Sample records for solid state characterization

  1. Advanced solid-state NMR spectroscopy of natural organic matter

    USDA-ARS?s Scientific Manuscript database

    Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially the systematic approach to NOM characterization, and their ...

  2. High-Resolution Solid-State NMR Spectroscopy: Characterization of Polymorphism in Cimetidine, a Pharmaceutical Compound

    ERIC Educational Resources Information Center

    Pacilio, Julia E.; Tokarski, John T.; Quiñones, Rosalynn; Iuliucci, Robbie J.

    2014-01-01

    High-resolution solid-state NMR (SSNMR) spectroscopy has many advantages as a tool to characterize solid-phase material that finds applications in polymer chemistry, nanotechnology, materials science, biomolecular structure determination, and others, including the pharmaceutical industry. The technology associated with achieving high resolution…

  3. Solid state division progress report, period ending February 29, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-09-01

    Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials.

  4. 76 FR 53897 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... stakeholder input regarding the efficacy and scope of the MSW Characterization Report called ``Municipal Solid Waste in the United States'' as part of a broader discussion about sustainable materials management... efficacy and scope of the MSW Characterization Report called ``Municipal Solid Waste in the United States...

  5. Characterization of melt-quenched and milled amorphous solids of gatifloxacin.

    PubMed

    Hattori, Yusuke; Suzuki, Ayumi; Otsuka, Makoto

    2016-11-01

    The objectives of this study were to characterize and investigate the differences in amorphous states of gatifloxacin. We prepared two types of gatifloxacin amorphous solids coded as M and MQ using milling and melt-quenching methods, respectively. The amorphous solids were characterized via X-ray diffraction (XRD), nonisothermal differential scanning calorimetry (DSC) and time-resolved near-infrared (NIR) spectroscopy. Both the solids displayed halo XRD patterns, the characteristic of amorphous solids; however, in the non-isothermal DSC profiles, these amorphous solids were distinguished by their crystallization and melting temperatures. The Kissinger-Akahira-Sunose plots of non-isothermal crystallization temperatures at various heating rates indicated a lower activation energy of crystallization for the amorphous solid M than that of MQ. These results support the differentiation between two amorphous states with different physical and chemical properties.

  6. Application of Solid-State NMR Relaxometry for Characterization and Formulation Optimization of Grinding-Induced Drug Nanoparticle.

    PubMed

    Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu

    2016-03-07

    The formation mechanism of drug nanoparticles was investigated using solid-state nuclear magnetic resonance (NMR) techniques for the efficient discovery of an optimized nanoparticle formulation. The cogrinding of nifedipine (NIF) with polymers, including hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP), and sodium dodecyl sulfate (SDS) was performed to prepare the NIF nanoparticle formulations. Then, solid-state NMR relaxometry was used for the nanometer-order characterization of NIF in the polymer matrix. Solid-state NMR measurements revealed that the crystal size of NIF was reduced to several tens of nanometers with amorphization of NIF by cogrinding with HPMC and SDS for 100 min. Similarly, the size of the NIF crystal was reduced to less than 90 nm in the 40 min ground mixture of NIF/PVP/SDS. Furthermore, 100 min grinding of NIF/PVP/SDS induced amorphization of almost all the NIF crystals followed by nanosizing. The hydrogen bond between NIF and PVP led to the efficient amorphization of NIF in the NIF/PVP/SDS system compared with NIF/HPMC/SDS system. The efficient nanosizing of the NIF crystal in the solid state, revealed by the solid-state NMR relaxation time measurements, enabled the formation of large amounts of NIF nanoparticles in water followed by the polymer dissolution. In contrast, excess amorphization of the NIF crystals failed to efficiently prepare the NIF nanoparticles. The solid-state characterization of the crystalline NIF revealed good correlation with the NIF nanoparticles formation during aqueous dispersion. Furthermore, the solid-state NMR measurements including relaxometry successfully elucidated the nanometer-order dispersion state of NIF in polymer matrix, leading to the discovery of optimized conditions for the preparation of suitable drug nanoparticles.

  7. Advanced solid-state NMR spectroscopy of natural organic matter.

    PubMed

    Mao, Jingdong; Cao, Xiaoyan; Olk, Dan C; Chu, Wenying; Schmidt-Rohr, Klaus

    2017-05-01

    Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially a systematic approach to NOM characterization, and their applications to the study of NOM. We discuss some basics of how to acquire high-quality and quantitative solid-state 13 C NMR spectra, and address some common technical mistakes that lead to unreliable spectra of NOM. The identification of specific functional groups in NOM, primarily based on 13 C spectral-editing techniques, is described and the theoretical background of some recently-developed spectral-editing techniques is provided. Applications of solid-state NMR to investigating nitrogen (N) in NOM are described, focusing on limitations of the widely used 15 N CP/MAS experiment and the potential of improved advanced NMR techniques for characterizing N forms in NOM. Then techniques used for identifying proximities, heterogeneities and domains are reviewed, and some examples provided. In addition, NMR techniques for studying segmental dynamics in NOM are reviewed. We also briefly discuss applications of solid-state NMR to NOM from various sources, including soil organic matter, aquatic organic matter, organic matter in atmospheric particulate matter, carbonaceous meteoritic organic matter, and fossil fuels. Finally, examples of NMR-based structural models and an outlook are provided. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Solid-state optical refrigeration to sub-100 Kelvin regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melgaard, Seth D.; Albrecht, Alexander R.; Hehlen, Markus P.

    We report that since the first demonstration of net cooling twenty years ago, optical refrigeration of solids has progressed to outperform all other solid-state cooling processes. It has become the first and only solid-state refrigerator capable of reaching cryogenic temperatures, and now the first solid-state cooling below 100 K. Such substantial progress required a multi-disciplinary approach of pump laser absorption enhancement, material characterization and purification, and thermal management. Here we present the culmination of two decades of progress, the record cooling to ≈91K from room temperature.

  9. Solid-state optical refrigeration to sub-100 Kelvin regime

    DOE PAGES

    Melgaard, Seth D.; Albrecht, Alexander R.; Hehlen, Markus P.; ...

    2016-02-05

    We report that since the first demonstration of net cooling twenty years ago, optical refrigeration of solids has progressed to outperform all other solid-state cooling processes. It has become the first and only solid-state refrigerator capable of reaching cryogenic temperatures, and now the first solid-state cooling below 100 K. Such substantial progress required a multi-disciplinary approach of pump laser absorption enhancement, material characterization and purification, and thermal management. Here we present the culmination of two decades of progress, the record cooling to ≈91K from room temperature.

  10. Solid-state optical refrigeration to sub-100 Kelvin regime

    PubMed Central

    Melgaard, Seth D.; Albrecht, Alexander R.; Hehlen, Markus P.; Sheik-Bahae, Mansoor

    2016-01-01

    Since the first demonstration of net cooling twenty years ago, optical refrigeration of solids has progressed to outperform all other solid-state cooling processes. It has become the first and only solid-state refrigerator capable of reaching cryogenic temperatures, and now the first solid-state cooling below 100 K. Such substantial progress required a multi-disciplinary approach of pump laser absorption enhancement, material characterization and purification, and thermal management. Here we present the culmination of two decades of progress, the record cooling to ≈ 91 K from room temperature. PMID:26847703

  11. Conducting Reflective, Hands-On Research with Advanced Characterization Instruments: A High-Level Undergraduate Practical Exploring Solid-State Polymorphism

    ERIC Educational Resources Information Center

    Coles, S. J.; Mapp, L. K.

    2016-01-01

    An undergraduate practical exercise has been designed to provide hands-on, instrument-based experience of advanced characterization techniques. A research experience approach is taken, centered around the concept of solid-state polymorphism, which requires a detailed knowledge of molecular and crystal structure to be gained by advanced analytical…

  12. Solid state NMR: The essential technology for helical membrane protein structural characterization

    PubMed Central

    Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna

    2014-01-01

    NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed – neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins. PMID:24412099

  13. Solid state NMR: The essential technology for helical membrane protein structural characterization

    NASA Astrophysics Data System (ADS)

    Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna

    2014-02-01

    NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed - neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins.

  14. Production and Characterization of Lipases by Two New Isolates of Aspergillus through Solid-State and Submerged Fermentation

    PubMed Central

    Colla, Luciane Maria; Ficanha, Aline M. M.; Rizzardi, Juliana; Bertolin, Telma Elita; Reinehr, Christian Oliveira; Costa, Jorge Alberto Vieira

    2015-01-01

    Due to the numerous applications of lipases in industry, there is a need to study their characteristics, because lipases obtained from different sources may present different properties. The aim of this work was to accomplish the partial characterization of lipases obtained through submerged fermentation and solid-state fermentation by two species of Aspergillus. Fungal strains were isolated from a diesel-contaminated soil and selected as good lipases producers. Lipases obtained through submerged fermentation presented optimal activities at 37°C and pH 7.2 and those obtained through solid-state fermentation at 35°C and pH 6.0. The enzymes produced by submerged fermentation were more temperature-stable than those obtained by solid-state fermentation, presenting 72% of residual activity after one hour of exposition at 90°C. Lipases obtained through submerged fermentation had 80% of stability in acidic pH and those obtained through solid-state fermentation had stability greater than 60% in alkaline pH. PMID:26180809

  15. Sintered Cathodes for All-Solid-State Structural Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Huddleston, William; Dynys, Frederick; Sehirlioglu, Alp

    2017-01-01

    All-solid-state structural lithium ion batteries serve as both structural load-bearing components and as electrical energy storage devices to achieve system level weight savings in aerospace and other transportation applications. This multifunctional design goal is critical for the realization of next generation hybrid or all-electric propulsion systems. Additionally, transitioning to solid state technology improves upon battery safety from previous volatile architectures. This research established baseline solid state processing conditions and performance benchmarks for intercalation-type layered oxide materials for multifunctional application. Under consideration were lithium cobalt oxide and lithium nickel manganese cobalt oxide. Pertinent characteristics such as electrical conductivity, strength, chemical stability, and microstructure were characterized for future application in all-solid-state structural battery cathodes. The study includes characterization by XRD, ICP, SEM, ring-on-ring mechanical testing, and electrical impedance spectroscopy to elucidate optimal processing parameters, material characteristics, and multifunctional performance benchmarks. These findings provide initial conditions for implementing existing cathode materials in load bearing applications.

  16. Solid State Division progress report for period ending September 30, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, P.H.; Watson, D.M.

    1985-03-01

    During the reporting period, relatively minor changes have occurred in the research areas of interest to the Division. Nearly all the research of the Division can be classified broadly as mission-oriented basic research. Topics covered include: theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; and preparation and characterization of research materials. (GHT)

  17. Effect of milling conditions on solid-state amorphization of glipizide, and characterization and stability of solid forms.

    PubMed

    Xu, Kailin; Xiong, Xinnuo; Zhai, Yuanming; Wang, Lili; Li, Shanshan; Yan, Jin; Wu, Di; Ma, Xiaoli; Li, Hui

    2016-09-10

    In this study, the amorphization of glipizide was systematically investigated through high-energy ball milling at different temperatures. The results of solid-state amorphization through milling indicated that glipizide underwent direct crystal-to-glass transformation at 15 and 25°C and crystal-to-glass-to-crystal conversion at 35°C; hence, milling time and temperature had significant effects on the amorphization of glipizide, which should be effectively controlled to obtain totally amorphous glipizide. Solid forms of glipizide were detailedly characterized through analyses of X-ray powder diffraction, morphology, thermal curves, vibrational spectra, and solid-state nuclear magnetic resonance. The physical stability of solid forms was investigated under different levels of relative humidity (RH) at 25°C. Forms I and III are kinetically stable and do not form any new solid-state forms at various RH levels. By contrast, Form II is kinetically unstable, undergoing direct glass-to-crystal transformation when RH levels higher than 32.8%. Therefore, stability investigation indicated that Form II should be stored under relatively dry conditions to prevent rapid crystallization. High temperatures can also induce the solid-state transformation of Form II; the conversion rate increased with increasing temperature. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Solid-State NMR Study of the Cicada Wing.

    PubMed

    Gullion, John D; Gullion, Terry

    2017-08-17

    Wings of flying insects are part of the cuticle which forms the exoskeleton. The primary molecular components of cuticle are protein, chitin, and lipid. How these components interact with one another to form the exoskeleton is not completely understood. The difficulty in characterizing the cuticle arises because it is insoluble and noncrystalline. These properties severely limit the experimental tools that can be used for molecular characterization. Solid-state nuclear magnetic resonance experiments have been used in the past to characterize the exoskeleton of beetles and have found that chitin and protein make comparable contributions to the molecular matrix. However, little work has been done to characterize the components of the wing, which includes vein and membrane. In this work, solid-state NMR was used to characterize the wing of the 17-year cycle cicada (Magicicada cassini) that appeared in northern West Virginia during the summer of 2016. The NMR results show noticeable differences between the molecular components of the vein and membrane.

  19. Analytical techniques for characterization of cyclodextrin complexes in the solid state: A review.

    PubMed

    Mura, Paola

    2015-09-10

    Cyclodextrins are cyclic oligosaccharides able to form inclusion complexes with a variety of hydrophobic guest molecules, positively modifying their physicochemical properties. A thorough analytical characterization of cyclodextrin complexes is of fundamental importance to provide an adequate support in selection of the most suitable cyclodextrin for each guest molecule, and also in view of possible future patenting and marketing of drug-cyclodextrin formulations. The demonstration of the actual formation of a drug-cyclodextrin inclusion complex in solution does not guarantee its existence also in the solid state. Moreover, the technique used to prepare the solid complex can strongly influence the properties of the final product. Therefore, an appropriate characterization of the drug-cyclodextrin solid systems obtained has also a key role in driving in the choice of the most effective preparation method, able to maximize host-guest interactions. The analytical characterization of drug-cyclodextrin solid systems and the assessment of the actual inclusion complex formation is not a simple task and involves the combined use of several analytical techniques, whose results have to be evaluated together. The objective of the present review is to present a general prospect of the principal analytical techniques which can be employed for a suitable characterization of drug-cyclodextrin systems in the solid state, evidencing their respective potential advantages and limits. The applications of each examined technique are described and discussed by pertinent examples from literature. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Solid State Division progress report for period ending March 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, P.H.; Hinton, L.W.

    1992-09-01

    During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, superconductivity, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. The High Flux Isotope Reactor was returned to full operation.

  1. Polymorphs of Theophylline Characterized by DNP Enhanced Solid-State NMR

    PubMed Central

    2015-01-01

    We show how dynamic nuclear polarization (DNP) enhanced solid-state NMR spectroscopy can be used to characterize polymorphs and solvates of organic solids. We applied DNP to three polymorphs and one hydrated form of the asthma drug molecule theophylline. For some forms of theophylline, sample grinding and impregnation with the radical-containing solution, which are necessary to prepare the samples for DNP, were found to induce polymorphic transitions or desolvation between some forms. We present protocols for sample preparation for solid-state magic-angle spinning (MAS) DNP experiments that avoid the polymorphic phase transitions in theophylline. These protocols include cryogrinding, grinding under inert atmosphere, and the appropriate choice of the impregnating liquid. By applying these procedures, we subsequently demonstrate that two-dimensional correlation experiments, such as 1H–13C and 1H–15N HETCOR or 13C–13C INADEQUATE, can be obtained at natural isotopic abundance in reasonable times, thus enabling more advanced structural characterization of polymorphs. PMID:26393368

  2. Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Two types of swine manure chars, hydrothermally-produced hydrochar and slow-pyrolysis pyrochar, and their raw swine manure solid were characterized using advanced 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. Compared with the parent raw swine manure, both hydrochars and pyrochar di...

  3. Solid State Characterizations of Long-Term Leached Cast Stone Monoliths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmussen, Robert M.; Pearce, Carolyn I.; Parker, Kent E.

    This report describes the results from the solid phase characterization of six Cast Stone monoliths from the extended leach tests recently reported on (Serne et al. 2016),that were selected for characterization using multiple state-of-the-art approaches. The Cast Stone samples investigated were leached for > 590 d in the EPA Method 1315 test then archived for > 390 d in their final leachate. After reporting the long term leach behavior of the monoliths (containing radioactive 99Tc and stable 127I spikes and for original Westsik et al. 2013 fabricated monoliths, 238U), it was suggested that physical changes to the waste forms andmore » a depleting inventory of contaminants of potential concern may mean that effective diffusivity calculations past 63 d should not be used to accurately represent long-term waste form behavior. These novel investigations, in both length of leaching time and application of solid state techniques, provide an initial arsenal of techniques which can be utilized to perform such Cast Stone solid phase characterization work, which in turn can support upcoming performance assessment maintenance. The work was performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to characterize several properties of the long- term leached Cast Stone monolith samples.« less

  4. Classification of solid dispersions: correlation to (i) stability and solubility (ii) preparation and characterization techniques.

    PubMed

    Meng, Fan; Gala, Urvi; Chauhan, Harsh

    2015-01-01

    Solid dispersion has been a topic of interest in recent years for its potential in improving oral bioavailability, especially for poorly water soluble drugs where dissolution could be the rate-limiting step of oral absorption. Understanding the physical state of the drug and polymers in solid dispersions is essential as it influences both the stability and solubility of these systems. This review emphasizes on the classification of solid dispersions based on the physical states of drug and polymer. Based on this classification, stability aspects such as crystallization tendency, glass transition temperature (Tg), drug polymer miscibility, molecular mobility, etc. and solubility aspects have been discussed. In addition, preparation and characterization methods for binary solid dispersions based on the classification have also been discussed.

  5. Characterization of Protein-Excipient Microheterogeneity in Biopharmaceutical Solid-State Formulations by Confocal Fluorescence Microscopy.

    PubMed

    Koshari, Stijn H S; Ross, Jean L; Nayak, Purnendu K; Zarraga, Isidro E; Rajagopal, Karthikan; Wagner, Norman J; Lenhoff, Abraham M

    2017-02-06

    Protein-stabilizer microheterogeneity is believed to influence long-term protein stability in solid-state biopharmaceutical formulations and its characterization is therefore essential for the rational design of stable formulations. However, the spatial distribution of the protein and the stabilizer in a solid-state formulation is, in general, difficult to characterize because of the lack of a functional, simple, and reliable characterization technique. We demonstrate the use of confocal fluorescence microscopy with fluorescently labeled monoclonal antibodies (mAbs) and antibody fragments (Fabs) to directly visualize three-dimensional particle morphologies and protein distributions in dried biopharmaceutical formulations, without restrictions on processing conditions or the need for extensive data analysis. While industrially relevant lyophilization procedures of a model IgG1 mAb generally lead to uniform protein-excipient distribution, the method shows that specific spray-drying conditions lead to distinct protein-excipient segregation. Therefore, this method can enable more definitive optimization of formulation conditions than has previously been possible.

  6. Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges.

    PubMed

    Cerreia Vioglio, Paolo; Chierotti, Michele R; Gobetto, Roberto

    2017-08-01

    In recent years many efforts have been devoted to the screening and the study of new solid-state forms of old active pharmaceutical ingredients (APIs) with salification or co-crystallization processes, thus modulating final properties without changing the pharmacological nature. Salts, hydrates/solvates, and cocrystals are the common solid-state forms employed. They offer the intriguing possibility of exploring different pharmaceutical properties for a single API in the quest of enhancing the final drug product. New synthetic strategies and advanced characterization techniques have been recently proposed in this hot topic for pharmaceutical companies. This paper reviews the recent progresses in the field particularly focusing on the characterization challenges encountered when the nature of the solid-state form must be determined. The aim of this article is to offer the state-of-the-art on this subject in order to develop new insights and to promote cooperative efforts in the fascinating field of API salt and cocrystal forms. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. High-field 95 Mo and 183 W static and MAS NMR study of polyoxometalates.

    PubMed

    Haouas, Mohamed; Trébosc, Julien; Roch-Marchal, Catherine; Cadot, Emmanuel; Taulelle, Francis; Martineau-Corcos, Charlotte

    2017-10-01

    The potential of high-field NMR to measure solid-state 95 Mo and 183 W NMR in polyoxometalates (POMs) is explored using some archetypical structures like Lindqvist, Keggin and Dawson as model compounds that are well characterized in solution. NMR spectra in static and under magic angle spinning (MAS) were obtained, and their analysis allowed extraction of the NMR parameters, including chemical shift anisotropy and quadrupolar coupling parameters. Despite the inherent difficulties of measurement in solid state of these low-gamma NMR nuclei, due mainly to the low spectral resolution and poor signal-to-noise ratio, the observed global trends compare well with the solution-state NMR data. This would open an avenue for application of solid-state NMR to POMs, especially when liquid-state NMR is not possible, e.g., for poorly soluble or unstable compounds in solution, and for giant molecules with slow tumbling motion. This is the case of Keplerate where we provide here the first NMR characterization of this class of POMs in the solid state. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Solid State Technology Branch of NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A collection of papers written by the members of the Solid State Technology Branch of NASA LeRC from Jun. 1991 - Jun. 1992 is presented. A range of topics relating to superconductivity, Monolithic Microwave Circuits (MMIC's), coplanar waveguides, and material characterization is covered.

  9. Solid-State Division progress report for period ending March 31, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, P.H.; Watson, D.M.

    1983-09-01

    Progress and activities are reported on: theoretical solid-state physics (surfaces; electronic, vibrational, and magnetic properties; particle-solid interactions; laser annealing), surface and near-surface properties of solids (surface, plasma-material interactions, ion implantation and ion-beam mixing, pulsed-laser and thermal processing), defects in solids (radiation effects, fracture, impurities and defects, semiconductor physics and photovoltaic conversion), transport properties of solids (fast-ion conductors, superconductivity, mass and charge transport in materials), neutron scattering (small-angle scattering, lattice dynamics, magnetic properties, structure and instrumentation), and preparation and characterization of research materials (growth and preparative methods, nuclear waste forms, special materials). (DLC)

  10. Solid State Technology Branch of NASA Lewis Research Center: Fifth Annual Digest

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The digest is a collection of papers written by the members of the Solid State Technology Branch of NASA Lewis Research Center from June 1992-June 1993. The papers cover a range of topics relating to superconductivity, monolithic microwave integrated circuits (MMIC's), coplanar waveguide, and material characterization.

  11. Solid-State Characterization of Novel Propylene Glycol Ester Solvates Isolated from Lipid Formulations.

    PubMed

    Chakravarty, Paroma; Kothari, Sanjeev; Deese, Alan; Lubach, Joseph W

    2015-07-06

    The purpose of this study was to identify and characterize precipitates obtained from a liquid formulation of GNE068.HCl, a Genentech developmental compound, and lipophilic excipients, such as propylene glycol monocaprylate, and monolaurate. Precipitates were characterized using powder X-ray diffractometry (PXRD), differential scanning calorimetry, thermogravimetry, microscopy, nuclear magnetic resonance spectroscopy (NMR; solution and solid-state) and water sorption analysis. PXRD and NMR revealed the precipitates to be crystalline solvates of propylene glycol esters. The solvates (capryolate and lauroglycolate) were isomorphic and stable up to 70 °C, beyond which melting of the lattice occurred with subsequent dissolution of the active ingredient in the melt (microscopy and variable temperature PXRD). They were found to be mechanically stable (no change in PXRD pattern upon compression) and were nonhygroscopic up to ∼70% RH (25 °C). Our results highlight the outcome of inadvertent drug-excipient interactions in two separate lipid solution formulations with good solid-state properties and, thus, potential for further development.

  12. Topical delivery of roxithromycin solid-state forms entrapped in vesicles.

    PubMed

    Csongradi, Candice; du Plessis, Jeanetta; Aucamp, Marique Elizabeth; Gerber, Minja

    2017-05-01

    Recently, considerable interest developed in using newer/improved antibiotics for the treatment of Acne vulgaris. During this study, different roxithromycin solid-state forms (i.e. crystalline and amorphous) were encapsulated into vesicle systems (niosomes, proniosomes, ufosomes and pro-ufosomes) for dermis targeted delivery. Characterization of the vesicles was done with transmission electron microscopy, light microscopy, droplet size, droplet size distribution, pH, zeta-potential and entrapment efficiency percentage. Finally, comparative release and topical diffusion studies were performed, to evaluate if targeted topical delivery was obtained and if the roxithromycin solid-state amorphous forms resulted in improved topical delivery. Vesicle systems containing different roxithromycin (2%) solid-state forms were successfully prepared and characterized. The vesicles showed optimal properties for topical delivery. All carrier systems had topical delivery to the epidermis-dermis, whilst no roxithromycin was found in the receptor compartment or stratum corneum-epidermis. The niosomes were the leading formulation and the two amorphous forms had better topical delivery than the crystalline form. Successful targeted delivery of roxithromycin was obtained in the dermis, where the activity against Propionibacterium acnes is needed. The amorphous forms seemed to have held their solid-state form during formulation and in the vesicles, showing improved topical delivery in comparison to the crystalline form. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Characterization of van der Waals type bimodal,- lambda,- meta- and spinodal phase transitions in liquid mixtures, solid suspensions and thin films.

    PubMed

    Rosenholm, Jarl B

    2018-03-01

    The perfect gas law is used as a reference when selecting state variables (P, V, T, n) needed to characterize ideal gases (vapors), liquids and solids. Van der Waals equation of state is used as a reference for models characterizing interactions in liquids, solids and their mixtures. Van der Waals loop introduces meta- and unstable states between the observed gas (vapor)-liquid P-V transitions at low T. These intermediate states are shown to appear also between liquid-liquid, liquid-solid and solid-solid phase transitions. First-order phase transitions are characterized by a sharp discontinuity of first-order partial derivatives (P, S, V) of Helmholtz and Gibbs free energies. Second-order partial derivatives (K T , B, C V , C P , E) consist of a static contribution relating to second-order phase transitions and a relaxation contribution representing the degree of first-order phase transitions. Bimodal (first-order) and spinodal (second-order) phase boundaries are used to separate stable phases from metastable and unstable phases. The boundaries are identified and quantified by partial derivatives of molar Gibbs free energy or chemical potentials with respect to P, S, V and composition (mole fractions). Molecules confined to spread Langmuir monolayers or adsorbed Gibbs monolayers are characterized by equation of state and adsorption isotherms relating to a two-dimensional van der Waals equation of state. The basic work of two-dimensional wetting (cohesion, adsorption, spreading, immersion), have to be adjusted by a horizontal surface pressure in the presence of adsorbed vapor layers. If the adsorption is extended to liquid films a vertical surface pressure (Π) may be added to account for the lateral interaction, thus restoring PV = ΠAh dependence of thin films. Van der Waals attraction, Coulomb repulsion and structural hydration forces contribute to the vertical surface pressure. A van der Waals type coexistence of ordered (dispersed) and disordered (aggregated) phases is shown to exist when liquid vapor is confined in capillaries (condensation-liquefaction-evaporation and flux). This pheno-menon can be experimentally illustrated with suspended nano-sized particles (flocculation-coagulation-peptisation of colloidal sols) being confined in sample holders of varying size. The self-assembled aggregates represent critical self-similar equilibrium structures corres-ponding to rate determining complexes in kinetics. Overall, a self-consistent thermodynamic framework is established for the characterization of two- and three-dimensional phase separations in one-, two- and three-component systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Chemical compositions of dissolved organic matter from various sources as characterized by solid-state NMR

    USDA-ARS?s Scientific Manuscript database

    Dissolved organic matter (DOM) in surface waters plays an important role in biogeochemical and ecological processes. This study used solid-state NMR techniques to explore the molecular signatures of riverine DOM in relation to its point and nonpoint sources. DOM samples were isolated from (1) two st...

  15. Chemical structure of soil organic matter in slickspots as investigated by advanced solid-state NMR

    USDA-ARS?s Scientific Manuscript database

    Slickspot soils are saline, and knowledge of their humic chemistry would contribute to our limited understanding how salinity affects soil C and N stocks. We characterized humic acids (HAs) from slickspot soils with solid-state 13C nuclear magnetic resonance (NMR). Expanding on previous use of cross...

  16. Detergent Optimized Membrane Protein Reconstitution in Liposomes for Solid State NMR

    PubMed Central

    2015-01-01

    For small helical membrane proteins, their structures are highly sensitive to their environment, and solid state NMR is a structural technique that can characterize these membrane proteins in native-like lipid bilayers and proteoliposomes. To date, a systematic method by which to evaluate the effect of the solubilizing detergent on proteoliposome preparations for solid state NMR of membrane proteins has not been presented in the literature. A set of experiments are presented aimed at determining the conditions most amenable to dialysis mediated reconstitution sample preparation. A membrane protein from M. tuberculosis is used to illustrate the method. The results show that a detergent that stabilizes the most protein is not always ideal and sometimes cannot be removed by dialysis. By focusing on the lipid and protein binding properties of the detergent, proteoliposome preparations can be readily produced, which provide double the signal-to-noise ratios for both the oriented sample and magic angle spinning solid state NMR. The method will allow more membrane protein drug targets to be structurally characterized in lipid bilayer environments. PMID:24665863

  17. Dissolved Solids in Basin-Fill Aquifers and Streams in the Southwestern United States - Executive Summary

    USGS Publications Warehouse

    Anning, David W.

    2008-01-01

    The U.S. Geological Survey (USGS) recently completed a regional study in the Southwestern United States to characterize dissolved-solids conditions in major water supplies, including important rivers and aquifers. High concentrations of dissolved solids can degrade a water supply's suitability for important uses, such as drinking water or crop irrigation. In an effort to ensure the continued availability of clean surface and groundwater, USGS scientists identified areas where there have been both increasing and decreasing trends in dissolved-solids concentrations.

  18. Solid state laser technology - A NASA perspective

    NASA Technical Reports Server (NTRS)

    Allario, F.

    1985-01-01

    NASA's program for developing solid-state laser technology and applying it to the Space Shuttle and Space Platform is discussed. Solid-state lasers are required to fulfill the Earth Observation System's requirements. The role of the Office of Aeronautics and Space Technology in developing a NASA tunable solid-state laser program is described. The major goals of the program involve developing a solid-state pump laser in the green, using AlGaAs array technology, pumping a Nd:YAG/SLAB crystal or glass, and fabricating a lidar system, with either a CO2 laser at 10.6 microns or a Nd:YAG laser at 1.06 microns, to measure tropospheric winds to an accuracy of + or - 1 m/s and a vertical resolution of 1 km. The procedures to be followed in order to visualize this technology plan include: (1) material development and characterization, (2) laser development, and (3) implementation of the lasers.

  19. Nanoscale solid-state cooling: a review.

    PubMed

    Ziabari, Amirkoushyar; Zebarjadi, Mona; Vashaee, Daryoosh; Shakouri, Ali

    2016-09-01

    The recent developments in nanoscale solid-state cooling are reviewed. This includes both theoretical and experimental studies of different physical concepts, as well as nanostructured material design and device configurations. We primarily focus on thermoelectric, thermionic and thermo-magnetic coolers. Particular emphasis is given to the concepts based on metal-semiconductor superlattices, graded materials, non-equilibrium thermoelectric devices, Thomson coolers, and photon assisted Peltier coolers as promising methods for efficient solid-state cooling. Thermomagnetic effects such as magneto-Peltier and Nernst-Ettingshausen cooling are briefly described and recent advances and future trends in these areas are reviewed. The ongoing progress in solid-state cooling concepts such as spin-calorimetrics, electrocalorics, non-equilibrium/nonlinear Peltier devices, superconducting junctions and two-dimensional materials are also elucidated and practical achievements are reviewed. We explain the thermoreflectance thermal imaging microscopy and the transient Harman method as two unique techniques developed for characterization of thermoelectric microrefrigerators. The future prospects for solid-state cooling are briefly summarized.

  20. Innovations in microelectronics and solid state at North Carolina Agricultural and Technical State University

    NASA Technical Reports Server (NTRS)

    Williams, L., Jr.

    1977-01-01

    Research in the following areas is described: (1) Characterization and applications of metallic oxide devices; (2) Electronic properties and energy conversion in organic amorphous semiconductors; (3) Material growth and characterization directed toward improving 3-5 heterojunction solar cells.

  1. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    DOEpatents

    Asoka kumar, Palakkal P. V.; Lynn, Kelvin G.

    1993-01-01

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO.sub.2 /Si, MOS or other semiconductor devices.

  2. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    DOEpatents

    Asokakumar, P.P.V.; Lynn, K.G.

    1993-04-06

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO[sub 2]/Si, MOS or other semiconductor devices.

  3. Synthetic routes to a nanoscale inorganic cluster [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15} evaluated by solid-state {sup 71}Ga NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammann, Blake A.; Marsh, David A.; Ma, Zayd L.

    Solid-state {sup 71}Ga NMR was used to characterize a series of [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15} “Ga{sub 13}” molecular clusters synthesized by multiple methods. These molecular clusters are precursors to thin film electronics and may be employed in energy applications. The synthetic routes provide varying levels of impurities in the solid phase, and these impurities often elude traditional characterization techniques such as powder X-ray diffraction and Raman spectroscopy. Solid-state NMR can provide a window into the gallium species even in amorphous phases. This information is vital in order to prevent the impurities from causing defect sitesmore » in the corresponding thin films upon gelation and condensation (polymerization) of the Ga{sub 13} clusters. This work demonstrates the resolving power of solid-state NMR to evaluate structure and synthetic quality in the solid state, and the application of high-field NMR to study quadrupolar species, such as {sup 71}Ga. - Graphical abstract: The various synthetic routes and {sup 71}Ga solid-state NMR spectra of the nanoscale inorganic cluster [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15}. - Highlights: • Solid-state {sup 71}Ga NMR of hydroxo-aquo metal clusters and the impurities present. • High-field NMR capability allows for quadrupolar species, such as {sup 71}Ga, to be routinely studied. • Efficient and environmentally friendly synthetic routes have been developed to prepare hydroxo-aquo metal clusters.« less

  4. Solid State Division progress report, September 30, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-04-01

    Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials,more » and special materials); and isotope research materials. Publications and papers are listed. (WHK)« less

  5. Solid-state NMR and IR for the analysis of pharmaceutical solids: polymorphs of fosinopril sodium.

    PubMed

    Brittain, H G; Morris, K R; Bugay, D E; Thakur, A B; Serajuddin, A T

    1993-01-01

    The two polymorphic modifications of fosinopril sodium have been characterized as to their differences in melting behaviour, powder X-ray diffraction patterns, Fourier transform infrared spectra (FTIR), and solid-state 31P- and 13C-NMR spectra. The polymorphs were found to be enantiotropically related based upon melting point, heat of fusion, and solution mediated transformation data. Analysis of the solid-state FTIR and 13C-NMR data indicated that the environment of the acetal side chain of fosinopril sodium differed in two polymorphs, and that there might be cis-trans isomerization about the C6-N peptide bond. These conformational differences are postulated as the origin of the observed polymorphism.

  6. Obtaining and characterization of La0.8Sr0.2CrO3 perovskite by the combustion method

    NASA Astrophysics Data System (ADS)

    Morales Rivera, A. M.; Gómez Cuaspud, J. A.; López, E. Vera

    2017-01-01

    This research is focused on the synthesis and characterization of a perovskite oxide based on La0.8Sr0.2CrO3 system by the combustion method. The material was obtained in order to contribute to analyse the effect of synthesis route in the obtaining of advanced anodic materials for solid oxide fuel cells (SOFC). The obtaining of solid was achieved starting from corresponding nitrate dissolutions, which were polymerized by temperature effect in presence of citric acid. The solid precursor as a foam citrate was characterized by infrared (FTIR) and ultraviolet (UV) spectroscopy, confirming the effectiveness in synthesis process. The solid was calcined in oxygen atmosphere at 800°C and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive of X-ray spectroscopy (EDX) and solid state impedance spectroscopy (IS). Results confirm the obtaining of an orthorhombic solid with space group Pnma (62) and cell parameters a=5.4590Å, b=7.7310Å and c=5.5050Å. At morphological level the solid showed a heterogeneous distribution with an optimal correspondence with proposed and obtained stoichiometry. The electrical characterization, confirm a semiconductor behaviour with a value of 2.14eV Band-gap according with previous works.

  7. Characterization of proton exchange membrane materials for fuel cells by solid state nuclear magnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Zueqian

    2010-01-01

    Solid-state nuclear magnetic resonance (NMR) has been used to explore the nanometer-scale structure of Nafion, the widely used fuel cell membrane, and its composites. We have shown that solid-state NMR can characterize chemical structure and composition, domain size and morphology, internuclear distances, molecular dynamics, etc. The newly-developed water channel model of Nafion has been confirmed, and important characteristic length-scales established. Nafion-based organic and inorganic composites with special properties have also been characterized and their structures elucidated. The morphology of Nafion varies with hydration level, and is reflected in the changes in surface-to-volume (S/V) ratio of the polymer obtained by small-anglemore » X-ray scattering (SAXS). The S/V ratios of different Nafion models have been evaluated numerically. It has been found that only the water channel model gives the measured S/V ratios in the normal hydration range of a working fuel cell, while dispersed water molecules and polymer ribbons account for the structures at low and high hydration levels, respectively.« less

  8. NMR Relaxometry to Characterize the Drug Structural Phase in a Porous Construct.

    PubMed

    Thrane, Linn W; Berglund, Emily A; Wilking, James N; Vodak, David; Seymour, Joseph D

    2018-06-14

    Nuclear magnetic resonance (NMR) frequency spectra and T 2 relaxation time measurements, using a high-power radio frequency probe, are shown to characterize the presence of an amorphous drug in a porous silica construct. The results indicate the ability of non-solid-state NMR methods to characterize crystalline and amorphous solid structural phases in drugs. Two-dimensional T 1 - T 2 magnetic relaxation time correlation experiments are shown to monitor the impact of relative humidity on the drug in a porous silica tablet.

  9. Solid State Division progress report for period ending March 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, P.H.; Hinton, L.W.

    1997-12-01

    This report covers research progress in the Solid State Division from April 1, 1995, through March 31, 1997. During this period, the division conducted a broad, interdisciplinary materials research program in support of Department of Energy science and technology missions. The report includes brief summaries of research activities in condensed matter theory, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. An addendum includes listings of division publications and professional activities.

  10. Preparing, Characterizing, and Investigating Luminescent Properties of a Series of Long-Lasting Phosphors in a SrO-Al[subscript 2]O[subscript 3] System: An Integrated and Inquiry-Based Experiment in Solid State Chemistry for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Ma, Yan-Zi; Jia, Li; Ma, Kai-Guo; Wang, Hai-Hong; Jing, Xi-Ping

    2017-01-01

    An integrated and inquiry-based experiment on solid state chemistry is applied to an inorganic chemistry lab course to provide insight into the characteristics of the solid phase reaction. In this experiment, students have the opportunity to synthesize long-lasting phosphors with formula xSrO·yAl[subscript 2]O[subscript 3]:Eu[superscript 2+],…

  11. Extended papers selected from ESSDERC 2015

    NASA Astrophysics Data System (ADS)

    Grasser, Tibor; Schmitz, Jurriaan; Lemme, Max C.

    2016-11-01

    This special issue of Solid State Electronics includes 28 papers which have been carefully selected from the best presentations given at the 45th European Solid-State Device Research Conference (ESSDERC 2015) held from September 14-18, 2015 in Graz, Austria. These papers cover a wide range of topics related to the research on solid-state devices. These topics are used also to organize the conference submissions and presentations into 7 tracks: CMOS Processes, Devices and Integration; Opto-, Power- and Microwave Devices; Modeling & Simulation; Characterization, Reliability & Yield; Advanced & Emerging Memories; MEMS, Sensors & Display Technologies; Emerging Non-CMOS Devices & Technologies.

  12. Solid State Technology Branch of NASA Lewis Research Center: Fifth Annual Digest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    The digest is a collection of papers written by the members of the Solid State Technology Branch of NASA Lewis Research Center from June 1992-June 1993. The papers cover a range of topics relating to superconductivity, monolithic microwave integrated circuits (MMIC`s), coplanar waveguide, and material characterization. Individual papers are abstracted separately on the data base.

  13. Combined Approach for the Structural Characterization of Alkali Fluoroscandates: Solid-State NMR, Powder X-ray Diffraction, and Density Functional Theory Calculations.

    PubMed

    Rakhmatullin, Aydar; Polovov, Ilya B; Maltsev, Dmitry; Allix, Mathieu; Volkovich, Vladimir; Chukin, Andrey V; Boča, Miroslav; Bessada, Catherine

    2018-02-05

    The structures of several fluoroscandate compounds are presented here using a characterization approach combining powder X-ray diffraction and solid-state NMR. The structure of K 5 Sc 3 F 14 was fully determined from Rietveld refinement performed on powder X-ray diffraction data. Moreover, the local structures of NaScF 4 , Li 3 ScF 6 , KSc 2 F 7 , and Na 3 ScF 6 compounds were studied in detail from solid-state 19 F and 45 Sc NMR experiments. The 45 Sc chemical shift ranges for six- and seven-coordinated scandium environments were defined. The 19 F chemical shift ranges for bridging and terminal fluorine atoms were also determined. First-principles calculations of the 19 F and 45 Sc NMR parameters were carried out using plane-wave basis sets and periodic boundary conditions (CASTEP), and the results were compared with the experimental data. A good agreement between the calculated shielding constants and experimental chemical shifts was obtained. This demonstrates the good potential of computational methods in spectroscopic assignments of solid-state 45 Sc NMR spectroscopy.

  14. Solid State Division progress report for period ending September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, P.H.; Hinton, L.W.

    1994-08-01

    This report covers research progress in the Solid State Division from April 1, 1992, to September 30, 1993. During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. This research effort was enhanced by new capabilities in atomic-scale materials characterization, new emphasis on the synthesis and processing of materials, and increased partnering with industry and universities. The theoretical effort included a broad range of analytical studies, as well as a new emphasismore » on numerical simulation stimulated by advances in high-performance computing and by strong interest in related division experimental programs. Superconductivity research continued to advance on a broad front from fundamental mechanisms of high-temperature superconductivity to the development of new materials and processing techniques. The Neutron Scattering Program was characterized by a strong scientific user program and growing diversity represented by new initiatives in complex fluids and residual stress. The national emphasis on materials synthesis and processing was mirrored in division research programs in thin-film processing, surface modification, and crystal growth. Research on advanced processing techniques such as laser ablation, ion implantation, and plasma processing was complemented by strong programs in the characterization of materials and surfaces including ultrahigh resolution scanning transmission electron microscopy, atomic-resolution chemical analysis, synchrotron x-ray research, and scanning tunneling microscopy.« less

  15. Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp3 boron-based solid single ion conducting polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfeng; Cai, Weiwei; Rohan, Rupesh; Pan, Meize; Liu, Yuan; Liu, Xupo; Li, Cuicui; Sun, Yubao; Cheng, Hansong

    2016-02-01

    The ionic conductivity decay problem of poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) when increase the lithium salt of the SPEs up to high concentration is here functionally overcome by the incorporation of a charge delocalized sp3 boron based single ion conducting polymer electrolyte (SIPE) with poly(ethylene oxide) to fabricate solid-state sp3 boron based SIPE membranes (S-BSMs). By characterizations, particularly differential scanning calorimeter (DSC) and ionic conductivity studies, the fabricated S-BSMs showed decreased melting points and increased ionic conductivity as steadily increase the content of sp3 boron based SIPE, which significantly improved the low temperature performance of the all-solid-state lithium batteries. The fabricated Li | S-BSMs | LiFePO4 cells exhibit highly electrochemical stability and excellent cycling at temperature below melting point of PEO, which has never been reported so far for SIPEs based all-solid-state lithium batteries.

  16. Solid-state NMR as an effective method of polymorphic analysis: solid dosage forms of clopidogrel hydrogensulfate.

    PubMed

    Pindelska, Edyta; Szeleszczuk, Lukasz; Pisklak, Dariusz Maciej; Mazurek, Andrzej; Kolodziejski, Waclaw

    2015-01-01

    Clopidogrel hydrogensulfate (HSCL) is an antiplatelet agent, one of top-selling drugs in the world. In this paper, we have described a rapid and convenient method of verification which polymorph of HSCL is present in its final solid dosage form. Our methodology based on solid-state NMR spectroscopy and ab initio gauge-including projector-augmented wave calculations of NMR shielding constants is appropriate for currently available commercial solid dosage forms of HSCL. Furthermore, such structural characterization can assist with the development of new pharmaceutical products containing HSCL and also be useful in the identification of counterfeit drugs. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Correlation of Solid State and Solution Coordination Numbers with Infrared Spectroscopy in Five-, Six-, and Eight-Coordinate Transition Metal Complexes of DOTAM.

    PubMed

    Nagata, Maika K C T; Brauchle, Paul S; Wang, Sen; Briggs, Sarah K; Hong, Young Soo; Laorenza, Daniel W; Lee, Andrea G; Westmoreland, T David

    2016-08-16

    Three new DOTAM (1,4,7,10-tetrakis(acetamido)-1,4,7,10-tetraazacyclododecane) complexes have been synthesized and characterized by X-ray crystallography: [Co(DOTAM)]Cl 2 •3H 2 O, [Ni(DOTAM)]Cl 2 •4H 2 O, and [Cu(DOTAM)](ClO 4 ) 2 •H 2 O. Solid state and solution IR spectroscopic features for a series of [M(DOTAM)] 2+ complexes (M=Mn, Co, Cu, Ni, Ca, Zn) correlate with solid state and solution coordination numbers. [Co(DOTAM)] 2+ , [Ni(DOTAM)] 2+ , and [Zn(DOTAM)] 2+ are demonstrated to be six-coordinate in both the solid state and in solution, while [Mn(DOTAM)] 2+ and [Ca(DOTAM)] 2+ are eight-coordinate in the solid state and remain so in solution. [Cu(DOTAM)] 2+ , which is five-coordinate by X-ray crystallography, is shown to increase its coordination number in solution to six-coordinate.

  18. Improving the dissolution rate of poorly water soluble drug by solid dispersion and solid solution: pros and cons.

    PubMed

    Chokshi, Rina J; Zia, Hossein; Sandhu, Harpreet K; Shah, Navnit H; Malick, Waseem A

    2007-01-01

    The solid dispersions with poloxamer 188 (P188) and solid solutions with polyvinylpyrrolidone K30 (PVPK30) were evaluated and compared in an effort to improve aqueous solubility and bioavailability of a model hydrophobic drug. All preparations were characterized by differential scanning calorimetry, powder X-ray diffraction, intrinsic dissolution rates, and contact angle measurements. Accelerated stability studies also were conducted to determine the effects of aging on the stability of various formulations. The selected solid dispersion and solid solution formulations were further evaluated in beagle dogs for in vivo testing. Solid dispersions were characterized to show that the drug retains its crystallinity and forms a two-phase system. Solid solutions were characterized to be an amorphous monophasic system with transition of crystalline drug to amorphous state. The evaluation of the intrinsic dissolution rates of various preparations indicated that the solid solutions have higher initial dissolution rates compared with solid dispersions. However, after storage at accelerated conditions, the dissolution rates of solid solutions were lower due to partial reversion to crystalline form. The drug in solid dispersion showed better bioavailability in comparison to solid solution. Therefore, considering physical stability and in vivo study results, the solid dispersion was the most suitable choice to improve dissolution rates and hence the bioavailability of the poorly water soluble drug.

  19. An Integrated Approach to Thermal Analysis of Pharmaceutical Solids

    ERIC Educational Resources Information Center

    Riley, Shelley R. Rabel

    2015-01-01

    A three-tiered experiment for undergraduate Instrumental Analysis students is presented in which students characterize the solid-state thermal behavior of an active pharmaceutical ingredient (acetaminophen) and excipient (a-lactose hydrate) using differential scanning calorimetry, thermogravimetric analysis, and thermal microscopy. Students are…

  20. Engineering the Membrane/Electrode Interface To Improve the Performance of Solid-State Supercapacitors.

    PubMed

    Huang, Chun; Zhang, Jin; Snaith, Henry J; Grant, Patrick S

    2016-08-17

    This paper investigates the effect of adding a 450 nm layer based on porous TiO2 at the interface between a 4.5 μm carbon/TiO2 nanoparticle-based electrode and a polymer electrolyte membrane as a route to improve energy storage performance in solid-state supercapacitors. Electrochemical characterization showed that adding the interface layer reduced charge transfer resistance, promoted more efficient ion transfer across the interface, and significantly improved charge/discharge dynamics in a solid-state supercapacitor, resulting in an increased areal capacitance from 45.3 to 111.1 mF cm(-2) per electrode at 0.4 mA cm(-2).

  1. Laser waveform control of extreme ultraviolet high harmonics from solids.

    PubMed

    You, Yong Sing; Wu, Mengxi; Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Gholam-Mirzaei, Shima; Browne, Dana A; Chini, Michael; Chang, Zenghu; Schafer, Kenneth J; Gaarde, Mette B; Ghimire, Shambhu

    2017-05-01

    Solid-state high-harmonic sources offer the possibility of compact, high-repetition-rate attosecond light emitters. However, the time structure of high harmonics must be characterized at the sub-cycle level. We use strong two-cycle laser pulses to directly control the time-dependent nonlinear current in single-crystal MgO, leading to the generation of extreme ultraviolet harmonics. We find that harmonics are delayed with respect to each other, yielding an atto-chirp, the value of which depends on the laser field strength. Our results provide the foundation for attosecond pulse metrology based on solid-state harmonics and a new approach to studying sub-cycle dynamics in solids.

  2. 13C CP MAS NMR and GIAO-CHF calculations of coumarins.

    PubMed

    Zolek, Teresa; Paradowska, Katarzyna; Wawer, Iwona

    2003-01-01

    13C cross-polarization magic-angle spinning NMR spectra were recorded for a series of solid coumarins. Ab initio calculations of shielding constants were performed with the use of GIAO-CHF method. The combined CPMAS NMR and theoretical approach was successful in characterizing solid-state conformations of coumarins; a relationship sigma (ppm) = -1.032 xdelta + 205.28 (R(2) = 0.9845) can be used to obtain structural information for coumarins, for which solid-state NMR or crystal structure data are not available. Copyright 2002 Elsevier Science (USA)

  3. Stabilization of a supersaturated solution of mefenamic acid from a solid dispersion with EUDRAGIT(®) EPO.

    PubMed

    Kojima, Taro; Higashi, Kenjirou; Suzuki, Toyofumi; Tomono, Kazuo; Moribe, Kunikazu; Yamamoto, Keiji

    2012-10-01

    The stabilization mechanism of a supersaturated solution of mefenamic acid (MFA) from a solid dispersion with EUDRAGIT(®) EPO (EPO) was investigated. The solid dispersions were prepared by cryogenic grinding method. Powder X-ray diffractometry, in vitro dissolution test, in vivo oral absorption study, infrared spectroscopy, and solid- and solution-state NMR spectroscopies were used to characterize the solid dispersions. Dissolution tests in acetate buffer (pH 5.5) revealed that solid dispersion showed > 200-fold higher concentration of MFA. Supersaturated solution was stable over 1 month and exhibited improved oral bioavailability of MFA in rats, with a 7.8-fold higher area under the plasma concentration-versus-time curve. Solid-state (1)H spin-lattice relaxation time (T(1)) measurement showed that MFA was almost monomolecularly dispersed in the EPO polymer matrix. Intermolecular interaction between MFA and EPO was indicated by solid-state infrared and (13)C-T(1) measurements. Solution-state (1)H-NMR measurement demonstrated that MFA existed in monomolecular state in supersaturated solution. (1)H-T(1) and difference nuclear Overhauser effect measurements indicated that cross relaxation occurred between MFA and EPO due to the small distance between them. The formation and high stability of the supersaturated solution were attributable to the specifically formed intermolecular interactions between MFA and EPO.

  4. Solid-state reaction synthesis for mixed-phase Eu3+-doped bismuth molybdate and its luminescence properties

    NASA Astrophysics Data System (ADS)

    Liang, Danyang; Ding, Yu; Wang, Nan; Cai, Xiaomeng; Li, Jia; Han, Linyu; Wang, Shiqi; Han, Yuanyuan; Jia, Guang; Wang, Liyong

    2017-09-01

    A method for mixed-phase bismuth molybdate doped with Eu3+ ions was developed by solid-state reaction assisting with polyvinyl alcohol (PVA). The results of powder X-ray diffraction showed a mixed-phase structure and the microscopical characterization technology revealed the formation process with the addition of PVA. As a structure inducer, the PVA molecules played a vital role in the formation of phase structure. The as-obtained Eu3+-doped bismuth molybdates were also characterized by using different spectroscopic techniques including FTIR and photoluminescence (PL). The results show that doping concentration, PVA addition and calcination temperature affect photoluminescence properties remarkably.

  5. Direct detection and characterization of bioinorganic peroxo moieties in a vanadium complex by 17O solid-state NMR and density functional theory.

    PubMed

    Gupta, Rupal; Stringer, John; Struppe, Jochem; Rehder, Dieter; Polenova, Tatyana

    2018-07-01

    Electronic and structural properties of short-lived metal-peroxido complexes, which are key intermediates in many enzymatic reactions, are not fully understood. While detected in various enzymes, their catalytic properties remain elusive because of their transient nature, making them difficult to study spectroscopically. We integrated 17 O solid-state NMR and density functional theory (DFT) to directly detect and characterize the peroxido ligand in a bioinorganic V(V) complex mimicking intermediates non-heme vanadium haloperoxidases. 17 O chemical shift and quadrupolar tensors, measured by solid-state NMR spectroscopy, probe the electronic structure of the peroxido ligand and its interaction with the metal. DFT analysis reveals the unusually large chemical shift anisotropy arising from the metal orbitals contributing towards the magnetic shielding of the ligand. The results illustrate the power of an integrated approach for studies of oxygen centers in enzyme reaction intermediates. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Impurity and Defect Characterization in Epitaxial GaAs, InP and the Ternary and Quaternary Compound Semiconductors.

    DTIC Science & Technology

    1982-11-02

    Wolfe, Phys. Rev. Lett. 27, 988 (1971). 5. H.R. Fetterman , D.M. Larsen, G.E. Stillman, P.E. Tannenwald, and J. Waldman, Phys.Rev. Lett. 26. 975(1971). 6...Kirkman, P.E. Simmonds, and R.A. Stradling, J. Phys. C., Solid State Phys. 8, 530 (1975). 18. H.R. Fetterman , J. Waldman and C.M. Wolfe, Solid State Commun

  7. Flexible all-solid-state supercapacitors based on polyaniline orderly nanotubes array.

    PubMed

    Li, Huihua; Song, Juan; Wang, Linlin; Feng, Xiaomiao; Liu, Ruiqing; Zeng, Wenjin; Huang, Zhendong; Ma, Yanwen; Wang, Lianhui

    2017-01-07

    Flexible all-solid-state supercapacitors are crucial to meet the growing needs for portable electronic devices such as foldable phones and wearable electronics. As promising candidates for pseudocapacitor electrode materials, polyaniline (PANI) orderly nanotube arrays are prepared via a simple template electrodeposition method. The structures of the final product were characterized using various characterization techniques, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The obtained PANI nanotube film could be directly used as a flexible all-solid-state supercapacitor electrode. Electrochemical results show that the areal capacitance of a PANI nanotube-based supercapacitor with the deposition cycle number of 100 can achieve a maximum areal capacitance of 237.5 mF cm -2 at a scan rate of 10 mV s -1 and maximum energy density of 24.31 mW h cm -2 at a power density of 2.74 mW cm -2 . In addition, the prepared supercapacitor exhibits excellent flexibility under different bending conditions. It retains 95.2% of its initial capacitance value after 2000 cycles at a current density of 1.0 mA cm -1 , which displays its superior cycling stability. Moreover, the prepared flexible all-solid-state supercapacitor can power a light-emitting-diode (LED), which meets the practical applications of micropower supplies.

  8. Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan

    Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range 13 C- 13 C correlation MAS spectra obtained with selectivelymore » 13 CO- and 13 Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.« less

  9. Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid

    DOE PAGES

    Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan; ...

    2016-09-02

    Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range 13 C- 13 C correlation MAS spectra obtained with selectivelymore » 13 CO- and 13 Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.« less

  10. Using liquid and solid state NMR and photoluminescence to study the synthesis and solubility properties of amine capped silicon nanoparticles.

    PubMed

    Giuliani, J R; Harley, S J; Carter, R S; Power, P P; Augustine, M P

    2007-08-01

    Water soluble silicon nanoparticles were prepared by the reaction of bromine terminated silicon nanoparticles with 3-(dimethylamino)propyl lithium and characterized with liquid and solid state nuclear magnetic resonance (NMR) and photoluminescence (PL) spectroscopies. The surface site dependent 29Si chemical shifts and the nuclear spin relaxation rates from an assortment of 1H-29Si heteronuclear solid state NMR experiments for the amine coated reaction product are consistent with both the 1H and 13C liquid state NMR results and routine transmission electron microscopy, ultra-violet/visible, and Fourier transform infrared measurements. PL was used to demonstrate the pH dependent solubility properties of the amine passivated silicon nanoparticles.

  11. One-step synthesis of solid state luminescent carbon-based silica nanohybrids for imaging of latent fingerprints

    NASA Astrophysics Data System (ADS)

    Li, Feng; Li, Hongren; Cui, Tianfang

    2017-11-01

    Fluorescent carbon-based nanomaterials(CNs) with tunable visible emission are biocompatible, environment friendly and most suitable for various biomedical applications. Despite the successes in preparing strongly fluorescent CNs, preserving the luminescence in solid materials is still challenging because of the serious emission quenching of CNs in solid state materials. In this work, fluorescent carbon and silica nanohybrids (SiCNHs) were synthesized via a simple one-step hydrothermal approach by carbonizing sodium citrate and (3-aminopropyl)triethoxysilane(APTES), and hydrolysis of tetraethyl orthosilicate(TEOS). The resultant SiCNs were characterized through X-ray diffraction (XRD), transmission electron microscopy (TEM), FT-IR, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy. The SiCNs exhibited strong fluorescence in both aqueous and solid states. The luminescent solid state SiCNs power were successfully used as a fluorescent labeling material for enhanced imaging of latent fingerprints(LFPs) on single background colour and multi-coloured surfaces substrates in forensic science for individual identification.

  12. The Synthesis and Characterization of Some Fluoride Perovskites: An Undergraduate Experiment in Solid State Chemistry.

    ERIC Educational Resources Information Center

    Langley, Richard H.; And Others

    1984-01-01

    Describes a senior-level experiment dealing with the synthesis and characterization of a perovskite. Since most perovskites are cubic, their characterization by x-ray diffraction is simplified. In addition, magnetic ordering may be observed and the effects of a Jahn-Teller distortion seen. (JN)

  13. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs.

    PubMed

    Baghel, Shrawan; Cathcart, Helen; O'Reilly, Niall J

    2016-09-01

    Poor water solubility of many drugs has emerged as one of the major challenges in the pharmaceutical world. Polymer-based amorphous solid dispersions have been considered as the major advancement in overcoming limited aqueous solubility and oral absorption issues. The principle drawback of this approach is that they can lack necessary stability and revert to the crystalline form on storage. Significant upfront development is, therefore, required to generate stable amorphous formulations. A thorough understanding of the processes occurring at a molecular level is imperative for the rational design of amorphous solid dispersion products. This review attempts to address the critical molecular and thermodynamic aspects governing the physicochemical properties of such systems. A brief introduction to Biopharmaceutical Classification System, solid dispersions, glass transition, and solubility advantage of amorphous drugs is provided. The objective of this review is to weigh the current understanding of solid dispersion chemistry and to critically review the theoretical, technical, and molecular aspects of solid dispersions (amorphization and crystallization) and potential advantage of polymers (stabilization and solubilization) as inert, hydrophilic, pharmaceutical carrier matrices. In addition, different preformulation tools for the rational selection of polymers, state-of-the-art techniques for preparation and characterization of polymeric amorphous solid dispersions, and drug supersaturation in gastric media are also discussed. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Real-scale comparison between simple and composite raw sewage sampling

    NASA Astrophysics Data System (ADS)

    Sergio Scalize, Paulo; Moraes Frazão, Juliana

    2018-06-01

    The present study performed a qualitative and quantitative characterization of the raw sewage collected at the entrance of the sewage treatment station of the city of Itumbiara, state of Goiás. Samples were collected every two hours over a period of seven consecutive days. Characterization of both point samples and composite samples was performed. The parameters analyzed were: temperature, pH, alkalinity, chemical oxygen demand, oil and grease, electric conductivity, total phosphorus, settleable solids, ammoniacal nitrogen, total suspended solids, volatile suspended solids, fixed suspended solids and turbidity. These results allowed us to verify that it is possible to perform the collection and analysis of a point sample, instead of a composite sample, as a way of monitoring the efficiency of a sewage treatment plant.

  15. Electromagnetic energy coupling mechanism with matrix architecture control

    NASA Technical Reports Server (NTRS)

    Hughes, Eli (Inventor); Knowles, Gareth (Inventor)

    2006-01-01

    The present invention relates generally to reconfigurable, solid-state matrix arrays comprising multiple rows and columns of reconfigurable secondary mechanisms that are independently tuned. Specifically, the invention relates to reconfigurable devices comprising multiple, solid-state mechanisms characterized by at least one voltage-varied parameter disposed within a flexible, multi-laminate film, which are suitable for use as magnetic conductors, ground surfaces, antennas, varactors, ferrotunable substrates, or other active or passive electronic mechanisms.

  16. New strategy and easy fabrication of solid-state supercapacitor based on polypyrrole and nitrile rubber.

    PubMed

    Lee, Sangyool; Lee, Youngkwan; Cho, Mi-Suk; Nam, Jae-Do

    2008-09-01

    Solid state redox supercapacitors were fabricated using a solid polymer electrolyte, nitrile butadiene rubber (NBR)-KCI and chemically deposited polypyrrole (PPy) as the conducting polymer electrodes on both surfaces of a NBR film. The optimal conditions for the preparation of the PPy/NBR electrode were confirmed as functions of the uptake of pyrrole monomer into the NBR matrix as well as the immersion time in an oxidant solution. The morphology of the PPy-NBR-KCI capacitor was observed using scanning electron microscopy. The performance of the capacitors was characterized using a galvanostatic charge-discharge technique.

  17. In Situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries

    DOE PAGES

    Wang, Ziying; Santhanagopalan, Dhamodaran; Zhang, Wei; ...

    2016-05-03

    Behaviors of functional interfaces are crucial factors in the performance and safety of energy storage and conversion devices. Indeed, solid electrode–solid electrolyte interfacial impedance is now considered the main limiting factor in all-solid-state batteries rather than low ionic conductivity of the solid electrolyte. In this paper, we present a new approach to conducting in situ scanning transmission electron microscopy (STEM) coupled with electron energy loss spectroscopy (EELS) in order to uncover the unique interfacial phenomena related to lithium ion transport and its corresponding charge transfer. Our approach allowed quantitative spectroscopic characterization of a galvanostatically biased electrochemical system under in situmore » conditions. Using a LiCoO 2/LiPON/Si thin film battery, an unexpected structurally disordered interfacial layer between LiCoO 2 cathode and LiPON electrolyte was discovered to be inherent to this interface without cycling. During in situ charging, spectroscopic characterization revealed that this interfacial layer evolved to form highly oxidized Co ions species along with lithium oxide and lithium peroxide species. These findings suggest that the mechanism of interfacial impedance at the LiCoO 2/LiPON interface is caused by chemical changes rather than space charge effects. Finally, insights gained from this technique will shed light on important challenges of interfaces in all-solid-state energy storage and conversion systems and facilitate improved engineering of devices operated far from equilibrium.« less

  18. Nonthermal effects in photostimulated solid state reaction of Mn doped SrTiO3

    NASA Astrophysics Data System (ADS)

    Daraselia, D.; Japaridze, D.; Jibuti, Z.; Shengelaya, A.; Müller, K. A.

    2017-04-01

    The effect of a photostimulated solid state reaction was investigated in Mn doped SrTiO3 samples. Light irradiation was performed by either halogen or UV lamps in order to study the effect of the spectral composition, and the results were compared with samples prepared at the same temperatures in a conventional furnace. The obtained samples were studied by X-ray diffraction for structural characterization and by Electron Paramagnetic Resonance, which provides microscopic information about the local environment as well as the valence state of Mn ions. It was found that light irradiation significantly enhances the solid state reaction rate compared to synthesis in the conventional furnace. Moreover, it was observed that UV lamp irradiation is much more effective compared to halogen lamps. This indicates that the absorption of light with energy larger than the materials band gap plays an important role and points towards the nonthermal mechanism of the photostimulated solid state reaction.

  19. An Investigation into the Polymorphism and Crystallization of Levetiracetam and the Stability of its Solid Form.

    PubMed

    Xu, Kailin; Xiong, Xinnuo; Guo, Liuqi; Wang, Lili; Li, Shanshan; Tang, Peixiao; Yan, Jin; Wu, Di; Li, Hui

    2015-12-01

    Levetiracetam (LEV) crystals were prepared using different solvents at different temperatures. The LEV crystals were systematically characterized by X-ray powder diffraction (XRPD) and morphological analysis. The results indicated that many kinds of crystal habits exist in a solid form of LEV. To investigate the effects of LEV concentration, crystallization temperature, and crystallization type on crystallization and solid phase transformation of LEV, multiple methods were performed for LEV aqueous solution to determine if a new solid form exists in solid-state LEV. However, XRPD data demonstrate that the LEV solid forms possess same spatial arrangements that are similar to the original solid form. This result indicates that the LEV concentration, crystallization temperature, and crystallization type in aqueous solution have no influence on the crystallization and solid phase transformation of LEV. Moreover, crystallization by sublimation, melt cooling, and quench cooling, as well as mechanical effect, did not result in the formation of new LEV solid state. During melt cooling, the transformation of solid form LEV is a direct process from melting amorphous phase to the original LEV crystal phase, and the conversion rate is very quick. In addition, stability investigation manifested that LEV solid state is very stable under various conditions. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. Formation, Physicochemical Characterization, and Thermodynamic Stability of the Amorphous State of Drugs and Excipients.

    PubMed

    Martino, Piera Di; Magnoni, Federico; Peregrina, Dolores Vargas; Gigliobianco, Maria Rosa; Censi, Roberta; Malaj, Ledjan

    2016-01-01

    Drugs and excipients used for pharmaceutical applications generally exist in the solid (crystalline or amorphous) state, more rarely as liquid materials. In some cases, according to the physicochemical nature of the molecule, or as a consequence of specific technological processes, a compound may exist exclusively in the amorphous state. In other cases, as a consequence of specific treatments (freezing and spray drying, melting and co-melting, grinding and compression), the crystalline form may convert into a completely or partially amorphous form. An amorphous material shows physical and thermodynamic properties different from the corresponding crystalline form, with profound repercussions on its technological performance and biopharmaceutical properties. Several physicochemical techniques such as X-ray powder diffraction, thermal methods of analysis, spectroscopic techniques, gravimetric techniques, and inverse gas chromatography can be applied to characterize the amorphous form of a compound (drug or excipient), and to evaluate its thermodynamic stability. This review offers a survey of the technologies used to convert a crystalline solid into an amorphous form, and describes the most important techniques for characterizing the amorphous state of compounds of pharmaceutical interest.

  1. Cocrystal of Ibuprofen⁻Nicotinamide: Solid-State Characterization and In Vivo Analgesic Activity Evaluation.

    PubMed

    Yuliandra, Yori; Zaini, Erizal; Syofyan, Syofyan; Pratiwi, Wenny; Putri, Lidiya Novita; Pratiwi, Yuti Sahra; Arifin, Helmi

    2018-06-04

    Ibuprofen is classified as a BCS class II drug which has low solubility and high permeability. We conducted the formation of the cocrystalline phase of ibuprofen with coformer nicotinamide to increase its solubility. The purpose of this study was to characterize the solid state of cocrystalline phase of ibuprofen-nicotinamide, determine the solubility, and evaluate its in vivo analgesic activity. The cocrystal of ibuprofen-nicotinamide was prepared by a slow evaporation method. The solid-state characterization was conducted by powder X-ray diffraction (PXRD) analysis, differential thermal analysis (DTA), and scanning electron microscopy (SEM). To investigate the in vivo analgesic activity, 28 male Swiss-Webster mice were injected with acetic acid 0.5% following oral administration of intact ibuprofen, physical mixture, and its cocrystalline phase with nicotinamide (equivalent to 26 mg/kg ibuprofen). The number of writhes was counted, and pain inhibition was calculated. All data were analyzed with one-way ANOVA followed by Duncan's Multiple Range Test (95% confidence interval). The results revealed that a new cocrystalline phase was successfully formed. The solubility testing showed that the cocrystal formation enhanced the solubility significantly as compared with the physical mixture and intact ibuprofen. A significant increase in the analgesic activity of cocrystal ibuprofen-nicotinamide was also confirmed.

  2. Development of Novel Composite and Random Materials for Nonlinear Optics and Lasers

    NASA Technical Reports Server (NTRS)

    Noginov, Mikhail

    2002-01-01

    A qualitative model explaining sharp spectral peaks in emission of solid-state random laser materials with broad-band gain is proposed. The suggested mechanism of coherent emission relies on synchronization of phases in an ensemble of emitting centers, via time delays provided by a network of random scatterers, and amplification of spontaneous emission that supports the spontaneously organized coherent state. Laser-like emission from powders of solid-state luminophosphors, characterized by dramatic narrowing of the emission spectrum and shortening of emission pulses above the threshold, was first observed by Markushev et al. and further studied by a number of research groups. In particular, it has been shown that when the pumping energy significantly exceeds the threshold, one or several narrow emission lines can be observed in broad-band gain media with scatterers, such as films of ZnO nanoparticles, films of pi-conjugated polymers or infiltrated opals. The experimental features, commonly observed in various solid-state random laser materials characterized by different particle sizes, different values of the photon mean free path l*, different indexes of refraction, etc.. can be described as follows. (Liquid dye random lasers are not discussed here.)

  3. Harnessing Solid-State Ionic Transport for Nanomanufacturing and Nanodevices

    ERIC Educational Resources Information Center

    Hsu, Keng Hao

    2009-01-01

    Through this work a new all-solid, ambient processing condition direct metal patterning technique has been developed and characterized. This ionic-transport-based patterning technique is capable of sub-50nm feature resolution under ambient conditions. It generates features with a rate that is comparable to conventional dry-etching techniques. A…

  4. 76 FR 46290 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ... the efficacy and scope of the MSW Characterization Report called ``Municipal Solid Waste in the United States'' as part of a broader discussion about sustainable materials management. This information will be... assessments; however questions are being raised about its scope, the data sources used, the assumptions made...

  5. Quasi-Solid-State Single-Atom Transistors.

    PubMed

    Xie, Fangqing; Peukert, Andreas; Bender, Thorsten; Obermair, Christian; Wertz, Florian; Schmieder, Philipp; Schimmel, Thomas

    2018-06-21

    The single-atom transistor represents a quantum electronic device at room temperature, allowing the switching of an electric current by the controlled and reversible relocation of one single atom within a metallic quantum point contact. So far, the device operates by applying a small voltage to a control electrode or "gate" within the aqueous electrolyte. Here, the operation of the atomic device in the quasi-solid state is demonstrated. Gelation of pyrogenic silica transforms the electrolyte into the quasi-solid state, exhibiting the cohesive properties of a solid and the diffusive properties of a liquid, preventing the leakage problem and avoiding the handling of a liquid system. The electrolyte is characterized by cyclic voltammetry, conductivity measurements, and rotation viscometry. Thus, a first demonstration of the single-atom transistor operating in the quasi-solid-state is given. The silver single-atom and atomic-scale transistors in the quasi-solid-state allow bistable switching between zero and quantized conductance levels, which are integer multiples of the conductance quantum G 0  = 2e 2 /h. Source-drain currents ranging from 1 to 8 µA are applied in these experiments. Any obvious influence of the gelation of the aqueous electrolyte on the electron transport within the quantum point contact is not observed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis, characterization, and tuning of the liquid crystal properties of ionic materials based on the cyclic polyoxothiometalate [{Mo4O4S4(H2O)3(OH)2}2(P8W48O184)](36-).

    PubMed

    Watfa, Nancy; Floquet, Sébastien; Terazzi, Emmanuel; Haouas, Mohamed; Salomon, William; Korenev, Vladimir S; Taulelle, Francis; Guénée, Laure; Hijazi, Akram; Naoufal, Daoud; Piguet, Claude; Cadot, Emmanuel

    2015-02-14

    A series of compounds resulting from the ionic association of a nanoscopic inorganic cluster of formula [K2NaxLiy{Mo4O4S4(OH)2(H2O)3}2(HzP8W48O184)]((34-x-y-z)-), 1, with several organic cations such as dimethyldioctadecylammonium DODA(+), trimethylhexadecylammonium TMAC16(+), alkylmethylimidazoliums mimCn(+) (n = 12-20) and alkyl-dimethylimidazoliums dmimCn(+) (n = 12 and 16) was prepared and characterized in the solid state by FT-IR, EDX, Elemental analysis, TGA and solid state NMR. The solid state NMR experiments performed on (1)H, (13)C and (31)P nuclei evidenced the interactions between the cations and 1 as well as the organization of the alkyl chains of the cations within the solid. Polarized optical microscopy, DSC and SA-XRD experiments implicated mesomorphic phases for DODA(+) and mimCn(+) salts of 1. The crystallographic parameters were determined and demonstrated that the inter-lamellar spacing could be controlled upon changing the length of the alkyl chain, a very interesting result if we consider the huge size of the inorganic cluster 1 and the simple nature of the cations.

  7. Solid State Multinuclear Magnetic Resonance Investigation of Electrolyte Decomposition Products on Lithium Ion Electrodes

    NASA Technical Reports Server (NTRS)

    DeSilva, J .H. S. R.; Udinwe, V.; Sideris, P. J.; Smart, M. C.; Krause, F. C.; Hwang, C.; Smith, K. A.; Greenbaum, S. G.

    2012-01-01

    Solid electrolyte interphase (SEI) formation in lithium ion cells prepared with advanced electrolytes is investigated by solid state multinuclear (7Li, 19F, 31P) magnetic resonance (NMR) measurements of electrode materials harvested from cycled cells subjected to an accelerated aging protocol. The electrolyte composition is varied to include the addition of fluorinated carbonates and triphenyl phosphate (TPP, a flame retardant). In addition to species associated with LiPF6 decomposition, cathode NMR spectra are characterized by the presence of compounds originating from the TPP additive. Substantial amounts of LiF are observed in the anodes as well as compounds originating from the fluorinated carbonates.

  8. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 4 - Tribological materials and NDE

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L. (Editor); Achenbach, J. D. (Editor)

    1993-01-01

    The present volume on tribological materials and NDE discusses liquid lubricants for advanced aircraft engines, a liquid lubricant for space applications, solid lubricants for aeronautics, and thin solid-lubricant films in space. Attention is given to the science and technology of NDE, tools for an NDE engineering base, experimental techniques in ultrasonics for NDE and material characterization, and laser ultrasonics. Topics addressed include thermal methods of NDE and quality control, digital radiography in the aerospace industry, materials characterization by ultrasonic methods, and NDE of ceramics and ceramic composites. Also discussed are smart materials and structures, intelligent processing of materials, implementation of NDE technology on flight structures, and solid-state weld evaluation.

  9. Distinguishing molecular environments in supported Pt catalysts and their influences on activity and selectivity

    NASA Astrophysics Data System (ADS)

    Jones, Louis Chin

    This thesis entails the synthesis, automated catalytic testing, and in situ molecular characterization of supported Pt and Pt-alloy nanoparticle (NP) catalysts, with emphasis on how to assess the molecular distributions of Pt environments that are affecting overall catalytic activity and selectivity. We have taken the approach of (a) manipulating nucleation and growth of NPs using oxide supports, surfactants, and inorganic complexes to create Pt NPs with uniform size, shape, and composition, (b) automating batch and continuous flow catalytic reaction tests, and (c) characterizing the molecular environments of Pt surfaces using in situ infrared (IR) spectroscopy and solid-state 195Pt NMR. The following will highlight the synthesis and characterization of Ag-doped Pt NPs and their influence on C 2H2 hydrogenation selectivity, and the implementation of advanced solid-state 195Pt NMR techniques to distinguish how distributions of molecular Pt environments vary with nanoparticle size, support, and surface composition.

  10. RNA Characterization by Solid-State NMR Spectroscopy.

    PubMed

    Yang, Yufei; Wang, Shenlin

    2018-06-21

    The structures of RNAs, which play critical roles in various biological processes, provide important clues and insights into the biological functions of these molecules. However, RNA structure determination remains a challenging topic. In recent years, magic-angle-spinning solid-state NMR (MAS SSNMR) has emerged as an alternative technique for structural and dynamic characterization of RNA. MAS SSNMR has been successfully applied to provide atomic-level structural information about several RNA molecules and RNA-protein complexes. In this Minireview, we give an overview of recent progress in the field of MAS SSNMR based RNA structural characterization, and introduce sample preparation strategies and SSNMR spectroscopic techniques that have been incorporated to identify RNA structural elements. We also highlight a few impressive examples of RNAs that have been investigated extensively by SSNMR. Finally, we briefly discuss future technical trends in the use of MAS SSNMR to facilitate RNA structure determination. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Characterization of Pharmaceutical Cocrystals and Salts by Dynamic Nuclear Polarization-Enhanced Solid-State NMR Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma

    Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less

  12. Characterization of Pharmaceutical Cocrystals and Salts by Dynamic Nuclear Polarization-Enhanced Solid-State NMR Spectroscopy

    DOE PAGES

    Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma; ...

    2018-02-15

    Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less

  13. Synthesis and Characterization of a Perovskite Barium Zirconate (BaZrO[subscript 3]): An Experiment for an Advanced Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Thananatthanachon, Todsapon

    2016-01-01

    In this experiment, the students explore the synthesis of a crystalline solid-state material, barium zirconate (BaZrO3) by two different synthetic methods: (a) the wet chemical method using BaCl[subscript 2]·2H[subscript 2]O and ZrOCl[subscript 2]·8H[subscript 2]O as the precursors, and (b) the solid-state reaction from BaCO[subscript 3] and…

  14. NMR characterization of polymers: Review and update

    USDA-ARS?s Scientific Manuscript database

    NMR spectroscopy is a major technique for the characterization and analysis of polymers. A large number of methodologies have been developed in both the liquid and the solid state, and the literature has grown considerably (1-5). The field now covers a broad spectrum of activities, including polym...

  15. 1QCY17 Saltstone waste characterization analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, F. C.

    2017-07-25

    In the first quarter of calendar year 2017, a salt solution sample was collected from Tank 50 on January 16, 2017 in order to meet South Carolina (SC) Regulation 61-107.19 Part I C, “Solid Waste Management: Solid Waste Landfills and Structural Fill – General Requirements” and the Saltstone Disposal Facility Class 3 Landfill Permit. The Savannah River National Laboratory (SRNL) was requested to prepare and ship saltstone samples to a United States Environmental Protection Agency (EPA) certified laboratory to perform the Toxicity Characteristic Leaching Procedure (TCLP) and subsequent characterization.

  16. The solid-state characterization of fusidic acid.

    PubMed

    Gilchrist, Samuel E; Letchford, Kevin; Burt, Helen M

    2012-01-17

    The aim of this work was to characterize the solid-state properties of fusidic acid (FA). Solid forms of FA were prepared by solvent-mediated polymorphic transformation of commercial FA (Form III) in acetonitrile (ACN), and methanol:H(2)O (50:50), or generated by solvent recrystallization from dichloromethane (DCM). Polymorphs were characterized using, X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), polarizing hot stage microscopy (HSM), and intrinsic dissolution rate (IDR). Slurrying commercial FA (Form III) in methanol:H(2)O (50:50), yielded a metastable form (Form IV). This metastable form converts to Form I or back to Form III in ACN and H(2)O, respectively, and Form II upon recrystallization from DCM. IDR of Form IV was 0.092 mg/min/cm(2), and was statistically different (p<0.05) from the IDR of Forms I, II, and III, with IDR of 0.053, 0.043, and 0.045mg/min/cm(2), respectively. The amorphous FA had an IDR of 0.125 mg/min/cm(2), and was significantly higher (p<0.05) than any other solid form. There were no statistical differences in the IDR of Form I, II, or III. This work provides evidence for the existence of two previously unreported polymorphic forms of FA (Forms II and IV) and an amorphate. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Ultrafast rotation in an amphidynamic crystalline metal organic framework

    DOE PAGES

    Vogelsberg, Cortnie S.; Uribe-Romo, Fernando J.; Lipton, Andrew S.; ...

    2017-12-26

    Amphidynamic crystals are an emergent class of condensed phase matter designed with a combination of lattice-forming elements linked to components that display engineered dynamics in the solid state. Here, we address the design of a crystalline array of molecular rotors with inertial diffusional rotation at the nanoscale, characterized by the absence of steric or electronic barriers. We solved this challenge with 1,4-bicyclo[2.2.2]octane dicarboxylic acid (BODCA)-MOF, a metal-organic framework (MOF) built with a high-symmetry bicyclo[2.2.2]octane dicarboxylate linker in a Zn 4O cubic lattice. Using spin-lattice relaxation 1H solid-state NMR at 29.49 and 13.87 MHz in the temperature range of 2.3–80 K,more » we showed that internal rotation occurs in a potential with energy barriers of 0.185 kcal mol -1. These results were confirmed with 2H solid-state NMR line-shape analysis and spin-lattice relaxation at 76.78 MHz obtained between 6 and 298 K, which, combined with molecular dynamics simulations, indicate that inertial diffusional rotation is characterized by a broad range of angular displacements with no residence time at any given site. Furthermore, the ambient temperature rotation of the bicyclo[2.2.2]octane (BCO) group in BODCA-MOF constitutes an example where engineered rotational dynamics in the solid state are as fast as they would be in a high-density gas or in a low-density liquid phase.« less

  18. Ultrafast rotation in an amphidynamic crystalline metal organic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogelsberg, Cortnie S.; Uribe-Romo, Fernando J.; Lipton, Andrew S.

    Amphidynamic crystals are an emergent class of condensed phase matter designed with a combination of lattice-forming elements linked to components that display engineered dynamics in the solid state. Here, we address the design of a crystalline array of molecular rotors with inertial diffusional rotation at the nanoscale, characterized by the absence of steric or electronic barriers. We solved this challenge with 1,4-bicyclo[2.2.2]octane dicarboxylic acid (BODCA)-MOF, a metal-organic framework (MOF) built with a high-symmetry bicyclo[2.2.2]octane dicarboxylate linker in a Zn 4O cubic lattice. Using spin-lattice relaxation 1H solid-state NMR at 29.49 and 13.87 MHz in the temperature range of 2.3–80 K,more » we showed that internal rotation occurs in a potential with energy barriers of 0.185 kcal mol -1. These results were confirmed with 2H solid-state NMR line-shape analysis and spin-lattice relaxation at 76.78 MHz obtained between 6 and 298 K, which, combined with molecular dynamics simulations, indicate that inertial diffusional rotation is characterized by a broad range of angular displacements with no residence time at any given site. Furthermore, the ambient temperature rotation of the bicyclo[2.2.2]octane (BCO) group in BODCA-MOF constitutes an example where engineered rotational dynamics in the solid state are as fast as they would be in a high-density gas or in a low-density liquid phase.« less

  19. Electrochemical impedance spectroscopy for quantitative interface state characterization of planar and nanostructured semiconductor-dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Meng, Andrew C.; Tang, Kechao; Braun, Michael R.; Zhang, Liangliang; McIntyre, Paul C.

    2017-10-01

    The performance of nanostructured semiconductors is frequently limited by interface defects that trap electronic carriers. In particular, high aspect ratio geometries dramatically increase the difficulty of using typical solid-state electrical measurements (multifrequency capacitance- and conductance-voltage testing) to quantify interface trap densities (D it). We report on electrochemical impedance spectroscopy (EIS) to characterize the energy distribution of interface traps at metal oxide/semiconductor interfaces. This method takes advantage of liquid electrolytes, which provide conformal electrical contacts. Planar Al2O3/p-Si and Al2O3/p-Si0.55Ge0.45 interfaces are used to benchmark the EIS data against results obtained from standard electrical testing methods. We find that the solid state and EIS data agree very well, leading to the extraction of consistent D it energy distributions. Measurements carried out on pyramid-nanostructured p-Si obtained by KOH etching followed by deposition of a 10 nm ALD-Al2O3 demonstrate the application of EIS to trap characterization of a nanostructured dielectric/semiconductor interface. These results show the promise of this methodology to measure interface state densities for a broad range of semiconductor nanostructures such as nanowires, nanofins, and porous structures.

  20. Quantum storage of a photonic polarization qubit in a solid.

    PubMed

    Gündoğan, Mustafa; Ledingham, Patrick M; Almasi, Attaallah; Cristiani, Matteo; de Riedmatten, Hugues

    2012-05-11

    We report on the quantum storage and retrieval of photonic polarization quantum bits onto and out of a solid state storage device. The qubits are implemented with weak coherent states at the single photon level, and are stored for a predetermined time of 500 ns in a praseodymium doped crystal with a storage and retrieval efficiency of 10%, using the atomic frequency comb scheme. We characterize the storage by using quantum state tomography, and find that the average conditional fidelity of the retrieved qubits exceeds 95% for a mean photon number μ=0.4. This is significantly higher than a classical benchmark, taking into account the poissonian statistics and finite memory efficiency, which proves that our crystal functions as a quantum storage device for polarization qubits. These results extend the storage capabilities of solid state quantum light matter interfaces to polarization encoding, which is widely used in quantum information science.

  1. Excess vibrational density of states and the brittle to ductile transition in crystalline and amorphous solids.

    PubMed

    Babu, Jeetu S; Mondal, Chandana; Sengupta, Surajit; Karmakar, Smarajit

    2016-01-28

    The conditions which determine whether a material behaves in a brittle or ductile fashion on mechanical loading are still elusive and comprise a topic of active research among materials physicists and engineers. In this study, we present the results of in silico mechanical deformation experiments from two very different model solids in two and three dimensions. The first consists of particles interacting with isotropic potentials and the other has strongly direction dependent interactions. We show that in both cases, the excess vibrational density of states is one of the fundamental quantities which characterizes the ductility of the material. Our results can be checked using careful experiments on colloidal solids.

  2. The 17th JANNAF Combustion Meeting, Volume 1

    NASA Technical Reports Server (NTRS)

    Eggleston, D. S. (Editor)

    1980-01-01

    The combustion of solid rocket propellants and combustion in ramjets is addressed. Subjects discussed include metal burning, steady-state combustion of composite propellants, velocity coupling and nonlinear instability, vortex shedding and flow effects on combustion instability, combustion instability in solid rocket motors, combustion diagnostics, subsonic and supersonic ramjet combustion, characterization of ramburner flowfields, and injection and combustion of ramjet fuels.

  3. Properties of Poly- and Oligopentacenes Synthesized from Modular Building Blocks

    DOE PAGES

    Kumarasamy, Elango; Sanders, Samuel N.; Pun, Andrew B.; ...

    2016-02-09

    Here, we describe a facile route to well-defined, solution-processable pentacene oligomers (2 to 7) and homopolymer using Suzuki–Miyaura cross-coupling reactions. This synthetic strategy leads to regioisomers, regiopure syn- and anti-trimers were also synthesized, revealing minimal changes in solution properties but significant changes in the solid state arising from differing levels of crystallinity. The materials were characterized by steady state absorption spectroscopy and cyclic voltammetry to study their electronic structure. The steady state absorption spectra exhibit a new high-energy transition in the oligomers, which intensifies as a function of oligomer length, thus increasing the range of absorption to include the entiremore » visible spectrum. Density functional theory calculations indicate that the new peak results directly from the oligomerization. Solid state UV–vis suggests that while the monomer is amorphous, bricklayer packing in the higher oligomers significantly alters the solid state absorption relative to solution. The effect of oligomerization on packing was corroborated by GIWAXS analysis, which revealed crystalline domains in the oligomers. These domains, which are most evident in anti-trimer, become more pronounced upon thermal annealing. Photodegradation studies revealed considerable stability enhancement of oligomers toward oxygen and cycloaddition reactions relative to monomer. The synthesis and characterization of the first higher oligomers and homopolymer of pentacene should pave the way to applications in singlet fission, organic field-effect transistors, and organic photovoltaics.« less

  4. Variable-amplitude oscillatory shear response of amorphous materials.

    PubMed

    Perchikov, Nathan; Bouchbinder, Eran

    2014-06-01

    Variable-amplitude oscillatory shear tests are emerging as powerful tools to investigate and quantify the nonlinear rheology of amorphous solids, complex fluids, and biological materials. Quite a few recent experimental and atomistic simulation studies demonstrated that at low shear amplitudes, an amorphous solid settles into an amplitude- and initial-conditions-dependent dissipative limit cycle, in which back-and-forth localized particle rearrangements periodically bring the system to the same state. At sufficiently large shear amplitudes, the amorphous system loses memory of the initial conditions, exhibits chaotic particle motions accompanied by diffusive behavior, and settles into a stochastic steady state. The two regimes are separated by a transition amplitude, possibly characterized by some critical-like features. Here we argue that these observations support some of the physical assumptions embodied in the nonequilibrium thermodynamic, internal-variables based, shear-transformation-zone model of amorphous viscoplasticity; most notably that "flow defects" in amorphous solids are characterized by internal states between which they can make transitions, and that structural evolution is driven by dissipation associated with plastic deformation. We present a rather extensive theoretical analysis of the thermodynamic shear-transformation-zone model for a variable-amplitude oscillatory shear protocol, highlighting its success in accounting for various experimental and simulational observations, as well as its limitations. Our results offer a continuum-level theoretical framework for interpreting the variable-amplitude oscillatory shear response of amorphous solids and may promote additional developments.

  5. Solid-state characterization and dissolution properties of meloxicam-moringa coagulant-PVP ternary solid dispersions.

    PubMed

    Noolkar, Suhail B; Jadhav, Namdeo R; Bhende, Santosh A; Killedar, Suresh G

    2013-06-01

    The effect of ternary solid dispersions of poor water-soluble NSAID meloxicam with moringa coagulant (obtained by salt extraction of moringa seeds) and polyvinylpyrrolidone on the in vitro dissolution properties has been investigated. Binary (meloxicam-moringa and meloxicam-polyvinylpyrrolidone (PVP)) and ternary (meloxicam-moringa-PVP) systems were prepared by physical kneading and ball milling and characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffractometry. The in vitro dissolution behavior of meloxicam from the different products was evaluated by means of United States Pharmacopeia type II dissolution apparatus. The results of solid-state studies indicated the presence of strong interactions between meloxicam, moringa, and PVP which were of totally amorphous nature. All ternary combinations were significantly more effective than the corresponding binary systems in improving the dissolution rate of meloxicam. The best performance in this respect was given by the ternary combination employing meloxicam-moringa-PVP ratio of [1:(3:1)] prepared by ball milling, with about six times increase in percent dissolution rate, whereas meloxicam-moringa (1:3) and meloxicam-PVP (1:4) prepared by ball milling improved dissolution of meloxicam by almost 3- and 2.5-folds, respectively. The achieved excellent dissolution enhancement of meloxicam in the ternary systems was attributed to the combined effects of impartation of hydrophilic characteristic by PVP, as well as to the synergistic interaction between moringa and PVP.

  6. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR

    PubMed Central

    Romaniuk, Joseph A. H.; Cegelski, Lynette

    2015-01-01

    The ability to characterize bacterial cell-wall composition and structure is crucial to understanding the function of the bacterial cell wall, determining drug modes of action and developing new-generation therapeutics. Solid-state NMR has emerged as a powerful tool to quantify chemical composition and to map cell-wall architecture in bacteria and plants, even in the context of unperturbed intact whole cells. In this review, we discuss solid-state NMR approaches to define peptidoglycan composition and to characterize the modes of action of old and new antibiotics, focusing on examples in Staphylococcus aureus. We provide perspectives regarding the selected NMR strategies as we describe the exciting and still-developing cell-wall and whole-cell NMR toolkit. We also discuss specific discoveries regarding the modes of action of vancomycin analogues, including oritavancin, and briefly address the reconsideration of the killing action of β-lactam antibiotics. In such chemical genetics approaches, there is still much to be learned from perturbations enacted by cell-wall assembly inhibitors, and solid-state NMR approaches are poised to address questions of cell-wall composition and assembly in S. aureus and other organisms. PMID:26370936

  7. Characterization of the Factors that Influence Sinapine Concentration in Rapeseed Meal during Fermentation

    PubMed Central

    Niu, Yanxing; Jiang, Mulan; Guo, Mian; Wan, Chuyun; Hu, Shuangxi; Jin, Hu; Huang, Fenghong

    2015-01-01

    We analyzed and compared the difference in sinapine concentration in rapeseed meal between the filamentous fungus, Trametes sp 48424, and the yeast, Saccharomyces cerevisiae, in both liquid and solid-state fermentation. During liquid and solid-state fermentation by Trametes sp 48424, the sinapine concentration decreased significantly. In contrast, the liquid and solid-state fermentation process by Saccharomyces cerevisiae just slightly decreased the sinapine concentration (P ≤ 0.05). After the solid-state fermented samples were dried, the concentration of sinapine in rapeseed meal decreased significantly in Saccharomyces cerevisiae. Based on the measurement of laccase activity, we observed that laccase induced the decrease in the concentration of sinapine during fermentation with Trametes sp 48424. In order to eliminate the influence of microorganisms and the metabolites produced during fermentation, high moisture rapeseed meal and the original rapeseed meal were dried at 90°C and 105°C, respectively. During drying, the concentration of sinapine in high moisture rapeseed meal decreased rapidly and we obtained a high correlation coefficient between the concentration of sinapine and loss of moisture. Our results suggest that drying and enzymes, especially laccase that is produced during the solid-state fermentation process, may be the main factors that affect the concentration of sinapine in rapeseed meal. PMID:25606856

  8. Characterization of the Terminal Iron(IV) Imides {[PhBPtBu2(pz’)]FeIV≡NAd}+

    PubMed Central

    Thomas, Christine M.; Mankad, Neal P.; Peters, Jonas C.

    2008-01-01

    New hybrid bis(phosphine)(pyrazole)borate tripodal ligands ([PhBPtBu2(pz’)]−) are reported that support pseudotetrahedral iron in the oxidation states +1, +2, +3, and +4. The higher oxidation states are stabilized by a terminal Fe≡NR linkage. Of particular interest is the generation and thorough characterization of an S = 1 FeIV≡NR+ imide cation using this new ligand system. The latter species can be observed electrochemically and spectroscopically, and its solid-state crystal structure is reported. PMID:16608321

  9. Solid-State NMR Spectroscopy of Metal–Organic Framework Compounds (MOFs)

    PubMed Central

    Hoffmann, Herbert C.; Debowski, Marta; Müller, Philipp; Paasch, Silvia; Senkovska, Irena; Kaskel, Stefan; Brunner, Eike

    2012-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a well-established method for the investigation of various types of porous materials. During the past decade, metal–organic frameworks have attracted increasing research interest. Solid-state NMR spectroscopy has rapidly evolved into an important tool for the study of the structure, dynamics and flexibility of these materials, as well as for the characterization of host–guest interactions with adsorbed species such as xenon, carbon dioxide, water, and many others. The present review introduces and highlights recent developments in this rapidly growing field.

  10. Solid state linear dichroic infrared spectral analysis of benzimidazoles and their N 1-protonated salts

    NASA Astrophysics Data System (ADS)

    Ivanova, B. B.

    2005-11-01

    A stereo structural characterization of 2,5,6-thrimethylbenzimidazole (MBIZ) and 2-amino-benzimidaziole (2-NH 2-BI) and their N 1 protonation salts was carried out using a polarized solid state linear dichroic infrared spectral (IR-LD) analysis in nematic liquid crystal suspension. All experimental predicted structures were compared with the theoretical ones, obtained by ab initio calculations. The Cs to C2v* symmetry transformation as a result of protonation processes, with a view of its reflection on the infrared spectral characteristics was described.

  11. Trisphenalenyl-based neutral radical molecular conductor.

    PubMed

    Pal, Sushanta K; Itkis, Mikhail E; Tham, Fook S; Reed, Robert W; Oakley, Richard T; Haddon, Robert C

    2008-03-26

    We report the preparation, crystallization, and solid-state characterization of the first member of a new family of tris(1,9-disubstituted phenalenyl)silicon neutral radicals. In the solid state, the radical packs as weak partial pi-dimers with intermolecular carbon...carbon contacts that fall at the van der Waals atomic separation. Magnetic susceptibility measurements indicate approximately 0.7 Curie spins per molecule from room temperature down to 50 K, below which antiferromagnetic coupling becomes apparent; the compound has a room-temperature single-crystal conductivity of sigmaRT = 2.4 x 10(-6) S cm(-1).

  12. A Novel Solid State Ultracapacitor

    NASA Technical Reports Server (NTRS)

    Cortes-Pena, A. Y.; Rolin, T. D.; Hill, C. W.

    2017-01-01

    Novel dielectric materials were researched to develop an internal barrier layer capacitor that is fully solid state. These materials included reduced nanoparticles of barium titanate that were coated with various atomic layer deposited oxides. The nanoparticle powders were then densified into pellets and characterized using a dielectric test fixture over a frequency range of 20 Hz to 2 MHz. Densification and sintering were evaluated using scanning electron microscopic techniques. Ultimately, the samples showing the most promising electrical characteristics of permittivity, dissipation factor and equivalent series resistance were chosen to manufacture devices for subsequent testing.

  13. 1H NMR spectra dataset and solid-state NMR data of cowpea (Vigna unguiculata).

    PubMed

    Alves Filho, Elenilson G; Silva, Lorena M A; Teofilo, Elizita M; Larsen, Flemming H; de Brito, Edy S

    2017-04-01

    In this article the NMR data from chemical shifts, coupling constants, and structures of all the characterized compounds were provided, beyond a complementary PCA evaluation for the corresponding manuscript (E.G. Alves Filho, L.M.A. Silva, E.M. Teofilo, F.H. Larsen, E.S. de Brito, 2017) [3]. In addition, a complementary assessment from solid-state NMR data was provided. For further chemometric analysis, numerical matrices from the raw 1 H NMR data were made available in Microsoft Excel workbook format (.xls).

  14. Characterization of resonant tunneling diodes for microwave and millimeter-wave detection

    NASA Technical Reports Server (NTRS)

    Mehdi, I.; East, J. R.; Haddad, G. I.

    1991-01-01

    The authors report on the direct detection capabilities of resonant tunneling diodes in the 10-100 GHz range. An open circuit voltage sensitivity of 1750 mV/mW (in Ka-band) was measured. This is higher than the sensitivity of comparatively based commercially available solid-state detectors. The detector properties are a strong function of diode bias and the measured tangential signal sensitivity (-32 dBm at Ka-band with 1-MHz bandwidth) and the dynamic range (25 dB) of the diode are smaller compared to other solid-state detectors.

  15. Recent Advances in Fast Ion Conducting Materials and Devices - Proceedings of the 2nd Asian Conference on Solid State Ionics

    NASA Astrophysics Data System (ADS)

    Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan

    The Table of Contents for the book is as follows: * Preface * Invited Papers * Recent Trends in Solid State Ionics * Theoretical Aspects of Fast Ion Conduction in Solids * Chemical Bonding and Intercalation Processes in Framework Structures * Extra-Large Near-Electrode Regions and Diffusion Length on the Solid Electrolyte-Electrode Interface as Studied by Photo-EMF Method * Frequency Response of Glasses * XPS Studies on Ion Conducting Glasses * Characterization of New Ambient Temperature Lithium Polymer-Electrolyte * Recent Development of Polymer Electrolytes: Solid State Voltammetry in Polymer Electrolytes * Secondary Solid State Batteries: From Material Properties to Commercial Development * Silver Vanadium Oxide Bronze and its Applications for Electrochemical Devices * Study on β''-Alumina Solid Electrolyte and β Battery in SIC * Materials for Solid Oxide Fuel Cells * Processing for Super Superionic Ceramics * Hydrogen Production Using Oxide Ionic or Protonic Conductor * Ionically Conductive Sulfide-Based Lithium Glasses * Relation of Conductivity to Structure and Structural Relaxation in Ion-Conducting Glasses * The Mechanism of Ionic Conductivity in Glass * The Role of Synthesis and Structure in Solid State Ionics - Electrodes to Superconductors * Electrochromism in Spin-Coated Thin Films from Peroxo-Poly tungstate Solutions * Electrochemical Studies on High Tc Superconductors * Multivalence Fast Ionic Conductors - Montmorillonites * Contributed Papers * Volt-Ampere Characteristics and Interface Charge Transport in Solid Electrolytes * Internal Friction of Silver Chalcogenides * Thermal Expansion of Ionic and Superionic Solids * Improvement of PEO-LiCF3SO3 Complex Electrolytes Using Additives * Ionic Conductivity of Modified Poly (Methoxy Polyethylene Glycol Methacrylate) s-Lithium Salt Complexes * Solid Polymer Electrolytes of Crosslinked Polyethylene Glycol and Lithium Salts * Single Ionic Conductors Prepared by in Situ Polymerization of Methacrylic Acid Alkali Metal Salts in Polyethylene Oxide * Redox Behavior of Alkyl Viologens in Ion Conductive Polymer Solid * Ionic Conductivity of Interpenetrating Polymer Networks Containing LiClO4 * Electrochemical Behaviors of Porphyrins Incorporated into Solid Polymer Electrolytes * Lithium Ion Conducting Polymer Electrolytes * Electrochemical Synthesis of Polyaniline Thin Film * Electrochemical Aspect of Polyaniline Electrode in Aqueous Electrolyte * Mixed Cation Effect in Epoxy Resin - PEO-IPN Containing Perchlorate Salts * Conductivity, Raman and IR Studies on the Doped PEO-PPG Polymer Blends * Proton Conducting Polymeric Electrolytes from Poly (Ethyleneoxide) System * Surface Structure of Polymer Solid Ionic Conductors Based on Segmented Polyether Polyurethaneureas * Study on Addition Products of LiI and Diethylene Glycol etc. * Solid State Rechargeable Battery Using Paper Form Copper Ion Conductive Solid Electrolyte * Characterization of Electrode/Electrolyte Interfaces in Battery Li/PVAC-Li-Mont./Li1+xV3O8 by AC Impedance Method * Investigation on Reversibility of Vanadium Oxide Cathode Materials in Solid-State Battery * Preparation and Characterization of Silver Boromolybdate Solid State Batteries * The Electric Properties of the Trinary Cathode Material and its Application in Magnisium Solid State Cell * Electrical Properties and Phase Relation of Na2Mo0.1S0.9O4 Doped with Rare Earth Sulfate * New Electrochemical Probe for Rapid Determination of Silicon Concentration in Hot Metals * A New Theoretical EMF Expression for SOx(x = 2, 3) Sensors Based on Na2SO4 Solid Electrolyte * Evaluation of the Electrochemical SOx(x = 2, 3) Sensor with a Tubular Nasicon Electrolyte * The Response Time of a Modified Oxygen Sensor Using Zirconia Electrolyte * Preparation, Characteristics and Sintering Behavior of MgO-PSZ Powder * Reaction between La0.9MnO3 and Yttria Doped Zirconia * Development of the Extended-Life Oxygen Sensor of Caβ''-Al2O3 * Caβ''-Al2O3 Ultra-Low Oxygen Sensor * Measurement of Sulfur Concentration with Zirconia-Based Electrolyte Cell in Molten Iron * Influence of SO2 on the Conductivity of Calcia Stabilized Zirconia * Reactions between YSZ and La1-xCaxMnO3 as a Cathode for SOFC * Preparation and Electrical Properties of Lithium β''-Alumina * Influence of Lithia Content on Properties of β''-Alumina Ceramics * Electrical Conductivity of Solid Solutions of Na2SO4 with Na2SeO4 * Effect of Antagonist XO42- = MoO42- and WO42- Ion Substitution on the Electrical Conductivity of Li2SO4 : Li2CO3 Eutectic System * Study on the Electrical Properties and Structure of Multicrystal Materials Li5+xGe1-xCrxV3O12 * Preliminary Study on Synthesis of Silver Zirconium Silicophosphates by Sol - Gel Process * Sodium Ion Conduction in Iron(III) Exchanged Y Zeolite * Electrical Properties of V5O9+x (x = 0, 1) and CuxV5O9.1 * Electrical Properties of the Tetragonal ZrO2 Stabilized with CeO2, CeO2 + Gd2O3 * Study of Preparation and Ionic Conduction of Doped Barium Cerate Perovskite * Preparing Fine Alumina Powder by Homogeneous Precipitation Method for Fabricating β''-Al2O3 * Amorphous Lithium Ion Conductors in Li2S-SiS2-LiBO2 System * Mixed Alkali Effect of Glass Super Ionic Conductors * Electrical Property and Phase Separation, Crystallization Behavior of A Cu+-Conducting Glass * Investigation of Phase Separation and Crystallization for 0.4CuI-0.3 Cu2O-0.3P2O5 Glass by SEM and XRD * Study on the Lithium Solid Electrolytes of Li3N-LiX(X = F, Cl, Br, I)-B2O3 Ternary Systems * Synthesis and Characterization of the Li2O : P2O5 : WO3 Glasses * The Electrochromic Properties of Electrodeposited Ni-O Films in Nonaqueous Electrolytes * All Solid-State WO3-MnO2 Based Electrochromic Window * Electrochromism in Nickel Oxide Films * E S R of X-Irradiated Melt Quenched Li2SO4 * Mixed-Alkali Effect in the Li2O-Na2O-TeO2 Glass System * Electrical and Thermal Studies on Silver Tellurite Glasses * Late Entries (Invited Papers) * Proton Conducting Polymers * Light Scattering Studies on Superionic Conductor YSZ * Development of Thin Film Surface Modified Solid State Electrochemical Gas Sensors * Author Index * List of Participants

  16. Characterization of Sb-doped Bi(2)UO(6) solid solutions by X-ray diffraction and X-ray absorption spectroscopy.

    PubMed

    Misra, N L; Yadav, A K; Dhara, Sangita; Mishra, S K; Phatak, Rohan; Poswal, A K; Jha, S N; Sinha, A K; Bhattacharyya, D

    2013-01-01

    The preparation and characterization of Sb-doped Bi(2)UO(6) solid solutions, in a limited composition range, is reported for the first time. The solid solutions were prepared by solid-state reactions of Bi(2)O(3), Sb(2)O(3) and U(3)O(8) in the required stoichiometry. The reaction products were characterized by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) measurements at the Bi and U L(3) edges. The XRD patterns indicate the precipitation of additional phases in the samples when Sb doping exceeds 4 at%. The chemical shifts of the Bi absorption edges in the samples, determined from the XANES spectra, show a systematic variation only up to 4 at% of Sb doping and support the results of XRD measurements. These observations are further supported by the local structure parameters obtained by analysis of the EXAFS spectra. The local structure of U is found to remain unchanged upon Sb doping indicating that Sb(+3) ions replace Bi(+3) during the doping of Bi(2)UO(6) by Sb.

  17. In situ solid-state electrochemistry of mass-selected ions at well-defined electrode–electrolyte interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakaran, Venkateshkumar; Johnson, Grant E.; Wang, Bingbing

    2016-11-07

    Molecular-level understanding of electrochemical processes occurring at electrode-electrolyte interfaces (EEI) is key to the rational development of high-performance and sustainable electrochemical technologies. This article reports the development and first application of solid-state in situ electrochemical probes to study redox and catalytic processes occurring at well-defined EEI generated using soft-landing of mass- and charge-selected cluster ions (SL). In situ electrochemical probes with excellent mass transfer properties are fabricated using carefully-designed nanoporous ionic liquid membranes. SL enables deposition of pure active species that are not obtainable with other techniques onto electrode surfaces with precise control over charge state, composition, and kinetic energy.more » SL is, therefore, a unique tool for studying fundamental processes occurring at EEI. For the first time using an aprotic electrochemical probe, the effect of charge state (PMo12O403-/2-) and the contribution of building blocks of Keggin polyoxometalate (POM) clusters to redox processes are characterized by populating EEI with novel POM anions generated by electrospray ionization and gas phase dissociation. Additionally, a proton conducting electrochemical probe has been developed to characterize the reactive electrochemistry (oxygen reduction activity) of bare Pt clusters (Pt40 ~1 nm diameter), thus demonstrating the capability of the probe for studying reactions in controlled gaseous environments. The newly developed in situ electrochemical probes combined with ion SL provide a versatile method to characterize the EEI in solid-state redox systems and reactive electrochemistry at precisely-defined conditions. This capability will advance molecular-level understanding of processes occurring at EEI that are critical to many energy-related technologies.« less

  18. Modeling an in-register, parallel "iowa" aβ fibril structure using solid-state NMR data from labeled samples with rosetta.

    PubMed

    Sgourakis, Nikolaos G; Yau, Wai-Ming; Qiang, Wei

    2015-01-06

    Determining the structures of amyloid fibrils is an important first step toward understanding the molecular basis of neurodegenerative diseases. For β-amyloid (Aβ) fibrils, conventional solid-state NMR structure determination using uniform labeling is limited by extensive peak overlap. We describe the characterization of a distinct structural polymorph of Aβ using solid-state NMR, transmission electron microscopy (TEM), and Rosetta model building. First, the overall fibril arrangement is established using mass-per-length measurements from TEM. Then, the fibril backbone arrangement, stacking registry, and "steric zipper" core interactions are determined using a number of solid-state NMR techniques on sparsely (13)C-labeled samples. Finally, we perform Rosetta structure calculations with an explicitly symmetric representation of the system. We demonstrate the power of the hybrid Rosetta/NMR approach by modeling the in-register, parallel "Iowa" mutant (D23N) at high resolution (1.2Å backbone rmsd). The final models are validated using an independent set of NMR experiments that confirm key features. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Probing hydrogen bond networks in half-sandwich Ru(II) building blocks by a combined 1H DQ CRAMPS solid-state NMR, XRPD, and DFT approach.

    PubMed

    Chierotti, Michele R; Gobetto, Roberto; Nervi, Carlo; Bacchi, Alessia; Pelagatti, Paolo; Colombo, Valentina; Sironi, Angelo

    2014-01-06

    The hydrogen bond network of three polymorphs (1α, 1β, and 1γ) and one solvate form (1·H2O) arising from the hydration-dehydration process of the Ru(II) complex [(p-cymene)Ru(κN-INA)Cl2] (where INA is isonicotinic acid), has been ascertained by means of one-dimensional (1D) and two-dimensional (2D) double quantum (1)H CRAMPS (Combined Rotation and Multiple Pulses Sequences) and (13)C CPMAS solid-state NMR experiments. The resolution improvement provided by homonuclear decoupling pulse sequences, with respect to fast MAS experiments, has been highlighted. The solid-state structure of 1γ has been fully characterized by combining X-ray powder diffraction (XRPD), solid-state NMR, and periodic plane-wave first-principles calculations. None of the forms show the expected supramolecular cyclic dimerization of the carboxylic functions of INA, because of the presence of Cl atoms as strong hydrogen bond (HB) acceptors. The hydration-dehydration process of the complex has been discussed in terms of structure and HB rearrangements.

  20. Reduction in the Band Gap of Manganese-Doped Zinc Oxide: Role of the Oxidation State

    NASA Astrophysics Data System (ADS)

    Sharma, Sonia; Ramesh, Pranith; Swaminathan, P.

    2015-12-01

    Manganese-doped zinc oxide powders were synthesized by solid state reaction of the respective oxides. The high-temperature conditions were chosen such that multiple valence states of manganese were doped in the host zinc oxide lattice. Structural characterization was carried out to confirm the doping and to find the maximum amount of manganese that can be incorporated. Diffuse reflectance spectroscopy was used to measure the optical band gap of the doped sample and the lowering with respect to pure ZnO was attributed to the presence of higher oxidation states of manganese. The presence of these oxidation states was confirmed using x-ray photoelectron spectroscopy. The study shows that a solid state reaction is a viable route for synthesizing doped metal oxides with desired optical properties.

  1. Formulation and Solid State Characterization of Nicotinamide-based Co-crystals of Fenofibrate

    PubMed Central

    Shewale, Sheetal; Shete, A. S.; Doijad, R. C.; Kadam, S. S.; Patil, V. A.; Yadav, A. V.

    2015-01-01

    The present investigation deals with formulation of nicotinamide-based co-crystals of fenofibrate by different methods and solid-state characterization of the prepared co-crystals. Fenofibrate and nicotinamide as a coformer in 1:1 molar ratio were used to formulate molecular complexes by kneading, solution crystallization, antisolvent addition and solvent drop grinding methods. The prepared molecular complexes were characterized by powder X-ray diffractometry, differential scanning calorimetry, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and in vitro dissolution study. Considerable improvement in the dissolution rate of fenofibrate from optimized co-crystal formulation was due to an increased solubility that is attributed to the super saturation from the fine co-crystals is faster because of large specific surface area of small particles and prevention of phase transformation to pure fenofibrate. In vitro dissolution study showed that the formation of co-crystals improves the dissolution rate of fenofibrate. Nicotinamide forms the co-crystals with fenofibrate, theoretically and practically. PMID:26180279

  2. Porous Organic Nanolayers for Coating of Solid-state Devices

    PubMed Central

    2011-01-01

    Background Highly hydrophobic surfaces can have very low surface energy and such low surface energy biological interfaces can be obtained using fluorinated coatings on surfaces. Deposition of biocompatible organic films on solid-state surfaces is attained with techniques like plasma polymerization, biomineralization and chemical vapor deposition. All these require special equipment or harsh chemicals. This paper presents a simple vapor-phase approach to directly coat solid-state surfaces with biocompatible films without any harsh chemical or plasma treatment. Hydrophilic and hydrophobic monomers were used for reaction and deposition of nanolayer films. The monomers were characterized and showed a very consistent coating of 3D micropore structures. Results The coating showed nano-textured surface morphology which can aid cell growth and provide rich molecular functionalization. The surface properties of the obtained film were regulated by varying monomer concentrations, reaction time and the vacuum pressure in a simple reaction chamber. Films were characterized by contact angle analysis for surface energy and with profilometer to measure the thickness. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the chemical composition of the coated films. Variations in the FTIR results with respect to different concentrations of monomers showed the chemical composition of the resulting films. Conclusion The presented approach of vapor-phase coating of solid-state structures is important and applicable in many areas of bio-nano interface development. The exposure of coatings to the solutions of different pH showed the stability of the coatings in chemical surroundings. The organic nanocoating of films can be used in bio-implants and many medical devices. PMID:21569579

  3. Synthesis and structural characterization of Co2+ ions doped ZnO nanopowders by solid state reaction through sonication

    NASA Astrophysics Data System (ADS)

    Babu, B.; Rama Krishna, Ch.; Venkata Reddy, Ch.; Pushpa Manjari, V.; Ravikumar, R. V. S. S. N.

    2013-05-01

    Cobalt ions doped zinc oxide nanopowder was prepared at room temperature by a novel and simple one step solid-state reaction method through sonication in the presence of a suitable surfactant Sodium Lauryl Sulphate (SLS). The prepared powder was characterized by various spectroscopic techniques. Powder XRD data revealed that the crystal structure belongs to hexagonal and its average crystallite size was evaluated. From optical absorption data, crystal fields (Dq), inter-electronic repulsion parameters (B, C) were evaluated. By correlating optical and EPR spectral data, the site symmetry of Co2+ ion in the host lattice was determined as octahedral. Photoluminescence spectra exhibited the emission bands in ultraviolet and blue regions. The CIE chromaticity coordinates are also evaluated from the emission spectrum. FT-IR spectra showed the characteristic vibrational bands of Znsbnd O.

  4. Quantitative atomic-scale structure characterization of ordered mesoporous carbon materials by solid state NMR

    DOE PAGES

    Wang, Zhuoran; Opembe, Naftali; Kobayashi, Takeshi; ...

    2018-02-03

    In this study, solid-state (SS)NMR techniques were applied to characterize the atomic-scale structures of ordered mesoporous carbon (OMC) materials prepared using Pluronic F127 as template with resorcinol and formaldehyde as polymerizing precursors. A rigorous quantitative analysis was developed using a combination of 13C SSNMR spectra acquired with direct polarization and cross polarization on natural abundant and selectively 13C-enriched series of samples pyrolyzed at various temperatures. These experiments identified and counted the key functional groups present in the OMCs at various stages of preparation and thermal treatment. Lastly, the chemical evolution of molecular networks, the average sizes of aromatic clusters andmore » the extended molecular structures of OMCs were then inferred by coupling this information with the elemental analysis results.« less

  5. Quantitative atomic-scale structure characterization of ordered mesoporous carbon materials by solid state NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhuoran; Opembe, Naftali; Kobayashi, Takeshi

    In this study, solid-state (SS)NMR techniques were applied to characterize the atomic-scale structures of ordered mesoporous carbon (OMC) materials prepared using Pluronic F127 as template with resorcinol and formaldehyde as polymerizing precursors. A rigorous quantitative analysis was developed using a combination of 13C SSNMR spectra acquired with direct polarization and cross polarization on natural abundant and selectively 13C-enriched series of samples pyrolyzed at various temperatures. These experiments identified and counted the key functional groups present in the OMCs at various stages of preparation and thermal treatment. Lastly, the chemical evolution of molecular networks, the average sizes of aromatic clusters andmore » the extended molecular structures of OMCs were then inferred by coupling this information with the elemental analysis results.« less

  6. Harsh-Environment Solid-State Gamma Detector for Down-hole Gas and Oil Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Sandvik; Stanislav Soloviev; Emad Andarawis

    2007-08-10

    The goal of this program was to develop a revolutionary solid-state gamma-ray detector suitable for use in down-hole gas and oil exploration. This advanced detector would employ wide-bandgap semiconductor technology to extend the gamma sensor's temperature capability up to 200 C as well as extended reliability, which significantly exceeds current designs based on photomultiplier tubes. In Phase II, project tasks were focused on optimization of the final APD design, growing and characterizing the full scintillator crystals of the selected composition, arranging the APD device packaging, developing the needed optical coupling between scintillator and APD, and characterizing the combined elements asmore » a full detector system preparing for commercialization. What follows is a summary report from the second 18-month phase of this program.« less

  7. Low latency and persistent data storage

    DOEpatents

    Fitch, Blake G; Franceschini, Michele M; Jagmohan, Ashish; Takken, Todd E

    2014-02-18

    Persistent data storage is provided by a method that includes receiving a low latency store command that includes write data. The write data is written to a first memory device that is implemented by a nonvolatile solid-state memory technology characterized by a first access speed. It is acknowledged that the write data has been successfully written to the first memory device. The write data is written to a second memory device that is implemented by a volatile memory technology. At least a portion of the data in the first memory device is written to a third memory device when a predetermined amount of data has been accumulated in the first memory device. The third memory device is implemented by a nonvolatile solid-state memory technology characterized by a second access speed that is slower than the first access speed.

  8. High ion conductive Sb2O5-doped β-Li3PS4 with excellent stability against Li for all-solid-state lithium batteries

    NASA Astrophysics Data System (ADS)

    Xie, Dongjiu; Chen, Shaojie; Zhang, Zhihua; Ren, Jie; Yao, Lili; Wu, Linbin; Yao, Xiayin; Xu, Xiaoxiong

    2018-06-01

    The combination of high conductivity and good stability against Li is not easy to achieve for solid electrolytes, hindering the development of high energy solid-state batteries. In this study, doped electrolytes of Li3P1-xSbxS4-2.5xO2.5x are successfully prepared via the high energy ball milling and subsequent heat treatment. Plenty of techniques like XRD, Raman, SEM, EDS and TEM are utilized to characterize the crystal structures, particle sizes, and morphologies of the glass-ceramic electrolytes. Among them, the Li3P0.98Sb0.02S3.95O0.05 (x = 0.02) exhibits the highest ionic conductivity (∼1.08 mS cm-1) at room temperature with an excellent stability against lithium. In addition, all-solid-state lithium batteries are assembled with LiCoO2 as cathode, Li10GeP2S12/Li3P0.98Sb0.02S3.95O0.05 as the bi-layer electrolyte, and lithium as anode. The constructed solid-state batteries delivers a high initial discharge capacity of 133 mAh g-1 at 0.1C in the range of 3.0-4.3 V vs. Li/Li+ at room temperature, and shows a capacity retention of 78.6% after 50 cycles. Most importantly, the all-solid-state lithium batteries with the Li10GeP2S12/Li3P0.98Sb0.02S3.95O0.05 electrolyte can be workable even at -10 °C. This study provides a promising electrolyte with the improved conductivity and stability against Li for the application of all-solid-state lithium batteries.

  9. Non-Abelian Geometric Phases Carried by the Quantum Noise Matrix

    NASA Astrophysics Data System (ADS)

    Bharath, H. M.; Boguslawski, Matthew; Barrios, Maryrose; Chapman, Michael

    2017-04-01

    Topological phases of matter are characterized by topological order parameters that are built using Berry's geometric phase. Berry's phase is the geometric information stored in the overall phase of a quantum state. We show that geometric information is also stored in the second and higher order spin moments of a quantum spin system, captured by a non-abelian geometric phase. The quantum state of a spin-S system is uniquely characterized by its spin moments up to order 2S. The first-order spin moment is the spin vector, and the second-order spin moment represents the spin fluctuation tensor, i.e., the quantum noise matrix. When the spin vector is transported along a loop in the Bloch ball, we show that the quantum noise matrix picks up a geometric phase. Considering spin-1 systems, we formulate this geometric phase as an SO(3) operator. Geometric phases are usually interpreted in terms of the solid angle subtended by the loop at the center. However, solid angles are not well defined for loops that pass through the center. Here, we introduce a generalized solid angle which is well defined for all loops inside the Bloch ball, in terms of which, we interpret the SO(3) geometric phase. This geometric phase can be used to characterize topological spin textures in cold atomic clouds.

  10. Dissolved solids in basin-fill aquifers and streams in the southwestern United States

    USGS Publications Warehouse

    Anning, David W.; Bauch, Nancy J.; Gerner, Steven J.; Flynn, Marilyn E.; Hamlin, Scott N.; Moore, Stephanie J.; Schaefer, Donald H.; Anderholm, Scott K.; Spangler, Lawrence E.

    2007-01-01

    The U.S. Geological Survey National Water-Quality Assessment Program performed a regional study in the Southwestern United States (Southwest) to describe the status and trends of dissolved solids in basin-fill aquifers and streams and to determine the natural and human factors that affect dissolved solids. Basin-fill aquifers, which include the Rio Grande aquifer system, Basin and Range basin-fill aquifers, and California Coastal Basin aquifers, are the most extensively used ground-water supplies in the Southwest. Rivers, such as the Colorado, the Rio Grande, and their tributaries, are also important water supplies, as are several smaller river systems that drain internally within the Southwest, or drain externally to the Pacific Ocean in southern California. The study included four components that characterize (1) the spatial distribution of dissolved-solids concentrations in basin-fill aquifers, and dissolved-solids concentrations, loads, and yields in streams; (2) natural and human factors that affect dissolved-solids concentrations; (3) major sources and areas of accumulation of dissolved solids; and (4) trends in dissolved-solids concentrations over time in basin-fill aquifers and streams, and the relation of trends to natural or human factors.

  11. Analysis of measurements for solid state laser remote lidar system

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1995-01-01

    The merits of using lidar systems for remote measurements of various atmospheric processes such as wind, turbulence, moisture, and aerosol concentration are widely recognized. Although the lidar technology has progressed considerably over the past two decades, significant research particularly in the area of solid state lidars remains to be conducted in order to fully exploit this technology. The work performed by the UAH (University of Alabama in Huntsville) personnel under this Delivery Order concentrated on analyses of measurements required in support of solid state laser remote sensing lidar systems which are to be designed, deployed, and used to measure atmospheric processes and constituents. UAH personnel has studied and recommended to NASA/MSFC the requirements of the optical systems needed to characterize the detection devices suitable for solid state wavelengths and to evaluate various heterodyne detection schemes. The 2-micron solid state laser technology was investigated and several preliminary laser designs were developed and their performance for remote sensing of atmospheric winds and clouds from a spaceborne platform were specified. In addition to the laser source and the detector, the other critical technologies necessary for global wind measurements by a spaceborne solid state coherent lidar systems were identified to be developed and demonstrated. As part of this work, an analysis was performed to determine the atmospheric wind velocity estimation accuracy using the line-of-sight measurements of a scanning coherent lidar. Under this delivery order, a computer database of materials related to the theory, development, testing, and operation of lidar systems was developed to serve as a source of information for lidar research and development.

  12. Preparation of Spray-Dried Soy Isoflavone-Loaded Gelatin Microspheres for Enhancement of Dissolution: Formulation, Characterization and in Vitro Evaluation

    PubMed Central

    Panizzon, Gean Pier; Bueno, Fernanda Giacomini; Ueda-Nakamura, Tânia; Nakamura, Celso Vataru; Dias Filho, Benedito Prado

    2014-01-01

    The most bioactive soy isoflavones (SI), daidzein (DAI) and genistein (GEN) have poor water solubility, which reduces their bioavailability and health benefits and limits their use in industry. The goal of this study was to develop and characterize a new gelatin matrix to microencapsulate DAI and GEN from soy extract (SE) by spray drying, in order to obtain solid dispersions to overcome solubility problems and to allow controlled release. The influences of 1:2 (MP2) and 1:3 (MP3) SE/polymer ratios on the solid state, yield, morphology, encapsulation efficiency, particle size distribution, release kinetics and cumulative release were evaluated. Analyses showed integral microparticles and high drug content. MP3 and MP2 yield were 43.6% and 55.9%, respectively, with similar mean size (p > 0.05), respectively. X-ray diffraction revealed the amorphous solid state of SE. In vitro release tests showed that dissolution was drastically increased. The results indicated that SE microencapsulation might offer a good system to control SI release, as an alternative to improve bioavailability and industrial applications. PMID:25494200

  13. Preparation and characterization of host-guest system between inosine and β-cyclodextrin through inclusion mode

    NASA Astrophysics Data System (ADS)

    Prabu, Samikannu; Sivakumar, Krishnamurty; Swaminathan, Meenakshisundaram; Rajamohan, Rajaram

    2015-08-01

    Inosine is a nucleoside that is formed when hypoxanthine is attached to a ribose ring (also known as a ribofuranose) via a β-N9-glycosidic bond. Inosine is commonly found in tRNAs. Inosine (INS) has been used widely as an antiviral drug. The inclusion complex of INS with β-CDx in solution phase is studied by ground and excited state with UV-visible and fluorescence spectroscopy, respectively. A binding constant and stoichiometric ratio between INS and β-CDx are calculated by BH equation. The lifetime and relative amplitude of INS is increases with increasing the concentrations of β-CDx, confirms the formation of inclusion complex in liquid state. The solid complexes are prepared by kneading method (KM) and co-precipitation method (CP). The solid complex is characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), powder X-ray diffraction (XRD) and differential scanning colorimetry (DSC). CP method gives the solid product with good yield than that of physical mixture and KM method. The structure of complex is proposed based on the study of Patch - Dock server.

  14. Synthesis and characterization of iron based superconductor Nd-1111

    NASA Astrophysics Data System (ADS)

    Alborzi, Z.; Daadmehr, V.

    2018-06-01

    Polycrystalline sample of NdFeAsO0.8F0.2 was prepared by one-step solid-state reaction method. The structural and electrical properties of sample were characterized through XRD pattern and the 4-probe method. The critical temperature was obtained at 56 K. The crystal structure was tetragonal with P4/nmm:2 symmetry group.

  15. The mechanics of solids in the plastically-deformable state

    NASA Technical Reports Server (NTRS)

    Mises, R. V.

    1986-01-01

    The mechanics of continua, which is based on the general stress model of Cauchy, up to the present has almost exclusively been applied to liquid and solid elastic bodies. Saint-Venant has developed a theory for the plastic or remaining form changes of solids, but it does not give the required number of equations for determining motion. A complete set of equations of motion for plastic deformable bodies is derived. This is done within the framework of Cauch mechanics. And it is supported by certain experimental facts which characterize the range of applications.

  16. An Electron Microscopy Study of Graphite Growth in Nodular Cast Irons

    NASA Astrophysics Data System (ADS)

    Laffont, L.; Jday, R.; Lacaze, J.

    2018-04-01

    Growth of graphite during solidification and high-temperature solid-state transformation has been investigated in samples cut out from a thin-wall casting which solidified partly in the stable (iron-graphite) and partly in the metastable (iron-cementite) systems. Transmission electron microscopy has been used to characterize graphite nodules in as-cast state and in samples having been fully graphitized at various temperatures in the austenite field. Nodules in the as-cast material show a twofold structure characterized by an inner zone where graphite is disoriented and an outer zone where it is well crystallized. In heat-treated samples, graphite nodules consist of well-crystallized sectors radiating from the nucleus. These observations suggest that the disoriented zone appears because of mechanical deformation when the liquid contracts during its solidification in the metastable system. During heat-treatment, the graphite in this zone recrystallizes. In turn, it can be concluded that nodular graphite growth mechanism is the same during solidification and solid-state transformation.

  17. Water-mediated solid-state transformation of a polymorphic drug during aqueous-based drug-layer coating of pellets.

    PubMed

    Lust, Andres; Lakio, Satu; Vintsevits, Julia; Kozlova, Jekaterina; Veski, Peep; Heinämäki, Jyrki; Kogermann, Karin

    2013-11-01

    During aqueous drug-layer coating, drug substance(s) are exposed to water and elevated temperatures which can lead to water-mediated process induced transformations (PITs). The effects of aqueous drug-layer coating of pellets (Cellets(®)) on the anhydrous piroxicam, PRX, were investigated in the miniaturized coating equipment and with free films. Hydroxypropyl methylcellulose (HPMC) was used as a carrier coating polymer. Free films were prepared by using an in-house small-scale rotating plate system equipped with an atomization air nozzle. Raman spectroscopy, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) were used to characterize the solid-state properties and surface morphology of the pellets and free films. The results showed that anhydrous PRX form I (AH) and monohydrate (MH) were stable during drug-layer coating, but amorphous PRX in solid dispersion (SD) crystallized as MH already after 10 min of coating. Furthermore, the increase in a dissolution rate was achieved from the drug-layer coated inert pellets compared to powder forms. In conclusion, water-mediated solid-state PITs of amorphous PRX is evident during aqueous-based drug-layer coating of pellets, and solid-state change can be verified using Raman spectroscopy. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Room temperature synthesis of copper indium diselenide in non-aqueous solution using an organoindium reagent

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Andras, Maria T.; Bailey, Sheila G.; Duraj, Stan A.

    1992-01-01

    A novel two-phase synthesis of CuInSe2 at 25 C from Cu2Se and Cp3In in 4-methylpyridine has been discovered. Characterization of the material produced shows it to be platelet-shaped crystallites with an average particle size of 10 microns, less than 2 percent C and H, with a small amount of unidentified crystalline impurity. The results demonstrate that it is possible to produce from solution a material that is ordinarily synthesized in bulk or films at much higher temperatures or using extraneous reagents and/or electrons. The use of a solid-state reagent as a starting material which is converted to another solid-state compound by an organometallic reagent has tremendous potential to produce precursors for a wide range of solid-state materials of interest to the electronics, defense, and aerospace communities.

  19. Synthesis, characterization and theoretical study in gaseous and solid phases of the imine 4-Acetyl-N-(4-methoxybenzylidene)aniline

    NASA Astrophysics Data System (ADS)

    Batista, J. F. N.; Cruz, J. W.; Doriguetto, A. C.; Torres, C.; de Almeida, E. T.; Camps, I.

    2017-11-01

    In the present paper we describe the synthesis and characterization of the Schiff's base or imine 4-Acetyl-N-(4-methoxybenzylidene)aniline (1), which provided experimental support for the theoretical calculations. The imine was characterized by infrared spectroscopy and single crystal XRD techniques. The computational studies were performed using the density functional theory (DFT) for the gaseous and solid phases. As similar compounds already shown biological activity, the pharmacokinetic properties of (1) were evaluated. Our results shown that (1), in its gaseous form, it is electronically stable and has pharmacological drug like properties. Due to its structural similarity with commercial drugs, it is a promise candidate to act as a nonsteroidal anti-inflammatory and to treat dementia, sleep disorders, alcohol dependence, and psychosis. From the solid state calculations we obtain that (1) is a low gap semiconductor and can act as an absorber for electromagnetic radiations with energy greater that ∼ 0.9eV .

  20. Synthesis of Pyridine– and Pyrazine–BF 3 Complexes and Their Characterization in Solution and Solid State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chénard, Etienne; Sutrisno, Andre; Zhu, Lingyang

    2016-03-31

    Following the discovery of the redox-active 1,4- bis-BF 3-quinoxaline complex, we undertook a structure- activity study with the objective to understand the active nature of the quinoxaline complex. Through systematic synthesis and characterization, we have compared complexes prepared from pyridine and pyrazine derivatives, as heterocyclic core analogues. This paper reports the structural requirements that give rise to the electrochemical features of the 1,4-bis-BF 3-quinoxaline adduct. Using solution and solidstate NMR spectroscopy, the role of aromatic ring fusion and nitrogen incorporation in bonding and electronics was elucidated. We establish the boron atom location and its interaction with its environment from 1Dmore » and 2D solution NMR, X-ray diffraction analysis, and 11B solid-state NMR experiments. Crystallographic analysis of single crystals helped to correlate the boron geometry with 11B quadrupolar coupling constant (CQ) and asymmetry parameter (ηQ), extracted from 11B solid-state NMR spectra. Additionally, computations based on density functional theory were performed to predict electrochemical behavior of the BF 3-heteroaromatic complexes. We then experimentally measured electrochemical potential using cyclic voltammetry and found that the redox potentials and CQ values are similarly affected by electronic changes in the complexes.« less

  1. New fluorescent azo-Schiff base Cu(II) and Zn(II) metal chelates; spectral, structural, electrochemical, photoluminescence and computational studies

    NASA Astrophysics Data System (ADS)

    Purtas, Fatih; Sayin, Koray; Ceyhan, Gokhan; Kose, Muhammet; Kurtoglu, Mukerrem

    2017-06-01

    A new Schiff base containing azo chromophore group obtained by condensation of 2-hydroxy-4-[(E)-phenyldiazenyl]benzaldehyde with 3,4-dimethylaniline (HL) are used for the syntheses of new copper(II) and zinc(II) chelates, [Cu(L)2], and [Zn(L)2], and characterized by physico-chemical and spectroscopic methods such as 1H and 13C NMR, IR, UV.-Vis. and elemental analyses. The solid state structure of the ligand was characterized by single crystal X-ray diffraction study. X-ray diffraction data was then used to calculate the harmonic oscillator model of aromaticity (HOMA) indexes for the rings so as to investigate of enol-imine and keto-amine tautomeric forms in the solid state. The phenol ring C10-C15 shows a considerable deviation from the aromaticity with HOMA value of 0.837 suggesting the shift towards the keto-amine tautomeric form in the solid state. The analytical data show that the metal to ligand ratio in the chelates was found to be 1:2. Theoretical calculations of the possible isomers of the ligand and two metal complexes are performed by using B3LYP method. Electrochemical and photoluminescence properties of the synthesized azo-Schiff bases were also investigated.

  2. First-Principles Investigation of Electronic Properties in Sodium-Ion Electrolytes for Solid-State Battery Materials

    NASA Astrophysics Data System (ADS)

    Rush, Larry E., Jr.

    This thesis mainly focuses on characterizing and understanding the electronic properties of sodium-ion electrolytes using first-principles calculations. The core of these calculations is built upon a functional understanding of the relationship between quantum mechanics and the crystalline geometries that contribute to unique properties of materials such as diffusion mechanisms of ions within solid-state materials, conductivity, and ground state structures. The goal of this body of work is to understand how this relationship can give us insight into materials that might have use in an emerging field within battery technology. Sodium-ion solid-state batteries are an auspicious technology because nature has provided us with widely distributed precursor materials in such a way that removes geopolitical constraints in its construction and distribution. This is extremely important to individuals (and a collection of individuals) who want to expedite the wide use of clean and renewable energy from a societal perspective. An example is Morocco's initiative to generate 52% of its total energy consumption from clean and renewable energy sources to eliminate dependencies on foreign countries to supply energy resources. Sodium-ion solid-state batteries are an inexpensive option for large-scale grid storage, so this could play a role in providing a cost-effective option for Morocco. The challenging part is to sift through the large chemical space of sodium-ion solid-state electrolytes to find optimal materials for battery technology, and that is what motivates this body of work.

  3. Rapid and solvent-free solid-state synthesis and characterization of Zn3V2O8 nanostructures and their phenol red aqueous solution photodegradation

    NASA Astrophysics Data System (ADS)

    Mazloom, Fatemeh; Masjedi-Arani, Maryam; Salavati-Niasari, Masoud

    2017-08-01

    Zinc vanadate (Zn3V2O8) nanostructures have been successfully synthesized via simple, rapid and solvent-free solid-state method by using different complex precursors of Zn and NH4VO3 as novel starting materials. Effects of various zinc (II) Schiff base complex precursors and calcination temperatures were investigated to reach optimum condition. It was found that particle size and optical property of the as-prepared products could be greatly influenced via these parameters. The products were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Photoluminescence and ultraviolet-visible (UV-Vis) spectroscopy. The photocatalytic activity of zinc vanadate nano and bulk structures were compared by degradation of phenol red aqueous solution.

  4. Extended Czjzek model applied to NMR parameter distributions in sodium metaphosphate glass

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Filipe; Cristol, Sylvain; Paul, Jean-François; Delevoye, Laurent; Mauri, Francesco; Charpentier, Thibault; Le Caër, Gérard

    2013-06-01

    The extended Czjzek model (ECM) is applied to the distribution of NMR parameters of a simple glass model (sodium metaphosphate, NaPO3) obtained by molecular dynamics (MD) simulations. Accurate NMR tensors, electric field gradient (EFG) and chemical shift anisotropy (CSA) are calculated from density functional theory (DFT) within the well-established PAW/GIPAW framework. The theoretical results are compared to experimental high-resolution solid-state NMR data and are used to validate the considered structural model. The distributions of the calculated coupling constant CQ ∝ |Vzz| and the asymmetry parameter ηQ that characterize the quadrupolar interaction are discussed in terms of structural considerations with the help of a simple point charge model. Finally, the ECM analysis is shown to be relevant for studying the distribution of CSA tensor parameters and gives new insight into the structural characterization of disordered systems by solid-state NMR.

  5. Extended Czjzek model applied to NMR parameter distributions in sodium metaphosphate glass.

    PubMed

    Vasconcelos, Filipe; Cristol, Sylvain; Paul, Jean-François; Delevoye, Laurent; Mauri, Francesco; Charpentier, Thibault; Le Caër, Gérard

    2013-06-26

    The extended Czjzek model (ECM) is applied to the distribution of NMR parameters of a simple glass model (sodium metaphosphate, NaPO3) obtained by molecular dynamics (MD) simulations. Accurate NMR tensors, electric field gradient (EFG) and chemical shift anisotropy (CSA) are calculated from density functional theory (DFT) within the well-established PAW/GIPAW framework. The theoretical results are compared to experimental high-resolution solid-state NMR data and are used to validate the considered structural model. The distributions of the calculated coupling constant C(Q) is proportional to |V(zz)| and the asymmetry parameter η(Q) that characterize the quadrupolar interaction are discussed in terms of structural considerations with the help of a simple point charge model. Finally, the ECM analysis is shown to be relevant for studying the distribution of CSA tensor parameters and gives new insight into the structural characterization of disordered systems by solid-state NMR.

  6. Novel solid state lasers for Lidar applications at 2 μm

    NASA Astrophysics Data System (ADS)

    Della Valle, G.; Galzerano, G.; Toncelli, A.; Tonelli, M.; Laporta, P.

    2005-09-01

    A review on the results achieved by our group in the development of novel solid-state lasers for Lidar applications at 2 μm is presented. These lasers, based on fluoride crystals (YLF4, BaY2F8, and KYF4) doped with Tm and Ho ions, are characterized by high-efficiency and wide wavelength tunability around 2 μm. Single crystals of LiYF4, BaY2F8, and KYF4 codoped with the same Tm3+ and Ho3+ concentrations were successfully grown by the Czochralski method. The full spectroscopic characterization of the different laser crystals and the comparison between the laser performance are presented. Continuous wave operation was efficiently demonstrated by means of a CW diode-pumping. These oscillators find interesting applications in the field of remote sensing (Lidar and Dial systems) as well as in high-resolution molecular spectroscopy, frequency metrology, and biomedical applications.

  7. Pharmaceutical properties of two ethenzamide-gentisic acid cocrystal polymorphs: Drug release profiles, spectroscopic studies and theoretical calculations.

    PubMed

    Sokal, Agnieszka; Pindelska, Edyta; Szeleszczuk, Lukasz; Kolodziejski, Waclaw

    2017-04-30

    The aim of this study was to evaluate the stability and solubility of the polymorphic forms of the ethenzamide (ET) - gentisic acid (GA) cocrystals during standard technological processes leading to tablet formation, such as compression and excipient addition. In this work two polymorphic forms of pharmaceutical cocrystals (ETGA) were characterized by 13 C and 15 N solid-state nuclear magnetic resonance and Fourier transformed infrared spectroscopy. Spectroscopic studies were supported by gauge including projector augmented wave (GIPAW) calculations of chemical shielding constants.Polymorphs of cocrystals were easily identified and characterized on the basis of solid-state spectroscopic studies. ETGA cocrystals behaviour during direct compressionand tabletting with excipient addition were tested. In order to choose the best tablet composition with suitable properties for the pharmaceutical industry dissolution profile studies of tablets containing polymorphic forms of cocrystals with selected excipients were carried out. Copyright © 2017. Published by Elsevier B.V.

  8. Chemistry of electronic ceramic materials. Proceedings of the International Conference on the Chemistry of Electronic Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Davies, P. K.; Roth, R. S.

    1991-01-01

    The conference was held at Jackson Hole, Wyoming from August 17 to 22, 1990, and in an attempt to maximize the development of this rapidly moving, multidisciplinary field, this conference brought together major national and international researchers to bridge the gap between those primarily interested in the pure chemistry of inorganic solids and those interested in the physical and electronic properties of ceramics. With the many major discoveries that have occurred over the last decade, one of the goals of this meeting was to evaluate the current understanding of the chemistry of electronic ceramic materials, and to assess the state of a field that has become one of the most important areas of advanced materials research. The topics covered include: crystal chemistry; dielectric ceramics; low temperature synthesis and characterization; solid state synthesis and characterization; surface chemistry; superconductors; theory and modeling.

  9. Low latency and persistent data storage

    DOEpatents

    Fitch, Blake G; Franceschini, Michele M; Jagmohan, Ashish; Takken, Todd

    2014-11-04

    Persistent data storage is provided by a computer program product that includes computer program code configured for receiving a low latency store command that includes write data. The write data is written to a first memory device that is implemented by a nonvolatile solid-state memory technology characterized by a first access speed. It is acknowledged that the write data has been successfully written to the first memory device. The write data is written to a second memory device that is implemented by a volatile memory technology. At least a portion of the data in the first memory device is written to a third memory device when a predetermined amount of data has been accumulated in the first memory device. The third memory device is implemented by a nonvolatile solid-state memory technology characterized by a second access speed that is slower than the first access speed.

  10. Analysis of Measurements for Solid State Lidar Development

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1996-01-01

    A Detector Characterization Facility (DCF), capable of measuring 2-micron detection devices and evaluating heterodyne receivers, was developed at the Marshall Space Flight Center. The DCF is capable of providing all the necessary detection parameters for design, development, and calibration of coherent and incoherent solid state laser radar (lidar) systems. The coherent lidars in particular require an accurate knowledge of detector heterodyne quantum efficient, nonlinearity properties, and voltage-current relationship as a function of applied optical power. At present, no detector manufacturer provides these qualities or adequately characterizes their detectors for heterodyne detection operation. In addition, the detector characterization facility measures the detectors DC and AC quantum efficiencies noise equivalent power and frequency response up to several GHz. The DCF is also capable of evaluating various heterodyne detection schemes such as balanced detectors and fiber optic interferometers. The design and analyses of measurements for the DCF were preformed over the previous year and a detailed description of its design and capabilities was provided in the NASA report NAS8-38609/DO77. It should also be noted that the DCF design was further improved to allow for the characterization of diffractive andholographical optical elements and other critical components of coherent lidar systems.

  11. Vertically-aligned Mn(OH) 2 nanosheet films for flexible all-solid-state electrochemical supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ziyuan; Gong, Jiangfeng; Tang, Chunmei

    We report that the arrangement of the electrode materials is a significant contributor for constructing high performance supercapacitor. Here, vertically-aligned Mn(OH) 2 nanosheet thin films were synthesized by cathodic electrodeposition technique on flexible Au coated polyethylene terephthalate substrates. Morphologies, microstructures, chemical compositions and valence state of the nanosheet films were characterized systematically. It shows that the nanosheets arranged vertically to the substrate, forming a porous nanowall structures and creating large open framework, which greatly facilitate the adsorption or diffusion of electrolyte ions for faradaic redox reaction. Electrochemical tests of the films show the specific capacitance as high as 240.2 Fmore » g -1 at 1.0 A g -1. The films were employed to assemble symmetric all-solid-state supercapacitors with LiCl/PVA gel severed as solid electrolyte. Finally, the solid devices exhibit high volumetric capacitance of 39.3 mF cm -3 at the current density 0.3 mA cm -3 with robust cycling stability. The superior performance is attributed to the vertically-aligned configuration.« less

  12. Vertically-aligned Mn(OH) 2 nanosheet films for flexible all-solid-state electrochemical supercapacitors

    DOE PAGES

    Yang, Ziyuan; Gong, Jiangfeng; Tang, Chunmei; ...

    2017-08-28

    We report that the arrangement of the electrode materials is a significant contributor for constructing high performance supercapacitor. Here, vertically-aligned Mn(OH) 2 nanosheet thin films were synthesized by cathodic electrodeposition technique on flexible Au coated polyethylene terephthalate substrates. Morphologies, microstructures, chemical compositions and valence state of the nanosheet films were characterized systematically. It shows that the nanosheets arranged vertically to the substrate, forming a porous nanowall structures and creating large open framework, which greatly facilitate the adsorption or diffusion of electrolyte ions for faradaic redox reaction. Electrochemical tests of the films show the specific capacitance as high as 240.2 Fmore » g -1 at 1.0 A g -1. The films were employed to assemble symmetric all-solid-state supercapacitors with LiCl/PVA gel severed as solid electrolyte. Finally, the solid devices exhibit high volumetric capacitance of 39.3 mF cm -3 at the current density 0.3 mA cm -3 with robust cycling stability. The superior performance is attributed to the vertically-aligned configuration.« less

  13. Process and Formulation Effects on Protein Structure in Lyophilized Solids using Mass Spectrometric Methods

    PubMed Central

    Iyer, Lavanya K.; Sacha, Gregory A.; Moorthy, Balakrishnan S.; Nail, Steven L.; Topp, Elizabeth M.

    2016-01-01

    Myoglobin (Mb) was lyophilized in the absence (Mb-A) and presence (Mb-B) of sucrose in a pilot-scale lyophilizer with or without controlled ice nucleation. Cake morphology was characterized using scanning electron microscopy (SEM) and changes in protein structure were monitored using solid-state Fourier-transform infrared spectroscopy (ssFTIR), solid-state hydrogen-deuterium exchange-mass spectrometry (ssHDX-MS) and solid-state photolytic labeling-mass spectrometry (ssPL-MS). The results showed greater variability in nucleation temperature and irregular cake structure for formulations lyophilized without controlled nucleation. Controlled nucleation resulted in nucleation at ~ −5 °C and uniform cake structure. Formulations containing sucrose showed better retention of protein structure by all measures than formulations without sucrose. Samples lyophilized with and without controlled nucleation were similar by most measures of protein structure. However, ssPL-MS showed the greatest pLeu incorporation and more labeled regions for Mb-B lyophilized with controlled nucleation. The data support the use of ssHDX-MS and ssPL-MS to study formulation and process-induced conformational changes in lyophilized proteins. PMID:27044943

  14. Characterization of a water-solid interaction in a partially ordered system.

    PubMed

    Chakravarty, Paroma; Lubach, Joseph W

    2013-11-04

    GNE068-PC, a developmental compound, was previously characterized to be mesomorphous, i.e. having long-range order associated with significant local molecular disorder (Chakravarty et. al., Mol. Pharmaceutics, accepted). The compound was exposed to moisture under different relative humidity conditions ranging from 11% to 60% RH at room temperature (RT) for 7 days, and the resultant product phases were characterized. The partially ordered sample progressively lost crystallinity (long-range order) and birefringence (orientational order) upon exposure to increasing RH conditions, leading to the formation of a completely disordered amorphous phase at 60% RH (RT). Long-range positional order was irrecoverable even after moisture removal from the sample exposed to 60% RH. This was attributed to replacement of residual ethyl acetate by water, the former being critical for maintenance of long-range order in the material. In addition, water sorption appeared to irreversibly alter the molecular orientation, thereby affecting sample birefringence. Solid-state NMR revealed increases in (1)H and (13)C spin-lattice relaxation times (T1) going from the mesomorphous phase to the fully amorphous phase. This was indicative of reduction in lattice mobility, likely due to the decreased motion of the aromatic portions of the molecule, in particular C17, which showed the most dramatic increase in (13)C T1. This is likely due to decrease in available free volume upon water sorption. Drying of the hydrated disordered phase showed somewhat greater mobility than the hydrated phase, likely due to increased relative free volume through removal of water. A water-solid interaction therefore irreversibly changed the solid-state makeup of GNE068-PC.

  15. Production of raw-starch-digesting α-amylase isoform from Bacillus sp. under solid-state fermentation and biochemical characterization.

    PubMed

    Božić, Nataša; Slavić, Marinela Šokarda; Gavrilović, Anja; Vujčić, Zoran

    2014-07-01

    α-Amylase production by solid-state fermentation of different Bacillus sp. was studied previously on different fermentation media. However, no study has been reported on the influence of selected media on expression of desired amylase isoforms such as raw-starch-digesting amylase (RSDA). In this paper, the influence of different inexpensive and available agro-resources as solid media (corn, wheat and triticale) on α-amylase isoform induction from three wild-type Bacillus sp., selected among one hundred strains tested, namely 9B, 12B and 24A was investigated. For all three strains, tested amylases were detected in the multiple forms; however, number and intensity of each form differed depending on the solid media used for growth. To determine which isoform from Bacillus sp. 12B was RSDA, the suspected isoform was purified. The optimum pH for the purified α-amylase isoform was 6.0-8.0, while the optimum temperature was 60-90 °C. Isoform was considerably thermostable and Ca(2+)-independent, and actually the only α-amylase active towards raw starch. Purification and characterization of RSDA showed that not all of the solid media tested induced RSDA. From an economic point of view, it might be significant to obtain pure isoenzyme for potential use in the raw-starch hydrolysis, since it was 5 times more efficient in raw corn starch hydrolysis than the crude amylase preparation.

  16. Thermal Stir Welding Development at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2008-01-01

    Solid state welding processes have become the focus of welding process development at NASA's Marshall Space Flight Center. Unlike fusion weld processes such as tungsten inert gas (TIG), variable polarity plasma arc (VPPA), electron beam (EB), etc., solid state welding processes do not melt the material during welding. The resultant microstructure can be characterized as a dynamically recrystallized morphology much different than the casted, dentritic structure typical of fusion weld processes. The primary benefits of solid state processes over fusion weld processes include superior mechanic properties and the elimination of thermal distortion and residual stresses. These solid state processes attributes have profoundly influenced the direction of advanced welding research and development within the NASA agency. Thermal Stir Welding (TSW) is a new solid state welding process being developed at the Marshall Space Flight Center. Unlike friction stir welding, the heating, stirring and forging elements of the weld process can be decoupled for independent control. An induction coil induces energy into a workpiece to attain a desired plastic temperature. An independently controlled stir rod, captured within non-rotating containment plates, then stirs the plasticized material followed by forging plates/rollers that work the stirred weld joint. The independent control (decoupling) of heating, stirring and forging allows, theoretically, for the precision control of microstructure morphology. The TSW process is being used to evaluate the solid state joining of Haynes 230 for ARES J-2X applications. It is also being developed for 500-in (12.5 mm) thick commercially pure grade 2 titanium for navy applications. Other interests include Inconel 718 and stainless steel. This presentation will provide metallurgical and mechanical property data for these high melting temperature alloys.

  17. The effect of B{sub 2}O{sub 3} flux on growth NLBCO superconductor by solid state reaction and wet-mixing methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suharta, W. G., E-mail: wgsuharta@gmail.com; Wendri, N.; Ratini, N.

    The synthesis of B{sub 2}O{sub 3} flux substituted NLBCO superconductor NdBa{sub 1.75}La{sub 0.25}Cu{sub 3}O{sub 7-∂} has been done using solid state reaction and wet-mixing methods in order to obtain homogeneous crystals and single phase. From DTA/TGA characteritations showed the synthesis process by wet-mixing requires a lower temperature than the solid state reaction in growing the superconductor NdBa{sub 1.75}La{sub 0.25}Cu{sub 3}O{sub 7-∂}. Therefore, in this research NdBa{sub 1.75}La{sub 0.25}Cu{sub 3}O{sub 7-∂} sample calcinated at 650°C for wet-mixing method and 820°C for solid state reaction methods. The all samples was sintered at 950°C for ten hours. Crystallinity of the sample was confirmedmore » using X-ray techniques and generally obtained sharp peaks that indicates the sample already well crystallized. Search match analyses for diffraction data gave weight fractions of impurity phase of the solid state reaction method higher than wet-mixing method. In this research showed decreasing the price of the lattice parameter about 1% with the addition of B{sub 2}O{sub 3} flux for the both synthesis process and 2% of wet mixing process for all samples. Characterization using scanning electron microscopy (SEM) showed the distribution of crystal zise for wet-mixing method more homogeneous than solid state reaction method, with he grain size of samples is around 150–250 nm. The results of vibrating sample magnetometer (VSM) showed the paramagnetic properties for all samples.« less

  18. Thiocyanate-Ligated Heterobimetallic {PtM} Lantern Complexes Including a Ferromagnetically Coupled 1D Coordination Polymer.

    PubMed

    Guillet, Jesse L; Bhowmick, Indrani; Shores, Matthew P; Daley, Christopher J A; Gembicky, Milan; Golen, James A; Rheingold, Arnold L; Doerrer, Linda H

    2016-08-15

    A series of heterobimetallic lantern complexes with the central unit {PtM(SAc)4(NCS)} have been prepared and thoroughly characterized. The {Na(15C5)}[PtM(SAc)4(NCS)] series, 1 (Co), 2 (Ni), 3 (Zn), are discrete compounds in the solid state, whereas the {Na(12C4)2)}[PtM(SAc)4(NCS)] series, 4 (Co), 5 (Ni), 6 (Zn), and 7 (Mn), are ion-separated species. Compound 7 is the first {PtMn} lantern of any bridging ligand (carboxylate, amide, etc.). Monomeric 1-7 have M(2+), necessitating counter cations that have been prepared as {(15C5)Na}(+) and {(12C4)2Na}(+) variants, none of which form extended structures. In contrast, neutral [PtCr(tba)4(NCS)]∞ 8 forms a coordination polymer of {PtCr}(+) units linked by (NCS)(-) in a zigzag chain. All eight compounds have been thoroughly characterized and analyzed in comparison to a previously reported family of compounds. Crystal structures are presented for compounds 1-6 and 8, and solution magnetic susceptibility measurements are presented for compounds 1, 2, 4, 5, and 7. Further structural analysis of dimerized {PtM} units reinforces the empirical observation that greater charge density along the Pt-M vector leads to more Pt···Pt interactions in the solid state. Four structural classes, one new, of {MPt}···{PtM} units are presented. Solid state magnetic characterization of 8 reveals a ferromagnetic interaction in the {PtCr(NCS)} chain between the Cr centers of J/kB = 1.7(4) K.

  19. Precise non-steady-state characterization of solid active materials with no preliminary mechanistic assumptions

    DOE PAGES

    Constales, Denis; Yablonsky, Gregory S.; Wang, Lucun; ...

    2017-04-25

    This paper presents a straightforward and user-friendly procedure for extracting a reactivity characterization of catalytic reactions on solid materials under non-steady-state conditions, particularly in temporal analysis of products (TAP) experiments. The kinetic parameters derived by this procedure can help with the development of detailed mechanistic understanding. The procedure consists of the following two major steps: 1) Three “Laplace reactivities” are first determined based on the moments of the exit flow pulse response data; 2) Depending on a select kinetic model, kinetic constants of elementary reaction steps can then be expressed as a function of reactivities and determined accordingly. In particular,more » we distinguish two calculation methods based on the availability and reliability of reactant and product data. The theoretical results are illustrated using a reverse example with given parameters as well as an experimental example of CO oxidation over a supported Au/SiO 2 catalyst. The procedure presented here provides an efficient tool for kinetic characterization of many complex chemical reactions.« less

  20. Multiscale Phenomena in the Solid-Liquid Transition State of a Granular Material: Analysis and Modelling of Dense Granular Materials

    DTIC Science & Technology

    2011-09-26

    most challenging to characterize and model of the gamut of granular behaviour encountered in practice. In particular, it exhibits self-organized...is intrinsically multiscale and is arguably one of, if not, the most challenging to characterize and model of the gamut of granular behaviour...the most challenging to characterize and model of the gamut of granular behaviour encountered in practice. In particular, it exhibits self-organized

  1. Surface structural-chemical characterization of a single-site d0 heterogeneous arene hydrogenation catalyst having 100% active sites

    PubMed Central

    Williams, Linda A.; Guo, Neng; Motta, Alessandro; Delferro, Massimiliano; Fragalà, Ignazio L.; Miller, Jeffrey T.; Marks, Tobin J.

    2013-01-01

    Structural characterization of the catalytically significant sites on solid catalyst surfaces is frequently tenuous because their fraction, among all sites, typically is quite low. Here we report the combined application of solid-state 13C-cross-polarization magic angle spinning nuclear magnetic resonance (13C-CPMAS-NMR) spectroscopy, density functional theory (DFT), and Zr X-ray absorption spectroscopy (XAS) to characterize the adsorption products and surface chemistry of the precatalysts (η5-C5H5)2ZrR2 (R = H, CH3) and [η5-C5(CH3)5]Zr(CH3)3 adsorbed on Brønsted superacidic sulfated alumina (AlS). The latter complex is exceptionally active for benzene hydrogenation, with ∼100% of the Zr sites catalytically significant as determined by kinetic poisoning experiments. The 13C-CPMAS-NMR, DFT, and XAS data indicate formation of organozirconium cations having a largely electrostatic [η5-C5(CH3)5]Zr(CH3)2+···AlS− interaction with greatly elongated Zr···OAlS distances of ∼2.35(2) Å. The catalytic benzene hydrogenation cycle is stepwise understandable by DFT, and proceeds via turnover-limiting H2 delivery to surface [η5-C5(CH3)5]ZrH2(benzene)+···AlS− species, observable by solid-state NMR and XAS. PMID:23269836

  2. Solid-state molecular organometallic chemistry. Single-crystal to single-crystal reactivity and catalysis with light hydrocarbon substrates.

    PubMed

    Chadwick, F Mark; McKay, Alasdair I; Martinez-Martinez, Antonio J; Rees, Nicholas H; Krämer, Tobias; Macgregor, Stuart A; Weller, Andrew S

    2017-08-01

    Single-crystal to single-crystal solid/gas reactivity and catalysis starting from the precursor sigma-alkane complex [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(η 2 η 2 -NBA)][BAr F 4 ] (NBA = norbornane; Ar F = 3,5-(CF 3 ) 2 C 6 H 3 ) is reported. By adding ethene, propene and 1-butene to this precursor in solid/gas reactions the resulting alkene complexes [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(alkene) x ][BAr F 4 ] are formed. The ethene ( x = 2) complex, [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(ethene) 2 ][BAr F 4 ]-Oct , has been characterized in the solid-state (single-crystal X-ray diffraction) and by solution and solid-state NMR spectroscopy. Rapid, low temperature recrystallization using solution methods results in a different crystalline modification, [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(ethene) 2 ][BAr F 4 ]-Hex , that has a hexagonal microporous structure ( P 6 3 22). The propene complex ( x = 1) [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(propene)][BAr F 4 ] is characterized as having a π-bound alkene with a supporting γ-agostic Rh···H 3 C interaction at low temperature by single-crystal X-ray diffraction, variable temperature solution and solid-state NMR spectroscopy, as well as periodic density functional theory (DFT) calculations. A fluxional process occurs in both the solid-state and solution that is proposed to proceed via a tautomeric allyl-hydride. Gas/solid catalytic isomerization of d 3 -propene, H 2 C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 CHCD 3 , using [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(η 2 η 2 -NBA)][BAr F 4 ] scrambles the D-label into all possible positions of the propene, as shown by isotopic perturbation of equilibrium measurements for the agostic interaction. Periodic DFT calculations show a low barrier to H/D exchange (10.9 kcal mol -1 , PBE-D3 level), and GIPAW chemical shift calculations guide the assignment of the experimental data. When synthesized using solution routes a bis-propene complex, [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(propene) 2 ][BAr F 4 ] , is formed. [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(butene)][BAr F 4 ] ( x = 1) is characterized as having 2-butene bound as the cis -isomer and a single Rh···H 3 C agostic interaction. In the solid-state two low-energy fluxional processes are proposed. The first is a simple libration of the 2-butene that exchanges the agostic interaction, and the second is a butene isomerization process that proceeds via an allyl-hydride intermediate with a low computed barrier of 14.5 kcal mol -1 . [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(η 2 η 2 -NBA)][BAr F 4 ] and the polymorphs of [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(ethene) 2 ][BAr F 4 ] are shown to be effective in solid-state molecular organometallic catalysis (SMOM-Cat) for the isomerization of 1-butene to a mixture of cis - and trans -2-butene at 298 K and 1 atm, and studies suggest that catalysis is likely dominated by surface-active species. [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(η 2 η 2 -NBA)][BAr F 4 ] is also shown to catalyze the transfer dehydrogenation of butane to 2-butene at 298 K using ethene as the sacrificial acceptor.

  3. Isolation of a novel promoter for efficient protein expression by Aspergillus oryzae in solid-state culture.

    PubMed

    Bando, Hiroki; Hisada, Hiromoto; Ishida, Hiroki; Hata, Yoji; Katakura, Yoshio; Kondo, Akihiko

    2011-11-01

    A novel promoter from a hemolysin-like protein encoding the gene, hlyA, was characterized for protein overexpression in Aspergillus oryzae grown in solid-state culture. Using endo-1,4-β-glucanase from A. oryzae (CelA) as the reporter, promoter activity was found to be higher than that of the α-amylase (amyA) and manganese superoxide dismutase (sodM) genes not only in wheat bran solid-state culture but also in liquid culture. Expression of the A. oryzae endoglucanase CelB and two heterologous endoglucanases (TrEglI and TrEglIII from Trichoderma reesei) under the control of the hlyA promoter were also found to be stronger than under the control of the amyA promoter in A. oryzae grown in wheat bran solid-state culture, suggesting that the hlyA promoter may be useful for the overproduction of other proteins as well. In wheat bran solid-state culture, the productivity of the hlyA promoter in terms of protein produced was high when the cultivation temperature was 30°C or 37°C, when the water content was 0.6 or 0.8 ml/g wheat bran, and from 48 to 72 h after inoculation. Because A. oryzae sporulated actively under these conditions and because hemolysin has been reported to play a role in fungal fruiting body formation, high-level expression of hlyA may be related to sporulation.

  4. Tunable recognition of the steroid α-face by adjacent π-electron density

    PubMed Central

    Friščić, T.; Lancaster, R. W.; Fábián, L.; Karamertzanis, P. G.

    2010-01-01

    We report a previously unknown recognition motif between the α-face of the steroid hydrocarbon backbone and π-electron-rich aromatic substrates. Our study is based on a systematic and comparative analysis of the solid-state complexation of four steroids with 24 aromatic molecules. By using the solid state as a medium for complexation, we circumvent solubility and solvent competition problems that are inherent to the liquid phase. Characterization is performed using powder and single crystal X-ray diffraction, infrared solid-state spectroscopy and is complemented by a comprehensive cocrystal structure prediction methodology that surpasses earlier computational approaches in terms of realism and complexity. Our combined experimental and theoretical approach reveals that the α⋯π stacking is of electrostatic origin and is highly dependent on the steroid backbone’s unsaturated and conjugated character. We demonstrate that the α⋯π stacking interaction can drive the assembly of molecules, in particular progesterone, into solid-state complexes without the need for additional strong interactions. It results in a marked difference in the solid-state complexation propensities of different steroids with aromatic molecules, suggesting a strong dependence of the steroid-binding affinity and even physicochemical properties on the steroid’s A-ring structure. Hence, the hydrocarbon part of the steroid is a potentially important variable in structure-activity relationships for establishing the binding and signaling properties of steroids, and in the manufacture of pharmaceutical cocrystals. PMID:20624985

  5. Preparation of resveratrol-loaded nanoporous silica materials with different structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popova, Margarita, E-mail: mpopova@orgchem.bas.bg; Szegedi, Agnes; Mavrodinova, Vesselina

    2014-11-15

    Solid, nanoporous silica-based spherical mesoporous MCM-41 and KIL-2 with interparticle mesoporosity as well as nanosized zeolite BEA materials differing in morphology and pore size distribution, were used as carriers for the preparation of resveratrol-loaded delivery systems. Two preparation methods have been applied: (i) loading by mixing of resveratrol and mesoporous carrier in solid state and (ii) deposition in ethanol solution. The parent and the resveratrol loaded carriers were characterized by XRD, TEM, N2 physisorption, thermal analysis, and FT-IR spectroscopy. The influence of the support structure on the adsorption capacity and the release kinetics of this poorly soluble compound were investigated.more » Our results indicated that the chosen nanoporous silica supports are suitable for stabilization of trans-resveratrol and reveal controlled release and ability to protect the supported compound against degradation regardless of loading method. The solid-state dry mixing appears very effective for preparation of drug formulations composed of poorly soluble compound. - Graphical abstract: trans-Resveratrol was stabilized in the pores of BEA zeolite, MCM-41and KIL2 mesoporous silicas. - Highlights: • BEA, KIL-2 and MCM-41 materials were used as carriers for resveratrol loading. • Resveratrol encapsulation in ethanol solution and solid state procedure were applied. • The solid-state preparation appears very effective for stabilization of trans-resveratrol.« less

  6. Neutral and cationic phosphoramide adducts of silicon tetrachloride: synthesis and characterization of their solution and solid-state structures.

    PubMed

    Denmark, Scott E; Eklov, Brian M

    2008-01-01

    The solution and solid-state structures of hexamethylphosphoramide (HMPA) adducts of tetrachlorosilane (SiCl4) are discussed. In solution, the meridional and facial isomers of the hexa-coordinate cationic complex 3 HMPASiCl3 + Cl(-) (2) predominate at all HMPA concentrations, and are in equilibrium with the hexa-coordinate neutral trans- and cis-2 HMPASiCl4 complexes (1), as well as the penta-coordinate cationic cis-2 HMPASiCl3 + Cl(-) (3). Single crystal X-ray analyses are reported for the ionized mer-3 HMPASiCl3 + HCl2 (-) and the neutral trans-2 HMPASiCl4 complexes.

  7. Solid-State Lighting: Early Lessons Learned on the Way to Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandahl, Linda J.; Cort, Katherine A.; Gordon, Kelly L.

    2013-12-31

    The purpose of this report is to document early challenges and lessons learned in the solid-state lighting (SSL) market development as part of the DOE’s SSL Program efforts to continually evaluate market progress in this area. This report summarizes early actions taken by DOE and others to avoid potential problems anticipated based on lessons learned from the market introduction of compact fluorescent lamps and identifies issues, challenges, and new lessons that have been learned in the early stages of the SSL market introduction. This study identifies and characterizes12 key lessons that have been distilled from DOE SSL program results.

  8. Zero-field optical magnetic resonance study of phosphorus donors in 28-silicon

    NASA Astrophysics Data System (ADS)

    Morse, Kevin J.; Dluhy, Phillip; Huber, Julian; Salvail, Jeff Z.; Saeedi, Kamyar; Riemann, Helge; Abrosimov, Nikolay V.; Becker, Peter; Pohl, Hans-Joachim; Simmons, S.; Thewalt, M. L. W.

    2018-03-01

    Donor spins in silicon are some of the most promising qubits for upcoming solid-state quantum technologies. The nuclear spins of phosphorus donors in enriched silicon have among the longest coherence times of any solid-state system as well as simultaneous high fidelity qubit initialization, manipulation, and readout. Here we characterize the phosphorus in silicon system in the regime of "zero" magnetic field, where a singlet-triplet spin clock transition can be accessed, using laser spectroscopy and magnetic resonance methods. We show the system can be optically hyperpolarized and has ˜10 s Hahn echo coherence times, even for applied static magnetic fields below Earth's field.

  9. Stability behaviour of antiretroviral drugs and their combinations. 5: Characterization of novel degradation products of abacavir sulfate by mass and nuclear magnetic resonance spectrometry.

    PubMed

    Kurmi, Moolchand; Sahu, Archana; Singh, Saranjit

    2017-02-05

    In the present study, degradation behaviour of abacavir sulfate was evaluated in solution and solid stress conditions. Solution state studies resulted in formation of eleven degradation products; of which two were also formed on solid stress. The same were separated by high performance liquid chromatography. They were characterized using liquid chromatography-high resolution mass spectrometry, liquid chromatography-multistage mass spectrometry and hydrogen/deuterium exchange mass spectrometry data. Additionally, seven degradation products were isolated and subjected to 1D and 2D nuclear magnetic resonance studies for their structural confirmation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Chemical obtaining of LiMO2 and LiM2O4 (M=Co, Mn) oxides, for cathodic applications in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Y Neira-Guio, A.; Gómez Cuaspud, J. A.; López, E. Vera; Pineda Triana, Y.

    2017-12-01

    This paper describes the synthesis and characterization of two spinel and olivine-type multicomponent oxides based on LiMO2 and LiM2O4 systems (M=Co and Mn), which represent the current state of the art in the development of cathodes for Li-ion batteries. A simple combustion synthesis process was employed to obtain the nanometric oxides in powder form (crystal sizes around 5-8nm), with a number of improved surface characteristics. The characterization by X-Ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (SEM, TEM) and X-Ray Fluorescence (XRF), allowed to evaluate the morphology and the stoichiometric compositions of solids, obtaining a concordant pure crystalline phase of LiCoO2 and LiMn2O4 oxides identified in a rhombohedral and cubic phase with punctual group R-3m (1 6 6) and Fm-3m (2 2 5) respectively. The electrical characterization of materials developed by impedance spectroscopy solid state, allowed to determine a p-type semiconducting behaviour with conductivity values of 6.2×10-3 and 2.7×10-7 S for LiCoO2 and LiMn2O4 systems, consistent with the state of the art for such materials.

  11. Preparation of amorphous solid dispersions by rotary evaporation and KinetiSol Dispersing: approaches to enhance solubility of a poorly water-soluble gum extract.

    PubMed

    Bennett, Ryan C; Brough, Chris; Miller, Dave A; O'Donnell, Kevin P; Keen, Justin M; Hughey, Justin R; Williams, Robert O; McGinity, James W

    2015-03-01

    Acetyl-11-keto-β-boswellic acid (AKBA), a gum resin extract, possesses poor water-solubility that limits bioavailability and a high melting point making it difficult to successfully process into solid dispersions by fusion methods. The purpose of this study was to investigate solvent and thermal processing techniques for the preparation of amorphous solid dispersions (ASDs) exhibiting enhanced solubility, dissolution rates and bioavailability. Solid dispersions were successfully produced by rotary evaporation (RE) and KinetiSol® Dispersing (KSD). Solid state and chemical characterization revealed that ASD with good potency and purity were produced by both RE and KSD. Results of the RE studies demonstrated that AQOAT®-LF, AQOAT®-MF, Eudragit® L100-55 and Soluplus with the incorporation of dioctyl sulfosuccinate sodium provided substantial solubility enhancement. Non-sink dissolution analysis showed enhanced dissolution properties for KSD-processed solid dispersions in comparison to RE-processed solid dispersions. Variances in release performance were identified when different particle size fractions of KSD samples were analyzed. Selected RE samples varying in particle surface morphologies were placed under storage and exhibited crystalline growth following solid-state stability analysis at 12 months in comparison to stored KSD samples confirming amorphous instability for RE products. In vivo analysis of KSD-processed solid dispersions revealed significantly enhanced AKBA absorption in comparison to the neat, active substance.

  12. Synthesis, characterization and solid state electrical properties of 1-D coordination polymer of the type [CuxNi1-x(dadb)·yH2O]n

    NASA Astrophysics Data System (ADS)

    Prasad, R. L.; Kushwaha, A.; Shrivastava, O. N.

    2012-12-01

    New heterobimetallic complexes [CuxNi1-x(dadb)·yH2O]n {where dadb=2,5-Diamino-3,6-dichloro-1,4-benzoquinone (1); x=1 (2), 0.5 (4), 0.25 (5), 0.125 (6), 0.0625 (7) and 0 (3); y=2; n=degree of polymerization} were synthesized and characterized. Heterobimetallic complexes show normal magnetic moments, whereas, monometallic complexes exhibit magnetic moments less than the value due to spin only. Thermo-gravimetric analysis shows that degradation of the ligand dadb moiety is being controlled by the electronic environment of the Cu(II) ions in preference over Ni(II) in heterobimetallic complexes. Existence of the mixed valency/non-integral oxidation states of copper and nickel metal ions in the complex 4 has been attributed from magnetic moment and ESR spectral results. Solid state dc electrical conductivity of all the complexes was investigated. Monometallic complexes were found to be semiconductors, whereas heterobimetallic coordination polymer 4 was found to exhibit metallic behaviour. Existence of mixed valency/ non-integral oxidation state of metal ions seems to be responsible for the metallic behaviour.

  13. Synthesis, vapor growth, polymerization, and characterization of thin films of novel diacetylene derivatives of pyrrole. The use of computer modeling to predict chemical and optical properties of these diacetylenes and poly(diacetylenes)

    NASA Technical Reports Server (NTRS)

    Paley, M. S.; Frazier, D. O.; Abeledeyem, H.; Mcmanus, S. P.; Zutaut, S. E.

    1992-01-01

    In the present work two diacetylene derivatives of pyrrole which are predicted by semiempirical AM1 calculations to have very different properties, are synthesized; the polymerizability of these diacetylenes in the solid state is determined, and the results are compared to the computer predictions. Diacetylene 1 is novel in that the monomer is a liquid at room temperature; this may allow for the possibility of polymerization in the liquid state as well as the solid state. Thin poly(diacetylene) films are obtained from compound 1 by growing films of the monomer using vapor deposition and polymerizing with UV light; these films are then characterized. Interestingly, while the poly(diacetylene) from 1 does not possess good nonlinear optical properties, the monomer exhibits very good third-order effects (phase conjugation) in solution. Dilute acetone solutions of the monomer 1 give intensity-dependent refractive indices on the order of 10 exp -6 esu; these are 10 exp 6 times better than for CS2.

  14. Enhanced oral bioavailability of vinpocetine through mechanochemical salt formation: physico-chemical characterization and in vivo studies.

    PubMed

    Hasa, Dritan; Voinovich, Dario; Perissutti, Beatrice; Grassi, Mario; Bonifacio, Alois; Sergo, Valter; Cepek, Cinzia; Chierotti, Michele R; Gobetto, Roberto; Dall'Acqua, Stefano; Invernizzi, Sergio

    2011-08-01

    Enhancing oral bioavailability of vinpocetine by forming its amorphous citrate salt through a solvent-free mechanochemical process, in presence of micronised crospovidone and citric acid. The impact of formulation and process variables (amount of polymer and citric acid, and milling time) on vinpocetine solubilization kinetics from the coground was studied through an experimental design. The best performing samples were characterized by employing a multidisciplinary approach, involving Differential scanning calorimetry, X-ray diffraction, Raman imaging/spectroscopy, X-ray photoelectron spectroscopy, solid-state NMR spectroscopy, porosimetry and in vivo studies on rats to ascertain the salt formation, their solid-state characteristics and oral bioavailability in comparison to vinpocetine citrate salt (Oxopocetine(®)). The analyses attested that the mechanochemical process is a viable way to produce in absence of solvents vinpocetine citrate salt in an amorphous state. From the in vivo studies on rats the obtained salt was four times more bioavailable than its physical mixture and bioequivalent to the commercial salt produced by conventional synthetic process implying the use of solvent.

  15. Solid-state evaluation and polymorphic quantification of venlafaxine hydrochloride raw materials using the Rietveld method.

    PubMed

    Bernardi, Larissa S; Ferreira, Fábio F; Cuffini, Silvia L; Campos, Carlos E M; Monti, Gustavo A; Kuminek, Gislaine; Oliveira, Paulo R; Cardoso, Simone G

    2013-12-15

    Venlafaxine hydrochloride (VEN) is an antidepressant drug widely used for the treatment of depression. The purpose of this study was to carry out the preparation and solid state characterization of the pure polymorphs (Forms 1 and 2) and the polymorphic identification and quantification of four commercially-available VEN raw materials. These two polymorphic forms were obtained from different crystallization methods and characterized by X-ray Powder Diffraction (XRPD), Diffuse Reflectance Infrared Fourier Transform (DRIFT), Raman Spectroscopy (RS), liquid and solid state Nuclear Magnetic Resonance (NMR and ssNMR) spectroscopies, Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM) techniques. The main differences were observed by DSC and XRPD and the latter was chosen as the standard technique for the identification and quantification studies in combination with the Rietveld method for the commercial raw materials (VEN1-VEN4) acquired from different manufacturers. Additionally Form 1 and Form 2 can be clearly distinguished from their (13)C ssNMR spectra. Through the analysis, it was possible to conclude that VEN1 and VEN2 were composed only of Form 1, while VEN3 and VEN4 were a mixture of Forms 1 and 2. Additionally, the Rietveld refinement was successfully applied to quantify the polymorphic ratio for VEN3 and VEN4. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Solution and Solid State Nuclear Magnetic Resonance Spectroscopic Characterization of Efavirenz.

    PubMed

    Sousa, Eduardo Gomes Rodrigues de; Carvalho, Erika Martins de; San Gil, Rosane Aguiar da Silva; Santos, Tereza Cristina Dos; Borré, Leandro Bandeira; Santos-Filho, Osvaldo Andrade; Ellena, Javier

    2016-09-01

    Samples of efavirenz (EFZ) were evaluated to investigate the influence of the micronization process on EFZ stability. A combination of X-ray diffraction, thermal analysis, FTIR, observations of isotropic chemical shifts of (1)H in distinct solvents, their temperature dependence and spin-lattice relaxation time constants (T1), solution (1D and 2D) (13)C nuclear magnetic resonance (NMR), and solid-state (13)C NMR (CPMAS NMR) provides valuable structural information and structural elucidation of micronized EFZ and heptane-recrystallized polymorphs (EFZ/HEPT). This study revealed that the micronization process did not affect the EFZ crystalline structure. It was observed that the structure of EFZ/HEPT is in the same form as that obtained from ethyl acetate/hexane, as shown in the literature. A comparison of the solid-state NMR spectra revealed discrepancies regarding the assignments of some carbons published in the literature that have been resolved. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Characterization of SrCo1.5Ti1.5Fe9O19 hexagonal ferrite synthesized by sol-gel combustion and solid state route

    NASA Astrophysics Data System (ADS)

    Vinaykumar, R.; Mazumder, R.; Bera, J.

    2017-05-01

    Co-Ti co-substituted SrM hexagonal ferrite (SrCo1.5Ti1.5Fe9O19) was synthesized by sol-gel combustion and solid state route. The effects of sources of TiO2 raw materials; titanium tetra-isopropoxide (TTIP) and titanyl nitrate (TN) on the phase formation behavior and properties of the ferrite were studied. The thermal decomposition behavior of the gel was studied using TG-DSC. The phase formation behavior of the ferrite was studied by using X-ray powder diffraction and FTIR analysis. Phase formation was comparatively easier in the TN-based sol-gel process. The morphology of powder and sintered ferrite was investigated using scanning electron microscope. Magnetic properties like magnetization, coercivity, permeability, tan δμ and dielectric properties were investigated. The ferrite synthesized by sol-gel based chemical route showed higher saturation magnetization, permeability and permittivity compared to the ferrite synthesized by solid state route.

  18. Development of an 83.2 MHz, 3.2 kW solid-state RF amplifier using Wilkinson power divider and combiner for a 10 MeV cyclotron

    NASA Astrophysics Data System (ADS)

    Song, Ho Seung; Ghergherehchi, Mitra; Oh, Seyoung; Chai, Jong Seo

    2017-03-01

    We design a stripline-type Wilkinson power divider and combiner for a 3.2 kW solid-state radio frequency (RF) amplifier module and optimize this setup. A Teflon-based printed circuit board is used in the power combiner to transmit high RF power efficiently in the limited space. The reflection coefficient (S11) and insertion loss (S21) related to impedance matching are characterized to determine the optimization process. The resulting two-way divider reflection coefficient and insertion loss were -48.00 dB and -3.22 dB, respectively. The two-way power combiner reflection coefficient and insertion loss were -20 dB and -3.3 dB, respectively. Moreover, the 3.2 kW solid-state RF power test results demonstrate that the proposed power divider and combiner exhibit a maximum efficiency value of 71.3% (combiner loss 5%) at 48 V supply voltage.

  19. Design and performance of a vacuum-bottle solid-state calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bracken, D.S.; Biddle, R.; Cech, R.

    1997-11-01

    EG and G Mound Applied Technologies calorimetry personnel have developed a small, thermos-bottle solid-state calorimeter, which is now undergoing performance testing at Los Alamos National Laboratory. The thermos-bottle solid-state calorimeter is an evaluation prototype for characterizing the heat output of small heat standards and other homogeneous heat sources. The current maximum sample size is 3.5 in. long with a diameter of 0.8 in. The overall size of the thermos bottle and thermoelectric cooling device is 9.25 in. high by 3.75 in. diameter and less than 3 lb. Coupling this unit with compact electronics and a laptop computer makes this calorimetermore » easily hand carried by a single individual. This compactness was achieved by servo controlling the reference temperature below room temperature and replacing the water bath used in conventional calorimeter design with the thermos-bottle insulator. Other design features will also be discussed. The performance of the calorimeter will be presented.« less

  20. Global distribution of particle phase state in atmospheric secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Shiraiwa, Manabu; Li, Ying; Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Berkemeier, Thomas; Pandis, Spyros N.; Lelieveld, Jos; Koop, Thomas; Pöschl, Ulrich

    2017-04-01

    Secondary organic aerosols (SOA) are a large source of uncertainty in our current understanding of climate change and air pollution. The phase state of SOA is important for quantifying their effects on climate and air quality, but its global distribution is poorly characterized. We developed a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, and we used the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the phase state of atmospheric SOA. For the planetary boundary layer, global simulations indicate that SOA are mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes and solid over dry lands. We find that in the middle and upper troposphere SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded in SOA.

  1. Global distribution of particle phase state in atmospheric secondary organic aerosols.

    PubMed

    Shiraiwa, Manabu; Li, Ying; Tsimpidi, Alexandra P; Karydis, Vlassis A; Berkemeier, Thomas; Pandis, Spyros N; Lelieveld, Jos; Koop, Thomas; Pöschl, Ulrich

    2017-04-21

    Secondary organic aerosols (SOA) are a large source of uncertainty in our current understanding of climate change and air pollution. The phase state of SOA is important for quantifying their effects on climate and air quality, but its global distribution is poorly characterized. We developed a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, and we used the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the phase state of atmospheric SOA. For the planetary boundary layer, global simulations indicate that SOA are mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes and solid over dry lands. We find that in the middle and upper troposphere SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded in SOA.

  2. Global distribution of particle phase state in atmospheric secondary organic aerosols

    PubMed Central

    Shiraiwa, Manabu; Li, Ying; Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Berkemeier, Thomas; Pandis, Spyros N.; Lelieveld, Jos; Koop, Thomas; Pöschl, Ulrich

    2017-01-01

    Secondary organic aerosols (SOA) are a large source of uncertainty in our current understanding of climate change and air pollution. The phase state of SOA is important for quantifying their effects on climate and air quality, but its global distribution is poorly characterized. We developed a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, and we used the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the phase state of atmospheric SOA. For the planetary boundary layer, global simulations indicate that SOA are mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes and solid over dry lands. We find that in the middle and upper troposphere SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants and organic molecules could kinetically limit gas–particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded in SOA. PMID:28429776

  3. Beyond the Compositional Threshold of Nanoparticle-Based Materials.

    PubMed

    Portehault, David; Delacroix, Simon; Gouget, Guillaume; Grosjean, Rémi; Chan-Chang, Tsou-Hsi-Camille

    2018-04-17

    The design of inorganic nanoparticles relies strongly on the knowledge from solid-state chemistry not only for characterization techniques, but also and primarily for choosing the systems that will yield the desired properties. The range of inorganic solids reported and studied as nanoparticles is however strikingly narrow when compared to the solid-state chemistry portfolio of bulk materials. Efforts to enlarge the collection of inorganic particles are becoming increasingly important for three reasons. First, they can yield materials more performing than current ones for a range of fields including biomedicine, optics, catalysis, and energy. Second, looking outside the box of common compositions is a way to target original properties or to discover genuinely new behaviors. The third reason lies in the path followed to reach these novel nano-objects: exploration and setup of new synthetic approaches. Indeed, willingness to access original nanoparticles faces a synthetic challenge: how to reach nanoparticles of solids that originally belong to the realm of solid-state chemistry and its typical protocols at high temperature? To answer this question, alternative reaction pathways must be sought, which may in turn provide tracks for new, untargeted materials. The corresponding strategies require limiting particle growth by confinement at high temperatures or by decreasing the synthesis temperature. Both approaches, especially the latter, provide a nice playground to discover metastable solids never reported before. The aim of this Account is to raise attention to the topic of the design of new inorganic nanoparticles. To do so, we take the perspective of our own work in the field, by first describing synthetic challenges and how they are addressed by current protocols. We then use our achievements to highlight the possibilities offered by new nanomaterials and to introduce synthetic approaches that are not in the focus of recent literature but hold, in our opinion, great promise. We will span methods of low temperature "chimie douce" aqueous synthesis coupled to microwave heating, sol-gel chemistry and processing coupled to solid state reactions, and then molten salt synthesis. These protocols pave the way to metastable low valence oxyhydroxides, vanadates, perovskite oxides, boron carbon nitrides, and metal borides, all obtained at the nanoscale with structural and morphological features differing from "usual" nanomaterials. These nano-objects show original properties, from sensing, thermoelectricity, charge and spin transports, photoluminescence, and catalysis, which require advanced characterization of surface states. We then identify future trends of synthetic methodologies that will merit further attention in this burgeoning field, by emphasizing the importance of unveiling reaction mechanisms and coupling experiments with modeling.

  4. Itraconazole solid dispersion prepared by a supercritical fluid technique: preparation, in vitro characterization, and bioavailability in beagle dogs.

    PubMed

    Yin, Xuezhi; Daintree, Linda Sharon; Ding, Sheng; Ledger, Daniel Mark; Wang, Bing; Zhao, Wenwen; Qi, Jianping; Wu, Wei; Han, Jiansheng

    2015-01-01

    This research aimed to develop a supercritical fluid (SCF) technique for preparing a particulate form of itraconazole (ITZ) with good dissolution and bioavailability characteristics. The ITZ particulate solid dispersion was formulated with hydroxypropyl methylcellulose, Pluronic F-127, and L-ascorbic acid. Aggregated particles showed porous structure when examined by scanning electron microscopy. Powder X-ray diffraction and Fourier transform infrared spectra indicated an interaction between ITZ and excipients and showed that ITZ existed in an amorphous state in the composite solid dispersion particles. The solid dispersion obtained by the SCF process improved the dissolution of ITZ in media of pH 1.0, pH 4.5, and pH 6.8, compared with a commercial product (Sporanox(®)), which could be ascribed to the porous aggregated particle shape and amorphous solid state of ITZ. While the solid dispersion did not show a statistical improvement (P=0.50) in terms of oral bioavailability of ITZ compared with Sporanox(®), the C max (the maximum plasma concentration of ITZ in a pharmacokinetic curve) of ITZ was raised significantly (P=0.03) after oral administration. Thus, the SCF process has been shown to be an efficient, single step process to form ITZ-containing solid dispersion particles with good dissolution and oral bioavailability characteristics.

  5. COMPONENTS IDENTIFIED IN ENERGY-RELATED WASTES AND EFFLUENTS

    EPA Science Inventory

    A state-of-the-art review of the characterization of solid wastes and aqueous effluents generated by energy-related processes was conducted. The reliability of these data was evaluated according to preselected criteria or sample source, sampling and analytical methodology, and da...

  6. Investigation of the solid state properties of amoxicillin trihydrate and the effect of powder pH.

    PubMed

    Ghassempour, Alireza; Rafati, Hasan; Adlnasab, Laleh; Bashour, Yosef; Ebrahimzadeh, Homeira; Erfan, Mohammad

    2007-11-09

    The purpose of this research was to investigate some physicochemical and solid-state properties of amoxicillin trihydrate (AMT) with different powder pH within the pharmacopoeia-specified range. AMT batches prepared using Dane salt method with the pH values from 4.39 to 4.97 were subjected to further characterization studies. Optical and scanning electron microscopy showed that different batches of AMT powders were similar in crystal habit, but the length of the crystals increased as the pH increased. Further solid-state investigations using powder x-ray diffraction (PXRD) demonstrated the same PXRD pattern, but the intensity of the peaks raised by the powder pH, indicated increased crystallinity. Differential scanning calorimetry (DSC) studies further confirmed that as the powder pH increased, the crystallinity and, hence, thermal stability of AMT powders increased. Searching for the possible cause of the variations in the solid state properties, HPLC analysis showed that despite possessing the requirements of the United States Pharmacopoeia (USP) for purity/impurity profile, there was a direct relationship between the increase of the powder pH and the purity of AMT, and also decrease in the impurity I (alpha-Hydroxyphenylglycine) concentration in AMT powder. Recrystallization studies confirmed that the powder pH could be controlled by adjusting the pH of the crystallization.

  7. METAL OXIDE NANOPARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

    2007-10-01

    This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

  8. Molecular-level characterization of the structure and the surface chemistry of periodic mesoporous organosilicates using DNP-surface enhanced NMR spectroscopy.

    PubMed

    Grüning, Wolfram R; Rossini, Aaron J; Zagdoun, Alexandre; Gajan, David; Lesage, Anne; Emsley, Lyndon; Copéret, Christophe

    2013-08-28

    We present the molecular level characterization of a phenylpyridine-based periodic mesoporous organosilicate and its post-functionalized organometallic derivatives through the fast acquisition of high quality natural isotopic abundance 1D (13)C, (15)N, and (29)Si and 2D (1)H-(13)C and (1)H-(29)Si solid-state NMR spectra enhanced with dynamic nuclear polarization.

  9. Near-Ideal Xylene Selectivity in Adaptive Molecular Pillar[ n]arene Crystals.

    PubMed

    Jie, Kecheng; Liu, Ming; Zhou, Yujuan; Little, Marc A; Pulido, Angeles; Chong, Samantha Y; Stephenson, Andrew; Hughes, Ashlea R; Sakakibara, Fumiyasu; Ogoshi, Tomoki; Blanc, Frédéric; Day, Graeme M; Huang, Feihe; Cooper, Andrew I

    2018-06-06

    The energy-efficient separation of alkylaromatic compounds is a major industrial sustainability challenge. The use of selectively porous extended frameworks, such as zeolites or metal-organic frameworks, is one solution to this problem. Here, we studied a flexible molecular material, perethylated pillar[ n]arene crystals ( n = 5, 6), which can be used to separate C8 alkylaromatic compounds. Pillar[6]arene is shown to separate para-xylene from its structural isomers, meta-xylene and ortho-xylene, with 90% specificity in the solid state. Selectivity is an intrinsic property of the pillar[6]arene host, with the flexible pillar[6]arene cavities adapting during adsorption thus enabling preferential adsorption of para-xylene in the solid state. The flexibility of pillar[6]arene as a solid sorbent is rationalized using molecular conformer searches and crystal structure prediction (CSP) combined with comprehensive characterization by X-ray diffraction and 13 C solid-state NMR spectroscopy. The CSP study, which takes into account the structural variability of pillar[6]arene, breaks new ground in its own right and showcases the feasibility of applying CSP methods to understand and ultimately to predict the behavior of soft, adaptive molecular crystals.

  10. Fusion processing of itraconazole solid dispersions by kinetisol dispersing: a comparative study to hot melt extrusion.

    PubMed

    DiNunzio, James C; Brough, Chris; Miller, Dave A; Williams, Robert O; McGinity, James W

    2010-03-01

    KinetiSol Dispersing (KSD) is a novel high energy manufacturing process investigated here for the production of pharmaceutical solid dispersions. Solid dispersions of itraconazole (ITZ) and hypromellose were produced by KSD and compared to identical formulations produced by hot melt extrusion (HME). Materials were characterized for solid state properties by modulated differential scanning calorimetry and X-ray diffraction. Dissolution behavior was studied under supersaturated conditions. Oral bioavailability was determined using a Sprague-Dawley rat model. Results showed that KSD was able to produce amorphous solid dispersions in under 15 s while production by HME required over 300 s. Dispersions produced by KSD exhibited single phase solid state behavior indicated by a single glass transition temperature (T(g)) whereas compositions produced by HME exhibited two T(g)s. Increased dissolution rates for compositions manufactured by KSD were also observed compared to HME processed material. Near complete supersaturation was observed for solid dispersions produced by either manufacturing processes. Oral bioavailability from both processes showed enhanced AUC compared to crystalline ITZ. Based on the results presented from this study, KSD was shown to be a viable manufacturing process for the production of pharmaceutical solid dispersions, providing benefits over conventional techniques including: enhanced mixing for improved homogeneity and reduced processing times. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  11. Synthesis, characterization, and photophysical properties of a thiophene-functionalized bis(pyrazolyl) pyridine (BPP) tricarbonyl rhenium(I) complex.

    PubMed

    Lytwak, Lauren A; Stanley, Julie M; Mejía, Michelle L; Holliday, Bradley J

    2010-09-07

    A bromo tricarbonyl rhenium(I) complex with a thiophene-functionalized bis(pyrazolyl) pyridine ligand (L), ReBr(L)(CO)(3) (1), has been synthesized and characterized by variable temperature and COSY 2-D (1)H NMR spectroscopy, single-crystal X-ray diffraction, and photophysical methods. Complex 1 is highly luminescent in both solution and solid-state, consistent with phosphorescence from an emissive (3)MLCT excited state with an additional contribution from a LC (3)(pi-->pi*) transition. The single-crystal X-ray diffraction structure of the title ligand is also reported.

  12. Terahertz disorder-localized rotational modes and lattice vibrational modes in the orientationally-disordered and ordered phases of camphor.

    PubMed

    Nickel, Daniel V; Ruggiero, Michael T; Korter, Timothy M; Mittleman, Daniel M

    2015-03-14

    The temperature-dependent terahertz spectra of the partially-disordered and ordered phases of camphor (C10H16O) are measured using terahertz time-domain spectroscopy. In its partially-disordered phases, a low-intensity, extremely broad resonance is found and is characterized using both a phenomenological approach and an approach based on ab initio solid-state DFT simulations. These two descriptions are consistent and stem from the same molecular origin for the broad resonance: the disorder-localized rotational correlations of the camphor molecules. In its completely ordered phase(s), multiple lattice phonon modes are measured and are found to be consistent with those predicted using solid-state DFT simulations.

  13. New insights into the coordination chemistry of Schiff bases derived from amino acids: Planar [Ni4] complexes with tyrosine side-chains

    NASA Astrophysics Data System (ADS)

    Muche, Simon; Hołyńska, Małgorzata

    2017-08-01

    Structure and properties of a rare metal complex of the chiral Schiff base ligand derived from ortho-vanillin and L-tyrosine are presented. This study is a continuation of research on ligands containing biologically compatible moieties. The ligand is also fully characterized in form of a sodium salt, in particular in solution, for the first time. The metal complex contains a unique bowl-shaped [Ni4] core. Its structure is investigated both in solution (ESI-MS, NMR) and in solid state (X-ray diffraction studies). Under certain conditions the complex can be isolated as crystalline DMF solvate which is studied in solid state.

  14. Molecular Structure of Humin and Melanoidin via Solid State NMR

    PubMed Central

    Herzfeld, Judith; Rand, Danielle; Matsuki, Yoh; Daviso, Eugenio; Mak-Jurkauskas, Melody; Mamajanov, Irena

    2011-01-01

    Sugar-derived humins and melanoidins figure significantly in food chemistry, agricultural chemistry, biochemistry and prebiotic chemistry. Despite wide interest and significant experimental attention, the amorphous and insoluble nature of the polymers has made them resistant to conventional structural characterization. Here we make use of solid-state NMR methods, including selective 13C substitution, 1H-dephasing, and double quantum filtration. The spectra, and their interpretation, are simplified by relying exclusively on hydronium for catalysis. The results for polymers derived from ribose, deoxyribose and fructose indicate diverse pathways to furans, suggest a simple route to pyrroles in the presence of amines, and reveal a heterogenous network-type polymer in which sugar molecules cross-link the heterocycles. PMID:21456563

  15. Fabrication of high-k dielectric Calcium Copper Titanate (CCTO) target by solid state route

    NASA Astrophysics Data System (ADS)

    Tripathy, N.; Das, K. C.; Ghosh, S. P.; Bose, G.; Kar, J. P.

    2016-02-01

    CaCu3Ti4O12 (CCTO) ceramic pellet of 10mm diameter has been synthesized by adopting solid state route. The structural and morphological characterization of the ceramics sample was carried out by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. XRD pattern revealed the CCTO phase formation, where as SEM micrograph shows the sample consisting of well defined grain and grain boundaries. The room temperature dielectric constant of the sample was found to be ∼ 5000 at 1kHz. After successful preparation of CCTO pellet, a 2 inch diameter CCTO sputtering target is also fabricated in order to deposit CCTO thin films for microelectronic applications.

  16. Solid-state dewetting of magnetic binary multilayer thin films

    NASA Astrophysics Data System (ADS)

    Esterina, Ria; Liu, X. M.; Adeyeye, A. O.; Ross, C. A.; Choi, W. K.

    2015-10-01

    We examined solid-state dewetting behavior of magnetic multilayer thin film in both miscible (CoPd) and immiscible (CoAu) systems and found that CoPd and CoAu dewetting stages follow that of elemental materials. We established that CoPd alloy morphology and dewetting rate lie in between that of the elemental materials. Johnson-Mehl-Avrami analysis was utilized to extract the dewetting activation energy of CoPd. For CoAu, Au-rich particles and Co-rich particles are distinguishable and we are able to predict the interparticle spacings and particle densities for the particles that agree well with the experimental results. We also characterized the magnetic properties of CoPd and CoAu nanoparticles.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashe, Mary; Chwastyk, Dan; de Monasterio, Caroline

    The 2010 U.S. Lighting Market Characterization is the second report released by the U.S. Department of Energy’s Solid State Lighting Program that provides summary estimates of the installed stock, energy use, and lumen production of all lamps operating in the U.S, the first version being released in 2002.

  18. Solid state microdosimeter for radiation monitoring in spacecraft and avionics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, D.R.; McNulty, P.J.; Beauvais, W.J.

    1994-12-01

    An instrument is described which is designed to characterize the complex radiation environments inside spacecraft and airplanes in terms of the risk of SEEs in the present and planned microelectronic systems and in terms of the risk to flight crews and passengers.

  19. IDENTIFICATION OF COMPONENTS OF ENERGY-RELATED WASTES AND EFFLUENTS

    EPA Science Inventory

    A state-of-the-art review on the characterization of organic and elemental substances in energy-related liquid and solid effluents was conducted. Previous and on-going research programs and reports were reviewed to summarize the existing and probable future data on chemical eleme...

  20. Preparation of resveratrol-loaded nanoporous silica materials with different structures

    NASA Astrophysics Data System (ADS)

    Popova, Margarita; Szegedi, Agnes; Mavrodinova, Vesselina; Novak Tušar, Natasa; Mihály, Judith; Klébert, Szilvia; Benbassat, Niko; Yoncheva, Krassimira

    2014-11-01

    Solid, nanoporous silica-based spherical mesoporous MCM-41 and KIL-2 with interparticle mesoporosity as well as nanosized zeolite BEA materials differing in morphology and pore size distribution, were used as carriers for the preparation of resveratrol-loaded delivery systems. Two preparation methods have been applied: (i) loading by mixing of resveratrol and mesoporous carrier in solid state and (ii) deposition in ethanol solution. The parent and the resveratrol loaded carriers were characterized by XRD, TEM, N2 physisorption, thermal analysis, and FT-IR spectroscopy. The influence of the support structure on the adsorption capacity and the release kinetics of this poorly soluble compound were investigated. Our results indicated that the chosen nanoporous silica supports are suitable for stabilization of trans-resveratrol and reveal controlled release and ability to protect the supported compound against degradation regardless of loading method. The solid-state dry mixing appears very effective for preparation of drug formulations composed of poorly soluble compound.

  1. Fabrication and characterization of a solid state nanopore with self-aligned carbon nanoelectrodes for molecular detection

    NASA Astrophysics Data System (ADS)

    Spinney, Patrick; Collins, Scott D.; Howitt, David G.; Smith, Rosemary L.

    2012-06-01

    Rapid and cost-effective DNA sequencing is a pivotal prerequisite for the genomics era. Many of the recent advances in forensics, medicine, agriculture, taxonomy, and drug discovery have paralleled critical advances in DNA sequencing technology. Nanopore modalities for DNA sequencing have recently surfaced including the electrical interrogation of protein ion channels and/or solid-state nanopores during translocation of DNA. However to date, most of this work has met with mixed success. In this work, we present a unique nanofabrication strategy that realizes an artificial nanopore articulated with carbon electrodes to sense the current modulations during the transport of DNA through the nanopore. This embodiment overcomes most of the technical difficulties inherent in other artificial nanopore embodiments and present a versatile platform for the testing of DNA single nucleotide detection. Characterization of the device using gold nanoparticles, silica nanoparticles, lambda dsDNA and 16-mer ssDNA are presented. Although single molecule DNA sequencing is still not demonstrated, the device shows a path towards this goal.

  2. Solid-state NMR characterization of cross-linking in EPDM/PP blends from 1H-13C polarization transfer dynamics.

    PubMed

    Aluas, Mihaela; Filip, Claudiu

    2005-05-01

    A novel approach for solid-state NMR characterization of cross-linking in polymer blends from the analysis of (1)H-(13)C polarization transfer dynamics is introduced. It extends the model of residual dipolar couplings under permanent cross-linking, typically used to describe (1)H transverse relaxation techniques, by considering a more realistic distribution of the order parameter along a polymer chain in rubbers. Based on a systematic numerical analysis, the extended model was shown to accurately reproduce all the characteristic features of the cross-polarization curves measured on such materials. This is particularly important for investigating blends of great technological potential, like thermoplastic elastomers, where (13)C high-resolution techniques, such as CP-MAS, are indispensable to selectively investigate structural and dynamical properties of the desired component. The validity of the new approach was demonstrated using the example of the CP build-up curves measured on a well resolved EPDM resonance line in a series of EPDM/PP blends.

  3. Chemical and microscopic characterization of outer seed coats of fossil and extant water plants

    NASA Astrophysics Data System (ADS)

    van Bergen, P. F.; Goñi, M.; Collinson, M. E.; Barrie, P. J.; Damsté, J. S. Sinninghe; De Leeuw, J. W.

    1994-09-01

    Sclerotic outer seed coat layers (testae) of three fossil and two extant water plant species were analyzed using scanning electron and light microscopy in addition to Curie-point pyrolysis, solid state 13C NMR, and CuO oxidation. Comparison between the chemical results from the fossil and extant samples reveals that the original resistant constituents in the sclerotic testae are native lignin-celluloses which are transformed to polyphenol macromolecules recognized in the fossil samples. The combination of microscopic and chemical data provides new insights regarding the early diagenetic processes by which lignin-cellulose-containing plant remains may have been transformed. In particular, the unaltered morphology in combination with major chemical modifications is used as the basis to postulate the timing and nature of lignin transformations. The combination of pyrolysis, solid state 13C NMR, and CuO oxidation is shown to be a powerful tool to characterize the chemical structure of testae of fossil and extant water plants.

  4. A study of silver species on silver-exchanged ETS-10 and mordenite by XRD, SEM and solid-state 109Ag, 29Si and 27AI NMR spectroscopy.

    PubMed

    Liu, Yan; Chen, Fu; Wasylishen, Roderick E; Xu, Zhenghe; Sawada, James; Kuznicki, Steven M

    2012-08-01

    Silver zeolites, especially Ag-ETS-10 and Ag-mordenite, actively bind xenon and iodine, two prime contaminants common to nuclear accidents. The evolution of silver species on silver exchanged ETS-10 (Ag/ETS-10) and mordenite (Ag/Mor) has been investigated by exposing the materials to a series of activation conditions in Ar, air and H2. The samples were characterized by XRD, SEM and solid-state 109Ag, 29Si and 27AI MAS NMR. The silver reduction and structural evolution have been illustrated by those techniques. The effectiveness of one sample of each type of sieve was tested for its ability to trap mercury from a gas stream. However, the results from this study demonstrate that the adsorption characteristics of silver-loaded sieves cannot necessarily be predicted using a full complement of structural characterization techniques, which highlights the importance of understanding the formation and nature of silver species on molecular sieves.

  5. Flame Characterization Using a Tunable Solid-State Laser with Direct UV Pumping

    NASA Technical Reports Server (NTRS)

    Kamal, Mohammed M.; Dubinskii, Mark A.; Misra, Prabhakar

    1996-01-01

    Tunable solid-state lasers with direct UV pumping, based on d-f transitions of rare earth ions incorporated in wide band-gap dielectric crystals, are reliable sources of laser radiation that are suitable for excitation of combustion-related free radicals. We have employed such a laser for analytical flame characterization utilizing Laser-Induced Fluorescence (LIF) techniques. LIF spectra of alkane-air flames (used for studying combustion processes under normal and microgravity conditions) excited in the region of the A-X (0,0) OH-absorption band have been recorded and found to be both temperature-sensitive and positionally-sensitive. In addition, also clearly noticeable was the sensitivity of the spectra to the specific wavelength used for data registration. The LiCAF:Ce laser shows good prospects for being able to cover the spectral region between 280 and 340 nm and therefore be used excitation of combustion-intermediates such as the hydroxyl OH, methoxy CH30 and methylthio CH3S radicals.

  6. Expanding the Chemistry of Rhenium Metal–Metal Bonded Fluoro Complexes: Facile Preparation and Characterization of Paddlewheel Complexes

    DOE PAGES

    Balasekaran, Samundeeswari Mariappan; Sattelberger, Alfred P.; Hagenbach, Adelheid; ...

    2017-12-08

    Quadruply bonded rhenium(III) dimers with the stoichiometry Re 2L 4F 2 (1, L = hexahydro-2H-pyrimido[1,2a]pyrimidinate (hpp –); 2, L = diphenyl formamidinate (dpf –)) were prepared from the solid-state melt reactions (SSMRs) between (NH 4) 2[Re 2F 8]·2H 2O and HL. Then those compounds were characterized in the solid state by single-crystal X-ray diffraction and in solution by UV–visible spectroscopy and cyclic voltammetry. The compound [Re 2(hpp) 4F 2]PF 6 (3) was prepared from the one-electron oxidation of Re 2(hpp) 4F 2 with [Cp 2Fe]PF 6. Compounds 1–3 are isostructural with the corresponding chloro derivatives. In summation, compound 1 undergoesmore » two one-electron oxidations. Comparison with its higher halogen homologues reveals that Re 2(hpp) 4F 2 (1) is more easily oxidized than its chloro and bromo analogues.« less

  7. Production of phytase under solid-state fermentation using Rhizopus oryzae: novel strain improvement approach and studies on purification and characterization.

    PubMed

    Rani, Richa; Ghosh, Sanjoy

    2011-11-01

    Present study introduces linseed oil cake as a novel substrate for phytase production by Rhizopus oryzae. Statistical approach was employed to optimize various medium components under solid state fermentation (SSF). An overall 8.41-fold increase in phytase production was achieved at the optimum concentrations (w/w, mannitol, 2.05%; ammonium sulfate, 2.84% and phosphate, 0.38%). Further enhancement by 59% was observed due to a novel strain improvement approach. Purified phytase (∼34 kDa) showed optimal temperature of 45 °C, dual pH optima at 1.5 and 5.5 and possesses high catalytic efficiency (2.38×10(6) M(-1) s(-1)). Characterization study demonstrates the phytase as highly thermostable and resistant to proteolysis, heavy metal ions, etc. Furthermore, an improved HPLC method was introduced to confirm the ability of phytase to degrade phytic acid completely and was found to be an efficient method. Copyright © 2011. Published by Elsevier Ltd.

  8. Expanding the Chemistry of Rhenium Metal–Metal Bonded Fluoro Complexes: Facile Preparation and Characterization of Paddlewheel Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balasekaran, Samundeeswari Mariappan; Sattelberger, Alfred P.; Hagenbach, Adelheid

    Quadruply bonded rhenium(III) dimers with the stoichiometry Re 2L 4F 2 (1, L = hexahydro-2H-pyrimido[1,2a]pyrimidinate (hpp –); 2, L = diphenyl formamidinate (dpf –)) were prepared from the solid-state melt reactions (SSMRs) between (NH 4) 2[Re 2F 8]·2H 2O and HL. Then those compounds were characterized in the solid state by single-crystal X-ray diffraction and in solution by UV–visible spectroscopy and cyclic voltammetry. The compound [Re 2(hpp) 4F 2]PF 6 (3) was prepared from the one-electron oxidation of Re 2(hpp) 4F 2 with [Cp 2Fe]PF 6. Compounds 1–3 are isostructural with the corresponding chloro derivatives. In summation, compound 1 undergoesmore » two one-electron oxidations. Comparison with its higher halogen homologues reveals that Re 2(hpp) 4F 2 (1) is more easily oxidized than its chloro and bromo analogues.« less

  9. Global distribution of secondary organic aerosol particle phase state

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Li, Y., Sr.; Tsimpidi, A.; Karydis, V.; Berkemeier, T.; Pandis, S. N.; Lelieveld, J.; Koop, T.; Poeschl, U.

    2016-12-01

    Secondary organic aerosols (SOA) account for a large fraction of submicron particles in the atmosphere and play a key role in aerosol effects on climate, air quality and public health. The formation and aging of SOA proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of SOA evolution in atmospheric aerosol models. SOA particles can adopt liquid, semi-solid and amorphous solid (glassy) phase states depending on chemical composition, relative humidity and temperature. The particle phase state is crucial for various atmospheric gas-particle interactions, including SOA formation, heterogeneous and multiphase reactions and ice nucleation. We found that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. Based on the concept of molecular corridors, we develop a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, which is a key property for determination of particle phase state. We use the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the atmospheric SOA phase state. For the planetary boundary layer, global simulations indicate that SOA is mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes, and solid over dry lands. We find that in the middle and upper troposphere (>500 hPa) SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants, and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded within SOA.

  10. Platinum CCC-NHC benzimidazolyl pincer complexes: synthesis, characterization, photostability, and theoretical investigation of a blue-green emitter.

    PubMed

    Huckaba, Aron J; Cao, Bei; Hollis, T Keith; Valle, Henry U; Kelly, John T; Hammer, Nathan I; Oliver, Allen G; Webster, Charles Edwin

    2013-06-28

    The recently reported metallation/transmetallation route for the synthesis of CCC-bis(NHC) pincer ligand architectures was extended to 1,3-bis(3'-(trimethylsilylmethyl)-benzimidizol-1'-yl)benzene. The precursor was metallated with Zr(NMe2)4 and transmetallated to Pt using [Pt(COD)Cl2]. This Pt complex was found to resist photobleaching under UV irradiation in ambient conditions. Density functional theory (DFT) computations were used to generate the emission spectrum of the complex and reveal that this spectrum is the result of a transition from the triplet excited state (T1) to the ground state (S0). The Pt complex's molecular structure was determined by X-ray crystallography. The UV-vis absorption and emission spectra in solution and the solid-state emission spectra are reported. The solid-state photostability data and the radiative lifetime is also reported.

  11. integrating Solid State NMR and Computations in Membrane Protein Science

    NASA Astrophysics Data System (ADS)

    Cross, Timothy

    2015-03-01

    Helical membrane protein structures are influenced by their native environment. Therefore the characterization of their structure in an environment that models as closely as possible their native environment is critical for achieving not only structural but functional understanding of these proteins. Solid state NMR spectroscopy in liquid crystalline lipid bilayers provides an excellent tool for such characterizations. Two classes of restraints can be obtained - absolute restraints that constrain the structure to a laboratory frame of reference when using uniformly oriented samples (approximately 1° of mosaic spread) and relative restraints that restrain one part of the structure with respect to another part such as torsional and distance restraints. Here, I will discuss unique restraints derived from uniformly oriented samples and the characterization of initial structures utilizing both restraint types, followed by restrained molecular dynamics refinement in the same lipid bilayer environment as that used for the experimental restraint collection. Protein examples will be taken from Influenza virus and Mycobacterium tuberculosis. When available comparisons of structures to those obtained using different membrane mimetic environments will be shown and the causes for structural distortions explained based on an understanding of membrane biophysics and its sophisticated influence on membrane proteins.

  12. Synthesis and Characterization of Potassium Aryl- and Alkyl-Substituted Silylchalcogenolate Salts

    DOE PAGES

    Brown, Jessica Lynn; Montgomery, Ashley C.; Samaan, Christopher A.; ...

    2016-02-23

    Treatment of either triphenyl(chloro)silane or tert-butyldiphenyl(chloro)silane with potassium metal in THF, followed by addition of 18-crown-6, affords [K(18-crown-6)][SiPh 3] (1) and [K(18-crown-6)][SiPh 2 tBu] (2), respectively, as the reaction products in high yield. Compounds 1 and 2 were fully characterized including by multi-nuclear NMR and IR spectroscopies. Addition of elemental chalcogen to either 1 or 2, results in facile chalcogen insertion into the potassium-silicon bond to afford the silylchalcogenolates, [K(18-crown-6)][E– SiPh2R] (E = S, R = Ph (3); Se, R = Ph (4); E = Te, R = Ph (5); E = S, R = tBu (6); E = Se,more » R = tBu (7); E = Te, R = tBu (8)), in moderate to good yield. The silylchalcogenolates reported herein were characterized by multi-nuclear NMR and IR spectroscopies, and their solid-state molecular structures were determined by single-crystal X-ray crystallography. Importantly, the reported compounds crystallize as discrete monomers in the solid-state, a structural feature not previously observed in silylchalcogenolates, providing well-defined access routes into systematic metal complexation studies.« less

  13. Solid state lasers for use in non-contact temperature measurements

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.

    1989-01-01

    The last decade has seen a series of dramatic developments in solid state laser technology. Prominent among these has been the emergence of high power semiconductor laser diode arrays and a deepening understanding of the dynamics of solid state lasers. Taken in tandem these two developments enable the design of laser diode pumped solid state lasers. Pumping solid state lasers with semiconductor diodes relieves the need for cumbersome and inefficient flashlamps and results in an efficient and stable laser with the compactness and reliability. It provides a laser source that can be reliably used in space. These new coherent sources are incorporated into the non-contact measurement of temperature. The primary focus is the development and characterization of new optical materials for use in active remote sensors of the atmosphere. In the course of this effort several new materials and new concepts were studied which can be used for other sensor applications. The general approach to the problem of new non-contact temperature measurements has had two components. The first component centers on passive sensors using optical fibers; an optical fiber temperature sensor for the drop tube was designed and tested at the Marshall Space Flight Center. Work on this problem has given insight into the use of optical fibers, especially new IR fibers, in thermal metrology. The second component of the effort is to utilize the experience gained in the study of passive sensors to examine new active sensor concepts. By active sensor are defined as a sensing device or mechanism which is interrogated in some way be radiation, usually from a laser. The status of solid state lasers as sources for active non-contact temperature sensors are summarized. Some specific electro-optic techniques are described which are applicable to the sensor problems at hand. Work on some of these ideas is in progress while other concepts are still being worked out.

  14. Calcium-43 chemical shift tensors as probes of calcium binding environments. Insight into the structure of the vaterite CaCO3 polymorph by 43Ca solid-state NMR spectroscopy.

    PubMed

    Bryce, David L; Bultz, Elijah B; Aebi, Dominic

    2008-07-23

    Natural-abundance (43)Ca solid-state NMR spectroscopy at 21.1 T and gauge-including projector-augmented-wave (GIPAW) DFT calculations are developed as tools to provide insight into calcium binding environments, with special emphasis on the calcium chemical shift (CS) tensor. The first complete analysis of a (43)Ca solid-state NMR spectrum, including the relative orientation of the CS and electric field gradient (EFG) tensors, is reported for calcite. GIPAW calculations of the (43)Ca CS and EFG tensors for a series of small molecules are shown to reproduce experimental trends; for example, the trend in available solid-state chemical shifts is reproduced with a correlation coefficient of 0.983. The results strongly suggest the utility of the calcium CS tensor as a novel probe of calcium binding environments in a range of calcium-containing materials. For example, for three polymorphs of CaCO3 the CS tensor span ranges from 8 to 70 ppm and the symmetry around calcium is manifested differently in the CS tensor as compared with the EFG tensor. The advantages of characterizing the CS tensor are particularly evident in very high magnetic fields where the effect of calcium CS anisotropy is augmented in hertz while the effect of second-order quadrupolar broadening is often obscured for (43)Ca because of its small quadrupole moment. Finally, as an application of the combined experimental-theoretical approach, the solid-state structure of the vaterite polymorph of calcium carbonate is probed and we conclude that the hexagonal P6(3)/mmc space group provides a better representation of the structure than does the orthorhombic Pbnm space group, thereby demonstrating the utility of (43)Ca solid-state NMR as a complementary tool to X-ray crystallographic methods.

  15. Surface Structure and Photocatalytic Activity of Nano-TiO2 Thin Film

    EPA Science Inventory

    Controlled titanium dioxide (TiO2) thin films were deposited on stainless steel surfaces using flame aerosol synthetic technique, which is a one-step coating process, that doesn’t require further calcination. Solid state characterization of the coatings was conducted by different...

  16. Formulation of low solids coal water slurry from advanced coal cleaning waste fines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battista, J.J.; Morrison, J.L.; Lambert, A.

    1997-07-01

    GPU Genco, the New York State Electric and Gas Corporation (NYSEG), Penn State University and the Homer City Coal Processing Corporation are conducting characterization and formulation tests to determine the suitability of using minus 325 mesh coal waste fines as a low solids coal water slurry (CWS) co-firing fuel. The fine coal is contained in a centrifuge effluent stream at the recently modified Homer City Coal Preparation Plant. Recovering, thickening and then co-firing this material with pulverized coal is one means of alleviating a disposal problem and increasing the Btu recovery for the adjacent power plant. The project team ismore » currently proceeding with the design of a pilot scale system to formulate the effluent into a satisfactory co-firing fuel on a continuous basis for combustion testing at Seward Station. The ultimate goal is to burn the fuel at the pulverized coal units at the Homer City Generating Station. This paper presents the success to date of the slurry characterization and pilot scale design work. In addition, the paper will update GPU Genco`s current status for the low solids coal water slurry co-firing technology and will outline the company`s future plans for the technology.« less

  17. Electrically erasable non-volatile memory via electrochemical deposition of multifractal aggregates

    NASA Astrophysics Data System (ADS)

    West, William Clark

    An electrically erasable non-volatile memory system based on the electrochemical deposition of Ag or Cu from a solid electrolyte is presented. This memory system, referred to as Metal Dendrite Memory, is characterized by its simplicity of design and operation, low power consumption, and potentially high cell density. By applying a small DC voltage (2.5-5V) across a Cu or Ag doped As-S amorphous chalcogenide film sandwiched between two metal electrodes, a metal filament can be electrodeposited, shorting the large impedance solid electrolyte ("on" state). Application of smaller amplitude voltage pulses (1-1.5V) across the metal filament ruptures the short, returning the cell to the high impedance state ("off" state). The state of the cell is read by applying very small amplitude voltage pulses (0.25V). These "read" voltage pulses do not disturb the state of the cell even after 10sp7 pulses. Due to difficulties in characterizing this solid electrolyte system via conventional techniques, the MDM cells have been examined using low excitation characterization methods such as Impedance Spectroscopy (IS) and polarization measurements. These studies have yielded a self-consistent equivalent circuit model as well as parameters such as ionic diffusivity and conductivity, double layer and geometric capacitances. In addition to materials characterization, the speed at which the MDM cells operate has been systematically studied using a series of statistically designed experiments, demonstrating the importance of photodoping time and applied voltage on device speed. These results were further examined using IS and Rutherford Backscattering Spectrometry (RBS). The morphology of the growing electrodeposit was studied in several different electrode arrangements and excitation conditions. Under migrationally limited conditions, the electrodeposit grew in multifractal patterns, as measured using lacunarity analysis. If a conducting film was deposited parallel to the growth direction, the electrodeposition could be driven from Diffusion Limited Aggregation (DLA) to Densely Branched Morphology (DBM) modes by changing the voltage applied to the cell. In summary, this study has laid the groundwork for future research and development of MDM memory systems by identifying many important characteristics of the MDM cell. These findings include quantitative measurement of ionic transport values, identification of the electrochemical mechanisms involved in MDM data storage, determination of parameters that are statistically significant in affecting data storage speed, and determination of the effect of cell geometry and bias on electrodeposit morphology.

  18. Microwave Crystallization of Lithium Aluminum Germanium Phosphate Solid-State Electrolyte.

    PubMed

    Mahmoud, Morsi M; Cui, Yuantao; Rohde, Magnus; Ziebert, Carlos; Link, Guido; Seifert, Hans Juergen

    2016-06-23

    Lithium aluminum germanium phosphate (LAGP) glass-ceramics are considered as promising solid-state electrolytes for Li-ion batteries. LAGP glass was prepared via the regular conventional melt-quenching method. Thermal, chemical analyses and X-ray diffraction (XRD) were performed to characterize the prepared glass. The crystallization of the prepared LAGP glass was done using conventional heating and high frequency microwave (MW) processing. Thirty GHz microwave (MW) processing setup were used to convert the prepared LAGP glass into glass-ceramics and compared with the conventionally crystallized LAGP glass-ceramics that were heat-treated in an electric conventional furnace. The ionic conductivities of the LAGP samples obtained from the two different routes were measured using impedance spectroscopy. These samples were also characterized using XRD and scanning electron microscopy (SEM). Microwave processing was successfully used to crystallize LAGP glass into glass-ceramic without the aid of susceptors. The MW treated sample showed higher total, grains and grain boundary ionic conductivities values, lower activation energy and relatively larger-grained microstructure with less porosity compared to the corresponding conventionally treated sample at the same optimized heat-treatment conditions. The enhanced total, grains and grain boundary ionic conductivities values along with the reduced activation energy that were observed in the MW treated sample was considered as an experimental evidence for the existence of the microwave effect in LAGP crystallization process. MW processing is a promising candidate technology for the production of solid-state electrolytes for Li-ion battery.

  19. Revealing the fine details of functionalized silica surfaces by solid-state NMR and adsorption isotherm measurements: the case of fluorinated stationary phases for liquid chromatography.

    PubMed

    Ciogli, Alessia; Simone, Patrizia; Villani, Claudio; Gasparrini, Francesco; Laganà, Aldo; Capitani, Donatella; Marchetti, Nicola; Pasti, Luisa; Massi, Alessandro; Cavazzini, Alberto

    2014-06-23

    The structural and chromatographic characterization of two novel fluorinated mesoporous materials prepared by covalent reaction of 3-(pentafluorophenyl)propyldimethylchlorosilane and perfluorohexylethyltrichlorosilane with 2.5 μm fully porous silica particles is reported. The adsorbents were characterized by solid state (29)Si, (13)C, and (19)F NMR spectroscopy, low-temperature nitrogen adsorption, elemental analysis (C and F), and various chromatographic measurements, including the determination of adsorption isotherms. The structure and abundance of the different organic surface species, as well as the different silanol types, were determined. In particular, the degree of so-called horizontal polymerization, that is, Si-O-Si bridging parallel to the silica surface due to the reaction, under "quasi-dry" conditions, of trifunctional silanizing agents with the silica surface was quantified. Significant agreement was found between the information provided by solid-state NMR, elemental analysis, and excess isotherms regarding the amount of surface residual silanol groups, on the one hand, and the degree of surface functionalization, on the other. Finally, the kinetic performance of the fluorinated materials as separation media for applications in near-ultrahigh-performance liquid chromatography was evaluated. At reduced velocities of about 5.5 (ca. 600 bar backpressure at room temperature) with 3 mm diameter columns and toluene as test compound, reduced plate heights on the order of 2 were obtained on columns of both adsorbents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Morphology and conductivity study of solid electrolyte Li{sub 3}PO{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prayogi, Lugas Dwi, E-mail: ldprayodi@gmail.com; Faisal, Muhamad; Kartini, Evvy, E-mail: kartini@batan.go.id

    2016-02-08

    The comparison between two different methods of synthesize of solid electrolyte Li{sub 3}PO{sub 4} as precursor material for developing lithium ion battery, has been performed. The first method is to synthesize Li{sub 3}PO{sub 4} prepared by wet chemical reaction from LiOH and H{sub 3}PO{sub 4} which provide facile, abundant available resource, low cost, and low toxicity. The second method is solid state reaction prepared by Li{sub 2}CO{sub 3} and NH{sub 4}H{sub 2}PO{sub 4.} In addition, the possible morphology identification of comparison between two different methods will also be discussed. The composition, morphology, and additional identification phase and another compound ofmore » Li{sub 3}PO{sub 4} powder products from two different reaction are characterized by SEM, EDS, and EIS. The Li{sub 3}PO{sub 4} powder produced from wet reaction and solid state reaction have an average diameter of 0.834 – 7.81 µm and 2.15 – 17.3 µm, respectively. The density of Li{sub 3}PO{sub 4} prepared by wet chemical reaction is 2.238 gr/cm{sup 3}, little bit lower than the sample prepared by solid state reaction which density is 2.3560 gr/cm{sup 3}. The EIS measurement result shows that the conductivity of Li{sub 3}PO{sub 4} is 1.7 x 10{sup −9} S.cm{sup −1} for wet chemical reaction and 1.8 x 10{sup −10} S.cm{sup −1} for solid state reaction. The conductivity of Li{sub 3}PO{sub 4} is not quite different between those two samples even though they were prepared by different method of synthesize.« less

  1. Snapshots of a solid-state transformation: coexistence of three phases trapped in one crystal

    DOE PAGES

    Aromí, G.; Beavers, C. M.; Sánchez Costa, J.; ...

    2016-01-05

    Crystal-to-crystal transformations have been crucial in the understanding of solid-state processes, since these may be studied in detail by means of single crystal X-ray diffraction (SCXRD) techniques. The description of the mechanisms and potential intermediates of those processes remains very challenging. In fact, solid-state transient states have rarely been observed, at least to a sufficient level of detail. We have investigated the process of guest extrusion from the non-porous molecular material [Fe(bpp)(H 2L)](ClO 4) 2·1.5C 3H 6O (bpp = 2,6-bis(pyrazol-3-yl)pyridine; H 2L = 2,6-bis(5-(2-methoxyphenyl)-pyrazol-3-yl)pyridine; C 3H 6O = acetone), which occurs through ordered diffusion of acetone in a crystal-to-crystal manner,more » leading to dramatic structural changes. The slow kinetics of the transition allows thermal trapping of the system at various intermediate stages. The transiting single crystal can be then examined at these points through synchrotron SCXRD, offering a window upon the mechanism of the transformation at the molecular scale. These experiments have unveiled the development of an ordered intermediate phase, distinct from the initial and the final states, coexisting as the process advances with either of these two phases or, at a certain moment with both of them. The new intermediate phase has been structurally characterized in full detail by SCXRD, providing insights into the mechanism of this diffusion triggered solid-state phenomenon. Lastly, the process has been also followed by calorimetry, optical microscopy, local Raman spectroscopy and powder X-ray diffraction. The discovery and description of an intermediate ordered state in a molecular solid-state transformation is of great interest and will help to understand the mechanistic details and reaction pathways underlying these transformations.« less

  2. Nano-sponge ionic liquid-polymer composite electrolytes for solid-state lithium power sources

    NASA Astrophysics Data System (ADS)

    Liao, Kang-Shyang; Sutto, Thomas E.; Andreoli, Enrico; Ajayan, Pulickel; McGrady, Karen A.; Curran, Seamus A.

    Solid polymer gel electrolytes composed of 75 wt.% of the ionic liquid, 1- n-butyl-2,3-dimethylimidazolium bis-trifluoromethanesulfonylimide with 1.0 M lithium bis-trifluoromethanesulfonylimide and 25 wt.% poly(vinylidenedifluoro-hexafluoropropene) are characterized as the electrolyte/separator in solid-state lithium batteries. The ionic conductivity of these gels ranges from 1.5 to 2.0 mS cm -1, which is several orders of magnitude more conductive than any of the more commonly used solid polymers, and comparable to the best solid gel electrolytes currently used in industry. TGA indicates that these polymer gel electrolytes are thermally stable to over 280 °C, and do not begin to thermally decompose until over 300 °C; exhibiting a significant advancement in the safety of lithium batteries. Atomic force microscopy images of these solid thin films indicate that these polymer gel electrolytes have the structure of nano-sponges, with a sub-micron pore size. For these thin film batteries, 150 charge-discharge cycles are run for Li xCoO 2 where x is cycled between 0.95 down to 0.55. Minimal internal resistance effects are observed over the charging cycles, indicating the high ionic conductivity of the ionic liquid solid polymer gel electrolyte. The overall cell efficiency is approximately 98%, and no significant loss in battery efficiency is observed over the 150 cycles.

  3. Development of a solid self-microemulsifying drug delivery system (SMEDDS) for solubility enhancement of naproxen.

    PubMed

    Čerpnjak, Katja; Zvonar, Alenka; Vrečer, Franc; Gašperlin, Mirjana

    2015-01-01

    Comparative evaluation of liquid and solid self-microemulsifying drug delivery systems (SMEDDS) as promising approaches for solubility enhancement. The aim of this work was to develop, characterize, and evaluate a solid SMEDDS prepared via spray-drying of a liquid SMEDDS based on Gelucire® 44/14 to improve the solubility and dissolution rate of naproxen. Various oils and co-surfactants in combination with Gelucire® 44/14 were evaluated during excipient selection study, solubility testing, and construction of (pseudo)ternary diagrams. The selected system was further evaluated for naproxen solubility, self-microemulsification ability, and in vitro dissolution of naproxen. In addition, its transformation into a solid SMEDDS by spray-drying using maltodextrin as a solid carrier was performed. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to evaluate the physical characteristics of the solid SMEDDS obtained. The selected formulation of SMEDDS was comprised of Miglyol 812®, Peceol™, Gelucire® 44/14, and Solutol® HS 15. The liquid and solid SMEDDS formed a microemulsion after dilution with comparable average droplet size and exhibited uniform droplet size distribution. In the solid SMEDDS, liquid SMEDDS was adsorbed onto the surface of maltodextrin and formed smooth granular particles with the encapsulated drug predominantly in a dissolved state and partially in an amorphous state. Overall, incorporation of naproxen in SMEDDS, either liquid or solid, resulted in improved solubility and dissolution rate compared to pure naproxen. This study indicates that a liquid and solid SMEDDS is a strategy for solubility enhancement in the future development of orally delivered dosage forms.

  4. Preparation and characterization of solid lipid nanoparticles-a review.

    PubMed

    Parhi, Rabinarayan; Suresh, Padilama

    2012-03-01

    In the present scenario, most of the developed and new discovered drugs are posing real challenge to the formulation scientists due to their poor aqueous solubility which in turn is responsible for poor bioavailability. One of the approach to overcome above problem is the packaging of the drug in to particulate carrier system. Among various carriers, lipid emerged as very attractive candidate because of its unique property of enhancing the bioavailability of poorly water soluble drugs. Solid lipid, one of the physical forms of lipid, is used to formulate nanoparticles, popularly known as Solid lipid nanoparticles (SLNs), as an alternative carrier system to emulsions, liposomes and polymeric micro- and nano-particles. SLNs combine advantages of the traditional systems but avoid some of their major disadvantages. This paper reviews numerous production techniques for SLNs along with their advantages and disadvantages. Special attention is paid to the characterization of the SLNs by using various analytical tools. It also emphasizes on physical state of lipid (supercooled melts, different lipid modifications).

  5. Ionic Borate-Based Covalent Organic Frameworks: Lightweight Porous Materials for Lithium-Stable Solid State Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Hayden T.; Harrison, Katharine Lee

    2016-10-01

    The synthesis and characterization of the first polyelectrolyte of intrinsic microporosity (PEIM) is described. The novel material was synthesized via reaction between the nitrile group in the polymer backbone and n-butyl lithium, effectively anchoring an imine anion to the porous framework while introducing a mobile lithium counterion. The PEIM was characterized by 13C, 1H, and 7Li NMR experiments, revealing quantitative conversion of the nitrile functionality to the anionic imine. Variable temperature 7Li NMR analysis of the dry PEIM and the electrolyteswollen PEIM revealed that lithium ion transport within the dry PEIM was largely due to interchain hopping of the Limore » + ions, and that the mobility of polymer associated Li + was reduced after swelling in electrolyte solution. Meanwhile, the swollen PEIM supported efficient transport of dissolved Li + within the expanded pores. These results are discussed in the context of developing novel solid or solid-like lithium ion electrolytes using the new PEIM material.« less

  6. Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na 3PSe 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Shou -Hang; Wang, Yan; Kim, Jae Chul

    All-solid-state Na-ion batteries that operate at or close to room temperature are a promising next-generation battery technology with enhanced safety and reduced manufacturing cost. An indispensable component of this technology is the solid-state electrolyte that allows rapid shuttling of the mobile cation (i.e., Na +) between the cathode and anode. However, there are very few fast Na-ion conductors with ionic conductivity approaching that of the liquid counterparts (i.e., 1 mS cm –1). In this work, we present the synthesis and characterization of a fast Na-ion conductor, cubic Na 3PSe 4. This material possesses a room-temperature ionic conductivity exceeding 0.1 mSmore » cm –1 and does not require high-temperature sintering to minimize grain boundary resistance, making it a promising solid-state electrolyte candidate for all-solid-state Na-ion battery applications. On the basis of density functional theory, nudged elastic band, and molecular dynamics investigations, we demonstrate that the framework of cubic Na 3PSe 4 only permits rapid Na + diffusion with the presence of defects, and that the formation of the Na vacancy (charge-balanced by slight Se 2– oxidation) is more energetically favorable among the various defects considered. This finding provides important guidelines to further improve Na-ion conductivity in this class of materials.« less

  7. Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na 3PSe 4

    DOE PAGES

    Bo, Shou -Hang; Wang, Yan; Kim, Jae Chul; ...

    2015-11-17

    All-solid-state Na-ion batteries that operate at or close to room temperature are a promising next-generation battery technology with enhanced safety and reduced manufacturing cost. An indispensable component of this technology is the solid-state electrolyte that allows rapid shuttling of the mobile cation (i.e., Na +) between the cathode and anode. However, there are very few fast Na-ion conductors with ionic conductivity approaching that of the liquid counterparts (i.e., 1 mS cm –1). In this work, we present the synthesis and characterization of a fast Na-ion conductor, cubic Na 3PSe 4. This material possesses a room-temperature ionic conductivity exceeding 0.1 mSmore » cm –1 and does not require high-temperature sintering to minimize grain boundary resistance, making it a promising solid-state electrolyte candidate for all-solid-state Na-ion battery applications. On the basis of density functional theory, nudged elastic band, and molecular dynamics investigations, we demonstrate that the framework of cubic Na 3PSe 4 only permits rapid Na + diffusion with the presence of defects, and that the formation of the Na vacancy (charge-balanced by slight Se 2– oxidation) is more energetically favorable among the various defects considered. This finding provides important guidelines to further improve Na-ion conductivity in this class of materials.« less

  8. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs.

    PubMed

    Vo, Chau Le-Ngoc; Park, Chulhun; Lee, Beom-Jin

    2013-11-01

    Over 40% of active pharmaceutical ingredients (API) in development pipelines are poorly water-soluble drugs which limit formulation approaches, clinical application and marketability because of their low dissolution and bioavailability. Solid dispersion has been considered one of the major advancements in overcoming these issues with several successfully marketed products. A number of key references that describe state-of-the-art technologies have been collected in this review, which addresses various pharmaceutical strategies and future visions for the solubilization of poorly water-soluble drugs according to the four generations of solid dispersions. This article reviews critical aspects and recent advances in formulation, preparation and characterization of solid dispersions as well as in-depth pharmaceutical solutions to overcome some problems and issues that limit the development and marketability of solid dispersion products. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Physical solid-state properties and dissolution of sustained-release matrices of polyvinylacetate.

    PubMed

    Gonzalez Novoa, Gelsys Ananay; Heinämäki, Jyrki; Mirza, Sabir; Antikainen, Osmo; Colarte, Antonio Iraizoz; Paz, Alberto Suzarte; Yliruusi, Jouko

    2005-02-01

    Solid-state compatibility and in vitro dissolution of direct-compressed sustained-release matrices of polyvinylacetate (PVAc) and polyvinylpyrrolidone (PVP) containing ibuprofen as a model drug were studied. Polyvinylalcohol (PVA) was used as an alternative water-soluble polymer to PVP. Differential scanning calorimetry (DSC) and powder X-ray diffractometry (PXRD) were used for characterizing solid-state polymer-polymer and drug-polymer interactions. The mechanical treatment for preparing physical mixtures of polyvinyl polymers and the drug (i.e. simple blending or stressed cogrinding) was shown not to affect the physical state of the drug and the polymers. With the drug-polymer mixtures the endothermic effect due to drug melting was always evident, but a considerable modification of the melting point of the drug in physical binary mixtures (drug:PVP) was observed, suggesting some interaction between the two. On the other hand, the lack of a significant shift of the melting endothermic peak of the drug in physical tertiary drug-polymer mixtures revealed no evidence of solid-state interaction between the drug and the present polymers. Sustained-release dissolution profiles were achieved from the direct-compressed matrices made from powder mixtures of the drug and PVAc combined with PVP, and the proportion of PVAc in the mixture clearly altered the drug release profiles in vitro. The drug release from the present matrix systems is controlled by both diffusion of the drug through the hydrate matrix and the erosion of the matrix itself.

  10. Statistical modeling, optimization and characterization of solid self-nanoemulsifying drug delivery system of lopinavir using design of experiment.

    PubMed

    Patel, Grishma; Shelat, Pragna; Lalwani, Anita

    2016-10-01

    Lopinavir (LPV), an antiretroviral protease inhibitor shows poor bioavailability because of poor aqueous solubility and extensive hepatic first-pass metabolism. The aim of the present work was to investigate the potential of the solid self-nanoemulsifying drug delivery system (S-SNEDDS) in improving dissolution rate and oral bioavailability of LPV. Liquid SNEDDS (L-SNEDDS) of LPV were prepared using Capmul MCM C8, Cremophor RH 40 and propylene glycol and their amounts were optimized by Scheffe's mixture design. L-SNEDDS formulations were evaluated for different physicochemical and in vitro drug release parameters. S-SNEDDS were prepared by adsorbing L-SNEDDS on Neusilin US2 and characterized for solid-state properties. In vivo bioavailability of S-SNEDDS, marketed Lopinavir + Ritonavir (LPV/RTV) formulation and pure LPV was studied in Wistar rats. Stability study of S-SNEDDS was performed as per ICH guidelines. Optimized L-SNEDDS obtained by Scheffe design had drug loading 160 ± 1.15 mg, globule size 32.9 ± 1.45 nm and drug release >95% within 15 min. Solid state studies suggested the transformation of the crystalline drug to amorphous drug. The size and zeta potential of globules obtained on dilution S-SNEDDS remained similar to L-SNEEDS. In vivo bioavailability study revealed that S-SNEDDS has 2.97 and 1.54-folds higher bioavailability than pure LPV and LPV/RTV formulation, respectively. The optimized S-SNEDDS was found to be stable and had a shelf life of 2.85 years. The significant increase in drug dissolution and bioavailability by prepared SNEDDS suggest that the developed S-SNEDDS is a useful solid platform for improving oral bioavailability of poorly soluble LPV.

  11. In situ analysis of capacity fade in thin-film anodes for high performance Li-ion all-solid-state batteries

    NASA Astrophysics Data System (ADS)

    Leite, Marina S.; Gong, Chen; Ruzmetov, Dmitry; Talin, A. Alec

    There is still a pressing need to understand how the solid-interfaces in Li-ion all-solid-batteries form, including their chemical composition and electrical characteristics. In order to resolve the origin of the degradation mechanism in Al anodes, we combine in situ scanning electron microscopy in ultra-high vacuum with electrochemical cycling, in addition to ex situ characterization of the morphological, chemical, and electrical changes of the Al anodes upon lithiation. An AlLi alloy capped by a stable Al-Li-O is formed on the top surface of the anode, trapping Li, which results in the capacity fade, from 48.0 to 41.5 μ.Ah/cm2 in two cycles. The addition of a Cu capping layer is insufficient to prevent the device degradation because of the fast Li diffusion within Al. Yet, Si present extremely stable cycling: >92% of capacity retention after 100 cycles, with average Coulombic efficiency of 98%. Our in situ measurements represent a new platform for probing the real-time degradation of electrodes in all-solid-state batteries for energy storage devices.

  12. MINERALOGY AND CHARACTERIZATION OF ARSENIC, IRON, AND LEAD IN A MINE WASTE-DERIVED FERTILIZER

    EPA Science Inventory

    The solid-state speciation of arsenic (As), iron (Fe), and lead (Pb) was studied in the mine waste-derived fertilizer Ironite using X-ray absorption spectroscopy, Mössbauer spectroscopy, and aging studies. Arsenic was primarily associated with ferrihydrite (60-70%) with the rema...

  13. High-power microwave bipolar transistor modeling

    NASA Astrophysics Data System (ADS)

    Asensio, Alberto; Perez, Felix

    1992-01-01

    This article introduces a model for high-power microwave bipolar transistors and its associated parameter-measuring strategy, whose inclusion of thermal phenomena in the dc characterization allows a good estimate of the device's thermal resistance to be obtained. This type of model provides important capabilities for solid-state radar transmitter design.

  14. Polymerization of euphorbia oil in carbon dioxide media

    USDA-ARS?s Scientific Manuscript database

    Boron trifluoride diethyl etherate (BF3•OEt2), Lewis acid, catalyzed ring-opening polymerization of euphorbia oil (EO), a natural epoxy oil, was conducted in carbon dioxide. The resulting polymers (RPEO) were characterized by FTIR, 1H-NMR, 13C-NMR, solid state 13C-NMR spectroscopies, differential sc...

  15. Chemical Modification of Kraft Lignin: Effect on Chemical and Thermal Properties

    Treesearch

    Yao Chen; Nicole M. Stark; Zhiyong Cai; Charles R. Frihart; Linda F. Lorenz; Rebecca E. Ibach

    2014-01-01

    Esterified kraft lignins (KL) were prepared by reaction with maleic anhydride (MA), succinic anhydride (SA), and phthalic anhydride (PA) in acetone solutions. The esterified lignins were characterized using ATR-FTIR, solid state CP-MAS 13C NMR spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). PA...

  16. Optimization of photoluminescence of GdAl3(BO3)4:Sm3+ phosphors for solid state lighting devices

    NASA Astrophysics Data System (ADS)

    Jamalaiah, Bungala Chinna

    2017-10-01

    The GdAl3(BO3)4:Sm3+ phosphors prepared by solid-state reaction method were characterized through thermal, structural and photoluminescence studies at room temperature only. The observed X-ray diffraction peaks were well consistent with JCPDS No. 83-1907. When excited with 406 nm wavelength, the studied phosphors exhibit orange-red luminescence through 4G5/2 → 6H5/2, 4G5/2 → 6H7/2 and 4G5/2 → 6H9/2 transitions. The concentration of Sm3+ ions was optimized to be 0.01 mol% for intense luminescence in GdAl3(BO3)4:Sm3+ phosphors. Beyond 0.01 mol% of Sm3+ ions concentration, luminescence quenching was observed due to energy transfer among the excited Sm3+ ions through cross-relaxation and dipole-dipole interaction mechanisms. The GdAl3(BO3)4:0.01 mol% Sm3+ phosphor was identified as a notable host material to emit intense orange-red luminescence for various solid state lighting devices under 406 nm excitation.

  17. Monitoring ssDNA Binding to the DnaB Helicase from Helicobacter pylori by Solid-State NMR Spectroscopy.

    PubMed

    Wiegand, Thomas; Cadalbert, Riccardo; Gardiennet, Carole; Timmins, Joanna; Terradot, Laurent; Böckmann, Anja; Meier, Beat H

    2016-11-02

    DnaB helicases are bacterial, ATP-driven enzymes that unwind double-stranded DNA during DNA replication. Herein, we study the sequential binding of the "non-hydrolysable" ATP analogue AMP-PNP and of single-stranded (ss) DNA to the dodecameric DnaB helicase from Helicobacter pylori using solid-state NMR. Phosphorus cross-polarization experiments monitor the binding of AMP-PNP and DNA to the helicase. 13 C chemical-shift perturbations (CSPs) are used to detect conformational changes in the protein upon binding. The helicase switches upon AMP-PNP addition into a conformation apt for ssDNA binding, and AMP-PNP is hydrolyzed and released upon binding of ssDNA. Our study sheds light on the conformational changes which are triggered by the interaction with AMP-PNP and are needed for ssDNA binding of H. pylori DnaB in vitro. They also demonstrate the level of detail solid-state NMR can provide for the characterization of protein-DNA interactions and the interplay with ATP or its analogues. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Organic Solid-State Tri-Wavelength Lasing from Holographic Polymer-Dispersed Liquid Crystal and a Distributed Feedback Laser with a Doped Laser Dye and a Semiconducting Polymer Film.

    PubMed

    Liu, Minghuan; Liu, Yonggang; Peng, Zenghui; Wang, Shaoxin; Wang, Qidong; Mu, Quanquan; Cao, Zhaoliang; Xuan, Li

    2017-05-07

    Organic solid-state tri-wavelength lasing was demonstrated from dye-doped holographic polymer-dispersed liquid crystal (HPDLC) distributed feedback (DFB) laser with semiconducting polymer poly[-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) and laser dye [4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran] (DCM) by a one-step holography technique, which centered at 605.5 nm, 611.9 nm, and 671.1 nm. The temperature-dependence tuning range for the tri-wavelength dye-doped HPDLC DFB laser was as high as 8 nm. The lasing emission from the 9th order HPDLC DFB laser with MEH-PPV as active medium was also investigated, which showed excellent s-polarization characterization. The diffraction order is 9th and 8th for the dual-wavelength lasing with DCM as the active medium. The results of this work provide a method for constructing the compact and cost-effective all solid-state smart laser systems, which may find application in scientific and applied research where multi-wavelength radiation is required.

  19. Solid state green synthesis and catalytic activity of CuO nanorods in thermal decomposition of potassium periodate

    NASA Astrophysics Data System (ADS)

    Patel, Vinay Kumar; Bhattacharya, Shantanu

    2017-09-01

    The present study reports a facile solid state green synthesis process using the leaf extracts of Hibiscus rosa-sinensis to synthesize CuO nanorods with average diameters of 15-20 nm and lengths up to 100 nm. The as-synthesized CuO nanorods were characterized by x-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and selected area electron diffraction. The formation mechanism of CuO nanorods has been explained by involving the individual role of amide I (amino groups) and carboxylate groups under excess hydroxyl ions released from NaOH. The catalytic activity of CuO nanorods in thermal decomposition of potassium periodate microparticles (µ-KIO4) microparticles was studied by thermo gravimetric analysis measurement. The original size (~100 µm) of commercially procured potassium periodate was reduced to microscale length scale to about one-tenth by PEG200 assisted emulsion process. The CuO nanorods prepared by solid state green route were found to catalyze the thermal decomposition of µ-KIO4 with a reduction of 18 °C in the final thermal decomposition temperature of potassium periodate.

  20. Solid-state molecular organometallic chemistry. Single-crystal to single-crystal reactivity and catalysis with light hydrocarbon substrates† †Electronic supplementary information (ESI) available: Full details of experimental details, spectroscopic and other analytical data, X-ray crystallography, catalytic conditions, and computational studies. CCDC 1539832–1539836. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc01491k

    PubMed Central

    Chadwick, F. Mark; McKay, Alasdair I.; Martinez-Martinez, Antonio J.; Rees, Nicholas H.; Krämer, Tobias

    2017-01-01

    Single-crystal to single-crystal solid/gas reactivity and catalysis starting from the precursor sigma-alkane complex [Rh(Cy2PCH2CH2PCy2)(η2η2-NBA)][BArF4] (NBA = norbornane; ArF = 3,5-(CF3)2C6H3) is reported. By adding ethene, propene and 1-butene to this precursor in solid/gas reactions the resulting alkene complexes [Rh(Cy2PCH2CH2PCy2)(alkene)x][BArF4] are formed. The ethene (x = 2) complex, [Rh(Cy2PCH2CH2PCy2)(ethene)2][BArF4]-Oct, has been characterized in the solid-state (single-crystal X-ray diffraction) and by solution and solid-state NMR spectroscopy. Rapid, low temperature recrystallization using solution methods results in a different crystalline modification, [Rh(Cy2PCH2CH2PCy2)(ethene)2][BArF4]-Hex, that has a hexagonal microporous structure (P6322). The propene complex (x = 1) [Rh(Cy2PCH2CH2PCy2)(propene)][BArF4] is characterized as having a π-bound alkene with a supporting γ-agostic Rh···H3C interaction at low temperature by single-crystal X-ray diffraction, variable temperature solution and solid-state NMR spectroscopy, as well as periodic density functional theory (DFT) calculations. A fluxional process occurs in both the solid-state and solution that is proposed to proceed via a tautomeric allyl-hydride. Gas/solid catalytic isomerization of d3-propene, H2C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 CHCD3, using [Rh(Cy2PCH2CH2PCy2)(η2η2-NBA)][BArF4] scrambles the D-label into all possible positions of the propene, as shown by isotopic perturbation of equilibrium measurements for the agostic interaction. Periodic DFT calculations show a low barrier to H/D exchange (10.9 kcal mol–1, PBE-D3 level), and GIPAW chemical shift calculations guide the assignment of the experimental data. When synthesized using solution routes a bis-propene complex, [Rh(Cy2PCH2CH2PCy2)(propene)2][BArF4], is formed. [Rh(Cy2PCH2CH2PCy2)(butene)][BArF4] (x = 1) is characterized as having 2-butene bound as the cis-isomer and a single Rh···H3C agostic interaction. In the solid-state two low-energy fluxional processes are proposed. The first is a simple libration of the 2-butene that exchanges the agostic interaction, and the second is a butene isomerization process that proceeds via an allyl-hydride intermediate with a low computed barrier of 14.5 kcal mol–1. [Rh(Cy2PCH2CH2PCy2)(η2η2-NBA)][BArF4] and the polymorphs of [Rh(Cy2PCH2CH2PCy2)(ethene)2][BArF4] are shown to be effective in solid-state molecular organometallic catalysis (SMOM-Cat) for the isomerization of 1-butene to a mixture of cis- and trans-2-butene at 298 K and 1 atm, and studies suggest that catalysis is likely dominated by surface-active species. [Rh(Cy2PCH2CH2PCy2)(η2η2-NBA)][BArF4] is also shown to catalyze the transfer dehydrogenation of butane to 2-butene at 298 K using ethene as the sacrificial acceptor. PMID:28989631

  1. Protecting a Diamond Quantum Memory by Charge State Control.

    PubMed

    Pfender, Matthias; Aslam, Nabeel; Simon, Patrick; Antonov, Denis; Thiering, Gergő; Burk, Sina; Fávaro de Oliveira, Felipe; Denisenko, Andrej; Fedder, Helmut; Meijer, Jan; Garrido, Jose A; Gali, Adam; Teraji, Tokuyuki; Isoya, Junichi; Doherty, Marcus William; Alkauskas, Audrius; Gallo, Alejandro; Grüneis, Andreas; Neumann, Philipp; Wrachtrup, Jörg

    2017-10-11

    In recent years, solid-state spin systems have emerged as promising candidates for quantum information processing. Prominent examples are the nitrogen-vacancy (NV) center in diamond, phosphorus dopants in silicon (Si:P), rare-earth ions in solids, and V Si -centers in silicon-carbide. The Si:P system has demonstrated that its nuclear spins can yield exceedingly long spin coherence times by eliminating the electron spin of the dopant. For NV centers, however, a proper charge state for storage of nuclear spin qubit coherence has not been identified yet. Here, we identify and characterize the positively charged NV center as an electron-spin-less and optically inactive state by utilizing the nuclear spin qubit as a probe. We control the electronic charge and spin utilizing nanometer scale gate electrodes. We achieve a lengthening of the nuclear spin coherence times by a factor of 4. Surprisingly, the new charge state allows switching of the optical response of single nodes facilitating full individual addressability.

  2. Solid-state experiments at high pressure and strain rates

    NASA Astrophysics Data System (ADS)

    Kalantar, D. H.

    1999-11-01

    We are developing experiments on intense laser facilities to study shock compressed metal foils in the solid state. At high pressure, Rayleigh-Taylor induced perturbation growth can be reduced by the strength of the material. [1] We use this to characterize the strength of the metal foils accelerated at high pressure in the solid state. In our experiments, Al and Cu foils are compressed and accelerated with staged shocks using a temporally shaped x-ray drive that is generated in a Nova laser hohlraum target. [2] The peak pressures exceed 1 Mbar (100 GPa), and strain rates are very high, 10^7-10^9 s-1. The instability growth is observed by x-ray radiography. To probe the state of the material under compression and to demonstrate that it remains solid, we are using the dynamic Bragg diffraction technique. [3] This technique has been demonstrated on the Nova laser [4] using Si crystals shocked to 200-500 kbar. Additionally, we have observed diffraction from Cu crystals that are shocked to 100-200 kbar by direct laser irradiation on the Trident and OMEGA lasers. Compressions of up to a 10in the crystal lattice spacing have been observed. We will present the results of our work to develop these high pressure solid-state hydrodynamics experiments. 1. J. F. Barnes et al, J. Appl. Phys. 45, 727 (1974); A. I. Lebedev et al , Proc. 4th IWPCTM, 29 March-1 April, 1993, p. 81. 2. D. H. Kalantar et al., to appear in Int. J. of Impact Eng. (1999). 3. R. R. Whitlock and J. S. Wark, Phys. Rev. B 52, 8 (1995). 4. D. H. Kalantar et al, Rev. Sci. Instrum. 70, 629 (1999).

  3. Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5

    NASA Technical Reports Server (NTRS)

    Anderson, P. J.; Nussbaum, P.; Gustafson, G.

    1984-01-01

    The objective of the research project described is to define and demonstrate methods to advance the state of the art of pressure sensors for the space shuttle main engine (SSME). Silicon piezoresistive technology was utilized in completing tasks: generation and testing of three transducer design concepts for solid state applications; silicon resistor characterization at cryogenic temperatures; experimental chip mounting characterization; frequency response optimization and prototype design and fabrication. Excellent silicon sensor performance was demonstrated at liquid nitrogen temperature. A silicon resistor ion implant dose was customized for SSME temperature requirements. A basic acoustic modeling software program was developed as a design tool to evaluate frequency response characteristics.

  4. Molecular structures of amyloid and prion fibrils: consensus versus controversy.

    PubMed

    Tycko, Robert; Wickner, Reed B

    2013-07-16

    Many peptides and proteins self-assemble into amyloid fibrils. Examples include mammalian and fungal prion proteins, polypeptides associated with human amyloid diseases, and proteins that may have biologically functional amyloid states. To understand the propensity for polypeptides to form amyloid fibrils and to facilitate rational design of amyloid inhibitors and imaging agents, it is necessary to elucidate the molecular structures of these fibrils. Although fibril structures were largely mysterious 15 years ago, a considerable body of reliable structural information about amyloid fibril structures now exists, with essential contributions from solid state nuclear magnetic resonance (NMR) measurements. This Account reviews results from our laboratories and discusses several structural issues that have been controversial. In many cases, the amino acid sequences of amyloid fibrils do not uniquely determine their molecular structures. Self-propagating, molecular-level polymorphism complicates the structure determination problem and can lead to apparent disagreements between results from different laboratories, particularly when different laboratories study different polymorphs. For 40-residue β-amyloid (Aβ₁₋₄₀) fibrils associated with Alzheimer's disease, we have developed detailed structural models from solid state NMR and electron microscopy data for two polymorphs. These polymorphs have similar peptide conformations, identical in-register parallel β-sheet organizations, but different overall symmetry. Other polymorphs have also been partially characterized by solid state NMR and appear to have similar structures. In contrast, cryo-electron microscopy studies that use significantly different fibril growth conditions have identified structures that appear (at low resolution) to be different from those examined by solid state NMR. Based on solid state NMR and electron paramagnetic resonance (EPR) measurements, the in-register parallel β-sheet organization found in β-amyloid fibrils also occurs in many other fibril-forming systems. We attribute this common structural motif to the stabilization of amyloid structures by intermolecular interactions among like amino acids, including hydrophobic interactions and polar zippers. Surprisingly, we have recently identified and characterized antiparallel β-sheets in certain fibrils that are formed by the D23N mutant of Aβ₁₋₄₀, a mutant that is associated with early-onset, familial neurodegenerative disease. Antiparallel D23N-Aβ₁₋₄₀ fibrils are metastable with respect to parallel structures and, therefore, represent an off-pathway intermediate in the amyloid fibril formation process. Other methods have recently produced additional evidence for antiparallel β-sheets in other amyloid-formation intermediates. As an alternative to simple parallel and antiparallel β-sheet structures, researchers have proposed β-helical structural models for some fibrils, especially those formed by mammalian and fungal prion proteins. Solid state NMR and EPR data show that fibrils formed in vitro by recombinant PrP have in-register parallel β-sheet structures. However, the structure of infectious PrP aggregates is not yet known. The fungal HET-s prion protein has been shown to contain a β-helical structure. However, all yeast prions studied by solid state NMR (Sup35p, Ure2p, and Rnq1p) have in-register parallel β-sheet structures, with their Gln- and Asn-rich N-terminal segments forming the fibril core.

  5. Evolution of the lithium morphology from cycling of thin film solid state batteries

    DOE PAGES

    Dudney, Nancy J.

    2017-03-11

    Thin film batteries with a Lipon electrolyte and Li metal anode can be cycled thousands of times. During this time there is a gradual redistribution of the lithium at the top surface; the morphology that develops depends on a number of factors but is largely driven by dewetting. In this work, this redistribution is characterized as functions of the cycle number, duty cycle, cathode composition, and protective coating over the lithium. Observations of wrinkled and pitted surfaces are discussed considering the effects of defects and diffusion in the lithium and influences of film stresses and surface energy. In conclusion, similarmore » processes may impact solid state lithium batteries with higher energy per active area.« less

  6. Structural and Optical properties of poly-crystalline BaTiO3 and SrTiO3 prepared via solid state route

    NASA Astrophysics Data System (ADS)

    Jarabana, Kanaka M.; Mishra, Ashutosh; Bisen, Supriya

    2016-10-01

    Polycrystalline BaTiO3 (BTO) and SrTiO3 (STO) were synthesized by solid state route method and properties of made polycrystalline were characterized by X-Ray diffraction (XRD), Raman Spectroscopy & FTIR Spectroscopy. XRD analysis shows that samples are crystalline in nature. In Raman Spectroscopy measurement, the experiment has been done with the help of JOBIN-YOVN HORIBA LABRAM HR800 single monochromator, which is coupled with a “peltier cooled” charge coupled device (CCD). Raman Spectroscopy at low temperature measurement shows the phase transition above & below the curie temperature in samples. Fourier transform Infrared spectroscopy was used to determine the Ti-O bond length position.

  7. Study of β-cyclodextrin inclusion complexes with volatile molecules geraniol and α-terpineol enantiomers in solid state and in solution

    NASA Astrophysics Data System (ADS)

    Ceborska, Magdalena; Szwed, Kamila; Asztemborska, Monika; Wszelaka-Rylik, Małgorzata; Kicińska, Ewa; Suwińska, Kinga

    2015-11-01

    Geraniol and α-terpineol are insoluble in water volatile compounds. α-Terpineol is a potentially important agent for medical applications. Formation of molecular complexes with β-cyclodextrin would lead to the increase of water solubility and bioavailability. β-Cyclodextrin forms 2:2 inclusion complexes with both enantiomers of α-terpineol and their precursor geraniol. Solid state complexes are thoroughly characterized by single X-ray crystallography and their stability over vast range of temperatures is proven by TG analysis. Intermolecular host-guest, host-host and guest-guest interactions give good insight into the nature of formed inclusion complexes. Stability constants of the complexes in solution are determined by HPLC.

  8. Fabrication, characterization and applications of iron selenide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Raja Azadar, E-mail: hussainazadar@yahoo.com; Badshah, Amin; Lal, Bhajan

    This review article presents fabrication of FeSe by solid state reactions, solution chemistry routes, chemical vapor deposition, spray pyrolysis and chemical vapor transport. Different properties and applications such as crystal structure and phase transition, band structure, spectroscopy, superconductivity, photocatalytic activity, electrochemical sensing, and fuel cell activity of FeSe have been discussed. - Graphical abstract: Iron selenide can be synthesized by solid state reactions, chemical vapor deposition, solution chemistry routes, chemical vapor transport and spray pyrolysis. - Highlights: • Different fabrication methods of iron selenide (FeSe) have been reviewed. • Crystal structure, band structure and spectroscopy of FeSe have been discussed.more » • Superconducting, catalytic and fuel cell application of FeSe have been presented.« less

  9. Evolution of the lithium morphology from cycling of thin film solid state batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudney, Nancy J.

    Thin film batteries with a Lipon electrolyte and Li metal anode can be cycled thousands of times. During this time there is a gradual redistribution of the lithium at the top surface; the morphology that develops depends on a number of factors but is largely driven by dewetting. In this work, this redistribution is characterized as functions of the cycle number, duty cycle, cathode composition, and protective coating over the lithium. Observations of wrinkled and pitted surfaces are discussed considering the effects of defects and diffusion in the lithium and influences of film stresses and surface energy. In conclusion, similarmore » processes may impact solid state lithium batteries with higher energy per active area.« less

  10. The structures and luminescence properties of lanthanide (Ln = Sm, Eu and Tb) metal-organic coordination polymers based on 5-(2-hydroxyethoxy)isophthalate ligand

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhang, Yu-Jie; Qin, Jie; Chen, Yong; Zhao, Ying

    2015-03-01

    Three unreported isomorphous Ln-containing metal-organic coordination polymeric complexes {LnL(HL)ṡ(H2O)2}n (Ln = Sm (1), Eu (2) and Tb (3), CCDC 971815-971817) were synthesized based on 5-(2-hydroxyethoxy) isophthalic acid (H2L) under hydrothermal conditions. The obtained coordination polymers were characterized by IR, elemental analysis, thermal analysis and X-ray diffraction In solid state, these polymers featured 3-D supramolecular structures constructed by 2-D sheets through H-bonds. Investigation of photoluminescence properties of H2L and 1-3 showed all of them exhibited intense fluorescent emissions in the solid state at room temperature.

  11. 1H, 13C, 15N NMR analysis of sildenafil base and citrate (Viagra) in solution, solid state and pharmaceutical dosage forms.

    PubMed

    Wawer, Iwona; Pisklak, Maciej; Chilmonczyk, Zdzisław

    2005-08-10

    Sildenafil citrate (SC) (Viagra) and sildenafil base in pure form are easily and unequivocally characterized by multinuclear NMR spectroscopy. Analysis of chemical shifts indicates that: (i) N6-H forms intramolecular hydrogen bonds, (ii) N25 is protonated in the salt and (iii) intermolecular OH...N hydrogen bonds involving N2 and N4 are present in the solid sildenafil citrate. 13C CPMAS NMR method has been proposed for the identification and quantitation of Viagra in its pharmaceutical formulations.

  12. Checkerboard deposition of lithium manganese oxide spinel (LiMn2O4) by RF magnetron sputtering on a stainless steel in all-solid-state thin film battery

    NASA Astrophysics Data System (ADS)

    Hsueh, T. H.; Yu, Y. Q.; Jan, D. J.; Su, C. H.; Chang, S. M.

    2018-03-01

    All-solid-state thin film lithium batteries (TFLBs) are the most competitive low-power sources to be applied in various kinds of micro-electro-mechanical systems and have been draw a lot of attention in academic research. In this paper, the checkerboard deposition of all-solid-state TFLB was composed of thin film lithium metal anode, lithium phosphorus oxynitride (LiPON) solid electrolyte, and checkerboard deposition of lithium manganese oxide spinel (LiMn2O4) cathode. The LiPON and LiMn2O4 were deposited by a radio frequency magnetron sputtering system, and the lithium metal was deposited by a thermal evaporation coater. The electrochemical characterization of this lithium battery showed the first discharge capacity of 107.8 μAh and the capacity retention was achieved 95.5% after 150 charge-discharge cycles between 4.3V and 3V at a current density of 11 μA/cm2 (0.5C). Obviously, the checkerboard of thin film increased the charge exchange rate; also this lithium battery exhibited high C-rate performance, with better capacity retention of 82% at 220 μA/cm2 (10C).

  13. Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl-Li2S All-Solid-State Li-Ion Battery.

    PubMed

    Yu, Chuang; Ganapathy, Swapna; de Klerk, Niek J J; Roslon, Irek; van Eck, Ernst R H; Kentgens, Arno P M; Wagemaker, Marnix

    2016-09-07

    One of the main challenges of all-solid-state Li-ion batteries is the restricted power density due to the poor Li-ion transport between the electrodes via the electrolyte. However, to establish what diffusional process is the bottleneck for Li-ion transport requires the ability to distinguish the various processes. The present work investigates the Li-ion diffusion in argyrodite Li6PS5Cl, a promising electrolyte based on its high Li-ion conductivity, using a combination of (7)Li NMR experiments and DFT based molecular dynamics simulations. This allows us to distinguish the local Li-ion mobility from the long-range Li-ion motional process, quantifying both and giving a coherent and consistent picture of the bulk diffusion in Li6PS5Cl. NMR exchange experiments are used to unambiguously characterize Li-ion transport over the solid electrolyte-electrode interface for the electrolyte-electrode combination Li6PS5Cl-Li2S, giving unprecedented and direct quantitative insight into the impact of the interface on Li-ion charge transport in all-solid-state batteries. The limited Li-ion transport over the Li6PS5Cl-Li2S interface, orders of magnitude smaller compared with that in the bulk Li6PS5Cl, appears to be the bottleneck for the performance of the Li6PS5Cl-Li2S battery, quantifying one of the major challenges toward improved performance of all-solid-state batteries.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakaran, Venkateshkumar; Johnson, Grant E.; Wang, Bingbing

    Molecular-level understanding of electrochemical processes occurring at electrode-electrolyte interfaces (EEI) is key to the rational development of high-performance and sustainable electrochemical technologies. This article reports the development and first application of solid-state in situ electrochemical probes to study redox and catalytic processes occurring at well-defined EEI generated using soft-landing of mass- and charge-selected cluster ions (SL). In situ electrochemical probes with excellent mass transfer properties are fabricated using carefully-designed nanoporous ionic liquid membranes. SL enables deposition of pure active species that are not obtainable with other techniques onto electrode surfaces with precise control over charge state, composition, and kinetic energy.more » SL is, therefore, a unique tool for studying fundamental processes occurring at EEI. For the first time using an aprotic electrochemical probe, the effect of charge state (PMo12O403-/2-) and the contribution of building blocks of Keggin polyoxometalate (POM) clusters to redox processes are characterized by populating EEI with novel POM anions generated by electrospray ionization and gas phase dissociation. Additionally, a proton conducting electrochemical probe has been developed to characterize the reactive electrochemistry (oxygen reduction activity) of bare Pt clusters (Pt40 ~1 nm diameter), thus demonstrating the capability of the probe for studying reactions in controlled gaseous environments. The newly developed in situ electrochemical probes combined with ion SL provide a versatile method to characterize the EEI in solid-state redox systems and reactive electrochemistry at precisely-defined conditions. This capability will advance molecular-level understanding of processes occurring at EEI that are critical to many energy-related technologies.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aromí, G.; Beavers, C. M.; Sánchez Costa, J.

    Crystal-to-crystal transformations have been crucial in the understanding of solid-state processes, since these may be studied in detail by means of single crystal X-ray diffraction (SCXRD) techniques. The description of the mechanisms and potential intermediates of those processes remains very challenging. In fact, solid-state transient states have rarely been observed, at least to a sufficient level of detail. We have investigated the process of guest extrusion from the non-porous molecular material [Fe(bpp)(H 2L)](ClO 4) 2·1.5C 3H 6O (bpp = 2,6-bis(pyrazol-3-yl)pyridine; H 2L = 2,6-bis(5-(2-methoxyphenyl)-pyrazol-3-yl)pyridine; C 3H 6O = acetone), which occurs through ordered diffusion of acetone in a crystal-to-crystal manner,more » leading to dramatic structural changes. The slow kinetics of the transition allows thermal trapping of the system at various intermediate stages. The transiting single crystal can be then examined at these points through synchrotron SCXRD, offering a window upon the mechanism of the transformation at the molecular scale. These experiments have unveiled the development of an ordered intermediate phase, distinct from the initial and the final states, coexisting as the process advances with either of these two phases or, at a certain moment with both of them. The new intermediate phase has been structurally characterized in full detail by SCXRD, providing insights into the mechanism of this diffusion triggered solid-state phenomenon. Lastly, the process has been also followed by calorimetry, optical microscopy, local Raman spectroscopy and powder X-ray diffraction. The discovery and description of an intermediate ordered state in a molecular solid-state transformation is of great interest and will help to understand the mechanistic details and reaction pathways underlying these transformations.« less

  16. PEELS of buckyballs: Synthesis and first investigations into properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlueter, A.D.

    The polymer analogous aromatization of double-stranded Diels-Alder polymers to give fully unsaturated, all-carbon ladder polymers by means of dehydration and dehydrogenation is described. The polymers obtained were characterized by solid state carbon NMR and UV-spectroscopy as well as elemental analysis. Investigations into optical and electrical properties will be discussed.

  17. Synthesis and Characterization of Electroactive Polymers Based on Pyrrole

    DTIC Science & Technology

    1989-10-01

    169. 5. E.T. Kang, K.G. Neoh and H.C. Ti, Solid State Communications, 1986, 60, 457. 6. Osamu Niwa, Masami Kakuchi, and Toshiaki Tamamura, 7...1987, 18, 49. 8. Keiko Koga, Takao lino, Shigeyuki Ueta, and Motowo Takayanagi , Polymer. Journal, 1989, 21, 499. 9. S.E. Lindesey and G.B. Street

  18. Fabrication and Characterization of Colloidal Crystal Thin Films

    ERIC Educational Resources Information Center

    Rodriguez, I.; Ramiro-Manzano, F.; Meseguer, F.; Bonet, E.

    2011-01-01

    We present a laboratory experiment that allows undergraduate or graduate students to get introduced to colloidal crystal research concepts in an interesting way. Moreover, such experiments and studies can also be useful in the field of crystallography or solid-state physics. The work concerns the growth of colloidal crystal thin films obtained…

  19. Characterization of Nylon 6 by 15N Solid State NMR

    DTIC Science & Technology

    1989-05-31

    M.; Ritchey, W.; de Boer, E. Macromolecules, 1979, 12, 924. 2. Garroway , A. N.; Ritchey, W. M.; Moniz, W. B.; Macromolecules, 1982, It, 1051. 3...E. Macromolecules, 1982, 15, 1406. 23. Veeman, W. S.; Menger, E. M. Bull. Magn. Reson., 1980,2,77. 24. VanderHart, D. L.; Garroway , A. N. J. Chem

  20. Growth and characterization of tunable solid state lasers in the near infrared spectral region

    NASA Technical Reports Server (NTRS)

    Powell, Richard C.; Martin, Joel J.

    1990-01-01

    This research resulted in the publication of two major papers. The major results include the development of improved crystal growth techniques for rare earth-doped LiYF4 crystals and the determination of laser-pumped laser characteristics of Tm:Ho:Y3Al5O12 crystals.

  1. Synthesis and characterization of hydrogel films of carboxymethyl tamarind gum using citric acid.

    PubMed

    Mali, Kailas K; Dhawale, Shashikant C; Dias, Remeth J

    2017-12-01

    The objective of this study was to synthesize and characterize citric acid crosslinked carboxymethyl tamarind gum (CMTG) hydrogels films. The hydrogel films were characterized by Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, solid state 13 C-nuclear magnetic resonance ( 13 C NMR) spectroscopy and differential scanning calorimeter (DSC). The prepared hydrogel films were evaluated for the carboxyl content and swelling ratio. The model drug moxifloxacin hydrochloride was loaded into hydrogels films and drug release was studied at pH 7.4. The hemolysis assay was used to study the biocompatibility of hydrogel films. The results of ATR-FTIR, solid state 13 C NMR and DSC confirmed the formation of ester crosslinks between citric acid and CMTG. The total carboxyl content of hydrogel film was found to be decreased when amount of CMTG was increased. The swelling of hydrogel film was found to be decreased with increase in curing temperature and time. CMTG hydrogel films showed high drug loading with non-Fickian release mechanism suggesting controlled release of drug. The hydrogel films were found to be biocompatible. It can be concluded that the citric acid can be used for the preparation of CMTG hydrogel films. Further, CMTG hydrogel film can be used potentially for controlled release of drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Screening and Characterization of Hydrate Forms of T-3256336, a Novel Inhibitor of Apoptosis (IAP) Protein Antagonist.

    PubMed

    Takeuchi, Shoko; Kojima, Takashi; Hashimoto, Kentaro; Saito, Bunnai; Sumi, Hiroyuki; Ishikawa, Tomoyasu; Ikeda, Yukihiro

    2015-01-01

    Different crystal packing of hydrates from anhydrate crystals leads to different physical properties, such as solubility and stability. Investigation of the potential of varied hydrate formation, and understanding the stability in an anhydrous/hydrate system, are crucial to prevent an undesired transition during the manufacturing process and storage. Only one anhydrous form of T-3256336, a novel inhibitor of apoptosis (IAP) protein antagonist, was discovered during synthesis, and no hydrate form has been identified. In this study, we conducted hydrate screening such as dynamic water vapor sorption/desorption (DVS), and the slurry experiment, and characterized the solid-state properties of anhydrous/hydrate forms to determine the most desirable crystalline form for development. New hydrate forms, both mono-hydrate and hemi-hydrate forms, were discovered as a result of this hydrate screening. The characterization of two new hydrate forms was conducted, and the anhydrous form was determined to be the most desirable development form of T-3256336 in terms of solid-state stability. In addition, the stability of the anhydrous form was investigated using the water content and temperature controlled slurry experiment to obtain the desirable crystal form in the crystallization process. The water content regions of the stable phase of the desired form, the anhydrous form, were identified for the cooling crystallization process.

  3. Characterization of the relationship of the cure cycle chemistry to cure cycle processing properties

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D. E.

    1986-01-01

    Dynamic Dielectric measurements made over a wide range of frequency provide a sensitive and convenient means for monitoring the cure process in thermosets and thermoplastics. The measurement of dielectric relaxation is one of only a few instrumental techniques available for studying molecular properties in both the liquid and solid states. Furthermore, it is probably the only convenient experimental technique for studying the polymerization process of going from a monomeric liquid of varying viscosity to a crosslinked, insoluble, high temperature solid. The objective of the research is to develop on-line dielectric instrumentation for quantitative nondestructive material evaluation and closed loop smart cure cycle control. The key is to relate the chemistry of the cure cycle process to the dielectric properties of the polymer system by correlating the time, temperature, and frequency dependent dielectric measurements with chemical characterization measurements. Measurement of the wide variation in magnitude of the complex permittivity with both frequency and state of cure, coupled with chemical characterization work, have been shown in the laboratory to have the potential to determine: resin quality, composition and age; cure cycle window boundaries; onset of flow and point of maximum flow; extent of and completion of reaction; evolution of volatiles; T sub g; and, crosslinking and molecular weight buildup.

  4. Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction

    NASA Astrophysics Data System (ADS)

    Prasad, Virendra; D'Souza, Charlene; Yadav, Deepti; Shaikh, A. J.; Vigneshwaran, Nadanathangam

    2006-09-01

    Well-crystallized zinc oxide nanorods have been fabricated by single step solid-state reaction using zinc acetate and sodium hydroxide, at room temperature. The sodium lauryl sulfate (SLS) stabilized zinc oxide nanorods were characterized by using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and photoluminescence spectroscopy. The X-ray diffraction revealed the wurtzite structure of zinc oxide. The size estimation by XRD and TEM confirmed that the ZnO nanorods are made of single crystals. The growth of zinc oxide crystals into rod shape was found to be closely related to its hexagonal nature. The mass ratio of SLS:ZnO in the nanorods was found to be 1:10 based on the thermogravimetric analysis. Blue shift of photoluminescence emission was noticed in the ZnO nanorods when compared to that of ZnO bulk. FT-IR analysis confirmed the binding of SLS with ZnO nanorods. Apart from ease of preparation, this method has the advantage of eco-friendliness since the solvent and other harmful chemicals were eliminated in the synthesis protocol.

  5. Characterization of hot bonding of bi-metal C45/25CrMo4 by plane strain compression test

    NASA Astrophysics Data System (ADS)

    Enaim, Mohammed; Langlois, Laurent; Zimmer-Chevret, Sandra; Bigot, Régis; Krumpipe, Pierre

    2018-05-01

    The need to produce multifunctional parts in order to conform to complex specifications becomes crucial in today's industrial context. This is why new processes are under study to develop multi-material parts which can satisfy this kind of requirements. This paper investigates the possibility of producing hot bonding of bi-metal C45/25CrMo4 parts by forging. This manufacturing process is a solid state joining process that involves, simultaneously, the welding and shaping of multi-material part. In this study, the C45/25CrMo4 bimetal was investigated. The forging is conducted at 1100°C and the influence of reduction rate on microstructure and bonding was investigated. The bonding model is inspired from Bay's model. Following this model, two parameters govern the solid-state bonding at the interface between materials: normal contact pressure and surface expansion. The objective is to check the bonding quality under different pressure and surface expansion. To achieve this goal, the plane strain compression test is chosen as the characterization test. Finally, simulations and experiments of this test are compared.

  6. High-Performance Solid-State Thermionic Energy Conversion Based on 2D van der Waals Heterostructures: A First-Principles Study.

    PubMed

    Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan

    2018-06-18

    Two-dimensional (2D) van der Waals heterostructures (vdWHs) have shown multiple functionalities with great potential in electronics and photovoltaics. Here, we show their potential for solid-state thermionic energy conversion and demonstrate a designing strategy towards high-performance devices. We propose two promising thermionic devices, namely, the p-type Pt-G-WSe 2 -G-Pt and n-type Sc-WSe 2 -MoSe 2 -WSe 2 -Sc. We characterize the thermionic energy conversion performance of the latter using first-principles GW calculations combined with real space Green's function (GF) formalism. The optimal barrier height and high thermal resistance lead to an excellent performance. The proposed device is found to have a room temperature equivalent figure of merit of 1.2 which increases to 3 above 600 K. A high performance with cooling efficiency over 30% of the Carnot efficiency above 450 K is achieved. Our designing and characterization method can be used to pursue other potential thermionic devices based on vdWHs.

  7. Synthesis, Multinuclear NMR Characterization and Dynamic Property of Organic–Inorganic Hybrid Electrolyte Membrane Based on Alkoxysilane and Poly(oxyalkylene) Diamine

    PubMed Central

    Saikia, Diganta; Pan, Yu-Chi; Kao, Hsien-Ming

    2012-01-01

    Organic–inorganic hybrid electrolyte membranes based on poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether) complexed with LiClO4 via the co-condensation of tetraethoxysilane (TEOS) and 3-(triethoxysilyl)propyl isocyanate have been prepared and characterized. A variety of techniques such as differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, alternating current (AC) impedance and solid-state nuclear magnetic resonance (NMR) spectroscopy are performed to elucidate the relationship between the structural and dynamic properties of the hybrid electrolyte and the ion mobility. A VTF (Vogel-Tamman-Fulcher)-like temperature dependence of ionic conductivity is observed for all the compositions studied, implying that the diffusion of charge carriers is assisted by the segmental motions of the polymer chains. A maximum ionic conductivity value of 5.3 × 10−5 Scm−1 is obtained at 30 °C. Solid-state NMR results provide a microscopic view of the effects of salt concentrations on the dynamic behavior of the polymer chains. PMID:24958176

  8. Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as biocontrol agent.

    PubMed

    Nalini, S; Parthasarathi, R

    2014-12-01

    The present study aimed at exploring mahua (Madhuca indica) oil cake as a novel substrate for the production of biosurfactant by Serratia rubidaea SNAU02 under solid-state fermentation (SSF). Response surface methodology showed followings as the optimal conditions for the production of biosurfactant: mahua oil cake 7.48 g, 2.5 ml inoculum size (1×10(8) cells/ml), and pH 7.22 and 31 °C temperature. The characterization of the biosurfactant by TLC, FT-IR and GC-MS revealed the presence of rhamnolipid. The presence of rhamnosyl transferase gene responsible for biosynthesis of rhamnolipid was identified. The strain SNAU02 exhibited antifungal activity and demonstrated no toxicity against the seeds of Brassica oleracea and Artemia salina employed as a bio-indicator. The present findings indicated the potential of mahua oil cake as suitable substrate for the production of rhamnolipids in SSF by S. rubidaea SNAU02 and application potential of the biosurfactant produced as biocontrol agent against plant pathogens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Fenofibrate Nanocrystals Embedded in Oral Strip-Films for Bioavailability Enhancement

    PubMed Central

    Barvaliya, Manish; Zhang, Lu; Anovadiya, Ashish; Brahmbhatt, Harshad; Paul, Parimal; Tripathi, Chandrabhanu

    2018-01-01

    The aim of the present study was to make a fenofibrate (FNB) nanocrystal (NC) by wet media milling, characterizations and formulates into oral strip-films (OSFs). Mechanical properties, redispersion study, and solid-state characterizations results suggested that reduction of drug crystal size at nanoscale and incorporation into OSFs does not affect the solid-state properties of the drug. In vitro dissolution kinetics showed enhanced dissolution rate was easily manipulated by changing the thickness of the OSF. In situ UV-imaging was used to monitor drug dissolution qualitatively and quantitatively in real time. Results confirm that the intrinsic dissolution rates and surface drug concentration measured with this device were in agreement with the USP-IV dissolution profiles. In vivo pharmacokinetics in rabbits showed a significant difference in the pharmacokinetics parameter (1.4 fold increase bioavailability) of FNB NC-loaded OSFs as compared to the marketed formulation “Tricor” and as-received (pristine) drug. This approach of drug nanocrystallization and incorporation into OSFs may have significant applications in cost-effective tools for bioavailability enhancement of FNB. PMID:29438297

  10. Comprehensive MS and Solid-State NMR Metabolomic Profiling Reveals Molecular Variations in Native Periderms from Four Solanum tuberosum Potato Cultivars.

    PubMed

    Huang, Wenlin; Serra, Olga; Dastmalchi, Keyvan; Jin, Liqing; Yang, Lijia; Stark, Ruth E

    2017-03-15

    The potato (Solanum tuberosum L.) ranks third in worldwide consumption among food crops. Whereas disposal of potato peels poses significant challenges for the food industry, secondary metabolites in these tissues are also bioactive and essential to crop development. The diverse primary and secondary metabolites reported in whole tubers and wound-healing tissues prompted a comprehensive profiling study of native periderms from four cultivars with distinctive skin morphologies and commercial food uses. Polar and nonpolar soluble metabolites were extracted concurrently, analyzed chromatographically, and characterized with mass spectrometry; the corresponding solid interfacial polymeric residue was examined by solid-state 13 C NMR. In total, 112 secondary metabolites were found in the phellem tissues; multivariate analysis identified 10 polar and 30 nonpolar potential biomarkers that distinguish a single cultivar among Norkotah Russet, Atlantic, Chipeta, and Yukon Gold cultivars which have contrasting russeting features. Compositional trends are interpreted in the context of periderm protective function.

  11. Novel nanofluidic chemical cells based on self-assembled solid-state SiO2 nanotubes.

    PubMed

    Zhu, Hao; Li, Haitao; Robertson, Joseph W F; Balijepalli, Arvind; Krylyuk, Sergiy; Davydov, Albert V; Kasianowicz, John J; Suehle, John S; Li, Qiliang

    2017-10-27

    Novel nanofluidic chemical cells based on self-assembled solid-state SiO 2 nanotubes on silicon-on-insulator (SOI) substrate have been successfully fabricated and characterized. The vertical SiO 2 nanotubes with a smooth cavity are built from Si nanowires which were epitaxially grown on the SOI substrate. The nanotubes have rigid, dry-oxidized SiO 2 walls with precisely controlled nanotube inner diameter, which is very attractive for chemical-/bio-sensing applications. No dispersion/aligning procedures were involved in the nanotube fabrication and integration by using this technology, enabling a clean and smooth chemical cell. Such a robust and well-controlled nanotube is an excellent case of developing functional nanomaterials by leveraging the strength of top-down lithography and the unique advantage of bottom-up growth. These solid, smooth, clean SiO 2 nanotubes and nanofluidic devices are very encouraging and attractive in future bio-medical applications, such as single molecule sensing and DNA sequencing.

  12. Novel nanofluidic chemical cells based on self-assembled solid-state SiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Zhu, Hao; Li, Haitao; Robertson, Joseph W. F.; Balijepalli, Arvind; Krylyuk, Sergiy; Davydov, Albert V.; Kasianowicz, John J.; Suehle, John S.; Li, Qiliang

    2017-10-01

    Novel nanofluidic chemical cells based on self-assembled solid-state SiO2 nanotubes on silicon-on-insulator (SOI) substrate have been successfully fabricated and characterized. The vertical SiO2 nanotubes with a smooth cavity are built from Si nanowires which were epitaxially grown on the SOI substrate. The nanotubes have rigid, dry-oxidized SiO2 walls with precisely controlled nanotube inner diameter, which is very attractive for chemical-/bio-sensing applications. No dispersion/aligning procedures were involved in the nanotube fabrication and integration by using this technology, enabling a clean and smooth chemical cell. Such a robust and well-controlled nanotube is an excellent case of developing functional nanomaterials by leveraging the strength of top-down lithography and the unique advantage of bottom-up growth. These solid, smooth, clean SiO2 nanotubes and nanofluidic devices are very encouraging and attractive in future bio-medical applications, such as single molecule sensing and DNA sequencing.

  13. Universal test fixture for monolithic mm-wave integrated circuits calibrated with an augmented TRD algorithm

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Shalkhauser, Kurt A.

    1989-01-01

    The design and evaluation of a novel fixturing technique for characterizing millimeter wave solid state devices is presented. The technique utilizes a cosine-tapered ridge guide fixture and a one-tier de-embedding procedure to produce accurate and repeatable device level data. Advanced features of this technique include nondestructive testing, full waveguide bandwidth operation, universality of application, and rapid, yet repeatable, chip-level characterization. In addition, only one set of calibration standards is required regardless of the device geometry.

  14. Characterization of Compounds with Tumor-Cell Proliferation Inhibition Activity from Mushroom (Phellinus baumii) Mycelia Produced by Solid-State Fermentation.

    PubMed

    Zhang, Henan; Shao, Qian; Wang, Wenhan; Zhang, Jingsong; Zhang, Zhong; Liu, Yanfang; Yang, Yan

    2017-04-27

    The inhibition of tumor-cell proliferationbyan organicsolvent extract from the solid-state fermentation of Phellinus baumii mycelia inoculated in rice medium was investigated in vitro. The active compounds inhibiting tumor-cell proliferation were characterized. Results revealed that all (petroleum ether, chloroform, ethyl acetate, and butanol) fractions inhibited tumor-cell proliferation in a dose-dependent fashion. The ethyl acetate extract had the highest inhibitory effecton tumor-cell proliferation, and the butanol fraction had the lowest. Six compounds were isolated and purified from the ethyl acetate extract of P. baumii mycelia by the tandem application of silica-gel column chromatography (SGCC), high-speed countercurrent chromatography (HSCCC), and preparative HPLC. These compounds were identified by NMR and electrospray ionization-mass spectrometry (ESI-MS) spectroscopic methods as ergosterol (RF1), ergosta-7,22-dien-3β-yl pentadecanoate (RF3), 3,4-dihydroxy benzaldehyde(RF6), inoscavinA (RF7), baicalein(RF10), and 24-ethylcholesta-5,22-dien-3β-ol (RF13). To further clarify the activity of these compounds, the cell-proliferation-inhibition tests of these compounds on various tumor cells were carried out and evaluatedin vitro. Results suggested that compounds RF6, RF7, and RF10 had potent inhibition effects on the proliferation of a series of tumor cell lines, including K562, L1210, SW620, HepG2, LNCaP, and MCF-7cells. These findings indicated that P. baumii mycelia produced by solid-state fermentation in rice canbe used to obtain active compounds with the ability to inhibittumor-cell proliferation.

  15. Chameleon Coatings: Adaptive Surfaces to Reduce Friction and Wear in Extreme Environments

    NASA Astrophysics Data System (ADS)

    Muratore, C.; Voevodin, A. A.

    2009-08-01

    Adaptive nanocomposite coating materials that automatically and reversibly adjust their surface composition and morphology via multiple mechanisms are a promising development for the reduction of friction and wear over broad ranges of ambient conditions encountered in aerospace applications, such as cycling of temperature and atmospheric composition. Materials selection for these composites is based on extensive study of interactions occurring between solid lubricants and their surroundings, especially with novel in situ surface characterization techniques used to identify adaptive behavior on size scales ranging from 10-10 to 10-4 m. Recent insights on operative solid-lubricant mechanisms and their dependency upon the ambient environment are reviewed as a basis for a discussion of the state of the art in solid-lubricant materials.

  16. High Power Laser Diode Arrays for 2-Micron Solid State Coherent Lidars Applications

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron; Kavaya, Michael J.; Singh, Upendra; Sudesh, Vikas; Baker, Nathaniel

    2003-01-01

    Laser diode arrays are critical components of any diode-pumped solid state laser systems, constraining their performance and reliability. Laser diode arrays (LDAs) are used as the pump source for energizing the solid state lasing media to generate an intense coherent laser beam with a high spatial and spectral quality. The solid state laser design and the characteristics of its lasing materials define the operating wavelength, pulse duration, and power of the laser diodes. The pump requirements for high pulse energy 2-micron solid state lasers are substantially different from those of more widely used 1-micron lasers and in many aspects more challenging [1]. Furthermore, the reliability and lifetime demanded by many coherent lidar applications, such as global wind profiling from space and long-range clear air turbulence detection from aircraft, are beyond the capability of currently available LDAs. In addition to the need for more reliable LDAs with longer lifetime, further improvement in the operational parameters of high power quasi-cw LDAs, such as electrical efficiency, brightness, and duty cycle, are also necessary for developing cost-effective 2-micron coherent lidar systems for applications that impose stringent size, heat dissipation, and power constraints. Global wind sounding from space is one of such applications, which is the main driver for this work as part of NASA s Laser Risk Reduction Program. This paper discusses the current state of the 792 nm LDA technology and the technology areas being pursued toward improving their performance. The design and development of a unique characterization facility for addressing the specific issues associated with the LDAs for pumping 2-micron coherent lidar transmitters and identifying areas of technological improvement will be described. Finally, the results of measurements to date on various standard laser diode packages, as well as custom-designed packages with potentially longer lifetime, will be reported.

  17. 13C and 19F solid-state NMR and X-ray crystallographic study of halogen-bonded frameworks featuring nitrogen-containing heterocycles.

    PubMed

    Szell, Patrick M J; Gabriel, Shaina A; Gill, Russell D D; Wan, Shirley Y H; Gabidullin, Bulat; Bryce, David L

    2017-03-01

    Halogen bonding is a noncovalent interaction between the electrophilic region of a halogen (σ-hole) and an electron donor. We report a crystallographic and structural analysis of halogen-bonded compounds by applying a combined X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (SSNMR) approach. Single-crystal XRD was first used to characterize the halogen-bonded cocrystals formed between two fluorinated halogen-bond donors (1,4-diiodotetrafluorobenzene and 1,3,5-trifluoro-2,4,6-triiodobenzene) and several nitrogen-containing heterocycles (acridine, 1,10-phenanthroline, 2,3,5,6-tetramethylpyrazine, and hexamethylenetetramine). New structures are reported for the following three cocrystals, all in the P2 1 /c space group: acridine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 13 H 9 N, 1,10-phenanthroline-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 12 H 8 N 2 , and 2,3,5,6-tetramethylpyrazine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 8 H 12 N 2 . 13 C and 19 F solid-state magic-angle spinning (MAS) NMR is shown to be a convenient method to characterize the structural features of the halogen-bond donor and acceptor, with chemical shifts attributable to cocrystal formation observed in the spectra of both nuclides. Cross polarization (CP) from 19 F to 13 C results in improved spectral sensitivity in characterizing the perfluorinated halogen-bond donor when compared to conventional 1 H CP. Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations of magnetic shielding constants, along with optimization of the XRD structures, provide a final set of structures in best agreement with the experimental 13 C and 19 F chemical shifts. Data for carbons bonded to iodine remain outliers due to well-known relativistic effects.

  18. Alkaline-earth metal carboxylates characterized by 43Ca and 87Sr solid-state NMR: impact of metal-amine bonding.

    PubMed

    Burgess, Kevin M N; Xu, Yang; Leclerc, Matthew C; Bryce, David L

    2014-01-06

    A series of calcium and strontium complexes featuring aryl carboxylate ligands has been prepared and characterized by alkaline-earth ((43)Ca and (87)Sr) solid-state NMR experiments in a magnetic field of 21.1 T. In the 11 compounds studied as part of this work, a range of coordination motifs are observed including nitrogen atom binding to Ca(2+) and Sr(2+), a binding mode which has not been investigated previously by (43)Ca or (87)Sr solid-state NMR. (43)Ca isotopic enrichment has enabled the full characterization of the (43)Ca electric field gradient (EFG) and chemical shift tensors of the two calcium sites in calcium p-aminosalicylate (Ca(pams)), where both NMR interactions are affected by the presence of a nitrogen atom in the first coordination sphere of one of the metal sites. The (43)Ca isotropic chemical shift is sensitive to the Ca-N distance as exemplified by the NMR parameters of a second form of Ca(pams) and density functional theory (DFT) calculations. Studies of the strontium analogue, Sr(pams), confirm a similar sensitivity of the (87)Sr EFG tensor to the presence or absence of nitrogen in the first coordination sphere. To our knowledge, this is the first systematic (87)Sr NMR study of strontium complexes featuring organic ligands. The |CQ((87)Sr)| values are found to be sensitive to the coordination number about Sr(2+). In general, this work has also established a larger data set of reliable experimental |CQ((43)Ca)| values which correlate well with those obtained using gauge-including projector-augmented-wave (GIPAW) DFT calculations. It is found that the use of a recently recommended quadrupole moment for (43)Ca, -44.4 mbarn, improves the agreement with experimental values. This contribution lays the groundwork for the interpretation of (43)Ca and (87)Sr NMR spectra of more challenging systems, particularly where nitrogen-alkaline earth metal bonding is occurring.

  19. Solvothermal synthesis, characterization and optical properties of ZnO, ZnO-MgO and ZnO-NiO, mixed oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Aslani, Alireza; Arefi, Mohammad Reza; Babapoor, Aziz; Amiri, Asghar; Beyki-Shuraki, Khalil

    2011-03-01

    ZnO-MgO and ZnO-NiO mixed oxides nanoparticles were produced from a solution containing Zinc acetate, Mg and Ni nitrate by Solvothermal method. The calcination process of the ZnO-MgO and ZnO-NiO composites nanoparticles brought forth polycrystalline two-phase ZnO-MgO and ZnO-NiO nanoparticles of 40-80 nm in diameters. ZnO, MgO and NiO were crystallized into würtzite and rock salt structures, respectively. The optical properties of ZnO-MgO and ZnO-NiO nanoparticles were obtained by solid state UV and solid state florescent. The XRD, SEM and Raman spectroscopies of these nanoparticles were analyzed.

  20. Solid-state NMR study of geopolymer prepared by sol-gel chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Yi-Ling; Hanna, John V.; Lee, Yuan-Ling, E-mail: yuanlinglee@ntu.edu.t

    2010-12-15

    Geopolymers are a new class of materials formed by the condensation of aluminosilicates and silicates obtained from natural minerals or industrial wastes. In this work, the sol-gel method is used to synthesize precursor materials for the preparation of geopolymers. The geopolymer samples prepared by our synthetic route have been characterized by a series of physical techniques, including Fourier-transform infrared, X-ray diffraction, and multinuclear solid-state NMR. The results are very similar to those obtained for the geopolymers prepared from natural kaolinite. We believe that our synthetic approach can offer a good opportunity for the medical applications of geopolymer. -- Graphical abstract:more » Geopolymer prepared by the sol-gel route has the same spectroscopic properties as the sample prepared from the natural kaolinite. Display Omitted« less

  1. Structure of N-(5-ethyl-[1,3,4]-thiadiazole-2-yl)toluenesulfonamide by combined X-ray powder diffraction, 13C solid-state NMR and molecular modelling.

    PubMed

    Hangan, Adriana; Borodi, Gheorghe; Filip, Xenia; Tripon, Carmen; Morari, Cristian; Oprean, Luminita; Filip, Claudiu

    2010-12-01

    The crystal structure solution of the title compound is determined from microcrystalline powder using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct-space methods with information from (13)C solid-state NMR (SSNMR), and molecular modelling using the GIPAW (gauge including projector augmented-wave) method. The space group is Pbca with one molecule in the asymmetric unit. The proposed methodology proves very useful for unambiguously characterizing the supramolecular arrangement adopted by the N-(5-ethyl-[1,3,4]-thiadiazole-2-yl)toluenesulfonamide molecules in the crystal, which consists of extended double strands held together by C-H···π non-covalent interactions.

  2. NMR crystallography of 2-acylamino-6-[1 H]-pyridones: Solid-state NMR, GIPAW computational, and single crystal X-ray diffraction studies

    NASA Astrophysics Data System (ADS)

    Ośmiałowski, Borys; Kolehmainen, Erkki; Ikonen, Satu; Ahonen, Kari; Löfman, Miika

    2011-12-01

    2-Acylamino-6-[1 H]-pyridones [acyl = RCO, where R = methyl ( 1), ethyl ( 2), iso-propyl ( 3), tert-butyl ( 4), and 1-adamantyl ( 5)] have been synthesized and characterized by NMR spectroscopy. From three congeners, 2, 3 and 5, also single crystal X-ray structures have been solved. For these derivatives GIPAW calculations acts as a "bridge" between solid-state NMR data and calculated chemical shifts based on X-ray determined geometry. In crystals all three compounds exist as pyridone tautomers possessing similar six-membered ring structure stabilized by intramolecular C dbnd O⋯HN hydrogen bond. Theoretical GIPAW calculated and experimental 13C and 15N CPMAS NMR shifts are in excellent agreement with each other.

  3. Achieving sub-millimetre precision with a solid-state full-field heterodyning range imaging camera

    NASA Astrophysics Data System (ADS)

    Dorrington, A. A.; Cree, M. J.; Payne, A. D.; Conroy, R. M.; Carnegie, D. A.

    2007-09-01

    We have developed a full-field solid-state range imaging system capable of capturing range and intensity data simultaneously for every pixel in a scene with sub-millimetre range precision. The system is based on indirect time-of-flight measurements by heterodyning intensity-modulated illumination with a gain modulation intensified digital video camera. Sub-millimetre precision to beyond 5 m and 2 mm precision out to 12 m has been achieved. In this paper, we describe the new sub-millimetre class range imaging system in detail, and review the important aspects that have been instrumental in achieving high precision ranging. We also present the results of performance characterization experiments and a method of resolving the range ambiguity problem associated with homodyne and heterodyne ranging systems.

  4. Modification and intercalation of layered zirconium phosphates: a solid-state NMR monitoring.

    PubMed

    Bakhmutov, Vladimir I; Kan, Yuwei; Sheikh, Javeed Ahmad; González-Villegas, Julissa; Colón, Jorge L; Clearfield, Abraham

    2017-07-01

    Several layered zirconium phosphates treated with Zr(IV) ions, modified by monomethoxy-polyethyleneglycol-monophosphate and intercalated with doxorubicin hydrochloride have been studied by solid-state MAS NMR techniques. The organic components of the phosphates have been characterized by the 13 C{ 1 H} CP MAS NMR spectra compared with those of initial compounds. The multinuclear NMR monitoring has provided to establish structure and covalent attachment of organic/inorganic moieties to the surface and interlayer spaces of the phosphates. The MAS NMR experiments including kinetics of proton-phosphorus cross polarization have resulted in an unusual structure of zirconium phosphate 6 combining decoration of the phosphate surface by polymer units and their partial intercalation into the interlayer space. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Structural characterization of the voltage sensor domain and voltage-gated K+- channel proteins vectorially-oriented within a single bilayer membrane at the solid/vapor and solid/liquid interfaces via neutron interferometry

    PubMed Central

    Gupta, S.; Dura, J.A.; Freites, J.A.; Tobias, D.J.; Blasie, J. K.

    2012-01-01

    The voltage-sensor domain (VSD) is a modular 4-helix bundle component that confers voltage sensitivity to voltage-gated cation channels in biological membranes. Despite extensive biophysical studies and the recent availability of x-ray crystal structures for a few voltage-gated potassium (Kv-) channels and a voltage-gate sodium (Nav-) channel, a complete understanding of the cooperative mechanism of electromechanical coupling, interconverting the closed-to-open states (i.e. non-conducting to cation conducting) remains undetermined. Moreover, the function of these domains is highly dependent on the physical-chemical properties of the surrounding lipid membrane environment. The basis for this work was provided by a recent structural study of the VSD from a prokaryotic Kv-channel vectorially-oriented within a single phospholipid (POPC; 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane investigated by x-ray interferometry at the solid/moist He (or solid/vapor) and solid/liquid interfaces thus achieving partial to full hydration, respectively (Gupta et. al. Phys. Rev E. 2011, 84). Here, we utilize neutron interferometry to characterize this system in substantially greater structural detail at the sub-molecular level, due to its inherent advantages arising from solvent contrast variation coupled with the deuteration of selected sub-molecular membrane components, especially important for the membrane at the solid/liquid interface. We demonstrate the unique vectorial orientation of the VSD and the retention of its molecular conformation manifest in the asymmetric profile structure of the protein within the profile structure of this single bilayer membrane system. We definitively characterize the asymmetric phospholipid bilayer solvating the lateral surfaces of the VSD protein within the membrane. The profile structures of both the VSD protein and phospholipid bilayer depend upon the hydration state of the membrane. We also determine the distribution of water and exchangeable hydrogen throughout the profile structure of both the VSD itself and the VSD:POPC membrane. These two experimentally-determined water and exchangeable hydrogen distribution profiles are in good agreement with molecular dynamics simulations of the VSD protein vectorially-oriented within a fully hydrated POPC bilayer membrane, supporting the existence of the VSD’s water pore. This approach was extended to the full-length Kv-channel (KvAP) at solid/liquid interface, providing the separate profile structures of the KvAP protein and the POPC bilayer within the reconstituted KvAP:POPC membrane. PMID:22686684

  6. Monitoring a simple hydrolysis process in an organic solid by observing methyl group rotation.

    PubMed

    Beckmann, Peter A; Bohen, Joseph M; Ford, Jamie; Malachowski, William P; Mallory, Clelia W; Mallory, Frank B; McGhie, Andrew R; Rheingold, Arnold L; Sloan, Gilbert J; Szewczyk, Steven T; Wang, Xianlong; Wheeler, Kraig A

    2017-09-01

    We report a variety of experiments and calculations and their interpretations regarding methyl group (CH 3 ) rotation in samples of pure 3-methylglutaric anhydride (1), pure 3-methylglutaric acid (2), and samples where the anhydride is slowly absorbing water from the air and converting to the acid [C 6 H 8 O 3 (1) + H 2 O → C 6 H 10 O 4 (2)]. The techniques are solid state 1 H nuclear magnetic resonance (NMR) spin-lattice relaxation, single-crystal X-ray diffraction, electronic structure calculations in both isolated molecules and in clusters of molecules that mimic the crystal structure, field emission scanning electron microscopy, differential scanning calorimetry, and high resolution 1 H NMR spectroscopy. The solid state 1 H spin-lattice relaxation experiments allow us to observe the temperature dependence of the parameters that characterize methyl group rotation in both compounds and in mixtures of the two compounds. In the mixtures, both types of methyl groups (that is, molecules of 1 and 2) can be observed independently and simultaneously at low temperatures because the solid state 1 H spin-lattice relaxation is appropriately described by a double exponential. We have followed the conversion 1 → 2 over periods of two years. The solid state 1 H spin-lattice relaxation experiments in pure samples of 1 and 2 indicate that there is a distribution of NMR activation energies for methyl group rotation in 1 but not in 2 and we are able to explain this in terms of the particle sizes seen in the field emission scanning electron microscopy images. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor

    PubMed Central

    2013-01-01

    Background A solid-state anaerobic digestion method is used to produce biogas from various solid wastes in China but the efficiency of methane production requires constant improvement. The diversity and abundance of relevant microorganisms play important roles in methanogenesis of biomass. The next-generation high-throughput pyrosequencing platform (Roche/454 GS FLX Titanium) provides a powerful tool for the discovery of novel microbes within the biogas-generating microbial communities. Results To improve the power of our metagenomic analysis, we first evaluated five different protocols for extracting total DNA from biogas-producing mesophilic solid-state fermentation materials and then chose two high-quality protocols for a full-scale analysis. The characterization of both sequencing reads and assembled contigs revealed that the most prevalent microbes of the fermentation materials are derived from Clostridiales (Firmicutes), which contribute to degrading both protein and cellulose. Other important bacterial species for decomposing fat and carbohydrate are Bacilli, Gammaproteobacteria, and Bacteroidetes (belonging to Firmicutes, Proteobacteria, and Bacteroidetes, respectively). The dominant bacterial species are from six genera: Clostridium, Aminobacterium, Psychrobacter, Anaerococcus, Syntrophomonas, and Bacteroides. Among them, abundant Psychrobacter species, which produce low temperature-adaptive lipases, and Anaerococcus species, which have weak fermentation capabilities, were identified for the first time in biogas fermentation. Archaea, represented by genera Methanosarcina, Methanosaeta and Methanoculleus of Euryarchaeota, constitute only a small fraction of the entire microbial community. The most abundant archaeal species include Methanosarcina barkeri fusaro, Methanoculleus marisnigri JR1, and Methanosaeta theromphila, and all are involved in both acetotrophic and hydrogenotrophic methanogenesis. Conclusions The identification of new bacterial genera and species involved in biogas production provides insights into novel designs of solid-state fermentation under mesophilic or low-temperature conditions. PMID:23320936

  8. Reconfigurable Yagi-Uda antenna based on a silicon reflector with a solid-state plasma.

    PubMed

    Kim, Da-Jin; Park, Jang-Soon; Kim, Cheol Ho; Hur, Jae; Kim, Choong-Ki; Cho, Young-Kyun; Ko, Jun-Bong; Park, Bonghyuk; Kim, Dongho; Choi, Yang-Kyu

    2017-12-08

    This paper describes the fabrication and characterization of a reconfigurable Yagi-Uda antenna based on a silicon reflector with a solid-state plasma. The silicon reflector, composed of serially connected p-i-n diodes, forms a highly dense solid-state plasma by injecting electrons and holes into the intrinsic region. When this plasma silicon reflector is turned on, the front-realized gain of the antenna increases by more than 2 dBi beyond 5.3 GHz. To achieve the large gain increment, the structure of the antenna is carefully designed with the aid of semiconductor device simulation and antenna simulation. By using an aluminum nitride (AlN) substrate with high thermal conductivity, self-heating effects from the high forward current in the p-i-n diode are efficiently suppressed. By comparing the antenna simulation data and the measurement data, we estimated the conductivity of the plasma silicon reflector in the on-state to be between 10 4 and 10 5  S/m. With these figures, silicon material with its technology is an attractive tunable material for a reconfigurable antenna, which has attracted substantial interest from many areas, such as internet of things (IoT) applications, wireless network security, cognitive radio, and mobile and satellite communications as well as from multiple-input-multiple-output (MIMO) systems.

  9. Solid electrolyte-electrode system for an electrochemical cell

    DOEpatents

    Tuller, Harry L.; Kramer, Steve A.; Spears, Marlene A.

    1995-01-01

    An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is also provided.

  10. Apatite Formation: Why It May Not Work as Planned, and How to Conclusively Identify Apatite Compounds

    PubMed Central

    2013-01-01

    Calcium phosphate apatites are inorganic compounds encountered in many different mineralized tissues. Bone mineral, for example, is constituted of nanocrystalline nonstoichiometric apatite, and the production of “analogs” through a variety of methods is frequently reported. In another context, the ability of solid surfaces to favor the nucleation and growth of “bone-like” apatite upon immersion in supersaturated fluids such as SFB is commonly used as one evaluation index of the “bioactivity” of such surfaces. Yet, the compounds or deposits obtained are not always thoroughly characterized, and their apatitic nature is sometimes not firmly assessed by appropriate physicochemical analyses. Of particular importance are the “actual” conditions in which the precipitation takes place. The precipitation of a white solid does not automatically indicate the formation of a “bone-like carbonate apatite layer” as is sometimes too hastily concluded: “all that glitters is not gold.” The identification of an apatite phase should be carefully demonstrated by appropriate characterization, preferably using complementary techniques. This review considers the fundamentals of calcium phosphate apatite characterization discussing several techniques: electron microscopy/EDX, XRD, FTIR/Raman spectroscopies, chemical analyses, and solid state NMR. It also underlines frequent problems that should be kept in mind when making “bone-like apatites.” PMID:23984373

  11. Improving the chemical stability of amorphous solid dispersion with cocrystal technique by hot melt extrusion.

    PubMed

    Liu, Xu; Lu, Ming; Guo, Zhefei; Huang, Lin; Feng, Xin; Wu, Chuanbin

    2012-03-01

    To explore in-situ forming cocrystal as a single-step, efficient method to significantly depress the processing temperature and thus minimize the thermal degradation of heat-sensitive drug in preparation of solid dispersions by melting method (MM) and hot melt extrusion (HME). Carbamazepine (CBZ)-nicotinamide (NIC) cocrystal solid dispersions were prepared with polymer carriers PVP/VA, SOLUPLUS and HPMC by MM and/or HME. The formation of cocrystal was investigated by differential scanning calorimetry and hot stage polarized optical microscopy. State of CBZ in solid dispersion was characterized by X-ray powder diffraction and optical microscopy. Interactions between CBZ, NIC and polymers were investigated by FTIR. Dissolution behaviors of solid dispersions were compared with that of pure CBZ. CBZ-NIC cocrystal with melting point of 160°C was formed in polymer carriers during heating process, and the preparation temperature of amorphous CBZ solid dispersion was therefore depressed to 160°C. The dissolution rate of CBZ-NIC cocrystal solid dispersion was significantly increased. By in-situ forming cocrystal, chemically stable amorphous solid dispersions were prepared by MM and HME at a depressed processing temperature. This method provides an attractive opportunity for HME of heat-sensitive drugs.

  12. Characterization of polysulfone and polysulfone/vanillin microcapsules by 1H NMR spectroscopy, solid-state 13C CP/MAS-NMR spectroscopy, and N2 adsorption-desorption analyses.

    PubMed

    Peña, Brisa; de Ménorval, Louis-Charles; Garcia-Valls, Ricard; Gumí, Tània

    2011-11-01

    Textile detergent and softener industries have incorporated perfume microencapsulation technology to improve their products. Perfume encapsulation allows perfume protection until use and provides a long-lasting fragrance release. But, certain industrial microcapsules show low encapsulation capacity and low material stability. Polysulfone capsules have been already proposed to solve these drawbacks. Among them, PSf/Vanillin capsules were considered as a desirable system. They present both good material stability and high encapsulation capacity. However, several factors such as the final location of the perfume in the polymeric matrix, the aggregation state that it has in the capsule and its interaction with the capsule components have not been studied yet. These factors can provide vast information about the capsule performance and its improvement. With the aim to characterize these parameters, the physical and chemical properties of PSf/Vanillin capsules have been investigated by nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and N(2) adsorption-desorption measurements. AFM micrograph and N(2) isotherms confirm that the presence of vanillin modify the physical structure of PSf/Vanillin microcapsules as it is trapped in the capsule porosity. NMR results show that vanillin is present in solid state in PSf/Vanillin microcapsules.

  13. A stochastic model of solid state thin film deposition: Application to chalcopyrite growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovelett, Robert J.; Pang, Xueqi; Roberts, Tyler M.

    Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. In this work, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We demonstratemore » the modeling approach with the example of chalcopyrite Cu(InGa)(SeS){sub 2} thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa)(SeS){sub 2} thin films arises and persists. We believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.« less

  14. A stochastic model of solid state thin film deposition: Application to chalcopyrite growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovelett, Robert J.; Pang, Xueqi; Roberts, Tyler M.

    Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. Here, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We also demonstrate themore » modeling approach with the example of chalcopyrite Cu(InGa)(SeS) 2 thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa)(SeS) 2 thin films arises and persists. Finally, we believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.« less

  15. A stochastic model of solid state thin film deposition: Application to chalcopyrite growth

    DOE PAGES

    Lovelett, Robert J.; Pang, Xueqi; Roberts, Tyler M.; ...

    2016-04-01

    Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. Here, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We also demonstrate themore » modeling approach with the example of chalcopyrite Cu(InGa)(SeS) 2 thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa)(SeS) 2 thin films arises and persists. Finally, we believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.« less

  16. Preparation of Chloramphenicol/Amino Acid Combinations Exhibiting Enhanced Dissolution Rates and Reduced Drug-Induced Oxidative Stress.

    PubMed

    Sterren, Vanesa B; Aiassa, Virginia; Garnero, Claudia; Linck, Yamila Garro; Chattah, Ana K; Monti, Gustavo A; Longhi, Marcela R; Zoppi, Ariana

    2017-11-01

    Chloramphenicol is an old antibiotic agent that is re-emerging as a valuable alternative for the treatment of multidrug-resistant pathogens. However, it exhibits suboptimal biopharmaceutical properties and toxicity profiles. In this work, chloramphenicol was combined with essential amino acids (arginine, cysteine, glycine, and leucine) with the aim of improving its dissolution rate and reduce its toxicity towards leukocytes. The chloramphenicol/amino acid solid samples were prepared by freeze-drying method and characterized in the solid state by using Fourier transform infrared spectroscopy, powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and solid-state nuclear magnetic resonance. The dissolution properties, antimicrobial activity, reactive oxygen species production, and stability of the different samples were studied. The dissolution rate of all combinations was significantly increased in comparison to that of the pure active pharmaceutical ingredient. Additionally, oxidative stress production in human leukocytes caused by chloramphenicol was decreased in the chloramphenicol/amino acid combinations, while the antimicrobial activity of the antibiotic was maintained. The CAP:Leu binary combination resulted in the most outstanding solid system makes it suitable candidate for the development of pharmaceutical formulations of this antimicrobial agent with an improved safety profile.

  17. Analysis of Solid State Bonding in the Extrusion Process of Magnesium Alloys --Numerical Prediction and Experimental Verification

    NASA Astrophysics Data System (ADS)

    Alharthi, Nabeel H.

    The automotive industry developments focused on increasing fuel efficiency are accomplished by weight reduction of vehicles, which consequently results in less negative environmental impact. Usage of low density materials such as Magnesium alloys is an approach to replace heavier structural components. One of the challenges in deformation processing of Magnesium is its low formability attributed to the hexagonal close packed (hcp) crystal structure. The extrusion process is one of the most promising forming processes for Magnesium because it applies a hydrostatic compression state of stress during deformation resulting in improved workability. Many researchers have attempted to fully understand solid state bonding during deformation in different structural materials such as Aluminum, Copper and other metals and alloys. There is a lack of sufficient understanding of the extrusion welding in these materials as well as very limited knowledge on this subject for hollow profiles made from Magnesium alloys. The weld integrity and the characteristic of the welding microstructure are generally unknown. In this dissertation three related research projects are investigated by using different tools such as microstructure characterization, mechanical testing, thermo-mechanical physical simulation and finite element numerical modeling. Project 1: Microstructure characterization supported by mechanical testing of the extrusion welding regions in Magnesium alloy AM30 extrudate. The microstructure characterization was conducted using Light Optical Microscopy (LOM), in addition to LOM the electron backscattered diffraction (EBSD) technique was implemented to characterize in depth the deformed and welded microstructure. Project 2: Finite element numerical simulation of AM30 extrudate to model different process parameters and their influence on localized state variables such as strain, strain rate, temperature and normal pressure within the weld zone. Project 3: Physical simulation of the extrusion welding by using Gleeble 3500 thermo-mechanical simulator to create deformation welds in Magnesium alloy AM30 samples in compression test under various temperatures and strain rates conditions. Based on the obtained results from the performed research projects and literature review, a new qualitative criterion of extrusion welding has been introduced as contribution to the field. The criterion and its analysis have provided better understanding of material response to processing parameters and assisted in selecting the processing windows for good practices in the extrusion process. In addition, the new approach contributed to better understanding and evaluating the quality of the solid state bonding of Mg alloy. Accordingly, the criteria help to avoiding formation of potential mechanical and metallurgical imperfections.

  18. Characterization of the temperature and humidity-dependent phase diagram of amorphous nanoscale organic aerosols.

    PubMed

    Rothfuss, Nicholas E; Petters, Markus D

    2017-03-01

    Atmospheric aerosols can exist in amorphous semi-solid or glassy phase states. These states are determined by the temperature (T) and relative humidity (RH). New measurements of viscosity for amorphous semi-solid nanometer size sucrose particles as a function of T and RH are reported. Viscosity is measured by inducing coagulation between two particles and probing the thermodynamic states that induce the particle to relax into a sphere. It is shown that the glass transition temperature can be obtained by extrapolation to 10 12 Pa s from the measured temperature-dependent viscosity in the 10 6 to 10 7 Pa s range. The experimental methodology was refined to allow isothermal probing of RH dependence and to increase the range of temperatures over which the dry temperature dependence can be studied. Several experiments where one monomer was sodium dodecyl sulfate (SDS), which remains solid at high RH, are also reported. These sucrose-SDS dimers were observed to relax into a sphere at T and RH similar to those observed in sucrose-sucrose dimers, suggesting that amorphous sucrose will flow over an insoluble particle at a viscosity similar to that characteristic of coalescence between two sucrose particles. Possible physical and analytical implications of this observation are considered. The data reported here suggest that semi-solid viscosity between 10 4 and 10 12 Pa s can be modelled over a wide range of T and RH using an adapted Vogel-Fulcher-Tammann equation and the Gordon-Taylor mixing rule. Sensitivity of modelled viscosity to variations in dry glass transition temperature, Gordon-Taylor constant, and aerosol hygroscopicity are explored, along with implications for atmospheric processes such as ice nucleation of glassy organic aerosols in the upper free troposphere. The reported measurement and modelling framework provides a template for characterizing the phase diagram of other amorphous aerosol systems, including secondary organic aerosols.

  19. Applicability of UV laser-induced solid-state fluorescence spectroscopy for characterization of solid dosage forms.

    PubMed

    Woltmann, Eva; Meyer, Hans; Weigel, Diana; Pritzke, Heinz; Posch, Tjorben N; Kler, Pablo A; Schürmann, Klaus; Roscher, Jörg; Huhn, Carolin

    2014-10-01

    High production output of solid pharmaceutical formulations requires fast methods to ensure their quality. Likewise, fast analytical procedures are required in forensic sciences, for example at customs, to substantiate an initial suspicion. We here present the design and the optimization of an instrumental setup for rapid and non-invasive characterization of tablets by laser-induced fluorescence spectroscopy (with a UV-laser (λ ex = 266 nm) as excitation source) in reflection geometry. The setup was first validated with regard to repeatability, bleaching phenomena, and sensitivity. The effect on the spectra by the physical and chemical properties of the samples, e.g. their hardness, homogeneity, chemical composition, and granule grain size of the uncompressed material, using a series of tablets, manufactured in accordance with design of experiments, was investigated. Investigation of tablets with regard to homogeneity, especially, is extremely important in pharmaceutical production processes. We demonstrate that multiplicative scatter correction is an appropriate tool for data preprocessing of fluorescence spectra. Tablets with different physical and chemical characteristics can be discriminated well from their fluorescence spectra by subjecting the results to principal component analysis.

  20. Anaerobic digestion of municipal solid waste composed of food waste, wastepaper, and plastic in a single-stage system: performance and microbial community structure characterization.

    PubMed

    Wan, Shungang; Sun, Lei; Douieb, Yaniv; Sun, Jian; Luo, Wensui

    2013-10-01

    The performance of municipal organic solid waste anaerobic digestion was investigated using a single-stage bioreactor, and the microbial community structures were characterized during the digestion. The results showed that the biogas and methane production rates were 592.4 and 370.1L/kg with volatile solid added at the ratio of 2:1:1 for food waste, wastepaper, and plastic based on dry weight. The methane volume concentration fluctuated between 44.3% and 75.4% at steady stage. Acetic acid, propionic acid, and butyric acid were the major volatile fatty acids produced during the digestion process. The anaerobic process was not inhibited by the accumulation of ammonia and free ammonia. The bacterial community was found to consist of at least 21 bands of bacteria and 12 bands of archaea at the steady state. All of the results indicated that the mixture of food waste, wastepaper, and plastic could be efficiently co-digested using the anaerobic digestion system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Emerging applications of spark plasma sintering in all solid-state lithium-ion batteries and beyond

    NASA Astrophysics Data System (ADS)

    Zhu, Hongzheng; Liu, Jian

    2018-07-01

    Solid-state batteries have received increasing attention due to their high safety aspect and high energy and power densities. However, the development of solid-state batteries is hindered by inferior solid-solid interfaces between the solid-state electrolyte and electrode, which cause high interfacial resistance, reduced Li-ion and electron transfer rate, and limited battery performance. Recently, spark plasma sintering (SPS) is emerging as a promising technique for fabricating solid-state electrolyte and electrode pellets with clean and intimate solid-solid interfaces. During the SPS process, the unique reaction mechanism through the combination of current, pressure and high heating rate allow the formation of desirable solid-solid interfaces between active material particles. Herein, this work focuses on the overview of the application of SPS for fabricating solid-state electrolyte and electrode in all solid-state Li-ion batteries, and beyond, such as solid-state Li-S and Na-ion batteries. The correlations among SPS parameters, interfacial resistance, and electrochemical properties of solid-state electrolytes and electrodes are discussed for different material systems. In the end, we point out future opportunities and challenges associated with SPS application in the hot area of solid-state batteries. It is expected that this timely review will stimulate more fundamental and applied research in the development of solid-state batteries by SPS.

  2. Designed Synthesis of Mesoporous Solid-Supported Lewis Acid-Base Pairs and Their CO2 Adsorption Behaviors.

    PubMed

    Zakharova, Maria V; Masoumifard, Nima; Hu, Yimu; Han, Jongho; Kleitz, Freddy; Fontaine, Frédéric-Georges

    2018-04-18

    Conventional amines and phosphines, such as diethylenetriamine, diphenylpropylphosphine, triethylamine, and tetramethylpiperidine, were grafted or impregnated on the surface of metalated SBA-15 materials, such as Ti-, Al-, and Zr-SBA-15, to generate air-stable solid-supported Lewis acid-base pairs. The Lewis acidity of the metalated materials before and after the introduction of Lewis bases was verified by means of pyridine adsorption-Fourier transform infrared spectroscopy. Detailed characterization of the materials was achieved by solid-state 13 C and 31 P MAS NMR spectroscopy, low-temperature N 2 physisorption, X-ray photoelectron spectroscopy, and energy-dispersive X-ray mapping analyses. Study of their potential interactions with CO 2 was performed using CO 2 adsorption isotherm experiments, which provided new insights into their applicability as solid CO 2 adsorbents. A correlation between solid-supported Lewis acid-base pair strength and the resulting affinity to CO 2 is discussed based on the calculation of isosteric enthalpy of adsorption.

  3. Effect of annealing ambient on anisotropic retraction of film edges during solid-state dewetting of thin single crystal films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Gye Hyun; Thompson, Carl V., E-mail: cthomp@mit.edu; Ma, Wen

    During solid-state dewetting of thin single crystal films, film edges retract at a rate that is strongly dependent on their crystallographic orientations. Edges with kinetically stable in-plane orientations remain straight as they retract, while those with other in-plane orientations develop in-plane facets as they retract. Kinetically stable edges have retraction rates that are lower than edges with other orientations and thus determine the shape of the natural holes that form during solid-state dewetting. In this paper, measurements of the retraction rates of kinetically stable edges for single crystal (110) and (100) Ni films on MgO are presented. Relative retraction ratesmore » of kinetically stable edges with different crystallographic orientations are observed to change under different annealing conditions, and this accordingly changes the initial shapes of growing holes. The surfaces of (110) and (100) films were also characterized using low energy electron diffraction, and different surface reconstructions were observed under different ambient conditions. The observed surface structures were found to correlate with the observed changes in the relative retraction rates of the kinetically stable edges.« less

  4. Association of 2-acylaminopyridines and benzoic acids. Steric and electronic substituent effect studied by XRD, solution and solid-state NMR and calculations

    NASA Astrophysics Data System (ADS)

    Ośmiałowski, Borys; Kolehmainen, Erkki; Ejsmont, Krzysztof; Ikonen, Satu; Valkonen, Arto; Rissanen, Kari; Nonappa

    2013-12-01

    Eight single crystal X-ray structures, solid-state NMR spectroscopic, and theoretical studies utilizing QTAIM methodology were used to characterize the 2-acyl (alkyl in acyl = methyl, ethyl, t-butyl, and 1-adamantyl) amino-6-R-pyridine/4-R‧-benzoic acid (R,R‧ = H or Me) cocrystals. As expected among alkyl groups 1-adamantyl due to its bulkiness has the most significant effect on the relative positions of molecules in cocrystals. In addition, the subtle electronic and steric effects by the methyl substituents were observed. The theoretical calculations with full geometry optimizations are in agreement with the experimental findings (geometry, energy of hydrogen bonds). Based on the crystal structures and calculations it is concluded that p-methyl substituent in benzoic acid increase the hydrogen bond accepting ability of the CO oxygen and decreases the hydrogen bond donating ability of OH proton. The 15N solid-state (CP MAS) NMR chemical shifts prove that molecules in cocrystal are held together by hydrogen bonding. The biggest variation in the 15N chemical shift of acylamino nitrogen can be related with the size of the alkyl group in acyl moiety.

  5. Synthesisofc-lifepo4 composite by solid state reaction method

    NASA Astrophysics Data System (ADS)

    Rahayu, I.; Hidayat, S.; Noviyanti, A. R.; Rakhmawaty, D.; Ernawati, E.

    2017-02-01

    In this research, the enhancement of LiFePO4 conductivity was conducted by doping method with carbon materials. Carbon-based materials were obtained from the mixture of sucrose, and the precursor of LiH2PO4 and α-Fe2O3 was synthesized by solid state reaction. Sintering temperature was varied at 700°C, 800°C, 900°C and 1,000°C. The result showed that C-LiFePO4 could be synthesized by using solid state reaction method. Based on the XRD and FTIR spectrums, C-LiFePO4 can be identified as the type of crystal, characterized by the appearance of sharp signal on (011), (211) and typical peak of LiFePO4 materials. The result of conductivity measurement from C-LiFePO4 at sintering temperature of 900°C and 1,000°C was 2×10-4 S/cm and 4×10-4S/cm, respectively. The conductivity value at sintering temperature of 700°C and 800°C was very small (<10-6 S/cm), which cannot be measured by the existing equipment.

  6. Boronate ligands in materials: determining their local environment by using a combination of IR/solid-state NMR spectroscopies and DFT calculations.

    PubMed

    Sene, Saad; Reinholdt, Marc; Renaudin, Guillaume; Berthomieu, Dorothée; Zicovich-Wilson, Claudio M; Gervais, Christel; Gaveau, Philippe; Bonhomme, Christian; Filinchuk, Yaroslav; Smith, Mark E; Nedelec, Jean-Marie; Bégu, Sylvie; Mutin, P Hubert; Laurencin, Danielle

    2013-01-14

    Boronic acids (R-B(OH)(2)) are a family of molecules that have found a large number of applications in materials science. In contrast, boronate anions (R-B(OH)(3)(-)) have hardly been used so far for the preparation of novel materials. Here, a new crystalline phase involving a boronate ligand is described, Ca[C(4)H(9)-B(OH)(3)](2), which is then used as a basis for the establishment of the spectroscopic signatures of boronates in the solid state. The phase was characterized by IR and multinuclear solid-state NMR spectroscopy ((1)H, (13)C, (11)B and (43)Ca), and then modeled by periodic DFT calculations. Anharmonic OH vibration frequencies were calculated as well as NMR parameters (by using the Gauge Including Projector Augmented Wave--GIPAW--method). These data allow relationships between the geometry around the OH groups in boronates and the IR and (1)H NMR spectroscopic data to be established, which will be key to the future interpretation of the spectra of more complex organic-inorganic materials containing boronate building blocks. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Femtosecond all-solid-state laser for refractive surgery

    NASA Astrophysics Data System (ADS)

    Zickler, Leander; Han, Meng; Giese, G.'nter; Loesel, Frieder H.; Bille, Josef F.

    2003-06-01

    Refractive surgery in the pursuit of perfect vision (e.g. 20/10) requires firstly an exact measurement of abberations induced by the eye and then a sophisticated surgical approach. A recent extension of wavefront measurement techniques and adaptive optics to ophthalmology has quantitatively characterized the quality of the human eye. The next milestone towards perfect vision is developing a more efficient and precise laser scalpel and evaluating minimal-invasive laser surgery strategies. Femtosecond all-solid-state MOPA lasers based on passive modelocking and chirped pulse amplification are excellent candidates for eye surgery due to their stability, ultra-high intensity and compact tabletop size. Furthermore, taking into account the peak emission in the near IR and diffraction limited focusing abilities, surgical laser systems performing precise intrastromal incisions for corneal flap resection and intrastromal corneal reshaping promise significant improvement over today's Photorefractive Keratectomy (PRK) and Laser Assisted In Situ Keratomileusis (LASIK) techniques which utilize UV excimer lasers. Through dispersion control and optimized regenerative amplification, a compact femtosecond all-solid-state laser with pulsed energy well above LIOB threshold and kHz repetition rate is constructed. After applying a pulse sequence to the eye, the modified corneal morphology is investigated by high resolution microscopy (Multi Photon/SHG Confocal Microscope).

  8. Progress and prospect on failure mechanisms of solid-state lithium batteries

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Chen, Bingbing; Wang, Longlong; Cui, Guanglei

    2018-07-01

    By replacing traditional liquid organic electrolyte with solid-state electrolyte, the solid-state lithium batteries powerfully come back to the energy storage field due to their eminent safety and energy density. In recent years, a variety of solid-state lithium batteries based on excellent solid-state electrolytes are developed. However, the performance degradation of solid-state lithium batteries during cycling and storing is still a serious challenge for practical application. Therefore, this review summarizes the research progress of solid-state lithium batteries from the perspectives of failure phenomena and failure mechanisms. Additionally, the development of methodologies on studying the failure mechanisms of solid-state lithium batteries is also reviewed. Moreover, some perspectives on the remaining questions for understanding the failure behaviors and achieving long cycle life, high safety and high energy density solid-state lithium batteries are presented. This review will help researchers to recognize the status of solid-state lithium batteries objectively and attract much more research interest in conquering the failure issues of solid-state lithium batteries.

  9. Solid oxide fuel cells fueled with reducible oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Steven S.; Fan, Liang Shih

    A direct-electrochemical-oxidation fuel cell for generating electrical energy includes a cathode provided with an electrochemical-reduction catalyst that promotes formation of oxygen ions from an oxygen-containing source at the cathode, a solid-state reduced metal, a solid-state anode provided with an electrochemical-oxidation catalyst that promotes direct electrochemical oxidation of the solid-state reduced metal in the presence of the oxygen ions to produce electrical energy, and an electrolyte disposed to transmit the oxygen ions from the cathode to the solid-state anode. A method of operating a solid oxide fuel cell includes providing a direct-electrochemical-oxidation fuel cell comprising a solid-state reduced metal, oxidizing themore » solid-state reduced metal in the presence of oxygen ions through direct-electrochemical-oxidation to obtain a solid-state reducible metal oxide, and reducing the solid-state reducible metal oxide to obtain the solid-state reduced metal.« less

  10. Characterizing Optical Loss in Orientation Patterned III-V Materials using Laser Calorimetry

    DTIC Science & Technology

    2014-03-27

    nm and solid state fiber lasers . A comparison of the important properties of commonly used frequency conversion materials are shown in Table 1 [9......templates at AFRL. 32 Laser Calorimetry Experiment A THOR Labs ITC 4001 Laser diode with a 1625 nm, 50 mW fiber pigtail was used as the source

  11. Characterization of manure from conventional and phytase transgenic pigs by advanced solid-state NMR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Non-point phosphorus (P) pollution from animal manure is becoming a serious global problem. The current solution for the swine industry is including the enzyme phytase as a component of the cereal grain diet. A very real possibility in the future is the production of transgenic pigs that express phy...

  12. Solid-state 13C nuclear magnetic resonance spectroscopic characterization of soil organic matter fractions in a forest ecosystem subjected to prescribed burning and thinning

    USDA-ARS?s Scientific Manuscript database

    Prescribed burning and thinning are gaining popularity as low-cost forest protection measures. Such field management practices could alter the chemical properties of soil organic matter (SOM), especially humic substances. In this work, we collected surface soil samples from the Bankhead National For...

  13. Solid electrolyte-electrode system for an electrochemical cell

    DOEpatents

    Tuller, H.L.; Kramer, S.A.; Spears, M.A.

    1995-04-04

    An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is also provided. 17 figures.

  14. YPdSn and YPd{sub 2}Sn: Structure, {sup 89}Y solid state NMR and {sup 119}Sn Moessbauer spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoeting, Christoph; Eckert, Hellmut; Langer, Thorsten

    2012-06-15

    The stannides YPdSn and YPd{sub 2}Sn were synthesized by high-frequency melting of the elements in sealed tantalum tubes. Both structures were refined on the basis of single crystal X-ray diffractometer data: TiNiSi type, Pnma, a=715.4(1), b=458.8(1), c=789.1(1) pm, wR2=0.0461, 510 F{sup 2} values, 20 variables for YPdSn and MnCu{sub 2}Al type, Fm3 Macron m, a=671.44(8), wR2=0.0740, 55 F{sup 2} values, 5 parameters for YPd{sub 2}Sn. The yttrium atoms in the new stannide YPdSn are coordinated by two tilted Pd{sub 3}Sn{sub 3} hexagons (ordered AlB{sub 2} superstructure). In the Heusler phase YPd{sub 2}Sn each yttrium atom has octahedral tin coordination andmore » additionally eight palladium neighbors. The cubic site symmetry of yttrium is reflected in the {sup 119}Sn Moessbauer spectrum which shows no quadrupole splitting. In contrast, YPdSn shows a single signal at {delta}=1.82(1) mm/s subjected to quadrupole splitting of {Delta}E{sub Q}=0.93(1) mm/s. Both compounds have been characterized by high-resolution {sup 89}Y solid state NMR spectroscopy, which indicates the presence of strong Knight shifts. The spectrum of YPd{sub 2}Sn is characterized by an unusually large linewidth, suggesting the presence of a Knight shift distribution reflecting local disordering effects. The range of {sup 89}Y Knight shifts of several binary and ternary intermetallic yttrium compounds is briefly discussed. - Graphical abstract: YPdSn and YPd{sub 2}Sn: Structure, {sup 89}Y solid state NMR and {sup 119}Sn Moessbauer spectroscopy. Highlights: Black-Right-Pointing-Pointer Synthesis and structure of ternary stannides YPdSn and YPd{sub 2}Sn. Black-Right-Pointing-Pointer {sup 119}Sn Moessbauer spectroscopic investigation of YPdSn and YPd{sub 2}Sn. Black-Right-Pointing-Pointer {sup 89}Y solid state NMR of intermetallics.« less

  15. Diffusion and reactivity of ground-state nitrogen atoms N(4S) between 3 and 15 K: application to the hydrogen abstraction reaction from methane under non-energetic conditions

    NASA Astrophysics Data System (ADS)

    Nourry, Sendres; Krim, Lahouari

    2015-07-01

    We have characterized the CH4 + N(4S) reaction in solid phase, at very low temperature, under non-energetic conditions and where the CH4 and N reactants are in their ground states. A microwave-driven atomic source has been used to generate ground-state nitrogen atoms N(4S), and experiments have been carried out at temperatures as low as 3 K to reduce the mobility of the trapped species in solid phase and hence to freeze the first step of the CH4 + N reaction pathway. Leaving the formed solid sample in the dark for a while allows all trapped reactants to relax to the ground state, specifically radicals and excited species streaming from the plasma discharge. Such a method could be the only possibility of proving that the CH4 + N reaction occurs between CH4 and N reactants in their ground states without any additional energy to initiate the chemical process. The appearance of the CH3 reaction product, just by inducing the mobility of N atoms between 3 and 11 K, translates that a hydrogen abstraction reaction from methane, under non-energetic conditions, will start occurring at very low temperature. The formation of methyl radical, under these experimental conditions, is due to recombination processes N(4S)-N(4S) of ground-state nitrogen atoms without any contribution of cosmic ray particles or high-energy photons.

  16. Characterization of Non-Innocent Metal Complexes Using Solid-State NMR Spectroscopy: o-Dioxolene Vanadium Complexes

    PubMed Central

    Chatterjee, Pabitra B.; Goncharov-Zapata, Olga; Quinn, Laurence L.; Hou, Guangjin; Hamaed, Hiyam; Schurko, Robert W.; Polenova, Tatyana; Crans, Debbie C.

    2012-01-01

    51V solid-state NMR (SSNMR) studies of a series of non-innocent vanadium(V) catechol complexes have been conducted to evaluate the possibility that 51V NMR observables, quadrupolar and chemical shift anisotropies, and electronic structures of such compounds can be used to characterize these compounds. The vanadium(V) catechol complexes described in these studies have relatively small quadrupolar coupling constants, which cover a surprisingly small range from 3.4 to 4.2 MHz. On the other hand, isotropic 51V NMR chemical shifts cover a wide range from −200 ppm to 400 ppm in solution and from −219 to 530 ppm in the solid state. A linear correlation of 51V NMR isotropic solution and solid-state chemical shifts of complexes containing non-innocent ligands is observed. These experimental results provide the information needed for the application of 51V SSNMR spectroscopy in characterizing the electronic properties of a wide variety of vanadium-containing systems, and in particular those containing non-innocent ligands and that have chemical shifts outside the populated range of −300 ppm to −700 ppm. The studies presented in this report demonstrate that the small quadrupolar couplings covering a narrow range of values reflect the symmetric electronic charge distribution, which is also similar across these complexes. These quadrupolar interaction parameters alone are not sufficient to capture the rich electronic structure of these complexes. In contrast, the chemical shift anisotropy tensor elements accessible from 51V SSNMR experiments are a highly sensitive probe of subtle differences in electronic distribution and orbital occupancy in these compounds. Quantum chemical (DFT) calculations of NMR parameters for [VO(hshed)(Cat)] yield 51V CSA tensor in reasonable agreement with the experimental results, but surprisingly, the calculated quadrupolar coupling constant is significantly greater than the experimental value. The studies demonstrate that substitution of the catechol ligand with electron donating groups results in an increase in the HOMO-LUMO gap and can be directly followed by an upfield shift for the vanadium catechol complex. In contrast, substitution of the catechol ligand with electron withdrawing groups results in a decrease in the HOMO-LUMO gap and can directly be followed by a downfield shift for the complex. The vanadium catechol complexes were used in this work because the 51V is a half-integer quadrupolar nucleus whose NMR observables are highly sensitive to the local environment. However, the results are general and could be extended to other redox active complexes that exhibit similar coordination chemistry as the vanadium catechol complexes. PMID:21842875

  17. Synthesis, characterization, structure and properties of heterobimetallic complexes [CuNi(μ-OAc) (μ-OH) (μ-OH2) (bpy)2] (BF4)2 and [CuNi(bz)3(bpy)2] ClO4 from 2,2‧ bipyridine

    NASA Astrophysics Data System (ADS)

    Kurbah, Sunshine D.; Kumar, A.; Syiemlieh, I.; Dey, A. K.; Lal, R. A.

    2018-02-01

    Heterobimetallic complexes of the composition [CuNi(bpy)2 (μ-OAc) (μ-OH) (μ-OH2)](BF4)2 (1) and [CuNi(bz)3 (bpy)2]ClO4 (2) were synthesized in moderate yield through solid state reaction and have been characterized by elemental analyses, molar conductance, mass spectra, magnetic moment, EPR, UV-Vis, IR spectroscopies and cyclic voltammetry. The ground state in complex (1) is doublet while that in complex (2), the ground state is a mixture of doublet and quartet, respectively. The structure of the complexes has been established by X-ray crystallography. The electron transfer reactions of the complexes have been investigated by cyclic voltammetry.

  18. Interaction of ammonium with birnessite: Evidence of a chemical and structural transformation in alkaline aqueous medium

    NASA Astrophysics Data System (ADS)

    Boumaiza, Hella; Coustel, Romain; Despas, Christelle; Ruby, Christian; Bergaoui, Latifa

    2018-02-01

    The ammonium cation interaction with Na-birnessite in aqueous alkaline medium was studied. Solution and solid analysis give evidence that birnessite is not only acting as a cationic exchanger toward NH4+. The surface analysis performed by XPS showed that N1s spectra are characterized by the existence of two different environments: one assignable to an interlayer NH4+ and the second to a chemisorbed N-species. Structural and chemical transformations were observed on birnessite with nitrogen mass balance deficit. The monitoring of NH4+, Na+, Mn2+, NO3- and NO2- and solid changes (average oxidation state of Mn, cation exchange capacity, solid nitrogen content and symmetry evolution identified by XRD and FTIR) indicate unambiguously that NH4+ reacts chemically with the birnessite.

  19. Phosphates based pigments for new anti-corrosion application: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Tbib, B.; Eddya, M.; El-Hami, K.

    2018-02-01

    Our study focused on pyrophosphates SrZn1-xMxP2O7 using four series by substituting M with manganese (Mn), cobalt (Co), nickel (Ni), and copper (Cu). They were prepared by reaction in the solid state at 1000 °C for 24 hours and then characterized by X-ray diffraction, which showed that the obtained products are pure. The characterization by UV-visible spectroscopy was used to explain the color of the obtained materials and the optical properties showing the optical energy gap and disorder of these materials. Potential application could be done using the new anti-corrosion pigments based on phosphates.

  20. Preformulation characterization and in vivo absorption in beagle dogs of JFD, a novel anti-obesity drug for oral delivery.

    PubMed

    Fan, Yunzhou; Yang, Meiyan; Wang, Yuli; Li, Yanyou; Zhou, Yuanda; Chen, Xiaoping; Shan, Li; Wei, Jun; Gao, Chunsheng

    2015-05-01

    JFD (N-isoleucyl-4-methyl-1,1-cyclopropyl-1-(4-chlorine)phenyl-2-amylamine·HCl) is a novel investigational anti-obesity drug without obvious cardiotoxicity. The objective of this study was to characterize the key physicochemical properties of JFD, including solution-state characterization (ionization constant, partition coefficient, aqueous and pH-solubility profile), solid-state characterization (particle size, thermal analysis, crystallinity and hygroscopicity) and drug-excipient chemical compatibility. A supporting in vivo absorption study was also carried out in beagle dogs. JFD bulk powders are prismatic crystals with a low degree of crystallinity, particle sizes of which are within 2-10 μm. JFD is highly hygroscopic, easily deliquesces to an amorphous glass solid and changes subsequently to another crystal form under an elevated moisture/temperature condition. Similar physical instability was also observed in real-time CheqSol solubility assay. pK(a) (7.49 ± 0.01), log P (5.10 ± 0.02) and intrinsic solubility (S0) (1.75 μg/ml) at 37 °C of JFD were obtained using potentiometric titration method. Based on these solution-state properties, JFD was estimated to be classified as BCS II, thus its dissolution rate may be an absorption-limiting step. Moreover, JFD was more chemically compatible with dibasic calcium phosphate, mannitol, hypromellose and colloidal silicon dioxide than with lactose and magnesium stearate. Further, JFD exhibited an acceptable pharmacokinetic profiling in beagle dogs and the pharmacokinetic parameters T(max), C(max), AUC(0-t) and absolute bioavailability were 1.60 ± 0.81 h, 0.78 ± 0.47 μg/ml, 3.77 ± 1.85 μg·h/ml and 52.30 ± 19.39%, respectively. The preformulation characterization provides valuable information for further development of oral administration of JFD.

  1. An innovative approach to the development of a portable unit for analytical flame characterization in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Dubinskiy, Mark A.; Kamal, Mohammed M.; Misra, Prabhaker

    1995-01-01

    The availability of manned laboratory facilities in space offers wonderful opportunities and challenges in microgravity combustion science and technology. In turn, the fundamentals of microgravity combustion science can be studied via spectroscopic characterization of free radicals generated in flames. The laser-induced fluorescence (LIF) technique is a noninvasive method of considerable utility in combustion physics and chemistry suitable for monitoring not only specific species and their kinetics, but it is also important for imaging of flames. This makes LIF one of the most important tools for microgravity combustion science. Flame characterization under microgravity conditions using LIF is expected to be more informative than other methods aimed at searching for effects like pumping phenomenon that can be modeled via ground level experiments. A primary goal of our work consisted in working out an innovative approach to devising an LIF-based analytical unit suitable for in-space flame characterization. It was decided to follow two approaches in tandem: (1) use the existing laboratory (non-portable) equipment and determine the optimal set of parameters for flames that can be used as analytical criteria for flame characterization under microgravity conditions; and (2) use state-of-the-art developments in laser technology and concentrate some effort in devising a layout for the portable analytical equipment. This paper presents an up-to-date summary of the results of our experiments aimed at the creation of the portable device for combustion studies in a microgravity environment, which is based on a portable UV tunable solid-state laser for excitation of free radicals normally present in flames in detectable amounts. A systematic approach has allowed us to make a convenient choice of species under investigation, as well as the proper tunable laser system, and also enabled us to carry out LIF experiments on free radicals using a solid-state laser tunable in the UV.

  2. Method for making an electrochemical cell

    DOEpatents

    Tuller, Harry L.; Kramer, Steve A.; Spears, Marlene A.; Pal, Uday B.

    1996-01-01

    An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is provided.

  3. Degradation Mechanisms at the Li10GeP2S12/LiCoO2 Cathode Interface in an All-Solid-State Lithium-Ion Battery.

    PubMed

    Zhang, Wenbo; Richter, Felix H; Culver, Sean P; Leichtweiss, Thomas; Lozano, Juan G; Dietrich, Christian; Bruce, Peter G; Zeier, Wolfgang G; Janek, Jürgen

    2018-06-20

    All-solid-state batteries (ASSBs) show great potential for providing high power and energy densities with enhanced battery safety. While new solid electrolytes (SEs) have been developed with high enough ionic conductivities, SSBs with long operational life are still rarely reported. Therefore, on the way to high-performance and long-life ASSBs, a better understanding of the complex degradation mechanisms, occurring at the electrode/electrolyte interfaces is pivotal. While the lithium metal/solid electrolyte interface is receiving considerable attention due to the quest for high energy density, the interface between the active material and solid electrolyte particles within the composite cathode is arguably the most difficult to solve and study. In this work, multiple characterization methods are combined to better understand the processes that occur at the LiCoO 2 cathode and the Li 10 GeP 2 S 12 solid electrolyte interface. Indium and Li 4 Ti 5 O 12 are used as anode materials to avoid the instability problems associated with Li-metal anodes. Capacity fading and increased impedances are observed during long-term cycling. Postmortem analysis with scanning transmission electron microscopy, electron energy loss spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy show that electrochemically driven mechanical failure and degradation at the cathode/solid electrolyte interface contribute to the increase in internal resistance and the resulting capacity fading. These results suggest that the development of electrochemically more stable SEs and the engineering of cathode/SE interfaces are crucial for achieving reliable SSB performance.

  4. Characterization of heteronuclear decoupling through proton spin dynamics in solid-state nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    De Paëpe, Gaël; Eléna, Bénédicte; Emsley, Lyndon

    2004-08-01

    The work presented here aims at understanding the performance of phase modulated heteronuclear decoupling sequences such as Cosine Modulation or Two Pulse Phase Modulation. To that end we provide an analytical description of the intrinsic behavior of Cosine Modulation decoupling with respect to radio-frequency-inhomogeneity and the proton-proton dipolar coupling network. We discover through a Modulation Frame average Hamiltonian analysis that best decoupling is obtained under conditions where the heteronuclear interactions are removed but notably where homonuclear couplings are recoupled at a homonuclear Rotary Resonance (HORROR) condition in the Modulation Frame. These conclusions are supported by extensive experimental investigations, and notably through the introduction of proton nutation experiments to characterize spin dynamics in solids under decoupling conditions. The theoretical framework presented in this paper allows the prediction of the optimum parameters for a given set of experimental conditions.

  5. Simultaneous reflectometry and interferometry for measuring thin-film thickness and curvature

    NASA Astrophysics Data System (ADS)

    Arends, A. A.; Germain, T. M.; Owens, J. F.; Putnam, S. A.

    2018-05-01

    A coupled reflectometer-interferometer apparatus is described for thin-film thickness and curvature characterization in the three-phase contact line region of evaporating fluids. Validation reflectometry studies are provided for Au, Ge, and Si substrates and thin-film coatings of SiO2 and hydrogel/Ti/SiO2. For interferometry, liquid/air and solid/air interferences are studied, where the solid/air samples consisted of glass/air/glass wedges, cylindrical lenses, and molded polydimethylsiloxane lenses. The liquid/air studies are based on steady-state evaporation experiments of water and isooctane on Si and SiO2/Ti/SiO2 wafers. The liquid thin-films facilitate characterization of both (i) the nano-scale thickness of the absorbed fluid layer and (ii) the macro-scale liquid meniscus thickness, curvature, and curvature gradient profiles. For our validation studies with commercial lenses, the apparatus is shown to measure thickness profiles within 4.1%-10.8% error.

  6. High Efficiency Ka-Band Solid State Power Amplifier Waveguide Power Combiner

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.; Chevalier, Christine T.; Freeman, Jon C.

    2010-01-01

    A novel Ka-band high efficiency asymmetric waveguide four-port combiner for coherent combining of two Monolithic Microwave Integrated Circuit (MMIC) Solid State Power Amplifiers (SSPAs) having unequal outputs has been successfully designed, fabricated and characterized over the NASA deep space frequency band from 31.8 to 32.3 GHz. The measured combiner efficiency is greater than 90 percent, the return loss greater than 18 dB and input port isolation greater than 22 dB. The manufactured combiner was designed for an input power ratio of 2:1 but can be custom designed for any arbitrary power ratio. Applications considered are NASA s space communications systems needing 6 to 10 W of radio frequency (RF) power. This Technical Memorandum (TM) is an expanded version of the article recently published in Institute of Engineering and Technology (IET) Electronics Letters.

  7. Observation of Topological Links Associated with Hopf Insulators in a Solid-State Quantum Simulator

    NASA Astrophysics Data System (ADS)

    Yuan, X.-X.; He, L.; Wang, S.-T.; Deng, D.-L.; Wang, F.; Lian, W.-Q.; Wang, X.; Zhang, C.-H.; Zhang, H.-L.; Chang, X.-Y.; Duan, L.-M.

    2017-06-01

    Hopf insulators are intriguing three-dimensional topological insulators characterized by an integer topological invariant. They originate from the mathematical theory of Hopf fibration and epitomize the deep connection between knot theory and topological phases of matter, which distinguishes them from other classes of topological insulators. Here, we implement a model Hamiltonian for Hopf insulators in a solid-state quantum simulator and report the first experimental observation of their topological properties, including fascinating topological links associated with the Hopf fibration and the integer-valued topological invariant obtained from a direct tomographic measurement. Our observation of topological links and Hopf fibration in a quantum simulator opens the door to probe rich topological properties of Hopf insulators in experiments. The quantum simulation and probing methods are also applicable to the study of other intricate three-dimensional topological model Hamiltonians.

  8. A sustainable solid state recycling of pure aluminum by means of friction stir extrusion process (FSE)

    NASA Astrophysics Data System (ADS)

    Mehtedi, Mohamad El; Forcellese, Archimede; Simoncini, Michela; Spigarelli, Stefano

    2018-05-01

    In this research, the feasibility of solid-state recycling of pure aluminum AA1099 machining chips using FSE process is investigated. In the early stage, a FE simulation was conducted in order to optimize the die design and the process parameters in terms of plunge rotational speed and extrusion rate. The AA1099 aluminum chips were produced by turning of an as-received bar without lubrication. The chips were compacted on a MTS machine up to 150KN of load. The extruded samples were analyzed by optical and electron microscope in order to see the material flow and to characterize the microstructure. Finally, micro-hardness Vickers profiles were carried out, in both longitudinal and transversal direction of the obtained profiles, in order to investigate the homogeneity of the mechanical properties of the extrudate.

  9. A promising red-emitting phosphor for white-light-emitting diodes prepared by a modified solid-state reaction

    NASA Astrophysics Data System (ADS)

    Ren, Fuqiang; Chen, Donghua

    2010-02-01

    Using urea, boric acid and polyethylene glycol (PEG) as auxiliary reagents, the novel red-emitting phosphors Ca 19Zn 2 (PO 4) 14:Eu 3+ have been successfully synthesized by a modified solid-state reaction. Thermogravimetric (TG) analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL) spectra were used to characterize the resulting phosphors. The dependence of the photoluminescence properties of Ca 19Zn 2 (PO 4) 14:Eu 3+ phosphors upon urea, boric acid and PEG concentration and the quadric-sintered temperature were investigated. Luminescent measurements showed that the phosphors can be efficiently excited by ultraviolet (UV) to visible region, emitting a red light with a peak wavelength of 616 nm. The material has potential application as a fluorescent material for ultraviolet light-emitting diodes (UV-LEDs).

  10. LiCoPO4 cathode from a CoHPO4·xH2O nanoplate precursor for high voltage Li-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Daiwon; Li, Xiaolin; Henderson, Wesley A.

    2016-02-01

    Highly crystalline LiCoPO4/C cathode has been synthesized without any impurities via single step solid-state reaction using CoHPO4xH2O nanoplates as a precursor obtained by simple precipitation route. The electrochemical test shows specific capacity as high as 125mAh/g at charge/discharge rate of C/10. Synthesis approach for obtaining CoHPO4xH2O nanoplate precursor and final LiCoPO4/C cathode using single step solid-state reaction have been characterized using X-ray diffraction, thermos gravimetric analyses (TGA) – differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The electrochemical test and cycling stability using different electrolytes, additive and separator have been investigated.

  11. Implementing general quantum measurements on linear optical and solid-state qubits

    NASA Astrophysics Data System (ADS)

    Ota, Yukihiro; Ashhab, Sahel; Nori, Franco

    2013-03-01

    We show a systematic construction for implementing general measurements on a single qubit, including both strong (or projection) and weak measurements. We mainly focus on linear optical qubits. The present approach is composed of simple and feasible elements, i.e., beam splitters, wave plates, and polarizing beam splitters. We show how the parameters characterizing the measurement operators are controlled by the linear optical elements. We also propose a method for the implementation of general measurements in solid-state qubits. Furthermore, we show an interesting application of the general measurements, i.e., entanglement amplification. YO is partially supported by the SPDR Program, RIKEN. SA and FN acknowledge ARO, NSF grant No. 0726909, JSPS-RFBR contract No. 12-02-92100, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and the JSPS via its FIRST program.

  12. Atomic-level structure characterization of biomass pre- and post-lignin treatment by dynamic nuclear polarization-enhanced solid-state NMR

    DOE PAGES

    Perras, Frederic A.; Luo, Hao; Zhang, Ximing; ...

    2016-12-27

    Here, lignocellulosic biomass is a promising sustainable feedstock for the production of biofuels, biomaterials, and biospecialty chemicals. However, efficient utilization of biomass has been limited by our poor understanding of its molecular structure. Here, we report a dynamic nuclear polarization (DNP)-enhanced solid-state (SS)NMR study of the molecular structure of biomass, both pre- and postcatalytic treatment. This technique enables the measurement of 2D homonuclear 13C– 13C correlation SSNMR spectra under natural abundance, yielding, for the first time, an atomic-level picture of the structure of raw and catalytically treated biomass samples. We foresee that further such experiments could be used to determinemore » structure–function relationships and facilitate the development of more efficient, and chemically targeted, biomass-conversion technologies.« less

  13. Atomic-level structure characterization of biomass pre- and post-lignin treatment by dynamic nuclear polarization-enhanced solid-state NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perras, Frederic A.; Luo, Hao; Zhang, Ximing

    Here, lignocellulosic biomass is a promising sustainable feedstock for the production of biofuels, biomaterials, and biospecialty chemicals. However, efficient utilization of biomass has been limited by our poor understanding of its molecular structure. Here, we report a dynamic nuclear polarization (DNP)-enhanced solid-state (SS)NMR study of the molecular structure of biomass, both pre- and postcatalytic treatment. This technique enables the measurement of 2D homonuclear 13C– 13C correlation SSNMR spectra under natural abundance, yielding, for the first time, an atomic-level picture of the structure of raw and catalytically treated biomass samples. We foresee that further such experiments could be used to determinemore » structure–function relationships and facilitate the development of more efficient, and chemically targeted, biomass-conversion technologies.« less

  14. Ion conduction in crystalline superionic solids and its applications

    NASA Astrophysics Data System (ADS)

    Chandra, Angesh

    2014-06-01

    Superionic solids an area of multidisciplinary research activity, incorporates to study the physical, chemical and technological aspects of rapid ion movements within the bulk of the special class of ionic materials. It is an emerging area of materials science, as these solids show tremendous technological scopes to develop wide variety of solid state electrochemical devices such as batteries, fuel cells, supercapacitors, sensors, electrochromic displays (ECDs), memories, etc. These devices have wide range of applicabilities viz. power sources for IC microchips to transport vehicles, novel sensors for controlling atmospheric pollution, new kind of memories for computers, smart windows/display panels, etc. The field grew with a rapid pace since then, especially with regards to designing new materials as well as to explore their device potentialities. Amongst the known superionic solids, fast Ag+ ion conducting crystalline solid electrolytes are attracted special attention due to their relatively higher room temperature conductivity as well as ease of materials handling/synthesis. Ion conduction in these electrolytes is very much interesting part of today. In the present review article, the ion conducting phenomenon and some device applications of crystalline/polycrystalline superionic solid electrolytes have been reviewed in brief. Synthesis and characterization tools have also been discussed in the present review article.

  15. Synthesis, characterization and electrical properties of a lead sodium vanadate apatite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakroun-Ouadhour, E.; Ternane, R.; Hassen-Chehimi, D. Ben

    2008-08-04

    The lacunary lead sodium vanadate apatite Pb{sub 8}Na{sub 2}(VO{sub 4}){sub 6} was synthesized by the solid-state reaction method. The compound was characterized by X-ray powder diffraction, infrared (IR) absorption spectroscopy and Raman scattering spectroscopy. By comparing the effect of vanadate and phosphate ions on electrical properties, it was concluded that Pb{sub 8}Na{sub 2}(VO{sub 4}){sub 6} apatite is better conductor than Pb{sub 8}Na{sub 2}(PO{sub 4}){sub 6} apatite.

  16. Characterizing the Secondary Protein Structure of Black Widow Dragline Silk Using Solid-State NMR & X-ray Diffraction

    PubMed Central

    Jenkins, Janelle E.; Sampath, Sujatha; Butler, Emily; Kim, Jihyun; Henning, Robert W.; Holland, Gregory P.; Yarger, Jeffery L.

    2013-01-01

    This study provides a detailed secondary structural characterization of major ampullate dragline silk from Latrodectus hesperus (black widow) spiders. X-ray diffraction results show that the structure of black widow major ampullate silk fibers is comprised of stacked β-sheet nanocrystallites oriented parallel to the fiber axis and an amorphous region with oriented (anisotropic) and isotropic components. The combination of two-dimensional (2D) 13C-13C through-space and through-bond solid-state NMR experiments provide chemical shifts that are used to determine detailed information about amino acid motif secondary structure in black widow spider dragline silk. Individual amino acids are incorporated into different repetitive motifs that make up the majority of this protein-based biopolymer. From the solid-state NMR measurements, we assign distinct secondary conformations to each repetitive amino acid motif and hence to the amino acids that make up the motifs. Specifically, alanine is incorporated in β-sheet (poly(Alan) and poly(Gly-Ala)), 31-helix (poly(Gly-Gly-Xaa), and α-helix (poly(Gln-Gln-Ala-Tyr)) components. Glycine is determined to be in β-sheet (poly(Gly-Ala)) and 31-helical (poly(Gly-Gly-Xaa)) regions, while serine is present in β-sheet (poly(Gly-Ala-Ser)), 31-helix (poly(Gly-Gly-Ser)), and β-turn (poly(Gly-Pro-Ser)) structures. These various motif-specific secondary structural elements are quantitatively correlated to the primary amino acid sequence of major ampullate spidroin 1 and 2 (MaSp1 and MaSp2) and are shown to form a self-consistent model for black widow dragline silk. PMID:24024617

  17. Characterization of the Vibrio cholerae extracellular matrix: a top-down solid-state NMR approach.

    PubMed

    Reichhardt, Courtney; Fong, Jiunn C N; Yildiz, Fitnat; Cegelski, Lynette

    2015-01-01

    Bacterial biofilms are communities of bacterial cells surrounded by a self-secreted extracellular matrix. Biofilm formation by Vibrio cholerae, the human pathogen responsible for cholera, contributes to its environmental survival and infectivity. Important genetic and molecular requirements have been identified for V. cholerae biofilm formation, yet a compositional accounting of these parts in the intact biofilm or extracellular matrix has not been described. As insoluble and non-crystalline assemblies, determinations of biofilm composition pose a challenge to conventional biochemical and biophysical analyses. The V. cholerae extracellular matrix composition is particularly complex with several proteins, complex polysaccharides, and other biomolecules having been identified as matrix parts. We developed a new top-down solid-state NMR approach to spectroscopically assign and quantify the carbon pools of the intact V. cholerae extracellular matrix using ¹³C CPMAS and ¹³C{(¹⁵N}, ¹⁵N{³¹P}, and ¹³C{³¹P}REDOR. General sugar, lipid, and amino acid pools were first profiled and then further annotated and quantified as specific carbon types, including carbonyls, amides, glycyl carbons, and anomerics. In addition, ¹⁵N profiling revealed a large amine pool relative to amide contributions, reflecting the prevalence of molecular modifications with free amine groups. Our top-down approach could be implemented immediately to examine the extracellular matrix from mutant strains that might alter polysaccharide production or lipid release beyond the cell surface; or to monitor changes that may accompany environmental variations and stressors such as altered nutrient composition, oxidative stress or antibiotics. More generally, our analysis has demonstrated that solid-state NMR is a valuable tool to characterize complex biofilm systems. Copyright © 2014. Published by Elsevier B.V.

  18. Solid-state NMR characterization of copolymers of nylon 11 and nylon 12.

    PubMed

    Johnson, C G; Mathias, L J

    1997-05-01

    Solid-state 13C and 15N NMR spectroscopy, in conjunction with differential scanning calorimetry, wide-angle X-ray diffraction and infrared spectroscopy, were used to characterize a series of nylon 11 and 12 copolymers with mole percentages of nylon 12 monomer of 0, 15, 35, 50, 65, 85, and 100%. Monotonic melting point (Tm) and heat of fusion depressions were observed for the copolymer series with the 65 mol% nylon 12 copolymer having the lowest apparent crystallinity and Tm at 148 degrees C. Solid-state 15N NMR spectra showed a smooth shift of the main peak position for the as-prepared copolymers from 84 ppm for the alpha-form of pure nylon 11 to 89 ppm for the gamma-form of pure nylon 12. Similar behavior was seen for FTIR amide V and VI modes which are also sensitive to the alpha- and gamma-crystal forms. 13C NMR T1 measurements showed that the overall most mobile sample was the 65:35 copolymer. The amide group of the 1:1 copolymer was labelled using 15N-labelled amino acids available through the Gabriel synthesis; an annealed, solution-cast film of this sample showed a T1N value of 349 s, similar to values seen for annealed nylon 11 and nylon 12 homopolymers. The WAXS pattern for the 65 mol% nylon 12 sample showed a sharp peak at 2 theta = 21.3, overlapping a broad peak centered at 2 theta = 21.0. These are consistent with the values seen for gamma-form nylon 12. The 1:1 copolymer (15N labelled) was shown to be polymorphic, like the homopolymers after specific treatments, with a gamma-like phase formed upon solvent casting, and an alpha-like phase dominating for as-polymerized material and precipitated flakes.

  19. Synthesis, crystal structure and characterization of a new organic-inorganic hybrid material 4-(ammonium methyl) pipyridinium hexachloro stanate (II) trihydrate

    NASA Astrophysics Data System (ADS)

    Lassoued, Mohamed Saber; Abdelbaky, Mohammed S. M.; Lassoued, Abdelmajid; Ammar, Salah; Gadri, Abdellatif; Ben Salah, Abdelhamid; García-Granda, Santiago

    2018-03-01

    The present paper undertakes the study of (C6H16N2) SnCl6·3H2O which is a new hybrid compound. It was prepared and characterized by single crystal X-ray diffraction, X-ray powder, Hirshfeld surface, Spectroscopy measurement, thermal study and photoluminescence properties. The single crystal X-ray diffraction studies revealed that the compound crystallizes in monoclinic Cc space group with cell parameters a = 8.3309(9) Å, b = 22.956(2) Å, c = 9.8381(9) Å, β = 101.334(9) ° and Z = 4. The atomic arrangement shows an alternation of organic and inorganic entities. The cohesion between these entities is performed via Nsbnd H⋯Cl, Nsbnd H⋯O, Osbnd H⋯Cl and Osbnd H⋯O hydrogen bonding to form a three-dimensional network. Hirshfeld surface analysis was used to investigate intermolecular interactions, as well 2D finger plots were conducted to reveal the contribution of these interactions in the crystal structure quantitatively. The X-ray powder is in agreement with the X-ray structure. Scanning electron microscope (SEM) was carried out. Furthermore, the room temperature infrared (IR) spectrum of the title compound was recorded and analyzed on the basis of data found in the literature. Solid state 13C NMR spectrum shows four signals, confirming the solid state structure determined by X-ray diffraction. Besides, the thermal analysis studies were performed, but no phase transition was found in the temperature range between 30 and 450 °C. The optical and PL properties of the compound were investigated in the solid state at room temperature and exhibited three bands at 348 and 401 cm-1 and a strong fluorescence at 480 nm.

  20. Multi-institutional analysis of CT and MRI reports evaluating indeterminate renal masses: comparison to a national survey investigating desired report elements.

    PubMed

    Hu, Eric M; Zhang, Andrew; Silverman, Stuart G; Pedrosa, Ivan; Wang, Zhen J; Smith, Andrew D; Chandarana, Hersh; Doshi, Ankur; Shinagare, Atul B; Remer, Erick M; Kaffenberger, Samuel D; Miller, David C; Davenport, Matthew S

    2018-04-17

    To determine the need for a standardized renal mass reporting template by analyzing reports of indeterminate renal masses and comparing their contents to stated preferences of radiologists and urologists. The host IRB waived regulatory oversight for this multi-institutional HIPAA-compliant quality improvement effort. CT and MRI reports created to characterize an indeterminate renal mass were analyzed from 6 community (median: 17 reports/site) and 6 academic (median: 23 reports/site) United States practices. Report contents were compared to a published national survey of stated preferences by academic radiologists and urologists from 9 institutions. Descriptive statistics and Chi-square tests were calculated. Of 319 reports, 85% (271; 192 CT, 79 MRI) reported a possibly malignant mass (236 solid, 35 cystic). Some essential elements were commonly described: size (99% [269/271]), mass type (solid vs. cystic; 99% [268/271]), enhancement (presence vs. absence; 92% [248/271]). Other essential elements had incomplete penetrance: the presence or absence of fat in solid masses (14% [34/236]), size comparisons when available (79% [111/140]), Bosniak classification for cystic masses (54% [19/35]). Preferred but non-essential elements generally were described in less than half of reports. Nephrometry scores usually were not included for local therapy candidates (12% [30/257]). Academic practices were significantly more likely than community practices to include mass characterization details, probability of malignancy, and staging. Community practices were significantly more likely to include management recommendations. Renal mass reporting elements considered essential or preferred often are omitted in radiology reports. Variation exists across radiologists and practice settings. A standardized template may mitigate these inconsistencies.

  1. A prototype hybrid 7π quinone-fused 1,3,2-dithiazolyl radical.

    PubMed

    Decken, A; Mailman, A; Passmore, J; Rautiainen, J M; Scherer, W; Scheidt, E-W

    2011-01-28

    Reaction of 1,4-naphthoquinone and SNSMF(6) (M = As, Sb) in SO(2) solution in a 1 : 2 molar ratio led to the naphthoquinone fused 1,3,2-dithiazolylium salts, 3MF(6) quantitatively by multinuclear NMR (87% isolated yield of 3SbF(6)) via the cycloaddition and oxidative dehydrogenation chemistry of SNS(+) with formation of NH(4)SbF(6) and S(8). The product 3SbF(6) was fully characterized by IR, Raman, multinuclear {(1)H, (13)C, (14)N} NMR, elemental analysis, cyclic voltammetry and single crystal X-ray crystallography. The reduction of 3SbF(6) with ferrocene (Cp(2)Fe) in refluxing acetonitrile (CH(3)CN) led to the first isolation of a fused quinone-thiazyl radical, 3˙ in 73% yield. The prototype hybrid quinone-thiazyl radical 3˙ was fully characterized by IR, Raman microscopy, EI-MS, elemental analysis, solution and solid state EPR, magnetic susceptibility (2-370 K) and was found to form π*-π* dimers in the solid state as determined by single crystal X-ray crystallography. Furthermore, the thermal decomposition of 3˙ led to a novel quinone-fused 1,2,3,4-tetrathiine, 10 (x = 2) and the known 1,2,5-thiadiazole, 11. The energetics of the cycloadditon and oxidative dehydrogenation chemistry of SNS(+) and 1,4-naphthoquinone leading to 3SbF(6) were estimated in the gas phase and SO(2) solution by DFT calculations (PBE0/6-311G(d)) and lattice enthalpies obtained by the volume based thermodynamic (VBT) approach in the solid state. The gas phase ion energetics (ionization potential (IP) and electron affinity (EA)) of 3˙ are compared to related 1,3,2- and 1,2,3-dithiazolyl radicals.

  2. In situ molecular NMR picture of bioavailable calcium stabilized as amorphous CaCO3 biomineral in crayfish gastroliths

    PubMed Central

    Akiva-Tal, Anat; Kababya, Shifi; Balazs, Yael S.; Glazer, Lilah; Berman, Amir; Sagi, Amir; Schmidt, Asher

    2011-01-01

    Bioavailable calcium is maintained by some crustaceans, in particular freshwater crayfish, by stabilizing amorphous calcium carbonate (ACC) within reservoir organs—gastroliths, readily providing the Ca2+ needed to build a new exoskeleton. Despite the key scientific and biomedical importance of the in situ molecular-level picture of biogenic ACC and its stabilization in a bioavailable form, its description has eluded efforts to date. Herein, using multinuclear NMR, we accomplish in situ molecular-level characterization of ACC within intact gastroliths of the crayfish Cherax quadricarinatus. In addition to the known CaCO3, chitin scaffold and inorganic phosphate (Pi), we identify within the gastrolith two primary metabolites, citrate and phosphoenolpyruvate (PEP) and quantify their abundance by applying solution NMR techniques to the gastrolith “soluble matrix.” The long-standing question on the physico-chemical state of ACC stabilizing, P-bearing moieties within the gastrolith is answered directly by the application of solid state rotational-echo double-resonance (REDOR) and transferred-echo double-resonance (TEDOR) NMR to the intact gastroliths: Pi and PEP are found molecularly dispersed throughout the ACC as a solid solution. Citrate carboxylates are found < 5 Å from a phosphate (intermolecular C⋯P distance), an interaction that must be mediated by Ca2+. The high abundance and extensive interactions of these molecules with the ACC matrix identify them as the central constituents stabilizing the bioavailable form of calcium. This study further emphasizes that it is imperative to characterize the intact biogenic CaCO3. Solid state NMR spectroscopy is shown to be a robust and accessible means of determining composition, internal structure, and molecular functionality in situ. PMID:21873244

  3. Kinetics of dissolution of UO2 in nitric acid solutions: A multiparametric study of the non-catalysed reaction

    NASA Astrophysics Data System (ADS)

    Cordara, T.; Szenknect, S.; Claparede, L.; Podor, R.; Mesbah, A.; Lavalette, C.; Dacheux, N.

    2017-12-01

    UO2 pellets were prepared by densification of oxides obtained from the conversion of the oxalate precursor. Then characterized in order to perform a multiparametric study of the dissolution in nitric acid medium. In this frame, for each sample, the densification rate, the grain size and the specific surface area of the prepared pellets were determined prior to the final dissolution experiments. By varying the concentration of the nitric acid solution and temperature, three different and successive steps were identified during the dissolution. Under the less aggressive conditions considered, a first transient step corresponding to the dissolution of the most reactive phases was observed at the solid/solution interface. Then, for all the tested conditions, a steady state step was established during which the normalised dissolution rate was found to be constant. It was followed by a third step characterized by a strong and continuous increase of the normalised dissolution rate. The duration of the steady state, also called "induction period", was found to vary drastically as a function of the HNO3 concentration and temperature. However, independently of the conditions, this steady state step stopped at almost similar dissolved material weight loss and dissolved uranium concentration. During the induction period, no important evolution of the topology of the solid/liquid interface was evidenced authorizing the use of the starting reactive specific surface area to evaluate the normalised dissolution rates thus the chemical durability of the sintered pellets. From the multiparametric study of UO2 dissolution proposed, oxidation of U(IV) to U(VI) by nitrate ions at the solid/liquid interface constitutes the limiting step in the overall dissolution mechanism associated to this induction period.

  4. Leachable diphenylguanidine from rubber closures used in pre-filled syringes: A case study to understand solid and solution interactions with oxytocin.

    PubMed

    Zidan, Ahmed S; Aqueel, Sabir M; Alayoubi, Alaadin; Mohammad, Adil; Zhang, Jinhui; Rahman, Ziyaur; Faustino, Patrick; Lostritto, Richard T; Ashraf, Muhammad

    2017-10-30

    Leachables derived from multi-component drug-device syringe systems can result in changes to the quality of drug products. Diphenylguanidine (DPG), a leachable released from styrene butadiene rubber syringe plungers, interacts with Oxytocin to form protein-adducts. This study investigated the mechanism and kinetics of this interaction in both solid and solution states through in-vitro tests and spectroscopic methods For solid state interaction, the protein-adducts with DPG were characterized using SEM, XRD, DSC, FTIR, 13 C ss NMR, and dissolution analysis. For solution state interaction, LC-HRMS was used to assess stability of Oxytocin solutions in presence of various concentrations of DPG at 25°C and 40°C for 4 weeks. Moreover, molecular docking analysis was used to identify possible molecular configurations of the interaction.Results were consistent with the formation of a new solid state with distorted surface morphology for oxytocin-DPG adducts, in which the oxytocin carbonyl group(s) and the secondary amine groups of DPG interact. This interaction was also confirmed by molecular docking analysis through hydrogen bonding (2.31Å) and Van der Waal attraction (3.14Å). Moreover, LC-HRMS analysis revealed an increase in Oxytocin stability and suppression of Oxytocin dimerization by DPG. A potential reduction in the rate of Oxytocin dissolution from the formed adducts was indicative of its strong association with DPG. Hence, the leaching potential of DPG from rubber closures and plungers should be monitored and controlled to maintain the quality and stability of the pharmaceutical product. Published by Elsevier B.V.

  5. Dithallium(III)-Containing 30-Tungsto-4-phosphate, [Tl2Na2(H2O)2(P2W15O56)2]16-: Synthesis, Structural Characterization, and Biological Studies.

    PubMed

    Ayass, Wassim W; Fodor, Tamás; Farkas, Edit; Lin, Zhengguo; Qasim, Hafiz M; Bhattacharya, Saurav; Mougharbel, Ali S; Abdallah, Khaled; Ullrich, Matthias S; Zaib, Sumera; Iqbal, Jamshed; Harangi, Sándor; Szalontai, Gábor; Bányai, István; Zékány, László; Tóth, Imre; Kortz, Ulrich

    2018-06-18

    Here we report on the synthesis and structural characterization of the dithallium(III)-containing 30-tungsto -4-phosphate [Tl 2 Na 2 (H 2 O) 2 {P 2 W 15 O 56 } 2 ] 16- (1) by a multitude of solid-state and solution techniques. Polyanion 1 comprises two octahedrally coordinated Tl 3+ ions sandwiched between two trilacunary {P 2 W 15 } Wells-Dawson fragments and represents only the second structurally characterized, discrete thallium-containing polyoxometalate to date. The two outer positions of the central rhombus are occupied by sodium ions. The title polyanion is solution-stable as shown by 31 P and 203/205 Tl NMR. This was also supported by Tl NMR spectra simulations including several spin systems of isotopologues with half-spin nuclei ( 203 Tl, 205 Tl, 31 P, 183 W). 23 Na NMR showed a time-averaged signal of the Na + counter cations and the structurally bonded Na + ions. 203/205 Tl NMR spectra also showed a minor signal tentatively attributed to the trithallium-containing derivative [Tl 3 Na(H 2 O) 2 (P 2 W 15 O 56 ) 2 ] 14- , which could also be identified in the solid state by single-crystal X-ray diffraction. The bioactivity of polyanion 1 was also tested against bacteria and Leishmania.

  6. Realization of High-Fidelity, on Chip Readout of Solid-state Quantum Bits

    DTIC Science & Technology

    2017-08-29

    estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the...and characterized Josephson Traveling Wave Parametric Amplifiers (JTWPA or TWPA), superconducting amplifiers providing significantly greater...Publications/Patents: 2015: • C. Macklin, et al., “A near-quantum-limited Josephson traveling -wave parametric amplifier”, Science, (2015). • N

  7. Fabrication and Characterization of Novel Refractory Coatings Using Combinatorial Nanocalorimetry

    DTIC Science & Technology

    2015-07-21

    The report summarizes the results of solid-state reaction in Zr /B and Zr /B4C multilayers, oxidation of ZrB2, the effect of Nb and C doping on the...oxidation resistance of the coatings at temperatures below 1000 K, but the temperature-dependence of the diffusion rate constant suggests that Nb ...28 B4. Zr -B- Nb oxidation

  8. Development of a solid state laser of Nd:YLF

    NASA Astrophysics Data System (ADS)

    Doamaralneto, R.

    The CW laser action was obtained at room temperature of a Nd:YLF crystal in an astigmatically compensated cavity, pumped by an argon laser. This laser was completely projected, constructed and characterized in our laboratories. It initiates a broader project on laser development that will have several applications like nuclear fusion, industry, medicine, telemetry, etc. Throught the study of the optical properties of the Nd:YLF crystal, laser operation was predicted using a small volume gain medium on the mentioned cavity, pumped by an Ar 514,5 nm laser line. To obtain the laser action at polarizations sigma (1,053 (MU)m) and (PI) (1.047 (MU)m) an active medium was prepared which was a crystalline plate with a convenient crystallographic orientation. The laser characterization is in reasonable agreement with the initial predictions. For a 3.5% output mirror transmission, the oscillation threshold is about 0.15 W incident on the crystal, depending upon the sample used. For 1 W of incident pump light, the output power is estimated to be 12 mw, which corresponds to almost 1.5% slope efficiency. The versatile arrangement is applicable to almost all optically pumped solid state laser materials.

  9. Binary phase solid-state photopolymerization of acrylates: design, characterization and biomineralization of 3D scaffolds for tissue engineering

    NASA Astrophysics Data System (ADS)

    Maitlo, Inamullah; Ali, Safdar; Akram, Muhammad Yasir; Shehzad, Farooq Khurum; Nie, Jun

    2017-12-01

    Porous polymer scaffolds designed by the cryogel method are attractive materials for a range of tissue engineering applications. However, the use of toxic crosslinker for retaining the pore structure limits their clinical applications. In this research, acrylates (HEA/PEGDA, HEMA/PEGDA and PEGDA) were used in the low-temperature solid-state photopolymerization to produce porous scaffolds with good structural retention. The morphology, pore diameter, mineral deposition and water absorption of the scaffold were characterized by SEM and water absorption test respectively. Elemental analysis and cytotoxicity of the biomineralized scaffold were revealed by using XRD and MTT assay test. The PEGDA-derived scaffold showed good water absorption ability and a higher degree of porosity with larger pore size compared to others. XRD patterns and IR results confirmed the formation of hydroxyapatite crystals from an alternative socking process. The overall cell proliferation was excellent, where PEGDA-derived scaffold had the highest and the most uniform cell growth, while HEMA/PEGDA scaffold showed the least. These results suggest that the cell proliferation and adhesion are directly proportional to the pore size, the shape and the porosity of scaffolds.

  10. Characterization of core–shell MOF particles by depth profiling experiments using on-line single particle mass spectrometry

    DOE PAGES

    Cahill, J. F.; Fei, H.; Cohen, S. M.; ...

    2015-01-05

    Materials with core-shell structures have distinct properties that lend themselves to a variety of potential applications. Characterization of small particle core-shell materials presents a unique analytical challenge. Herein, single particles of solid-state materials with core-shell structures were measured using on-line aerosol time-of-flight mass spectrometry (ATOFMS). Laser 'depth profiling' experiments verified the core-shell nature of two known core-shell particle configurations (< 2 mu m diameter) that possessed inverted, complimentary core-shell compositions (ZrO2@SiO2 versus SiO2@ZrO2). The average peak area ratios of Si and Zr ions were calculated to definitively show their core-shell composition. These ratio curves acted as a calibrant for anmore » uncharacterized sample - a metal-organic framework (MOF) material surround by silica (UiO-66(Zr)@SiO2; UiO = University of Oslo). ATOFMS depth profiling was used to show that these particles did indeed exhibit a core-shell architecture. The results presented here show that ATOFMS can provide unique insights into core-shell solid-state materials with particle diameters between 0.2-3 mu m.« less

  11. A novel class of halogen-free, super-conductive lithium argyrodites: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Schneider, Holger; Du, Hui; Kelley, Tracy; Leitner, Klaus; ter Maat, Johan; Scordilis-Kelley, Chariclea; Sanchez-Carrera, Roel; Kovalev, Igor; Mudalige, Anoma; Kulisch, Jörn; Safont-Sempere, Marina M.; Hartmann, Pascal; Weiβ, Thomas; Schneider, Ling; Hinrichsen, Bernd

    2017-10-01

    Solid electrolytes are the core components for many next generation lithium battery concepts such as all-solid-state batteries (ASSB) or batteries based on metallic lithium anodes protected by a ceramic or composite passivation layer. Therefore, the search for new solid state Li-ion conductors with superior properties and improved electrochemical stabilities remains of high interest. In this work, the synthesis of a new class of silicon-containing, sulfide-based lithium-ion conductors is reported. Very good conductivities of up to ∼2.0-3.0·10-3 S/cm could be achieved for compositions such as Li22SiP2S18, among the highest for silicon sulfide containing materials. Based on the recorded powder XRD diffraction patterns and simulations it could be confirmed that they constitute novel members of the argyrodite family of sulfide lithium-ion conductors. The cubic high-temperature modification of such argyrodites with high lithium-ion conductivity can therefore be stabilized by implementation of silicon into the lattice, while additional doping with halogen atoms is not necessary.

  12. Cyclodextrin inclusion complex formation and solid-state characterization of the natural antioxidants alpha-tocopherol and quercetin.

    PubMed

    Koontz, John L; Marcy, Joseph E; O'Keefe, Sean F; Duncan, Susan E

    2009-02-25

    Cyclodextrin (CD) complexation procedures are relatively simple processes, but these techniques often require very specific conditions for each individual guest molecule. Variations of the coprecipitation from aqueous solution technique were optimized for the CD complexation of the natural antioxidants alpha-tocopherol and quercetin. Solid inclusion complex products of alpha-tocopherol/beta-CD and quercetin/gamma-CD had molar ratios of 1.7:1, which were equivalent to 18.1% (w/w) alpha-tocopherol and 13.0% (w/w) quercetin. The molar reactant ratios of CD/antioxidant were optimized at 8:1 to improve the yield of complexation. The product yields of alpha-tocopherol/beta-CD and quercetin/gamma-CD complexes from their individual reactants were calculated as 24 and 21% (w/w), respectively. ATR/FT-IR, 13C CP/MAS NMR, TGA, and DSC provided evidence of antioxidant interaction with CD at the molecular level, which indicated true CD inclusion complexation in the solid state. Natural antioxidant/CD inclusion complexes may serve as novel additives in controlled-release active packaging to extend the oxidative stability of foods.

  13. High performance Solid Rocket Motor (SRM) submerged nozzle/combustion cavity flowfield assessment

    NASA Technical Reports Server (NTRS)

    Freeman, J. A.; Chan, J. S.; Murph, J. E.; Xiques, K. E.

    1987-01-01

    Two and three dimensional internal flowfield solutions for critical points in the Space Shuttle solid rocket booster burn time were developed using the Lockheed Huntsville GIM/PAID Navier-Stokes solvers. These perfect gas, viscous solutions for the high performance motor characterize the flow in the aft segment and nozzle of the booster. Two dimensional axisymmetric solutions were developed at t = 20 and t = 85 sec motor burn times. The t = 85 sec solution indicates that the aft segment forward inhibitor stub produces vortices with are shed and convected downwards. A three dimensional 3.5 deg gimbaled nozzle flowfield solution was developed for the aft segment and nozzle at t = 9 sec motor burn time. This perfect gas, viscous analysis, provided a steady state solution for the core region and the flow through the nozzle, but indicated that unsteady flow exists in the region under the nozzle nose and near the flexible boot and nozzle/case joint. The flow in the nozzle/case joint region is characterized by low magnitude pressure waves which travel in the circumferential direction. From the two and three dimensional flowfield calculations presented it can be concluded that there is no evidence from these results that steady state gas dynamics is the primary mechanism resulting in the nozzle pocketing erosion experienced on SRM nozzles 8A or 17B. The steady state flowfield results indicate pocketing erosion is not directly initiated by a steady state gas dynamics phenomenon.

  14. Separation and characterization of gold nanoparticle mixtures by flow-field-flow fractionation.

    PubMed

    Calzolai, Luigi; Gilliland, Douglas; Garcìa, César Pascual; Rossi, François

    2011-07-08

    We show that using asymmetric flow-field-flow fractionation and UV-vis detector it is possible to separate, characterize, and quantify the correct number size distribution of gold nanoparticle (AuNP) mixtures of various sizes in the 5-60 nm range for which simple dynamic light scattering measurements give misleading information. The size of the collected nanoparticles fractions can be determined both in solution and in the solid state, and their surface chemistry characterized by NMR. This method will find widespread applications both in the process of "size purification" after the synthesis of AuNP and in the identification and characterization of gold-based nanomaterials in consumer products. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. In vitro and in vivo studies on a novel solid dispersion of repaglinide using polyvinylpyrrolidone as the carrier.

    PubMed

    Yin, Li-Fang; Huang, Shi-Jing; Zhu, Chun-Li; Zhang, Shu-Hui; Zhang, Qiang; Chen, Xi-Jing; Liu, Qing-Wang

    2012-11-01

    In order to improve the dissolution and absorption of the water insoluble drug repaglinide, a solid dispersion was developed by solvent method using polyvinylpyrrolidone K30 (PVP K30) as the hydrophilic carrier for the first time. Studies indicated that both solubility and the dissolution rate of repaglinide were significantly increased in the solid dispersion system compared with that of repaglinide raw material or physical mixtures. The repaglinide solid dispersions with PVP K30 solid state was characterized by polarizing microscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). DSC and XRD studies indicated that repaglinide existed in an amorphous form in the solid dispersion. FT-IR analysis demonstrated the presence of intermolecular hydrogen bonding between repaglinide and PVP K30 in the solid dispersion. In the in situ gastrointestinal perfusion experiment, solid dispersion was shown to remarkably enhance the absorption of repaglinide in stomach and all segments of intestine. In vivo pharmacokinetic study in rats showed that immediate and complete release of repaglinide from the solid dispersion resulted in rapid absorption that significantly increased the bioavailability and the maximum plasma concentration over repaglinide raw material. These results demonstrated PVP K30 was an appropriate carrier for solid dispersion of repaglinide, with increased dissolution and oral absorption.

  16. Coordinated garbage collection for raid array of solid state disks

    DOEpatents

    Dillow, David A; Ki, Youngjae; Oral, Hakki S; Shipman, Galen M; Wang, Feiyi

    2014-04-29

    An optimized redundant array of solid state devices may include an array of one or more optimized solid-state devices and a controller coupled to the solid-state devices for managing the solid-state devices. The controller may be configured to globally coordinate the garbage collection activities of each of said optimized solid-state devices, for instance, to minimize the degraded performance time and increase the optimal performance time of the entire array of devices.

  17. Ligand-Sensitized Lanthanide Nanocrystals: Merging Solid-State Photophysics and Molecular Solution Chemistry

    DOE PAGES

    Agbo, Peter; Abergel, Rebecca J.

    2016-06-30

    To date, the breadth of scientific research that has been devoted to investigating the photochemical and photophysical behavior of the lanthanide elements has generally fallen into one of two camps: solution studies of luminescent lanthanide metal-ligand complexes or investigations of solid-state nanoparticles, composed primarily of, or doped with, lanthan ide lumiphores. In the latter case, most research of lanthanide nanocolloids has precluded any investigations regarding the use of organic ligands to overcome the difficulties associated with f-f excitation of lanthanides. Instead, most work on condensed-phase lanthanide luminescence has centered on strategies such as d-f charge separation in divalent lanthanides andmore » the sensitization of lanthanide excited states using quantum dots. Current work now aims at bridging the camps of condensed-phase lanthanide photophysics and the solution chemistry of ligand-lanthanide molecular complexes. Some recent efforts have partly focused on the fundamental characterization of NaGd 1-x Ln x F 4 nanoparticles featuring surface display of the sensitizer ligand 3,4,3-LI(1,2-HOPO), showing these structures to be capable of converting absorbed UV light into luminescence from Eu 3+ and Tb 3+ ions. Our results suggest such a use of the ligand sensitization as a tool of choice to overcome the constraints of UV solar spectrum/semiconductor band-gap mismatch and low absorption cross sections in solid-state lanthanide systems.« less

  18. The size effect to O2- -Ce4+ charge transfer emission and band gap structure of Sr2 CeO4.

    PubMed

    Wang, Wenjun; Pan, Yu; Zhang, Wenying; Liu, Xiaoguang; Li, Ling

    2018-04-24

    Sr 2 CeO 4 phosphors with different crystalline sizes were synthesized by the sol-gel method or the solid-state reaction. Their crystalline size, luminescence intensity of O 2- -Ce 4+ charge transfer and energy gaps were obtained through the characterization by X-ray diffraction, photoluminescence spectra, as well as UV-visible diffuse reflectance measurements. An inverse relationship between photoluminescence (PL) spectra and crystalline size was observed when the heating temperature was from 1000°C to 1300°C. In addition, band energy calculated for all samples showed that a reaction temperature of 1200°C for the solid-state method and 1100°C for sol-gel method gave the largest values, which corresponded with the smallest crystalline size. Correlation between PL intensity and crystalline size showed an inverse relationship. Band structure, density of states and partial density of states of the crystal were calculated to analyze the mechanism using the cambrige sequential total energy package (CASTEP) module integrated with Materials Studio software. Copyright © 2018 John Wiley & Sons, Ltd.

  19. Production of xylanase from an alkali tolerant Streptomyces sp. 7b under solid-state fermentation, its purification, and characterization.

    PubMed

    Bajaj, Bijender Kumar; Singh, Narendera Pratap

    2010-11-01

    Streptomyces sp. 7b showed highest xylanase activity among 41 bacterial isolates screened under submerged fermentation. The organism grew over broad pH (5-11) and temperatures range (25-55 degrees C) and displayed maximum xylanase production on wheat bran (1230 U/g) under solid-state fermentation. Xylanase production was enhanced substantially (76%-77%) by inclusion of trypton (2180 U/g) or beef extract (2170 U/g) and moderately (36%-46%) by yeast extract (1800 U/g) or soybean meal (1670 U/g). Inclusion of readily utilizable sugars such as glucose, maltose, fructose, lactose or xylose in the substrate repressed the xylanase production. The optimum initial pH of the medium for maximum enzyme production was 7 to 8; however, appreciable level of activity was obtained at pH 6 (1,680 U/g) and 9 (1,900 U/g). Most appropriate solid to liquid ratio for maximum xylanase production in solid-state fermentation was found to be 1:2.5. The organism produced a single xylanase of molecular weight of approximately 30 kDa as analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis after purification with ammonium sulfate precipitation, and carboxy methyl sephadex chromatography. The enzyme was purified to the extent of 5.68-fold by salt precipitation and ion-exchange chromatography. Optimum temperature and pH for maximum xylanase activity were 50 degrees C and 6, respectively.

  20. Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy

    PubMed Central

    Tang, Wenxing; Bhatt, Avni; Smith, Adam N.; Crowley, Paula J.; Brady, L. Jeannine; Long, Joanna R.

    2016-01-01

    The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans is a cell surface-localized protein involved in sucrose-independent adhesion and colonization of the tooth surface. The immunoreactive and adhesive properties of S. mutans suggest an unusual functional quaternary ultrastructure comprised of intact P1 covalently attached to the cell wall and interacting with non-covalently associated proteolytic fragments thereof, particularly the ~57-kDa C-terminal fragment C123 previously identified as Antigen II. S. mutans is capable of amyloid formation when grown in a biofilm and P1 is among its amyloidogenic proteins. The C123 fragment of P1 readily forms amyloid fibers in vitro suggesting it may play a role in the formation of functional amyloid during biofilm development. Using wild-type and P1-deficient strains of S. mutans, we demonstrate that solid state NMR (ssNMR) spectroscopy can be used to 1) globally characterize cell walls isolated from a Gram-positive bacterium and 2) characterize the specific binding of heterologously expressed, isotopically-enriched C123 to cell wall-anchored P1. Our results lay the groundwork for future high-resolution characterization of the C123/P1 ultrastructure and subsequent steps in biofilm formation via ssNMR spectroscopy, and they support an emerging model of S. mutans colonization whereby quaternary P1-C123 interactions confer adhesive properties important to binding to immobilized human salivary agglutinin. PMID:26837620

  1. Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy.

    PubMed

    Tang, Wenxing; Bhatt, Avni; Smith, Adam N; Crowley, Paula J; Brady, L Jeannine; Long, Joanna R

    2016-02-01

    The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans is a cell surface-localized protein involved in sucrose-independent adhesion and colonization of the tooth surface. The immunoreactive and adhesive properties of S. mutans suggest an unusual functional quaternary ultrastructure comprised of intact P1 covalently attached to the cell wall and interacting with non-covalently associated proteolytic fragments thereof, particularly the ~57-kDa C-terminal fragment C123 previously identified as Antigen II. S. mutans is capable of amyloid formation when grown in a biofilm and P1 is among its amyloidogenic proteins. The C123 fragment of P1 readily forms amyloid fibers in vitro suggesting it may play a role in the formation of functional amyloid during biofilm development. Using wild-type and P1-deficient strains of S. mutans, we demonstrate that solid state NMR (ssNMR) spectroscopy can be used to (1) globally characterize cell walls isolated from a Gram-positive bacterium and (2) characterize the specific binding of heterologously expressed, isotopically-enriched C123 to cell wall-anchored P1. Our results lay the groundwork for future high-resolution characterization of the C123/P1 ultrastructure and subsequent steps in biofilm formation via ssNMR spectroscopy, and they support an emerging model of S. mutans colonization whereby quaternary P1-C123 interactions confer adhesive properties important to binding to immobilized human salivary agglutinin.

  2. Characterization of Two Distinct Amorphous Forms of Valsartan by Solid-State NMR.

    PubMed

    Skotnicki, Marcin; Apperley, David C; Aguilar, Juan A; Milanowski, Bartłomiej; Pyda, Marek; Hodgkinson, Paul

    2016-01-04

    Valsartan (VAL) is an antihypertensive drug marketed in an amorphous form. Amorphous materials can have different physicochemical properties depending on preparation method, thermal history, etc., but the nature of such materials is difficult to study by diffraction techniques. This study characterizes two different amorphous forms of valsartan (AR and AM) using solid-state NMR (SSNMR) as a primary investigation tool, supported by solution-state NMR, FT-IR, TMDSC, and dissolution tests. The two forms are found to be clearly distinct, with a significantly higher level of structural arrangement in the AR form, as observed in (13)C, (15)N, and (1)H SSNMR. (13)C and (15)N NMR indicates that the fully amorphous material (AM) contains an approximately equal ratio of cis-trans conformers about the amide bond, whereas the AR form exists mainly as one conformer, with minor conformational "defects". (1)H ultrafast MAS NMR shows significant differences in the hydrogen bonding involving the tetrazole and acid hydrogens between the two materials, while (15)N NMR shows that both forms exist as a 1,2,3,4-tetrazole tautomer. NMR relaxation times show subtle differences in local and bulk molecular mobility, which can be connected with the glass transition, the stability of the glassy material, and its response to aging. Counterintuitively the fully amorphous material is found to have a significantly lower dissolution rate than the apparently more ordered AR material.

  3. Characterization of oxygen defects in diamond by means of density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Thiering, Gergő; Gali, Adam

    2016-09-01

    Point defects in diamond are of high interest as candidates for realizing solid state quantum bits, bioimaging agents, or ultrasensitive electric or magnetic field sensors. Various artificial diamond synthesis methods should introduce oxygen contamination in diamond, however, the incorporation of oxygen into diamond crystal and the nature of oxygen-related point defects are largely unknown. Oxygen may be potentially interesting as a source of quantum bits or it may interact with other point defects which are well established solid state qubits. Here we employ plane-wave supercell calculations within density functional theory, in order to characterize the electronic and magneto-optical properties of various oxygen-related defects. Besides the trivial single interstitial and substitutional oxygen defects we also consider their complexes with vacancies and hydrogen atoms. We find that oxygen defects are mostly electrically active and introduce highly correlated orbitals that pose a challenge for density functional theory modeling. Nevertheless, we are able to identify the fingerprints of substitutional oxygen defect, the oxygen-vacancy and oxygen-vacancy-hydrogen complexes in the electron paramagnetic resonance spectrum. We demonstrate that first principles calculations can predict the motional averaging of the electron paramagnetic resonance spectrum of defects that are subject to Jahn-Teller distortion. We show that the high-spin neutral oxygen-vacancy defect exhibits very fast nonradiative decay from its optical excited state that might hinder applying it as a qubit.

  4. Development of 3D Urchin-Shaped Coaxial Manganese Dioxide@Polyaniline (MnO2@PANI) Composite and Self-Assembled 3D Pillared Graphene Foam for Asymmetric All-Solid-State Flexible Supercapacitor Application.

    PubMed

    Ghosh, Kalyan; Yue, Chee Yoon; Sk, Md Moniruzzaman; Jena, Rajeeb Kumar

    2017-05-10

    We have fabricated high-energy-density all-solid-state flexible asymmetric supercapacitor by using a facile novel 3D hollow urchin-shaped coaxial manganese dioxide@polyaniline (MnO 2 @PANI) composite as positive electrode and 3D graphene foam (GF) as negative electrode materials with polyvinyl alcohol (PVA)/KOH gel electrolyte. The coaxial MnO 2 @PANI composite was fabricated by hydrothermal route followed by oxidation without use of an external oxidant. The formation mechanism of the 3D hollow MnO 2 @PANI composite occurs first by nucleation and growth of the MnO 2 crystal species via dissolution-recrystallization and oriented attachment mechanisms followed by the oxidation of aniline monomers on the MnO 2 crystalline template. The self-assembled 3D graphene block was synthesized by hydrothermal route using vitamin C as a reducing agent. The microstructures of the composites are analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The morphology is characterized by field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), which clearly showed the formation of urchin-shaped coaxial MnO 2 @PANI composite. The electrochemical studies are explored by cyclic voltammetry, electrochemical impedance spectrometry, and cyclic charge-discharge tests. The symmetric all-solid-state flexible MnO 2 @PANI//MnO 2 @PANI and GF//GF supercapacitors exhibit the specific capacitance of 129.2 and 82.1 F g -1 at 0.5 A/g current density, respectively. The solid-state asymmetric supercapacitor shows higher energy density (37 Wh kg -1 ) with respect to the solid-state symmetric supercapacitors MnO 2 @PANI//MnO 2 @PANI and GF//GF, where the obtained energy density are found to be 17.9 and 11.4 Wh kg -1 , respectively, at 0.5 A/g current density. Surprisingly, the asymmetric supercapacitor shows a high energy density of 22.3 Wh kg -1 at a high current density of 5 A g -1 . The solid-state asymmetric supercapacitor shows a good cyclic stability in which ∼11% capacitance loss was observed after 5000 cycles.

  5. A review of lithium and non-lithium based solid state batteries

    NASA Astrophysics Data System (ADS)

    Kim, Joo Gon; Son, Byungrak; Mukherjee, Santanu; Schuppert, Nicholas; Bates, Alex; Kwon, Osung; Choi, Moon Jong; Chung, Hyun Yeol; Park, Sam

    2015-05-01

    Conventional lithium-ion liquid-electrolyte batteries are widely used in portable electronic equipment such as laptop computers, cell phones, and electric vehicles; however, they have several drawbacks, including expensive sealing agents and inherent hazards of fire and leakages. All solid state batteries utilize solid state electrolytes to overcome the safety issues of liquid electrolytes. Drawbacks for all-solid state lithium-ion batteries include high resistance at ambient temperatures and design intricacies. This paper is a comprehensive review of all aspects of solid state batteries: their design, the materials used, and a detailed literature review of various important advances made in research. The paper exhaustively studies lithium based solid state batteries, as they are the most prevalent, but also considers non-lithium based systems. Non-lithium based solid state batteries are attaining widespread commercial applications, as are also lithium based polymeric solid state electrolytes. Tabular representations and schematic diagrams are provided to underscore the unique characteristics of solid state batteries and their capacity to occupy a niche in the alternative energy sector.

  6. An advanced molecule-surface scattering instrument for study of vibrational energy transfer in gas-solid collisions.

    PubMed

    Ran, Qin; Matsiev, Daniel; Wodtke, Alec M; Auerbach, Daniel J

    2007-10-01

    We describe an advanced and highly sensitive instrument for quantum state-resolved molecule-surface energy transfer studies under ultrahigh vacuum (UHV) conditions. The apparatus includes a beam source chamber, two differential pumping chambers, and a UHV chamber for surface preparation, surface characterization, and molecular beam scattering. Pulsed and collimated supersonic molecular beams are generated by expanding target molecule mixtures through a home-built pulsed nozzle, and excited quantum state-selected molecules were prepared via tunable, narrow-band laser overtone pumping. Detection systems have been designed to measure specific vibrational-rotational state, time-of-flight, angular and velocity distributions of molecular beams coming to and scattered off the surface. Facilities are provided to clean and characterize the surface under UHV conditions. Initial experiments on the scattering of HCl(v = 0) from Au(111) show many advantages of this new instrument for fundamental studies of the energy transfer at the gas-surface interface.

  7. In situ absorption and relative bioavailability studies of zaleplon loaded self-nanoemulsifying powders.

    PubMed

    Janga, Karthik Y; Jukanti, Raju; Sunkavalli, Sharath; Velpula, Ashok; Bandari, Suresh; Kandadi, Prabhakar; Veerareddy, Prabhakar Reddy

    2013-01-01

    Self-nanoemulsifying drug delivery systems (SNEDDSs) offer potential as suitable carriers for improved oral delivery of poorly soluble and low bioavailable drugs. To derive self-nanoemulsifying powders (SNEPs), the optimized Z-SNEDDS formulation was adsorbed onto different carriers and based on micromeritics the formulation loaded onto neusilin US2 (SNEP-N) was selected for further characterization. The solid-state characterization (scanning electron microscopy, differential scanning calorimetry and powder X-ray diffraction) studies unravel the transformation of native crystalline state to amorphous and/or molecular state. The higher predictive effective permeability coefficient and fraction absorbed in humans extrapolated from in situ single-pass intestinal absorption study data in rats provide an insight on the potential of SNEPs for augment in absorption across gastrointestinal barrier. Overall a 3.5-fold enhancement in the extent of absorption of zaleplon from SNEP-N formulation proves the feasibility of SNEPs formulation for improved oral delivery of zaleplon.

  8. Raman spectroscopy, "big data", and local heterogeneity of solid state synthesized lithium titanate

    NASA Astrophysics Data System (ADS)

    Pelegov, Dmitry V.; Slautin, Boris N.; Gorshkov, Vadim S.; Zelenovskiy, Pavel S.; Kiselev, Evgeny A.; Kholkin, Andrei L.; Shur, Vladimir Ya.

    2017-04-01

    Existence of defects is an inherent property of real materials. Due to an explicit correlation between defects concentration and conductivity, it is important to understand the level and origins of the structural heterogeneity for any particulate electrode material. Poor conductive lithium titanate Li4Ti5O12 (LTO), widely used in batteries for grids and electric buses, needs it like no one else. In this work, structural heterogeneity of compacted lithium titanate is measured locally in 100 different points by conventional micro-Raman technique, characterized in terms of variation of Raman spectra parameters and interpreted using our version of "big data" analysis. This very simple approach with automated measurement and treatment has allowed us to demonstrate inherent heterogeneity of solid-state synthesized LTO and attribute it to the existence of lithium and oxygen vacancies. The proposed approach can be used as a fast, convenient, and cost-effective defects-probing tool for a wide range of materials with defects-sensitive properties. In case of LTO, such an approach can be used to increase its charge/discharge rates by synthesis of materials with controlled nonstoichiometry. New approaches to solid state synthesis of LTO, suitable for high-power applications, will help to significantly reduce the costs of batteries for heavy-duty electric vehicles and smart-grids.

  9. Proteomic analysis of temperature dependent extracellular proteins from Aspergillus fumigatus grown under solid-state culture condition.

    PubMed

    Adav, Sunil S; Ravindran, Anita; Sze, Siu Kwan

    2013-06-07

    Fungal species of the genus Aspergillus are filamentous ubiquitous saprophytes that play a major role in lignocellulosic biomass recycling and also are considered as cell factories for the production of organic acids, pharmaceuticals, and industrially important enzymes. Analysis of extracellular secreted biomass degrading enzymes using complex lignocellulosic biomass as a substrate by solid-state fermentation could be a more practical approach to evaluate application of the enzymes for lignocellulosic biorefinery. This study isolated a fungal strain from compost, identified as Aspergillus fumigatus, and further analyzed it for lignocellulolytic enzymes at different temperatures using label free quantitative proteomics. The profile of secretome composition discovered cellulases, hemicellulases, lignin degrading proteins, peptidases and proteases, and transport and hypothetical proteins; while protein abundances and further their hierarchical clustering analysis revealed temperature dependent expression of these enzymes during solid-state fermentation of sawdust. The enzyme activities and protein abundances as determined by exponentially modified protein abundance index (emPAI) indicated the maximum activities at the range of 40-50 °C, demonstrating the thermophilic nature of the isolate A. fumigatus LF9. Characterization of the thermostability of secretome suggested the potential of the isolated fungal strain in the production of thermophilic biomass degrading enzymes for industrial application.

  10. 'Fluffy' Type A Ca-, Al-rich inclusions in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Macpherson, G. J.; Grossman, L.

    1984-01-01

    Inclusions called 'fluffy' Type A's or FTA's in the Allende meteorite are examined as possible candidates for relict vapor-solid condensate grains, remaining from the original solar nebula. Type A inclusions are characterized by abundant melilite and absence of primary anorthite and titaniferous pyroxene. Fluffy Type A's were probably loosely bound clumps of crystals drifting in the solar nebula, analogous to dustballs or snowflakes. Polished thin sections of all samples were studied optically and with a JEOL JSM-35 scanning electron microscope. It is reasonably clear that neither whole FTA's nor constituent nodules of the coarser grained ones were ever molten. Despite solid-state recrystallization which has affected these inclusions to varying degrees, the coarser grained material remaining in many of them is probably a relic of vapor-solid condensation in the solar nebula.

  11. Solid-phase synthesis of self-assembling multivalent π-conjugated peptides

    DOE PAGES

    Sanders, Allix M.; Kale, Tejaswini S.; Katz, Howard E.; ...

    2017-02-07

    Here, we present a completely solid-phase synthetic strategy to create three- and four-fold peptide-appended π-electron molecules, where the multivalent oligopeptide presentation is dictated by the symmetries of reactive handles placed on discotic π-conjugated cores. Carboxylic acid and anhydride groups were viable amidation and imidation partners, respectively, and oligomeric π-electron discotic cores were prepared through Pd-catalyzed cross-couplings. Due to intermolecular hydrogen bonding between the three or four peptide axes, these π-peptide hybrids self-assemble into robust one-dimensional nanostructures with high aspect ratios in aqueous solution. The preparation of these systems via solid-phase methods will be detailed along with their self-assembly properties, asmore » revealed by steady-state spectroscopy and transmission electron microscopy and electrical characterization using field-effect transistor measurements.« less

  12. Increased dissolution rates of tranilast solid dispersions extruded with inorganic excipients.

    PubMed

    Maniruzzaman, Mohammed; Ross, Steven A; Islam, Muhammad Tariqul; Scoutaris, Nikolaos; Nair, Arun; Douroumis, Dennis

    2017-06-01

    The purpose of this study was to evaluate the performance of Neusilin® (NEU) a synthetic magnesium aluminometasilicate as an inorganic drug carrier co-processed with the hydrophilic surfactants Labrasol and Labrafil to develop Tranilast (TLT)-based solid dispersions using continuous melt extrusion (HME) processing. Twin-screw extrusion was optimized to develop various TLT/excipient/surfactant formulations followed by continuous capsule filling in the absence of any downstream equipment. Physicochemical characterization showed the existence of TLT in partially crystalline state in the porous network of inorganic NEU for all extruded formulations. Furthermore, in-line NIR studies revealed a possible intermolecular H-bonding formation between the drug and the carrier resulting in the increase of TLT dissolution rates. The capsules containing TLT-extruded solid dispersions showed enhanced dissolution rates and compared with the marketed Rizaben ® product.

  13. The effect of temperature and moisture on the amorphous-to-crystalline transformation of stavudine.

    PubMed

    Strydom, Schalk; Liebenberg, Wilna; Yu, Lian; de Villiers, Melgardt

    2009-09-08

    Stavudine is a nucleoside reverse transcriptase inhibitor active against HIV, and is known to exist in two polymorphic forms designated as forms I and II, and a hydrate form III. An amorphous solid of stavudine was successfully prepared and characterized during this investigation. A comprehensive evaluation of the stability of this amorphous solid showed that the amorphous solid transforms to either form II (anhydrous) or form III (hydrate) when exposed to temperature, in the absence or presence of moisture, respectively. The amorphous-to-hydrate transformation occurred at relatively low RH (>32%) and led to the formation of crystal aggregates of the hydrated form. Steady state growth rate analyses also showed that the amorphous-to-crystalline transformation occurs at a greater rate in the presence of moisture, compared to the transformation at the same temperature in a dry environment. Crystal growth studies showed that it is possible to stabilize the amorphous solid of stavudine against crystal transformations in the absence of moisture by coating it with poly(methyl methacrylate). However, this polymer coating could not prevent crystal growth from the amorphous solid during exposure to moisture.

  14. Conformationally Constrained, Stable, Triplet Ground State (S = 1) Nitroxide Diradicals. Antiferromagnetic Chains of S = 1 Diradicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajca, Andrzej; Takahashi, Masahiro; Pink, Maren

    2008-06-30

    Nitroxide diradicals, in which nitroxides are annelated to m-phenylene forming tricyclic benzobisoxazine-like structures, have been synthesized and characterized by X-ray crystallography, magnetic resonance (EPR and {sup 1}H NMR) spectroscopy, as well as magnetic studies in solution and in solid state. For the octamethyl derivative of benzobisoxazine nitroxide diradical, the conformationally constrained nitroxide moieties are coplanar with the m-phenylene, leading to large values of 2J (2J/k > 200 K in solution and 2J/k >> 300 K in the solid state). For the diradical, in which all ortho and para positions of the m-phenylene are sterically shielded, distortion of the nitroxide moietiesmore » from coplanarity is moderate, such that the singlet-triplet gaps remain large in both solution (2J/k > 200 K) and the solid state (2J/k {approx} 400-800 K), though an onset of thermal depopulation of the triplet ground state is detectable near room temperature. These diradicals have robust triplet ground states with strong ferromagnetic coupling and good stability at ambient conditions. Magnetic behavior of the nitroxide diradicals at low temperature is best fit to the model of one-dimensional S = 1 Heisenberg chains with intrachain antiferromagnetic coupling. The antiferromagnetic coupling between the S = 1 diradicals may be associated with the methyl nitroxide C-H {hor_ellipsis} O contacts, including nonclassical hydrogen bonds. These unprecedented organic S = 1 antiferromagnetic chains are highly isotropic, compared to those of the extensively studied Ni(II)-based chains.« less

  15. Formulation design and photochemical studies on nanocrystal solid dispersion of curcumin with improved oral bioavailability.

    PubMed

    Onoue, Satomi; Takahashi, Haruki; Kawabata, Yohei; Seto, Yoshiki; Hatanaka, Junya; Timmermann, Barbara; Yamada, Shizuo

    2010-04-01

    Considerable interest has been focused on curcumin due to its use to treat a wide variety of disorders, however, the therapeutic potential of curcumin could often be limited by its poor solubility, bioavailability, and photostability. To overcome these drawbacks, efficacious formulations of curcumin, including nanocrystal solid dispersion (CSD-Cur), amorphous solid dispersion (ASD-Cur), and nanoemulsion (NE-Cur), were designed with the aim of improving physicochemical and pharmacokinetic properties. Physicochemical properties of the prepared formulations were characterized by scanning/transmission electron microscope for morphological analysis, laser diffraction, and dynamic light scattering for particle size analysis, and polarized light microscope, powder X-ray diffraction and differential scanning calorimetry for crystallinity assessment. In dissolution tests, all curcumin formulations exhibited marked improvement in the dissolution behavior when compared with crystalline curcumin. Significant improvement in pharmacokinetic behavior was observed in the newly developed formulations, as evidenced by 12- (ASD-Cur), 16- (CSD-Cur), and 9-fold (NE-Cur) increase of oral bioavailability. Upon photochemical characterization, curcumin was found to be photoreactive and photodegradable in the solution state, possibly via type 2 photochemical reaction, whereas high photochemical stability was seen in the solid formulations, especially CSD-Cur. On the basis of these observations, taken together with dissolution and pharmacokinetic behaviors, CSD strategy would be efficacious to enhance bioavailability of curcumin with high photochemical stability. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  16. Sorption Equilibria of Vapor Phase Organic Pollutants on Unsaturated Soils and Soil Minerals

    DTIC Science & Technology

    1990-04-01

    Sorbent Characterization .. ........ .......... 6 a. Description of Inorganic Solids and Soils. .... ........ 6 b. Moisture Content...compounds (TCE and toluene) is compared for a cored depth profile obtained from an unsaturated soil and for simulated profiles using inorganic solids. The...Sorbent Characterization a. Description of Inorganic Solids and Soils Inorganic solids were used for initial sorption studies to develop experimental

  17. The alcohol-sensing behaviour of SnO2 nanorods prepared by a facile solid state reaction

    NASA Astrophysics Data System (ADS)

    Gao, F.; Ren, X. P.; Wan, W. J.; Zhao, Y. P.; Li, Y. H.; Zhao, H. Y.

    2017-02-01

    SnO2 nanorods with the range of 12-85 nm in diameter were fabricated by a facile solid state reaction in the medium of NaCl-KCl mixture at room temperature and calcined at 600, 680, 760 and 840 oC, respectively. The XRD, TEM and XPS were employed to characterize the structure and morphology of the SnO2 nanorods. The influence of the calcination temperature on the gas sensing behaviour of the SnO2 nanorods with different diameter was investigated. The result showed that all the sensors had good response to alcohol. The response of the gracile nanorods prepared at a low calcined temperature demonstrated significantly better than the thick nanorods prepared at a high calcined temperature. The mechanism was attributed to the nonstoichiometric ratio of Sn/O and larger surface area of the gracile nanorods to enhance the oxygen surface adsorption.

  18. Material science and Condensed matter Physics. 8th International Conference. Abstracts.

    NASA Astrophysics Data System (ADS)

    Kulyuk, L. L.; Paladi, Florentin; Canter, Valeriu; Nikorich, Valentina; Filippova, Irina

    2016-08-01

    The book includes the abstracts of the communications presented at the 8th International Conference on Materials Science and Condensed Matter Physics (MSCMP 2016), a traditional biennial meeting organized by the Institute of Applied Physics of the Academy of Sciences of Moldova (IAP).A total of 346 abstracts has been included in the book. The Conference programm included plenary lectures, topical keynote lectures, contributed oral and poster presentations distributed into 7 sections: * Condensed Matter Theory; * Advanced Bulk Materials; * Design and Structural Characterization of Materials; * Solid State Nanophysics and Nanotechnology; * Energy Conversion and Storage. Solid State Devices; * Surface Engineering and Applied Electrochemistry; * Digital and Optical holography: Materials and Methods. The abstracts are arranged according to the sections mentioned above. The Abstracts book includes a table of matters at the beginning of the book and an index of authors at the finish of the book.

  19. Nanoscale Bio-engineering Solutions for Space Exploration: The Nanopore Sequencer

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Cozmuta, Ioana

    2004-01-01

    Characterization of biological systems at the molecular level and extraction of essential information for nano-engineering design to guide the nano-fabrication of solid-state sensors and molecular identification devices is a computational challenge. The alpha hemolysin protein ion channel is used as a model system for structural analysis of nucleic acids like DNA. Applied voltage draws a DNA strand and surrounding ionic solution through the biological nanopore. The subunits in the DNA strand block ion flow by differing amounts. Atomistic scale simulations are employed using NASA supercomputers to study DNA translocation, with the aim to enhance single DNA subunit identification. Compared to protein channels, solid-state nanopores offer a better temporal control of the translocation of DNA and the possibility to easily tune its chemistry to increase the signal resolution. Potential applications for NASA missions, besides real-time genome sequencing include astronaut health, life detection and decoding of various genomes.

  20. Thermal Stability and Kinetic Study of Fluvoxamine Stability in Binary Samples with Lactose.

    PubMed

    Ghaderi, Faranak; Nemati, Mahboob; Siahi-Shadbad, Mohammad Reza; Valizadeh, Hadi; Monajjemzadeh, Farnaz

    2017-04-01

    Purpose: In the present study the incompatibility of FLM (fluvoxamine) with lactose in solid state mixtures was investigated. The compatibility was evaluated using different physicochemical methods such as differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy and mass spectrometry. Methods: Non-Isothermally stressed physical mixtures were used to calculate the solid-state kinetic parameters. Different thermal models such as Friedman, Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) were used for the characterization of the drug-excipient interaction. Results: Overall, the incompatibility of FLM with lactose as a reducing carbohydrate was successfully evaluated and the activation energy of this interaction was calculated. Conclusion: In this research the lactose and FLM Maillard interaction was proved using physicochemical techniques including DSC and FTIR. It was shown that DSC- based kinetic analysis provides fast and versatile kinetic comparison of Arrhenius activation energies for different pharmaceutical samples.

  1. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veinberg, Stanislav L.; Johnston, Karen E.; Jaroszewicz, Michael J.

    14N ultra-wideline (UW), 1H{ 15N} indirectly-detected HETCOR (idHETCOR) and 15N dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) experiments, in combination with plane-wave density functional theory (DFT) calculations of 14N EFG tensors, were utilized to characterize a series of nitrogen-containing active pharmaceutical ingredients (APIs), including HCl salts of scopolamine, alprenolol, isoprenaline, acebutolol, dibucaine, nicardipine, and ranitidine. Here, a case study applying these methods for the differentiation of polymorphs of bupivacaine HCl is also presented. All experiments were conducted upon samples with naturally-abundant nitrogen isotopes. For most of the APIs, it was possible to acquire frequency-stepped UW 14N SSNMR spectra of stationarymore » samples, which display powder patterns corresponding to pseudo-tetrahedral (i.e., RR'R"NH + and RR'NH 2 +) or other (i.e., RNH 2 and RNO 2) nitrogen environments.« less

  2. Conformational dimorphism of isochroman-1-ones in the solid state

    NASA Astrophysics Data System (ADS)

    Babjaková, Eva; Hanulíková, Barbora; Dastychová, Lenka; Kuřitka, Ivo; Nečas, Marek; Vícha, Robert

    2014-12-01

    Isochroman-1-one derivatives, which are relatives of coumarins, display a broad spectrum of biological activity; therefore, these derivatives attract the attention of chemists. A series of new isochroman-1-ones were prepared by the reaction of benzyl-derived Grignard reagents with acyl chlorides. All of the prepared compounds were characterized using single-crystal X-ray diffraction as well as FT-IR, NMR and MS techniques. Single crystal X-ray diffraction analysis revealed that the isochromanones can adopt two distinct conformations in the solid state. For one of the compounds, two polymorphs with unique forms crystallized separately under different temperatures. The packing of all of the examined crystals is stabilized via weak intramolecular C-H⋯π and/or C-H⋯O interactions. Although the closed conformer was predominantly found in the actual crystals, the open conformer is thermochemically more stable for all of the examined compounds according to DFT calculations.

  3. Optical vector network analysis of ultranarrow transitions in 166Er3+ : 7LiYF4 crystal.

    PubMed

    Kukharchyk, N; Sholokhov, D; Morozov, O; Korableva, S L; Cole, J H; Kalachev, A A; Bushev, P A

    2018-02-15

    We present optical vector network analysis (OVNA) of an isotopically purified Er166 3+ :LiYF 4 7 crystal. The OVNA method is based on generation and detection of a modulated optical sideband by using a radio-frequency vector network analyzer. This technique is widely used in the field of microwave photonics for the characterization of optical responses of optical devices such as filters and high-Q resonators. However, dense solid-state atomic ensembles induce a large phase shift on one of the optical sidebands that results in the appearance of extra features on the measured transmission response. We present a simple theoretical model that accurately describes the observed spectra and helps to reconstruct the absorption profile of a solid-state atomic ensemble as well as corresponding change of the refractive index in the vicinity of atomic resonances.

  4. Nanoscale Bioengineering Solutions for Space Exploration the Nanopore Sequencer

    NASA Technical Reports Server (NTRS)

    Ioana, Cozmuta; Viktor, Stoic

    2005-01-01

    Characterization of biological systems at the molecular level and extraction of essential information for nano-engineering design to guide the nano-fabrication of solid-state sensors and molecular identification devices is a computational challenge. The alpha hemolysin protein ion channel is used as a model system for structural analysis of nucleic acids like DNA. Applied voltage draws a DNA strand and surrounding ionic solution through the biological nanopore. The subunits in the DNA strand block ion flow by differing amounts. Atomistic scale simulations are employed using NASA supercomputers to study DNA translocation. with the aim to enhance single DNA subunit identification. Compared to protein channels, solid-state nanopores offer a better temporal control of the translocation of DNA and the possibility to easily tune its chemistry to increase the signal resolution. Potential applications for NASA missions, besides real-time genome sequencing include astronaut health, life detection and decoding of various genomes. http://phenomrph.arc.nasa.gov/index.php

  5. Sol-gel synthesis, phase composition, morphological and structural characterization of Ca10(PO4)6(OH)2: XRD, FTIR, SEM, 3D SEM and solid-state NMR studies

    NASA Astrophysics Data System (ADS)

    Kareiva, Simonas; Klimavicius, Vytautas; Momot, Aleksandr; Kausteklis, Jonas; Prichodko, Aleksandra; Dagys, Laurynas; Ivanauskas, Feliksas; Sakirzanovas, Simas; Balevicius, Vytautas; Kareiva, Aivaras

    2016-09-01

    Aqueous sol-gel chemistry route based on ammonium-hydrogen phosphate as the phosphorus precursor, calcium acetate monohydrate as source of calcium ions, and 1,2-ethylendiaminetetraacetic acid (EDTA), or 1,2-diaminocyclohexanetetracetic acid (DCTA), or tartaric acid (TA), or ethylene glycol (EG), or glycerol (GL) as complexing agents have been used to prepare calcium hydroxyapatite (Ca10(PO4)6(OH)2, CHAp). The phase transformations, composition, and structural changes in the polycrystalline samples were studied by infrared spectroscopy (FTIR), X-ray powder diffraction analysis (XRD), and scanning electron microscopy (SEM). The local short-range (nano- and mezo-) scale effects in CHAp were studied using solid-state NMR spectroscopy. The spatial 3D data from the SEM images of CHAp samples obtained by TA, EG and GL sol-gel routes were recovered for the first time to our knowledge.

  6. Study of structural, spectroscopic and dielectric properties of multiferroic cadmium doped Samarium manganite synthesized by solid state reaction method

    NASA Astrophysics Data System (ADS)

    Gupta, Vandana; Raina, Bindu; Verma, Seema; Bamzai, K. K.

    2018-05-01

    Samarium manganite doped with cadmium having general formula Sm1-xCdxMnO3 for x = 0.05, 0.15 were synthesized by solid state reaction technique. These compositions were characterized by various techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and dielectric. XRD analysis confirms the single phase formation with pervoskites structure having orthorhombic phase. Densities were determined and compared with the results obtained by Archimedes principle. The scanning electron micrograph shows that the particle size distribution is almost homogeneous and spherical in shape. FTIR analysis confirms the presence of various atomic bonds within a molecule. A very large value of dielectric constant was observed at low frequencies due to the presence of grains and interfaces. The dielectric constant value decreases with increase in cadmium doping at samarium site.

  7. Characterization of the reactivity of a silica derived from acid activation of sepiolite with silane by 29Si and 13C solid-state NMR.

    PubMed

    Valentín, J L; López-Manchado, M A; Posadas, P; Rodríguez, A; Marcos-Fernández, A; Ibarra, L

    2006-06-15

    The mechanism of the reaction between a silica sample coming from acid treatment of sepiolite (denominated Silsep) and an organosilane, namely bis(triethoxysilylpropyl)tetrasulfane (TESPT), has been evaluated by solid state NMR spectroscopy, being compared with the silanization reaction of a commercial silica. The effect of the silane concentration and temperature on the course of the reaction was considered. Experimental results indicate that the silanization reaction is more effective in the case of Silsep, favoring both the reaction of silane molecules with the filler surface and the reaction between neighboring silane molecules. This different behavior is attributed to structural factors, moisture, and number of acid centers on silica surface. Environmental scanning electron microscopy (ESEM) was used to deposit micrometric water drops on the surface of these samples and to evaluate the proportion and distribution of the organophylization process.

  8. Metal-organic frameworks with dynamic interlocked components

    NASA Astrophysics Data System (ADS)

    Vukotic, V. Nicholas; Harris, Kristopher J.; Zhu, Kelong; Schurko, Robert W.; Loeb, Stephen J.

    2012-06-01

    The dynamics of mechanically interlocked molecules such as rotaxanes and catenanes have been studied in solution as examples of rudimentary molecular switches and machines, but in this medium, the molecules are randomly dispersed and their motion incoherent. As a strategy for achieving a higher level of molecular organization, we have constructed a metal-organic framework material using a [2]rotaxane as the organic linker and binuclear Cu(II) units as the nodes. Activation of the as-synthesized material creates a void space inside the rigid framework that allows the soft macrocyclic ring of the [2]rotaxane to rotate rapidly, unimpeded by neighbouring molecular components. Variable-temperature 13C and 2H solid-state NMR experiments are used to characterize the nature and rate of the dynamic processes occurring inside this unique material. These results provide a blueprint for the future creation of solid-state molecular switches and molecular machines based on mechanically interlocked molecules.

  9. Effect of critical molecular weight of PEO in epoxy/EPO blends as characterized by advanced DSC and solid-state NMR

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoliang; Lu, Shoudong; Sun, Pingchuan; Xue, Gi

    2013-03-01

    The differential scanning calorimetry (DSC) and solid state NMR have been used to systematically study the length scale of the miscibility and local dynamics of the epoxy resin/poly(ethylene oxide) (ER/PEO) blends with different PEO molecular weight. By DSC, we found that the diffusion behavior of PEO with different Mw is an important factor in controlling these behaviors upon curing. We further employed two-dimensional 13C-{1H}PISEMA NMR experiment to elucidate the possible weak interaction and detailed local dynamics in ER/PEO blends. The CH2O group of PEO forms hydrogen bond with hydroxyl proton of cured-ER ether group, and its local dynamics frozen by such interaction. Our finding indicates that molecular weight (Mw) of PEO is a crucial factor in controlling the miscibility, chain dynamics and hydrogen bonding interaction in these blends.

  10. Characterization of the Oum Er Rbia (Morocco) high basin karstic water sources by using solid state nuclear track detectors and radon as a natural tracer.

    PubMed

    Khalil, N; Misdaq, M A; Berrazzouk, S; Mania, J

    2002-06-01

    Uranium and thorium contents as well as radon alpha-activities per unit volume were evaluated inside different water samples by using a method based on calculating the CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs) detection efficiencies for the emitted alpha-particles and measuring the resulting track density rates. The validity of the SSNTD technique utilized was checked by analysing uranyl nitrate (UO2(NO3)26H2O) standard solutions. A relationship between water radon concentration and water transmission of different water sources belonging to two regions of the Middle Atlas (Morocco) water reservoir was found. The influence of the water flow rate as well as the permeability and fracture system of the host rocks of the sources studied was investigated.

  11. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs

    DOE PAGES

    Veinberg, Stanislav L.; Johnston, Karen E.; Jaroszewicz, Michael J.; ...

    2016-06-08

    14N ultra-wideline (UW), 1H{ 15N} indirectly-detected HETCOR (idHETCOR) and 15N dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) experiments, in combination with plane-wave density functional theory (DFT) calculations of 14N EFG tensors, were utilized to characterize a series of nitrogen-containing active pharmaceutical ingredients (APIs), including HCl salts of scopolamine, alprenolol, isoprenaline, acebutolol, dibucaine, nicardipine, and ranitidine. Here, a case study applying these methods for the differentiation of polymorphs of bupivacaine HCl is also presented. All experiments were conducted upon samples with naturally-abundant nitrogen isotopes. For most of the APIs, it was possible to acquire frequency-stepped UW 14N SSNMR spectra of stationarymore » samples, which display powder patterns corresponding to pseudo-tetrahedral (i.e., RR'R"NH + and RR'NH 2 +) or other (i.e., RNH 2 and RNO 2) nitrogen environments.« less

  12. Comparison of spray drying, electroblowing and electrospinning for preparation of Eudragit E and itraconazole solid dispersions.

    PubMed

    Sóti, Péter Lajos; Bocz, Katalin; Pataki, Hajnalka; Eke, Zsuzsanna; Farkas, Attila; Verreck, Geert; Kiss, Éva; Fekete, Pál; Vigh, Tamás; Wagner, István; Nagy, Zsombor K; Marosi, György

    2015-10-15

    Three solvent based methods: spray drying (SD), electrospinning (ES) and air-assisted electrospinning (electroblowing; EB) were used to prepare solid dispersions of itraconazole and Eudragit E. Samples with the same API/polymer ratios were prepared in order to make the three technologies comparable. The structure and morphology of solid dispersions were identified by scanning electron microscopy and solid phase analytical methods such as, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and Raman chemical mapping. Moreover, the residual organic solvents of the solid products were determined by static headspace-gas chromatography/mass spectroscopy measurements and the wettability of samples was characterized by contact angle measurement. The pharmaceutical performance of the three dispersion type, evaluated by dissolution tests, proved to be very similar. According to XRPD and DSC analyses, made after the production, all the solid dispersions were free of any API crystal clusters but about 10 wt% drug crystallinity was observed after three months of storage in the case of the SD samples in contrast to the samples produced by ES and EB in which the polymer matrix preserved the API in amorphous state. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Luminescent properties under X-ray excitation of Ba(1-x)PbxWO4 disordered solid solution

    NASA Astrophysics Data System (ADS)

    Bakiz, B.; Hallaoui, A.; Taoufyq, A.; Benlhachemi, A.; Guinneton, F.; Villain, S.; Ezahri, M.; Valmalette, J.-C.; Arab, M.; Gavarri, J.-R.

    2018-02-01

    A series of polycrystalline barium-lead tungstate Ba1-xPbxWO4 with 0 ≤ x ≤ 1 was synthesized using a classical solid-state method with thermal treatment at 1000 °C. These materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Raman (FT-Raman) spectroscopy. X-ray diffraction profile analyses were performed using Rietveld method. These materials crystallized in the scheelite tetragonal structure and behaved as quasi ideal solid solution. Raman spectroscopy confirmed the formation of the solid solution. Structural distortions were evidenced in X-ray diffraction profiles and in vibration Raman spectra. The scanning electron microscopy experiments showed large and rounded irregular grains. Luminescence experiments were performed under X-ray excitation. The luminescence emission profiles have been interpreted in terms of four Gaussian components, with a major contribution of blue emission. The integrated intensity of luminescence reached a maximum value in the composition range x = 0.3-0.6, in relation with distortions of crystal lattice.

  14. Study of ceria-carbonate nanocomposite electrolytes for low-temperature solid oxide fuel cells.

    PubMed

    Fan, L; Wang, C; Di, J; Chen, M; Zheng, J; Zhu, B

    2012-06-01

    Composite and nanocomposite samarium doped ceria-carbonates powders were prepared by solid-state reaction, citric acid-nitrate combustion and modified nanocomposite approaches and used as electrolytes for low temperature solid oxide fuel cells. X-ray Diffraction, Scanning Electron Microscope, low-temperature Nitrogen Adsorption/desorption Experiments, Electrochemical Impedance Spectroscopy and fuel cell performance test were employed in characterization of these materials. All powders are nano-size particles with slight aggregation and carbonates are amorphous in composites. Nanocomposite electrolyte exhibits much lower impedance resistance and higher ionic conductivity than those of the other electrolytes at lower temperature. Fuel cell using the electrolyte prepared by modified nanocomposite approach exhibits the best performance in the whole operation temperature range and achieves a maximum power density of 839 mW cm(-2) at 600 degrees C with H2 as fuel. The excellent physical and electrochemical performances of nanocomposite electrolyte make it a promising candidate for low-temperature solid oxide fuel cells.

  15. 13C and 15N Solid State MMR Characterization of Aramid-Containing Nylon-6 by In Situ Polymerization with Benzoyl Caprolactam Derivatives.

    DTIC Science & Technology

    1987-12-01

    areas consistant with the alternating copolymer structure. Comparison with the model acetanilide (-241.9) indicates the downfield resonance is due to the...Deguchi, l.; Ando, 1. Macromclecule’-, 1987, 20, 2441. 4 S..:! TABLE I CP-NIAS u N-methyl benzainide -23. 3 2 Acetanilide -241.9 ’iC poly(p-benzamide

  16. Elucidation of the surface characteristics and electrochemistry of high-performance LiNiO 2

    DOE PAGES

    Xu, Jing; Lin, Feng; Nordlund, Dennis; ...

    2016-02-25

    Phase pure LiNiO 2 was prepared using a solid-state method and the optimal synthesis conditions led to a remarkably high capacity of 200 mA h g $-$1 with excellent retention. The combination of bulk and surface characterization elucidated an essential role of the excess Li in phase formation during synthesis and the subsequent electrochemical performance.

  17. Synthesis and characterization of T[Ni(CN){sub 4}].2pyz with T=Fe, Ni; pyz=pyrazine: Formation of T-pyz-Ni bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemus-Santana, A.A.; Rodriguez-Hernandez, J.; Institute of Materials Science and Technology, University of Havana

    2011-08-15

    The formation of T-pyz-Ni bridges (pyz=pyrazine) in the T[Ni(CN){sub 4}].2pyz series is known for T=Mn, Zn, Cd and Co but not with T=Fe, Ni. In this contribution the existence of such bridges also for T=Fe, Ni is discussed. The obtained pillared solids, T[Ni(CN){sub 4}].2pyz, were characterized from XRD, TG, UV-Vis, IR, Raman, Moessbauer and magnetic data. Their crystal structures were refined in the orthorhombic Pmna space group from XRD powder patterns. The structural behavior of these solids on cooling down to 77 K was also studied. In the 180-200 K temperature range the occurrence of a structural transition to amore » monoclinic structure (P2{sub 1}/c space group) was observed. No temperature induced spin transition was observed for Fe[Ni(CN){sub 4}].2pyz. The iron (II) was found to be in high spin electronic state and this configuration is preserved on cooling down to 2 K. The magnetic data indicate the occurrence of a low temperature weak anti-ferromagnetic interaction between T metal centers within the T[Ni(CN){sub 4}] layer. In the paramagnetic region for Ni[Ni(CN){sub 4}].2pyz, a reversible temperature induced spin transition for the inner Ni atom was detected. - Graphical abstract: Rippled sheets structure for the pillared solids T[Ni(CN){sub 4}].2pyz. The pyrazine molecule is found forming T-pyz-Ni bridges between neighboring layers. Highlights: > Pillared 2D solids. > Inorganic-organic solids. > Assembling of molecular blocks. > From 1D and 2D building blocks to 3D solids.« less

  18. Ceramic Electrolyte Membrane Technology: Enabling Revolutionary Electrochemical Energy Storage

    DTIC Science & Technology

    2015-10-05

    ion batteries . Solid-state Li- ion batteries could significantly improve safety and eliminate the need for complex...advancing ceramic electrolyte technology for use in solid-state Li- ion batteries . Solid-state Li- ion batteries could significantly improve safety and...technology for use in solid-state Li- ion batteries and high specific energy Li-S and Li- air batteries . Solid-state Li- ion batteries could

  19. Advances in the analysis of steroid hormone drugs in pharmaceuticals and environmental samples (2004-2010).

    PubMed

    Görög, Sándor

    2011-06-25

    A critical review of the literature of the analysis of steroid hormone drugs is presented based on 213 publications published between 2004 and 2010. The state of the art of the assay and purity check of bulk drug materials is characterized on the basis of the principal pharmacopoeias supplemented by the literature dealing with their impurity profiling and solid state characterization. The determination of the active ingredients and impurities/degradants in pharmaceutical formulation by HPLC, other chromatographic, electrodriven, spectrophotometric and other methods is also summarized. A short section deals with the application of analytical methods in drug research. The literature of the determination of steroid hormones in environmental samples is summarized in tabulated form. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakshit, S.K.; Naik, Y.P.; Parida, S.C.

    Three ternary oxides LiAl{sub 5}O{sub 8}(s), LiAlO{sub 2}(s) and Li{sub 5}AlO{sub 4}(s) in the system Li-Al-O were prepared by solid-state reaction route and characterized by X-ray powder diffraction method. Equilibrium partial pressure of CO{sub 2}(g) over the three-phase mixtures {l_brace}LiAl{sub 5}O{sub 8}(s)+Li{sub 2}CO{sub 3}(s)+5Al{sub 2}O{sub 3}(s){r_brace}, {l_brace}LiAl{sub 5}O{sub 8}(s)+5LiAlO{sub 2}(s)+2Li{sub 2}CO{sub 3}(s){r_brace} and {l_brace}LiAlO{sub 2}(s)+Li{sub 5}AlO{sub 4}(s)+2Li{sub 2}CO{sub 3}(s){r_brace} were measured using Knudsen effusion quadrupole mass spectrometry (KEQMS). Solid-state galvanic cell technique based on calcium fluoride electrolyte was used to determine the standard molar Gibbs energies of formations of these aluminates. The standard molar Gibbs energies of formation of thesemore » three aluminates calculated from KEQMS and galvanic cell measurements were in good agreement. Heat capacities of individual ternary oxides were measured from 127 to 868 K using differential scanning calorimetry. Thermodynamic tables representing the values of {delta}{sub f}H{sup 0}(298.15 K), S{sup 0}(298.15 K) S{sup 0}(T), C{sub p}{sup 0}(T), H{sup 0}(T), {l_brace}H{sup 0}(T)-H{sup 0}(298.15 K){r_brace}, G{sup 0}(T), {delta}{sub f}H{sup 0}(T), {delta}{sub f}G{sup 0}(T) and free energy function (fef) were constructed using second law analysis and FACTSAGE thermo-chemical database software. - Graphical abstract: Comparison of {delta}{sub f}G{sub m}{sup 0} of ternary oxides determined from KEQMS and solid-state galvanic cell techniques. (O) KEQMS, (9632;) solid-state galvanic cell and solid line: combined fit of both the experimental data.« less

  1. High Capacity Garnet-Based All-Solid-State Lithium Batteries: Fabrication and 3D-Microstructure Resolved Modeling.

    PubMed

    Finsterbusch, Martin; Danner, Timo; Tsai, Chih-Long; Uhlenbruck, Sven; Latz, Arnulf; Guillon, Olivier

    2018-06-21

    The development of high-capacity, high-performance all-solid-state batteries requires the specific design and optimization of its components, especially on the positive electrode side. For the first time, we were able to produce a completely inorganic mixed positive electrode consisting only of LiCoO 2 and Ta-substituted Li 7 La 3 Zr 2 O 12 (LLZ:Ta) without the use of additional sintering aids or conducting additives, which has a high theoretical capacity density of 1 mAh/cm 2 . A true all-solid-state cell composed of a Li metal negative electrode, a LLZ:Ta garnet electrolyte, and a 25 μm thick LLZ:Ta + LiCoO 2 mixed positive electrode was manufactured and characterized. The cell shows 81% utilization of theoretical capacity upon discharging at elevated temperatures and rather high discharge rates of 0.1 mA (0.1 C). However, even though the room temperature performance is also among the highest reported so far for similar cells, it still falls far short of the theoretical values. Therefore, a 3D reconstruction of the manufactured mixed positive electrode was used for the first time as input for microstructure-resolved continuum simulations. The simulations are able to reproduce the electrochemical behavior at elevated temperature favorably, however fail completely to predict the performance loss at room temperature. Extensive parameter studies were performed to identify the limiting processes, and as a result, interface phenomena occurring at the cathode active material/solid-electrolyte interface were found to be the most probable cause for the low performance at room temperature. Furthermore, the simulations are used for a sound estimation of the optimization potential that can be realized with this type of cell, which provides important guidelines for future oxide based all-solid-state battery research and fabrication.

  2. Recent analytical developments for powder characterization

    NASA Astrophysics Data System (ADS)

    Brackx, E.; Pages, S.; Dugne, O.; Podor, R.

    2015-07-01

    Powders and divided solid materials are widely represented as finished or intermediary products in industries as widely varied as foodstuffs, cosmetics, construction, pharmaceuticals, electronic transmission, and energy. Their optimal use requires a mastery of the transformation process based on knowledge of the different phenomena concerned (sintering, chemical reactivity, purity, etc.). Their modelling and understanding need a prior acquisition of sets of data and characteristics which are more or less challenging to obtain. The goal of this study is to present the use of different physico-chemical characterization techniques adapted to uranium-containing powders analyzed either in a raw state or after a specific preparation (ionic polishing). The new developments touched on concern dimensional characterization techniques for grains and pores by image analysis, chemical surface characterization and powder chemical reactivity characterization. The examples discussed are from fabrication process materials used in the nuclear fuel cycle.

  3. DNA Sequence-Dependent Ionic Currents in Ultra-Small Solid-State Nanopores†

    PubMed Central

    Comer, Jeffrey

    2016-01-01

    Measurements of ionic currents through nanopores partially blocked by DNA have emerged as a powerful method for characterization of the DNA nucleotide sequence. Although the effect of the nucleotide sequence on the nanopore blockade current has been experimentally demonstrated, prediction and interpretation of such measurements remain a formidable challenge. Using atomic resolution computational approaches, here we show how the sequence, molecular conformation, and pore geometry affect the blockade ionic current in model solid-state nanopores. We demonstrate that the blockade current from a DNA molecule is determined by the chemical identities and conformations of at least three consecutive nucleotides. We find the blockade currents produced by the nucleotide triplets to vary considerably with their nucleotide sequence despite having nearly identical molecular conformations. Encouragingly, we find blockade current differences as large as 25% for single-base substitutions in ultra small (1.6 nm × 1.1 nm cross section; 2 nm length) solid-state nanopores. Despite the complex dependence of the blockade current on the sequence and conformation of the DNA triplets, we find that, under many conditions, the number of thymine bases is positively correlated with the current, whereas the number of purine bases and the presence of both purine and pyrimidines in the triplet are negatively correlated with the current. Based on these observations, we construct a simple theoretical model that relates the ion current to the base content of a solid-state nanopore. Furthermore, we show that compact conformations of DNA in narrow pores provide the greatest signal-to-noise ratio for single base detection, whereas reduction of the nanopore length increases the ionic current noise. Thus, the sequence dependence of nanopore blockade current can be theoretically rationalized, although the predictions will likely need to be customized for each nanopore type. PMID:27103233

  4. Didanosine polymorphism in a supercritical antisolvent process.

    PubMed

    Bettini, R; Menabeni, R; Tozzi, R; Pranzo, M B; Pasquali, I; Chierotti, M R; Gobetto, R; Pellegrino, L

    2010-04-01

    Solid-state properties of active ingredients are crucial in pharmaceutical development owing to their significant clinical and economical implications. In the present work we investigated the solid-state properties and the solubility in water of didanosine, DDI, re-crystallized from a dimethylsulfoxide solution using supercritical CO(2) as an antisolvent (SAS process) for comparison with the commercially available drug product. We also applied modern solid-state NMR (SS NMR) techniques, namely 2D (1)H DQ CRAMPS (Combined Rotation And Multiple Pulse Spectroscopy) and (1)H-(13)C on- and off-resonance CP (cross polarization) FSLG-HETCOR experiments, known for providing reliable information about (1)H-(1)H and (1)H-(13)C intra- and intermolecular proximities, in order to address polymorphism issues arising from the crystallization of a new form in the supercritical process. A new polymorph of didanosine was obtained from the supercritical antisolvent process and characterized by means of 1D and 2D multinuclear ((1)H, (13)C, (15)N) SS NMR. The particle size of the new crystal phase was reduced by varying the antisolvent density through a pressure increase. The structural differences between the commercial product and the SAS re-crystallized DDI are highlighted by X-ray diffractometry and well described by solid-state NMR. The carbon C6 (13)C chemical shift suggests that both commercial and re-crystallized didanosine samples are in the enol form. The analysis of homo- and heteronuclear proximities obtained by means of 2D NMR experiments shows that commercial and SAS re-crystallized DDI possess very similar molecular conformation and hydrogen bond network, but different packing. The new polymorph proved to be a metastable form at ambient conditions, showing higher solubility in water and lower stability to mechanical stress. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  5. Mechanisms of amyloid formation revealed by solution NMR

    PubMed Central

    Karamanos, Theodoros K.; Kalverda, Arnout P.; Thompson, Gary S.; Radford, Sheena E.

    2015-01-01

    Amyloid fibrils are proteinaceous elongated aggregates involved in more than fifty human diseases. Recent advances in electron microscopy and solid state NMR have allowed the characterization of fibril structures to different extents of refinement. However, structural details about the mechanism of fibril formation remain relatively poorly defined. This is mainly due to the complex, heterogeneous and transient nature of the species responsible for assembly; properties that make them difficult to detect and characterize in structural detail using biophysical techniques. The ability of solution NMR spectroscopy to investigate exchange between multiple protein states, to characterize transient and low-population species, and to study high molecular weight assemblies, render NMR an invaluable technique for studies of amyloid assembly. In this article we review state-of-the-art solution NMR methods for investigations of: (a) protein dynamics that lead to the formation of aggregation-prone species; (b) amyloidogenic intrinsically disordered proteins; and (c) protein–protein interactions on pathway to fibril formation. Together, these topics highlight the power and potential of NMR to provide atomic level information about the molecular mechanisms of one of the most fascinating problems in structural biology. PMID:26282197

  6. The Preparation and Characterization of Materials.

    ERIC Educational Resources Information Center

    Wold, Aaron

    1980-01-01

    Presents several examples illustrating different aspects of materials problems, including problems associated with solid-solid reactions, sintering and crystal growth, characterization of materials, preparation and characterization of stoichiometric ferrites and chromites, copper-sulfur systems, growth of single crystals by chemical vapor…

  7. Investigation of process temperature and screw speed on properties of a pharmaceutical solid dispersion using corotating and counter-rotating twin-screw extruders.

    PubMed

    Keen, Justin M; Martin, Charlie; Machado, Augie; Sandhu, Harpreet; McGinity, James W; DiNunzio, James C

    2014-02-01

    The use of corotating twin screw hot-melt extruders to prepare amorphous drug/polymer systems has become commonplace. As small molecule drug candidates exiting discovery pipelines trend towards higher MW and become more structurally complicated, the acceptable operating space shifts below the drug melting point. The objective of this research is to investigate the extrusion process space, which should be selected to ensure that the drug is solubilized in the polymer with minimal thermal exposure, is critical in ensuring the performance, stability and purity of the solid dispersion. The properties of a model solid dispersion were investigated using both corotating and counter-rotating hot-melt twin-screw extruders operated at various temperatures and screw speeds. The solid state and dissolution performance of the resulting solid dispersions was investigated and evaluated in context of thermodynamic predictions from Flory-Huggins Theory. In addition, the residence time distributions were measured using a tracer, modelled and characterized. The amorphous content in the resulting solid dispersions was dependent on the combination of screw speed, temperature and operating mode. The counter-rotating extruder was observed to form amorphous solid dispersions at a slightly lower temperature and with a narrower residence time distribution, which also exhibited a more desirable shape. © 2013 Royal Pharmaceutical Society.

  8. Analysis report for 241-BY-104 Auger samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, M.A.

    1994-11-10

    This report describes the analysis of the surface crust samples taken from single-shell tank (SST) BY-104, suspected of containing ferrocyanide wastes. This sampling and analysis will assist in ascertaining whether there is any hazard due to combustion (burning) or explosion of these solid wastes. These characteristics are important to future efforts to characterize the salt and sludge in this type of waste tank. This report will outline the methodology and detail the results of analyses performed during the characterization of this material. All analyses were performed by Westinghouse Hanford Company at the 222-S laboratory unless stated otherwise.

  9. Host-guest interaction between pinocembrin and cyclodextrins: Characterization, solubilization and stability

    NASA Astrophysics Data System (ADS)

    Zhou, Shu-Ya; Ma, Shui-Xian; Cheng, Hui-Lin; Yang, Li-Juan; Chen, Wen; Yin, Yan-Qing; Shi, Yi-Min; Yang, Xiao-Dong

    2014-01-01

    The inclusion complexation behavior, characterization and binding ability of pinocembrin with β-cyclodextrin (β-CD) and its derivative 2-hydroxypropyl-β-cyclodextrin (HPβCD) were investigated in both solution and the solid state by means of XRD, DSC, 1H and 2D NMR and UV-vis spectroscopy. The results showed that the water solubility and thermal stability of pinocembrin were obviously increased in the inclusion complex with cyclodextrins. This satisfactory water solubility and high stability of the pinocembrin/CD complexes will be potentially useful for their application as herbal medicines or healthcare products.

  10. RF Testing Of Microwave Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Ponchak, G. E.; Shalkhauser, K. A.; Bhasin, K. B.

    1988-01-01

    Fixtures and techniques are undergoing development. Four test fixtures and two advanced techniques developed in continuing efforts to improve RF characterization of MMIC's. Finline/waveguide test fixture developed to test submodules of 30-GHz monolithic receiver. Universal commercially-manufactured coaxial test fixture modified to enable characterization of various microwave solid-state devices in frequency range of 26.5 to 40 GHz. Probe/waveguide fixture is compact, simple, and designed for non destructive testing of large number of MMIC's. Nondestructive-testing fixture includes cosine-tapered ridge, to match impedance wavequide to microstrip. Advanced technique is microwave-wafer probing. Second advanced technique is electro-optical sampling.

  11. Steady-states for shear flows of a liquid-crystal model: Multiplicity, stability, and hysteresis

    NASA Astrophysics Data System (ADS)

    Dorn, Tim; Liu, Weishi

    In this work, we study shear flows of a fluid layer between two solid blocks via a liquid-crystal type model proposed in [C.H.A. Cheng, L.H. Kellogg, S. Shkoller, D.L. Turcotte, A liquid-crystal model for friction, Proc. Natl. Acad. Sci. USA 21 (2007) 1-5] for an understanding of frictions. A characterization on the existence and multiplicity of steady-states is provided. Stability issue of the steady-states is examined mainly focusing on bifurcations of zero eigenvalues. The stability result suggests that this simple model exhibits hysteresis, and it is supported by a numerical simulation.

  12. Atomic density effects on temperature characteristics and thermal transport at grain boundaries through a proper bin size selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vo, Truong Quoc; Kim, BoHung, E-mail: muratbarisik@iyte.edu.tr, E-mail: bohungk@ulsan.ac.kr; Barisik, Murat, E-mail: muratbarisik@iyte.edu.tr, E-mail: bohungk@ulsan.ac.kr

    2016-05-21

    This study focuses on the proper characterization of temperature profiles across grain boundaries (GBs) in order to calculate the correct interfacial thermal resistance (ITR) and reveal the influence of GB geometries onto thermal transport. The solid-solid interfaces resulting from the orientation difference between the (001), (011), and (111) copper surfaces were investigated. Temperature discontinuities were observed at the boundary of grains due to the phonon mismatch, phonon backscattering, and atomic forces between dissimilar structures at the GBs. We observed that the temperature decreases gradually in the GB area rather than a sharp drop at the interface. As a result, threemore » distinct temperature gradients developed at the GB which were different than the one observed in the bulk solid. This behavior extends a couple molecular diameters into both sides of the interface where we defined a thickness at GB based on the measured temperature profiles for characterization. Results showed dependence on the selection of the bin size used to average the temperature data from the molecular dynamics system. The bin size on the order of the crystal layer spacing was found to present an accurate temperature profile through the GB. We further calculated the GB thickness of various cases by using potential energy (PE) distributions which showed agreement with direct measurements from the temperature profile and validated the proper binning. The variation of grain crystal orientation developed different molecular densities which were characterized by the average atomic surface density (ASD) definition. Our results revealed that the ASD is the primary factor affecting the structural disorders and heat transfer at the solid-solid interfaces. Using a system in which the planes are highly close-packed can enhance the probability of interactions and the degree of overlap between vibrational density of states (VDOS) of atoms forming at interfaces, leading to a reduced ITR. Thus, an accurate understanding of thermal characteristics at the GB can be formulated by selecting a proper bin size.« less

  13. Atomic density effects on temperature characteristics and thermal transport at grain boundaries through a proper bin size selection

    NASA Astrophysics Data System (ADS)

    Vo, Truong Quoc; Barisik, Murat; Kim, BoHung

    2016-05-01

    This study focuses on the proper characterization of temperature profiles across grain boundaries (GBs) in order to calculate the correct interfacial thermal resistance (ITR) and reveal the influence of GB geometries onto thermal transport. The solid-solid interfaces resulting from the orientation difference between the (001), (011), and (111) copper surfaces were investigated. Temperature discontinuities were observed at the boundary of grains due to the phonon mismatch, phonon backscattering, and atomic forces between dissimilar structures at the GBs. We observed that the temperature decreases gradually in the GB area rather than a sharp drop at the interface. As a result, three distinct temperature gradients developed at the GB which were different than the one observed in the bulk solid. This behavior extends a couple molecular diameters into both sides of the interface where we defined a thickness at GB based on the measured temperature profiles for characterization. Results showed dependence on the selection of the bin size used to average the temperature data from the molecular dynamics system. The bin size on the order of the crystal layer spacing was found to present an accurate temperature profile through the GB. We further calculated the GB thickness of various cases by using potential energy (PE) distributions which showed agreement with direct measurements from the temperature profile and validated the proper binning. The variation of grain crystal orientation developed different molecular densities which were characterized by the average atomic surface density (ASD) definition. Our results revealed that the ASD is the primary factor affecting the structural disorders and heat transfer at the solid-solid interfaces. Using a system in which the planes are highly close-packed can enhance the probability of interactions and the degree of overlap between vibrational density of states (VDOS) of atoms forming at interfaces, leading to a reduced ITR. Thus, an accurate understanding of thermal characteristics at the GB can be formulated by selecting a proper bin size.

  14. Packaging of solid state devices

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.

    2006-01-03

    A package for one or more solid state devices in a single module that allows for operation at high voltage, high current, or both high voltage and high current. Low thermal resistance between the solid state devices and an exterior of the package and matched coefficient of thermal expansion between the solid state devices and the materials used in packaging enables high power operation. The solid state devices are soldered between two layers of ceramic with metal traces that interconnect the devices and external contacts. This approach provides a simple method for assembling and encapsulating high power solid state devices.

  15. Layered Lepidocrocite Type Structure Isolated by Revisiting the Sol–Gel Chemistry of Anatase TiO 2 : A New Anode Material for Batteries

    DOE PAGES

    Ma, Jiwei; Reeves, Kyle G.; Porras Gutierrez, Ana-Gabriela; ...

    2017-09-19

    Searches for new electrode materials for batteries must comply on financial and environmental costs to be useful in practical devices. The sol-gel chemistry has been widely used to design and implemented new concepts for the emergence of advanced materials such as hydride organic-inorganic composites. Here, we show that the simple reaction system including titanium alkoxide and water can be used to stabilize a new class of electrode materials. By investigating the crystallization path of anatase TiO2, an X-ray amorphous intermediate phase has been identified whose local structure probed by the pair distribution function, 1H solid-state NMR and DFT calculations, consistsmore » of a layered-type structure as found in the lepido-crocite. This phase presents the following general formula Ti 2-x⟂ xO 4-4x(OH) 4x.nH 2O (x ~ 0.5) where the substitution of oxide by hydroxide anions leads to the formation of titanium vacancies (•) and H 2O molecules are located in interlayers. Solid-state 1H NMR has enabled to characterize three main hydroxide environments that are Ti⟂-OH, Ti 2⟂ 2-OH and Ti3⟂-OH and layered H 2O molecules. The electrochemical properties of this phase were further investigated versus lithium and is shown to be very promising with reversible capacities of around 200 mAh.g -1 and an operating voltage of 1.55 V. We further showed that the lithium intercalation proceeds via a solid-solution mechanism. 7Li solid-state NMR and DFT calculations allowed to identify lithium host sites that are located at the titanium vacancies and interlayer space with lithium being solvated by structural water molecules. The easy fabrication, the absence of lithium and easier recycling and the encouraging properties makes this class of materials very attractive for competitive electrodes for batteries. We thus demonstrate that the revisit of an “old” chemistry with advanced characterization tools allows discovering new materials of technological relevance.« less

  16. Layered Lepidocrocite Type Structure Isolated by Revisiting the Sol–Gel Chemistry of Anatase TiO 2 : A New Anode Material for Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jiwei; Reeves, Kyle G.; Porras Gutierrez, Ana-Gabriela

    Searches for new electrode materials for batteries must comply on financial and environmental costs to be useful in practical devices. The sol-gel chemistry has been widely used to design and implemented new concepts for the emergence of advanced materials such as hydride organic-inorganic composites. Here, we show that the simple reaction system including titanium alkoxide and water can be used to stabilize a new class of electrode materials. By investigating the crystallization path of anatase TiO2, an X-ray amorphous intermediate phase has been identified whose local structure probed by the pair distribution function, 1H solid-state NMR and DFT calculations, consistsmore » of a layered-type structure as found in the lepido-crocite. This phase presents the following general formula Ti 2-x⟂ xO 4-4x(OH) 4x.nH 2O (x ~ 0.5) where the substitution of oxide by hydroxide anions leads to the formation of titanium vacancies (•) and H 2O molecules are located in interlayers. Solid-state 1H NMR has enabled to characterize three main hydroxide environments that are Ti⟂-OH, Ti 2⟂ 2-OH and Ti3⟂-OH and layered H 2O molecules. The electrochemical properties of this phase were further investigated versus lithium and is shown to be very promising with reversible capacities of around 200 mAh.g -1 and an operating voltage of 1.55 V. We further showed that the lithium intercalation proceeds via a solid-solution mechanism. 7Li solid-state NMR and DFT calculations allowed to identify lithium host sites that are located at the titanium vacancies and interlayer space with lithium being solvated by structural water molecules. The easy fabrication, the absence of lithium and easier recycling and the encouraging properties makes this class of materials very attractive for competitive electrodes for batteries. We thus demonstrate that the revisit of an “old” chemistry with advanced characterization tools allows discovering new materials of technological relevance.« less

  17. Multicomponent Transport through Realistic Zeolite Membranes: Characterization & Transport in Nanoporous Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William C. Conner

    These research studies focused on the characterization and transport for porous solids which comprise both microporosity and mesoporosity. Such materials represent membranes made from zeolites as well as for many new nanoporous solids. Several analytical sorption techniques were developed and evaluated by which these multi-dimensional porous solids could be quantitatively characterized. Notably an approach by which intact membranes could be studied was developed and applied to plate-like and tubular supported zeolitic membranes. Transport processes were studied experimentally and theoretically based on the characterization studies.

  18. Design, characterization, and aerosol dispersion performance modeling of advanced spray-dried microparticulate/nanoparticulate mannitol powders for targeted pulmonary delivery as dry powder inhalers.

    PubMed

    Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Mansour, Heidi M

    2014-04-01

    The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns.

  19. Structural characterization of Er(3+),Yb(3+)-doped Gd2O3 phosphor, synthesized using the solid-state reaction method, and its luminescence behavior.

    PubMed

    Tamrakar, Raunak Kumar; Bisen, D P; Brahme, Nameeta

    2016-02-01

    We report the synthesis and structural characterization of Er(3+),Yb(3+)-doped Gd2O3 phosphor. The sample was prepared using the conventional solid-state reaction method, which is the most suitable method for large-scale production. The prepared phosphor sample was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermoluminescence (TL), photoluminescence (PL) and CIE techniques. For PL studies, the excitation and emission spectra of Gd2O3 phosphor doped with Er(3+) and Yb(3+) were recorded. The excitation spectrum was recorded at a wavelength of 551 nm and showed an intense peak at 276 nm. The emission spectrum was recorded at 276 nm excitation and showed peaks in all blue, green and red regions, which indicate that the prepared phosphor may act as a single host for white light-emitting diode (WLED) applications, as verified by International de I'Eclairage (CIE) techniques. From the XRD data, the calculated average crystallite size of Er(3+) and Yb(3+) -doped Gd2O3 phosphor is ~ 38 nm. A TL study was carried out for the phosphor using UV irradiation. The TL glow curve was recorded for UV, beta and gamma irradiations, and the kinetic parameters were also calculated. In addition, the trap parameters of the prepared phosphor were also studied using computerized glow curve deconvolution (CGCD). Copyright © 2015 John Wiley & Sons, Ltd.

  20. Solid-state characterization and impurities determination of fluconazol generic products marketed in Morocco

    PubMed Central

    Bourichi, Houda; Brik, Youness; Hubert, Philipe; Cherrah, Yahia; Bouklouze, Abdelaziz

    2012-01-01

    In this paper, we report the results of quality control based in physicochemical characterization and impurities determination of three samples of fluconazole drug substances marketed in Morocco. These samples were supplied by different pharmaceuticals companies. The sample A, as the discovered product, was supplied by Pfizer, while samples B and C (generics), were manufactured by two different Indian industries. Solid-state characterization of the three samples was realized with different physicochemical methods as: X-ray powder diffraction, Fourier-transformation infrared spectroscopy, differential scanning calorimetry. High performance liquid chromatography was used to quantify the impurities in the different samples. The results from the physicochemical methods cited above, showed difference in polymorph structure of the three drug substances. Sample A consisted in pure polymorph III, sample B consisted in pure polymorph II, sample C consisted in a mixture of fluconazole Form III, form II and the monohydrate. This result was confirmed by differential scanning calorimetry. Also it was demonstrated that solvents used during the re-crystallization step were among the origins of these differences in the structure form. On the other hand, the result of the stability study under humidity and temperature showed that fluconazole polymorphic transformation could be owed to the no compliance with the conditions of storage. The HPLC analysis of these compounds showed the presence of specific impurities for each polymorphic form, and a possible relationship could be exist between impurities and crystalline form of fluconazole. PMID:29403776

  1. Design, Characterization, and Aerosol Dispersion Performance Modeling of Advanced Spray-Dried Microparticulate/Nanoparticulate Mannitol Powders for Targeted Pulmonary Delivery as Dry Powder Inhalers

    PubMed Central

    Li, Xiaojian; Vogt, Frederick G.; Hayes, Don

    2014-01-01

    Abstract Background: The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Methods: Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. Results: The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. Conclusion: The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns. PMID:24502451

  2. Single-Stroke Synthesis of Tin Sulphide/Oxide Nanocomposites Within Engineering Thermoplastic and Their Humidity Response.

    PubMed

    Adkar, Dattatraya; Adhyapak, Parag; Mulik, Uttamrao; Jadkar, Sandesh; Vutova, Katia; Amalnerkar, Dinesh

    2018-05-01

    SnS nanostructured materials have attracted enormous interest due to their important properties and potential application in low cost solar energy conversion systems and optical devices. From the perspective of SnS based device fabrication, we offer single-stroke in-situ technique for the generation of Sn based sulphide and oxide nanostructures inside the polymer network via polymer-inorganic solid state reaction route. In this method, polyphenylene sulphide (PPS)-an engineering thermoplastic-acts as chalcogen source as well as stabilizing matrix for the resultant nano products. Typical solid state reaction was accomplished by simply heating the physical admixtures of the tin salts (viz. tin acetate/tin chloride) with PPS at the crystalline melting temperature (285 °C) of PPS in inert atmosphere. The synthesized products were characterized by using various physicochemical characterization techniques. The prima facie observations suggest the concurrent formation of nanocrystalline SnS with extraneous oxide phase. The TEM analysis revealed formation of nanosized particles of assorted morphological features with polydispersity confined to 5 to 50 nm. However, agglomerated particles of nano to submicron size were also observed. The humidity sensing characterization of these nanocomposites was also performed. The resistivity response with the level of humidity (20 to 85% RH) was compared for these nanocomposites. The linear response was obtained for both the products. Nevertheless, the nanocomposite product obtained from acetate precursor showed higher sensitivity towards the humidity than that of one prepared from chloride precursor.

  3. Novel solar light driven photocatalyst, zinc indium vanadate for photodegradation of aqueous phenol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahapure, Sonali A.; Rane, Vilas H.; Ambekar, Jalindar D.

    2011-05-15

    Graphical abstract: Novel photocatalyst, zinc indium vanadate (ZnIn{sub 2}V{sub 2}O{sub 9}) demonstrated and showed an excellent photocatalytic activity for phenol degradation under visible light. Research highlights: {yields} Designing and identification of a photocatalyst having prospective potential application to be used in visible light (400-800 nm). {yields} Successful synthesis of novel ZnIn{sub 2}V{sub 2}O{sub 9} by solid state route. {yields} Confirmation of the designed product using characterization techniques. {yields} Application study comprising photodegradation of aqueous phenol at visible light despite of UV radiations. -- Abstract: In the present investigation, we have demonstrated the synthesis of novel photocatalyst, zinc indium vanadate (ZIV)more » by solid-solid state route using respective oxides of zinc, indium and vanadium. This novel photocatalyst was characterized using XRD, FESEM, UV-DRS and FTIR in order to investigate its structural, morphological and optical properties. XRD clearly shows the formation of phase pure ZIV of triclinic crystal structure with good crystallinity. FESEM micrographs showed the clustered morphology having particle size between 0.5 and 1 {mu}m. Since, optical study showed the band gap around 2.8 eV, i.e. in visible region, we have performed the photocatalytic activity of phenol degradation under visible light irradiation. The photodecomposition of phenol by ZIV is studied for the first time and an excellent photocatalytic activity was obtained using this novel photocatalyst. Considering the band gap of zinc indium vanadate in visible region, it will also be the potential candidate for water splitting.« less

  4. Adsorption onto Mesoporous Silica Using Supercritical Fluid Technology Improves Dissolution Rate of Carbamazepine-a Poorly Soluble Compound.

    PubMed

    Gandhi, Aditya V; Thipsay, Priyanka; Kirthivasan, Bharat; Squillante, Emilio

    2017-11-01

    The purpose of this research was to design and characterize an immediate-release formulation of carbamazepine (CBZ), a poorly soluble anti-epileptic drug, using a porous silica carrier. Carbon dioxide in its supercritical state (2000 psi, 30-35°C) was used as an anti-solvent to precipitate CBZ onto two particle size variants of silica. Adsorption isotherms were used as a pre-formulation strategy to select optimum ratios of silica and CBZ. The obtained drug-silica formulations were characterized by dissolution studies, differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). This formulation strategy resulted in a 2.4-fold improvement in dissolution rate when compared to pure drug after 30 min of dissolution testing. PXRD and DSC confirmed the amorphous nature of CBZ in the formulations as well as the differences in polymorphic forms of commercial and supercritical fluid-processed CBZ. Additionally, solid-state NMR spectroscopy showed that the spin-lattice relaxation time for bulk drug (without silica) was ∼7.5 times greater than that for silica-confined CBZ, implying that when CBZ was adsorbed onto mesoporous silica, it is structurally disordered and had higher structural mobility, a characteristic of amorphous solids. The mesoporous silica matrix prevented CBZ crystal growth by imposing spatial constraint on CBZ nuclei and hence resulted in faster dissolution compared to bulk solid drug. Adsorption onto mesoporous silica using supercritical fluid technology may be used as a novel formulation strategy for amorphization of poorly soluble compounds, in turn improving their dissolution rate.

  5. Synthesis and characterization of the Cu2ZnSnS4 system for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Sánchez Pinzón, D. L.; Soracá Perez, G. Y.; Gómez Cuaspud, J. A.; López, E. Vera

    2017-01-01

    This paper focuses on the synthesis and characterization of a ceramic material based on the Cu2ZnSnS4 system, through the implementation of a hydrothermal route. For this purpose, we started from nitrate dissolutions in a 1.0mol L-1 concentration, which were mixed and treated in a teflon lined vessel steel at 280°C for 48h. The Physicochemical characterization of the solid was evaluated by means of ultraviolet visible spectroscopy (UV-VIS), X-ray diffraction (XRD), Raman spectroscopy, scanning and transmission electron microscopy (SEM-TEM) and solid state impedance spectroscopy (IS). The initial characterization through UV measurements confirms a Band-gap around 1.46eV obtained by the Kubelka-Munk method, which demonstrates the effectiveness of the synthesis method in the obtaining of a semiconductor material. The XRD results confirm the obtaining of a crystalline material of pure phase with tetragonal geometry and I-42m space group. The preferential crystalline orientation was achieved along (2 2 0) facet, with crystallite sizes of nanometric order (6.0nm). The morphological aspects evaluated by means electron microscopy, confirmed the homogeneity of the material, showing specifically a series of textural and surface properties of relevant importance. Finally, the electrical characterizations allow to validate the semiconductor behaviour of CZTS system for development of photovoltaic technologies.

  6. Formation and Stability of Pb-Sn Embedded Multiphase Alloy Nanoparticles via Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Khan, Patan Yousaf; Devi, M. Manolata; Biswas, Krishanu

    2015-08-01

    The present paper describes the preparation, characterization, and stability of Pb-Sn multiphase alloy nanoparticles embedded in Al matrix via mechanical alloying (MA). MA is a solid-state processing route, which can produce nanocrystalline phases by severely deforming the materials at high strain rate. Therefore, in order to understand the effect of the increasing interface as well as defects on the phase transformation behavior of Pb-Sn nanoparticles, Pb-Sn multiphase nanoparticles have been embedded in Al by MA. The nanoparticles have extensively been characterized using X-ray diffraction and transmission electron microscope. The characterization reveals the formation of biphasic as well as single-phase solid solution nanoparticles embedded in the matrix. The detailed microstructural and differential scanning calorimetry studies indicate that the formation of biphasic nanoparticles is due to size effect, mechanical attrition, and ballistic diffusion of Pb and Sn nanoparticles embedded in Al grains. Thermal characterization data reveal that the heating event consists of the melting peaks due to the multiphase nanoparticles and the peak positions shift to lower temperature with the increase in milling time. The role of interface structure is believed to play a prominent role in determining the phase stability of the nanoparticle. The results are discussed in the light of the existing literature.

  7. Quenched crystal-field disorder and magnetic liquid ground states in Tb 2 Sn 2 - x Ti x O 7 [Crystal field disorder in the quantum spin ice ground state of Tb2Sn2-xTixO7

    DOE PAGES

    Gaulin, B. D.; Kermarrec, E.; Dahlberg, M. L.; ...

    2015-06-01

    Solid-solutions of the "soft" quantum spin ice pyrochlore magnets Tb 2B 2O 7 with B=Ti and Sn display a novel magnetic ground state in the presence of strong B-site disorder, characterized by a low susceptibility and strong spin fluctuations to temperatures below 0.1 K. These materials have been studied using ac-susceptibility and muSR techniques to very low temperatures, and time-of-flight inelastic neutron scattering techniques to 1.5 K. Remarkably, neutron spectroscopy of the Tb 3+ crystal field levels appropriate to at high B-site mixing (0.5 < x < 1.5 in Tb 2Sn 2-xTi xO 7) reveal that the doublet ground andmore » first excited states present as continua in energy, while transitions to singlet excited states at higher energies simply interpolate between those of the end members of the solid solution. The resulting ground state suggests an extreme version of a random-anisotropy magnet, with many local moments and anisotropies, depending on the precise local configuration of the six B sites neighboring each magnetic Tb 3+ ion.« less

  8. Synthesis, characterization and solid state electrical properties of 1-D coordination polymer of the type [Cu{sub x}Ni{sub 1-x}(dadb){center_dot}yH{sub 2}O]{sub n}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, R.L., E-mail: rlpjc@yahoo.co.in; Kushwaha, A.; Shrivastava, O.N.

    2012-12-15

    New heterobimetallic complexes [Cu{sub x}Ni{sub 1-x}(dadb){center_dot}yH{sub 2}O]{sub n} {l_brace}where dadb=2,5-Diamino-3,6-dichloro-1,4-benzoquinone (1); x=1 (2), 0.5 (4), 0.25 (5), 0.125 (6), 0.0625 (7) and 0 (3); y=2; n=degree of polymerization{r_brace} were synthesized and characterized. Heterobimetallic complexes show normal magnetic moments, whereas, monometallic complexes exhibit magnetic moments less than the value due to spin only. Thermo-gravimetric analysis shows that degradation of the ligand dadb moiety is being controlled by the electronic environment of the Cu(II) ions in preference over Ni(II) in heterobimetallic complexes. Existence of the mixed valency/non-integral oxidation states of copper and nickel metal ions in the complex 4 has been attributedmore » from magnetic moment and ESR spectral results. Solid state dc electrical conductivity of all the complexes was investigated. Monometallic complexes were found to be semiconductors, whereas heterobimetallic coordination polymer 4 was found to exhibit metallic behaviour. Existence of mixed valency/ non-integral oxidation state of metal ions seems to be responsible for the metallic behaviour. - Graphical abstract: Contrast to the semiconductor monometallic complexes 2 and 3, the heterobimetallic complex 4 exhibits metallic behaviour attributed to the mixed valency/non-integral oxidation state of the metal ions concluded from magnetic and ESR spectral studies. Highlights: Black-Right-Pointing-Pointer 1-D coordination compounds of the type Cu{sub x}Ni{sub 1-x}(dadb){center_dot}yH{sub 2}O were synthesized and characterized. Black-Right-Pointing-Pointer Thermal degradation of the complexes provides an indication of long range electronic communication between metal to ligand. Black-Right-Pointing-Pointer On inclusion of Ni(II) into 1-D coordination polymer of Cu(II). (a) Cu(II) and Ni(II) ions exhibit non-integral oxidation state. (b) resulting heterobimetallic complex 4 exhibits metallic behaviour at all temperature range of the present study whereas monometallic complexes are semiconductor.« less

  9. Solid state recorders for airborne reconnaissance

    NASA Astrophysics Data System (ADS)

    Klang, Mark R.

    2003-08-01

    Solid state recorders have become the recorder of choice for meeting airborne ruggedized requirements for reconnaissance and flight test. The cost of solid state recorders have decreased over the past few years that they are now less expense than the traditional high speed tape recorders. CALCULEX, Inc manufactures solid state recorders called MONSSTR (Modular Non-volatile Solid State Recorder). MONSSTR is being used on many different platforms such as F/A-22, Global Hawk, F-14, F-15, F-16, U-2, RF-4, and Tornado. This paper will discuss the advantages of using solid state recorders to meet the airborne reconnaissance requirement and the ability to record instrumentation data. The CALCULEX recorder has the ability to record sensor data and flight test data in the same chassis. This is an important feature because it eliminates additional boxes on the aircraft. The major advantages to using a solid state recorder include; reliability, small size, light weight, and power. Solid state recorders also have a larger storage capacity and higher bandwidth capability than other recording devices.

  10. The solid-state terahertz spectrum of MDMA (Ecstasy) - A unique test for molecular modeling assignments

    NASA Astrophysics Data System (ADS)

    Allis, Damian G.; Hakey, Patrick M.; Korter, Timothy M.

    2008-10-01

    The terahertz (THz, far-infrared) spectrum of 3,4-methylene-dioxymethamphetamine hydrochloride (Ecstasy) is simulated using solid-state density functional theory. While a previously reported isolated-molecule calculation is noteworthy for the precision of its solid-state THz reproduction, the solid-state calculation predicts that the isolated-molecule modes account for only half of the spectral features in the THz region, with the remaining structure arising from lattice vibrations that cannot be predicted without solid-state molecular modeling. The molecular origins of the internal mode contributions to the solid-state THz spectrum, as well as the proper consideration of the protonation state of the molecule, are also considered.

  11. Approaches to Establishing the Chemical Structure of Extraterrestrial Organic Solids

    NASA Technical Reports Server (NTRS)

    Cody, G. D.; Alexander, C. M. OD.; Wirick, Susan

    2003-01-01

    The majority of extraterrestrial organic matter in carbonaceous chondrites resides in a chemically complex, insoluble and perhaps macromolecular phase. We have been applying a series of independent solid state NMR experiments that are designed to provide a self consistent chemical characterization of this complex material. To date we have thoroughly analyzed 8 organic residues from different meteorites, including a CR2 (EET92042), CIl(Orgueil), CM2 (Murchison), Tagish Lake, CM2 (AlH83100), CM2 (Cold Bokkefeld), CM2 (Mighei), CM3 (Y86720). In fig 1. (1)H to (13)C cross polarization NMR spectra of four of these are shown. Note that there exists an enormous range in chemistry exhibited in organic solid [evident by the breadth of the spectral features both in the aliphatic region (sp(sup 3)) and the aromatic region (sp(sup 2))]. There is also considerable differences in the carbon chemistry across the meteorite groups.

  12. Formation of organoclays by a one step synthesis

    NASA Astrophysics Data System (ADS)

    Jaber, Maguy; Miéhé-Brendlé, Jocelyne; Delmotte, Luc; Le Dred, Ronan

    2005-05-01

    Different lamellar hybrid inorganic-organic materials having as inorganic parent 2:1 (T.O.T.) phyllosilicates such as talc, saponite, pyrophyllite, beidellite and montmorillonite were prepared by a one step synthesis. The solids were characterized by X-ray diffraction, solid state 29Si, 27Al, and 19F nuclear magnetic resonance and transmission electron microscopy. XRD patterns show that solids with inorganic parents having octahedral sheet based on aluminium exhibit a lamellar structure similar to MCM-50, whereas those with magnesium have an organophyllosilicate structure. In the first case, the absence of hexacoordinated aluminium was confirmed by 27Al NMR and an ordered stacking of the layers is observed on TEM micrographs. In opposite, a disorder is observed on the TEM images of organophyllosilicates. The formation of the 2:1 structure was found to be controlled mainly by the insertion of silicic species in the interlamellar space of brucite like layers.

  13. Microwave generated solid dispersions containing Ibuprofen.

    PubMed

    Moneghini, Mariarosa; Bellich, Barbara; Baxa, Pietro; Princivalle, Francesco

    2008-09-01

    The purpose of this study was to apply the attractive technique of the microwaves irradiation (MW) for the preparation of solvent-free solid dispersions (SD). In particular, the microwave technology has been considered in order to prepare an enhanced release dosage form for the poorly soluble drug Ibuprofen (IBU), employing PVP/VA 60/40 (PVP/VA 64) and hydroxypropyl-beta-cyclodextrin (HP-beta-CD) as hydrophilic carriers. Their physico-chemical characteristics and dissolution properties were compared to the corresponding physical mixtures and the drug alone. The results of physico-chemical characterization attested a correspondence of the solid state of the drug before and after irradiation treatment and that an amorphous form of the drug was obtained. This result, together with the presence of the hydrophilic polymers determined a remarkable enhancement of the in vitro dissolution rate of the drug suggesting that the microwave technique could be considered as a new and interesting method to prepare drug-polymer systems.

  14. Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.

    PubMed

    Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J

    1996-06-01

    For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.

  15. 13C CP MAS NMR and GIAO-CHF/DFT calculations of flavonoids: Morin, kaempferol, tricin, genistein, formononetin and 3,7-dihydroxyflavone

    NASA Astrophysics Data System (ADS)

    Zielińska, Agnieszka; Paradowska, Katarzyna; Jakowski, Jacek; Wawer, Iwona

    2008-02-01

    13C CP MAS NMR spectra of the flavonoids: morin, kaempferol, 3,7-dihydroxyflavone, tricin and isoflavones: genistein and formononetin were recorded to characterize solid-state conformations. Intramolecular hydrogen bonds forming five-, six- and seven-membered rings are present in the two morin molecules in the crystals - their 13C resonances have been assigned with the aid of the calculated shielding constants. Linear relationships between the calculated shielding constants σDFT (ppm) and chemical shifts ( δCPMAS, ppm) were obtained for all studied compounds. Higher correlation coefficients suggest that the conformation with "clockwise" orientation of both OH groups is more probable in the solid 3,7-dihydroxyflavone, whereas in the solid formononetin the OH and OCH 3 substituents are directed "anticlockwise". The barrier to the rotation of phenyl ring B decreases in the order: morin (2'-OH, 3-OH) > kaempferol (3-OH) > tricin.

  16. Direct Measurement of the Flip-Flop Rate of Electron Spins in the Solid State

    NASA Astrophysics Data System (ADS)

    Dikarov, Ekaterina; Zgadzai, Oleg; Artzi, Yaron; Blank, Aharon

    2016-10-01

    Electron spins in solids have a central role in many current and future spin-based devices, ranging from sensitive sensors to quantum computers. Many of these apparatuses rely on the formation of well-defined spin structures (e.g., a 2D array) with controlled and well-characterized spin-spin interactions. While being essential for device operation, these interactions can also result in undesirable effects, such as decoherence. Arguably, the most important pure quantum interaction that causes decoherence is known as the "flip-flop" process, where two interacting spins interchange their quantum state. Currently, for electron spins, the rate of this process can only be estimated theoretically, or measured indirectly, under limiting assumptions and approximations, via spin-relaxation data. This work experimentally demonstrates how the flip-flop rate can be directly and accurately measured by examining spin-diffusion processes in the solid state for physically fixed spins. Under such terms, diffusion can occur only through this flip-flop-mediated quantum-state exchange and not via actual spatial motion. Our approach is implemented on two types of samples, phosphorus-doped 28Si and nitrogen vacancies in diamond, both of which are significantly relevant to quantum sensors and information processing. However, while the results for the former sample are conclusive and reveal a flip-flop rate of approximately 12.3 Hz, for the latter sample only an upper limit of approximately 0.2 Hz for this rate can be estimated.

  17. Structural and magnetic characterization of Ti doped cobalt ferrite (CoFe2O4)

    NASA Astrophysics Data System (ADS)

    Pal, Jaswinder; Kumar, Sunil; Kaur, Randeep; Agrawal, P.; Singh, Mandeep; Singh, Anupinder

    2018-05-01

    Synthesis of Co1-xTixFe2O4 solid solutions for 0.1≤x≤0.4 using the solid-state-reaction rate has been done. The prepared samples were characterized by using XRD (X-ray diffraction) and SEM (Scanning Electron Microscopy). Magnetic studies have been done using Vibrating Sample Magnetometer (VSM). XRD confirmed that Cobalt Ferrite spinel cubic structure in all prepared samples. The lattice parameter `a' increases with increase in the concentration of Ti. SEM micrograph shows good grain growth in all samples. Magnetic Study reveals that the M-H curves of all the prepared samples taken at room temperature are very well saturated. The maximum value of remnant magnetization (Mr ˜13.9 emu/g) and saturation magnetization (Ms ˜74.4 emu/g) has been observed for x =0.2 sample. Coercivity does not show any regular variation with increase in the molar concentration of Ti in CoFe2O4 at A-site.

  18. Characterization of Substituted Phenol-Formaldehyde Resins Using Solid-State Carbon-13 NMR

    DTIC Science & Technology

    1989-05-22

    synthesized from cashew nut shell liquid, 3-n-pentadecylphenol and phenol with formaldehyde. The resulting resins were crosslinked and then investigated using...should be sent SYNOPSIS Crosslinked substituted phenol-formaldehyde resins were synthesized from cashew nut shell liquid, 3-n-pentadecylphenol and... nut shell liquid (CNSL) and are the basis for binder resins and friction particles in composite friction materials. CNSL is isolated from cashew nut

  19. Characterization Techniques for a MEMS Electric-Field Sensor in Vacuum

    DTIC Science & Technology

    2012-01-01

    nected so that the noise contributions of the transimpedance amplifier and the digitizer may be determined. The raw voltage data, after processing...of Vrms/rtHz. The noise may be seen in terms of the device trans- duction physics, signal conditioning ( transimpedance amp), and DAQ. (right) Field...Sensor using Thermal Actua- tors with Mechanically Amplified Response,” Solid-State Sensors, Actuators and Microsystems Confer- ence, 2007. TRANSDUCERS

  20. Spider Silk: From Protein-Rich Gland Fluids to Diverse Biopolymer Fibers

    DTIC Science & Technology

    2016-01-06

    characterize the protein-rich fluid in the various spider silk producing glands. We have been using a battery of magnetic resonance methods including...solution and solid-state nuclear magnetic resonance (NMR) and micro imaging (MRI) in combination with wide angle and small angle X-ray diffraction...range of magnetic resonance methods. We successfully developed magnetic resonance imaging (MRI) techniques with localized spectroscopy to probe the silk

  1. 13C and 14N Solid State NMR Characterization of Aramid-Containing Nylon-6 Polymers Synthesized by In Situ Polymerization of Caprolactam with Benzoyl Caprolactam Derivatives.

    DTIC Science & Technology

    1987-12-01

    261.3 show equivalent areas consistant with tiie alternating copolymer structure. Comparison with the model acetanilide (-241.5) indicates the...T.; Fujito, T.; Deguchi. 1\\.; Ando, 1. Macromolecules. 1987, 2?0, 2441. 4 TABLE I CP MNAS ,_’ii N-methyl benzamide -2-o3.3 -226. Acetanilide -241.9

  2. Solid state lighting devices and methods with rotary cooling structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koplow, Jeffrey P.

    Solid state lighting devices and methods for heat dissipation with rotary cooling structures are described. An example solid state lighting device includes a solid state light source, a rotating heat transfer structure in thermal contact with the solid state light source, and a mounting assembly having a stationary portion. The mounting assembly may be rotatably coupled to the heat transfer structure such that at least a portion of the mounting assembly remains stationary while the heat transfer structure is rotating. Examples of methods for dissipating heat from electrical devices, such as solid state lighting sources are also described. Heat dissipationmore » methods may include providing electrical power to a solid state light source mounted to and in thermal contact with a heat transfer structure, and rotating the heat transfer structure through a surrounding medium.« less

  3. Nanopore sensing of individual transcription factors bound to DNA

    PubMed Central

    Squires, Allison; Atas, Evrim; Meller, Amit

    2015-01-01

    Transcription factor (TF)-DNA interactions are the primary control point in regulation of gene expression. Characterization of these interactions is essential for understanding genetic regulation of biological systems and developing novel therapies to treat cellular malfunctions. Solid-state nanopores are a highly versatile class of single-molecule sensors that can provide rich information about local properties of long charged biopolymers using the current blockage patterns generated during analyte translocation, and provide a novel platform for characterization of TF-DNA interactions. The DNA-binding domain of the TF Early Growth Response Protein 1 (EGR1), a prototypical zinc finger protein known as zif268, is used as a model system for this study. zif268 adopts two distinct bound conformations corresponding to specific and nonspecific binding, according to the local DNA sequence. Here we implement a solid-state nanopore platform for direct, label- and tether-free single-molecule detection of zif268 bound to DNA. We demonstrate detection of single zif268 TFs bound to DNA according to current blockage sublevels and duration of translocation through the nanopore. We further show that the nanopore can detect and discriminate both specific and nonspecific binding conformations of zif268 on DNA via the distinct current blockage patterns corresponding to each of these two known binding modes. PMID:26109509

  4. Nanopore sensing of individual transcription factors bound to DNA

    NASA Astrophysics Data System (ADS)

    Squires, Allison; Atas, Evrim; Meller, Amit

    2015-06-01

    Transcription factor (TF)-DNA interactions are the primary control point in regulation of gene expression. Characterization of these interactions is essential for understanding genetic regulation of biological systems and developing novel therapies to treat cellular malfunctions. Solid-state nanopores are a highly versatile class of single-molecule sensors that can provide rich information about local properties of long charged biopolymers using the current blockage patterns generated during analyte translocation, and provide a novel platform for characterization of TF-DNA interactions. The DNA-binding domain of the TF Early Growth Response Protein 1 (EGR1), a prototypical zinc finger protein known as zif268, is used as a model system for this study. zif268 adopts two distinct bound conformations corresponding to specific and nonspecific binding, according to the local DNA sequence. Here we implement a solid-state nanopore platform for direct, label- and tether-free single-molecule detection of zif268 bound to DNA. We demonstrate detection of single zif268 TFs bound to DNA according to current blockage sublevels and duration of translocation through the nanopore. We further show that the nanopore can detect and discriminate both specific and nonspecific binding conformations of zif268 on DNA via the distinct current blockage patterns corresponding to each of these two known binding modes.

  5. Physicochemical characterization and structural evaluation of a specific 2:1 cocrystal of naproxen-nicotinamide.

    PubMed

    Ando, Shigeru; Kikuchi, Junko; Fujimura, Yuko; Ida, Yasuo; Higashi, Kenjirou; Moribe, Kunikazu; Yamamoto, Keiji

    2012-09-01

    Physicochemical characterization and structural evaluation of a 2:1 naproxen-nicotinamide cocrystal were performed. The 2:1 cocrystal showed rapid naproxen dissolution and less water vapor adsorption, indicating better pharmaceutical properties of naproxen. The unique 2:1 cocrystal formation was evaluated by solid-state nuclear magnetic resonance (NMR). The assignments of all H and (13) C peaks for naproxen and the cocrystal were performed using dipolar-insensitive nuclei enhanced by polarization transfer and (1) H-(13) C cross-polarization (CP)-heteronuclear correlation (HETCOR) NMR measurements. The (13) C chemical shift revealed that two naproxen molecules and one nicotinamide molecule existed in the asymmetric unit of the cocrystal. The (1) H chemical shifts indicated that the carboxylic group of the naproxen in the cocrystal was nonionized, and the CH-π interaction between naproxens was very strong. From the (1) H-(13) C CP-HETCOR NMR spectrum with contact time of 5 ms, two different synthons, carboxylic acid-amide and carboxylic acid-pyridine ring, were found between naproxen and nicotinamide. Single-crystal X-ray analysis, which supported the solid-state NMR results, clarified the geometry and intermolecular interactions in more detail. The structure is unique among pharmaceutical cocrystals because each carboxyl group of the two naproxens formed different intermolecular synthons. Copyright © 2012 Wiley Periodicals, Inc.

  6. Analysis of a nanocrystalline polymer dispersion of ebselen using solid-state NMR, Raman microscopy, and powder X-ray diffraction.

    PubMed

    Vogt, Frederick G; Williams, Glenn R

    2012-07-01

    Nanocrystalline drug-polymer dispersions are of significant interest in pharmaceutical delivery. The purpose of this work is to demonstrate the applicability of methods based on two-dimensional (2D) and multinuclear solid-state NMR (SSNMR) to a novel nanocrystalline pharmaceutical dispersion of ebselen with polyvinylpyrrolidone-vinyl acetate (PVP-VA), after initial characterization with other techniques. A nanocrystalline dispersion of ebselen with PVP-VA was prepared and characterized by powder X-ray diffraction (PXRD), confocal Raman microscopy and mapping, and differential scanning calorimetry (DSC), and then subjected to detailed 1D and 2D SSNMR analysis involving ¹H, ¹³C, and ⁷⁷Se isotopes and ¹H spin diffusion. PXRD was used to show that dispersion contains nanocrystalline ebselen in the 35-60 nm size range. Confocal Raman microscopy and spectral mapping were able to detect regions where short-range interactions may occur between ebselen and PVP-VA. Spin diffusion effects were analyzed using 2D SSNMR experiments and are able to directly detect interactions between ebselen and the surrounding PVP-VA. The methods used here, particularly the 2D SSNMR methods based on spin diffusion, provided detailed structural information about a nanocrystalline polymer dispersion of ebselen, and should be useful in other studies of these types of materials.

  7. Design and synthesis of a crystalline LiPON electrolyte

    NASA Astrophysics Data System (ADS)

    Holzwarth, N. A. W.; Senevirathne, Keerthi; Day, Cynthia S.; Lachgar, Abdessadek; Gross, Michael D.

    2013-03-01

    In the course of a computation study of the broad class of lithium phosphorus oxy-nitride materials of interest for solid electrolyte applications, Du and Holzwarth, [2] recently predicted a stable crystalline material with the stoichiometry Li2PO2N. The present paper reports the experimental preparation of the material using high temperature solid state synthesis and reports the results of experimental and calculational characterization studies. The so-named SD -Li2PO2N crystal structure has the orthorhombic space group Cmc21 with lattice constants a=9.0692(4) Å, b=5.3999(2) Å, and c=4.6856(2) Å. The structure is similar but not identical to the predicted structure, characterized by parallel arrangements of anionic phosphorus oxy-nitride chains having planar P -N -P -N backbones. Nitrogen 2p π states contribute to the strong bonding and to the chemical and thermal stablility of the material in air up to 600° C and in vacuum up to 1050° C. The measured Arrhenius activation energy for ionic conductivity is 0.6 eV which is comparable to computed vacancy migration energies in the presence of a significant population of Li+ ion vacancies. Supported by NSF grant DMR-1105485 and by a grnat from the Wake Forest University Center for Energy, Environment, and Sustainability.

  8. Optical Fluorescence Microscopy for Spatially Characterizing Electron Transfer across a Solid-Liquid Interface on Heterogeneous Electrodes.

    PubMed

    Choudhary, Eric; Velmurugan, Jeyavel; Marr, James M; Liddle, James A; Szalai, Veronika

    2016-01-01

    Heterogeneous catalytic materials and electrodes are used for (electro)chemical transformations, including those important for energy storage and utilization. 1, 2 Due to the heterogeneous nature of these materials, activity measurements with sufficient spatial resolution are needed to obtain structure/activity correlations across the different surface features (exposed facets, step edges, lattice defects, grain boundaries, etc.). These measurements will help lead to an understanding of the underlying reaction mechanisms and enable engineering of more active materials. Because (electro)catalytic surfaces restructure with changing environments, 1 it is important to perform measurements in operando . Sub-diffraction fluorescence microscopy is well suited for these requirements because it can operate in solution with resolution down to a few nm. We have applied sub-diffraction fluorescence microscopy to a thin cell containing an electrocatalyst and a solution containing the redox sensitive dye p-aminophenyl fluorescein to characterize reaction at the solid-liquid interface. Our chosen dye switches between a nonfluorescent reduced state and a one-electron oxidized bright state, a process that occurs at the electrode surface. This scheme is used to investigate the activity differences on the surface of polycrystalline Pt, in particular to differentiate reactivity at grain faces and grain boundaries. Ultimately, this method will be extended to study other dye systems and electrode materials.

  9. Solid State Sensor for Simultaneous Measurement of Total Alkalinity and pH of Seawater.

    PubMed

    Briggs, Ellen M; Sandoval, Sergio; Erten, Ahmet; Takeshita, Yuichiro; Kummel, Andrew C; Martz, Todd R

    2017-09-22

    A novel design is demonstrated for a solid state, reagent-less sensor capable of rapid and simultaneous measurement of pH and Total Alkalinity (A T ) using ion sensitive field effect transistor (ISFET) technology to provide a simplified means of characterization of the aqueous carbon dioxide system through measurement of two "master variables": pH and A T . ISFET-based pH sensors that achieve 0.001 precision are widely used in various oceanographic applications. A modified ISFET is demonstrated to perform a nanoliter-scale acid-base titration of A T in under 40 s. This method of measuring A T , a Coulometric Diffusion Titration, involves electrolytic generation of titrant, H + , through the electrolysis of water on the surface of the chip via a microfabricated electrode eliminating the requirement of external reagents. Characterization has been performed in seawater as well as titrating individual components (i.e., OH - , HCO 3 - , CO 3 2- , B(OH) 4 - , PO 4 3- ) of seawater A T . The seawater measurements are consistent with the design in reaching the benchmark goal of 0.5% precision in A T over the range of seawater A T of ∼2200-2500 μmol kg -1 which demonstrates great potential for autonomous sensing.

  10. Solid-State Characterization and Relative Formation Enthalpies To Evaluate Stability of Cocrystals of an Antidiabetic Drug.

    PubMed

    Duggirala, Naga Kiran; Frericks Schmidt, Heather L; Lei, Zhaohui; Zaworotko, Michael J; Krzyzaniak, Joseph F; Arora, Kapildev K

    2018-05-07

    The current study integrates formation enthalpy and traditional slurry experiments to quickly assess the physical stability of cocrystal drug substance candidates for their potential to support drug development. Cocrystals of an antidiabetic drug (GKA) with nicotinamide (NMA), vanillic acid (VLA), and ethyl vanillin (EVL) were prepared and characterized by powder X-ray diffractometry (PXRD), spectroscopic, and thermal techniques. The formation enthalpies of the cocrystals, and their physical mixtures (GKA + coformer) were measured by the differential scanning calorimetry (DSC) method reported by Zhang et al. [ Cryst. Growth Des. 2012 , 12 ( 8 ), 4090 - 4097 ]. The experimentally measured differences in the relative formation enthalpies obtained by integrating the heat flow of each cocrystal against the respective physical mixture were correlated to the physical stability of the cocrystals in the solid state. The relative formation enthalpies of all of the cocrystals studied suggest that the cocrystals are not physically stable at room temperature versus their physical mixtures. To further address relative stability, the cocrystals were slurried in 30% v/v aqueous ethanol, and it was observed that all of the cocrystals revert to GKA within 48 h at room temperature. The slurry experiments are consistent with the relative instability of the cocrystals with respect to their physical mixtures suggested by the DSC results.

  11. Applications of NIR spectroscopy to monitoring and analyzing the solid state during industrial crystallization processes.

    PubMed

    Févotte, G; Calas, J; Puel, F; Hoff, C

    2004-04-01

    Fiber-optic near infrared (NIR) spectroscopy was used to investigate several key features of the polymorphic transitions observed during the crystallization and the filtration of SaC, an Active Pharmaceutical Ingredient (API) produced by Sanofi-Synthelabo. Using few samples, the spectroscopic data were calibrated to provide measurements of the polymorphic composition of the solid product which is likely to appear in two crystalline forms or in the amorphous state. Both qualitative and quantitative methods were successfully evaluated to characterize the API. The NIR spectroscopy measurement was then applied to investigate the kinetic behavior of the phase transition phenomena against various operating conditions. From the viewpoint of industrial process development several applications are presented. The effects of temperature and seed crystal habits on the rate of transition of filtration cakes are briefly investigated; and a study of the effect of residual water in the solvent on the transition occurring during filtration is more deeply analyzed. The experimental results demonstrate that highly valuable information can be provided by the NIR spectroscopy measurements, when one aims at understanding more deeply and optimizing the consequences of various and complex phenomena involved during the solid processing chain.

  12. New thermoresistant polymorph from CO2 recrystallization of minocycline hydrochloride.

    PubMed

    Rodrigues, Miguel A; Tiago, João M; Padrela, Luis; Matos, Henrique A; Nunes, Teresa G; Pinheiro, Lídia; Almeida, António J; de Azevedo, Edmundo Gomes

    2014-11-01

    To prepare and thoroughly characterize a new polymorph of the broad-spectrum antibiotic minocycline from its hydrochloride dehydrate salts. The new minocycline hydrochloride polymorph was prepared by means of the antisolvent effect caused by carbon dioxide. Minocycline recrystallized as a red crystalline hydrochloride salt, starting from solutions or suspensions containing CO2 and ethanol under defined conditions of temperature, pressure and composition. This novel polymorph (β-minocycline) revealed characteristic PXRD and FTIR patterns and a high melting point (of 247 ºC) compared to the initial minocycline hydrochloride hydrates (α-minocycline). Upon dissolution the new polymorph showed full anti-microbial activity. Solid-state NMR and DSC studies evidenced the higher chemical stability and crystalline homogeneity of β-minocycline compared to the commercial chlorohydrate powders. Molecular structures of both minocyclines present relevant differences as shown by multinuclear solid-state NMR. This work describes a new crystalline structure of minocycline and evidences the ability of ethanol-CO2 system in removing water molecules from the crystalline structure of this API, at modest pressure, temperature and relatively short time (2 h), while controlling the crystal habit. This process has therefore the potential to become a consistent alternative towards the control of the solid form of APIs.

  13. Defects in electro-optically active polymer solids

    NASA Technical Reports Server (NTRS)

    Martin, David C.

    1993-01-01

    There is considerable current interest in the application of organic and polymeric materials for electronic and photonic devices. The rapid, non-linear optical (NLO) response of these materials makes them attractive candidates for waveguides, interferometers, and frequency doublers. In order to realize the full potential of these systems, it is necessary to develop processing schemes which can fabricate these molecules into ordered arrangements. There is enormous potential for introducing well-defined, local variations in microstructure to control the photonic properties of organic materials by rational 'defect engineering.' This effort may eventually become as technologically important as the manipulation of the electronic structure of solid-state silicon based devices is at present. The success of this endeavor will require complimentary efforts in the synthesis, processing, and characterization of new materials. Detailed information about local microstructure will be necessary to understand the influence of symmetry breaking of the solid phases near point, line, and planar defects. In metallic and inorganic polycrystalline materials, defects play an important role in modifying macroscopic properties. To understand the influence of particular defects on the properties of materials, it has proven useful to isolate the defect by creating bicrystals between two-component single crystals. In this way the geometry of a grain boundary defect and its effect on macroscopic properties can be determined unambiguously. In crystalline polymers it would be valuable to establish a similar depth of understanding about the relationship between defect structure and macroscopic properties. Conventionally processed crystalline polymers have small crystallites (10-20 nm), which implies a large defect density in the solid state. Although this means that defects may play an important or even dominant role in crystalline or liquid crystalline polymer systems, it also makes it difficult to isolate the effect of a particular boundary on a macroscopically observed property. However, the development of solid-state and thin-film polymerization mechanisms have facilitated the synthesis of highly organized and ordered polymers. These systems provide a unique opportunity to isolate and investigate in detail the structure of covalently bonded solids near defects and the effect of these defects on the properties of the material. The study of defects in solid polymers has been the subject of a recent review (Martin, 1993).

  14. Amorphous solid dispersions of piroxicam and Soluplus(®): Qualitative and quantitative analysis of piroxicam recrystallization during storage.

    PubMed

    Lust, Andres; Strachan, Clare J; Veski, Peep; Aaltonen, Jaakko; Heinämäki, Jyrki; Yliruusi, Jouko; Kogermann, Karin

    2015-01-01

    The conversion of active pharmaceutical ingredient (API) from amorphous to crystalline form is the primary stability issue in formulating amorphous solid dispersions (SDs). The aim of the present study was to carry out qualitative and quantitative analysis of the physical solid-state stability of the SDs of poorly water-soluble piroxicam (PRX) and polyvinyl caprolactam-polyvinyl acetate-polyethylene-glycol graft copolymer (Soluplus(®)). The SDs were prepared by a solvent evaporation method and stored for six months at 0% RH/6 °C, 0% RH/25 °C, 40% RH/25 °C and 75% RH/25 °C. Fourier transform infrared spectroscopy equipped with attenuated total reflection accessory (ATR-FTIR) and Raman spectroscopy were used for characterizing the physical solid-state changes and drug-polymer interactions. The principal component analysis (PCA) and multivariate curve resolution alternating least squares (MCR-ALS) were used for the qualitative and quantitative analysis of Raman spectra collected during storage. When stored at 0% RH/6 °C and at 0% RH/25 °C, PRX in SDs remained in an amorphous form since no recrystallization was observed by ATR-FTIR and Raman spectroscopy. Raman spectroscopy coupled with PCA and MCR-ALS and ATR-FTIR spectroscopy enabled to detect the recrystallization of amorphous PRX in the samples stored at higher humidity. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Sintering of Lead-Free Piezoelectric Sodium Potassium Niobate Ceramics

    PubMed Central

    Malič, Barbara; Koruza, Jurij; Hreščak, Jitka; Bernard, Janez; Wang, Ke; Fisher, John G.; Benčan, Andreja

    2015-01-01

    The potassium sodium niobate, K0.5Na0.5NbO3, solid solution (KNN) is considered as one of the most promising, environment-friendly, lead-free candidates to replace highly efficient, lead-based piezoelectrics. Since the first reports of KNN, it has been recognized that obtaining phase-pure materials with a high density and a uniform, fine-grained microstructure is a major challenge. For this reason the present paper reviews the different methods for consolidating KNN ceramics. The difficulties involved in the solid-state synthesis of KNN powder, i.e., obtaining phase purity, the stoichiometry of the perovskite phase, and the chemical homogeneity, are discussed. The solid-state sintering of stoichiometric KNN is characterized by poor densification and an extremely narrow sintering-temperature range, which is close to the solidus temperature. A study of the initial sintering stage revealed that coarsening of the microstructure without densification contributes to a reduction of the driving force for sintering. The influences of the (K + Na)/Nb molar ratio, the presence of a liquid phase, chemical modifications (doping, complex solid solutions) and different atmospheres (i.e., defect chemistry) on the sintering are discussed. Special sintering techniques, such as pressure-assisted sintering and spark-plasma sintering, can be effective methods for enhancing the density of KNN ceramics. The sintering behavior of KNN is compared to that of a representative piezoelectric lead zirconate titanate (PZT). PMID:28793702

  16. Lithium Metal-Copper Vanadium Oxide Battery with a Block Copolymer Electrolyte

    DOE PAGES

    Devaux, Didier; Wang, Xiaoya; Thelen, Jacob L.; ...

    2016-09-08

    Lithium (Li) batteries comprising multivalent positive active materials such as copper vanadium oxide have high theoretical capacity. These batteries with a conventional liquid electrolyte exhibit limited cycle life because of copper dissolution into the electrolyte. In this paper, we report here on the characterization of solid-state Li metal batteries with a positive electrode based on α-Cu 6.9V 6O 18.9 (α-CuVO 3). We replaced the liquid electrolyte by a nanostructured solid block copolymer electrolyte comprising of a mixture of polystyrene-b-poly(ethylene oxide) (SEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. In situ X-ray diffraction was used to follow the Li insertion/de-insertion mechanism into themore » α-CuVO 3 host material and its reversibility. In situ X-ray scattering revealed that the multistep electrochemical reactions involved are similar in the presence of liquid or solid electrolyte. The capacity fade of the solid-state batteries is less rapid than that of α-CuVO 3–Li metal batteries with a conventional liquid electrolyte. Hard X-ray microtomography revealed that upon cycling, voids and Cu-rich agglomerates were formed at the interface between the Li metal and the SEO electrolyte. Finally, the void volume and the volume occupied by the Cu-rich agglomerates were independent of C-rate and cycle number.« less

  17. Piroxicam cocrystals with phenolic coformers: preparation, characterization, and dissolution properties.

    PubMed

    Emami, Shahram; Adibkia, Khosro; Barzegar-Jalali, Mohammad; Siahi-Shadbad, Mohammadreza

    2018-04-04

    This study explores the preparation and investigation of dissolution properties of piroxicam cocrystals. Differential scanning calorimetry (DSC) was used to determine the capability of resorcinol (RES), methylparaben (MPB), and vanillin (VAN) to form cocrystals with piroxicam (PRX). Generation of cocrystals was attempted by liquid assisted grinding and slurry methods. Cocrystals were characterized by thermal methods, powder X-ray diffraction, and Fourier-transform infrared spectroscopy. Apparent solubility, intrinsic dissolution rate (IDR), and powder dissolution profile of cocrystals were compared with anhydrous piroxicam, piroxicam monohydrate (PRXMH), and previously reported piroxicam-succinic acid cocrystal. Contact angles and particle sizes of the studied solids were also measured. Based on the DSC screening results, we prepared and characterized PRX-RES and PRX-MPB cocrystals. Interestingly, the cocrystals not only failed to improve apparent solubility and IDR of PRX but also showed lower values than PRX that were attributed to induction of phase transformation of PRX to PRXMH. In contrary, cocrystals performed better than PRX in powder dissolution studies. The higher dissolution rates of cocrystals were explained by improved wettability and reduced sizes. This study has highlighted the complexity of solid state properties of cocrystals and has provided new evidence for the in-solution stability issues of cocrystals.

  18. Reactions of vanadium dioxide molecules with acetylene: infrared spectra of VO2(η(2)-C2H2)(x) (x = 1, 2) and OV(OH)CCH in solid neon.

    PubMed

    Zhou, Xiaojie; Chen, Mohua; Zhou, Mingfei

    2013-07-03

    Reactions of vanadium dioxide molecules with acetylene have been studied by matrix isolation infrared spectroscopy. Reaction intermediates and products are identified on the basis of isotopic substitutions as well as density functional frequency calculations. Ground state vanadium dioxide molecule reacts with acetylene in forming the side-on-bonded VO2(η(2)-C2H2) and VO2(η(2)-C2H2)2 complexes spontaneously on annealing in solid neon. The VO2(η(2)-C2H2) complex is characterized to have a (2)B2 ground state with C2v symmetry, whereas the VO2(η(2)-C2H2)2 complex has a (2)A ground state with C2 symmetry. The VO2(η(2)-C2H2) and VO2(η(2)-C2H2)2 complexes are photosensitive. The VO2(η(2)-C2H2) complex rearranges to the OV(OH)CCH molecule upon UV-vis light excitation.

  19. White/blue-emitting, water-dispersible CdSe quantum dots prepared by counter ion-induced polymer collapse

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Goh, Jane Betty; Goh, M. Cynthia; Giri, Neeraj Kumar; Paige, Matthew F.

    2015-09-01

    The synthesis and characterization of water-dispersible, luminescent CdSe/ZnS semiconductor quantum dots that exhibit nominal "white" fluorescence emission and have potential applications in solid-state lighting is described. The nanomaterials, prepared through counter ion-induced collapse and UV cross-linking of high-molecular weight polyacrylic acid in the presence of appropriate aqueous inorganic ions, were of ∼2-3 nm diameter and could be prepared in gram quantities. The quantum dots exhibited strong luminescence emission in two bands, the first in the blue-region (band edge) of the optical spectrum and the second, a broad emission in the red-region (attributed to deep trap states) of the optical spectrum. Because of the relative strength of emission of the band edge and deep trap state luminescence, it was possible to achieve visible white luminescence from the quantum dots in aqueous solution and in dried, solid films. The optical spectroscopic properties of the nanomaterials, including ensemble and single-molecule spectroscopy, was performed, with results compared to other white-emitting quantum dot systems described previously in the literature.

  20. Key study on the potential of hydrazine bisborane for solid- and liquid-state chemical hydrogen storage.

    PubMed

    Pylypko, Sergii; Petit, Eddy; Yot, Pascal G; Salles, Fabrice; Cretin, Marc; Miele, Philippe; Demirci, Umit B

    2015-05-04

    Hydrazine bisborane N2H4(BH3)2 (HBB; 16.8 wt %) recently re-emerged as a potential hydrogen storage material. However, such potential is controversial: HBB was seen as a hazardous compound up to 2010, but now it would be suitable for hydrogen storage. In this context, we focused on fundamentals of HBB because they are missing in the literature and should help to shed light on its effective potential while taking into consideration any risk. Experimental/computational methods were used to get a complete characterization data sheet, including, e.g., XRD, NMR, FTIR, Raman, TGA, and DSC. From the reported results and discussion, it is concluded that HBB has potential in the field of chemical hydrogen storage given that both thermolytic and hydrolytic dehydrogenations were analyzed. In solid-state chemical hydrogen storage, it cannot be used in the pristine state (risk of explosion during dehydrogenation) but can be used for the synthesis of derivatives with improved dehydrogenation properties. In liquid-state chemical hydrogen storage, it can be studied for room-temperature dehydrogenation, but this requires the development of an active and selective metal-based catalyst. HBB is a thus a candidate for chemical hydrogen storage.

  1. Solitary states for coupled oscillators with inertia.

    PubMed

    Jaros, Patrycja; Brezetsky, Serhiy; Levchenko, Roman; Dudkowski, Dawid; Kapitaniak, Tomasz; Maistrenko, Yuri

    2018-01-01

    Networks of identical oscillators with inertia can display remarkable spatiotemporal patterns in which one or a few oscillators split off from the main synchronized cluster and oscillate with different averaged frequency. Such "solitary states" are impossible for the classical Kuramoto model with sinusoidal coupling. However, if inertia is introduced, these states represent a solid part of the system dynamics, where each solitary state is characterized by the number of isolated oscillators and their disposition in space. We present system parameter regions for the existence of solitary states in the case of local, non-local, and global network couplings and show that they preserve in both thermodynamic and conservative limits. We give evidence that solitary states arise in a homoclinic bifurcation of a saddle-type synchronized state and die eventually in a crisis bifurcation after essential variation of the parameters.

  2. Solitary states for coupled oscillators with inertia

    NASA Astrophysics Data System (ADS)

    Jaros, Patrycja; Brezetsky, Serhiy; Levchenko, Roman; Dudkowski, Dawid; Kapitaniak, Tomasz; Maistrenko, Yuri

    2018-01-01

    Networks of identical oscillators with inertia can display remarkable spatiotemporal patterns in which one or a few oscillators split off from the main synchronized cluster and oscillate with different averaged frequency. Such "solitary states" are impossible for the classical Kuramoto model with sinusoidal coupling. However, if inertia is introduced, these states represent a solid part of the system dynamics, where each solitary state is characterized by the number of isolated oscillators and their disposition in space. We present system parameter regions for the existence of solitary states in the case of local, non-local, and global network couplings and show that they preserve in both thermodynamic and conservative limits. We give evidence that solitary states arise in a homoclinic bifurcation of a saddle-type synchronized state and die eventually in a crisis bifurcation after essential variation of the parameters.

  3. Preparation and characterization of azithromycin--Aerosil 200 solid dispersions with enhanced physical stability.

    PubMed

    Li, Xuechao; Peng, Huanhuan; Tian, Bin; Gou, Jingxin; Yao, Qing; Tao, Xiaoguang; He, Haibing; Zhang, Yu; Tang, Xing; Cai, Cuifang

    2015-01-01

    The main purpose of this study was to investigate the feasibility of azithromycin (AZI)--Aerosil 200 solid dispersions specifically with high stability under accelerated condition (40 °C/75% RH). Ball milling (BM) and hot-melt extrusion (HME) were used to prepare AZI solid dispersions. The physical properties of solid dispersions were evaluated by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). For solid dispersions prepared with both methods, no crystalline of AZI was detected (except for AZI: Aerosil 200=75:25) by DSC or PXRD, indicating the amorphous state of AZI in solid dispersions. The FT-IR results demonstrated the loss of crystallization water and the formation of hydrogen bonds between Aerosil 200 and AZI during the preparation of solid dispersions. After 4 weeks storage under accelerated condition, the degree of crystallinity of AZI increased in solid dispersions prepared by BM, whereas for solid dispersions containing AZI, Aerosil 200 and glyceryl behenate (GB) prepared by HME, no crystalline of AZI was identified. This high stability can be attributed to the hydrophobic properties of GB and the presence of hydrogen bonds. Based on the above results, it is inferred the protection of hydrogen bonds between AZI and Aerosil 200 formed during preparation process effectively inhibited the recrystallization of AZI and improved the physical stability of amorphous AZI in the presence of Aerosil 200. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Residual waste from Hanford tanks 241-C-203 and 241-C-204. 1. Solids characterization.

    PubMed

    Krupka, Kenneth M; Schaef, Herbert T; Arey, Bruce W; Heald, Steve M; Deutsch, William I; Lindberg, Michael J; Cantrell, Kirk J

    2006-06-15

    Bulk X-ray diffraction (XRD), synchrotron X-ray microdiffraction (microXRD), and scanning electron microscopy/ energy-dispersive X-ray spectroscopy (SEM/EDS) were used to characterize solids in residual sludge from single-shell underground waste tanks C-203 and C-204 at the U.S. Department of Energy's Hanford Site in southeastern Washington state. Cejkaite [Na4(UO2)(CO3)3] was the dominant crystalline phase in the C-203 and C-204 sludges. This is one of the few occurrences of cejkaite reported in the literature and may be the first documented occurrence of this phase in radioactive wastes from DOE sites. Characterization of residual solids from water leach and selective extraction tests indicates that cejkaite has a high solubility and a rapid rate of dissolution in water at ambient temperature and that these sludges may also contain poorly crystalline Na2U207 [or clarkeite Na[(UO2)O(OH)](H2O)0-1] as well as nitratine (soda niter, NaNO3), goethite [alpha-FeO(OH)], and maghemite (gamma-Fe2O3). Results of the SEM/EDS analyses indicate that the C-204 sludge also contains a solid that lacks crystalline form and is composed of Na, Al, P, O, and possibly C. Other identified solids include Fe oxides that often also contain Cr and Ni and occur as individual particles, coatings on particles, and botryoidal aggregates; a porous-looking material (or an aggregate of submicrometer particles) that typically contain Al, Cr, Fe, Na, Ni, Si, U, P, O, and C; Si oxide (probably quartz); and Na-Al silicate(s). The latter two solids probably represent minerals from the Hanford sediment, which were introduced into the tank during prior sampling campaigns or other tank operation activities. The surfaces of some Fe-oxide particles in residual solids from the water leach and selective extraction tests appear to have preferential dissolution cavities. If these Fe oxides contain contaminants of concern, then the release of these contaminants into infiltrating water would be limited by the dissolution rates of these Fe oxides, which in general have lowto very low solubilities and slow dissolution rates at near neutral to basic pH values under oxic conditions.

  5. Molecular Chemistry and Engineering of Boron-Modified Polyorganosilazanes as New Processable and Functional SiBCN Precursors.

    PubMed

    Viard, Antoine; Fonblanc, Diane; Schmidt, Marion; Lale, Abhijeet; Salameh, Chrystelle; Soleilhavoup, Anne; Wynn, Mélanie; Champagne, Philippe; Cerneaux, Sophie; Babonneau, Florence; Chollon, Georges; Rossignol, Fabrice; Gervais, Christel; Bernard, Samuel

    2017-07-06

    A series of boron-modified polyorganosilazanes was synthesized from a poly(vinylmethyl-co-methyl)silazane and controlled amounts of borane dimethyl sulfide. The role of the chemistry behind their synthesis has been studied in detail by using solid-state NMR spectroscopy, FTIR spectroscopy, and elemental analysis. The intimate relationship between the chemistry and the processability of these polymers is discussed. Polymers with low boron contents displayed appropriate requirements for facile processing in solution, such as impregnation of host carbon materials, which resulted in the design of mesoporous monoliths with a high specific surface area after pyrolysis. Polymers with high boron content are more appropriate for solid-state processing to design mechanically robust monolith-type macroporous and dense structures after pyrolysis. Boron acts as a crosslinking element, which offers the possibility to extend the processability of polyorganosilazanes and suppress the distillation of oligomeric fragments in the low-temperature region of their thermal decomposition (i.e., pyrolysis) at 1000 °C under nitrogen. Polymers with controlled and high ceramic yields were generated. We provide a comprehensive mechanistic study of the two-step thermal decomposition based on a combination of thermogravimetric experiments coupled with elemental analysis, solid-state NMR spectroscopy, and FTIR spectroscopy. Selected characterization tools allowed the investigation of specific properties of the monolith-type SiBCN materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Heat Management Strategies for Solid-state NMR of Functional Proteins

    PubMed Central

    Fowler, Daniel J.; Harris, Michael J.; Thompson, Lynmarie K.

    2012-01-01

    Modern solid-state NMR methods can acquire high-resolution protein spectra for structure determination. However, these methods use rapid sample spinning and intense decoupling fields that can heat and denature the protein being studied. Here we present a strategy to avoid destroying valuable samples. We advocate first creating a sacrificial sample, which contains unlabeled protein (or no protein) in buffer conditions similar to the intended sample. This sample is then doped with the chemical shift thermometer Sm2Sn2O7. We introduce a pulse scheme called TCUP (for Temperature Calibration Under Pulseload) that can characterize the heating of this sacrificial sample rapidly, under a variety of experimental conditions, and with high temporal resolution. Sample heating is discussed with respect to different instrumental variables such as spinning speed, decoupling strength and duration, and cooling gas flow rate. The effects of different sample preparation variables are also discussed, including ionic strength, the inclusion of cryoprotectants, and the physical state of the sample (i.e. liquid, solid, or slurry). Lastly, we discuss probe detuning as a measure of sample thawing that does not require retuning the probe or using chemical shift thermometer compounds. Use of detuning tests and chemical shift thermometers with representative sample conditions makes it possible to maximize the efficiency of the NMR experiment while retaining a functional sample. PMID:22868258

  7. β-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR

    PubMed Central

    Vasa, Suresh; Lin, Lin; Shi, Chaowei; Habenstein, Birgit; Riedel, Dietmar; Kühn, Juliane; Thanbichler, Martin; Lange, Adam

    2015-01-01

    Bactofilins are a widespread class of bacterial filament-forming proteins, which serve as cytoskeletal scaffolds in various cellular pathways. They are characterized by a conserved architecture, featuring a central conserved domain (DUF583) that is flanked by variable terminal regions. Here, we present a detailed investigation of bactofilin filaments from Caulobacter crescentus by high-resolution solid-state NMR spectroscopy. De novo sequential resonance assignments were obtained for residues Ala39 to Phe137, spanning the conserved DUF583 domain. Analysis of the secondary chemical shifts shows that this core region adopts predominantly β-sheet secondary structure. Mutational studies of conserved hydrophobic residues located in the identified β-strand segments suggest that bactofilin folding and polymerization is mediated by an extensive and redundant network of hydrophobic interactions, consistent with the high intrinsic stability of bactofilin polymers. Transmission electron microscopy revealed a propensity of bactofilin to form filament bundles as well as sheet-like, 2D crystalline assemblies, which may represent the supramolecular arrangement of bactofilin in the native context. Based on the diffraction pattern of these 2D crystalline assemblies, scanning transmission electron microscopy measurements of the mass per length of BacA filaments, and the distribution of β-strand segments identified by solid-state NMR, we propose that the DUF583 domain adopts a β-helical architecture, in which 18 β-strand segments are arranged in six consecutive windings of a β-helix. PMID:25550503

  8. β-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR.

    PubMed

    Vasa, Suresh; Lin, Lin; Shi, Chaowei; Habenstein, Birgit; Riedel, Dietmar; Kühn, Juliane; Thanbichler, Martin; Lange, Adam

    2015-01-13

    Bactofilins are a widespread class of bacterial filament-forming proteins, which serve as cytoskeletal scaffolds in various cellular pathways. They are characterized by a conserved architecture, featuring a central conserved domain (DUF583) that is flanked by variable terminal regions. Here, we present a detailed investigation of bactofilin filaments from Caulobacter crescentus by high-resolution solid-state NMR spectroscopy. De novo sequential resonance assignments were obtained for residues Ala39 to Phe137, spanning the conserved DUF583 domain. Analysis of the secondary chemical shifts shows that this core region adopts predominantly β-sheet secondary structure. Mutational studies of conserved hydrophobic residues located in the identified β-strand segments suggest that bactofilin folding and polymerization is mediated by an extensive and redundant network of hydrophobic interactions, consistent with the high intrinsic stability of bactofilin polymers. Transmission electron microscopy revealed a propensity of bactofilin to form filament bundles as well as sheet-like, 2D crystalline assemblies, which may represent the supramolecular arrangement of bactofilin in the native context. Based on the diffraction pattern of these 2D crystalline assemblies, scanning transmission electron microscopy measurements of the mass per length of BacA filaments, and the distribution of β-strand segments identified by solid-state NMR, we propose that the DUF583 domain adopts a β-helical architecture, in which 18 β-strand segments are arranged in six consecutive windings of a β-helix.

  9. Self-assembly of PEGylated tetra-phenylalanine derivatives: structural insights from solution and solid state studies

    PubMed Central

    Diaferia, Carlo; Mercurio, Flavia Anna; Giannini, Cinzia; Sibillano, Teresa; Morelli, Giancarlo; Leone, Marilisa; Accardo, Antonella

    2016-01-01

    Water soluble fibers of PEGylated tetra-phenylalanine (F4), chemically modified at the N-terminus with the DOTA chelating agent, have been proposed as innovative contrast agent (CA) in Magnetic Resonance Imaging (MRI) upon complexation of the gadolinium ion. An in-depth structural characterization of PEGylated F4-fibers, in presence (DOTA-L6-F4) and in absence of DOTA (L6-F4), is reported in solution and at the solid state, by a multiplicity of techniques including CD, FTIR, NMR, DLS, WAXS and SAXS. This study aims to better understand how the aggregation process influences the performance of nanostructures as MRI CAs. Critical aggregation concentrations for L6-F4 (43 μM) and DOTA-L6-F4 (75 μM) indicate that self-aggregation process occurs in the same concentration range, independently of the presence of the CA. The driving force for the aggregation is the π-stacking between the side chains of the aromatic framework. CD, FTIR and WAXS measurements indicate an antiparallel β-sheet organization of the monomers in the resulting fibers. Moreover, WAXS and FTIR experiments point out that in solution the nanomaterials retain the same morphology and monomer organizations of the solid state, although the addition of the DOTA chelating agent affects the size and the degree of order of the fibers. PMID:27220817

  10. Synthesis, crystal structure and antimicrobial activities of two isomeric gold(I) complexes with nitrogen-containing heterocycle and triphenylphosphine ligands, [Au(L)(PPh3)] (HL = pyrazole and imidazole).

    PubMed

    Nomiya, K; Noguchi, R; Ohsawa, K; Tsuda, K; Oda, M

    2000-03-01

    Two isomeric gold(I)-triphenylphosphine complexes with nitrogen-containing heterocycles, [Au(L)(PPh3) (HL = pyrazole (1), imidazole (2)) were isolated as colorless cubic crystals for 1 and colorless plate crystals for 2, respectively. The crystal structures of 1 and 2 were determined by single-crystal X-ray diffraction. These complexes were also fully characterized by complete elemental analyses, thermogravimetric/differential thermal analyses (TG/DTA) and FT-IR in the solid state and by solution NMR (31P, 1H and 13C) spectroscopy and molecular weight measurements in acetone solution. These complexes consisted of a monomeric 2-coordinate AuNP core both in the solid state and in solution. The molecular structures of 1 and 2 were compared with those of related gold(I) complexes, [Au(1,2,3-triz)(PPh3)] (3, Htriz = triazole), [Au(1,2,4-triz)(PPh3)]2 (4) as a dimer through a gold(I)-gold(I) bond in the solid state, and [Au(tetz)(PPh3)] (5, Htetz = tetrazole). Selective and effective antimicrobial activities against two gram-positive bacteria (B. subtilis, S. aureus) and modest activities against one yeast (C. albicans) found in these gold(I) complexes 1-4 are noteworthy, in contrast to poor activities observed in the corresponding silver(I) complexes.

  11. Utilization of anaerobically treated distillery spent wash for production of cellulases under solid-state fermentation.

    PubMed

    Acharya, Bhavik K; Mohana, Sarayu; Jog, Rahul; Divecha, Jyoti; Madamwar, Datta

    2010-10-01

    Pollution caused by distillery spent wash on one hand has stimulated the need to develop new technologies to treat the waste and on the other, forced us to reevaluate the efficient utilization of its nutritive potential for production of various high value compounds. In this study, anaerobically treated distillery spent wash was used for the production of cellulases by Aspergillus ellipticus under solid-state fermentation using wheat straw as a substrate. The interactions between distillery effluent concentration, initial pH, moisture content and inoculum size were investigated and modeled using response surface methodology (RSM) involving Box-Behnken design (BBD). Under optimized conditions, filter paper activity, beta-glucosidase and endo-beta-1,4-glucanase activities were found to be 13.38, 26.68 and 130.92 U/g of substrate respectively. Characterization of endo-beta-1,4-glucanase and beta-glucosidase was done after partial purification by ammonium sulfate fractionation followed by desalting. The partially purified endo-beta-1,4-glucanase and beta-glucosidase showed maximum activity at 60 degrees C. Saccharification studies performed with different lignocellulosic substrates showed that wheat bran was most susceptible to enzymatic hydrolysis. The study suggests that anaerobically treated distillery spent wash can be used as a viable nutrient source for cellulase production under solid-state fermentation by A. ellipticus. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  12. Hydrothermal synthesis, crystal structure, luminescent and magnetic properties of a new mononuclear GdIII coordination complex

    NASA Astrophysics Data System (ADS)

    Coban, Mustafa Burak

    2018-06-01

    A new GdIII coordination complex, {[Gd(2-stp)2(H2O)6].2(4,4'-bipy).4(H2O)}, complex 1, (2-stp = 2-sulfoterephthalate anion and 4,4'-bipy = 4,4'-bipyridine), has been synthesized by hydrothermal method and characterized by elemental analysis, solid state UV-Vis and FT-IR spectroscopy, single-crystal X-ray diffraction, solid state photoluminescence and variable-temperature magnetic measurements. The crystal structure determination shows that GdIII ions are eight coordinated and adopt a distorted square-antiprismatic geometry. Molecules interacting through intra- and intermolecular (O-H⋯O, O-H⋯N) hydrogen bonds in complex 1, give rise to 3D hydrogen bonded structure and the discrete lattice 4,4'-bipy molecules occupy the channel of the 3D structure. π-π stacking interactions also exist 4,4'-bipy-4,4'-bipy and 4,4'-bipy-2-stp molecule rings in 3D structures. Additionally, solid state photoluminescence properties of complex 1 at room temperature have been investigated. Under the excitation of UV light (at 349 nm), the complex 1 exhibited green emissions (at 505 nm) of GdIII ion in the visible region. Furthermore, Variable-temperature magnetic susceptibility and isothermal magnetization as function of external magnetic field studies reveal that complex 1 displays possible antiferromagnetic interaction.

  13. Insight into magnesium coordination environments in benzoate and salicylate complexes through 25Mg solid-state NMR spectroscopy.

    PubMed

    Burgess, Kevin M N; Xu, Yang; Leclerc, Matthew C; Bryce, David L

    2013-08-01

    We report on the (25)Mg solid-state nuclear magnetic resonance (NMR) characterization of a series of magnesium complexes featuring Mg(2+) ions in organic coordination environments. Six compounds have been synthesized with benzoate and salicylate ligands, which are typically used as linkers in metal organic frameworks (MOFs). The use of ultrahigh-field solid-state NMR has revealed a relatively large range of values for the (25)Mg quadrupolar coupling constant, CQ((25)Mg), in these compounds. In contrast to some previously studied inorganic Mg(2+) complexes, the values of CQ((25)Mg) in organic Mg(2+) complexes are well rationalized by the degree of octahedral strain of the "MgO6" coordination polyhedra. (13)C and (25)Mg isotropic chemical shifts were also found to be sensitive to the binding mode of the carboxylate ligands. The experimental findings are corroborated by gauge-including projector-augmented-wave (GIPAW) density functional theory (DFT) computations, and these have allowed for an interpretation of the experimentally observed trend in the CQ((25)Mg) values and for the visualization of the EFG tensor principal components with respect to the molecular structure. These new insights may prove to be valuable for the understanding and interpretation of (25)Mg NMR data for Mg(2+) ions in organic binding environments such as those found in MOFs and protein-divalent metal binding sites.

  14. Cobalt terephthalate MOF-templated synthesis of porous nano-crystalline Co3O4 by the new indirect solid state thermolysis as cathode material of asymmetric supercapacitor

    NASA Astrophysics Data System (ADS)

    Bigdeli, Hadise; Moradi, Morteza; Hajati, Shaaker; Kiani, Mohammad Ali; Toth, Jozsef

    2017-10-01

    In this work, two different types of Co3O4 nano-crystals were synthesized by (i) conventional direct solid state thermolysis of cobalt terephthalate metal-organic framework (MOF-71) and (ii) new indirect solid state thermolysis of Co(OH)2 derived by alkaline aqueous treatment of MOF-71. The products were then characterized by X-ray diffraction technique (XRD), Fourier transforms infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Reflection electron energy loss spectroscopy (REELS), Brunauer, Emmett, and Teller (BET), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) techniques. By REELS analysis the energy band gap of MOF-71 was determined to be 3.7 eV. Further, electrochemical performance of each Co3O4 nanostructure was studied by the cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) in a three-electrode system in KOH electrolyte. An asymmetric supercapacitor was fabricated using indirect Co3O4 nanoparticles as cathode and electrochemically reduced graphene oxide as anode, and the electrochemical properties were studied and showed a high energy density of 13.51 Wh kg-1 along with a power density of 9775 W kg-1 and good cycling stability with capacitance retention rate of 85% after 2000 cycles.

  15. Addition of a Second Metal (Co) to Molybdenum Carbide: Effect of the Doping Route.

    PubMed

    Araujo, C P B; Frota, A V V M; Souza, C P de; Souto, M V M; Barbosa, C M

    2018-03-01

    Molybdenum carbide is an interesting and versatile material, which has important applications in the metal matrix industry as a reinforcement material, as well as in the catalytic field. Though many papers suggest different methodologies for adding cobalt to the carbide structure aiming either to increase catalytic activity or enhancing mechanical proprieties such as ductility, etc. no straightforward evaluation is available. In the present paper two doping methodologies were studied: via solid state mixture of powders and via wet impregnation. Ammonium molybdate [(NH4)2MoO4] and cobalt nitrate [Co(NO3)2·6H2O] were used as starting materials and the doping process was carried out before carburization reaction. Those materials were characterized by FT-IR, SEM, XRF and XRD. The carbo-reduction products' were evaluated on XRD and XRF basis. Doped precursors' evaluation showed that the wet impregnated doped materials presented smaller particle sizes, were more homogeneous and retained more cobalt than the solid state doped ones. However, final products' assessment indicated that the solid state methodology was able to retain a greater dopant percentage according to XRF evaluation, and XRD data indicated a more intrinsic addition of the dopant to the carbide structure. In addition, no significant changes on particle size could be attributed to any of the methodologies, both producing Mo2C of approximately 30 nm.

  16. Solid-State Synthesis and Structure of the Enigmatic Ammonium Octaborate: (NH4)2[B7O9(OH)5]·3/4B(OH)3·5/4H2O.

    PubMed

    Neiner, Doinita; Sevryugina, Yulia V; Schubert, David M

    2016-09-06

    The compound known since the 19th century as ammonium octaborate was structurally characterized revealing the ammonium salt of the ribbon isomer of the heptaborate anion, [B7O9(OH)5](2-), with boric acid and water molecules. Of composition (NH4)2B7.75O12.63·4.88H2O, it approximates the classical ammonium octaborate composition (NH4)2B8O13·6H2O and has the structural formula {(NH4)2[B7O9(OH)5]}4·3B(OH)3·5H2O. It spontaneously forms at room temperature in solid-state mixtures of ammonium tetraborate and ammonium pentaborate. It crystallizes in the monoclinic space group P21/c with a = 11.4137(2) Å, b = 11.8877(2) Å, c = 23.4459(3) Å, β = 90.092(1)°, V = 3181.19(8) Å(3), and Z = 2 and contains well-ordered ammonium cations and [B7O9(OH)5](2-) anions and disordered B(OH)3 and H2O molecules linked by extensive H bonding. Expeditious solid-state formation of the heptaborate anion under ambient conditions has important implications for development of practical syntheses of industrially useful borates.

  17. Architecture and method for a burst buffer using flash technology

    DOEpatents

    Tzelnic, Percy; Faibish, Sorin; Gupta, Uday K.; Bent, John; Grider, Gary Alan; Chen, Hsing-bung

    2016-03-15

    A parallel supercomputing cluster includes compute nodes interconnected in a mesh of data links for executing an MPI job, and solid-state storage nodes each linked to a respective group of the compute nodes for receiving checkpoint data from the respective compute nodes, and magnetic disk storage linked to each of the solid-state storage nodes for asynchronous migration of the checkpoint data from the solid-state storage nodes to the magnetic disk storage. Each solid-state storage node presents a file system interface to the MPI job, and multiple MPI processes of the MPI job write the checkpoint data to a shared file in the solid-state storage in a strided fashion, and the solid-state storage node asynchronously migrates the checkpoint data from the shared file in the solid-state storage to the magnetic disk storage and writes the checkpoint data to the magnetic disk storage in a sequential fashion.

  18. Pentavalent Lanthanide Compounds: Formation and Characterization of Praseodymium(V) Oxides.

    PubMed

    Zhang, Qingnan; Hu, Shu-Xian; Qu, Hui; Su, Jing; Wang, Guanjun; Lu, Jun-Bo; Chen, Mohua; Zhou, Mingfei; Li, Jun

    2016-06-06

    The chemistry of lanthanides (Ln=La-Lu) is dominated by the low-valent +3 or +2 oxidation state because of the chemical inertness of the valence 4f electrons. The highest known oxidation state of the whole lanthanide series is +4 for Ce, Pr, Nd, Tb, and Dy. We report the formation of the lanthanide oxide species PrO4 and PrO2 (+) complexes in the gas phase and in a solid noble-gas matrix. Combined infrared spectroscopic and advanced quantum chemistry studies show that these species have the unprecedented Pr(V) oxidation state, thus demonstrating that the pentavalent state is viable for lanthanide elements in a suitable coordination environment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Formulation and optimization of spray-dried amlodipine solid dispersion for enhanced oral absorption.

    PubMed

    Jang, Dong-Jin; Sim, Taeyong; Oh, Euichaul

    2013-07-01

    To enhance the oral absorption of photosensitive amlodipine free base, which exhibits a slow dissolution rate and low permeability characteristics, an amorphous solid dispersion system was formulated and characterized. The solid dispersion was prepared by dispersing the amlodipine free base in excess dextrin (1:10 by weight) using a spray-drying technique in the presence of a minimum amount (0.9% w/w) of SLS as an absorption enhancer. The dextrin-based solid dispersion of amlodipine (Amlo-SD) was evaluated in term of formulation, characterization and in vivo absorption study, as well as the spray-drying process was also optimized. The Amlo-SD particles were spherical with a smooth surface and an average particle size of 12.9 μm. Amlodipine was dispersed in an amorphous state and its content remained uniform in the Amlo-SD. The physicochemical stability of the Amlo-SD was maintained at room temperature for 6 months and the photostability was considerably improved. The dissolution of the Amlo-SD was much faster than that of amlodipine at pH 1.2 and 6.8. Amlo-SD produced significantly higher plasma concentrations of amlodipine in rats than amlodipine alone. Amlo-SD with and without SLS provided 2.8- and 2.0-fold increase in AUC, respectively: the difference seems to be attributed to a permeability enhancement effect by SLS. The Amlo-SD with SLS system is a potential formulation option for amlodipine.

  20. Free electron laser-driven ultrafast rearrangement of the electronic structure in Ti

    PubMed Central

    Principi, E.; Giangrisostomi, E.; Cucini, R.; Bencivenga, F.; Battistoni, A.; Gessini, A.; Mincigrucci, R.; Saito, M.; Di Fonzo, S.; D'Amico, F.; Di Cicco, A.; Gunnella, R.; Filipponi, A.; Giglia, A.; Nannarone, S.; Masciovecchio, C.

    2015-01-01

    High-energy density extreme ultraviolet radiation delivered by the FERMI seeded free-electron laser has been used to create an exotic nonequilibrium state of matter in a titanium sample characterized by a highly excited electron subsystem at temperatures in excess of 10 eV and a cold solid-density ion lattice. The obtained transient state has been investigated through ultrafast absorption spectroscopy across the Ti M2,3-edge revealing a drastic rearrangement of the sample electronic structure around the Fermi level occurring on a time scale of about 100 fs. PMID:26798835

  1. Electrochemical Quartz Crystal Microbalance with Dissipation Real-Time Hydrodynamic Spectroscopy of Porous Solids in Contact with Liquids.

    PubMed

    Sigalov, Sergey; Shpigel, Netanel; Levi, Mikhael D; Feldberg, Moshe; Daikhin, Leonid; Aurbach, Doron

    2016-10-18

    Using multiharmonic electrochemical quartz crystal microbalance with dissipation (EQCM-D) monitoring, a new method of characterization of porous solids in contact with liquids has been developed. The dynamic gravimetric information on the growing, dissolving, or stationary stored solid deposits is supplemented by their precise in-operando porous structure characterization on a mesoscopic scale. We present a very powerful method of quartz-crystal admittance modeling of hydrodynamic solid-liquid interactions in order to extract the porous structure parameters of solids during their formation in real time, using different deposition modes. The unique hydrodynamic spectroscopic characterization of electrolytic and rf-sputtered solid Cu coatings that we use for our "proof of concept" provides a new strategy for probing various electrochemically active thin and thick solid deposits, thereby offering inexpensive, noninvasive, and highly efficient quantitative control over their properties. A broad spectrum of applications of our method is proposed, from various metal electroplating and finishing technologies to deeper insight into dynamic build-up and subsequent development of solid-electrolyte interfaces in the operation of Li-battery electrodes, as well as monitoring hydrodynamic consequences of metal corrosion, and growth of biomass coatings (biofouling) on different solid surfaces in seawater.

  2. Evaluation of the JPL X-band 32 element active array. [for deep space communication

    NASA Technical Reports Server (NTRS)

    Boreham, J. F.; Postal, R. B.; Conroy, B. L.

    1979-01-01

    Tests performed on an X-band 32-element active array are described. Antenna pattern characteristics of the array were tested in its standard operating mode as well as several degraded performance modes, including failures of 1, 2, 3, 4, 8, 16, and 31 elements. Additionally, the array was characterized with the addition of a metallic shroud, and also characterized versus rf drive level and at a single off-axis electronic beamsteered position. Characterization was performed on several of the 3/4-watt, three-stage, X-band solid-state power amplifier modules. The characterization included swept amplitude response, amplitude and phase versus temperature from -20 to +60 C, and intermodulation distortion of selected modules. The array is described and conclusions and recommendations based upon the experience and results achieved are included.

  3. 1H-detected MAS solid-state NMR experiments enable the simultaneous mapping of rigid and dynamic domains of membrane proteins

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Nelson, Sarah E. D.; Veglia, Gianluigi

    2017-12-01

    Magic angle spinning (MAS) solid-state NMR (ssNMR) spectroscopy is emerging as a unique method for the atomic resolution structure determination of native membrane proteins in lipid bilayers. Although 13C-detected ssNMR experiments continue to play a major role, recent technological developments have made it possible to carry out 1H-detected experiments, boosting both sensitivity and resolution. Here, we describe a new set of 1H-detected hybrid pulse sequences that combine through-bond and through-space correlation elements into single experiments, enabling the simultaneous detection of rigid and dynamic domains of membrane proteins. As proof-of-principle, we applied these new pulse sequences to the membrane protein phospholamban (PLN) reconstituted in lipid bilayers under moderate MAS conditions. The cross-polarization (CP) based elements enabled the detection of the relatively immobile residues of PLN in the transmembrane domain using through-space correlations; whereas the most dynamic region, which is in equilibrium between folded and unfolded states, was mapped by through-bond INEPT-based elements. These new 1H-detected experiments will enable one to detect not only the most populated (ground) states of biomacromolecules, but also sparsely populated high-energy (excited) states for a complete characterization of protein free energy landscapes.

  4. Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries

    DOE PAGES

    Kerman, Kian; Luntz, Alan; Viswanathan, Venkatasubramanian; ...

    2017-06-09

    Solid state electrolyte systems boasting Li+ conductivity of >10 mS cm -1 at room temperature have opened the potential for developing a solid state battery with power and energy densities that are competitive with conventional liquid electrolyte systems. The primary focus of this review is twofold. First, differences in Li penetration resistance in solid state systems are discussed, and kinetic limitations of the solid state interface are highlighted. Second, technological challenges associated with processing such systems in relevant form factors are elucidated, and architectures needed for cell level devices in the context of product development are reviewed. Specific research vectorsmore » that provide high value to advancing solid state batteries are outlined and discussed.« less

  5. Prediction and theoretical characterization of p-type organic semiconductor crystals for field-effect transistor applications.

    PubMed

    Atahan-Evrenk, Sule; Aspuru-Guzik, Alán

    2014-01-01

    The theoretical prediction and characterization of the solid-state structure of organic semiconductors has tremendous potential for the discovery of new high performance materials. To date, the theoretical analysis mostly relied on the availability of crystal structures obtained through X-ray diffraction. However, the theoretical prediction of the crystal structures of organic semiconductor molecules remains a challenge. This review highlights some of the recent advances in the determination of structure-property relationships of the known organic semiconductor single-crystals and summarizes a few available studies on the prediction of the crystal structures of p-type organic semiconductors for transistor applications.

  6. Near-Infrared (NIR) Spectroscopy of Synthetic Hydroxyapatites and Human Dental Tissues.

    PubMed

    Kolmas, Joanna; Marek, Dariusz; Kolodziejski, Waclaw

    2015-08-01

    Near-infrared spectroscopy (NIR) was used to analyze synthetic hydroxyapatite calcined at various temperatures, synthetic carbonated hydroxyapatite, and human hard dental tissues (enamel and dentin). The NIR bands of those materials in the combination, first-overtone, and second-overtone spectral regions were assigned and evaluated for structural characterization. They were attributed to adsorbed and structural water, structural hydroxyl (OH) groups and surface P-OH groups. The NIR spectral features were quantitatively discussed in view of proton solid-state magic-angle spinning nuclear magnetic resonance ((1)H MAS NMR) results. We conclude that the NIR spectra of apatites are useful in the structural characterization of synthetic and biogenic apatites.

  7. Enhanced intestinal permeability and oral bioavailability of enalapril maleate upon complexation with the cationic polymethacrylate Eudragit E100.

    PubMed

    Ramírez-Rigo, María V; Olivera, María E; Rubio, Modesto; Manzo, Ruben H

    2014-05-13

    The low bioavailability of enalapril maleate associated to its instability in solid state motivated the development of a polyelectrolyte-drug complex between enalapril maleate and the cationic polymethacrylate Eudragit E100. The solid complexes were characterized by DSC-TG, FT-IR and X-ray diffraction. Their aqueous dispersions were evaluated for drug delivery in bicompartimental Franz cells and electrokinetic potentials. Stability in solid state was also evaluated using an HPLC-UV stability indicating method. Absorption of enalapril maleate was assessed thorough the rat everted gut sac model. In addition, urinary recovery after oral administration in rats was used as an indicator of systemic exposition. The solid materials are stable amorphous solids in which both moieties of enalapril maleate are ionically bonded to the polymer. Their aqueous dispersions exhibited controlled release over more than 7h in physiologic saline solution, being ionic exchange the fundamental mechanism that modified the extent and rate of drug release. Intestinal permeation of enalapril maleate was 1.7 times higher in the presence of the cationic polymer. This increase can be related with the capacity to adhere the mucosa due to the positive zeta potential of the complexes. As a consequence bioavailability was significantly improved (1.39 times) after oral administration of the complexes. In addition, no signs of chemical decomposition were observed after a 14months period. The results indicated that the products are new chemical entities that improve unfavorable properties of a useful drug. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Modified Nose-Hoover thermostat for solid state for constant temperature molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wen-Hwa, E-mail: whchen@pme.nthu.edu.tw; National Applied Research Laboratories, Taipei 10622, Taiwan, ROC; Wu, Chun-Hung

    2011-07-10

    Nose-Hoover (NH) thermostat methods incorporated with molecular dynamics (MD) simulation have been widely used to simulate the instantaneous system temperature and feedback energy in a canonical ensemble. The method simply relates the kinetic energy to the system temperature via the particles' momenta based on the ideal gas law. However, when used in a tightly bound system such as solids, the method may suffer from deriving a lower system temperature and potentially inducing early breaking of atomic bonds at relatively high temperature due to the neglect of the effect of the potential energy of atoms based on solid state physics. Inmore » this paper, a modified NH thermostat method is proposed for solid system. The method takes into account the contribution of phonons by virtue of the vibrational energy of lattice and the zero-point energy, derived based on the Debye theory. Proof of the equivalence of the method and the canonical ensemble is first made. The modified NH thermostat is tested on different gold nanocrystals to characterize their melting point and constant volume specific heat, and also their size and temperature dependence. Results show that the modified NH method can give much more comparable results to both the literature experimental and theoretical data than the standard NH. Most importantly, the present model is the only one, among the six thermostat algorithms under comparison, that can accurately reproduce the experimental data and also the T{sup 3}-law at temperature below the Debye temperature, where the specific heat of a solid at constant volume is proportional to the cube of temperature.« less

  9. Crystal Growth and Characterization of THO2 and UxTh1-xO2

    DTIC Science & Technology

    2013-03-01

    bulk actinide crystals would open up new possibilities for the detection of weapons of mass destruction, the study of the effect of aging on...way of growing bulk actinide materials of optical quality. These refractory oxide single crystals offer potential applications in thorium nuclear...fuel technology, wide-band-gap uranium-based direct-conversion solid state neutron detectors, and understanding how actinide fuels age with time. ThO2

  10. The Design and Testing of a High-Temperature Graphite Dilatometer

    DTIC Science & Technology

    1992-06-24

    characterization of its CTE is of little significance. Practical candidates are silica (fused quartz glass), Zerodur -type glass ceramics (5 x 10- 8 C-1 ), and...titanium silicates (< 5 x IO17 *C-1 ). Partially crystallized glasses, such as Zerodur , are limited to about 6006C. Silica can be subjected to almost...electronics, solid-state lasers , optical propagation and communications; cw and pulsed chemical laser development, optical resonators, beam control

  11. United States Air Force Research Initiation Program for 1988. Volume 3

    DTIC Science & Technology

    1990-04-01

    Assignment for Dr. Kenneth M. Sobel Flight Control Design 210-9MG-035 90 Comparative Burning Rates and Duplex Dr. Forrest Thomas (1987) Loads of Solid...Patterson Air Force Base. The test configuration has been designed for injecting fuel droplets in a well controlled laminar on well-characterized turbulent...its counter response may be significant, our system has thus achieved some measure of control over when non -critical processing is actually performed

  12. Laser Spectroscopy Characterization of Materials for Frequency Agile Solid State Laser Systems

    DTIC Science & Technology

    1991-03-15

    Lasing Properties of Nd3+:Ba2 ZnGe 2O 7 III. SPECTROSCOPIC PROPERTIES OF CHROMIUM -DOPED LASER CRYSTALS III.1 Laser-Induced Grating Spectroscopy of...rare earth- and chromium -doped Iasor crystals, rare earth-doped glasses, and potassium niobate. Ilas or- spectroscopy techniques were used to...being investigated: rare ea’-Lh-doped laser crystals; chromium -doped laser crystals; and photorefractive crystals and glasses. The important results

  13. Synthesis and characterization of poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole: investigation on backbone/pendant interactions in a conducting redox polymer.

    PubMed

    Huang, Hao; Karlsson, Christoffer; Strømme, Maria; Gogoll, Adolf; Sjödin, Martin

    2017-04-19

    We herein report the synthesis and electrochemical characterization of poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole, consisting of a polypyrrole backbone derivatized at the beta position by a vinyl-hydroquinone pendant group. The structure of the polymer was characterized by solid state NMR spectroscopy. The interactions between the polypyrrole backbone and the oxidized quinone or reduced hydroquinone pendant groups are probed by several in situ methods. In situ attenuated total reflectance-Fourier transform infrared spectroscopy shows a spectroscopic response from both the doping of the polymer backbone and the redox activity of the pendant groups. Using an in situ Electrochemical Quartz Crystal Microbalance we reveal that the polymer doping is unaffected by the pendant group redox chemistry, as opposed to previous reports. Despite the continuous doping the electrochemical conversion from the hydroquinone state to the quinone state results in a significant conductance drop, as observed by in situ conductivity measurements using an Interdigitated Array electrode set-up. Twisting of the conducting polymer backbone as a result of a decreased separation between pendant groups due to π-π stacking in the oxidized state is suggested as the cause of this conductance drop.

  14. Equilibrium lithium-ion transport between nanocrystalline lithium-inserted anatase TiO2 and the electrolyte.

    PubMed

    Ganapathy, Swapna; van Eck, Ernst R H; Kentgens, Arno P M; Mulder, Fokko M; Wagemaker, Marnix

    2011-12-23

    The power density of lithium-ion batteries requires the fast transfer of ions between the electrode and electrolyte. The achievable power density is directly related to the spontaneous equilibrium exchange of charged lithium ions across the electrolyte/electrode interface. Direct and unique characterization of this charge-transfer process is very difficult if not impossible, and consequently little is known about the solid/liquid ion transfer in lithium-ion-battery materials. Herein we report the direct observation by solid-state NMR spectroscopy of continuous lithium-ion exchange between the promising nanosized anatase TiO(2) electrode material and the electrolyte. Our results reveal that the energy barrier to charge transfer across the electrode/electrolyte interface is equal to or greater than the barrier to lithium-ion diffusion through the solid anatase matrix. The composition of the electrolyte and in turn the solid/electrolyte interface (SEI) has a significant effect on the electrolyte/electrode lithium-ion exchange; this suggests potential improvements in the power of batteries by optimizing the electrolyte composition. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Solid-State 87Sr NMR Spectroscopy at Natural Abundance and High Magnetic Field Strength.

    PubMed

    Faucher, Alexandra; Terskikh, Victor V; Ye, Eric; Bernard, Guy M; Wasylishen, Roderick E

    2015-12-10

    Twenty-five strontium-containing solids were characterized via (87)Sr NMR spectroscopy at natural abundance and high magnetic field strength (B0 = 21.14 T). Strontium nuclear quadrupole coupling constants in these compounds are sensitive to the strontium site symmetry and range from 0 to 50.5 MHz. An experimental (87)Sr chemical shift scale is proposed, and available data indicate a chemical shift range of approximately 550 ppm, from -200 to +350 ppm relative to Sr(2+)(aq). In general, magnetic shielding increased with strontium coordination number. Experimentally measured chemical shift anisotropy is reported for stationary samples of solid powdered SrCl2·6H2O, SrBr2·6H2O, and SrCO3, with δaniso((87)Sr) values of +28, +26, and -65 ppm, respectively. NMR parameters were calculated using CASTEP, a gauge including projector augmented wave (GIPAW) DFT-based program, which addresses the periodic nature of solids using plane-wave basis sets. Calculated NMR parameters are in good agreement with those measured.

  16. Lignocellulose fermentation and residual solids characterization for senescent switchgrass fermentation by Clostridium thermocellum in the presence and absence of continuous in situ ball-milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balch, Michael L.; Holwerda, Evert K.; Davis, Mark F.

    Milling during lignocellulosic fermentation, henceforth referred to as cotreatment, is investigated as an alternative to thermochemical pretreatment as a means of enhancing biological solubilization of lignocellulose. We investigate the impact of milling on soluble substrate fermentation by Clostridium thermocellum with comparison to yeast, document solubilization for fermentation of senescent switchgrass with and without ball milling, and characterize residual solids. Soluble substrate fermentation by C. thermocellum proceeded readily in the presence of continuous ball milling but was completely arrested for yeast. Total fractional carbohydrate solubilization achieved after fermentation of senescent switchgrass by C. thermocellum for 5 days was 0.45 without cotreatmentmore » or pretreatment, 0.81 with hydrothermal pretreatment (200 degrees C, 15 minutes, severity 4.2), and 0.88 with cotreatment. Acetate and ethanol were the main fermentation products, and were produced at similar ratios with and without cotreatment. Analysis of solid residues was undertaken using molecular beam mass spectrometry (PyMBMS) and solid-state nuclear magnetic resonance spectroscopy (NMR) in order to provide insight into changes in plant cell walls during processing via various modes. The structure of lignin present in residual solids remaining after fermentation with cotreatment appeared to change little, with substantially greater changes observed for hydrothermal pretreatment - particularly with respect to formation of C-C bonds. The observation of high solubilization with little apparent modification of the residue is consistent with cotreatment enhancing solubilization primarily by increasing the access of saccharolytic enzymes to the feedstock, and C. thermocellum being able to attack all the major linkages in cellulosic biomass provided that these linkages are accessible.« less

  17. Chemically and geographically distinct solid-phase iron pools in the Southern Ocean.

    PubMed

    von der Heyden, B P; Roychoudhury, A N; Mtshali, T N; Tyliszczak, T; Myneni, S C B

    2012-11-30

    Iron is a limiting nutrient in many parts of the oceans, including the unproductive regions of the Southern Ocean. Although the dominant fraction of the marine iron pool occurs in the form of solid-phase particles, its chemical speciation and mineralogy are challenging to characterize on a regional scale. We describe a diverse array of iron particles, ranging from 20 to 700 nanometers in diameter, in the waters of the Southern Ocean euphotic zone. Distinct variations in the oxidation state and composition of these iron particles exist between the coasts of South Africa and Antarctica, with different iron pools occurring in different frontal zones. These speciation variations can result in solubility differences that may affect the production of bioavailable dissolved iron.

  18. Solid-state modeling of the terahertz spectrum of the high explosive HMX.

    PubMed

    Allis, Damian G; Prokhorova, Darya A; Korter, Timothy M

    2006-02-09

    The experimental solid-state terahertz (THz) spectrum (3-120 cm(-1)) of the beta-crystal form of the high explosive octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been analyzed using solid-state density functional theory calculations. Various density functionals (both generalized gradient approximation and local density approximation) are compared in terms of their abilities to reproduce the experimentally observed solid-state structure and low-frequency vibrational motions. Good-to-excellent agreement between solid-state theory and experiment can be achieved in the THz region where isolated-molecule calculations fail to reproduce the observed spectral features, demonstrating a clear limitation of using isolated-molecule calculations for the assignment of THz frequency motions in molecular solids. The deficiency of isolated-molecule calculations is traced to modification of the molecular structure in the solid state through crystal packing effects and the formation of weak C-H...O hydrogen bonds.

  19. Optofluidic devices with integrated solid-state nanopores

    PubMed Central

    Hawkins, Aaron R.; Schmidt, Holger

    2016-01-01

    This review (with 90 refs.) covers the state of the art in optofluidic devices with integrated solid-state nanopores for use in detection and sensing. Following an introduction into principles of optofluidics and solid-state nanopore technology, we discuss features of solid-state nanopore based assays using optofluidics. This includes the incorporation of solid-state nanopores into optofluidic platforms based on liquid-core anti-resonant reflecting optical waveguides (ARROWs), methods for their fabrication, aspects of single particle detection and particle manipulation. We then describe the new functionalities provided by solid-state nanopores integrated into optofluidic chips, in particular acting as smart gates for correlated electro-optical detection and discrimination of nanoparticles. This enables the identification of viruses and λ-DNA, particle trajectory simulations, enhancing sensitivity by tuning the shape of nanopores. The review concludes with a summary and an outlook. PMID:27046940

  20. Characterization of urban solid waste in Chihuahua, Mexico.

    PubMed

    Gomez, Guadalupe; Meneses, Montserrat; Ballinas, Lourdes; Castells, Francesc

    2008-12-01

    The characterization of urban solid waste generation is fundamental for adequate decision making in the management strategy of urban solid waste in a city. The objective of this study is to characterize the waste generated in the households of Chihuahua city, and to compare the results obtained in areas of the city with three different socioeconomic levels. In order to identify the different socioeconomic trends in waste generation and characterization, 560 samples of solid waste were collected during 1 week from 80 households in Chihuahua and were hand sorted and classified into 15 weighted fractions. The average waste generation in Chihuahua calculated in this study was 0.676 kg per capita per day in April 2006. The main fractions were: organic (48%), paper (16%) and plastic (12%). Results show an increased waste generation associated with the socioeconomic level. The characterization in amount and composition of urban waste is the first step needed for the successful implementation of an integral waste management system.

Top