegi, Islam Bogachan; Mir, Mònica; Samitier, Josep
2013-02-15
The low pH in the gastric juice of the stomach makes it difficult to fabricate stable and functional all-solid-state pH ISE sensors to sense ischemia, mainly because of anion interference and adhesion problem between the ISE membrane and the electrode surface. In this work, the adhesion of ISE membrane on solid surface at low pH was improved by modifying the surface with a conductive substrate containing hydrophilic and hydrophobic groups. This creates a stable and robust candidate for low pH applications. Moreover, anion interference problem at low pH was solved by integration of all-solid-state ISE and internal reference electrodes on an array. So, the same tendencies of anion interferences for all-solid-state ISE and all-solid-state reference electrodes cancel each other in differential potentiometric detection. The developed sensor presents a novel all-solid-state potentiometric, miniaturized and mass producible pH ISE sensor for detecting ischemia on the stomach tissue on an array designed for endoscopic applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Flight 1 technical report for experiment 74-37 contained polycrystalline solidification in low-G
NASA Technical Reports Server (NTRS)
Papaziak, J. M.; Kattamis, T. Z.
1976-01-01
A .005 M solution of fluorescein in cyclohexanol was directionally solidified in a standard 10 x 10 x 45mm UV silica cuvette, using a bottom thermoelectric chilling device. Progress of the experiment was monitored by time lapse photography. During flight (SPAR I) the camera malfunctioned and only one quarter of the expected data were collected. Comparison of flight and ground specimens indicated that: (1) The dark green layer observed ahead of the solid-liquid interface which is most likely the solute-enriched zone, appears to be wider in the flight specimen; (2) Parasitic nucleation ahead of the solid-liquid interface in the flight sample led to an irregularly shaped interface, smaller grain size, equiaxed grain morphology and a larger average macroscopic growth rate; (3) The formation of equiaxed grains ahead of the solid-liquid interface in the flight specimen may be attributed to ordered islands within the liquid, which survived remelting because of the low degree of superheating (approximately equal to 1.5 C), did not settle because of reduced gravity and acted as nuclei during cooling.
A CAD/CAE analysis of photographic and engineering data
NASA Technical Reports Server (NTRS)
Goza, S. Michael; Peterson, Wayne L.
1987-01-01
In the investigation of the STS 51L accident, NASA engineers were given the task of visual analysis of photographic data extracted from the tracking cameras located at the launch pad. An analysis of the rotations associated with the right Solid Rocket Booster (SRB) was also performed. The visual analysis involved pinpointing coordinates of specific areas on the photographs. The objective of the analysis on the right SRB was to duplicate the rotations provided by the SRB rate gyros and to determine the effects of the rotations on the launch configuration. To accomplish the objectives, computer aided design and engineering was employed. The solid modeler, GEOMOD, inside the Structural Dynamics Research Corp. I-DEAS package, proved invaluable. The problem areas that were encountered and the corresponding solutions that were obtained are discussed. A brief description detailing the construction of the computer generated solid model of the STS launch configuration is given. A discussion of the coordinate systems used in the analysis is provided for the purpose of positioning the model in coordinate space. The techniques and theory used in the model analysis are described.
Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser.
Yoshioka, Hiroaki; Yang, Yu; Watanabe, Hirofumi; Oki, Yuji
2012-02-13
A novel solid-state dye laser with degradation recovery was proposed and demonstrated. Polydimethylsiloxane was used as a nanoporous solid matrix to enable the internal circulation of dye molecules in the solid state. An internal circulation model for the dye molecules was also proposed and verified numerically by assuming molecular mobility and using a proposed diffusion equation. The durability of the laser was increased 20.5-fold compared with that of a conventional polymethylmethacrylate laser. This novel laser solves the low-durability problem of dye-doped polymer lasers.
Schanda, Paul; Ernst, Matthias
2016-01-01
Magic-angle spinning solid-state NMR spectroscopy is an important technique to study molecular structure, dynamics and interactions, and is rapidly gaining importance in biomolecular sciences. Here we provide an overview of experimental approaches to study molecular dynamics by MAS solid-state NMR, with an emphasis on the underlying theoretical concepts and differences of MAS solid-state NMR compared to solution-state NMR. The theoretical foundations of nuclear spin relaxation are revisited, focusing on the particularities of spin relaxation in solid samples under magic-angle spinning. We discuss the range of validity of Redfield theory, as well as the inherent multi-exponential behavior of relaxation in solids. Experimental challenges for measuring relaxation parameters in MAS solid-state NMR and a few recently proposed relaxation approaches are discussed, which provide information about time scales and amplitudes of motions ranging from picoseconds to milliseconds. We also discuss the theoretical basis and experimental measurements of anisotropic interactions (chemical-shift anisotropies, dipolar and quadrupolar couplings), which give direct information about the amplitude of motions. The potential of combining relaxation data with such measurements of dynamically-averaged anisotropic interactions is discussed. Although the focus of this review is on the theoretical foundations of dynamics studies rather than their application, we close by discussing a small number of recent dynamics studies, where the dynamic properties of proteins in crystals are compared to those in solution. PMID:27110043
High-speed mid-infrared hyperspectral imaging using quantum cascade lasers
NASA Astrophysics Data System (ADS)
Kelley, David B.; Goyal, Anish K.; Zhu, Ninghui; Wood, Derek A.; Myers, Travis R.; Kotidis, Petros; Murphy, Cara; Georgan, Chelsea; Raz, Gil; Maulini, Richard; Müller, Antoine
2017-05-01
We report on a standoff chemical detection system using widely tunable external-cavity quantum cascade lasers (ECQCLs) to illuminate target surfaces in the mid infrared (λ = 7.4 - 10.5 μm). Hyperspectral images (hypercubes) are acquired by synchronously operating the EC-QCLs with a LN2-cooled HgCdTe camera. The use of rapidly tunable lasers and a high-frame-rate camera enables the capture of hypercubes with 128 x 128 pixels and >100 wavelengths in <0.1 s. Furthermore, raster scanning of the laser illumination allowed imaging of a 100-cm2 area at 5-m standoff. Raw hypercubes are post-processed to generate a hypercube that represents the surface reflectance relative to that of a diffuse reflectance standard. Results will be shown for liquids (e.g., silicone oil) and solid particles (e.g., caffeine, acetaminophen) on a variety of surfaces (e.g., aluminum, plastic, glass). Signature spectra are obtained for particulate loadings of RDX on glass of <1 μg/cm2.
Apyari, V V; Dmitrienko, S G; Ostrovskaya, V M; Anaev, E K; Zolotov, Y A
2008-07-01
Polyurethane foam (PUF) has been suggested as a solid polymeric reagent for determination of nitrite. The determination is based on the diazotization of end toluidine groups of PUF with nitrite in acidic medium followed by coupling of polymeric diazonium cation with 3-hydroxy-7,8-benzo-1,2,3,4-tetrahydroquinoline. The intensely colored polymeric azodye formed in this reaction can be used as a convenient analytic form for the determination of nitrite by diffuse reflectance spectroscopy (c (min) = 0.7 ng mL(-1)). The possibility of using a desktop scanner, digital camera, and computer data processing for the numerical evaluation of the color intensity of the polymeric azodye has been investigated. A scanner and digital camera can be used for determination of nitrite with the same sensitivity and reproducibility as with diffuse reflectance spectroscopy. The approach developed was applied for determination of nitrite in river water and human exhaled breath condensate.
Zhu, Banghe; Rasmussen, John C.; Sevick-Muraca, Eva M.
2014-01-01
Purpose: Although fluorescence molecular imaging is rapidly evolving as a new combinational drug/device technology platform for molecularly guided surgery and noninvasive imaging, there remains no performance standards for efficient translation of “first-in-humans” fluorescent imaging agents using these devices. Methods: The authors employed a stable, solid phantom designed to exaggerate the confounding effects of tissue light scattering and to mimic low concentrations (nM–pM) of near-infrared fluorescent dyes expected clinically for molecular imaging in order to evaluate and compare the commonly used charge coupled device (CCD) camera systems employed in preclinical studies and in human investigational studies. Results: The results show that intensified CCD systems offer greater contrast with larger signal-to-noise ratios in comparison to their unintensified CCD systems operated at clinically reasonable, subsecond acquisition times. Conclusions: Camera imaging performance could impact the success of future “first-in-humans” near-infrared fluorescence imaging agent studies. PMID:24506637
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Banghe; Rasmussen, John C.; Sevick-Muraca, Eva M., E-mail: Eva.Sevick@uth.tmc.edu
2014-02-15
Purpose: Although fluorescence molecular imaging is rapidly evolving as a new combinational drug/device technology platform for molecularly guided surgery and noninvasive imaging, there remains no performance standards for efficient translation of “first-in-humans” fluorescent imaging agents using these devices. Methods: The authors employed a stable, solid phantom designed to exaggerate the confounding effects of tissue light scattering and to mimic low concentrations (nM–pM) of near-infrared fluorescent dyes expected clinically for molecular imaging in order to evaluate and compare the commonly used charge coupled device (CCD) camera systems employed in preclinical studies and in human investigational studies. Results: The results show thatmore » intensified CCD systems offer greater contrast with larger signal-to-noise ratios in comparison to their unintensified CCD systems operated at clinically reasonable, subsecond acquisition times. Conclusions: Camera imaging performance could impact the success of future “first-in-humans” near-infrared fluorescence imaging agent studies.« less
Solid State Ionics: from Michael Faraday to green energy-the European dimension.
Funke, Klaus
2013-08-01
Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag 2 S and PbF 2 and coined terms such as cation and anion , electrode and electrolyte . In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic) transport in ionic crystals became easy to visualize. In an 'evolving scheme of materials science', point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals), by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987.
Solid State Ionics: from Michael Faraday to green energy—the European dimension
Funke, Klaus
2013-01-01
Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag2S and PbF2 and coined terms such as cation and anion, electrode and electrolyte. In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic) transport in ionic crystals became easy to visualize. In an ‘evolving scheme of materials science’, point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals), by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987. PMID:27877585
Recognition of human activity characteristics based on state transitions modeling technique
NASA Astrophysics Data System (ADS)
Elangovan, Vinayak; Shirkhodaie, Amir
2012-06-01
Human Activity Discovery & Recognition (HADR) is a complex, diverse and challenging task but yet an active area of ongoing research in the Department of Defense. By detecting, tracking, and characterizing cohesive Human interactional activity patterns, potential threats can be identified which can significantly improve situation awareness, particularly, in Persistent Surveillance Systems (PSS). Understanding the nature of such dynamic activities, inevitably involves interpretation of a collection of spatiotemporally correlated activities with respect to a known context. In this paper, we present a State Transition model for recognizing the characteristics of human activities with a link to a prior contextbased ontology. Modeling the state transitions between successive evidential events determines the activities' temperament. The proposed state transition model poses six categories of state transitions including: Human state transitions of Object handling, Visibility, Entity-entity relation, Human Postures, Human Kinematics and Distance to Target. The proposed state transition model generates semantic annotations describing the human interactional activities via a technique called Casual Event State Inference (CESI). The proposed approach uses a low cost kinect depth camera for indoor and normal optical camera for outdoor monitoring activities. Experimental results are presented here to demonstrate the effectiveness and efficiency of the proposed technique.
NASA Astrophysics Data System (ADS)
Ludwig, Hans C.; Kruschat, Thomas; Knobloch, Torsten; Rostasy, Kevin; Buchfelder, Michael
2005-04-01
Preterm infants have a high incidence of post hemorrhagic or post infectious hydrocephalus often associated with ventricular or arachnoic cysts which carry a high risk of entrapment of cerebrospinal fluid (CSF). In these cases fenestration and opening of windows within the separating membranes are neurosurgical options. Although Nd:YAG- and diode-lasers have already been used in neuroendoscopic procedures, neurosurgeons avoid the use of high energy lasers in proximity to vital structures because of potential side effects. We have used a recently developed diode pumped solid state (DPSS) laser emitting light at a wavelength of 2.0 μm (Revolix TM LISA laser products, Katlenburg, Germany), which can be delivered through silica fibres towards endoscopic targets. From July 2002 until June 2004 fourteen endoscopic procedures in 12 consecutive patients (age 3 months to 12 years old) were performed. Most children suffered from complex post hemorrhagic and post infectious hydrocephalus, in whom ventriculoperitoneal shunt devices failed to restore a CSF equilibrium due to entrapment of CSF pathways by the cysts. We used two different endoscopes, a 6 mm Neuroendoscope (Braun Aesculap, Melsungen, Germany; a 4 mm miniature Neuroscope (Storz, Tuttlingen, Germany). The endoscopes were connected to a standard camera and TV monitor, the laser energy was introduced through a 365 μm core diameter bare ended silica fibre (PercuFib, LISA laser products, Katlenburg, Germany) through the endoscope"s working channel. The continuous wave laser was operated at power levels from 5 to 15 Watt in continuous and chopped mode. The frequency of the laser in chopped mode was varied between 5 and 20 Hz. All patients tolerated the procedure well. No immediate or long term side effects were noted. In 3 patients with cystic compression of the 4th ventricle, insertion of a shunt device could be avoided. The authors conclude that the use of the new RevolixTM laser enables safe and effective procedures in neuroendoscopy.
New cardiac cameras: single-photon emission CT and PET.
Slomka, Piotr J; Berman, Daniel S; Germano, Guido
2014-07-01
Nuclear cardiology instrumentation has evolved significantly in the recent years. Concerns about radiation dose and long acquisition times have propelled developments of dedicated high-efficiency cardiac SPECT scanners. Novel collimator designs, such as multipinhole or locally focusing collimators arranged in geometries that are optimized for cardiac imaging, have been implemented to enhance photon-detection sensitivity. Some of these new SPECT scanners use solid-state photon detectors instead of photomultipliers to improve image quality and to reduce the scanner footprint. These new SPECT devices allow dramatic up to 7-fold reduction in acquisition times or similar reduction in radiation dose. In addition, new hardware for photon attenuation correction allowing ultralow radiation doses has been offered by some vendors. To mitigate photon attenuation artifacts for the new SPECT scanners not equipped with attenuation correction hardware, 2-position (upright-supine or prone-supine) imaging has been proposed. PET hardware developments have been primarily driven by the requirements of oncologic imaging, but cardiac imaging can benefit from improved PET image quality and improved sensitivity of 3D systems. The time-of-flight reconstruction combined with resolution recovery techniques is now implemented by all major PET vendors. These new methods improve image contrast and image resolution and reduce image noise. High-sensitivity 3D PET without interplane septa allows reduced radiation dose for cardiac perfusion imaging. Simultaneous PET/MR hybrid system has been developed. Solid-state PET detectors with avalanche photodiodes or digital silicon photomultipliers have been introduced, and they offer improved imaging characteristics and reduced sensitivity to electromagnetic MR fields. Higher maximum count rate of the new PET detectors allows routine first-pass Rb-82 imaging, with 3D PET acquisition enabling clinical utilization of dynamic imaging with myocardial flow measurements for this tracer. The availability of high-end CT component in most PET/CT configurations enables hybrid multimodality cardiac imaging protocols with calcium scoring or CT angiography or both. Copyright © 2014. Published by Elsevier Inc.
Swap intensified WDR CMOS module for I2/LWIR fusion
NASA Astrophysics Data System (ADS)
Ni, Yang; Noguier, Vincent
2015-05-01
The combination of high resolution visible-near-infrared low light sensor and moderate resolution uncooled thermal sensor provides an efficient way for multi-task night vision. Tremendous progress has been made on uncooled thermal sensors (a-Si, VOx, etc.). It's possible to make a miniature uncooled thermal camera module in a tiny 1cm3 cube with <1W power consumption. For silicon based solid-state low light CCD/CMOS sensors have observed also a constant progress in terms of readout noise, dark current, resolution and frame rate. In contrast to thermal sensing which is intrinsic day&night operational, the silicon based solid-state sensors are not yet capable to do the night vision performance required by defense and critical surveillance applications. Readout noise, dark current are 2 major obstacles. The low dynamic range at high sensitivity mode of silicon sensors is also an important limiting factor, which leads to recognition failure due to local or global saturations & blooming. In this context, the image intensifier based solution is still attractive for the following reasons: 1) high gain and ultra-low dark current; 2) wide dynamic range and 3) ultra-low power consumption. With high electron gain and ultra low dark current of image intensifier, the only requirement on the silicon image pickup device are resolution, dynamic range and power consumption. In this paper, we present a SWAP intensified Wide Dynamic Range CMOS module for night vision applications, especially for I2/LWIR fusion. This module is based on a dedicated CMOS image sensor using solar-cell mode photodiode logarithmic pixel design which covers a huge dynamic range (> 140dB) without saturation and blooming. The ultra-wide dynamic range image from this new generation logarithmic sensor can be used directly without any image processing and provide an instant light accommodation. The complete module is slightly bigger than a simple ANVIS format I2 tube with <500mW power consumption.
NASA Technical Reports Server (NTRS)
1997-01-01
Complex tectonism is evident in these images of Ganymede's surface. The solid state imaging camera on NASA's Galileo spacecraft imaged this region as it passed Ganymede during its second orbit through the Jovian system. The 80 kilometer (50 mile) wide lens-shaped feature in the center of the image is located at 32 degrees latitude and 188 degrees longitude along the border of a region of ancient dark terrain known as Marius Regio, and is near an area of younger bright terrain named Nippur Sulcus. The tectonism that created the structures in the bright terrain nearby has strongly affected the local dark terrain to form unusual structures such as the one shown here. The lens-like appearance of this feature is probably due to shearing of the surface, where areas have slid past each other and also rotated slightly. Note that in several places in these images, especially around the border of the lens-shaped feature, bright ridges appear to turn into dark grooves. Analysis of the geologic structures in areas like this are helping scientists to understand the complex tectonic history of Ganymede.
North is to the top-left of the image, and the sun illuminates the surface from the southeast. The image covers an area about 63 kilometers (39 miles) by 120 kilometers (75 miles) across at a resolution of 188 meters (627 feet) per picture element. The images were taken on September 6, 1996 at a range of 18,522 kilometers (11,576 miles) by the solid state imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.NASA Astrophysics Data System (ADS)
Pribil, Klaus; Flemmig, Joerg
1994-09-01
This paper gives an overview on the current development status of the SOLACOS program and presents the highlights of the program. SOLACOS (Solid State Laser Communications in Space) is the national German program to develop a high performance laser communication system for high data rate transmission between LEO and GEO satellites (Inter Orbit Link, IOL). Two experimental demonstrator terminals are designed and developed in the SOLACOS program. The main development objectives are the Pointing Acquisition and Tracking subsystem (PAT) and the high data rate communication system. All key subsystems and components are straightway developed to be upgraded in follow- on projects to full space qualification. The main design objective for the system is a high degree of modularity which allows to easily upgrade the system with new upcoming technologies. Therefore, all main subsystems are interconnected via fibers to ease replacement of subsystems. The system implements an asymmetric data link with a 650 MBit/s return channel and a 10 MBit/s forward channel. The 650 MBit/s channel is based on a diode pumped Nd:YAG, Integrated Optics Modulator and uses the syncbit transmission scheme. In the syncbit system synchronization information which is necessary to maintain phase lock of the local oscillator of the coherent receiver is transmitted time multiplexed into the data stream. The PAT system comprises two beam detection sensors and three beam steering elements. For initial acquisition and tracking of the remote satellite a high speed CCD camera with an integrated image processing unit, the Acquisition and Tracking Sensor (ATS) is used. In the tacking mode the beam position is sensed via the Fibernutator sensor which is also used to couple the incoming signal into the receiver fiber. Incoming and outgoing beams are routed through the telescopes which are positioned with a 2 axis gimbal mechanism and a high speed beam steering mirror. The PAT system is controlled by a digital signal processor. For beam control advanced PAT algorithms are under development.
Modeling of Shock Waves with Multiple Phase Transitions in Condensed Materials
NASA Astrophysics Data System (ADS)
Missonnier, Marc; Heuzé, Olivier
2006-07-01
When a shock wave crosses a solid material and subjects it to solid-solid or solid-liquid phase transition, related phenomena occur: shock splitting, and the corresponding released shock wave after reflection. Modelling of these phenomena raises physical and numerical issues. After shock loading, such materials can reach different kinds of states: single-phase states, binary-phase states, and triple points. The thermodynamic path can be studied and easily understood in the (V,E) or (V,S) planes. In the case of 3 phase tin (β,γ, and liquid) submitted to shock waves, seven states can occur: β,γ, liquid, β-γ, β-liquid, γ-liquid, and β-γ-liquid. After studying the thermodynamic properties with a complete 3-phase Equation of State, we show the existence of these seven states with a hydrodynamic simulation.
Detecting Target Objects by Natural Language Instructions Using an RGB-D Camera
Bao, Jiatong; Jia, Yunyi; Cheng, Yu; Tang, Hongru; Xi, Ning
2016-01-01
Controlling robots by natural language (NL) is increasingly attracting attention for its versatility, convenience and no need of extensive training for users. Grounding is a crucial challenge of this problem to enable robots to understand NL instructions from humans. This paper mainly explores the object grounding problem and concretely studies how to detect target objects by the NL instructions using an RGB-D camera in robotic manipulation applications. In particular, a simple yet robust vision algorithm is applied to segment objects of interest. With the metric information of all segmented objects, the object attributes and relations between objects are further extracted. The NL instructions that incorporate multiple cues for object specifications are parsed into domain-specific annotations. The annotations from NL and extracted information from the RGB-D camera are matched in a computational state estimation framework to search all possible object grounding states. The final grounding is accomplished by selecting the states which have the maximum probabilities. An RGB-D scene dataset associated with different groups of NL instructions based on different cognition levels of the robot are collected. Quantitative evaluations on the dataset illustrate the advantages of the proposed method. The experiments of NL controlled object manipulation and NL-based task programming using a mobile manipulator show its effectiveness and practicability in robotic applications. PMID:27983604
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearse, Alexander J.; Schmitt, Thomas E.; Fuller, Elliot J.
Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiO tBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li 2PO 2N between 250 and 300°C. The P/N ratio of the films is always 1, indicative of a particular polymorph ofmore » LiPON which closely resembles a polyphosphazene. Films grown at 300°C have an ionic conductivity of (6.51 ± 0.36)×10 -7 S/cm at 35°C, and are functionally electrochemically stable in the window from 0 to 5.3V vs. Li/Li +. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO 2 as the cathode and Si as the anode operating at up to 1 mA/cm 2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the fabrication and operation of thin film batteries with the thinnest (<40nm) solid state electrolytes yet reported. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.« less
Pearse, Alexander J.; Schmitt, Thomas E.; Fuller, Elliot J.; ...
2017-04-10
Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiO tBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li 2PO 2N between 250 and 300°C. The P/N ratio of the films is always 1, indicative of a particular polymorph ofmore » LiPON which closely resembles a polyphosphazene. Films grown at 300°C have an ionic conductivity of (6.51 ± 0.36)×10 -7 S/cm at 35°C, and are functionally electrochemically stable in the window from 0 to 5.3V vs. Li/Li +. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO 2 as the cathode and Si as the anode operating at up to 1 mA/cm 2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the fabrication and operation of thin film batteries with the thinnest (<40nm) solid state electrolytes yet reported. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.« less
Unterlass, Miriam M; Emmerling, Franziska; Antonietti, Markus; Weber, Jens
2014-01-14
Fully aromatic polyimides are synthesized via solid-state polymerization of the corresponding monomer salts. The crystal structure of salts shows strong hydrogen bonding of the reactive groups and thereby paves the way for solid-state transformations. The polycondensation yields copies of the initial salt crystallite habits, accompanied by the development of a porosity especially suited for CO2.
Universal features of the equation of state of solids
NASA Technical Reports Server (NTRS)
Vinet, Pascal; Rose, James H.; Ferrante, John; Smith, John R.
1989-01-01
A study of the energetics of solids leads to the conclusion that the equation of state for all classes of solids in compression can be expressed in terms of a universal function. The form of this universal function is determined by scaling experimental compression data for measured isotherms of a wide variety of solids. The equation of state is thus known (in the absence of phase transitions), if zero-pressure volume and isothermal compression and its pressure derivative are known. The discovery described in this paper has two immediate consequences: first, despite the well known differences in the microscopic energetics of the various classes of solids, there is a single equation of state for all classes in compression; and second, a new method is provided for analyzing measured isotherms and extrapolating high-pressure data from low-pressure (e.g. acoustic) data.
Charge and discharge characteristics of lithium-ion graphite electrodes in solid-state cells
NASA Astrophysics Data System (ADS)
Lemont, S.; Billaud, D.
Lithium ions have been electrochemically intercalated into graphite in solid-state cells operating with solid polymer electrolytes based on poly(ethylene oxide) (PEO) complexed with lithium perchlorate (LiClO 4). The working composite electrode is composed of active-divided natural graphite associated with P(EO) 8-LiClO 4 acting as a binder and a Li + ionic conductor. Intercalation and de-intercalation of Li + were performed using galvanostatic or voltammetry techniques. The curves obtained in our solid-state cells were compared with those performed in liquid ethylene carbonate-LiClO 4 electrolyte. It is shown that in solid-state cells, side reactions occur both in the reduction and in the oxidation processes which leads to some uncertainty in the determination of the maximum reversible capacity of the graphite material.
Solid state fermentation (SSF): diversity of applications to valorize waste and biomass.
Lizardi-Jiménez, M A; Hernández-Martínez, R
2017-05-01
Solid state fermentation is currently used in a range of applications including classical applications, such as enzyme or antibiotic production, recently developed products, such as bioactive compounds and organic acids, new trends regarding bioethanol and biodiesel as sources of alternative energy, and biosurfactant molecules with environmental purposes of valorising unexploited biomass. This work summarizes the diversity of applications of solid state fermentation to valorize biomass regarding alternative energy and environmental purposes. The success of applying solid state fermentation to a specific process is affected by the nature of specific microorganisms and substrates. An exhaustive number of microorganisms able to grow in a solid matrix are presented, including fungus such as Aspergillus or Penicillum for antibiotics, Rhizopus for bioactive compounds, Mortierella for biodiesel to bacteria, Bacillus for biosurfactant production, or yeast for bioethanol.
Fluorine-doped antiperovskite electrolyte for all-solid-state Lithium-ion batteries
Li, Yutao; Zhou, Weidong; Xin, Sen; ...
2016-06-30
A fluorine-doped antiperovskite Li-ion conducto Li 2(OH)X (X=Cl, Br) is shown to be a promising candidat for a solid electrolyte in an all-solid-state Li-ion rechargeabl battery. Substitution of F¯ for OH¯ transforms orthorhombi Li 2OHCl to a room-temperature cubic phase, which show electrochemical stability to 9 V versus Li +/Li and two orders o magnitude higher Li-ion conductivity than that of orthorhombi Li 2OHCl. As a result, an all-solid-state Li/LiFePO 4 with F-dope Li 2OHCl as the solid electrolyte showed good cyclability an a high coulombic efficiency over 40 charge/discharge cycles
NASA Astrophysics Data System (ADS)
Zhang, Yunfeng; Cai, Weiwei; Rohan, Rupesh; Pan, Meize; Liu, Yuan; Liu, Xupo; Li, Cuicui; Sun, Yubao; Cheng, Hansong
2016-02-01
The ionic conductivity decay problem of poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) when increase the lithium salt of the SPEs up to high concentration is here functionally overcome by the incorporation of a charge delocalized sp3 boron based single ion conducting polymer electrolyte (SIPE) with poly(ethylene oxide) to fabricate solid-state sp3 boron based SIPE membranes (S-BSMs). By characterizations, particularly differential scanning calorimeter (DSC) and ionic conductivity studies, the fabricated S-BSMs showed decreased melting points and increased ionic conductivity as steadily increase the content of sp3 boron based SIPE, which significantly improved the low temperature performance of the all-solid-state lithium batteries. The fabricated Li | S-BSMs | LiFePO4 cells exhibit highly electrochemical stability and excellent cycling at temperature below melting point of PEO, which has never been reported so far for SIPEs based all-solid-state lithium batteries.
Yu, Chuang; Ganapathy, Swapna; Eck, Ernst R H van; Wang, Heng; Basak, Shibabrata; Li, Zhaolong; Wagemaker, Marnix
2017-10-20
Solid-state batteries potentially offer increased lithium-ion battery energy density and safety as required for large-scale production of electrical vehicles. One of the key challenges toward high-performance solid-state batteries is the large impedance posed by the electrode-electrolyte interface. However, direct assessment of the lithium-ion transport across realistic electrode-electrolyte interfaces is tedious. Here we report two-dimensional lithium-ion exchange NMR accessing the spontaneous lithium-ion transport, providing insight on the influence of electrode preparation and battery cycling on the lithium-ion transport over the interface between an argyrodite solid-electrolyte and a sulfide electrode. Interfacial conductivity is shown to depend strongly on the preparation method and demonstrated to drop dramatically after a few electrochemical (dis)charge cycles due to both losses in interfacial contact and increased diffusional barriers. The reported exchange NMR facilitates non-invasive and selective measurement of lithium-ion interfacial transport, providing insight that can guide the electrolyte-electrode interface design for future all-solid-state batteries.
Materials research for passive solar systems: Solid-state phase-change materials
NASA Astrophysics Data System (ADS)
Benson, D. K.; Webb, J. D.; Burrows, R. W.; McFadden, J. D. O.; Christensen, C.
1985-03-01
A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C5H12O4), pentaglycerinve (C5H12O3), and neopentyl glycol (C5H12O2). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature between 25 C and 188 C, and have latent heats of transformation etween 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier.
Technical Communication--Taking the User into Account.
1981-08-01
the effect of cognitive style on instructional design, it may be more cost-effective to evaluate how different instructional formats impact different...deck, 2 SONY VCK-3210 televison cameras, and a SONY Switcher/Fader SEG-l special effects generator. One television camera was positioned next to the ...AD-A1O? 030 NEW YORK STATE COLL OF AGRICULTURE AND LIFE SCIENCES -ETC F/ S /9 TECHNICAL COMMUNICATION--TAKING THE USER INTO ACCOUNT U) AUG Al T L