Sample records for solid state detector

  1. The solid state detector technology for picosecond laser ranging

    NASA Technical Reports Server (NTRS)

    Prochazka, Ivan

    1993-01-01

    We developed an all solid state laser ranging detector technology, which makes the goal of millimeter accuracy achievable. Our design and construction philosophy is to combine the techniques of single photon ranging, ultrashort laser pulses, and fast fixed threshold discrimination while avoiding any analog signal processing within the laser ranging chain. The all solid state laser ranging detector package consists of the START detector and the STOP solid state photon counting module. Both the detectors are working in an optically triggered avalanche switching regime. The optical signal is triggering an avalanche current buildup which results in the generation of a uniform, fast risetime output pulse.

  2. Neutron detector and fabrication method thereof

    DOEpatents

    Bhandari, Harish B.; Nagarkar, Vivek V.; Ovechkina, Olena E.

    2016-08-16

    A neutron detector and a method for fabricating a neutron detector. The neutron detector includes a photodetector, and a solid-state scintillator operatively coupled to the photodetector. In one aspect, the method for fabricating a neutron detector includes providing a photodetector, and depositing a solid-state scintillator on the photodetector to form a detector structure.

  3. Quantitative secondary electron detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Jyoti; Joy, David C.; Nayak, Subuhadarshi

    Quantitative Secondary Electron Detection (QSED) using the array of solid state devices (SSD) based electron-counters enable critical dimension metrology measurements in materials such as semiconductors, nanomaterials, and biological samples (FIG. 3). Methods and devices effect a quantitative detection of secondary electrons with the array of solid state detectors comprising a number of solid state detectors. An array senses the number of secondary electrons with a plurality of solid state detectors, counting the number of secondary electrons with a time to digital converter circuit in counter mode.

  4. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  5. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  6. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  7. A rocket-borne energy spectrometer using multiple solid-state detectors for particle identification

    NASA Technical Reports Server (NTRS)

    Fries, K. L.; Smith, L. G.; Voss, H. D.

    1979-01-01

    A rocket-borne experiment using energy spectrometers that allows particle identification by the use of multiple solid-state detectors is described. The instrumentation provides information regarding the energy spectrum, pitch-angle distribution, and the type of energetic particles present in the ionosphere. Particle identification was accomplished by considering detector loss mechanisms and their effects on various types of particles. Solid state detectors with gold and aluminum surfaces of several thicknesses were used. The ratios of measured energies for the various detectors were compared against known relationships during ground-based analysis. Pitch-angle information was obtained by using detectors with small geometrical factors mounted with several look angles. Particle flux was recorded as a function of rocket azimuth angle. By considering the rocket azimuth, the rocket precession, and the location of the detectors on the rocket, the pitched angle of the incident particles was derived.

  8. Measurements of electron detection efficiencies in solid state detectors.

    NASA Technical Reports Server (NTRS)

    Lupton, J. E.; Stone, E. C.

    1972-01-01

    Detailed laboratory measurement of the electron response of solid state detectors as a function of incident electron energy, detector depletion depth, and energy-loss discriminator threshold. These response functions were determined by exposing totally depleted silicon surface barrier detectors with depletion depths between 50 and 1000 microns to the beam from a magnetic beta-ray spectrometer. The data were extended to 5000 microns depletion depth using the results of previously published Monte Carlo electron calculations. When the electron counting efficiency of a given detector is plotted as a function of energy-loss threshold for various incident energies, the efficiency curves are bounded by a smooth envelope which represents the upper limit to the detection efficiency. These upper limit curves, which scale in a simple way, make it possible to easily estimate the electron sensitivity of solid-state detector systems.

  9. Detection of pulsed neutrons with solid-state electronics

    NASA Astrophysics Data System (ADS)

    Chatzakis, J.; Rigakis, I.; Hassan, S. M.; Clark, E. L.; Lee, P.

    2016-09-01

    Measurements of the spatial and time-resolved characteristics of pulsed neutron sources require large area detection materials and fast circuitry that can process the electronic pulses readout from the active region of the detector. In this paper, we present a solid-state detector based on the nuclear activation of materials by neutrons, and the detection of the secondary particle emission of the generated radionuclides’ decay. The detector utilizes a microcontroller that communicates using a modified SPI protocol. A solid-state, pulse shaping filter follows a charge amplifier, and it is designed as an inexpensive, low-noise solution for measuring pulses measured by a digital counter. An imaging detector can also be made by using an array of these detectors. The system can communicate with an interface unit and pass an image to a personal computer.

  10. Solid-State Neutron Detector Device

    NASA Technical Reports Server (NTRS)

    Bensaoula, Abdelhak (Inventor); Starikov, David (Inventor); Pillai, Rajeev (Inventor)

    2017-01-01

    The structure and methods of fabricating a high efficiency compact solid state neutron detector based on III-Nitride semiconductor structures deposited on a substrate. The operation of the device is based on absorption of neutrons, which results in generation of free carriers.

  11. Efficient scalable solid-state neutron detector.

    PubMed

    Moses, Daniel

    2015-06-01

    We report on scalable solid-state neutron detector system that is specifically designed to yield high thermal neutron detection sensitivity. The basic detector unit in this system is made of a (6)Li foil coupled to two crystalline silicon diodes. The theoretical intrinsic efficiency of a detector-unit is 23.8% and that of detector element comprising a stack of five detector-units is 60%. Based on the measured performance of this detector-unit, the performance of a detector system comprising a planar array of detector elements, scaled to encompass effective area of 0.43 m(2), is estimated to yield the minimum absolute efficiency required of radiological portal monitors used in homeland security.

  12. A microfabricated, low dark current a-Se detector for measurement of microplasma optical emission in the UV for possible use on-site

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Shiva; Karim, Karim S.; Karanassios, Vassili

    2013-05-01

    Traditionally, samples are collected on-site (i.e., in the field) and are shipped to a lab for chemical analysis. An alternative is offered by using portable chemical analysis instruments that can be used on-site (i.e., in the field). Many analytical measurements by optical emission spectrometry require use of light-sources and of spectral lines that are in the Ultra-Violet (UV, ~200 nm - 400 nm wavelength) region of the spectrum. For such measurements, a portable, battery-operated, fiber-optic spectrometer equipped with an un-cooled, linear, solid-state detector may be used. To take full advantage of the advanced measurement capabilities offered by state-of-the-art solid-state detectors, cooling of the detector is required. But cooling and other thermal management hamper portability and use on-site because they add size and weight and they increase electrical power requirements. To address these considerations, an alternative was implemented, as described here. Specifically, a microfabricated solid-state detector for measurement of UV photons will be described. Unlike solid-state detectors developed on crystalline Silicon, this miniaturized and low-cost detector utilizes amorphous Selenium (a-Se) as its photosensitive material. Due to its low dark current, this detector does not require cooling, thus it is better suited for portable use and for chemical measurements on-site. In this paper, a microplasma will be used as a light-source of UV photons for the a-Se detector. For example, spectra acquired using a microplasma as a light-source will be compared with those obtained with a portable, fiber-optic spectrometer equipped with a Si-based 2080-element detector. And, analytical performance obtained by introducing ng-amounts of analytes into the microplasma will be described.

  13. High sensitivity operation of discrete solid state detectors at 4 K

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.; Montgomery, E. F.; Lebofsky, M. J.; Eisenhardt, P. R.

    1981-01-01

    Techniques are described to allow operation of discrete, solid state detectors at 4 K with optimized JFET amplifiers. Three detector types cover the 0.6 to 4 mm spectral range with NEP approximately equal to 10 to the 16th power Hz (-1/2) for two of the types and potential improvement to this performance for the third. Lower NEP's are anticipated at longer infrared wavelengths.

  14. A novel pixellated solid-state photon detector for enhancing the Everhart-Thornley detector.

    PubMed

    Chuah, Joon Huang; Holburn, David

    2013-06-01

    This article presents a pixellated solid-state photon detector designed specifically to improve certain aspects of the existing Everhart-Thornley detector. The photon detector was constructed and fabricated in an Austriamicrosystems 0.35 µm complementary metal-oxide-semiconductor process technology. This integrated circuit consists of an array of high-responsivity photodiodes coupled to corresponding low-noise transimpedance amplifiers, a selector-combiner circuit and a variable-gain postamplifier. Simulated and experimental results show that the photon detector can achieve a maximum transimpedance gain of 170 dBΩ and minimum bandwidth of 3.6 MHz. It is able to detect signals with optical power as low as 10 nW and produces a minimum signal-to-noise ratio (SNR) of 24 dB regardless of gain configuration. The detector has been proven to be able to effectively select and combine signals from different pixels. The key advantages of this detector are smaller dimensions, higher cost effectiveness, lower voltage and power requirements and better integration. The photon detector supports pixel-selection configurability which may improve overall SNR and also potentially generate images for different analyses. This work has contributed to the future research of system-level integration of a pixellated solid-state detector for secondary electron detection in the scanning electron microscope. Copyright © 2013 Wiley Periodicals, Inc.

  15. Recent developments in photodetection for medical applications

    NASA Astrophysics Data System (ADS)

    Llosá, Gabriela

    2015-07-01

    The use of the most advanced technology in medical imaging results in the development of high performance detectors that can significantly improve the performance of the medical devices employed in hospitals. Scintillator crystals coupled to photodetectors remain to be essential detectors in terms of performance and cost for medical imaging applications in different imaging modalities. Recent advances in photodetectors result in an increase of the performance of the medical scanners. Solid state detectors can provide substantial performance improvement, but are more complex to integrate into clinical detectors due mainly to their higher cost. Solid state photodetectors (APDs, SiPMs) have made new detector concepts possible and have led to improvements in different imaging modalities. Recent advances in detectors for medical imaging are revised.

  16. A modular solid state detector for measuring high energy heavy ion fragmentation near the beam axis

    NASA Technical Reports Server (NTRS)

    Zeitlin, C. J.; Frankel, K. A.; Gong, W.; Heilbronn, L.; Lampo, E. J.; Leres, R.; Miller, J.; Schimmerling, W.

    1994-01-01

    A multi-element solid state detector has been designed to measure fluences of fragments produced near the beam axis by high energy heavy ion beams in thick targets. The detector is compact and modular, so as to be readily reconfigured according to the range of fragment charges and energies to be measured. Preamplifier gain settings and detector calibrations are adjustable remotely under computer control. We describe the central detector, its associated detectors and electronics, triggering scheme, data acquisition and particle identification techniques, illustrated by data taken with 600 MeV/u 56Fe beams and thick polyethylene targets at the LBL Bevalac. The applications of this work to space radiation protection are discussed.

  17. Electronically shielded solid state charged particle detector

    DOEpatents

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.

  18. Electronically shielded solid state charged particle detector

    DOEpatents

    Balmer, David K.; Haverty, Thomas W.; Nordin, Carl W.; Tyree, William H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  19. Thin film CdTe based neutron detectors with high thermal neutron efficiency and gamma rejection for security applications

    NASA Astrophysics Data System (ADS)

    Smith, L.; Murphy, J. W.; Kim, J.; Rozhdestvenskyy, S.; Mejia, I.; Park, H.; Allee, D. R.; Quevedo-Lopez, M.; Gnade, B.

    2016-12-01

    Solid-state neutron detectors offer an alternative to 3He based detectors, but suffer from limited neutron efficiencies that make their use in security applications impractical. Solid-state neutron detectors based on single crystal silicon also have relatively high gamma-ray efficiencies that lead to false positives. Thin film polycrystalline CdTe based detectors require less complex processing with significantly lower gamma-ray efficiencies. Advanced geometries can also be implemented to achieve high thermal neutron efficiencies competitive with silicon based technology. This study evaluates these strategies by simulation and experimentation and demonstrates an approach to achieve >10% intrinsic efficiency with <10-6 gamma-ray efficiency.

  20. Toward achieving flexible and high sensitivity hexagonal boron nitride neutron detectors

    NASA Astrophysics Data System (ADS)

    Maity, A.; Grenadier, S. J.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2017-07-01

    Hexagonal boron nitride (h-BN) detectors have demonstrated the highest thermal neutron detection efficiency to date among solid-state neutron detectors at about 51%. We report here the realization of h-BN neutron detectors possessing one order of magnitude enhancement in the detection area but maintaining an equal level of detection efficiency of previous achievement. These 3 mm × 3 mm detectors were fabricated from 50 μm thick freestanding and flexible 10B enriched h-BN (h-10BN) films, grown by metal organic chemical vapor deposition followed by mechanical separation from sapphire substrates. Mobility-lifetime results suggested that holes are the majority carriers in unintentionally doped h-BN. The detectors were tested under thermal neutron irradiation from californium-252 (252Cf) moderated by a high density polyethylene moderator. A thermal neutron detection efficiency of ˜53% was achieved at a bias voltage of 200 V. Conforming to traditional solid-state detectors, the realization of h-BN epilayers with enhanced electrical transport properties is the key to enable scaling up the device sizes. More specifically, the present results revealed that achieving an electrical resistivity of greater than 1014 Ωṡcm and a leakage current density of below 3 × 10-10 A/cm2 is needed to fabricate large area h-BN detectors and provided guidance for achieving high sensitivity solid state neutron detectors based on h-BN.

  1. Apparatuses and methods for detecting, identifying and quantitating radioactive nuclei and methods of distinguishing neutron stimulation of a radiation particle detector from gamma-ray stimulation of a detector

    DOEpatents

    Cole, Jerald D.; Drigert, Mark W.; Reber, Edward L.; Aryaeinejad, Rahmat

    2001-01-01

    In one aspect, the invention encompasses a method of detecting radioactive decay, comprising: a) providing a sample comprising a radioactive material, the radioactive material generating decay particles; b)providing a plurality of detectors proximate the sample, the detectors comprising a first set and a second set, the first set of the detectors comprising liquid state detectors utilizing liquid scintillation material coupled with photo tubes to generate a first electrical signal in response to decay particles stimulating the liquid scintillation material, the second set of the detectors comprising solid state detectors utilizing a crystalline solid to generate a second electrical signal in response to decay particles stimulating the crystalline solid; c) stimulating at least one of the detectors to generate at least one of the first and second electrical signals, the at least one of the first and second electrical signals being indicative of radioactive decay in the sample. In another aspect, the invention encompasses an apparatus for identifying and quantitating radioactive nuclei of a sample comprising radioactive material that decays to generate neutrons and high-energy .gamma.-rays.

  2. Development of a mercuric iodide solid state spectrometer for X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Vallerga, J.

    1983-01-01

    Mercuric iodide detectors, experimental development for astronomical use, X ray observations of the 1980 Cygnus X-1 High State, astronomical had X ray detectors in current use, detector development, balloon flight of large area (1500 sq cm) Phoswich detectors, had X ray telescope design, shielded mercuric iodide background measurement, Monte Carlo analysis, measurements with a shielded mercuric iodide detector are discussed.

  3. Characterization of resonant tunneling diodes for microwave and millimeter-wave detection

    NASA Technical Reports Server (NTRS)

    Mehdi, I.; East, J. R.; Haddad, G. I.

    1991-01-01

    The authors report on the direct detection capabilities of resonant tunneling diodes in the 10-100 GHz range. An open circuit voltage sensitivity of 1750 mV/mW (in Ka-band) was measured. This is higher than the sensitivity of comparatively based commercially available solid-state detectors. The detector properties are a strong function of diode bias and the measured tangential signal sensitivity (-32 dBm at Ka-band with 1-MHz bandwidth) and the dynamic range (25 dB) of the diode are smaller compared to other solid-state detectors.

  4. Comparison of two portable solid state detectors with an improved collimation and alignment device for mammographic x-ray spectroscopy.

    PubMed

    Bottigli, U; Golosio, B; Masala, G L; Oliva, P; Stumbo, S; Delogu, P; Fantacci, M E; Abbene, L; Fauci, F; Raso, G

    2006-09-01

    We describe a portable system for mammographic x-ray spectroscopy, based on a 2 X 2 X 1 mm3 cadmium telluride (CdTe) solid state detector, that is greatly improved over a similar system based on a 3 X 3 X 2 mm3 cadmium zinc telluride (CZT) solid state detector evaluated in an earlier work. The CdTe system utilized new pinhole collimators and an alignment device that facilitated measurement of mammographic x-ray spectra. Mammographic x-ray spectra acquired by each system were comparable. Half value layer measurements obtained using an ion chamber agreed closely with those derived from the x-ray spectra measured by either detector. The faster electronics and other features of the CdTe detector allowed its use with a larger pinhole collimator than could be used with the CZT detector. Additionally, the improved pinhole collimator and alignment features of the apparatus permitted much more rapid setup for acquisition of x-ray spectra than was possible on the system described in the earlier work. These improvements in detector technology, collimation and ease of alignment, as well as low cost, make this apparatus attractive as a tool for both laboratory research and advanced mammography quality control.

  5. Determination of the active volumes of solid-state photon-beam dosimetry detectors using the PTB proton microbeam.

    PubMed

    Poppinga, Daniela; Delfs, Bjoern; Meyners, Jutta; Langner, Frank; Giesen, Ulrich; Harder, Dietrich; Poppe, Bjoern; Looe, Hui K

    2018-05-04

    This study aims at the experimental determination of the diameters and thicknesses of the active volumes of solid-state photon-beam detectors for clinical dosimetry. The 10 MeV proton microbeam of the PTB (Physikalisch-Technische Bundesanstalt, Braunschweig) was used to examine two synthetic diamond detectors, type microDiamond (PTW Freiburg, Germany), and the silicon detectors Diode E (PTW Freiburg, Germany) and Razor Diode (Iba Dosimetry, Germany). The knowledge of the dimensions of their active volumes is essential for their Monte Carlo simulation and their applications in small-field photon-beam dosimetry. The diameter of the active detector volume was determined from the detector current profile recorded by radially scanning the proton microbeam across the detector. The thickness of the active detector volume was determined from the detector's electrical current, the number of protons incident per time interval and their mean stopping power in the active volume. The mean energy of the protons entering this volume was assessed by comparing the measured and the simulated influence of the thickness of a stack of aluminum preabsorber foils on the detector signal. For all detector types investigated, the diameters measured for the active volume closely agreed with the manufacturers' data. For the silicon Diode E detector, the thickness determined for the active volume agreed with the manufacturer's data, while for the microDiamond detectors and the Razor Diode, the thicknesses measured slightly exceeded those stated by the manufacturers. The PTB microbeam facility was used to analyze the diameters and thicknesses of the active volumes of photon dosimetry detectors for the first time. A new method of determining the thickness values with an uncertainty of ±10% was applied. The results appear useful for further consolidating detailed geometrical knowledge of the solid-state detectors investigated, which are used in clinical small-field photon-beam dosimetry. © 2018 American Association of Physicists in Medicine.

  6. SU-D-209-01: Can Fluoroscopic Air-Kerma Rates Be Reliably Measured with Solid-State Meters?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, C; Thai, L; Wagner, L

    Purpose: Ionization chambers remain the standard for calibration of air-kerma rate measuring devices. Despite their strong energy-dependent response, solid state radiation detectors are increasingly used, primarily due to their efficiency in making standardized measurements. To test the reliability of these devices in measuring air-kerma rates, we compared ion chambers measurements with solid-state measurements for various mobile fluoroscopes operated at different beam qualities and air-kerma rates. Methods: Six mobile fluoroscopes (GE OEC models 9800 and 9900) were used to generate test beams. Using various field sizes and dose rate controls, copper attenuators and a lead attenuator were placed at the imagemore » receptor in varying combinations to generate a range of air-kerma rates. Air-kerma rates at 30 centimeters from the image receptors were measured using two 6-cm{sup 3} ion chambers with electrometers (Radcal, models 1015 and 9015) and two with solid state detectors (Unfors Xi and Raysafe X2). No error messages occurred during measurements. However, about two months later, one solid-state device stopped working and was replaced by the manufacturer. Two out of six mobile fluoroscopic units were retested with the replacement unit. Results: Generally, solid state and ionization chambers agreed favorably well, with two exceptions. Before replacement of the detector, the Xi meter when set in the “RF High” mode deviated from ion chamber readings by factors of 2 and 10 with no message indicating error in measurement. When set in the “RF Low” mode, readings were within −4% to +3%. The replacement Xi detector displayed messages alerting the user when settings were not compatible with air-kerma rates. Conclusion: Air-kerma rates can be measured favorably well using solid-state devices, but users must be aware of the possibility that readings can be grossly in error with no discernible indication for the deviation.« less

  7. Pillar-structured neutron detector based multiplicity system

    DOE PAGES

    Murphy, John W.; Shao, Qinghui; Voss, Lars F.; ...

    2017-10-04

    This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm 2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252more » neutron source, in which the source mass, system efficiency, and die-away time were determined. As a result, this demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.« less

  8. Pillar-structured neutron detector based multiplicity system

    NASA Astrophysics Data System (ADS)

    Murphy, John W.; Shao, Qinghui; Voss, Lars F.; Kerr, Phil L.; Fabris, Lorenzo; Conway, Adam M.; Nikolic, Rebecca J.

    2018-01-01

    This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252 neutron source, in which the source mass, system efficiency, and die-away time were determined. This demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.

  9. Fast, Large-Area, Wide-Bandgap UV Photodetector for Cherenkov Light Detection

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.

    2013-01-01

    Due to limited resources available for power and space for payloads, miniaturizing and integrating instrumentation is a high priority for addressing the challenges of manned and unmanned deep space missions to high Earth orbit (HEO), near Earth objects (NEOs), Lunar and Martian orbits and surfaces, and outer planetary systems, as well as improvements to high-altitude aircraft safety. New, robust, and compact detectors allow future instrumentation packages more options in satisfying specific mission goals. A solid-state ultraviolet (UV) detector was developed with a theoretical fast response time and large detection area intended for application to Cherenkov detectors. The detector is based on the wide-bandgap semiconductor zinc oxide (ZnO), which in a bridge circuit can detect small, fast pulses of UV light like those required for Cherenkov detectors. The goal is to replace the role of photomultiplier tubes in Cherenkov detectors with these solid-state devices, saving on size, weight, and required power. For improving detection geometry, a spherical detector to measure high atomic number and energy (HZE) ions from any direction has been patented as part of a larger space radiation detector system. The detector will require the development of solid-state UV photodetectors fast enough (2 ns response time or better) to detect the shockwave of Cherenkov light emitted as the ions pass through a quartz, sapphire, or acrylic ball. The detector must be small enough to fit in the detector system structure, but have an active area large enough to capture enough Cherenkov light from the sphere. The detector is fabricated on bulk single-crystal undoped ZnO. Inter - digitated finger electrodes and contact pads are patterned via photolithography, and formed by sputtered metal of silver, platinum, or other high-conductivity metal.

  10. Design and fabrication of a novel self-powered solid-state neutron detector

    NASA Astrophysics Data System (ADS)

    LiCausi, Nicholas

    There is a strong interest in intercepting special nuclear materials (SNM) at national and international borders and ports for homeland security applications. Detection of SNM such as U and Pu is often accomplished by sensing their natural or induced neutron emission. Such detector systems typically use thermal neutron detectors inside a plastic moderator. In order to achieve high detection efficiency gas filled detectors are often used; these detectors require high voltage bias for operation, which complicates the system when tens or hundreds of detectors are deployed. A better type of detector would be an inexpensive solid-state detector that can be mass-produced like any other computer chip. Research surrounding solid-state detectors has been underway since the late 1990's. A simple solid-state detector employs a planar solar-cell type p-n junction and a thin conversion material that converts incident thermal neutrons into detectable alpha-particles and 7Li ions. Existing work has typically used 6LiF or 10B as this conversion layer. Although a simple planar detector can act as a highly portable, low cost detector, it is limited to relatively low detection efficiency (˜10%). To increase the efficiency, 3D perforated p-i-n silicon devices were proposed. To get high efficiency, these detectors need to be biased, resulting in increased leakage current and hence detector noise. In this research, a new type of detector structure was proposed, designed and fabricated. Among several detector structures evaluated, a honeycomb-like silicon p-n structure was selected, which is filled with natural boron as the neutron converter. A silicon p+-n diode formed on the thin silicon wall of the honeycomb structure detects the energetic alpha-particles emitted from the boron conversion layer. The silicon detection layer is fabricated to be fully depleted with an integral step during the boron filling process. This novel feature results in a simplified fabrication process. Three key advantages of the novel devices are theoretical neutron detection efficiency of ˜48%, a self-passivating structure that reduces leakage current and detector operation with no bias resulting in extremely low device noise. Processes required to fabricate the 3D type detector were explored and developed in this thesis. The detector capacitance and processing steps have been simulated with MEDICI and TSuprem-4, respectively. Lithography masks were then designed using Cadence. The fabrication process development was conducted in line with standard CMOS grade integrated circuit processing to allow for simple integration with existing fabrication facilities. A number of new processes were developed including the low pressure chemical vapor deposition of conformal boron films using diborane on very high aspect-ratio trenches and holes. Development also included methods for "wet" chemical etching and "dry" reactive ion etching of the deposited boron films. Fabricated detectors were characterized with the transmission line method, 4-point probe, I-V measurements and C-V measurements. Finally the detector response to thermal neutrons was studied. Characterization has shown significant reduction in reverse leakage current density to ˜8x10-8 A/cm2 (nearly 4 orders of magnitude over the previously published data). Results show that the fabrication process developed is capable of producing efficient (˜22.5%) solid-state thermal neutron detectors.

  11. Solid-State Photomultiplier with Integrated Front End Electronics

    NASA Astrophysics Data System (ADS)

    Christian, James; Stapels, Christopher; Johnson, Erik; Mukhopadhyay, Sharmistha; Jie Chen, Xiao; Miskimen, Rory

    2009-10-01

    The instrumentation cost of physics experiments has been reduced per channel, by the use of solid-state detectors, but these cost-effective techniques have not been translated to scintillation-based detectors. When considering photodetectors, the cost per channel is determined by the use of high-voltage, analog-to-digital converters, BNC cables, and any other ancillary devices. The overhead associated with device operation limits the number of channels for the detector system, while potentially limiting the scope of physics that can be explored. The PRIMEX experiment at JLab, which is being designed to measure the radiative widths of the η and η' pseudo-scalar mesons for a more comprehensive understanding of QCD at low energies, is an example where CMOS solid-state photomultipliers (SSPMs) can be implemented. The ubiquitous nature of CMOS allows for on-chip signal processing to provide front-end electronics within the detector package. We present the results of the device development for the PRIMEX calorimeter, discussing the characteristics of SSPMs, the potential cost savings, and experimental results of on-chip signal processing.

  12. Neutral particle background in cosmic ray telescopes composed of silicon solid state detectors

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Stone, E. C.; Vogt, R. E.

    1977-01-01

    The energy loss-spectrum of secondary charged particles produced by the interaction of gamma-rays and energetic neutrons in silicon solid state detectors has been measured with a satellite-borne cosmic ray telescope. In the satellite measurements presented here two distinct neutral background effects are identified: secondary protons and alpha particles with energies of about 2 to 100 MeV produced by neutron interactions, and secondary electrons with energies of about 0.2 to 10 MeV produced by X-ray interactions. The implications of this neutral background for satellite measurements of low energy cosmic rays are discussed, and suggestions are given for applying these results to other detector systems in order to estimate background contamination and optimize detector system design.

  13. Low-Power Multi-Aspect Space Radiation Detector System

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave; Freeman, Jon C.; Burkebile, Stephen P.

    2012-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of all of these detector technologies will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the deep space radiation field.

  14. Solid state VRX CT detector

    NASA Astrophysics Data System (ADS)

    DiBianca, Frank A.; Melnyk, Roman; Sambari, Aniket; Jordan, Lawrence M.; Laughter, Joseph S.; Zou, Ping

    2000-04-01

    A technique called Variable-Resolution X-ray (VRX) detection that greatly increases the spatial resolution in computed tomography (CT) and digital radiography (DR) is presented. The technique is based on a principle called 'projective compression' that allows the resolution element of a CT detector to scale with the subject or field size. For very large (40 - 50 cm) field sizes, resolution exceeding 2 cy/mm is possible and for very small fields, microscopy is attainable with resolution exceeding 100 cy/mm. Preliminary results from a 576-channel solid-state detector are presented. The detector has a dual-arm geometry and is comprised of CdWO4 scintillator crystals arranged in 24 modules of 24 channels/module. The scintillators are 0.85 mm wide and placed on 1 mm centers. Measurements of signal level, MTF and SNR, all versus detector angle, are presented.

  15. End-to-end system test for solid-state microdosemeters.

    PubMed

    Pisacane, V L; Dolecek, Q E; Malak, H; Dicello, J F

    2010-08-01

    The gold standard in microdosemeters has been the tissue equivalent proportional counter (TEPC) that utilises a gas cavity. An alternative is the solid-state microdosemeter that replaces the gas with a condensed phase (silicon) detector with microscopic sensitive volumes. Calibrations of gas and solid-state microdosemeters are generally carried out using radiation sources built into the detector that impose restrictions on their handling, transportation and licensing in accordance with the regulations from international, national and local nuclear regulatory bodies. Here a novel method is presented for carrying out a calibration and end-to-end system test of a microdosemeter using low-energy photons as the initiating energy source, thus obviating the need for a regulated ionising radiation source. This technique may be utilised to calibrate both a solid-state microdosemeter and, with modification, a TEPC with the higher average ionisation energy of a gas.

  16. Temperature controlled high voltage regulator

    DOEpatents

    Chiaro, Jr., Peter J.; Schulze, Gerald K.

    2004-04-20

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  17. The application of smart sensor techniques to a solid-state array multispectral sensor

    NASA Technical Reports Server (NTRS)

    Mcfadin, L. W.

    1978-01-01

    The solid-state array spectroradiometer (SAS) developed at JSC for remote sensing applications is a multispectral sensor which has no moving parts, is virtually maintenance-free, and has the ability to provide data which requires a minimum of processing. The instrument is based on the 42 x 342 element charge injection device (CID) detector. This system allows the combination of spectral scanning and across-track spatial scanning along with its associated digitization electronics into a single detector.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Ling-Jian

    A gamma ray detector apparatus comprises a solid state detector that includes a plurality of anode pixels and at least one cathode. The solid state detector is configured for receiving gamma rays during an interaction and inducing a signal in an anode pixel and in a cathode. An anode pixel readout circuit is coupled to the plurality of anode pixels and is configured to read out and process the induced signal in the anode pixel and provide triggering and addressing information. A waveform sampling circuit is coupled to the at least one cathode and configured to read out and processmore » the induced signal in the cathode and determine energy of the interaction, timing of the interaction, and depth of interaction.« less

  19. Toward achieving flexible and high sensitivity hexagonal boron nitride neutron detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maity, A.; Grenadier, S. J.; Li, J.

    Hexagonal boron nitride (h-BN) detectors have demonstrated the highest thermal neutron detection efficiency to date among solid-state neutron detectors at about 51%. We report here the realization of h-BN neutron detectors possessing one order of magnitude enhancement in the detection area but maintaining an equal level of detection efficiency of previous achievement.

  20. Toward achieving flexible and high sensitivity hexagonal boron nitride neutron detectors

    DOE PAGES

    Maity, A.; Grenadier, S. J.; Li, J.; ...

    2017-07-17

    Hexagonal boron nitride (h-BN) detectors have demonstrated the highest thermal neutron detection efficiency to date among solid-state neutron detectors at about 51%. We report here the realization of h-BN neutron detectors possessing one order of magnitude enhancement in the detection area but maintaining an equal level of detection efficiency of previous achievement.

  1. Harsh-Environment Solid-State Gamma Detector for Down-hole Gas and Oil Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Sandvik; Stanislav Soloviev; Emad Andarawis

    2007-08-10

    The goal of this program was to develop a revolutionary solid-state gamma-ray detector suitable for use in down-hole gas and oil exploration. This advanced detector would employ wide-bandgap semiconductor technology to extend the gamma sensor's temperature capability up to 200 C as well as extended reliability, which significantly exceeds current designs based on photomultiplier tubes. In Phase II, project tasks were focused on optimization of the final APD design, growing and characterizing the full scintillator crystals of the selected composition, arranging the APD device packaging, developing the needed optical coupling between scintillator and APD, and characterizing the combined elements asmore » a full detector system preparing for commercialization. What follows is a summary report from the second 18-month phase of this program.« less

  2. Absolute efficiency calibration of 6LiF-based solid state thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Finocchiaro, Paolo; Cosentino, Luigi; Lo Meo, Sergio; Nolte, Ralf; Radeck, Desiree

    2018-03-01

    The demand for new thermal neutron detectors as an alternative to 3He tubes in research, industrial, safety and homeland security applications, is growing. These needs have triggered research and development activities about new generations of thermal neutron detectors, characterized by reasonable efficiency and gamma rejection comparable to 3He tubes. In this paper we show the state of the art of a promising low-cost technique, based on commercial solid state silicon detectors coupled with thin neutron converter layers of 6LiF deposited onto carbon fiber substrates. A few configurations were studied with the GEANT4 simulation code, and the intrinsic efficiency of the corresponding detectors was calibrated at the PTB Thermal Neutron Calibration Facility. The results show that the measured intrinsic detection efficiency is well reproduced by the simulations, therefore validating the simulation tool in view of new designs. These neutron detectors have also been tested at neutron beam facilities like ISIS (Rutherford Appleton Laboratory, UK) and n_TOF (CERN) where a few samples are already in operation for beam flux and 2D profile measurements. Forthcoming applications are foreseen for the online monitoring of spent nuclear fuel casks in interim storage sites.

  3. Wide-range nuclear magnetic resonance detector

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekoogar, F; Dowla, F; Wang, T

    Recent advancements in the ultra-wide band Radio Frequency Identification (RFID) technology and solid state pillar type neutron detectors have enabled us to move forward in combining both technologies for advanced neutron monitoring. The LLNL RFID tag is totally passive and will operate indefinitely without the need for batteries. The tag is compact, can be directly mounted on metal, and has high performance in dense and cluttered environments. The LLNL coin-sized pillar solid state neutron detector has achieved a thermal neutron detection efficiency of 20% and neutron/gamma discrimination of 1E5. These performance values are comparable to a fieldable {sup 3}He basedmore » detector. In this paper we will discuss features about the two technologies and some potential applications for the advanced safeguarding of nuclear materials.« less

  5. A study of amplifying the response of an LR115 solid state track detector by combining it with electret.

    PubMed

    Nikezić, D; Krstić, D

    1995-12-01

    Radon progeny are positively charged immediately after formation. A negatively charged electret collects radon progeny atoms which are produced in the diffusion chamber. The detector sensitivity may be increased by using an electret in front of solid state nuclear track detector. Dependence of detection sensitivity on distance between electret and detector LR115 II is studied theoretically and experimentally in this paper. A relatively small fraction of 218Po atoms that formed in the diffusion chamber are collected by the electret. We estimated that the attracted fraction of 218Po was 17% while the attracted fraction of 214Bi-214Po is considerably larger and amounted to approximately 60%. These results confirm previous finding that 218Po atoms discharge quickly after their formation. The comparative radon measurements using diffusion chambers with and without electrets were performed. The amplification of detector sensitivity due to the electret amounted to approximately 80%.

  6. Cathodoluminescence and Photoemission of Doped Lithium Tetraborate

    DTIC Science & Technology

    2011-03-01

    7Li B O ) crystals are being developed for possible use in solid state neutron detectors . Already used in thermoluminescent dosimeters, enriched 2 4...Page 1. Detector Conversion Reactions [5...wide use applications. [1] The ideal neutron detector would either be hand held or small enough to be used at ports of embarkation or attached to

  7. The NSLS 100 element solid state array detector

    PubMed Central

    Furenlid, L.R.; Kraner, H.W.; Rogers, L.C.; Cramer, S.P.; Stephani, D.; Beuttenmuller, R.H.; Beren, J.

    2015-01-01

    X-ray absorption studies of dilute samples require fluorescence detection techniques. Since signal-to-noise ratios are governed by the ratio of fluorescent to scattered photons counted by a detector, solid state detectors which can discriminate between fluorescence and scattered photons have become the instruments of choice for trace element measurements. Commercially available 13 element Ge array detectors permitting total count rates < 500000 counts per second are now in routine use. Since X-ray absorption beamlines at high brightness synchrotron sources can already illuminate most dilute samples with enough flux to saturate the current generation of solid state detectors, the development of next-generation instruments with significantly higher total count rates is essential. We present the design and current status of the 100 element Si array detector being developed in a collaboration between the NSLS and the Instrumentation Division at Brookhaven National Laboratory. The detecting array consists of a 10×10 matrix of 4 mm×4 mm elements laid out on a single piece of ultrahigh purity silicon mounted at the front end of a liquid nitrogen dewar assembly. A matrix of charge sensitive integrating preamplifiers feed signals to an array of shaping amplifiers, single channel analyzers, and scalers. An electronic switch, delay amplifier, linear gate, digital scope, peak sensing A/D converter, and histogramining memory module provide for complete diagnostics and channel calibration. The entire instrument is controlled by a LabView 2 application on a MacII ci; the software also provides full control over beamline hardware and performs the data collection. PMID:26722135

  8. Minimal Entanglement Witness from Electrical Current Correlations.

    PubMed

    Brange, F; Malkoc, O; Samuelsson, P

    2017-01-20

    Despite great efforts, an unambiguous demonstration of entanglement of mobile electrons in solid state conductors is still lacking. Investigating theoretically a generic entangler-detector setup, we here show that a witness of entanglement between two flying electron qubits can be constructed from only two current cross correlation measurements, for any nonzero detector efficiencies and noncollinear polarization vectors. We find that all entangled pure states, but not all mixed ones, can be detected with only two measurements, except the maximally entangled states, which require three. Moreover, detector settings for optimal entanglement witnessing are presented.

  9. Minimal Entanglement Witness from Electrical Current Correlations

    NASA Astrophysics Data System (ADS)

    Brange, F.; Malkoc, O.; Samuelsson, P.

    2017-01-01

    Despite great efforts, an unambiguous demonstration of entanglement of mobile electrons in solid state conductors is still lacking. Investigating theoretically a generic entangler-detector setup, we here show that a witness of entanglement between two flying electron qubits can be constructed from only two current cross correlation measurements, for any nonzero detector efficiencies and noncollinear polarization vectors. We find that all entangled pure states, but not all mixed ones, can be detected with only two measurements, except the maximally entangled states, which require three. Moreover, detector settings for optimal entanglement witnessing are presented.

  10. On the prospects of application and development of solid-state photomultipliers for the task of analog detecting of pulsed optical signals

    NASA Astrophysics Data System (ADS)

    Bogdanov, S. V.; Kolobov, N. A.; Levin, E. V.; Pozdnyakov, Y. I.; Shubin, V. E.; Shushakov, D. A.; Sitarsky, K. Yu.; Torgovnikov, R. A.

    2018-02-01

    In this paper, we analyze the influence of the crosstalk level and the dynamic range on the basic characteristics of a silicon solid-state photomultiplier and demonstrate their importance for detecting of optical signals with backlight illumination, in particular, for LIDAR application. Experimental results obtained in the study of threshold and fluctuation parameters of detectors with different levels of crosstalk and dynamic range are presented. It is shown that the detector design combining a high dynamic range with a small crosstalk gives a noticeable advantage in such applications.

  11. Analysis of Measurements for Solid State Lidar Development

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1996-01-01

    A Detector Characterization Facility (DCF), capable of measuring 2-micron detection devices and evaluating heterodyne receivers, was developed at the Marshall Space Flight Center. The DCF is capable of providing all the necessary detection parameters for design, development, and calibration of coherent and incoherent solid state laser radar (lidar) systems. The coherent lidars in particular require an accurate knowledge of detector heterodyne quantum efficient, nonlinearity properties, and voltage-current relationship as a function of applied optical power. At present, no detector manufacturer provides these qualities or adequately characterizes their detectors for heterodyne detection operation. In addition, the detector characterization facility measures the detectors DC and AC quantum efficiencies noise equivalent power and frequency response up to several GHz. The DCF is also capable of evaluating various heterodyne detection schemes such as balanced detectors and fiber optic interferometers. The design and analyses of measurements for the DCF were preformed over the previous year and a detailed description of its design and capabilities was provided in the NASA report NAS8-38609/DO77. It should also be noted that the DCF design was further improved to allow for the characterization of diffractive andholographical optical elements and other critical components of coherent lidar systems.

  12. Signal Conditioning for Satellite Borne Energetic-Charged-Particle Experiments

    NASA Technical Reports Server (NTRS)

    Ludwig, George H.

    1961-01-01

    Many of the spacecraft launched thus far have carried detectors for investigating cosmic rays, solar protons, solar plasmas, and the geomagnetically trapped radiation. These detectors, which will find continued application in the future, include ion chambers; proportional, Geiger-Muller, scintillation, Cerenkov, and solid state detectors; ion collectors; and nuclear emulsions. The instrumentation required to condition the signals from these detectors prior to telemetering is steadily growing more complex in order to permit more meaningful measurements. This report describes a number of instrumentation elements typical of the present state of the art, and a present-generation three-detector system which illustrates the integration of such basic elements into a complex system.

  13. TU-FG-209-09: Mathematical Estimation and Experimental Measurement of Patient Free-In-Air Skin Entrance Exposure During a Panoramic Dental X-Ray Procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Errico, A; Behrman, R; Li, B

    Purpose: To develop a simple mathematical model for estimating the patient free-in-air skin entrance exposure (SEE) during a panoramic dental x-ray that does not require the use of a head phantom. This eliminates issues associated with phantom centering and the mounting of a detector on the phantom for routine QC testing. Methods: We used a Sirona Orthophos XG panoramic radiographic unit and a Radcal Accu-Gold system for this study. A solid state detector was attached over the slit of the Orthophos’ sensor with the help of a custom-built jig. A single measurement of the free-in-air exposure at this position wasmore » taken over a full panoramic scan. A mathematical model for estimating the SEE was developed based upon this measurement, the system geometry, x-ray field beam width, and x-ray sweep angle. To validate the model, patient geometry was simulated by a 16 cm diameter PMMA CTDI phantom centered at the machine’s isocenter. Measurements taken on the phantom’s surface were made using a solid state detector with lead backing, an ion chamber, and the ion chamber with the phantom wrapped in lead to mitigate backscatter. Measurements were taken near the start position of the tube and at 90 degrees from the start position. Results: Using the solid state detector, the average SEE was 23.5+/−0.02 mR and 55.5+/−0.08 mR at 64 kVp and 73 kVp, respectively. With the lead-wrapping, the measurements from the ion chamber matched those of the solid state detector to within 0.1%. Preliminary results gave the difference between the mathematical model and the phantom measurements to be approximately 5% at both kVps. Conclusion: Reasonable estimates of patient SEE for panoramic dental radiography can be made using a simple mathematical model without the need for a head phantom.« less

  14. Neutron detection with plastic scintillators coupled to solid state photomultiplier detectors

    NASA Astrophysics Data System (ADS)

    Christian, James F.; Johnson, Erik B.; Fernandez, Daniel E.; Vogel, Samuel; Frank, Rebecca; Stoddard, Graham; Stapels, Christopher; Pereira, Jorge; Zegers, Remco

    2017-09-01

    The recent reduction of dark current in Silicon Solid-state photomultipliers (SiSSPMs) makes them an attractive alternative to conventional photomultiplier tubes (PMTs) for scintillation detection applications. Nuclear Physics experiments often require large detector volumes made using scintillation materials, which require sensitive photodetectors, such as a PMTs. PMTs add to the size, fragility, and high-voltage requirements as well as distance requirements for experiments using magnetic fields. This work compares RMD's latest detector modules, denoted as the "year 2 prototype", of plastic scintillators that discriminate gamma and high-energy particle events from neutron events using pulse shape discrimination (PSD) coupled to a SiSSPM to the following two detector modules: a similar "year 1 prototype" and a scintillator coupled to a PMT module. It characterizes the noise floor, relative signal-to-noise ratio (SNR), the timing performance, the PSD figure-of-merit (FOM) and the neutron detection efficiency of RMD's detectors. This work also evaluates the scaling of SiSSPM detector modules to accommodate the volumes needed for many Nuclear Physics experiments. The Si SSPM detector module provides a clear advantage in Nuclear Physics experiments that require the following attributes: discrimination of neutron and gamma-ray events, operation in or near strong magnetic fields, and segmentation of the detector.

  15. Study of the optical properties and the carbonaceous clusters in DAM-ADC solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Rammah, Y. S.; Abdalla, A. M.

    2017-12-01

    The optical properties of DAM-ADC solid state nuclear track detectors (SSNTDs) were investigated. Samples of DAM-ADC detector were irradiated at room temperature with gamma doses in the range of 100-500 kGy using 1.25 MeV 60Co source of dose rate 4 kGy/h. The optical characterization of these detectors have been studied through the measurements of UV-visible absorption spectra of blank and γ- irradiated samples. The optical energy band gaps, Eg for the detectors were obtained from the direct and the indirect allowed transitions in K-space using two methods (Tauc's model and absorption spectrum fitting (ASF) method). The absorbance of DAM-ADC detector was found to increase with increasing of the gamma absorbed dose. The width of the tail of localized states in the band gap, Eu was evaluated with the Urbach's method. The number of carbon atoms per conjugated length (N), the number of carbon atoms per cluster (M), and refractive index (n) for the present samples were determined. Both of the direct and the indirect band gaps of DAM-ADC detector decrease with increasing of the gamma absorbed dose. Urbach's energy decreased significantly for the detector. An increase in N, M, and n with increasing of the gamma absorbed dose was noticed. Results shed light on the effect of gamma irradiations of DAM-ADC SSNTDs to suitable industrial applications and to modify the optical properties through gamma-induced modifications of the polymer structure.

  16. High field CdS detector for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tyagi, R. C.; Boer, K. W.; Hadley, H. C.; Robertson, J. B.

    1972-01-01

    New and highly sensitive method of detecting infrared irradiation makes possible solid state infrared detector which is more sensitive near room temperature than usual photoconductive low band gap semiconductor devices. Reconfiguration of high field domains in cadmium sulphide crystals provides basis for discovery.

  17. Towards toxicity detection using a lab-on-chip based on the integration of MOEMS and whole-cell sensors.

    PubMed

    Elman, Noel M; Ben-Yoav, Hadar; Sternheim, Marek; Rosen, Rachel; Krylov, Slava; Shacham-Diamand, Yosi

    2008-06-15

    A lab-on-chip consisting of a unique integration of whole-cell sensors, a MOEMS (Micro-Opto-Electro-Mechanical-System) modulator, and solid-state photo-detectors was implemented for the first time. Whole-cell sensors were genetically engineered to express a bioluminescent reporter (lux) as a function of the lac promoter. The MOEMS modulator was designed to overcome the inherent low frequency noise of solid-state photo-detectors by means of a previously reported modulation technique, named IHOS (Integrated Heterodyne Optical System). The bio-reporter signals were modulated prior to photo-detection, increasing the SNR of solid-state photo-detectors at least by three orders of magnitude. Experiments were performed using isopropyl-beta-d-thiogalactopyranoside (IPTG) as a preliminary step towards testing environmental toxicity. The inducer was used to trigger the expression response of the whole-cell sensors testing the sensitivity of the lab-on-chip. Low intensity bio-reporter optical signals were measured after the whole-cell sensors were exposed to IPTG concentrations of 0.1, 0.05, and 0.02mM. The experimental results reveal the potential of this technology for future implementation as an inexpensive massive method for rapid environmental toxicity detection.

  18. Calibration of a Silver Detector using a PuBe Source

    DTIC Science & Technology

    2012-06-14

    solid state mechanisms [12]. If the source used for calibration has a known neutron flux , the detector efficiency can be determine by allowing a neutron ...between the normalized neutron flux at the different silver foil locations compared to the flux at the bottom right detector location. The differences are... neutron detection system used at the FRCHX to determine the nominal calibration factors. The type of silver detector used in the FRCHX experiment

  19. Instrument report: Planetary X-ray experiment

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.

    1972-01-01

    Design studies for an X-ray experiment to investigate planetary magnetospheres using solid state detectors, or proportional counters are reported. The detectors, background counting rate, and leakage fluxes are discussed. It is concluded that the best choice of instruments appears to be two separate multiproportional counters for redundancy.

  20. Radiation damage effects on solid state detectors

    NASA Technical Reports Server (NTRS)

    Trainor, J. H.

    1972-01-01

    Totally depleted silicon diodes are discussed which are used as nuclear particle detectors in investigations of galactic and solar cosmic radiation and trapped radiation. A study of radiation and chemical effects on the diodes was conducted. Work on electron and proton irradiation of surface barrier detectors with thicknesses up to 1 mm was completed, and work on lithium-drifted silicon devices with thicknesses of several millimeters was begun.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozhdestvenskyy, S.

    This work iterates on the first demonstration of a solid-state neutron multiplicity counting system developed at Lawrence Livermore National Laboratory by using commercial off-the-shelf detectors. The system was demonstrated to determine the mass of a californium-252 neutron source within 20% error requiring only one-hour measurement time with 20 cm 2 of active detector area.

  2. In-laboratory development of an automatic track counting system for solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Uzun, Sefa Kemal; Demiröz, Işık; Ulus, İzzet

    2017-01-01

    In this study, an automatic track counting system was developed for solid state nuclear track detectors (SSNTD). Firstly the specifications of required hardware components were determined, and accordingly the CCD camera, microscope and stage motor table was supplied and integrated. The system was completed by developing parametric software with VB.Net language. Finally a set of test intended for radon activity concentration measurement was applied. According to the test results, the system was enabled for routine radon measurement. Whether the parameters of system are adjusted for another SSNTD application, it could be used for other fields of SSNTD like neutron dosimetry or heavy charged particle detection.

  3. Solid state neutron detector array

    DOEpatents

    Seidel, John G.; Ruddy, Frank H.; Brandt, Charles D.; Dulloo, Abdul R.; Lott, Randy G.; Sirianni, Ernest; Wilson, Randall O.

    1999-01-01

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

  4. High-speed photodetectors.

    PubMed

    Anderson, L K; McMurtry, B J

    1966-10-01

    This paper is intended as a status report on high-speed detectors for the visible and near-infrared portion of the optical spectrum. Both vacuum and solid-state detectors are discussed, with the emphasis on those devices which can be used as direct (noncoherent) detectors of weak optical signals modulated at microwave frequencies. The best detectors for this application have internal current gain and in this regard the relevant properties and limitations of high-frequency secondary emission multiplication in vacuum tube devices and avalanche multiplication in p-n junctions are summarized.

  5. Measurements of the Reactor Antineutrino with Solid State Scintillation Detector

    NASA Astrophysics Data System (ADS)

    Alekseev, I.; Belov, V.; Brudanin, V.; Danilov, M.; Egorov, V.; Filosofov, D.; Fomina, M.; Hons, Z.; Kazartsev, S.; Kobyakin, A.; Kuznetsov, A.; Machikhiliyan, I.; Medvedev, D.; Nesterov, V.; Olshevsky, A.; Pogorelov, N.; Ponomarev, D.; Rozova, I.; Rumyantseva, N.; Rusinov, V.; Salamatin, A.; Samigullin, E.; Shevchik, Ye.; Shirchenko, M.; Shitov, Yu.; Skrobova, N.; Starostin, A.; Svirida, D.; Tarkovsky, E.; Tikhomirov, I.; Vlášek, J.; Zhitnikov, I.; Zinatulina, D.

    Measurements of reactor antineutrino play an important role in the efforts at the frontier of the modern physics. The DANSS collaboration presents preliminary results of a one year run with a cubic meter solid state detector placed below 3.1 GW industrial light water reactor. The experiment is sensitive to sterile neutrino in the most interesting region of mixing parameter space. 2500 scintillation strips of the sensitive volume of the detector have multilayer passive shielding of copper, lead and borated polyethylene and active muon veto. Detector position below the reactor gives an advantage of overburden about 50 m of water equivalent providing factor of six in cosmic muon suppression and eliminating fast neutrons.The detector is placed on a vertically movable platform which allows to change the distance to the reactor core center in the range 10.7-12.7 m within a few minutes. The strips are read out individually by SiPMs and in groups of 50 by PMTs. 5000 inverse beta-decay events per day are collected in the fiducial volume, which is 78% of the whole detector, at the position closest to the reactor. Overburden, active veto and good segmentation of the detector result in an excellent signal to background ratio. The talk is dedicated to the data analysis and preliminary results. The experiment status is also presented.

  6. Time-Resolved Diffuse Optical Spectroscopy and Imaging Using Solid-State Detectors: Characteristics, Present Status, and Research Challenges.

    PubMed

    Alayed, Mrwan; Deen, M Jamal

    2017-09-14

    Diffuse optical spectroscopy (DOS) and diffuse optical imaging (DOI) are emerging non-invasive imaging modalities that have wide spread potential applications in many fields, particularly for structural and functional imaging in medicine. In this article, we review time-resolved diffuse optical imaging (TR-DOI) systems using solid-state detectors with a special focus on Single-Photon Avalanche Diodes (SPADs) and Silicon Photomultipliers (SiPMs). These TR-DOI systems can be categorized into two types based on the operation mode of the detector (free-running or time-gated). For the TR-DOI prototypes, the physical concepts, main components, figures-of-merit of detectors, and evaluation parameters are described. The performance of TR-DOI prototypes is evaluated according to the parameters used in common protocols to test DOI systems particularly basic instrumental performance (BIP). In addition, the potential features of SPADs and SiPMs to improve TR-DOI systems and expand their applications in the foreseeable future are discussed. Lastly, research challenges and future developments for TR-DOI are discussed for each component in the prototype separately and also for the entire system.

  7. Calibration of solid state nuclear track detectors at high energy ion beams for cosmic radiation measurements: HAMLET results

    NASA Astrophysics Data System (ADS)

    Szabó, J.; Pálfalvi, J. K.

    2012-12-01

    The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008-2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.

  8. Calibratable solid-state pressure switch

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Pressure switch, incorporating a semiconductor light-detector coupled to an electrically controlled actuating unit, provides accurate and reliable switching over a broad range of pressures and environments.

  9. An automatic analyzer of solid state nuclear track detectors using an optic RAM as image sensor

    NASA Astrophysics Data System (ADS)

    Staderini, Enrico Maria; Castellano, Alfredo

    1986-02-01

    An optic RAM is a conventional digital random access read/write dynamic memory device featuring a quartz windowed package and memory cells regularly ordered on the chip. Such a device is used as an image sensor because each cell retains data stored in it for a time depending on the intensity of the light incident on the cell itself. The authors have developed a system which uses an optic RAM to acquire and digitize images from electrochemically etched CR39 solid state nuclear track detectors (SSNTD) in the track count rate up to 5000 cm -2. On the digital image so obtained, a microprocessor, with appropriate software, performs image analysis, filtering, tracks counting and evaluation.

  10. Pointing and Jitter Control for the USNA Multi-Beam Combining System

    DTIC Science & Technology

    2013-05-10

    previous work, an adaptive H-infinity optimal controller has been developed to control a single beam using a beam position detector for feedback... turbulence and airborne particles, platform jitter, lack of feedback from the target , and current laser technology represent just a few of these...lasers. Solid state lasers, however, cannot currently provide high enough power levels to destroy a target using a single beam. On solid-state

  11. Frequency stabilization of diode-laser-pumped solid state lasers

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    The goal of the NASA Sunlite program is to fly two diode-laser-pumped solid-state lasers on the space shuttle and while doing so to perform a measurement of their frequency stability and temporal coherence. These measurements will be made by combining the outputs of the two lasers on an optical radiation detector and spectrally analyzing the beat note. Diode-laser-pumped solid-state lasers have several characteristics that will make them useful in space borne experiments. First, this laser has high electrical efficiency. Second, it is of a technology that enables scaling to higher powers in the future. Third, the laser can be made extremely reliable, which is crucial for many space based applications. Fourth, they are frequency and amplitude stable and have high temporal coherence. Diode-laser-pumped solid-state lasers are inherently efficient. Recent results have shown 59 percent slope efficiency for a diode-laser-pumped solid-state laser. As for reliability, the laser proposed should be capable of continuous operation. This is possible because the diode lasers can be remote from the solid state gain medium by coupling through optical fibers. Diode lasers are constructed with optical detectors for monitoring their output power built into their mounting case. A computer can actively monitor the output of each diode laser. If it sees any variation in the output power that might indicate a problem, the computer can turn off that diode laser and turn on a backup diode laser. As for stability requirements, it is now generally believed that any laser can be stabilized if the laser has a frequency actuator capable of tuning the laser frequency as far as it is likely to drift in a measurement time.

  12. Directional Sensitivity in Light-Mass Dark Matter Searches with Single-Electron-Resolution Ionization Detectors

    NASA Astrophysics Data System (ADS)

    Kadribasic, Fedja; Mirabolfathi, Nader; Nordlund, Kai; Sand, Andrea E.; Holmström, Eero; Djurabekova, Flyura

    2018-03-01

    We propose a method using solid state detectors with directional sensitivity to dark matter interactions to detect low-mass weakly interacting massive particles (WIMPs) originating from galactic sources. In spite of a large body of literature for high-mass WIMP detectors with directional sensitivity, no available technique exists to cover WIMPs in the mass range <1 GeV /c2 . We argue that single-electron-resolution semiconductor detectors allow for directional sensitivity once properly calibrated. We examine the commonly used semiconductor material response to these low-mass WIMP interactions.

  13. Layered semiconductor neutron detectors

    DOEpatents

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  14. Solid state neutron detector array

    DOEpatents

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  15. Imaging Sensor Development for Scattering Atmospheres.

    DTIC Science & Technology

    1983-03-01

    subtracted out- put from a CCD imaging detector for a single frame can be written as A _ S (2-22) V B + B{ shot noise thermal noise , dark current shot ...addition, the spectral re- sponses of current devices are limited to the visible region and their sensitivities are not very high. Solid state detectors ...are generally much more sensitive than spatial light modulators, and some (e.g., HgCdTe detectors ) can re- spond up to the 10 um region. Several

  16. Note: Large active area solid state photon counter with 20 ps timing resolution and 60 fs detection delay stability

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Kodet, Jan; Eckl, Johann; Blazej, Josef

    2017-10-01

    We are reporting on the design, construction, and performance of a photon counting detector system, which is based on single photon avalanche diode detector technology. This photon counting device has been optimized for very high timing resolution and stability of its detection delay. The foreseen application of this detector is laser ranging of space objects, laser time transfer ground to space and fundamental metrology. The single photon avalanche diode structure, manufactured on silicon using K14 technology, is used as a sensor. The active area of the sensor is circular with 200 μm diameter. Its photon detection probability exceeds 40% in the wavelength range spanning from 500 to 800 nm. The sensor is operated in active quenching and gating mode. A new control circuit was optimized to maintain high timing resolution and detection delay stability. In connection to this circuit, timing resolution of the detector is reaching 20 ps FWHM. In addition, the temperature change of the detection delay is as low as 70 fs/K. As a result, the detection delay stability of the device is exceptional: expressed in the form of time deviation, detection delay stability of better than 60 fs has been achieved. Considering the large active area aperture of the detector, this is, to our knowledge, the best timing performance reported for a solid state photon counting detector so far.

  17. Relative performance of different types of passive dosimeters employing solid state nuclear track detectors.

    PubMed

    Jamil, K; Al-Ahmady, K K; Fazal-ur-Rehman; Ali, S; Qureshi, A A; Khan, H A

    1997-10-01

    Radon and its progeny, known to be carcinogenic, are a matter of great concern in underground mines and energy conserved air-tight houses. Different shapes of dosimeters using solid state nuclear track detectors (SSNTDs) have been devised to measure radon concentrations in mines and dwellings. Sometimes intercomparison of results is required by various laboratories working with solid state nuclear track detector-based passive dosimeters. The present work includes the determination of various parameters for a set of dosimeters consisting of (1) box-type, (2) pen-type, (3) tube-type, (4) Karlsruhe Diffusion Chamber, and (5) bare-type dosimeters. In this research two types of plastics, allyl-diglycol-carbonate (C12H18O7) and cellulose nitrate (C6H8O8N2) known as CR-39 and CN-85, respectively, have been employed. The detection efficiency for alpha particles from radon and its progeny for CR-39 and CN-85 have been compared. All experiments have been carried out in a custom-designed exposure chamber connected to a radon source. The calibration factors, in terms of Bq m(-3) per unit track density (1.0 cm(-2)) with respect to box-type dosimeter, have been determined for intercomparison and standardization of measured radon concentrations by a set of passive radon dosimeters used in various laboratories of the world.

  18. Image intensification; Proceedings of the Meeting, Los Angeles, CA, Jan. 17, 18, 1989

    NASA Astrophysics Data System (ADS)

    Csorba, Illes P.

    Various papers on image intensification are presented. Individual topics discussed include: status of high-speed optical detector technologies, super second generation imge intensifier, gated image intensifiers and applications, resistive-anode position-sensing photomultiplier tube operational modeling, undersea imaging and target detection with gated image intensifier tubes, image intensifier modules for use with commercially available solid state cameras, specifying the components of an intensified solid state television camera, superconducting IR focal plane arrays, one-inch TV camera tube with very high resolution capacity, CCD-Digicon detector system performance parameters, high-resolution X-ray imaging device, high-output technology microchannel plate, preconditioning of microchannel plate stacks, recent advances in small-pore microchannel plate technology, performance of long-life curved channel microchannel plates, low-noise microchannel plates, development of a quartz envelope heater.

  19. Pile-up corrections in laser-driven pulsed X-ray sources

    NASA Astrophysics Data System (ADS)

    Hernández, G.; Fernández, F.

    2018-06-01

    A formalism for treating the pile-up produced in solid-state detectors by laser-driven pulsed X-ray sources has been developed. It allows the direct use of X-ray spectroscopy without artificially decreasing the number of counts in the detector, assuming the duration of a pulse is much shorter than the detector response time and the loss of counts from the energy window of the detector can be modeled or neglected. Experimental application shows that having a small amount of pile-up subsequently corrected improves the signal-to-noise ratio, which would be more beneficial than the strict single-hit condition usually imposed on this detectors.

  20. A combined segmented anode gas ionization chamber and time-of-flight detector for heavy ion elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Ström, Petter; Petersson, Per; Rubel, Marek; Possnert, Göran

    2016-10-01

    A dedicated detector system for heavy ion elastic recoil detection analysis at the Tandem Laboratory of Uppsala University is presented. Benefits of combining a time-of-flight measurement with a segmented anode gas ionization chamber are demonstrated. The capability of ion species identification is improved with the present system, compared to that obtained when using a single solid state silicon detector for the full ion energy signal. The system enables separation of light elements, up to Neon, based on atomic number while signals from heavy elements such as molybdenum and tungsten are separated based on mass, to a sample depth on the order of 1 μm. The performance of the system is discussed and a selection of material analysis applications is given. Plasma-facing materials from fusion experiments, in particular metal mirrors, are used as a main example for the discussion. Marker experiments using nitrogen-15 or oxygen-18 are specific cases for which the described improved species separation and sensitivity are required. Resilience to radiation damage and significantly improved energy resolution for heavy elements at low energies are additional benefits of the gas ionization chamber over a solid state detector based system.

  1. Time-Resolved Diffuse Optical Spectroscopy and Imaging Using Solid-State Detectors: Characteristics, Present Status, and Research Challenges

    PubMed Central

    Alayed, Mrwan

    2017-01-01

    Diffuse optical spectroscopy (DOS) and diffuse optical imaging (DOI) are emerging non-invasive imaging modalities that have wide spread potential applications in many fields, particularly for structural and functional imaging in medicine. In this article, we review time-resolved diffuse optical imaging (TR-DOI) systems using solid-state detectors with a special focus on Single-Photon Avalanche Diodes (SPADs) and Silicon Photomultipliers (SiPMs). These TR-DOI systems can be categorized into two types based on the operation mode of the detector (free-running or time-gated). For the TR-DOI prototypes, the physical concepts, main components, figures-of-merit of detectors, and evaluation parameters are described. The performance of TR-DOI prototypes is evaluated according to the parameters used in common protocols to test DOI systems particularly basic instrumental performance (BIP). In addition, the potential features of SPADs and SiPMs to improve TR-DOI systems and expand their applications in the foreseeable future are discussed. Lastly, research challenges and future developments for TR-DOI are discussed for each component in the prototype separately and also for the entire system. PMID:28906462

  2. Study of pulse shape discrimination for a neutron phoswich detector

    NASA Astrophysics Data System (ADS)

    Hartman, Jessica; Barzilov, Alexander

    2017-09-01

    A portable phoswich detector capable of differentiating between fast neutrons and thermal neutrons, and photons was developed. The detector design is based on the use of two solid-state scintillators with dissimilar scintillation time properties coupled with a single optical sensor: a 6Li loaded glass and EJ-299-33A plastic. The on-the-fly digital pulse shape discrimination and the wavelet treatment of measured waveforms were employed in the data analysis. The instrument enabled neutron spectrum evaluation.

  3. GEANT4 simulations of a novel 3He-free thermalization neutron detector

    NASA Astrophysics Data System (ADS)

    Mazzone, A.; Finocchiaro, P.; Lo Meo, S.; Colonna, N.

    2018-05-01

    A novel concept for 3He-free thermalization detector is here investigated by means of GEANT4 simulations. The detector is based on strips of solid-state detectors with 6Li deposit for neutron conversion. Various geometrical configurations have been investigated in order to find the optimal solution, in terms of value and energy dependence of the efficiency for neutron energies up to 10 MeV. The expected performance of the new detector are compared with those of an optimized thermalization detector based on standard 3He tubes. Although an 3He-based detector is superior in terms of performance and simplicity, the proposed solution may become more appealing in terms of costs in case of shortage of 3He supply.

  4. X-ray chemical analyzer for field applications

    DOEpatents

    Gamba, Otto O. M.

    1977-01-01

    A self-supporting portable field multichannel X-ray chemical analyzer system comprising a lightweight, flexibly connected, remotely locatable, radioisotope-excited sensing probe utilizing a cryogenically-cooled solid state semi-conductor crystal detector for fast in situ non-destructive, qualitative and quantitative analysis of elements in solid, powder, liquid or slurried form, utilizing an X-ray energy dispersive spectrometry technique.

  5. Detection systems for mass spectrometry imaging: a perspective on novel developments with a focus on active pixel detectors.

    PubMed

    Jungmann, Julia H; Heeren, Ron M A

    2013-01-15

    Instrumental developments for imaging and individual particle detection for biomolecular mass spectrometry (imaging) and fundamental atomic and molecular physics studies are reviewed. Ion-counting detectors, array detection systems and high mass detectors for mass spectrometry (imaging) are treated. State-of-the-art detection systems for multi-dimensional ion, electron and photon detection are highlighted. Their application and performance in three different imaging modes--integrated, selected and spectral image detection--are described. Electro-optical and microchannel-plate-based systems are contrasted. The analytical capabilities of solid-state pixel detectors--both charge coupled device (CCD) and complementary metal oxide semiconductor (CMOS) chips--are introduced. The Medipix/Timepix detector family is described as an example of a CMOS hybrid active pixel sensor. Alternative imaging methods for particle detection and their potential for future applications are investigated. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Successor to the RXTE PCA based upon focusing optics

    NASA Astrophysics Data System (ADS)

    Gorenstein, Paul

    2002-01-01

    There is broad interest in a next generation timing mission to succeed the PCA of RXTE which will provide more effective area than its 0.6 square meters and much better energy resolution. Currently prospective missions are, like the PCA, based upon large area detectors. Serious consideration should also be given to a focusing system. The focusing system would be a modular array of relatively small diameter imaging telescopes or concentrators with solid state detectors in their focal planes. For areas exceeding a square meter a focusing system could actually be less complex, more reliable, and for one particular optical design perhaps not much more massive. The total detector area would be only a few percent of the telescope aperture, which makes the acquisition of detectors much less challenging. Today it is possible to obtain commercially a sufficient number of detectors with good energy resolution for all the focal planes of the focusing array. They require only modest cooling and that could be accomplished passively in space. Several optical designs are possible. The disadvantages of an optical system are larger mass, more difficultly obtaining broad bandwidth, smaller field of view, and larger volume to accommodate the focal length distance and a larger diameter. On the other hand, the focusing system is more sensitive to fainter sources, is much more efficient below 2 keV, is less sensitive to background and is likely to be less costly overall than an array of solid state area detectors with equally good energy resolution.

  7. Collisional, radiative and total electron interaction in compound semiconductor detectors and solid state nuclear track detectors: effective atomic number and electron density.

    PubMed

    Kurudirek, Murat; Kurudirek, Sinem V

    2015-05-01

    Effective atomic numbers, Zeff and electron densities, Ne are widely used for characterization of interaction processes in radiation related studies. A variety of detectors are employed to detect different types of radiations i.e. photons and charged particles. In the present work, some compound semiconductor detectors (CSCD) and solid state nuclear track detectors (SSNTD) were investigated with respect to the partial as well as total electron interactions. Zeff and Ne of the given detectors were calculated for collisional, radiative and total electron interactions in the kinetic energy region 10keV-1GeV. Maximum values of Zeff and Ne were observed at higher kinetic energies of electrons. Significant variations in Zeff and Ne up to ≈20-25% were noticed for the detectors, GaN, ZnO, Amber and CR-39 for total electron interaction. Moreover, the obtained Zeff and Ne for electrons were compared to those obtained for photons in the entire energy region. Significant variations in Zeff were also noted not only for photons (up to ≈40% for GaN) but also between photons and electrons (up to ≈60% for CR-39) especially at lower energies. Except for the lower energies, Zeff and Ne keep more or less constant values for the given materials. The energy regions where Zeff and Ne keep constant clearly show the availability of using these parameters for characterization of the materials with respect to the radiation interaction processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Microchannel detector array for X-rays and UV

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1976-01-01

    Device employs sensitive photoelectric electrodes and solid-state memory, can be used at visible UV and X ray wavelengths, includes nonmagnetic proximity focusing, and is immune to high energy charged-particle background.

  9. An original method to evaluate the transport parameters and reconstruct the electric field in solid-state photodetectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santi, A.; Piacentini, G.; Zanichelli, M.

    2014-05-12

    A method for reconstructing the spatial profile of the electric field along the thickness of a generic bulk solid-state photodetector is proposed. Furthermore, the mobility and lifetime of both electrons and holes can be evaluated contextually. The method is based on a procedure of minimization built up from current transient profiles induced by laser pulses in a planar detector at different applied voltages. The procedure was tested in CdTe planar detectors for X- and Gamma rays. The devices were measured in a single-carrier transport configuration by impinging laser light on the sample cathode. This method could be suitable for manymore » other devices provided that they are made of materials with sufficiently high resistivity, i.e., with a sufficiently low density of intrinsic carriers.« less

  10. A front end readout electronics ASIC chip for position sensitive solid state detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravis, S.D.; Tuemer, T.O.; Visser, G.J.

    1998-12-31

    A mixed signal Application Specific Integrated Circuit (ASIC) chip for front end readout electronics of position sensitive solid state detectors has been manufactured. It is called RENA (Readout Electronics for Nuclear Applications). This chip can be used for both medical and industrial imaging of X-rays and gamma rays. The RENA chip is a monolithic integrated circuit and has 32 channels with low noise high input impedance charge sensitive amplifiers. It works in pulse counting mode with good energy resolution. It also has a self triggering output which is essential for nuclear applications when the incident radiation arrives at random. Different,more » externally selectable, operational modes that includes a sparse readout mode is available to increase data throughput. It also has externally selectable shaping (peaking) times.« less

  11. Evaluation of Origin Ensemble algorithm for image reconstruction for pixelated solid-state detectors with large number of channels

    NASA Astrophysics Data System (ADS)

    Kolstein, M.; De Lorenzo, G.; Mikhaylova, E.; Chmeissani, M.; Ariño, G.; Calderón, Y.; Ozsahin, I.; Uzun, D.

    2013-04-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated solid-state technology for nuclear medicine applications. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). For PET scanners, conventional algorithms like Filtered Back-Projection (FBP) and Ordered Subset Expectation Maximization (OSEM) are straightforward to use and give good results. However, FBP presents difficulties for detectors with limited angular coverage like PEM and Compton gamma cameras, whereas OSEM has an impractically large time and memory consumption for a Compton gamma camera with a large number of channels. In this article, the Origin Ensemble (OE) algorithm is evaluated as an alternative algorithm for image reconstruction. Monte Carlo simulations of the PET design are used to compare the performance of OE, FBP and OSEM in terms of the bias, variance and average mean squared error (MSE) image quality metrics. For the PEM and Compton camera designs, results obtained with OE are presented.

  12. The energy spectrum of Jovian electrons in interplanetary space

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Cummings, A. C.; Stone, E. C.; Webber, W. R.

    1985-01-01

    The energy spectrum of electrons with energies approximately 10 to approximately 180 MeV measured with the electron telescope on the Voyager 1 and 2 spacecraft in interplanetary space from 1978 to 1983 is reported. The kinetic energy of electrons is determined by double dE/dx measurements from the first two detectors (D1,D2) of a stack of eight solid state detectors and by the range of particle penetration into the remaining six detectors (D3 to D8) which are interleaved with tungsten absorbers.

  13. Nuclear Science Symposium, 4th, and Nuclear Power Systems Symposium, 9th, San Francisco, Calif., October 19-21, 1977, Proceedings

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Consideration is given to the following types of high energy physics instrumentation: drift chambers, multiwire proportional chambers, calorimeters, optical detectors, ionization and scintillation detectors, solid state detectors, and electronic and digital subsystems. Attention is also paid to reactor instrumentation, nuclear medicine instrumentation, data acquisition systems for nuclear instrumentation, microprocessor applications in nuclear science, environmental instrumentation, control and instrumentation of nuclear power generating stations, and radiation monitoring. Papers are also presented on instrumentation for the High Energy Astronomy Observatory.

  14. Image science team

    NASA Technical Reports Server (NTRS)

    Ando, K.

    1982-01-01

    A substantial technology base of solid state pushbroom sensors exists and is in the process of further evolution at both GSFC and JPL. Technologies being developed relate to short wave infrared (SWIR) detector arrays; HgCdTe hybrid detector arrays; InSb linear and area arrays; passive coolers; spectral beam splitters; the deposition of spectral filters on detector arrays; and the functional design of the shuttle/space platform imaging spectrometer (SIS) system. Spatial and spectral characteristics of field, aircraft and space multispectral sensors are summaried. The status, field of view, and resolution of foreign land observing systems are included.

  15. Editorial

    NASA Astrophysics Data System (ADS)

    Bruzzi, Mara; Cartiglia, Nicolo; Pace, Emanuele; Talamonti, Cinzia

    2015-10-01

    The 10th edition of the International Conference on Radiation Effects on Semiconductor Materials, Detectors and Devices (RESMDD) was held in Florence, at Dipartimento di Fisica ed Astronomia on October 8-10, 2014. It has been aimed at discussing frontier research activities in several application fields as nuclear and particle physics, astrophysics, medical and solid-state physics. Main topics discussed in this conference concern performance of heavily irradiated silicon detectors, developments required for the luminosity upgrade of the Large Hadron Collider (HL-LHC), ultra-fast silicon detectors design and manufacturing, high-band gap semiconductor detectors, novel semiconductor-based devices for medical applications, radiation damage issues in semiconductors and related radiation-hardening technologies.

  16. Solid-state flat panel imager with avalanche amorphous selenium

    NASA Astrophysics Data System (ADS)

    Scheuermann, James R.; Howansky, Adrian; Goldan, Amir H.; Tousignant, Olivier; Levéille, Sébastien; Tanioka, K.; Zhao, Wei

    2016-03-01

    Active matrix flat panel imagers (AMFPI) have become the dominant detector technology for digital radiography and fluoroscopy. For low dose imaging, electronic noise from the amorphous silicon thin film transistor (TFT) array degrades imaging performance. We have fabricated the first prototype solid-state AMFPI using a uniform layer of avalanche amorphous selenium (a-Se) photoconductor to amplify the signal to eliminate the effect of electronic noise. We have previously developed a large area solid-state avalanche a-Se sensor structure referred to as High Gain Avalanche Rushing Photoconductor (HARP) capable of achieving gains of 75. In this work we successfully deposited this HARP structure onto a 24 x 30 cm2 TFT array with a pixel pitch of 85 μm. An electric field (ESe) up to 105 Vμm-1 was applied across the a-Se layer without breakdown. Using the HARP layer as a direct detector, an X-ray avalanche gain of 15 +/- 3 was achieved at ESe = 105 Vμm-1. In indirect mode with a 150 μm thick structured CsI scintillator, an optical gain of 76 +/- 5 was measured at ESe = 105 Vμm-1. Image quality at low dose increases with the avalanche gain until the electronic noise is overcome at a constant exposure level of 0.76 mR. We demonstrate the success of a solid-state HARP X-ray imager as well as the largest active area HARP sensor to date.

  17. Noninvasive Quantum Measurement of Arbitrary Operator Order by Engineered Non-Markovian Detectors

    NASA Astrophysics Data System (ADS)

    Bülte, Johannes; Bednorz, Adam; Bruder, Christoph; Belzig, Wolfgang

    2018-04-01

    The development of solid-state quantum technologies requires the understanding of quantum measurements in interacting, nonisolated quantum systems. In general, a permanent coupling of detectors to a quantum system leads to memory effects that have to be taken into account in interpreting the measurement results. We analyze a generic setup of two detectors coupled to a quantum system and derive a compact formula in the weak-measurement limit that interpolates between an instantaneous (text-book type) and almost continuous—detector dynamics-dependent—measurement. A quantum memory effect that we term "system-mediated detector-detector interaction" is crucial to observe noncommuting observables simultaneously. Finally, we propose a mesoscopic double-dot detector setup in which the memory effect is tunable and that can be used to explore the transition to non-Markovian quantum measurements experimentally.

  18. A/C Interface: The Electronic Toolbox. Part I.

    ERIC Educational Resources Information Center

    Dessy, Raymond E., Ed.

    1985-01-01

    Discusses new solid-state transducers, arrays of nonspecific detectors, hardware and firmware computational elements, and other devices that are transforming modern analytical chemistry. Examples in which microelectroic sensors are used to solve 14 problems are included. (JN)

  19. Analog-to-digital conversion techniques for precision photometry

    NASA Technical Reports Server (NTRS)

    Opal, Chet B.

    1988-01-01

    Three types of analog-to-digital converters are described: parallel, successive-approximation, and integrating. The functioning of comparators and sample-and-hold amplifiers is explained. Differential and integral linearity are defined, and good and bad examples are illustrated. The applicability and relative advantages of the three types of converters for precision astronomical photometric measurements are discussed. For most measurements, integral linearity is more important than differential linearity. Successive-approximation converters should be used with multielement solid state detectors because of their high speed, but dual slope integrating converters may be superior for use with single element solid state detectors where speed of digitization is not a factor. In all cases, the input signal should be tailored so that they occupy the upper part of the converter's dynamic range; this can be achieved by providing adjustable gain, or better by varying the integration time of the observation if possible.

  20. Study of solid state photomultiplier

    NASA Technical Reports Server (NTRS)

    Hays, K. M.; Laviolette, R. A.

    1987-01-01

    Available solid state photomultiplier (SSPM) detectors were tested under low-background, low temperature conditions to determine the conditions producing optimal sensitivity in a space-based astronomy system such as a liquid cooled helium telescope in orbit. Detector temperatures varied between 6 and 9 K, with background flux ranging from 10 to the 13th power to less than 10 to the 6th power photons/square cm-s. Measured parameters included quantum efficiency, noise, dark current, and spectral response. Experimental data were reduced, analyzed, and combined with existing data to build the SSPM data base included herein. The results were compared to analytical models of SSPM performance where appropriate models existed. Analytical models presented here were developed to be as consistent with the data base as practicable. Significant differences between the theory and data are described. Some models were developed or updated as a result of this study.

  1. Solid state instrumentation concepts for earth resource observation

    NASA Technical Reports Server (NTRS)

    Richard, H. L.

    1982-01-01

    Late in 1980, specifications were prepared for detail design definition of a six band solid state multispectral instrument having three visible (VIS), one near infrared (NIR), and two short wave infrared (SWIR) bands. This instrument concept, known as the Multispectral Linear Array (MLA), also offered increased spatial resolution, on board gain and offset correction, and additional operational modes which would allow for cross track and stereoscopic viewing as well as a multialtitude operational capability. A description is presented of a summary of some of the salient features of four different MLA design concepts, as developed by four American companies. The designs ranged from the use of multiple refractive telescopes utilizing three groups of focal plane detectors electronic correlation processing for achieving spatial registration, and incorporating palladium silicide (PdSi) SWIR detectors, to a four-mirror all-reflective telecentric system utilizing a beam splitter for spatial registration.

  2. Strategies and limitations for fluorescence detection of XAFS at high flux beamlines

    PubMed Central

    Heald, Steve M.

    2015-01-01

    The issue of detecting the XAFS signal from dilute samples is discussed in detail with the aim of making best use of high flux beamlines that provide up to 1013 photons s−1. Various detection methods are compared, including filters with slits, solid state detectors, crystal analyzers and combinations of these. These comparisons rely on simulations that use experimentally determined parameters. It is found that inelastic scattering places a fundamental limit on detection, and that it is important to take proper account of the polarization dependence of the signals. The combination of a filter–slit system with a solid state detector is a promising approach. With an optimized system good performance can be obtained even if the total count rate is limited to 107 Hz. Detection schemes with better energy resolution can help at the largest dilutions if their collection efficiency and count rate limits can be improved. PMID:25723945

  3. Characterization of the Oum Er Rbia (Morocco) high basin karstic water sources by using solid state nuclear track detectors and radon as a natural tracer.

    PubMed

    Khalil, N; Misdaq, M A; Berrazzouk, S; Mania, J

    2002-06-01

    Uranium and thorium contents as well as radon alpha-activities per unit volume were evaluated inside different water samples by using a method based on calculating the CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs) detection efficiencies for the emitted alpha-particles and measuring the resulting track density rates. The validity of the SSNTD technique utilized was checked by analysing uranyl nitrate (UO2(NO3)26H2O) standard solutions. A relationship between water radon concentration and water transmission of different water sources belonging to two regions of the Middle Atlas (Morocco) water reservoir was found. The influence of the water flow rate as well as the permeability and fracture system of the host rocks of the sources studied was investigated.

  4. Diagnostics of ion beam generated from a Mather type plasma focus device

    NASA Astrophysics Data System (ADS)

    Lim, L. K.; Ngoi, S. K.; Wong, C. S.; Yap, S. L.

    2014-03-01

    Diagnostics of ion beam emission from a 3 kJ Mather-type plasma focus device have been performed for deuterium discharge at low pressure regime. Deuterium plasma focus was found to be optimum at pressure of 0.2 mbar. The energy spectrum and total number of ions per shot from the pulsed ion beam are determined by using biased ion collectors, Faraday cup, and solid state nuclear track detector CR-39. Average energy of the ion beam obtained is about 60 keV. Total number of the ions has been determined to be in the order of 1011 per shot. Solid state nuclear track detectors (SSNTD) CR39 are employed to measure the particles at all angular direction from end on (0°) to side on (90°). Particle tracks are registered by SSNTD at 30° to 90°, except the one at the end-on 0°.

  5. FTIR spectrometer with solid-state drive system

    DOEpatents

    Rajic, Slobodan; Seals, Roland D.; Egert, Charles M.

    1999-01-01

    An FTIR spectrometer (10) and method using a solid-state drive system with thermally responsive members (27) that are subject to expansion upon heating and to contraction upon cooling. Such members (27) are assembled in the device (10) so as to move an angled, reflective surface (22) a small distance. The sample light beam (13) is received at a detector (24) along with a reference light beam (13) and there it is combined into a resulting signal. This allows the "interference" between the two beams to occur for spectral analysis by a processor (29).

  6. Development of InP solid state detector and liquid scintillator containing metal complex for measurement of pp/7Be solar neutrinos and neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Fukuda, Yoshiyuki; Moriyama, Shigetaka

    2012-07-01

    A large volume solid state detector using a semi-insulating Indium Phosphide (InP) wafer have been developed for measurement of pp/7Be solar neutrinos. Basic performance such as the charge collection efficiency and the energy resolution were measured by 60% and 20%, respectively. In order to detect two gammas (115keV and 497keV) from neutrino capture, we have designed hybrid detector which consist InP detector and liquid xenon scintillator for IPNOS experiment. New InP detector with thin electrode (Cr 50Å- Au 50Å). For another possibility, an organic liquid scintillator containing indium complex and zirconium complex were studied for a measurement of low energy solar neutrinos and neutrinosless double beta decay, respectively. Benzonitrile was chosen as a solvent because of good solubility for the quinolinolato complexes (2 wt%) and of good light yield for the scintillation induced by gamma-ray irradiation. The photo-luminescence emission spectra of InQ3 and ZrQ4 in benzonitrile was measured and liquid scintillator cocktail using InQ3 and ZrQ4 (50mg) in benzonitrile solutions (20 mL) with secondary scintillators with PPO (100mg) and POPOP (10mg) was made. The energy spectra of incident gammas were measured, and they are first results of the gamma-ray energy spectra using luminescent of metal complexes.

  7. SoLid: Search for Oscillations with Lithium-6 Detector at the SCK-CEN BR2 reactor

    NASA Astrophysics Data System (ADS)

    Ban, G.; Beaumont, W.; Buhour, J. M.; Coupé, B.; Cucoanes, A. S.; D'Hondt, J.; Durand, D.; Fallot, M.; Fresneau, S.; Giot, L.; Guillon, B.; Guilloux, G.; Janssen, X.; Kalcheva, S.; Koonen, E.; Labare, M.; Moortgat, C.; Pronost, G.; Raes, L.; Ryckbosch, D.; Ryder, N.; Shitov, Y.; Vacheret, A.; Van Mulders, P.; Van Remortel, N.; Weber, A.; Yermia, F.

    2016-04-01

    Sterile neutrinos have been considered as a possible explanation for the recent reactor and Gallium anomalies arising from reanalysis of reactor flux and calibration data of previous neutrino experiments. A way to test this hypothesis is to look for distortions of the anti-neutrino energy caused by oscillation from active to sterile neutrino at close stand-off (˜ 6- 8m) of a compact reactor core. Due to the low rate of anti-neutrino interactions the main challenge in such measurement is to control the high level of gamma rays and neutron background. The SoLid experiment is a proposal to search for active-to-sterile anti-neutrino oscillation at very short baseline of the SCK•CEN BR2 research reactor. This experiment uses a novel approach to detect anti-neutrino with a highly segmented detector based on Lithium-6. With the combination of high granularity, high neutron-gamma discrimination using 6LiF:ZnS(Ag) and precise localization of the Inverse Beta Decay products, a better experimental sensitivity can be achieved compared to other state-of-the-art technology. This compact system requires minimum passive shielding allowing for very close stand off to the reactor. The experimental set up of the SoLid experiment and the BR2 reactor will be presented. The new principle of neutrino detection and the detector design with expected performance will be described. The expected sensitivity to new oscillations of the SoLid detector as well as the first measurements made with the 8 kg prototype detector deployed at the BR2 reactor in 2013-2014 will be reported.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandl, V.; Oliveira, L.

    A portable alpha monitor with solid state detectors is described. The full scale range is 1000 p.p.s., and an auditive indication is also provided. The battery life is about 70 hr. The instrument operates correctly in a gamma field up to 8 r/hr. (auth)

  9. A DSP equipped digitizer for online analysis of nuclear detector signals

    NASA Astrophysics Data System (ADS)

    Pasquali, G.; Ciaranfi, R.; Bardelli, L.; Bini, M.; Boiano, A.; Giannelli, F.; Ordine, A.; Poggi, G.

    2007-01-01

    In the framework of the NUCL-EX collaboration, a DSP equipped fast digitizer has been implemented and it has now reached the production stage. Each sampling channel is implemented on a separate daughter-board to be plugged on a VME mother-board. Each channel features a 12-bit, 125 MSamples/s ADC and a Digital Signal Processor (DSP) for online analysis of detector signals. A few algorithms have been written and successfully tested on detectors of different types (scintillators, solid-state, gas-filled), implementing pulse shape discrimination, constant fraction timing, semi-Gaussian shaping, gated integration.

  10. Large angle solid state position sensitive x-ray detector system

    DOEpatents

    Kurtz, David S.; Ruud, Clay O.

    1998-01-01

    A method and apparatus for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided.

  11. Growth and device processing of hexagonal boron nitride epilayers for thermal neutron and deep ultraviolet detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doan, T. C.; Li, J.; Lin, J. Y.

    2016-07-15

    Solid-state neutron detectors with high performance are highly sought after for the detection of fissile materials. However, direct-conversion neutron detectors based on semiconductors with a measureable efficiency have not been realized. We report here the first successful demonstration of a direct-conversion semiconductor neutron detector with an overall detection efficiency for thermal neutrons of 4% and a charge collection efficiency as high as 83%. The detector is based on a 2.7 μm thick {sup 10}B-enriched hexagonal boron nitride (h-BN) epitaxial layer. The results represent a significant step towards the realization of practical neutron detectors based on h-BN epilayers. Neutron detectors basedmore » on h-BN are expected to possess all the advantages of semiconductor devices including wafer-scale processing, compact size, light weight, and ability to integrate with other functional devices.« less

  12. Solid State Nuclear Track Detectors--I: Track Characteristics and Formation Mechanisms.

    ERIC Educational Resources Information Center

    Lal, Nand

    1991-01-01

    Heavily ionizing charged particles produce radiation damage tracks in a wide variety of insulating materials. The experimental properties of these tracks and track recorders are described. The mechanisms by which the tracks are produced are discussed. (Author/KR)

  13. Boron nitride solid state neutron detector

    DOEpatents

    Doty, F. Patrick

    2004-04-27

    The present invention describes an apparatus useful for detecting neutrons, and particularly for detecting thermal neutrons, while remaining insensitive to gamma radiation. Neutrons are detected by direct measurement of current pulses produced by an interaction of the neutrons with hexagonal pyrolytic boron nitride.

  14. Carbon-Nanotube Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Wong, Eric; Schlecht, Erich; Hunt, Brian; Siegel, Peter

    2006-01-01

    Schottky diodes based on semiconducting single-walled carbon nanotubes are being developed as essential components of the next generation of submillimeter-wave sensors and sources. Initial performance predictions have shown that the performance characteristics of these devices can exceed those of the state-of-the-art solid-state Schottky diodes that have been the components of choice for room-temperature submillimeter-wave sensors for more than 50 years. For state-of-the-art Schottky diodes used as detectors at frequencies above a few hundred gigahertz, the inherent parasitic capacitances associated with their semiconductor junction areas and the resistances associated with low electron mobilities limit achievable sensitivity. The performance of such a detector falls off approximately exponentially with frequency above 500 GHz. Moreover, when used as frequency multipliers for generating signals, state-of-the-art solid-state Schottky diodes exhibit extremely low efficiencies, generally putting out only micro-watts of power at frequencies up to 1.5 THz. The shortcomings of the state-of-the-art solid-state Schottky diodes can be overcome by exploiting the unique electronic properties of semiconducting carbon nanotubes. A single-walled carbon nanotube can be metallic or semiconducting, depending on its chirality, and exhibits high electron mobility (recently reported to be approx.= 2x10(exp 5)sq cm/V-s) and low parasitic capacitance. Because of the narrowness of nanotubes, Schottky diodes based on carbon nanotubes have ultra-small junction areas (of the order of a few square nanometers) and consequent junction capacitances of the order of 10(exp -18) F, which translates to cutoff frequency >5 THz. Because the turn-on power levels of these devices are very low (of the order of nano-watts), the input power levels needed for pumping local oscillators containing these devices should be lower than those needed for local oscillators containing state-of-the-art solid-state Schottky diodes.

  15. Solid-state Image Sensor with Focal-plane Digital Photon-counting Pixel Array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Pain, Bedabrata

    1997-01-01

    A solid-state focal-plane imaging system comprises an NxN array of high gain. low-noise unit cells. each unit cell being connected to a different one of photovoltaic detector diodes, one for each unit cell, interspersed in the array for ultra low level image detection and a plurality of digital counters coupled to the outputs of the unit cell by a multiplexer(either a separate counter for each unit cell or a row of N of counters time shared with N rows of digital counters). Each unit cell includes two self-biasing cascode amplifiers in cascade for a high charge-to-voltage conversion gain (greater than 1mV/e(-)) and an electronic switch to reset input capacitance to a reference potential in order to be able to discriminate detection of an incident photon by the photoelectron (e(-))generated in the detector diode at the input of the first cascode amplifier in order to count incident photons individually in a digital counter connected to the output of the second cascade amplifier. Reseting the input capacitance and initiating self-biasing of the amplifiers occurs every clock cycle of an integratng period to enable ultralow light level image detection by the may of photovoltaic detector diodes under such ultralow light level conditions that the photon flux will statistically provide only a single photon at a time incident on anyone detector diode during any clock cycle.

  16. Enriched Boron-Doped Amorphous Selenium Based Position-Sensitive Solid-State Thermal Neutron Detector for MPACT Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, Krishna

    High-efficiency thermal neutron detectors with compact size, low power-rating and high spatial, temporal and energy resolution are essential to execute non-proliferation and safeguard protocols. The demands of such detector are not fully covered by the current detection system such as gas proportional counters or scintillator-photomultiplier tube combinations, which are limited by their detection efficiency, stability of response, speed of operation, and physical size. Furthermore, world-wide shortage of 3He gas, required for widely used gas detection method, has further prompted to design an alternative system. Therefore, a solid-state neutron detection system without the requirement of 3He will be very desirable. Tomore » address the above technology gap, we had proposed to develop new room temperature solidstate thermal neutron detectors based on enriched boron ( 10B) and enriched lithium ( 6Li) doped amorphous Se (As- 0.52%, Cl 5 ppm) semiconductor for MPACT applications. The proposed alloy materials have been identified for its many favorable characteristics - a wide bandgap (~2.2 eV at 300 K) for room temperature operation, high glass transition temperature (t g ~ 85°C), a high thermal neutron cross-section (for boron ~ 3840 barns, for lithium ~ 940 barns, 1 barn = 10 -24 cm 2), low effective atomic number of Se for small gamma ray sensitivity, and high radiation tolerance due to its amorphous structure.« less

  17. Neutron detection using a current biased kinetic inductance detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shishido, Hiroaki, E-mail: shishido@pe.osakafu-u.ac.jp; Miyajima, Shigeyuki; Ishida, Takekazu

    2015-12-07

    We demonstrate neutron detection using a solid state superconducting current biased kinetic inductance detector (CB-KID), which consists of a superconducting Nb meander line of 1 μm width and 40 nm thickness. {sup 10}B-enriched neutron absorber layer of 150 nm thickness is placed on top of the CB-KID. Our neutron detectors are able to operate in a wide superconducting region in the bias current–temperature diagram. This is in sharp contrast with our preceding current-biased transition edge detector, which can operate only in a narrow range just below the superconducting critical temperature. The full width at half maximum of the signals remains of the ordermore » of a few tens of ns, which confirms the high speed operation of our detectors.« less

  18. Quick, easy, cheap, effective, rugged, and safe sample preparation approach for pesticide residue analysis using traditional detectors in chromatography: A review.

    PubMed

    Rahman, Md Musfiqur; Abd El-Aty, A M; Kim, Sung-Woo; Shin, Sung Chul; Shin, Ho-Chul; Shim, Jae-Han

    2017-01-01

    In pesticide residue analysis, relatively low-sensitivity traditional detectors, such as UV, diode array, electron-capture, flame photometric, and nitrogen-phosphorus detectors, have been used following classical sample preparation (liquid-liquid extraction and open glass column cleanup); however, the extraction method is laborious, time-consuming, and requires large volumes of toxic organic solvents. A quick, easy, cheap, effective, rugged, and safe method was introduced in 2003 and coupled with selective and sensitive mass detectors to overcome the aforementioned drawbacks. Compared to traditional detectors, mass spectrometers are still far more expensive and not available in most modestly equipped laboratories, owing to maintenance and cost-related issues. Even available, traditional detectors are still being used for analysis of residues in agricultural commodities. It is widely known that the quick, easy, cheap, effective, rugged, and safe method is incompatible with conventional detectors owing to matrix complexity and low sensitivity. Therefore, modifications using column/cartridge-based solid-phase extraction instead of dispersive solid-phase extraction for cleanup have been applied in most cases to compensate and enable the adaptation of the extraction method to conventional detectors. In gas chromatography, the matrix enhancement effect of some analytes has been observed, which lowers the limit of detection and, therefore, enables gas chromatography to be compatible with the quick, easy, cheap, effective, rugged, and safe extraction method. For liquid chromatography with a UV detector, a combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction was found to reduce the matrix interference and increase the sensitivity. A suitable double-layer column/cartridge-based solid-phase extraction might be the perfect solution, instead of a time-consuming combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction. Therefore, replacing dispersive solid-phase extraction with column/cartridge-based solid-phase extraction in the cleanup step can make the quick, easy, cheap, effective, rugged, and safe extraction method compatible with traditional detectors for more sensitive, effective, and green analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Proton induced target fragmentation studies on solid state nuclear track detectors using Carbon radiators

    NASA Astrophysics Data System (ADS)

    Szabó, J.; Pálfalvi, J. K.; Strádi, A.; Bilski, P.; Swakoń, J.; Stolarczyk, L.

    2018-04-01

    One of the limiting factors of an astronaut's career is the dose received from space radiation. High energy protons, being the main components of the complex radiation field present on a spacecraft, give a significant contribution to the dose. To investigate the behavior of solid state nuclear track detectors (SSNTDs) if they are irradiated by such particles, SSNTD stacks containing carbon blocks were exposed to high energy proton beams (70, 100, 150 and 230 MeV) at the Proteus cyclotron, IFJ PAN -Krakow. The incident protons cannot be detected directly; however, tracks of secondary particles, recoils and fragments of the constituent atoms of the detector material and of the carbon radiator are formed. It was found that as the proton energy increases, the number of tracks induced in the PADC material by secondary particles decreases. From the measured geometrical parameters of the tracks the linear energy transfer (LET) spectrum and the dosimetric quantities were determined, applying appropriate calibration. In the LET spectra the LET range of the most important secondary particles could be identified and their abundance showed differences in the spectra if the detectors were short or long etched. The LET spectra obtained on the SSNTDs irradiated by protons were compared to LET spectra of detectors flown on the International Space Station (ISS): they were quite similar, resulting in a quality factor difference of only 5%. Thermoluminescent detectors (TLDs) were applied in each case to measure the dose from primary protons and other lower LET particles present in space. Comparing and analyzing the results of the TLD and SSNTD measurements, it was obtained that proton induced target fragments contributed to the total absorbed dose in 3.2% and to the dose equivalent in 14.2% in this particular space experiment.

  20. Air Pollution Monitoring and Use of Nanotechnology Based Solid State Gas Sensors in Greater Cairo Area, Egypt

    NASA Astrophysics Data System (ADS)

    Ramadan, A. B. A.

    Air pollution is a serious problem in thickly populated and industrialized areas in Egypt, especially in greater Cairo area. Economic growth and industrialization are proceeding at a rapid pace, accompanied by increasing emissions of air polluting sources. Furthermore, though the variety and quantities of polluting sources have increased dramatically, the development of a suitable method for monitoring the pollution causing sources has not followed at the same pace. Environmental impacts of air pollutants have impact on public health, vegetation, material deterioration etc. To prevent or minimize the damage caused by atmospheric pollution, suitable monitoring systems are urgently needed that can rapidly and reliably detect and quantify polluting sources for monitoring by regulating authorities in order to prevent further deterioration of the current pollution levels. Consequently, it is important that the current real-time air quality monitoring system, controlled by the Egyptian Environmental Affairs Agency (EEAA), should be adapted or extended to aid in alleviating this problem. Nanotechnology has been applied to several industrial and domestic fields, for example, applications for gas monitoring systems, gas leak detectors in factories, fire and toxic gas detectors, ventilation control, breath alcohol detectors, and the like. Here we report an application example of studying air quality monitoring based on nanotechnology `solid state gas sensors'. So as to carry out air pollution monitoring over an extensive area, a combination of ground measurements through inexpensive sensors and wireless GIS will be used for this purpose. This portable device, comprising solid state gas sensors integrated to a Personal Digital Assistant (PDA) linked through Bluetooth communication tools and Global Positioning System (GPS), will allow rapid dissemination of information on pollution levels at multiple sites simultaneously.

  1. Homogeneity of CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Hermon, H.; Schieber, M.; James, R. B.; Lund, J.; Antolak, A. J.; Morse, D. H.; Kolesnikov, N. N. P.; Ivanov, Y. N.; Goorsky, M. S.; Yoon, H.; Toney, J.; Schlesinger, T. E.

    1998-02-01

    We describe the current state of nuclear radiation detectors produced from single crystals of Cd 1- xZn xTe(CZT), with 0.04 < x < 0.4, grown by the vertical high pressure Bridgman (VHPB) method. The crystals investigated were grown commercially both in the USA and at the Institute of Solid State Physics, Chernogolska, Russia. The CZT was evaluated by Sandia National Laboratories and the UCLA and CMU groups using proton-induced X-ray emission (PIXE), X-ray diffraction (XRD), photoluminescence (PL), infrared (IR) transmission microscopy, leakage current measurements and response to nuclear radiation. We discuss the homogeneity of the various CZT crystals based on the results from these measurement techniques.

  2. SoLid Detector Technology

    NASA Astrophysics Data System (ADS)

    Labare, Mathieu

    2017-09-01

    SoLid is a reactor anti-neutrino experiment where a novel detector is deployed at a minimum distance of 5.5 m from a nuclear reactor core. The purpose of the experiment is three-fold: to search for neutrino oscillations at a very short baseline; to measure the pure 235U neutrino energy spectrum; and to demonstrate the feasibility of neutrino detectors for reactor monitoring. This report presents the unique features of the SoLid detector technology. The technology has been optimised for a high background environment resulting from low overburden and the vicinity of a nuclear reactor. The versatility of the detector technology is demonstrated with a 288 kg detector prototype which was deployed at the BR2 nuclear reactor in 2015. The data presented includes both reactor on, reactor off and calibration measurements. The measurement results are compared with Monte Carlo simulations. The 1.6t SoLid detector is currently under construction, with an optimised design and upgraded material technology to enhance the detector capabilities. Its deployement on site is planned for the begin of 2017 and offers the prospect to resolve the reactor anomaly within about two years.

  3. High-fidelity frequency down-conversion of visible entangled photon pairs with superconducting single-photon detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikuta, Rikizo; Kato, Hiroshi; Kusaka, Yoshiaki

    We experimentally demonstrate a high-fidelity visible-to-telecommunicationwavelength conversion of a photon by using a solid-state-based difference frequency generation. In the experiment, one half of a pico-second visible entangled photon pair at 780 nm is converted to a 1522-nm photon. Using superconducting single-photon detectors with low dark count rates and small timing jitters, we observed a fidelity of 0.93±0.04 after the wavelength conversion.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacheco, J. L.; Singh, M.; Perry, D. L.

    Here, we demonstrate a capability of deterministic doping at the single atom level using a combination of direct write focused ion beam and solid-state ion detectors. The focused ion beam system can position a single ion to within 35 nm of a targeted location and the detection system is sensitive to single low energy heavy ions. This platform can be used to deterministically fabricate single atom devices in materials where the nanostructure and ion detectors can be integrated, including donor-based qubits in Si and color centers in diamond.

  5. Solid State Radiation Dosimeters for Space and Medical Applications

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Editor)

    1996-01-01

    This report describes the development of two radiation monitors (RADMON's) for use in detecting total radiation dose and high-energy particles. These radiation detectors are chip-size devices fabricated in 1.2 micrometer CMOS and have flown in space on both experimental and commercial spacecraft. They have been used to characterize protons and electrons in the Earth's radiation belts, particles from the Sun, and protons used for medical therapy. Having proven useful in a variety of applications, the detector is now being readied for commercialization.

  6. DANSSino: a pilot version of the DANSS neutrino detector

    NASA Astrophysics Data System (ADS)

    Alekseev, I.; Belov, V.; Brudanin, V.; Danilov, M.; Egorov, V.; Filosofov, D.; Fomina, M.; Hons, Z.; Kobyakin, A.; Medvedev, D.; Mizuk, R.; Novikov, E.; Olshevsky, A.; Rozov, S.; Rumyantseva, N.; Rusinov, V.; Salamatin, A.; Shevchik, Ye.; Shirchenko, M.; Shitov, Yu.; Starostin, A.; Svirida, D.; Tarkovsky, E.; Tikhomirov, I.; Yakushev, E.; Zhitnikov, I.; Zinatulina, D.

    2014-07-01

    DANSSino is a reduced pilot version of a solid-state detector of reactor antineutrinos (to be created within the DANSS project and installed under the industrial 3 GWth reactor of the Kalinin Nuclear Power Plant—KNPP). Numerous tests performed at a distance of 11 m from the reactor core demonstrate operability of the chosen design and reveal the main sources of the background. In spite of its small size (20 × 20 × 100 cm3), the pilot detector turned out to be quite sensitive to reactor antineutrinos, detecting about 70 IBD events per day with the signal-to-background ratio about unity.

  7. Multispectral Linear Array detector technology

    NASA Astrophysics Data System (ADS)

    Tower, J. R.; McCarthy, B. M.; Pellon, L. E.; Strong, R. T.; Elabd, H.

    1984-01-01

    The Multispectral Linear Array (MLA) program sponsored by NASA has the aim to extend space-based remote sensor capabilities. The technology development effort involves the realization of very large, all-solid-state, pushbroom focal planes. The pushbroom, staring focal planes will contain thousands of detectors with the objective to provide two orders of magnitude improvement in detector dwell time compared to present Landsat mechanically scanned systems. Attenton is given to visible and near-infrared sensor development, the shortwave infrared sensor, aspects of filter technology development, the packaging concept, and questions of system performance. First-sample, four-band interference filters have been fabricated successfully, and a hybrid packaging technology is being developed.

  8. The DUV Stability of Superlattice-Doped CMOS Detector Arrays

    NASA Technical Reports Server (NTRS)

    Hoenk, M. E.; Carver, A. G.; Jones, T.; Dickie, M.; Cheng, P.; Greer, H. F.; Nikzad, S.; Sgro, J.; Tsur, S.

    2013-01-01

    JPL and Alacron have recently developed a high performance, DUV camera with a superlattice doped CMOS imaging detector. Supperlattice doped detectors achieve nearly 100% internal quantum efficiency in the deep and far ultraviolet, and a single layer, Al2O3 antireflection coating enables 64% external quantum efficiency at 263nm. In lifetime tests performed at Applied Materials using 263 nm pulsed, solid state and 193 nm pulsed excimer laser, the quantum efficiency and dark current of the JPL/Alacron camera remained stable to better than 1% precision during long-term exposure to several billion laser pulses, with no measurable degradation, no blooming and no image memory at 1000 fps.

  9. Actively driven thermal radiation shield

    DOEpatents

    Madden, Norman W.; Cork, Christopher P.; Becker, John A.; Knapp, David A.

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  10. Wide-Angle, Flat-Field Telescope

    NASA Technical Reports Server (NTRS)

    Hallam, K. L.; Howell, B. J.; Wilson, M. E.

    1987-01-01

    All-reflective system unvignetted. Wide-angle telescope uses unobstructed reflecting elements to produce flat image. No refracting elements, no chromatic aberration, and telescope operates over spectral range from infrared to far ultraviolet. Telescope used with such image detectors as photographic firm, vidicons, and solid-state image arrays.

  11. Compact endocavity diagnostic probes for nuclear radiation detection

    DOEpatents

    Cui, Yonggang; James, Ralph; Bolotnikov, Aleksey

    2014-08-26

    This invention relates to the field of radiation imaging. In particular, the invention relates to an apparatus and a method for imaging tissue or an inanimate object using a novel probe that has an integrated solid-state semiconductor detector and complete readout electronics circuitry.

  12. Solid State pH Sensor Based on Light Emitting Diodes (LED) As Detector Platform

    PubMed Central

    Lau, King Tong; Shepherd, R.; Diamond, Danny; Diamond, Dermot

    2006-01-01

    A low-power, high sensitivity, very low-cost light emitting diode (LED)-based device developed for low-cost sensor networks was modified with bromocresol green membrane to work as a solid-state pH sensor. In this approach, a reverse-biased LED functioning as a photodiode is coupled with a second LED configured in conventional emission mode. A simple timer circuit measures how long (in microsecond) it takes for the photocurrent generated on the detector LED to discharge its capacitance from logic 1 (+5 V) to logic 0 (+1.7 V). The entire instrument provides an inherently digital output of light intensity measurements for a few cents. A light dependent resistor (LDR) modified with similar sensor membrane was also used as a comparison method. Both the LED sensor and the LDR sensor responded to various pH buffer solutions in a similar way to obtain sigmoidal curves expected of the dye. The pKa value obtained for the sensors was found to agree with the literature value.

  13. Soil gas radon-thoron monitoring in Dharamsala area of north-west Himalayas, India using solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Kumar, Gulshan; Kumar, Arvind; Walia, Vivek; Kumar, Jitender; Gupta, Vikash; Yang, Tsanyao Frank; Singh, Surinder; Bajwa, Bikramjit Singh

    2013-10-01

    The study described here is based on the measurements of soil gas radon-thoron concentrations performed at Dharamsala region of north-west (NW) Himalayas, India. The study area is tectonically and environmentally significant and shows the features of ductile shear zone due to the presence of distinct thrust planes. Solid state nuclear track detectors (LR-115 films) have been used for the soil gas radon-thoron monitoring. Twenty five radon-thoron discriminators with LR-115 films were installed in the borehole of about 50 cm in the study areas. The recorded radon concentration varies from 1593 to 13570 Bq/m3 with an average value of 5292 Bq/m3. The recorded thoron concentration varies from 223 to 2920 Bq/m3 with an average value of 901 Bq/m3. The anomalous value of radon-thoron has been observed near to the faults like main boundary thrust (MBT and MBT2) as well as neotectonic lineaments in the region.

  14. Diagnostics of ion beam generated from a Mather type plasma focus device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, L. K., E-mail: yapsl@um.edu.my; Ngoi, S. K., E-mail: yapsl@um.edu.my; Wong, C. S., E-mail: yapsl@um.edu.my

    Diagnostics of ion beam emission from a 3 kJ Mather-type plasma focus device have been performed for deuterium discharge at low pressure regime. Deuterium plasma focus was found to be optimum at pressure of 0.2 mbar. The energy spectrum and total number of ions per shot from the pulsed ion beam are determined by using biased ion collectors, Faraday cup, and solid state nuclear track detector CR-39. Average energy of the ion beam obtained is about 60 keV. Total number of the ions has been determined to be in the order of 10{sup 11} per shot. Solid state nuclear trackmore » detectors (SSNTD) CR39 are employed to measure the particles at all angular direction from end on (0°) to side on (90°). Particle tracks are registered by SSNTD at 30° to 90°, except the one at the end-on 0°.« less

  15. Method for manufacturing solid-state thermal neutron detectors with simultaneous high thermal neutron detection efficiency (>50%) and neutron to gamma discrimination (>1.0E4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolic, Rebecca J.; Conway, Adam M.; Heineck, Daniel

    2013-10-15

    Methods for manufacturing solid-state thermal neutron detectors with simultaneous high thermal neutron detection efficiency (>50%) and neutron to gamma discrimination (>10.sup.4) are provided. A structure is provided that includes a p+ region on a first side of an intrinsic region and an n+ region on a second side of the intrinsic region. The thickness of the intrinsic region is minimized to achieve a desired gamma discrimination factor of at least 1.0E+04. Material is removed from one of the p+ region or the n+ region and into the intrinsic layer to produce pillars with open space between each pillar. The openmore » space is filed with a neutron sensitive material. An electrode is placed in contact with the pillars and another electrode is placed in contact with the side that is opposite of the intrinsic layer with respect to the first electrode.« less

  16. A low-cost miniaturised detector for environmental radioactivity measurements

    NASA Astrophysics Data System (ADS)

    Aplin, Karen; Briggs, Aaron; Hastings, Peter; Harrison, R. Giles; Marlton, Graeme; Baird, Adam

    2017-04-01

    We have developed a low-cost (£ few hundred), low-power (40mA), low-mass (30g) detector for environmental radioactivity measurements, using scintillator and solid state technology. The detector can measure energy and therefore has the capability to distinguish between different types of energetic particle. Results from recent tests, when our detector was integrated with a meteorological radiosonde system, and flew on a balloon up to 25km, identified the transition region between energetic particles near the surface, dominated by terrestrial gamma emissions, and higher-energy particles in the free troposphere from cosmic rays. The detector can be used with Bluetooth technology for remote monitoring, which is particularly useful for hazardous areas. It is also small and cheap enough to be used in sensor networks for a wide range of applications, from atmospheric science to disaster monitoring.

  17. The solid angle (geometry factor) for a spherical surface source and an arbitrary detector aperture

    DOE PAGES

    Favorite, Jeffrey A.

    2016-01-13

    It is proven that the solid angle (or geometry factor, also called the geometrical efficiency) for a spherically symmetric outward-directed surface source with an arbitrary radius and polar angle distribution and an arbitrary detector aperture is equal to the solid angle for an isotropic point source located at the center of the spherical surface source and the same detector aperture.

  18. Simultaneous Tc-99m and I-123 dual-radionuclide imaging with a solid-state detector-based brain-SPECT system and energy-based scatter correction.

    PubMed

    Takeuchi, Wataru; Suzuki, Atsuro; Shiga, Tohru; Kubo, Naoki; Morimoto, Yuichi; Ueno, Yuichiro; Kobashi, Keiji; Umegaki, Kikuo; Tamaki, Nagara

    2016-12-01

    A brain single-photon emission computed tomography (SPECT) system using cadmium telluride (CdTe) solid-state detectors was previously developed. This CdTe-SPECT system is suitable for simultaneous dual-radionuclide imaging due to its fine energy resolution (6.6 %). However, the problems of down-scatter and low-energy tail due to the spectral characteristics of a pixelated solid-state detector should be addressed. The objective of this work was to develop a system for simultaneous Tc-99m and I-123 brain studies and evaluate its accuracy. A scatter correction method using five energy windows (FiveEWs) was developed. The windows are Tc-lower, Tc-main, shared sub-window of Tc-upper and I-lower, I-main, and I-upper. This FiveEW method uses pre-measured responses for primary gamma rays from each radionuclide to compensate for the overestimation of scatter by the triple-energy window method that is used. Two phantom experiments and a healthy volunteer experiment were conducted using the CdTe-SPECT system. A cylindrical phantom and a six-compartment phantom with five different mixtures of Tc-99m and I-123 and a cold one were scanned. The quantitative accuracy was evaluated using 18 regions of interest for each phantom. In the volunteer study, five healthy volunteers were injected with Tc-99m human serum albumin diethylene triamine pentaacetic acid (HSA-D) and scanned (single acquisition). They were then injected with I-123 N-isopropyl-4-iodoamphetamine hydrochloride (IMP) and scanned again (dual acquisition). The counts of the Tc-99m images for the single and dual acquisitions were compared. In the cylindrical phantom experiments, the percentage difference (PD) between the single and dual acquisitions was 5.7 ± 4.0 % (mean ± standard deviation). In the six-compartment phantom experiment, the PDs between measured and injected activity for Tc-99m and I-123 were 14.4 ± 11.0 and 2.3 ± 1.8 %, respectively. In the volunteer study, the PD between the single and dual acquisitions was 4.5 ± 3.4 %. This CdTe-SPECT system using the FiveEW method can provide accurate simultaneous dual-radionuclide imaging. A solid-state detector SPECT system using the FiveEW method will permit quantitative simultaneous Tc-99m and I-123 study to become clinically applicable.

  19. A study of pile-up in integrated time-correlated single photon counting systems

    NASA Astrophysics Data System (ADS)

    Arlt, Jochen; Tyndall, David; Rae, Bruce R.; Li, David D.-U.; Richardson, Justin A.; Henderson, Robert K.

    2013-10-01

    Recent demonstration of highly integrated, solid-state, time-correlated single photon counting (TCSPC) systems in CMOS technology is set to provide significant increases in performance over existing bulky, expensive hardware. Arrays of single photon single photon avalanche diode (SPAD) detectors, timing channels, and signal processing can be integrated on a single silicon chip with a degree of parallelism and computational speed that is unattainable by discrete photomultiplier tube and photon counting card solutions. New multi-channel, multi-detector TCSPC sensor architectures with greatly enhanced throughput due to minimal detector transit (dead) time or timing channel dead time are now feasible. In this paper, we study the potential for future integrated, solid-state TCSPC sensors to exceed the photon pile-up limit through analytic formula and simulation. The results are validated using a 10% fill factor SPAD array and an 8-channel, 52 ps resolution time-to-digital conversion architecture with embedded lifetime estimation. It is demonstrated that pile-up insensitive acquisition is attainable at greater than 10 times the pulse repetition rate providing over 60 dB of extended dynamic range to the TCSPC technique. Our results predict future CMOS TCSPC sensors capable of live-cell transient observations in confocal scanning microscopy, improved resolution of near-infrared optical tomography systems, and fluorescence lifetime activated cell sorting.

  20. A study of pile-up in integrated time-correlated single photon counting systems.

    PubMed

    Arlt, Jochen; Tyndall, David; Rae, Bruce R; Li, David D-U; Richardson, Justin A; Henderson, Robert K

    2013-10-01

    Recent demonstration of highly integrated, solid-state, time-correlated single photon counting (TCSPC) systems in CMOS technology is set to provide significant increases in performance over existing bulky, expensive hardware. Arrays of single photon single photon avalanche diode (SPAD) detectors, timing channels, and signal processing can be integrated on a single silicon chip with a degree of parallelism and computational speed that is unattainable by discrete photomultiplier tube and photon counting card solutions. New multi-channel, multi-detector TCSPC sensor architectures with greatly enhanced throughput due to minimal detector transit (dead) time or timing channel dead time are now feasible. In this paper, we study the potential for future integrated, solid-state TCSPC sensors to exceed the photon pile-up limit through analytic formula and simulation. The results are validated using a 10% fill factor SPAD array and an 8-channel, 52 ps resolution time-to-digital conversion architecture with embedded lifetime estimation. It is demonstrated that pile-up insensitive acquisition is attainable at greater than 10 times the pulse repetition rate providing over 60 dB of extended dynamic range to the TCSPC technique. Our results predict future CMOS TCSPC sensors capable of live-cell transient observations in confocal scanning microscopy, improved resolution of near-infrared optical tomography systems, and fluorescence lifetime activated cell sorting.

  1. Large angle solid state position sensitive x-ray detector system

    DOEpatents

    Kurtz, D.S.; Ruud, C.O.

    1998-03-03

    A method and apparatus for x-ray measurement of certain properties of a solid material are disclosed. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.

  2. Large angle solid state position sensitive x-ray detector system

    DOEpatents

    Kurtz, D.S.; Ruud, C.O.

    1998-07-21

    A method and apparatus are disclosed for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.

  3. One Step Combustion Synthesis Of YAG:Ce Phosphor For Solid State Lighting

    NASA Astrophysics Data System (ADS)

    Yadav, Pooja; Gupta, K. Vijay Kumar; Muley, Aarti; Joshi, C. P.; Moharil, S. V.

    2011-10-01

    YAG:Ce is an important phosphor having applications in various fields ranging from solid state lighting to scintillation detectors. YAG phosphors doped with activators are mainly synthesized by solid state reaction techniques that require high sintering temperatures (above 1500°C) to eliminate YAM and YAP phases. Though several soft chemical routes have been explored for synthesis of YAG, most of these methods are complex and phase pure materials are not obtained in one step, but prolonged annealing at temperatures around 1000 C or above becomes necessary. One step combustion synthesis of YAG:Ce3+ and related phosphors carried out at 500 C furnace temperature is reported here. Activation with Ce3+ could be achieved during the synthesis without taking recourse to any post-combustion thermal treatment. LEDs prepared from the combustion synthesized YAG:Ce3+, exhibited properties comparable to those produced from the commercial phosphor.

  4. Portable, solid state, fiber optic coupled Doppler interferometer system for detonation and shock diagnostics

    NASA Technical Reports Server (NTRS)

    Fleming, K. J.; Crump, O. B.

    1994-01-01

    VISAR (Velocity Interferometer System for Any Reflector) is a specialized Doppler interferometer system that is gaining world-wide acceptance as the standard for shock phenomena analysis. The VISAR's large power and cooling requirements, and the sensitive and complex nature of the interferometer cavity have restricted the traditional system to the laboratory. This paper describes the new portable VISAR, its peripheral sensors, and the role it played in optically measuring ground shock of and underground nuclear detonation. The Solid State VISAR uses a prototype diode pumped Nd:YAG laser and solid state detectors that provide a suitcase-size system with low power requirements. A special window and sensors were developed for fiber optic coupling (1 kilometer long) to the VISAR. The system has proven itself as a reliable, easy to use instrument that is capable of field test use and rapid data reduction using only a notebook personal computer (PC).

  5. Calibration methods for explosives detectors

    NASA Astrophysics Data System (ADS)

    MacDonald, Stephen J.; Rounbehler, David P.

    1992-05-01

    Airport security has become an important concern to cultures in every corner of the world. Presently, efforts to improve airport security have brought additional technological solutions, in the form of advanced instrumentation for the detection of explosives, into use at airport terminals in many countries. This new generation of explosives detectors is often used to augment existing security measures and provide a more encompassing screening capability for airline passengers. This paper describes two calibration procedures used for the Thermedics' EGIS explosives detectors. The systems were designed to screen people, electronic components, luggage, automobiles, and other objects for the presence of concealed explosives. The detectors have the ability to detect a wide range of explosives in both the vapor state or as surface adsorbed solids, therefore, calibrations were designed to challenge the system with explosives in each form.

  6. Demonstrating the Light-Emitting Diode.

    ERIC Educational Resources Information Center

    Johnson, David A.

    1995-01-01

    Describes a simple inexpensive circuit which can be used to quickly demonstrate the basic function and versatility of the solid state diode. Can be used to demonstrate the light-emitting diode (LED) as a light emitter, temperature sensor, light detector with both a linear and logarithmic response, and charge storage device. (JRH)

  7. Solid State Recrystallization of Single Crystal Ce:LSO Scintillator Crystals for High Resolution Detectors

    DTIC Science & Technology

    2012-06-01

    this report. The property measurements that have been focused on were the assessment of density ( Archimedes ). grain structure {optical and SEM...Scintillator", Materials Letters 60 1960-1963 (2006) [15] J.S. Reed, Forming Processes, Chapter 20 in Introduction to the Principles of Ceramic

  8. The robot's eyes - Stereo vision system for automated scene analysis

    NASA Technical Reports Server (NTRS)

    Williams, D. S.

    1977-01-01

    Attention is given to the robot stereo vision system which maintains the image produced by solid-state detector television cameras in a dynamic random access memory called RAPID. The imaging hardware consists of sensors (two solid-state image arrays using a charge injection technique), a video-rate analog-to-digital converter, the RAPID memory, and various types of computer-controlled displays, and preprocessing equipment (for reflexive actions, processing aids, and object detection). The software is aimed at locating objects and transversibility. An object-tracking algorithm is discussed and it is noted that tracking speed is in the 50-75 pixels/s range.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheuermann, J; Howansky, A; Goldan, A

    Purpose: We present the first active matrix flat panel imager (AMFPI) capable of producing x-ray quantum noise limited images at low doses by overcoming the electronic noise through signal amplification by photoconductive avalanche gain (gav). The indirect detector fabricated uses an optical sensing layer of amorphous selenium (a-Se) known as High-Gain Avalanche Rushing Photoconductor (HARP). The detector design is called Scintillator HARP (SHARP)-AMFPI. This is the first image sensor to utilize solid-state HARP technology. Methods: The detector’s electronic readout is a 24 × 30 cm{sup 2} array of thin film transistors (TFT) with a pixel pitch of 85 µm. Themore » HARP structure consists of a 15 µm layer of a-Se isolated from the high voltage (HV) and signal electrode by a 2 µm thick hole blocking layer and electron blocking layer, respectively, to reduce dark current. A 150 µm thick structured CsI scintillator with reflective backing and a fiber optic faceplate (FOP) was coupled to the semi-transparent HV bias electrode of the HARP structure. Images were acquired using a 30 kVp Mo/Mo spectrum typically used in mammography. Results: Optical sensitivity measurements demonstrate that gav = 76 ± 5 can be achieved over the entire active area of the detector. At a constant dose to the detector of 6.67 µGy, image quality increases with gav until the effective electronic noise is negligible. Quantum noise limited images can be obtained with doses as low as 0.18 µGy. Conclusion: We demonstrate the feasibility of utilizing avalanche gain to overcome electronic noise. The indirect detector fabricated is the first solid-state imaging sensor to use HARP, and the largest active area HARP sensor to date. Our future work is to improve charge transport within the HARP structure and utilize a transparent HV electrode.« less

  10. Rapid total volatile organic carbon quantification from microbial fermentation using a platinum catalyst and proton transfer reaction-mass spectrometry.

    PubMed

    Schoen, Heidi R; Peyton, Brent M; Knighton, W Berk

    2016-12-01

    A novel analytical system was developed to rapidly and accurately quantify total volatile organic compound (VOC) production from microbial reactor systems using a platinum catalyst and a sensitive CO 2 detector. This system allows nearly instantaneous determination of total VOC production by utilizing a platinum catalyst to completely and quantitatively oxidize headspace VOCs to CO 2 in coordination with a CO 2 detector. Measurement of respiratory CO 2 by bypassing the catalyst allowed the total VOC content to be determined from the difference in the two signals. To the best of our knowledge, this is the first instance of a platinum catalyst and CO 2 detector being used to quantify the total VOCs produced by a complex bioreactor system. Continuous recording of these CO 2 data provided a record of respiration and total VOC production throughout the experiments. Proton transfer reaction-mass spectrometry (PTR-MS) was used to identify and quantify major VOCs. The sum of the individual compounds measured by PTR-MS can be compared to the total VOCs quantified by the platinum catalyst to identify potential differences in detection, identification and calibration. PTR-MS measurements accounted on average for 94 % of the total VOC carbon detected by the platinum catalyst and CO 2 detector. In a model system, a VOC producing endophytic fungus Nodulisporium isolate TI-13 was grown in a solid state reactor utilizing the agricultural byproduct beet pulp as a substrate. Temporal changes in production of major volatile compounds (ethanol, methanol, acetaldehyde, terpenes, and terpenoids) were quantified by PTR-MS and compared to the total VOC measurements taken with the platinum catalyst and CO 2 detector. This analytical system provided fast, consistent data for evaluating VOC production in the nonhomogeneous solid state reactor system.

  11. SiC As An Energetic Particle Detector

    NASA Technical Reports Server (NTRS)

    Yan, F.; Hicks, J.; Shappirio, Mark D.; Brown, S.; Smith, C.; Xin, X.; Zhao, J. H.

    2005-01-01

    Several new technologies have been introduced recently in the region of semiconductor material for solid state detectors (SSD). Of particular interest is silicon carbide (SIC) since its band gap is larger than that of pure silicon, reducing its dark current and making SIC capable of operating at high temperatures and more tolerant of radiation damage. But the trade off is that a higher band gap also means fewer electron hole pairs generated, and thus a smaller signal, for detecting incident radiation. To determine what the lower limit of SiC detectors to energetic particles is, we irradiated a SiC diode with particles ranging in energy from 50 keV to 1.6 MeV and masses from 1 to 16 amu. We found that the SiC detectors sensitivity was comparable to that of pure silicon, with the SiC detector being able to measure particles down to 50 keV/amu and possibly lower.

  12. Si and GaAs photocapacitive MIS infrared detectors

    NASA Technical Reports Server (NTRS)

    Sher, A.; Tsuo, Y. H.; Moriarty, J. A.; Miller, W. E.; Crouch, R. K.

    1980-01-01

    Improvement of the previously reported photocapacitive MIS infrared detectors has led to the development of exceptional room-temperature devices. Unoptimized peak detectivities on the order of 10 to the 13th cm sq rt Hz/W, a value which exceeds the best obtainable from existing solid-state detectors, have now been consistently obtained in Si and GaAs devices using high-capacitance LaF3 or composite LaF3/native-oxide insulating layers. The measured spectral response of representative samples is presented and discussed in detail together with a simple theory which accounts for the observed behavior. The response of an ideal MIS photocapacitor is also contrasted with that of both a conventional photoconductor and a p-i-n photodiode, and reasons for the superior performance of the MIS detectors are given. Finally, fundamental studies on the electrical, optical, and noise characteristics of the MIS structures are analyzed and discussed in the context of infrared-detector applications.

  13. Survey of hydrogen monitoring devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, W.

    Presented are results of a survey of commercially available monitoring devices suitable for hydrogen detection in the secondary containment vessel of a nuclear power plant during the post postulated accident period. Available detectors were grouped into the following five classes: combustion, solid state, electrochemical, thermal conductivity, and absorption. The performance of most available sensors is likely to deteriorate when exposed to the postulated conditions which include moisture, which could be at high temperature, and radioactive noncondensibles. Of the commercial devices, those using metallic filament thermal conductivity detectors seem least susceptible to performance change. Absorption detectors are best suited for thismore » monitoring task but the only available device is designed for pipeline corrosion assessment. Initiation of experimental study to assess apparent deficiencies of commercial detectors is recommended. Also recommended is an analytical/experimental effort to determine the optimum detector array for monitoring in the secondary containment vessels.« less

  14. Registration of reactor neutrinos with the highly segmented plastic scintillator detector DANSSino

    NASA Astrophysics Data System (ADS)

    Belov, V.; Brudanin, V.; Danilov, M.; Egorov, V.; Fomina, M.; Kobyakin, A.; Rusinov, V.; Shirchenko, M.; Shitov, Yu; Starostin, A.; Zhitnikov, I.

    2013-05-01

    DANSSino is a simplified pilot version of a solid-state detector of reactor antineutrino (it is being created within the DANSS project and will be installed close to an industrial nuclear power reactor). Numerous tests performed under a 3 GWth reactor of the Kalinin NPP at a distance of 11 m from the core demonstrate operability of the chosen design and reveal the main sources of the background. In spite of its small size (20 × 20 × 100 cm3), the pilot detector turned out to be quite sensitive to reactor neutrinos, detecting about 70 IBD events per day with the signal-to-background ratio about unity.

  15. Electro-optic Lightning Detector

    NASA Technical Reports Server (NTRS)

    Koshak, William J.; Solakiewicz, Richard J.

    1996-01-01

    The design, alignment, calibration, and field deployment of a solid-state lightning detector is described. The primary sensing component of the detector is a potassium dihydrogen phosphate (KDP) electro-optic crystal that is attached in series to a flat plate aluminum antenna; the antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (lambda = 685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration. Lightning-caused electric field changes are related to small changes in the transmission of laser light through the optical cell. Several hundred lightning electric field change excursions were recorded during five thunderstorms that occurred in the summer of 1998 at the NASA Marshall Space Flight Center (MSFC) in northern Alabama.

  16. Electro-Optic Lightning Detector

    NASA Technical Reports Server (NTRS)

    Koshak, Willliam; Solakiewicz, Richard

    1998-01-01

    The design, alignment, calibration, and field deployment of a solid-state lightning detector is described. The primary sensing component of the detector is a potassium dihydrogen phosphate (KDP) electro-optic crystal that is attached in series to a flat plate aluminum antenna; the antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (lambda = 685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration. Lightning-caused electric field changes are then related to small changes in the transmission of laser light through the optical cell. Several hundred lightning electric field change excursions were recorded during 4 thunderstorms that occurred in the summer of 1998 at the NASA Marshall Space Flight Center (MSFC) in Northern Alabama.

  17. Electro-Optic Lighting Detector

    NASA Technical Reports Server (NTRS)

    Koshak, William J.; Solakiewicz, Richard J.

    1999-01-01

    The design, alignment, calibration, and field deployment of a solid-state lightning detector is described. The primary sensing component of the detector is a potassium dihydrogen phosphate electro-optic crystal that is attached in series to a flat-plate aluminum antenna; the antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (lambda = 685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration. Lightning-caused electric field changes are related to small changes in the transmission of laser light through the optical cell. Several hundred lightning electric field change excursions were recorded during five thunderstorms that occurred in the summer of 1998 at the NASA Marshall Space Flight Center in northern Alabama.

  18. Ion implantation for deterministic single atom devices

    NASA Astrophysics Data System (ADS)

    Pacheco, J. L.; Singh, M.; Perry, D. L.; Wendt, J. R.; Ten Eyck, G.; Manginell, R. P.; Pluym, T.; Luhman, D. R.; Lilly, M. P.; Carroll, M. S.; Bielejec, E.

    2017-12-01

    We demonstrate a capability of deterministic doping at the single atom level using a combination of direct write focused ion beam and solid-state ion detectors. The focused ion beam system can position a single ion to within 35 nm of a targeted location and the detection system is sensitive to single low energy heavy ions. This platform can be used to deterministically fabricate single atom devices in materials where the nanostructure and ion detectors can be integrated, including donor-based qubits in Si and color centers in diamond.

  19. Ion implantation for deterministic single atom devices

    DOE PAGES

    Pacheco, J. L.; Singh, M.; Perry, D. L.; ...

    2017-12-04

    Here, we demonstrate a capability of deterministic doping at the single atom level using a combination of direct write focused ion beam and solid-state ion detectors. The focused ion beam system can position a single ion to within 35 nm of a targeted location and the detection system is sensitive to single low energy heavy ions. This platform can be used to deterministically fabricate single atom devices in materials where the nanostructure and ion detectors can be integrated, including donor-based qubits in Si and color centers in diamond.

  20. Optimization and Characterization of a Novel Self Powered Solid State Neutron Detector

    NASA Astrophysics Data System (ADS)

    Clinton, Justin

    There is a strong interest in detecting both the diversion of special nuclear material (SNM) from legitimate, peaceful purposes and the transport of illicit SNM across domestic and international borders and ports. A simple solid-state detector employs a planar solar-cell type p-n junction and a thin conversion layer that converts incident neutrons into detectable charged particles, such as protons, alpha-particles, and heavier ions. Although simple planar devices can act as highly portable, low cost detectors, they have historically been limited to relatively low detection efficiencies; ˜10% and ˜0.2% for thermal and fast detectors, respectively. To increase intrinsic detection efficiency, the incorporation of 3D microstructures into p-i-n silicon devices was proposed. In this research, a combination of existing and new types of detector microstructures were investigated; Monte Carlo models, based on analytical calculations, were constructed and characterized using the GEANT4 simulation toolkit. The simulation output revealed that an array of etched hexagonal holes arranged in a honeycomb pattern and filled with either enriched (99% 10B) boron or parylene resulted in the highest intrinsic detection efficiencies of 48% and 0.88% for thermal and fast neutrons, respectively. The optimal parameters corresponding to each model were utilized as the basis for the fabrication of several prototype detectors. A calibrated 252Cf spontaneous fission source was utilized to generate fast neutrons, while thermal neutrons were created by placing the 252Cf in an HDPE housing designed and optimized using the MCNP simulation software. Upon construction, thermal neutron calibration was performed via activation analysis of gold foils and measurements from a 6Li loaded glass scintillator. Experimental testing of the prototype detectors resulted in maximum intrinsic efficiencies of 4.5 and 0.12% for the thermal and fast devices, respectively. The prototype thermal device was filled with natural (19% 10B) boron; scaling the response to 99% 10B enriched boron resulted in an intrinsic efficiency of 22.5%, one of the highest results in the literature. A comparison of simulated and experimental detector responses demonstrated a high degree of correlation, validating the conceptual models.

  1. Spatial response of synthetic microDiamond and diode detectors measured with kilovoltage synchrotron radiation.

    PubMed

    Butler, Duncan J; Beveridge, Toby; Lehmann, Joerg; Oliver, Christopher P; Stevenson, Andrew W; Livingstone, Jayde

    2018-02-01

    To map the spatial response of four solid-state radiation detectors of types commonly used for radiotherapy dosimetry. PTW model 60016 Diode P, 60017 Diode E, 60018 Diode SRS, and 60019 microDiamond detectors were radiographed using a high resolution conventional X-ray system. Their spatial response was then investigated using a 0.1 mm diameter beam of 95 keV average energy photons generated by a synchrotron. The detectors were scanned through the beam while their signal was recorded as a function of position, to map the response. These 2D response maps were created in both the end-on and side-on orientations. The results show the location and size of the active region. End-on, the active area was determined to be centrally located and within 0.2 mm of the manufacturer's specified diameter. The active areas of the 60016 Diode P, 60017 Diode E, 60018 Diode SRS detectors are uniform to within approximately 5%. The 60019 microDiamond showed local variations up to 30%. The extra-cameral signal in the microDiamond was calculated from the side-on scan to be approximately 8% of the signal from the active element. The spatial response of four solid-state detectors has been measured. The technique yielded information about the location and uniformity of the active area, and the extra-cameral signal, for the beam quality used. © 2017 Commonwealth of Australia. Medical Physics © 2017 American Association of Physicists in Medicine. This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced without prior written permission. Requests and enquiries concerning reproduction and rights should be directed in the first instance to John Wiley & Sons Ltd of The Atrium, Southern Gate, Chichester, West Sussex P019 8SQ UNITED KINGDOM; alternatively to ARPANSA.

  2. Surface dose measurements with commonly used detectors: a consistent thickness correction method.

    PubMed

    Reynolds, Tatsiana A; Higgins, Patrick

    2015-09-08

    The purpose of this study was to review application of a consistent correction method for the solid state detectors, such as thermoluminescent dosimeters (chips (cTLD) and powder (pTLD)), optically stimulated detectors (both closed (OSL) and open (eOSL)), and radiochromic (EBT2) and radiographic (EDR2) films. In addition, to compare measured surface dose using an extrapolation ionization chamber (PTW 30-360) with other parallel plate chambers RMI-449 (Attix), Capintec PS-033, PTW 30-329 (Markus) and Memorial. Measurements of surface dose for 6MV photons with parallel plate chambers were used to establish a baseline. cTLD, OSLs, EDR2, and EBT2 measurements were corrected using a method which involved irradiation of three dosimeter stacks, followed by linear extrapolation of individual dosimeter measurements to zero thickness. We determined the magnitude of correction for each detector and compared our results against an alternative correction method based on effective thickness. All uncorrected surface dose measurements exhibited overresponse, compared with the extrapolation chamber data, except for the Attix chamber. The closest match was obtained with the Attix chamber (-0.1%), followed by pTLD (0.5%), Capintec (4.5%), Memorial (7.3%), Markus (10%), cTLD (11.8%), eOSL (12.8%), EBT2 (14%), EDR2 (14.8%), and OSL (26%). Application of published ionization chamber corrections brought all the parallel plate results to within 1% of the extrapolation chamber. The extrapolation method corrected all solid-state detector results to within 2% of baseline, except the OSLs. Extrapolation of dose using a simple three-detector stack has been demonstrated to provide thickness corrections for cTLD, eOSLs, EBT2, and EDR2 which can then be used for surface dose measurements. Standard OSLs are not recommended for surface dose measurement. The effective thickness method suffers from the subjectivity inherent in the inclusion of measured percentage depth-dose curves and is not recommended for these types of measurements.

  3. The Goals and Status of SoLid Experiment

    NASA Astrophysics Data System (ADS)

    Park, Jaewon

    2016-09-01

    SoLid is a short baseline sterile neutrino oscillation search experiment using the BR2 compact core reactor in Belgium. Ruling out or confirming sterile neutrino is one of main interests in the neutrino physics field. Highly segmented scintillator cube detector with 6LiF:ZnS(Ag) neutron screen provides high purity neutron tagging by pulse shape discrimination (PSD), and capture position identification. These capabilities from this novel detector are critical to isolate neutrino interactions in a high background environment. The prototype detector (SM1) provides important feedback for validating the performance of the detector design. Recent results from SM1 will be presented. Construction of the SoLid Phase-1 detector is underway. The three-ton detector with three years running will allow us to reach the sterile neutrino exclusion limit of sin2 2 θ < 0 . 03 at Δm2 2eV2 at the 99% confidence level.

  4. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits.

    PubMed

    Aull, Brian

    2016-04-08

    This article reviews MIT Lincoln Laboratory's work over the past 20 years to develop photon-sensitive image sensors based on arrays of silicon Geiger-mode avalanche photodiodes. Integration of these detectors to all-digital CMOS readout circuits enable exquisitely sensitive solid-state imagers for lidar, wavefront sensing, and passive imaging.

  5. Heliosphere Instrument for Spectra, Composition and Anisotropy at Low Energies

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Gold, R. E.; Anderson, K. A.; Armstrong, T. P.; Lin, R. P.; Krimigis, S. M.; Pick, M.; Roelof, E. C.; Sarris, E. T.; Simnett, G. M.

    1992-01-01

    The Heliosphere Instrument for Spectra, Composition, and Anisotropy at Low Energies (HI-SCALE) is designed to make measurements of interplanetary ions and electrons throughout the entire Ulysses mission. The ions (E(i) greater than about 50 keV) and electrons (E(e) greater than about 30 keV) are identified uniquely and detected by five separate solid-state detector telescopes that are oriented to give nearly complete pitch-angle coverage from the spinning spacecraft. Ion elemental abundances are determined by Delta E vs E telescope using a thin (5 microns) front solid state detector element in a three-element telescope. Experimental operation is controlled by a microprocessor-based data system. Inflight calibration is provided by radioactive sources mounted on telescope covers which can be closed for calibration purposes and for radiation protection during the course of the mission. Ion and electron spectral information is determined using both broad-energy-range rate channels and a 32 channel pulse-height analyzer for more detailed spectra. Some initial in-ecliptic measurements are presented which demonstrate the features of the instrument.

  6. The physics of solid-state neutron detector materials and geometries.

    PubMed

    Caruso, A N

    2010-11-10

    Detection of neutrons, at high total efficiency, with greater resolution in kinetic energy, time and/or real-space position, is fundamental to the advance of subfields within nuclear medicine, high-energy physics, non-proliferation of special nuclear materials, astrophysics, structural biology and chemistry, magnetism and nuclear energy. Clever indirect-conversion geometries, interaction/transport calculations and modern processing methods for silicon and gallium arsenide allow for the realization of moderate- to high-efficiency neutron detectors as a result of low defect concentrations, tuned reaction product ranges, enhanced effective omnidirectional cross sections and reduced electron-hole pair recombination from more physically abrupt and electronically engineered interfaces. Conversely, semiconductors with high neutron cross sections and unique transduction mechanisms capable of achieving very high total efficiency are gaining greater recognition despite the relative immaturity of their growth, lithographic processing and electronic structure understanding. This review focuses on advances and challenges in charged-particle-based device geometries, materials and associated mechanisms for direct and indirect transduction of thermal to fast neutrons within the context of application. Calorimetry- and radioluminescence-based intermediate processes in the solid state are not included.

  7. A review of the development of portable laser induced breakdown spectroscopy and its applications

    NASA Astrophysics Data System (ADS)

    Rakovský, J.; Čermák, P.; Musset, O.; Veis, P.

    2014-11-01

    In this review, we present person-transportable laser induced breakdown spectroscopy (LIBS) devices that have previously been developed and reported in the literature as well as their applications. They are compared with X-ray fluorescent (XRF) devices, which represent their strongest competition. Although LIBS devices have advantages over XRF devices, such as sensitivity to the light elements, high spatial resolution and the possibility to distinguish between different layers of the sample, there are also disadvantages and both are discussed here. Furthermore, the essential portable LIBS instrumentation (laser, spectrograph and detector) is presented, and published results related to new laser sources (diode-pumped solid-state, microchip and fiber lasers) used in LIBS are overviewed. Compared to conventional compact flashlamp pumped solid-state lasers, the new laser sources provide higher repetition rates, higher efficiency (less power consumption) and higher beam quality, resulting in higher fluences, even for lower energies, and could potentially increase the figure of merit of portable LIBS instruments. Compact spectrometers used in portable LIBS devices and their parts (spectrograph, detector) are also discussed.

  8. Combined, solid-state molecular property and gamma spectrometers for CBRNE detection

    NASA Astrophysics Data System (ADS)

    Rogers, Ben; Grate, Jay; Pearson, Brett; Gallagher, Neal; Wise, Barry; Whitten, Ralph; Adams, Jesse

    2013-05-01

    Nevada Nanotech Systems, Inc. (Nevada Nano) has developed a multi-sensor solution to Chemical, Biological, Radiological, Nuclear and Explosives (CBRNE) detection that combines the Molecular Property Spectrometer™ (MPS™)—a micro-electro-mechanical chip-based technology capable of measuring a variety of thermodynamic and electrostatic molecular properties of sampled vapors and particles—and a compact, high-resolution, solid-state gamma spectrometer module for identifying radioactive materials, including isotopes used in dirty bombs and nuclear weapons. By conducting multiple measurements, the system can provide a more complete characterization of an unknown sample, leading to a more accurate identification. Positive identifications of threats are communicated using an integrated wireless module. Currently, system development is focused on detection of commercial, military and improvised explosives, radioactive materials, and chemical threats. The system can be configured for a variety of CBRNE applications, including handheld wands and swab-type threat detectors requiring short sample times, and ultra-high sensitivity detectors in which longer sampling times are used. Here we provide an overview of the system design and operation and present results from preliminary testing.

  9. Neutron detection devices with 6LiF converter layers

    NASA Astrophysics Data System (ADS)

    Finocchiaro, Paolo; Cosentino, Luigi; Meo, Sergio Lo; Nolte, Ralf; Radeck, Desiree

    2018-01-01

    The demand for new thermal neutron detectors as an alternative to 3He tubes in research, industrial, safety and homeland security applications, is growing. These needs have triggered research and development activities about new generations of thermal neutron detectors, characterized by reasonable efficiency and gamma rejection comparable to 3He tubes. In this paper we show the state of art of a promising lowcost technique, based on commercial solid state silicon detectors coupled with thin neutron converter layers of 6LiF deposited onto carbon fiber substrates. Several configurations were studied with the GEANT4 simulation code, and then calibrated at the PTB Thermal Neutron Calibration Facility. The results show that the measured detection efficiency is well reproduced by the simulations, therefore validating the simulation tool in view of new designs. These neutron detectors have also been tested at neutron beam facilities like ISIS (Rutherford Appleton Laboratory, UK) and n_TOF (CERN) where a few samples are already in operation for beam flux and 2D profile measurements. Forthcoming applications are foreseen for the online monitoring of spent nuclear fuel casks in interim storage sites.

  10. Measuring partial fluorescence yield using filtered detectors.

    PubMed

    Boyko, T D; Green, R J; Moewes, A; Regier, T Z

    2014-07-01

    Typically, X-ray absorption near-edge structure measurements aim to probe the linear attenuation coefficient. These measurements are often carried out using partial fluorescence yield techniques that rely on detectors having photon energy discrimination improving the sensitivity and the signal-to-background ratio of the measured spectra. However, measuring the partial fluorescence yield in the soft X-ray regime with reasonable efficiency requires solid-state detectors, which have limitations due to the inherent dead-time while measuring. Alternatively, many of the available detectors that are not energy dispersive do not suffer from photon count rate limitations. A filter placed in front of one of these detectors will make the energy-dependent efficiency non-linear, thereby changing the responsivity of the detector. It is shown that using an array of filtered X-ray detectors is a viable method for measuring soft X-ray partial fluorescence yield spectra without dead-time. The feasibility of this technique is further demonstrated using α-Fe2O3 as an example and it is shown that this detector technology could vastly improve the photon collection efficiency at synchrotrons and that these detectors will allow experiments to be completed with a much lower photon flux reducing X-ray-induced damage.

  11. High multiplicity α-particle breakup measurements to study α-condensate states

    NASA Astrophysics Data System (ADS)

    Bishop, J.; Kokalova, Tz; Freer, M.; Assie, M.; Acosta, L.; Bailey, S.; Cardella, G.; Curtis, N.; De Filippo, E.; Dell'Aquila, D.; De Luca, S.; Francalanza, L.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Martorana, N.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Rizzo, F.; Russotto, P.; Quattrocchi, L.; Smith, R.; Stefan, I.; Trifirò, A.; Trimarchì, M.; Verde, G.; Vigilante, M.; Wheldon, C.

    2017-06-01

    An experiment was performed to investigate α-condensate states via high α-particle multiplicity breakup. The nucleus of interest was 28Si therefore to measure multiplicity 7 particle breakup events, a highly granular detector with a high solid angle coverage was required. For this purpose, the CHIMERA and FARCOS detectors at INFN LNS were employed. Particle identification was achieved through ΔE-E energy loss. The α-particle multiplicity was measured at three beam energies to investigate different excitation regimes in 28Si. At a beam energy where the energy is sufficient to provide the 7 α-particles with enough energy to be identified using the ΔE-E method, multiplicity 7 events can be seen. Given these high multiplicity events, the particles can be reconstructed to investigate the breakup of α-condensate states. Analysing the decay paths of these states can elucidate whether the state of interest corresponds to a non-cluster, clustered or condensed state.

  12. Solid-state detector system for measuring concentrations of tritiated water vapour and other radioactive gases

    NASA Astrophysics Data System (ADS)

    Nunes, J. C.; Surette, R. A.; Wood, M. J.

    1999-08-01

    A detector system was built using a silicon photodiode plus preamplifier and a cesium iodide scintillator plus preamplifier that were commercially available. The potential of the system for measuring concentrations of tritiated water vapour in the presence of other radioactive sources was investigated. For purposes of radiation protection, the sensitivity of the detector system was considered too low for measuring tritiated water vapour concentrations in workplaces such as nuclear power plants. Nevertheless, the spectrometry capability of the system was used successfully to differentiate amongst some radioactive gases in laboratory tests. Although this relatively small system can measure radioactive noble gases as well as tritiated water vapour concentrations, its response to photons remains an issue.

  13. Detecting the Length of Double-stranded DNA with Solid State Nanopores

    NASA Astrophysics Data System (ADS)

    Li, Jiali; Gershow, Marc; Stein, Derek; Qun, Cai; Brandin, Eric; Wang, Hui; Huang, Albert; Branton, Dan; Golovchenko, Jene

    2003-03-01

    We report on the use of nanometer scale diameter, solid-state nanopores as single molecule detectors of double stranded DNA molecules. These solid-state nanopores are fabricated in thin membranes of silicon nitride, by ion beam sculpting 1. They produce discrete electronic signals: current blockages, when an electrically biased nanopore is exposed to DNA molecules in aqueous salt solutions. We demonstrate examples of such electronic signals for 3k base pairs (bp) and 10k bp double stranded DNA molecules, which suggest that these molecules are individually translocating through the nanopore during the detection process. The translocating time for the 10k bp double stranded DNA is about 3 times longer than the 3k bp, demonstrating that a solid-state nanopore device can be used to detect the lengths of double stranded DNA molecules. Similarities and differences with signals obtained from single stranded DNA in a biological nanopores are discussed 2. 1. Li, J., Stein, D., McMullan, C., Branton, D. Aziz, M. J. and Golovchenko, J. Ion Beam Sculpting at nanometer length scales. Nature 412, 166-169 (2001). 2. Meller, A., L. Nivon, E. Brandin, Golovchenko, J. & Branton, D. Proc. Natl. Acad. Sci. USA 97, 1079-1084 (2000).

  14. Directional Track Selection Technique in CR39 SSNTD for lowyield reaction experiments

    NASA Astrophysics Data System (ADS)

    Ingenito, Francesco; Andreoli, Pierluigi; Batani, Dimitri; Bonasera, Aldo; Boutoux, Guillaume; Burgy, Frederic; Cipriani, Mattia; Consoli, Fabrizio; Cristofari, Giuseppe; De Angelis, Riccardo; Di Giorgio, Giorgio; Ducret, Jean Eric; Giulietti, Danilo; Jakubowska, Katarzyna

    2018-01-01

    There is a great interest in the study of p-11B aneutronic nuclear fusion reactions, both for energy production and for determination of fusion cross-sections at low energies. In this context we performed experiments at CELIA in which energetic protons, accelerated by the laser ECLIPSE, were directed toward a solid Boron target. Because of the small cross-sections at these energies the number of expected reactions is low. CR39 Solid-State Nuclear Track Detectors (SSNTD) were used to detect the alpha particles produced. Because of the low expected yield, it is difficult to discriminate the tracks due to true fusion products from those due to natural background in the CR39. To this purpose we developed a methodology of particle recognition according to their direction with respect to the detector normal, able to determine the position of their source. We applied this to the specific experiment geometry, so to select from all the tracks those due to particles coming from the region of interaction between accelerated protons and solid boron target. This technique can be of great help on the analysis of SSNTD in experiments with low yield reactions, but can be also generally applied to any experiment where particles reach the track detector with known directions, and for example to improve the detection limit of particle spectrometers using CR39.

  15. Solid state neutron detector and method for use

    DOEpatents

    Doty, F. Patrick; Zwieback, Ilya; Ruderman, Warren

    2002-01-01

    Crystals of lithium tetraborate or alpha-barium borate had been found to be neutron detecting materials. The crystals are prepared using known crystal growing techniques, wherein the process does not include the common practice of using a fluxing agent, such as sodium oxide or sodium fluoride, to reduce the melting temperature of the crystalline compound. Crystals prepared by this method can be sliced into thin single or polycrystalline wafers, or ground to a powder and prepared as a sintered compact or a print paste, and then configured with appropriate electronic hardware, in order to function as neutron detectors.

  16. Detection of X-ray photons by solution-processed organic-inorganic perovskites

    PubMed Central

    Yakunin, Sergii; Sytnyk, Mykhailo; Kriegner, Dominik; Shrestha, Shreetu; Richter, Moses; Matt, Gebhard J.; Azimi, Hamed; Brabec, Christoph J.; Stangl, Julian; Kovalenko, Maksym V.; Heiss, Wolfgang

    2017-01-01

    The evolution of real-time medical diagnostic tools such as angiography and computer tomography from radiography based on photographic plates was enabled by the development of integrated solid-state X-ray photon detectors, based on conventional solid-state semiconductors. Recently, for optoelectronic devices operating in the visible and near infrared spectral regions, solution-processed organic and inorganic semiconductors have also attracted immense attention. Here we demonstrate a possibility to use such inexpensive semiconductors for sensitive detection of X-ray photons by direct photon-to-current conversion. In particular, methylammonium lead iodide perovskite (CH3NH3PbI3) offers a compelling combination of fast photoresponse and a high absorption cross-section for X-rays, owing to the heavy Pb and I atoms. Solution processed photodiodes as well as photoconductors are presented, exhibiting high values of X-ray sensitivity (up to 25 µC mGyair-1 cm-3) and responsivity (1.9×104 carriers/photon), which are commensurate with those obtained by the current solid-state technology. PMID:28553368

  17. Analysis of measurements for solid state laser remote lidar system

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1995-01-01

    The merits of using lidar systems for remote measurements of various atmospheric processes such as wind, turbulence, moisture, and aerosol concentration are widely recognized. Although the lidar technology has progressed considerably over the past two decades, significant research particularly in the area of solid state lidars remains to be conducted in order to fully exploit this technology. The work performed by the UAH (University of Alabama in Huntsville) personnel under this Delivery Order concentrated on analyses of measurements required in support of solid state laser remote sensing lidar systems which are to be designed, deployed, and used to measure atmospheric processes and constituents. UAH personnel has studied and recommended to NASA/MSFC the requirements of the optical systems needed to characterize the detection devices suitable for solid state wavelengths and to evaluate various heterodyne detection schemes. The 2-micron solid state laser technology was investigated and several preliminary laser designs were developed and their performance for remote sensing of atmospheric winds and clouds from a spaceborne platform were specified. In addition to the laser source and the detector, the other critical technologies necessary for global wind measurements by a spaceborne solid state coherent lidar systems were identified to be developed and demonstrated. As part of this work, an analysis was performed to determine the atmospheric wind velocity estimation accuracy using the line-of-sight measurements of a scanning coherent lidar. Under this delivery order, a computer database of materials related to the theory, development, testing, and operation of lidar systems was developed to serve as a source of information for lidar research and development.

  18. The Dram As An X-Ray Sensor

    NASA Astrophysics Data System (ADS)

    Jacobs, Alan M.; Cox, John D.; Juang, Yi-Shung

    1987-01-01

    A solid-state digital x-ray detector is described which can replace high resolution film in industrial radiography and has potential for application in some medical imaging. Because of the 10 micron pixel pitch on the sensor, contact magnification radiology is possible and is demonstrated. Methods for frame speed increase and integration of sensor to a large format are discussed.

  19. 76 FR 11243 - Solicitation of Input From Stakeholders To Inform the National Framework for Electronics Stewardship

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... a metal detector, and sign the EPA visitor log. All visitor bags are processed through an X- ray... equipment from solid waste landfills in the United States. EPA does, however, control how cathode ray tube... cell phone and computers/laptops or recover valuable resources, such as precious metals, plastics or...

  20. The ICARE-NG detectors' family: a new set of data for Earth's radiation belt characterization

    NASA Astrophysics Data System (ADS)

    Boscher, Daniel; Lazaro, Didier; Maget, Vincent; Rolland, Guy; Lorfevre, Eric; Ecoffet, Robert

    10 years ago, CNES and ONERA have developed a new low mass and low power solid state detector named ICARE-NG. This monitor is currently flying in the frame of CARMEN-1 & 2 missions respectively on SAC-D and JASON-2 satellites. The next mission, CARMEN-3, corresponds to the same instrument planned to be mounted onboard the upcoming JASON-3 satellite. Different papers have already highlighted the quality of the measurements obtained thanks to the high energy resolution of the instrument, for both electrons and protons. This talk aims at reviewing the benefits of such a detector (much simpler than a scientific one) providing multi-spacecraft measurements in Low Earth Orbit (LEO). In particular, these monitors are a rare opportunity to observe both long term variations in LEO and gradients between orbits. Finally, we will present data comparison and highlights from these detectors during recent magnetic storms.

  1. Detector for imaging and dosimetry of laser-driven epithermal neutrons by alpha conversion

    NASA Astrophysics Data System (ADS)

    Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Wilson, L. A.; Ansell, S.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Notley, M.; Raspino, D.; Rusby, D. R.; Borghesi, M.; Rhodes, N. J.; McKenna, P.; Neely, D.; Brenner, C. M.; Kar, S.

    2016-10-01

    An epithermal neutron imager based on detecting alpha particles created via boron neutron capture mechanism is discussed. The diagnostic mainly consists of a mm thick Boron Nitride (BN) sheet (as an alpha converter) in contact with a non-borated cellulose nitride film (LR115 type-II) detector. While the BN absorbs the neutrons in the thermal and epithermal ranges, the fast neutrons register insignificantly on the detector due to their low neutron capture and recoil cross-sections. The use of solid-state nuclear track detectors (SSNTD), unlike image plates, micro-channel plates and scintillators, provide safeguard from the x-rays, gamma-rays and electrons. The diagnostic was tested on a proof-of-principle basis, in front of a laser driven source of moderated neutrons, which suggests the potential of using this diagnostic (BN+SSNTD) for dosimetry and imaging applications.

  2. A SPECT system simulator built on the SolidWorks TM 3D-Design package.

    PubMed

    Li, Xin; Furenlid, Lars R

    2014-08-17

    We have developed a GPU-accelerated SPECT system simulator that integrates into instrument-design workflow [1]. This simulator includes a gamma-ray tracing module that can rapidly propagate gamma-ray photons through arbitrary apertures modeled by SolidWorks TM -created stereolithography (.STL) representations with a full complement of physics cross sections [2, 3]. This software also contains a scintillation detector simulation module that can model a scintillation detector with arbitrary scintillation crystal shape and light-sensor arrangement. The gamma-ray tracing module enables us to efficiently model aperture and detector crystals in SolidWorks TM and save them as STL file format, then load the STL-format model into this module to generate list-mode results of interacted gamma-ray photon information (interaction positions and energies) inside the detector crystals. The Monte-Carlo scintillation detector simulation module enables us to simulate how scintillation photons get reflected, refracted and absorbed inside a scintillation detector, which contributes to more accurate simulation of a SPECT system.

  3. A SPECT system simulator built on the SolidWorksTM 3D design package

    NASA Astrophysics Data System (ADS)

    Li, Xin; Furenlid, Lars R.

    2014-09-01

    We have developed a GPU-accelerated SPECT system simulator that integrates into instrument-design work flow [1]. This simulator includes a gamma-ray tracing module that can rapidly propagate gamma-ray photons through arbitrary apertures modeled by SolidWorksTM-created stereolithography (.STL) representations with a full com- plement of physics cross sections [2, 3]. This software also contains a scintillation detector simulation module that can model a scintillation detector with arbitrary scintillation crystal shape and light-sensor arrangement. The gamma-ray tracing module enables us to efficiently model aperture and detector crystals in SolidWorksTM and save them as STL file format, then load the STL-format model into this module to generate list-mode results of interacted gamma-ray photon information (interaction positions and energies) inside the detector crystals. The Monte-Carlo scintillation detector simulation module enables us to simulate how scintillation photons get reflected, refracted and absorbed inside a scintillation detector, which contributes to more accurate simulation of a SPECT system.

  4. Detection of gamma-neutron radiation by solid-state scintillation detectors. Detection of gamma-neutron radiation by novel solid-state scintillation detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryzhikov, V.; Grinyov, B.; Piven, L.

    It is known that solid-state scintillators can be used for detection of both gamma radiation and neutron flux. In the past, neutron detection efficiencies of such solid-state scintillators did not exceed 5-7%. At the same time it is known that the detection efficiency of the gamma-neutron radiation characteristic of nuclear fissionable materials is by an order of magnitude higher than the efficiency of detection of neutron fluxes alone. Thus, an important objective is the creation of detection systems that are both highly efficient in gamma-neutron detection and also capable of exhibiting high gamma suppression for use in the role ofmore » detection of neutron radiation. In this work, we present the results of our experimental and theoretical studies on the detection efficiency of fast neutrons from a {sup 239}Pu-Be source by the heavy oxide scintillators BGO, GSO, CWO and ZWO, as well as ZnSe(Te, O). The most probable mechanism of fast neutron interaction with nuclei of heavy oxide scintillators is the inelastic scattering (n, n'γ) reaction. In our work, fast neutron detection efficiencies were determined by the method of internal counting of gamma-quanta that emerge in the scintillator from (n, n''γ) reactions on scintillator nuclei with the resulting gamma energies of ∼20-300 keV. The measured efficiency of neutron detection for the scintillation crystals we considered was ∼40-50 %. The present work included a detailed analysis of detection efficiency as a function of detector and area of the working surface, as well as a search for new ways to create larger-sized detectors of lower cost. As a result of our studies, we have found an unusual dependence of fast neutron detection efficiency upon thickness of the oxide scintillators. An explanation for this anomaly may involve the competition of two factors that accompany inelastic scattering on the heavy atomic nuclei. The transformation of the energy spectrum of neutrons involved in the (n, n'γ) reactions towards lower energies and the isotropic character of scattering of the secondary neutrons may lead to the observed limitation of the length of effective interaction, since a fraction of the secondary neutrons that propagate in the forward direction are not subject to further inelastic scattering because of their substantially lower energy. At these reduced energies, it is the capture cross-section (n, γ) that becomes predominant, resulting in lower detection efficiency. Based on these results, several types of detectors have been envisioned for application in detection systems for nuclear materials. The testing results for one such detector are presented in this work. We have studied the possibility of creation of a composite detector with scintillator granules placed inside a transparent polymer material. Because of the low transparency of such a dispersed scintillator, better light collection conditions are ensured by incorporation of a light guide between the scintillator layers. This guide is made of highly transparent polymer material. The use of a high-transparency hydrogen-containing polymer material for light guides not only ensures optimum conditions of light collection in the detector, but also allows certain deceleration of neutron radiation, increasing its interaction efficiency with the composite scintillation panels; accordingly, the detector signal is increased by 5-8%. When fast neutrons interact with the scintillator material, the resulting inelastic scattering gamma-quanta emerge, having different energies and different delay times with respect to the moment of the neutron interaction with the nucleus of the scintillator material (delay times ranging from 1x10{sup -9} to 1.3x10{sup -6} s). These internally generated gamma-quanta interact with the scintillator, and the resulting scintillation light is recorded by the photo-receiver. Since neutron sources are also strong sources of low-energy gamma-radiation, the use of dispersed ZnSe(Te) scintillator material provides high gamma-radiation detection efficiency in that energy range. This new type of gamma-neutron detector is based on a 'sandwich' structure using a ZnSe composite film and light guide with a fast neutron detection efficiency of about 6%. Its high detection efficiency of low-energy gamma-radiation allows a substantial increase (by an order of magnitude) in the efficiency of detection of neutron sources and transuranic materials by means of simultaneous detection of accompanying gamma-radiation. The design and fabrication technology of this detector allows the creation of gamma-neutron detectors characterized by high sensitivity at relatively low costs (as compared with analogs using oxide scintillators) for portable inspection systems. The sandwich structure can be comprised of any number of plates, with no limitations on thickness or area.« less

  5. A study on the suitability of the PTW microDiamond detector for kilovoltage x-ray beam dosimetry.

    PubMed

    Damodar, Joshita; Odgers, David; Pope, Dane; Hill, Robin

    2018-05-01

    Kilovoltage x-ray beams are widely used in treating skin cancers and in biological irradiators. In this work, we have evaluated four dosimeters (ionization chambers and solid state detectors) in their suitability for relative dosimetry of kilovoltage x-ray beams in the energy range of 50 - 280kVp. The solid state detectors, which have not been investigated with low energy x-rays, were the PTW 60019 microDiamond synthetic diamond detector and the PTW 60012 diode. The two ionization chambers used were the PTW Advanced Markus parallel plate chamber and the PTW PinPoint small volume chamber. For each of the dosimeters, percentage depth doses were measured in water over the full range of x-ray beams and for field sizes ranging from 2cm diameter to 12 × 12cm. In addition, depth doses were measured for a narrow aperture (7mm diameter) using the PTW microDiamond detector. For comparison, the measured data was compared with Monte Carlo calculated doses using the EGSnrc Monte Carlo package. The depth dose results indicate that the Advanced Markus parallel plate and PinPoint ionization chambers were suitable for depth dose measurements in the beam quality range with an uncertainty of less than 3%, including in the regions closer to the surface of the water as compared with Monte Carlo depth dose data for all six energy beams. The response of the PTW Diode E detector was accurate to within 4% for all field sizes in the energy range of 50-125kVp but showed larger variations for higher energies of up to 12% with the 12 × 12cm field size. In comparison, the microDiamond detector had good agreement over all energies for both smaller and larger field sizes generally within 1% as compared to the Advanced Markus chamber field and Monte Carlo calculations. The only exceptions were in measuring the dose at the surface of the water phantom where larger differences were found. For the 7mm diameter field, the agreement between the microDiamond detector and Monte Carlo calculations was good being better than 1% except at the surface. Based on these results, the PTW microDiamond detector has shown to be a suitable detector for relative dosimetry of low energy x-ray beams over a wide range of x-ray beam energies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. 3D imaging of neutron tracks using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Wertheim, David; Flowers, Alan

    2016-04-01

    Neutron detection and neutron flux assessment are important aspects in monitoring nuclear energy production. Neutron flux measurements can also provide information on potential biological damage from exposure. In addition to the applications for neutron measurement in nuclear energy, neutron detection has been proposed as a method of enhancing neutrino detectors and cosmic ray flux has also been assessed using ground-level neutron detectors. Solid State Nuclear Track Detectors (or SSNTDs) have been used extensively to examine cosmic rays, long-lived radioactive elements, radon concentrations in buildings and the age of geological samples. Passive SSNTDs consisting of a CR-39 plastic are commonly used to measure radon because they respond to incident charged particles such as alpha particles from radon gas in air. They have a large dynamic range and a linear flux response. We have previously applied confocal microscopy to obtain 3D images of alpha particle tracks in SSNTDs from radon track monitoring (1). As a charged particle traverses through the polymer it creates an ionisation trail along its path. The trail or track is normally enhanced by chemical etching to better expose radiation damage, as the damaged area is more sensitive to the etchant than the bulk material. Particle tracks in CR-39 are usually assessed using 2D optical microscopy. In this study 6 detectors were examined using an Olympus OLS4100 LEXT 3D laser scanning confocal microscope (Olympus Corporation, Japan). The detectors had been etched for 2 hours 50 minutes at 85 °C in 6.25M NaOH. Post etch the plastics had been treated with a 10 minute immersion in a 2% acetic acid stop bath, followed by rinsing in deionised water. The detectors examined had been irradiated with a 2mSv neutron dose from an Am(Be) neutron source (producing roughly 20 tracks per mm2). We were able to successfully acquire 3D images of neutron tracks in the detectors studied. The range of track diameter observed was between 4 and 10 microns. Thus this study suggests that, using confocal microscopy, 3D imaging of neutron tracks in SSNTDs is feasible. (1) Wertheim D, Gillmore G, Brown L, Petford N. A new method of imaging particle tracks in solid state nuclear track detectors. J Microsc. 2010; 237: 1-6.

  7. Back-scattered electron imaging of skeletal tissues.

    PubMed

    Boyde, A; Jones, S J

    The use of solid-state back-scattered electron (BSE) detectors in the scanning electron microscopic study of skeletal tissues has been investigated. To minimize the topographic element in the image, flat samples and a ring detector configuration with the sample at normal incidence to the beam and the detector are used. Very flat samples are prepared by diamond micromilling or diamond polishing plastic-embedded tissue. Density discrimination in the image is so good that different density phases within mineralized bone can be imaged. For unembedded spongy bone, cut surfaces can be discriminated from natural surfaces by a topographic contrast mechanism. BSE imaging also presents advantages for unembedded samples with rough topography, such as anorganic preparations of the mineralization zone in cartilage, which give rise to severe charging problems with conventional secondary electron imaging.

  8. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo

    2018-05-01

    Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

  9. A new gated x-ray detector for the Orion laser facility

    NASA Astrophysics Data System (ADS)

    Clark, David D.; Aragonez, Robert; Archuleta, Thomas; Fatherley, Valerie; Hsu, Albert; Jorgenson, Justin; Mares, Danielle; Oertel, John; Oades, Kevin; Kemshall, Paul; Thomas, Phillip; Young, Trevor; Pederson, Neal

    2012-10-01

    Gated X-Ray Detectors (GXD) are considered the work-horse target diagnostic of the laser based inertial confinement fusion (ICF) program. Recently, Los Alamos National Laboratory (LANL) has constructed three new GXDs for the Orion laser facility at the Atomic Weapons Establishment (AWE) in the United Kingdom. What sets these three new instruments apart from what has previously been constructed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is: improvements in detector head microwave transmission lines, solid state embedded hard drive and updated control software, and lighter air box design and other incremental mechanical improvements. In this paper we will present the latest GXD design enhancements and sample calibration data taken on the Trident laser facility at Los Alamos National Laboratory using the newly constructed instruments.

  10. Microtitration of various anions with quaternary ammonium halides using solid-state electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selig, W.

    1980-01-01

    Many solid-state electrodes were found to respond as endpoint detectors in the potentiometric titration of large inorganic and organic anions with quaternary ammonium halides. The best response was obtained with the iodide and cyanide electrodes although practically any electrode can function as endpoint sensor. The titrants were hexadecylpyridinium chloride and hexadecyltrimethylammonium chloride; hexadecyltrimethylammonium bromide and Hyamine 1622 may also be used. Some inorganic anions thus titratable are perrhenate, persulfate, ferricyanide, hexafluorophosphate, and hexachloroplatinate. Examples of organic anions titratable are nitroform, tetraphenylborate, cyanotriphenylborate, picrate, long-chain sulfates and sulfonates, and some soaps. The reverse titration of quaternary ammonium halides vs dodecylsulfate ismore » also feasible. Some titrations are feasible in a partially nonaqueous medium.« less

  11. A Novel Infrared Gas Monitor

    NASA Astrophysics Data System (ADS)

    Wang, Yingding; Zhong, Hongjie

    2000-03-01

    In the paper a novel non-dispersive infrared(IR) gas monitor is described.It is based on the principle that certain gases absorb IR radiation at specific(and often unique) wavelengths.Conventional devices typically include several primary components:a broadband source, usually an incandescent filament,a rotating chopper shutter,a narrow-band filter,a sample tube and a detector. We have developed a number of IR light emitting diodes(LED) having narrow optical bandwidths and which can be intensity modulated by electrical means,for example InAsSbP(4.2 micron)LED.The IR LED can thus replace the thermal source,narrow-band filter and chopper assembly of the conventional IR gas monitor,yielding a solid state,low- powered,compact and almost maintenance-free instrument with high sensitivity and stability and which free of the effects of mechanical vibration too. The detector used in the IR gas monitor is the solid-state detector,such as PbS,PbSe, InSb,HgCdTe,TGS,LT and PZT detector etc. The different configuration of the IR gas monitor is designed.For example,two-path version for measuring methane concentration by monitoring the 3.31 micron absorption band,it can eliminate the interference effects,such as to compensate for LED intensity changes caused by power and temperature variations,and for signal fluctuations due to changes in detector bias. we also have designed portable single-beam version without the sample tube.Its most primary advantage is very cheap(about cost USD 30 ).It measures carbon dioxide concentration by monitoring the 4.25 micron absorption band.Thought its precisions is low,it is used to control carbon dioxide concentration in the air in the green houses and plastic houses(there are about twenty millon one in the China).Because more carbon dioxide will increase the quanity of vegetable and flower production to a greatextent. It also is used in medical,sanitary and antiepidemic applications,such as hospital, store,hotel,cabin and ballroom etc. Key words:infrared gas monitor LED

  12. 3D imaging of particle tracks in Solid State Nuclear Track Detectors

    NASA Astrophysics Data System (ADS)

    Wertheim, D.; Gillmore, G.; Brown, L.; Petford, N.

    2009-04-01

    Inhalation of radon gas (222Rn) and associated ionizing decay products is known to cause lung cancer in human. In the U.K., it has been suggested that 3 to 5 % of total lung cancer deaths can be linked to elevated radon concentrations in the home and/or workplace. Radon monitoring in buildings is therefore routinely undertaken in areas of known risk. Indeed, some organisations such as the Radon Council in the UK and the Environmental Protection Agency in the USA, advocate a ‘to test is best' policy. Radon gas occurs naturally, emanating from the decay of 238U in rock and soils. Its concentration can be measured using CR?39 plastic detectors which conventionally are assessed by 2D image analysis of the surface; however there can be some variation in outcomes / readings even in closely spaced detectors. A number of radon measurement methods are currently in use (for examples, activated carbon and electrets) but the most widely used are CR?39 solid state nuclear track?etch detectors (SSNTDs). In this technique, heavily ionizing alpha particles leave tracks in the form of radiation damage (via interaction between alpha particles and the atoms making up the CR?39 polymer). 3D imaging of the tracks has the potential to provide information relating to angle and energy of alpha particles but this could be time consuming. Here we describe a new method for rapid high resolution 3D imaging of SSNTDs. A ‘LEXT' OLS3100 confocal laser scanning microscope was used in confocal mode to successfully obtain 3D image data on four CR?39 plastic detectors. 3D visualisation and image analysis enabled characterisation of track features. This method may provide a means of rapid and detailed 3D analysis of SSNTDs. Keywords: Radon; SSNTDs; confocal laser scanning microscope; 3D imaging; LEXT

  13. New target and detection methods: active detectors

    NASA Astrophysics Data System (ADS)

    Mittig, W.; Savajols, H.; Demonchy, C. E.; Giot, L.; Roussel-Chomaz, P.; Wang, H.; Ter-Akopian, G.; Fomichev, A.; Golovkov, M. S.; Stepansov, S.; Wolski, R.; Alamanos, N.; Drouart, A.; Gillibert, A.; Lapoux, V.; Pollacco, E.

    2003-07-01

    The study of nuclei far from stability interacting with simple target nuclei, such as protons, deuterons, 3He and 4He implies the use of inverse kinematics. The very special kinematics, together with the low intensities of the beams calls for special techniques. In july 2002 we tested a new detector, in which the detector gas is the target. This allows in principle a 4π solid angle of the detection, and a big effective target thickness without loss of resolution. The detector developped, called Maya, used isobuthane C4H10 as gas in present tests, and other gases are possible. The multiplexed electronics of more than 1000channels allows the reconstruction of the events occuring between the incoming particle and the detector gas atoms in 3D. Here we were interested in the elastic scattering of 8He on protons for the study of the isobaric analogue states (IAS) of 9He. The beam, in this case, is stopped in the detector. The resonance energy is determined by the place of interaction and the energy of the recoiling proton. The design of the detector is shown, together with some preliminary results are discussed.

  14. No Moving Parts

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under a NASA SBIR (Small Business Innovative Research), Research International developed the solid state micromachined pump used for cooling electronics in space, circulation of heat transfer fluids on spacecraft, and monitoring fire and gas hazards aboard naval warships. Incorporating Lewis Research Center's pumping technology, commercial applications for this product include both detection of toxins and pollutants in coal mines, and early warning smoke detectors for industrial applications.

  15. Modification of solid state CdZnTe (CZT) radiation detectors with high sensitivity or high resolution operation

    DOEpatents

    Washington, II, Aaron L; Duff, Martine C; Teague, Lucile C; Burger, Arnold; Groza, Michael

    2014-11-11

    An apparatus and process is provided to illustrate the manipulation of the internal electric field of CZT using multiple wavelength light illumination on the crystal surface at RT. The control of the internal electric field is shown through the polarization in the IR transmission image under illumination as a result of the Pockels effect.

  16. A New Method for Growth and Analysis of Next-Generation IR Detector Materials

    DTIC Science & Technology

    2008-12-01

    Until recently the highest concentration of nitrogen reported in GaSb1- xNx was 1.75% (Buckle, et al., 2005). Recent work at the Army Research...Andreev, B. N. Murdin, E. P. O’Reilly and C. R. Pidgeon, 2003: InSb1− xNx growth and devices, Solid- State Electronics, 47(3), 387-394. L. Buckle

  17. The Focusing Optics Solar X-ray Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.; Tajima, H.

    2010-05-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The FOXSI project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  18. Calibration of the Politrack® system based on CR39 solid-state nuclear track detectors for passive indoor radon concentration measurements.

    PubMed

    Kropat, G; Baechler, S; Bailat, C; Barazza, F; Bochud, F; Damet, J; Meyer, N; Palacios Gruson, M; Butterweck, G

    2015-11-01

    Swiss national requirements for measuring radon gas exposures demand a lower detection limit of 50 kBq h m(-3), representing the Swiss concentration average of 70 Bq m(-3) over a 1-month period. A solid-state nuclear track detector (SSNTD) system (Politrack, Mi.am s.r.l., Italy) has been acquired to fulfil these requirements. This work was aimed at the calibration of the Politrack system with traceability to international standards and the development of a procedure to check the stability of the system. A total of 275 SSNTDs was exposed to 11 different radon exposures in the radon chamber of the Secondary Calibration Laboratory at the Paul Scherrer Institute, Switzerland. The exposures ranged from 50 to 15000 kBq h m(-3). For each exposure of 20 detectors, 5 SSNTDs were used to monitor possible background exposures during transport and storage. The response curve and the calibration factor of the whole system were determined using a Monte Carlo fitting procedure. A device to produce CR39 samples with a reference number of tracks using a (241)Am source was developed for checking the long-term stability of the Politrack system. The characteristic limits for the detection of a possible system drift were determined following ISO Standard 11929. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. The Focusing Optics X-ray Solar Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Krucker, Sam; Christe, Steven; Glesener, Lindsay; McBride, Steve; Turin, Paul; Glaser, David; Saint-Hilaire, Pascal; Delory, Gregory; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; Terada, Yukikatsu; Ishikawa, Shin-Nosuke; Kokubun, Motohide; Saito, Shinya; Takahashi, Tadayuki; Watanabe, Shin; Nakazawa, Kazuhiro; Tajima, Hiroyasu; Masuda, Satoshi; Minoshima, Takashi; Shomojo, Masumi

    2009-08-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The FOXSI project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  20. The Focusing Optics X-ray Solar Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Krucker, Säm; Christe, Steven; Glesener, Lindsay; Ishikawa, Shin-nosuke; McBride, Stephen; Glaser, David; Turin, Paul; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; Saito, Shinya; Tanaka, Yasuyuki; Takahashi, Tadayuki; Watanabe, Shin; Tanaka, Takaaki; Tajima, Hiroyasu; Masuda, Satoshi

    2011-09-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray (HXR) focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar HXR instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of an indirect imaging system, the derived images have a low dynamic range (typically <10) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the particle acceleration processes which occur there. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding impulsive energy release on the Sun. The FOXSI project is led by the Space Sciences Laboratory at the University of California, Berkeley. The NASA Marshall Space Flight Center is responsible for the grazingincidence optics, while the Astro-H team at JAXA/ISAS has provided double-sided silicon strip detectors. FOXSI is a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  1. The Focusing Optics Solar X-ray Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Christe, S.; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.

    2009-12-01

    The Focusing Optics x-ray Solar Imager is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager provides excellent spatial (2 arcseconds) and spectral (1~keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The foxsi project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  2. Effects of etching time on alpha tracks in solid state nuclear track detectors.

    PubMed

    Gillmore, Gavin; Wertheim, David; Crust, Simon

    2017-01-01

    Solid State Nuclear Track Detectors (SSNTDs) are used extensively for monitoring alpha particle radiation, neutron flux and cosmic ray radiation. Radon gas inhalation is regarded as being a significant contributory factor to lung cancer deaths in the UK each year. Gas concentrations are often monitored using CR39 based SSNTDs as the natural decay of radon results in alpha particles which form tracks in these detectors. Such tracks are normally etched for about 4h to enable microscopic analysis. This study examined the effect of etching time on the appearance of alpha tracks in SSNTDs by collecting 2D and 3D image datasets using laser confocal microscope imaging techniques. Etching times of 2 to 4h were compared and marked differences were noted in resultant track area. The median equivalent diameters of tracks were 20.2, 30.2 and 38.9μm for etching at 2, 3 and 4h respectively. Our results indicate that modern microscope imaging can detect and image the smaller size tracks seen for example at 3h etching time. Shorter etching times may give rise to fewer coalescing tracks although there is a balance to consider as smaller track sizes may be more difficult to image. Thus etching for periods of less than 4h clearly merits further investigation as this approach has the potential to improve accuracy in assessing the number of tracks. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The Focusing Optics X-Ray Solar Imager: FOXSI

    NASA Technical Reports Server (NTRS)

    Krucker, Saem; Christe, Steven; Glesener, Lindsay; Ishikawa, Shin-nosuke; McBride, Stephen; Glaser, David; Turin, Paul; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; hide

    2011-01-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray (HXR) focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar HXR instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of an indirect imaging system, the derived images have a low dynamic range (typically <10) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the particle acceleration processes which occur there. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding impulsive energy release on the Sun. The FOXSI project is led by the Space Sciences Laboratory at the University of California, Berkeley. The NASA Marshall Space Flight Center is responsible for the grazing-incidence optics, while the Astro-H team at JAXA/ISAS has provided double-sided silicon strip detectors. FOXSI is a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  4. Gas Electron Multipler (GEM) detectors for parity-violating electron scattering experiments at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Matter, John; Gnanvo, Kondo; Liyanage, Nilanga; Solid Collaboration; Moller Collaboration

    2017-09-01

    The JLab Parity Violation In Deep Inelastic Scattering (PVDIS) experiment will use the upgraded 12 GeV beam and proposed Solenoidal Large Intensity Device (SoLID) to measure the parity-violating electroweak asymmetry in DIS of polarized electrons with high precision in order to search for physics beyond the Standard Model. Unlike many prior Parity-Violating Electron Scattering (PVES) experiments, PVDIS is a single-particle tracking experiment. Furthermore the experiment's high luminosity combined with the SoLID spectrometer's open configuration creates high-background conditions. As such, the PVDIS experiment has the most demanding tracking detector needs of any PVES experiment to date, requiring precision detectors capable of operating at high-rate conditions in PVDIS's full production luminosity. Developments in large-area GEM detector R&D and SoLID simulations have demonstrated that GEMs provide a cost-effective solution for PVDIS's tracking needs. The integrating-detector-based JLab Measurement Of Lepton Lepton Electroweak Reaction (MOLLER) experiment requires high-precision tracking for acceptance calibration. Large-area GEMs will be used as tracking detectors for MOLLER as well. The conceptual designs of GEM detectors for the PVDIS and MOLLER experiments will be presented.

  5. Application and Development of Microstructured Solid-State Neutron Detectors

    NASA Astrophysics Data System (ADS)

    Weltz, Adam D.

    Neutron detectors are useful for a number of applications, including the identification of nuclear weapons, radiation dosimetry, and nuclear reactor monitoring, among others. Microstructured solid-state neutron detectors (SSNDs) developed at RPI have the potential to reinvent a variety of neutron detection systems due to their compact size, zero bias requirement, competitive thermal neutron detection efficiency (up to 29%), low gamma sensitivity (below the PNNL recommendation of 10-6 corresponding to a 10 mR/hr gamma exposure), and scalability to large surface areas with a single preamplifier (<20% loss in relative efficiency from 1 to 16 cm2). These microstructured SSNDs have semiconducting substrate etched with a repeated, three-dimensional microstructure of high aspect ratio holes filled with 10B. MCNP simulations optimized the dimensions of each microstructure geometry for each detector application, improving the overall performance. This thesis outlines the development of multiple, novel neutron detection applications using microstructured SSNDs developed at RPI. The Directional and Spectral Neutron Detection System (DSNDS) is a modular and portable system that uses rings of microstructured SSNDs embedded in polyethylene in order to gather real-time information about the directionality and spectrum of an unidentified neutron source. This system can be used to identify the presence of diverted special nuclear material (SNM), determine its position, and gather spectral information in real-time. The compact and scalable zero-bias SSNDs allow for customization and modularity of the detector array, which provides design flexibility and enhanced portability. Additionally, a real-time personal neutron dosimeter is a wearable device that uses a combination of fast and thermal microstructured SSNDs in order to determine an individual's neutron dose rate. This system demonstrates that neutron detection systems utilizing microstructured SSNDs are applicable for personal neutron dosimetry. The development of these systems using the compact, zero-bias microstructured SSNDs lays the groundwork for a new generation of neutron detection tools, outlines the challenges and design considerations associated with the implementation of these devices, and demonstrates the value that these detectors bring to the future of neutron detection systems.

  6. Indoor concentration of radon, thoron and their progeny around granite regions in the state of Karnataka, India.

    PubMed

    Sannappa, J; Ningappa, C

    2014-03-01

    An extensive studies on the indoor activity concentrations of thoron, radon and their progeny in the granite region in the state of Karnataka, India, has been carried out since, 2007 in the scope of a lung cancer epidemiological study using solid-state nuclear track detector-based double-chamber dosemeters (LR-115, type II plastic track detector). Seventy-four dwellings of different types were selected for the measurement. The dosemeters containing SSNTD detectors were fixed 2 m above the floor. After an exposure time of 3 months (90 d), films were etched to reveal tracks. From the track density, the concentrations of radon and thoron were evaluated. The value of the indoor concentration of thoron and radon in the study area varies from 16 to 170 Bq m(-3) and 18 to 300 Bq m(-3) with medians of 66 and 82.3 Bq m(-3), respectively, and that of their progeny varies from 1.8 to 24 mWL with a median of 3.6 mWL and 1.6 to 19.6 mWL, respectively. The concentrations of indoor thoron, radon and their progeny and their equivalent effective doses are discussed.

  7. Commissioning of the Active-Target Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Bradt, J.; Bazin, D.; Abu-Nimeh, F.; Ahn, T.; Ayyad, Y.; Beceiro Novo, S.; Carpenter, L.; Cortesi, M.; Kuchera, M. P.; Lynch, W. G.; Mittig, W.; Rost, S.; Watwood, N.; Yurkon, J.

    2017-12-01

    The Active-Target Time Projection Chamber (AT-TPC) was recently built and commissioned at the National Superconducting Cyclotron Laboratory at Michigan State University. This gas-filled detector uses an active-target design where the gas acts as both the tracking medium and the reaction target. Operating inside a 2T solenoidal magnetic field, the AT-TPC records charged particle tracks that can be reconstructed to very good energy and angular resolutions. The near- 4 π solid angle coverage and thick target of the detector are well-suited to experiments with low secondary beam intensities. In this paper, the design and instrumentation of theAT-TPC are described along with the methods used to analyze the data it produces. A simulation of the detector's performance and some results from its commissioning with a radioactive 46Ar beam are also presented.

  8. Accelerating CR-39 Track Detector Processing by Utilizing UV

    NASA Astrophysics Data System (ADS)

    Sparling, Jonathan; Padalino, Stephen; McLean, James; Sangster, Craig; Regan, Sean

    2017-10-01

    The use of CR-39 plastic as a Solid State Nuclear Track Detector is an effective technique for obtaining data in high energy particle experiments including inertial confinement fusion. To reveal particle tracks after irradiation, CR-39 is chemically etched in NaOH at 80°C, producing micron-scale signal pits at the nuclear track sites. It has been shown that illuminating CR-39 with UV light prior to etching increases bulk and track etch rates, especially when combined with elevated temperature. Spectroscopic analysis for amorphous solids has helped identify which UV wavelengths are most effective at enhancing etch rates. Absorption peaks found in the near infrared range provide for efficient sample heating, and may allow targeting cooperative IR-UV chemistry. Avoiding UV induced noise can be achieved through variations in absorption depths with wavelength. Vacuum drying and water absorption tests allow measurement of the resulting variation of bulk etch rate with depth. Funded in part by the NSF and an Department of Energy Grant through the Lab of Laser Energetics.

  9. Solid-State 2-Micron Laser Transmitter Advancement for Wind and Carbon Dioxide Measurements From Ground, Airborne, and Space-Based Lidar Systems

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Koch, Grady; Yu, Jirong; Ismail, Syed

    2008-01-01

    NASA Langley Research Center has been developing 2-micron lidar technologies over a decade for wind measurements, utilizing coherent Doppler wind lidar technique and carbon dioxide measurements, utilizing Differential Absorption Lidar (DIAL) technique. Significant advancements have been made towards developing state-of-the-art technologies towards laser transmitters, detectors, and receiver systems. These efforts have led to the development of solid-state lasers with high pulse energy, tunablility, wavelength-stability, and double-pulsed operation. This paper will present a review of these technological developments along with examples of high resolution wind and high precision CO2 DIAL measurements in the atmosphere. Plans for the development of compact high power lasers for applications in airborne and future space platforms for wind and regional to global scale measurement of atmospheric CO2 will also be discussed.

  10. Optical analysis of the star-tracker telescope for Gravity Probe

    NASA Technical Reports Server (NTRS)

    Zissa, D. E.

    1984-01-01

    A ray tracing modeling of the star tracker telescope for Gravity Probe was used to predict the character of the output signal and its sensitivity to fabrication errors. In particular, the impact of the optical subsystem on the requirement of 1 milliarc second signal linearity over a + or - 50 milliarc second range was examined. Photomultiplier and solid state detector options were considered. Recommendations are made.

  11. A dc amplifier for nuclear particle measurement

    NASA Technical Reports Server (NTRS)

    Macnee, A. B.; Masnari, N. A.

    1978-01-01

    A monolithic preamplifier-postamplifier combination has been developed for use with solid state particle detectors. The direct coupled amplifiers employ interdigitated n-channel JFET's, diodes, and diffused resistors. The circuits developed demonstrate the feasibility of matching the performance of existing discrete component designs. The fabrication procedures for the monolithic amplifier fabrication are presented and the results of measurements on a limited number of sample amplifiers are given.

  12. Photon-Number-Resolving Transition-Edge Sensors for the Metrology of Quantum Light Sources

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; von Helversen, M.; López, M.; Gericke, F.; Schlottmann, E.; Heindel, T.; Kück, S.; Reitzenstein, S.; Beyer, J.

    2018-05-01

    Low-temperature photon-number-resolving detectors allow for direct access to the photon number distribution of quantum light sources and can thus be exploited to explore the photon statistics, e.g., solid-state-based non-classical light sources. In this work, we report on the setup and calibration of a detection system based on fiber-coupled tungsten transition-edge sensors (W-TESs). Our stand-alone system comprises two W-TESs, read out by two 2-stage-SQUID current sensors, operated in a compact detector unit that is integrated in an adiabatic demagnetization refrigerator. Fast low-noise analog amplifiers and digitizers are used for signal acquisition. The detection efficiency of the single-mode fiber-coupled detector system in the spectral region of interest (850-950 nm) is determined to be larger than 87 %. The presented detector system opens up new routes in the characterization of quantum light sources for quantum information, quantum-enhanced sensing and quantum metrology.

  13. CdZnTe γ detector for deep inelastic neutron scattering on the VESUVIO spectrometer

    NASA Astrophysics Data System (ADS)

    Andreani, C.; D'Angelo, A.; Gorini, G.; Imberti, S.; Pietropaolo, A.; Rhodes, N. J.; Schooneveld, E. M.; Senesi, R.; Tardocchi, M.

    In this paper it is shown that solid-state cadmium-zinc-telluride (CZT) is a promising photon detector for neutron spectroscopy in a wide energy interval, ranging from thermal ( 25 meV) to epithermal ( 70 eV) neutron energies. In the present study two CZT detectors were tested as part of the inverse-geometry neutron spectrometer VESUVIO operating at the ISIS pulsed neutron source. The response of the CZT detector to photon emission from radiative neutron capture in 238U was determined by biparametric measurements of neutron time of flight and photon energy. The scattering response function F(y) from a Pb sample has been derived using both CZT and conventional 6Li-glass scintillator detectors. The former showed both an improved signal to background ratio and higher efficiency as compared to 6Li glass, allowing us to measure F(y) up to the fourth 238U absorption energy (Er=66.02 eV). Due to the small size of CZT detectors, their use is envisaged in arrays, with high spatial resolution, for neutron-scattering studies at high energy (ω>1 eV) and low wavevector (q <10 Å-1) transfers.

  14. Elemental X-ray Imaging Using the Maia Detector Array: The Benefits and Challenges of Large Solid-Angle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, C.G.; De Geronimo, G.; Kirkham, R.

    2009-11-13

    The fundamental parameter method for quantitative SXRF and PIXE analysis and imaging using the dynamic analysis method is extended to model the changing X-ray yields and detector sensitivity with angle across large detector arrays. The method is implemented in the GeoPIXE software and applied to cope with the large solid-angle of the new Maia 384 detector array and its 96 detector prototype developed by CSIRO and BNL for SXRF imaging applications at the Australian and NSLS synchrotrons. Peak-to-background is controlled by mitigating charge-sharing between detectors through careful optimization of a patterned molybdenum absorber mask. A geological application demonstrates the capabilitymore » of the method to produce high definition elemental images up to {approx}100 M pixels in size.« less

  15. HVI-Test Setup for Debris Detector Verification

    NASA Astrophysics Data System (ADS)

    Bauer, Waldemar; Romberg, Oliver; Wiedemann, Carsten; Putzar, Robin; Drolshagen, Gerhard; Vorsmann, Peter

    2013-08-01

    Risk assessment concerning impacting space debris or micrometeoroids with spacecraft or payloads can be performed by using environmental models such as MASTER (ESA) or ORDEM (NASA). The validation of such models is performed by comparison of simulated results with measured data. Such data can be obtained from ground-based or space-based radars or telescopes, or by analysis of space hardware (e.g. Hubble Space Telescope, Space Shuttle Windows), which are retrieved from orbit. An additional data source is in-situ impact detectors, which are purposed for the collection of space debris and micrometeoroids impact data. In comparison to the impact data gained by analysis of the retrieved surfaces, the detected data contains additional information regarding impact time and orbit. In the past, many such in-situ detectors have been developed, with different measurement methods for the identification and classification of impacting objects. However, existing detectors have a drawback in terms of data acquisition. Generally the detection area is small, limiting the collected data as the number of recorded impacts has a linear dependence to the exposed area. An innovative impact detector concept is currently under development at the German Aerospace Centre (DLR) in Bremen, in order to increase the surface area while preserving the advantages offered by dedicated in-situ impact detectors. The Solar Generator based Impact Detector (SOLID) is not an add-on component on the spacecraft, making it different to all previous impact detectors. SOLID utilises existing subsystems of the spacecraft and adapts them for impact detection purposes. Solar generators require large panel surfaces in order to provide the spacecraft with sufficient energy. Therefore, the spacecraft solar panels provide a perfect opportunity for application as impact detectors. Employment of the SOLID method in several spacecraft in various orbits would serve to significantly increase the spatial coverage concerning space debris and micrometeoroids. In this way, the SOLID method will allow the generation of a large amount of impact data for environmental model validation. The ground verification of the SOLID method was performed at Fraunhofer EMI. For this purpose, a test model was developed. This paper focuses on the test methodology and development of the Hypervelocity Impact (HVI) test setup, including pretesting at the German Aerospace Centre (DLR), Bremen. Foreseen hardware and software for the automatic damage assessment of the detector after the impact are also presented.

  16. A scintillator-based online detector for the angularly resolved measurement of laser-accelerated proton spectra.

    PubMed

    Metzkes, J; Karsch, L; Kraft, S D; Pawelke, J; Richter, C; Schürer, M; Sobiella, M; Stiller, N; Zeil, K; Schramm, U

    2012-12-01

    In recent years, a new generation of high repetition rate (~10 Hz), high power (~100 TW) laser systems has stimulated intense research on laser-driven sources for fast protons. Considering experimental instrumentation, this development requires online diagnostics for protons to be added to the established offline detection tools such as solid state track detectors or radiochromic films. In this article, we present the design and characterization of a scintillator-based online detector that gives access to the angularly resolved proton distribution along one spatial dimension and resolves 10 different proton energy ranges. Conceived as an online detector for key parameters in laser-proton acceleration, such as the maximum proton energy and the angular distribution, the detector features a spatial resolution of ~1.3 mm and a spectral resolution better than 1.5 MeV for a maximum proton energy above 12 MeV in the current design. Regarding its areas of application, we consider the detector a useful complement to radiochromic films and Thomson parabola spectrometers, capable to give immediate feedback on the experimental performance. The detector was characterized at an electrostatic Van de Graaff tandetron accelerator and tested in a laser-proton acceleration experiment, proving its suitability as a diagnostic device for laser-accelerated protons.

  17. Realization of highly efficient hexagonal boron nitride neutron detectors

    DOE PAGES

    Maity, A.; Doan, T. C.; Li, J.; ...

    2016-08-16

    Here, we report the achievement of highly efficient 10B enriched hexagonal boron nitride (h- 10BN) direct conversion neutron detectors. These detectors were realized from freestanding 4-in. diameter h- 10BN wafers 43 μm in thickness obtained from epitaxy growth and subsequent mechanical separation from sapphire substrates. Both sides of the film were subjected to ohmic contact deposition to form a simple vertical “photoconductor-type” detector. Transport measurements revealed excellent vertical transport properties including high electrical resistivity (>10 13 Ω cm) and mobility-lifetime (μτ) products. A much larger μτ product for holes compared to that of electrons along the c-axis of h- BNmore » was observed, implying that holes (electrons) behave like majority (minority) carriers in undoped h- BN. Exposure to thermal neutrons from a californium-252 ( 252Cf) source moderated by a high density polyethylene moderator reveals that 43 μm h- 10BN detectors possess 51.4% detection efficiency at a bias voltage of 400 V, which is the highest reported efficiency for any semiconductor-based neutron detector. The results point to the possibility of obtaining highly efficient, compact solid-state neutron detectors with high gamma rejection and low manufacturing and maintenance costs.« less

  18. Controlling alpha tracks registration in Makrofol DE 1-1 detector

    NASA Astrophysics Data System (ADS)

    Hassan, N. M.; Hanafy, M. S.; Naguib, A.; El-Saftawy, A. A.

    2017-09-01

    Makrofol DE 1-1 is a recent type of solid state nuclear track detectors could be used to measure radon concentration in the environment throughout the detection of α-particles emitted from radon decay. Thus, studying the physical parameters that control the formation of alpha tracks is vital for environmental radiation protection. Makrofol DE 1-1 polycarbonate detector was irradiated by α-particles of energies varied from 2 to 5 MeV emitted from the 241Am source of α-particle energy of 5.5 MeV. Then, the detector was etched in an optimum etching solution of mixed ethyl alcohol in KOH aqueous solution of (85% (Vol.) of 6 M KOH + 15% (Vol.) C2H5OH) at 50 °C for 3 h. Afterward, the bulk etch rate, etching sensitivity, and the registration efficiency of the detector, which control the tracks registration, were measured. The bulk etch rate of Makrofol detector was found to be 3.71 ± 0.71 μm h-1. The etching sensitivity and the detector registration efficiency were decreased exponentially with α-particles' energies following Bragg curve. A precise registration of α-particle was presented in this study. Therefore, Makrofol DE 1-1 can be applied as a radiation dosimeter as well as radon and thoron monitors.

  19. [Neutron Dosimetry System Using CR-39 for High-energy X-ray Radiation Therapy].

    PubMed

    Yabuta, Kazutoshi; Monzen, Hajime; Tamura, Masaya; Tsuruta, Takao; Itou, Tetsuo; Nohtomi, Akihiro; Nishimura, Yasumasa

    2014-01-01

    Neutrons are produced during radiation treatment by megavolt X-ray energies. However, it is difficult to measure neutron dose especially just during the irradiation. Therefore, we have developed a system for measuring neutrons with the solid state track detector CR-39, which is free from the influence of the X-ray beams. The energy spectrum of the neutrons was estimated by a Monte Carlo simulation method, and the estimated neutron dose was corrected by the contribution ratio of each energy. Pit formation rates of CR-39 ranged from 2.3 x 10(-3) to 8.2 x 10(-3) for each detector studied. According to the estimated neutron energy spectrum, the energy values for calibration were 144 keV and 515keV, and the contribution ratios were approximately 40:60 for 10 MV photons and 20:70 for photons over 15 MV. Neutron doses measured in the center of a high-energy X-ray field were 0.045 mSv/Gy for a 10 MV linear accelerator and 0.85 mSv/Gy for a 20 MV linear accelerator. We successfully developed the new neutron dose measurement system using the solid track detector, CR-39. This on-time neutron measurement system allows users to measure neutron doses produced in the radiation treatment room more easily.

  20. On the evaluation of silicon photomultipliers for use as photosensors in liquid xenon detectors

    DOE PAGES

    Godfrey, B.; Anderson, T.; Breedon, E.; ...

    2018-03-26

    Silicon photomultipliers (SiPMs) are potential solid-state alternatives to traditional photomultiplier tubes (PMTs) for single-photon detection. In this paper, we report on evaluating SensL MicroFC-10035-SMT SiPMs for their suitability as PMT alternatives. The devices were successfully operated in a liquid-xenon detector, which demonstrates that SiPMs can be used in noble element time projection chambers as photosensors. The devices were also cooled down to 170 K to observe dark count dependence on temperature. No dependencies on the direction of an applied 3.2 kV/cm electric field were observed with respect to dark-count rate, gain, or photon detection efficiency.

  1. Solid state TL detectors for in vivo dosimetry in brachytherapy.

    PubMed

    Gambarini, G; Borroni, M; Grisotto, S; Maucione, A; Cerrotta, A; Fallai, C; Carrara, M

    2012-12-01

    In vivo dosimetry provides information about the actual dose delivered to the patient treated with radiotherapy and can be adopted within a routinary treatment quality assurance protocol. Aim of this study was to evaluate the feasibility of performing in vivo rectal dosimetry by placing thermoluminescence detectors directly on the transrectal ultrasound probe adopted for on-line treatment planning of high dose rate brachytherapy boosts of prostate cancer patients. A suitable protocol for TLD calibration has been set up. In vivo measurements resulted to be in good agreement with the calculated doses, showing that the proposed method is feasible and returns accurate results. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Comparison of radon doses based on different radon monitoring approaches.

    PubMed

    Vaupotič, Janja; Smrekar, Nataša; Žunić, Zora S

    2017-04-01

    In 43 places (23 schools, 3 kindergartens, 16 offices and one dwelling), indoor radon has been monitored as an intercomparison experiment, using α-scintillation cells (SC - Jožef Stefan Institute, Slovenia), various kinds of solid state nuclear track detectors (KfK - Karlsruhe Institute of Technology, Germany; UFO - National Institute of Radiological Sciences, Chiba, Japan; RET - University College Dublin, Ireland) and active electronic devices (EQF, Sarad, Germany). At the same place, the radon levels and, consequently, the effective doses obtained with different radon devices differed substantially (by a factor of 2 or more), and no regularity was observed as regards which detector would show a higher or lower dose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. On the evaluation of silicon photomultipliers for use as photosensors in liquid xenon detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godfrey, B.; Anderson, T.; Breedon, E.

    Silicon photomultipliers (SiPMs) are potential solid-state alternatives to traditional photomultiplier tubes (PMTs) for single-photon detection. In this paper, we report on evaluating SensL MicroFC-10035-SMT SiPMs for their suitability as PMT alternatives. The devices were successfully operated in a liquid-xenon detector, which demonstrates that SiPMs can be used in noble element time projection chambers as photosensors. The devices were also cooled down to 170 K to observe dark count dependence on temperature. No dependencies on the direction of an applied 3.2 kV/cm electric field were observed with respect to dark-count rate, gain, or photon detection efficiency.

  4. FOXSI-2: Upgrades of the Focusing Optics X-ray Solar Imager for its Second Flight

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Glesener, Lindsay; Buitrago-Casas, Camilo; Ishikawa, Shin-Nosuke; Ramsey, Brian; Gubarev, Mikhail; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Watanabe, Shin; Takahashi, Tadayuki; Tajima, Hiroyasu; Turin, Paul; Shourt, Van; Foster, Natalie; Krucker, Sam

    2016-03-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload flew for the second time on 2014 December 11. To enable direct Hard X-Ray (HXR) imaging spectroscopy, FOXSI makes use of grazing-incidence replicated focusing optics combined with fine-pitch solid-state detectors. FOXSI’s first flight provided the first HXR focused images of the Sun. For FOXSI’s second flight several updates were made to the instrument including updating the optics and detectors as well as adding a new Solar Aspect and Alignment System (SAAS). This paper provides an overview of these updates as well as a discussion of their measured performance.

  5. Dosimetry in radiobiological studies with the heavy ion beam of the Warsaw cyclotron

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, U.; Banaś, D.; Braziewicz, J.; Czub, J.; Jaskóła, M.; Korman, A.; Kruszewski, M.; Lankoff, A.; Lisowska, H.; Malinowska, A.; Stępkowski, T.; Szefliński, Z.; Wojewódzka, M.

    2015-12-01

    The aim of this study was to verify various dosimetry methods in the irradiation of biological materials with a 12C ion beam at the Heavy Ion Laboratory of the University of Warsaw. To this end the number of ions hitting the cell nucleus, calculated on the basis of the Si-detector system used in the set-up, was compared with the number of ion tracks counted in irradiated Solid State Nuclear Track Detectors and with the number of ion tracks detected in irradiated Chinese Hamster Ovary cells processed for the γ-H2AX assay. Tests results were self-consistent and confirmed that the system serves its dosimetric purpose.

  6. Semiconducting boron carbide polymers devices for neutron detection

    NASA Astrophysics Data System (ADS)

    Echeverria, Elena; Pasquale, Frank L.; James, Robinson; Colón Santana, Juan A.; Adenwalla, Shireen; Kelber, Jeffry A.; Dowben, Peter A.

    2014-03-01

    Boron carbide materials, with aromatic compounds included, prove to be effective materials as solid state neutron detector detectors. The I-V characteristic curves for these heterojunction diodes with silicon show that these modified boron carbides, in the presence of these linking groups such as 1,4-diaminobenzene (DAB) and pyridine, are p-type. Cadmium was used as shield to discriminate between neutron-induced signals and thermal neutrons, and thermal neutron capture is evident, while gamma detection was not realized. Neutron detection signals for these heterojunction diode were observed, a measurable zero bias current noted, even without complete electron-hole collection. This again illustrates that boron carbide devices can be considered a neutron voltaic.

  7. Alkali Halide Microstructured Optical Fiber for X-Ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, S. L.; Wincheski, R. A.; Albin, S.

    2014-01-01

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phipps, Arran T.J.

    Determining the composition of dark matter is at the forefront of modern scientific research. There is compelling evidence for the existence of vast quantities of dark matter throughout the universe, however it has so-far eluded all direct detection efforts and its identity remains a mystery. Weakly interacting massive particles (WIMPs) are a favored dark matter candidate and have been the primary focus of direct detection for several decades. The Cryogenic Dark Matter Search (CDMS) has developed the Z-dependent Ionization and Phonon (ZIP) detector to search for such particles. Typically made from germanium, these detectors are capable of distinguishing between electromagneticmore » background and a putative WIMP signal through the simultaneous measurement of ionization and phonons produced by scattering events. CDMS has operated several arrays of these detectors at the Soudan Underground Laboratory (Soudan, MN, USA) resulting in many competitive (often world-leading) WIMP exclusion limits. This dissertation focuses on ionization collection in these detectors under the sub-Kelvin, low electric field, and high crystal purity conditions unique to CDMS. The design and performance of a fully cryogenic HEMT-based amplifier capable of achieving the SuperCDMS SNOLAB ionization energy resolution goal of 100 eVee is presented. The experimental apparatus which has been used to record electron and hole properties under CDMS conditions is described. Measurements of charge transport, trapping, and impact ionization as a function of electric field in two CDMS detectors are shown, and the ionization collection efficiency is determined. The data is used to predict the error in the nuclear recoil energy scale under both CDMSlite and iZIP operating modes. A two species, two state model is developed to describe how ionization collection and space charge generation in CDMS detectors are controlled by the presence of “overcharged” D- donor and A+ acceptor impurity states. The thermal stability of these states is exclusive to sub-Kelvin operation, explaining why ionization collection in CDMS detectors differs from similar semiconductor detectors operating at higher temperature. This work represents a solid foundation for the understanding ionization collection in CDMS detectors.« less

  9. Characterization of Geiger mode avalanche photodiodes for fluorescence decay measurements

    NASA Astrophysics Data System (ADS)

    Jackson, John C.; Phelan, Don; Morrison, Alan P.; Redfern, R. Michael; Mathewson, Alan

    2002-05-01

    Geiger mode avalanche photodiodes (APD) can be biased above the breakdown voltage to allow detection of single photons. Because of the increase in quantum efficiency, magnetic field immunity, robustness, longer operating lifetime and reduction in costs, solid-state detectors capable of operating at non-cryogenic temperatures and providing single photon detection capabilities provide attractive alternatives to the photomultiplier tube (PMT). Shallow junction Geiger mode APD detectors provide the ability to manufacture photon detectors and detector arrays with CMOS compatible processing steps and allows the use of novel Silicon-on-Insulator(SoI) technology to provide future integrated sensing solutions. Previous work on Geiger mode APD detectors has focused on increasing the active area of the detector to make it more PMT like, easing the integration of discrete reaction, detection and signal processing into laboratory experimental systems. This discrete model for single photon detection works well for laboratory sized test and measurement equipment, however the move towards microfluidics and systems on a chip requires integrated sensing solutions. As we move towards providing integrated functionality of increasingly nanoscopic sized emissions, small area detectors and detector arrays that can be easily integrated into marketable systems, with sensitive small area single photon counting detectors will be needed. This paper will demonstrate the 2-dimensional and 3-dimensional simulation of optical coupling that occurs in Geiger mode APDs. Fabricated Geiger mode APD detectors optimized for fluorescence decay measurements were characterized and preliminary results show excellent results for their integration into fluorescence decay measurement systems.

  10. Unattended Radiation Sensor Systems for Remote Terrestrial Applications and Nuclear Nonproliferation

    DTIC Science & Technology

    2002-01-01

    liquid nitrogen is not available, or frequent attention is inconvenient and time-consuming. The “box” section contains a Stirling engine cryocooler and...sponsorship of the Defense Threat Reduction Agency (DTRA). The first is a system consisting of a mechanical cryocooler coupled with a high-purity...amplifier, a multichannel analyzer, and gated integrator electronics to process the slow signal pulses generated by room temperature solid state detectors

  11. Uses of continuum radiation in the AXAF calibration

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, J. J.; Austin, R. A.; Elsner, R. F.; O'Dell, S. L.; Sulkanen, M. E.; Swartz, D. A.; Tennant, A. F.; Weisskopf, M. C.; Zirnstein, G.; McDermott, W. C.

    1997-01-01

    X-ray calibration of the Advanced X-ray Astrophysics Facility (AXAF) observatory at the MSFC X-Ray Calibration Facility (XRCF) made novel use of the x-ray continuum from a conventional electron-impact source. Taking advantage of the good spectral resolution of solid-state detectors, continuum measurements proved advantageous in calibrating the effective area of AXAF's High-Resolution Mirror Assembly (HRMA) and in verifying its alignment to the XRCF's optical axis.

  12. Radiological and Nuclear Detection Material Science: Novel Rare-Earth Semiconductors for Solid-State Neutron Detectors and Thin High-k Dielectrics

    DTIC Science & Technology

    2017-11-01

    Department of Physics and Astronomy , University of Nebraska Now post-doctoral associate, Department of Physics, University of California - Riverside...9320 Peter A. Dowben, Charles Bessey Professor of Physics, Nebraska Center for Materials and Nanoscience, Department of Physics and Astronomy ...pdowben@unl.edu Kirill D. Belashchenko, Associate Professor, Nebraska Center for Materials and Nanoscience, Department of Physics and Astronomy

  13. Infrared heterodyne spectroscopy for astronomical purposes. [laser applications

    NASA Technical Reports Server (NTRS)

    Townes, C. H.

    1978-01-01

    Heterodyne infrared astronomy was carried out using CO2 lasers and some solid state tunable lasers. The best available detectors are mercury cadmium telluride photodiodes. Their quantum efficiencies reach values near 0.5 and in an overall system an effective quantum efficiency, taking into account optical losses and amplifier noise, of about 0.25 was demonstrated. Initial uses of 10 micron heterodyne spectroscopy were for the study of planetary molecular spectra.

  14. Photodynamics and Physics behind Tunable Solid-State Lasers

    DTIC Science & Technology

    1991-02-28

    a fraction of the probe pulse with a beam - splitter - detector combination, is necessary to account for the pulse-tCKpulse energy fluctuation. To...was monitored with a beam splitter and a fast germanium photodiode Dj. The transmitted probe beam was analyzed by a 1/4-meter spectrometer and its...decision, unless so designated by other documentation. 12a. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited

  15. Gadolinium Oxide / Silicon Thin Film Heterojunction Solid-State Neutron Detector

    DTIC Science & Technology

    2010-03-01

    PRODUCED AS A MEDICAL APPLICATOR SHOWN IN „A‟. THE SOURCE, PICTURED IN „B‟ HAS A PLASTIC SHIELD THAT SLIDES UP AND DOWN THE SHAFT WHICH IS DESIGNED TO...down the shaft which is designed to shield the operator from radiation. The source is sitting head-down and is covered by a thick aluminum shield for...EXPERIMENT, RESULTS, AND ANALYSIS ........................................................ 37 4.1 Experimental Design & Apparatus

  16. A New Method for Growth and Analysis of Next-generation Infrared (IR) Detector Materials

    DTIC Science & Technology

    2009-03-01

    N) into the group V sites of the semiconductor lattice. Until recently the highest concentration of nitrogen reported in GaSb1– xNx was 1.75% (2...Adams, A. R.; Andreev, A.; Murdin, B. N.; O’Reilly, E. P.; Pidgeon, C. R. InSb1− xNx Growth and Devices. Solid-State Electronics 47 2003, 3, 387–394

  17. Microchannel plate special nuclear materials sensor

    NASA Astrophysics Data System (ADS)

    Feller, W. B.; White, P. L.; White, P. B.; Siegmund, O. H. W.; Martin, A. P.; Vallerga, J. V.

    2011-10-01

    Nova Scientific Inc., is developing for the Domestic Nuclear Detection Office (DNDO SBIR #HSHQDC-08-C-00190), a solid-state, high-efficiency neutron detection alternative to 3He gas tubes, using neutron-sensitive microchannel plates (MCPs) containing 10B and/or Gd. This work directly supports DNDO development of technologies designed to detect and interdict nuclear weapons or illicit nuclear materials. Neutron-sensitized MCPs have been shown theoretically and more recently experimentally, to be capable of thermal neutron detection efficiencies equivalent to 3He gas tubes. Although typical solid-state neutron detectors typically have an intrinsic gamma sensitivity orders of magnitude higher than that of 3He gas detectors, we dramatically reduce gamma sensitivity by combining a novel electronic coincidence rejection scheme, employing a separate but enveloping gamma scintillator. This has already resulted in a measured gamma rejection ratio equal to a small 3He tube, without in principle sacrificing neutron detection efficiency. Ongoing improvements to the MCP performance as well as the coincidence counting geometry will be described. Repeated testing and validation with a 252Cf source has been underway throughout the Phase II SBIR program, with ongoing comparisons to a small commercial 3He gas tube. Finally, further component improvements and efforts toward integration maturity are underway, with the goal of establishing functional prototypes for SNM field testing.

  18. Single-Photon Detectors for Time-of-Flight Range Imaging

    NASA Astrophysics Data System (ADS)

    Stoppa, David; Simoni, Andrea

    We live in a three-dimensional (3D) world and thanks to the stereoscopic vision provided by our two eyes, in combination with the powerful neural network of the brain we are able to perceive the distance of the objects. Nevertheless, despite the huge market volume of digital cameras, solid-state image sensors can capture only a two-dimensional (2D) projection, of the scene under observation, losing a variable of paramount importance, i.e., the scene depth. On the contrary, 3D vision tools could offer amazing possibilities of improvement in many areas thanks to the increased accuracy and reliability of the models representing the environment. Among the great variety of distance measuring techniques and detection systems available, this chapter will treat only the emerging niche of solid-state, scannerless systems based on the TOF principle and using a detector SPAD-based pixels. The chapter is organized into three main parts. At first, TOF systems and measuring techniques will be described. In the second part, most meaningful sensor architectures for scannerless TOF distance measurements will be analyzed, focusing onto the circuital building blocks required by time-resolved image sensors. Finally, a performance summary is provided and a perspective view for the near future developments of SPAD-TOF sensors is given.

  19. Physics of sub-micron cosmic dust particles

    NASA Technical Reports Server (NTRS)

    Roy, N. L.

    1974-01-01

    Laboratory tests with simulated micrometeoroids to measure the heat transfer coefficient are discussed. Equations for ablation path length for electrically accelerated micrometeoroids entering a gas target are developed which yield guidelines for the laboratory measurement of the heat transfer coefficient. Test results are presented for lanthanum hexaboride (LaB sub 6) microparticles in air, argon, and oxygen targets. The tests indicate the heat transfer coefficient has a value of approximately 0.9 at 30 km/sec, and that it increases to approximately unity at 50 km/sec and above. Test results extend to over 100 km/sec. Results are also given for two types of small particle detectors. A solid state capacitor type detector was tested from 0.61 km/sec to 50 km/sec. An impact ionization type detector was tested from 1.0 to 150 km/sec using LaB sub 6 microparticles.

  20. A portable fluorescence detector for fast ultra trace detection of explosive vapors

    NASA Astrophysics Data System (ADS)

    Xin, Yunhong; He, Gang; Wang, Qi; Fang, Yu

    2011-10-01

    This paper developed a portable detector based on a specific material-based fluorescent sensing film for an ultra trace detection of explosives, such as 2,4,6-trinitrotoluene (TNT) or its derivate 2,4-dinitrotoluene (DNT), in ambient air or on objects tainted by explosives. The fluorescent sensing films are based on single-layer chemistry and the signal amplification effect of conjugated polymers, which exhibited higher sensitivity and shorter response time to TNT or DNT at their vapor pressures. Due to application of the light emitting diode and the solid state photomultiplier and the cross-correlation-based circuit design technology, the device has the advantages of low-power, low-cost, small size, and an improved signal to noise ratio. The results of the experiments showed that the detector can real-time detect and identify of explosive vapors at extremely low levels; it is suitable for the identification of suspect luggage, forensic analyses, or battlefields clearing.

  1. Graphene field-effect transistors as room-temperature terahertz detectors.

    PubMed

    Vicarelli, L; Vitiello, M S; Coquillat, D; Lombardo, A; Ferrari, A C; Knap, W; Polini, M; Pellegrini, V; Tredicucci, A

    2012-10-01

    The unique optoelectronic properties of graphene make it an ideal platform for a variety of photonic applications, including fast photodetectors, transparent electrodes in displays and photovoltaic modules, optical modulators, plasmonic devices, microcavities, and ultra-fast lasers. Owing to its high carrier mobility, gapless spectrum and frequency-independent absorption, graphene is a very promising material for the development of detectors and modulators operating in the terahertz region of the electromagnetic spectrum (wavelengths in the hundreds of micrometres), still severely lacking in terms of solid-state devices. Here we demonstrate terahertz detectors based on antenna-coupled graphene field-effect transistors. These exploit the nonlinear response to the oscillating radiation field at the gate electrode, with contributions of thermoelectric and photoconductive origin. We demonstrate room temperature operation at 0.3 THz, showing that our devices can already be used in realistic settings, enabling large-area, fast imaging of macroscopic samples.

  2. A portable fluorescence detector for fast ultra trace detection of explosive vapors.

    PubMed

    Xin, Yunhong; He, Gang; Wang, Qi; Fang, Yu

    2011-10-01

    This paper developed a portable detector based on a specific material-based fluorescent sensing film for an ultra trace detection of explosives, such as 2,4,6-trinitrotoluene (TNT) or its derivate 2,4-dinitrotoluene (DNT), in ambient air or on objects tainted by explosives. The fluorescent sensing films are based on single-layer chemistry and the signal amplification effect of conjugated polymers, which exhibited higher sensitivity and shorter response time to TNT or DNT at their vapor pressures. Due to application of the light emitting diode and the solid state photomultiplier and the cross-correlation-based circuit design technology, the device has the advantages of low-power, low-cost, small size, and an improved signal to noise ratio. The results of the experiments showed that the detector can real-time detect and identify of explosive vapors at extremely low levels; it is suitable for the identification of suspect luggage, forensic analyses, or battlefields clearing.

  3. Commissioning of the NPDGamma Detector Array: Counting Statistics in Current Mode Operation and Parity Violation in the Capture of Cold Neutrons on B 4 C and (27) Al.

    PubMed

    Gericke, M T; Bowman, J D; Carlini, R D; Chupp, T E; Coulter, K P; Dabaghyan, M; Desai, D; Freedman, S J; Gentile, T R; Gillis, R C; Greene, G L; Hersman, F W; Ino, T; Ishimoto, S; Jones, G L; Lauss, B; Leuschner, M B; Losowski, B; Mahurin, R; Masuda, Y; Mitchell, G S; Muto, S; Nann, H; Page, S A; Penttila, S I; Ramsay, W D; Santra, S; Seo, P-N; Sharapov, E I; Smith, T B; Snow, W M; Wilburn, W S; Yuan, V; Zhu, H

    2005-01-01

    The NPDGamma γ-ray detector has been built to measure, with high accuracy, the size of the small parity-violating asymmetry in the angular distribution of gamma rays from the capture of polarized cold neutrons by protons. The high cold neutron flux at the Los Alamos Neutron Scattering Center (LANSCE) spallation neutron source and control of systematic errors require the use of current mode detection with vacuum photodiodes and low-noise solid-state preamplifiers. We show that the detector array operates at counting statistics and that the asymmetries due to B4C and (27)Al are zero to with- in 2 × 10(-6) and 7 × 10(-7), respectively. Boron and aluminum are used throughout the experiment. The results presented here are preliminary.

  4. Automatic methods of the processing of data from track detectors on the basis of the PAVICOM facility

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. B.; Goncharova, L. A.; Davydov, D. A.; Publichenko, P. A.; Roganova, T. M.; Polukhina, N. G.; Feinberg, E. L.

    2007-02-01

    New automatic methods essentially simplify and increase the rate of the processing of data from track detectors. This provides a possibility of processing large data arrays and considerably improves their statistical significance. This fact predetermines the development of new experiments which plan to use large-volume targets, large-area emulsion, and solid-state track detectors [1]. In this regard, the problem of training qualified physicists who are capable of operating modern automatic equipment is very important. Annually, about ten Moscow students master the new methods, working at the Lebedev Physical Institute at the PAVICOM facility [2 4]. Most students specializing in high-energy physics are only given an idea of archaic manual methods of the processing of data from track detectors. In 2005, on the basis of the PAVICOM facility and the physicstraining course of Moscow State University, a new training work was prepared. This work is devoted to the determination of the energy of neutrons passing through a nuclear emulsion. It provides the possibility of acquiring basic practical skills of the processing of data from track detectors using automatic equipment and can be included in the educational process of students of any physical faculty. Those who have mastered the methods of automatic data processing in a simple and pictorial example of track detectors will be able to apply their knowledge in various fields of science and technique. Formulation of training works for pregraduate and graduate students is a new additional aspect of application of the PAVICOM facility described earlier in [4].

  5. New Generation Lidar Technology and Applications

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1999-01-01

    Lidar has been a tool for atmospheric research for several decades. Until recently routine operational use of lidar was not known. Problems have involved a lack of appropriate technology rather than a lack of applications. Within the last few years, lidar based on a new generation of solid state lasers and detectors have changed the situation. Operational applications for cloud and aerosol research applications are now well established. In these research applications, the direct height profiling capability of lidar is typically an adjunct to other types of sensing, both passive and active. Compact eye safe lidar with the sensitivity for ground based monitoring of all significant cloud and aerosol structure and the reliability to operate full time for several years is now in routine use. The approach is known as micro pulse lidar (MPL). For MPL the laser pulse repetition rate is in the kilohertz range and the pulse energies are in the micro-Joule range. The low pulse energy permits the systems to be eye safe and reliable with solid state lasers. A number of MPL systems have been deployed since 1992 at atmospheric research sites at a variety of global locations. Accurate monitoring of cloud and aerosol vertical distribution is a critical measurement for atmospheric radiation. An airborne application of lidar cloud and aerosol profiling is retrievals of parameters from combined lidar and passive sensing involving visible, infrared and microwave frequencies. A lidar based on a large pulse, solid state diode pumped ND:YAG laser has been deployed on the NASA ER-2 high altitude research aircraft along with multi-spectral visible/IR and microwave imaging radiometers since 1993. The system has shown high reliability in an extensive series of experimental projects for cloud remote sensing. The retrieval of cirrus radiation parameters is an effective application for combined lidar and passive sensing. An approved NASA mission will soon begin long term lidar observation of atmospheric structure from space. The Geoscience Laser Altimeter System (GLAS) of the Earth Observing System is scheduled for deployment in the 2001 time frame. GLAS is both a cloud and aerosol lidar and a surface altimeter, principally for monitoring of polar ice sheets. The GLAS instrument is based on all solid state lasers operating at 40 Hz and high efficiency, solid state detectors. The design lifetime is three to five years. Data from the GLAS mission is expected to revolutionize some aspects of our understanding of the global distribution of cloud and aerosols for global climate prediction.

  6. Amperometric detector for gas chromatography based on a silica sol-gel solid electrolyte.

    PubMed

    Steinecker, William H; Miecznikowski, Krzysztof; Kulesza, Pawel J; Sandlin, Zechariah D; Cox, James A

    2017-11-01

    An electrochemical cell comprising a silica sol-gel solid electrolyte, a working electrode that protrudes into a gas phase, and reference and counter electrodes that contact the solid electrolyte comprises an amperometric detector for gas chromatography. Under potentiostatic conditions, a current related to the concentration of an analyte in the gas phase is produced by its oxidation at the three-phase boundary among the sol-gel, working electrode, and the gas phase. The sol-gel is processed to contain an electrolyte that also serves as a humidistat to maintain a constant water activity even in the presence the gas chromatographic mobile phase. Response was demonstrated toward a diverse set of analytes, namely hydrogen, 1,2-ethandithiol, phenol, p-cresol, and thioanisole. Using flow injection amperometry of hydrogen with He as the carrier gas, 90% of the steady-state current was achieved in < 1s at a flow rate of 20mLmin -1 . A separation of 1,2-ethandithiol, phenol, p-cresol, and thioanisole at a 2.2mLmin -1 flow rate was achieved with respective detection limits (k = 3 criterion) of 4, 1, 3, and 70 ppmv when the working electrode potential was 800mV. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. 2D mapping of the MV photon fluence and 3D dose reconstruction in real time for quality assurance during radiotherapy treatment

    NASA Astrophysics Data System (ADS)

    Alrowaili, Z. A.; Lerch, M. L. F.; Carolan, M.; Fuduli, I.; Porumb, C.; Petasecca, M.; Metcalfe, P.; Rosenfeld, A. B.

    2015-09-01

    Summary: the photon irradiation response of a 2D solid state transmission detector array mounted in a linac block tray is used to reconstruct the projected 2D dose map in a homogenous phantom along rays that diverge from the X-ray source and pass through each of the 121 detector elements. A unique diode response-to-dose scaling factor, applied to all detectors, is utilised in the reconstruction to demonstrate that real time QA during radiotherapy treatment is feasible. Purpose: to quantitatively demonstrate reconstruction of the real time radiation dose from the irradiation response of the 11×11 silicon Magic Plate (MP) detector array operated in Transmission Mode (MPTM). Methods and Materials: in transmission mode the MP is positioned in the block tray of a linac so that the central detector of the array lies on the central axis of the radiation beam. This central detector is used to determine the conversion factor from measured irradiation response to reconstructed dose at any point on the central axis within a homogenous solid water phantom. The same unique conversion factor is used for all MP detector elements lying within the irradiation field. Using the two sets of data, the 2D or 3D dose map is able to be reconstructed in the homogenous phantom. The technique we have developed is illustrated here for different depths and irradiation field sizes, (5 × 5 cm2 to 40 × 40 cm2) as well as a highly non uniform irradiation field. Results: we find that the MPTM response is proportional to the projected 2D dose map measured at a specific phantom depth, the "sweet depth". A single factor, for several irradiation field sizes and depths, is derived to reconstruct the dose in the phantom along rays projected from the photon source through each MPTM detector element. We demonstrate that for all field sizes using the above method, the 2D reconstructed and measured doses agree to within ± 2.48% (2 standard deviation) for all in-field MP detector elements. Conclusions: a 2D detector system and method to reconstruct the dose in a homogeneous phantom and in real time has been demonstrated. The success of this work is an exciting development toward real time QA during radiotherapy treatment.

  8. SOLID2: An Antibody Array-Based Life-Detector Instrument in a Mars Drilling Simulation Experiment (MARTE)

    NASA Astrophysics Data System (ADS)

    Parro, Víctor; Fernández-Calvo, Patricia; Rodríguez Manfredi, José A.; Moreno-Paz, Mercedes; Rivas, Luis A.; García-Villadangos, Miriam; Bonaccorsi, Rosalba; González-Pastor, José Eduardo; Prieto-Ballesteros, Olga; Schuerger, Andrew C.; Davidson, Mark; Gómez-Elvira, Javier; Stoker, Carol R.

    2008-10-01

    A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the Río Tinto area), and extracts from biofilms and other natural samples from the Río Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life.

  9. SOLID2: an antibody array-based life-detector instrument in a Mars Drilling Simulation Experiment (MARTE).

    PubMed

    Parro, Víctor; Fernández-Calvo, Patricia; Rodríguez Manfredi, José A; Moreno-Paz, Mercedes; Rivas, Luis A; García-Villadangos, Miriam; Bonaccorsi, Rosalba; González-Pastor, José Eduardo; Prieto-Ballesteros, Olga; Schuerger, Andrew C; Davidson, Mark; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the Río Tinto area), and extracts from biofilms and other natural samples from the Río Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life.

  10. Recent developments in PET detector technology

    PubMed Central

    Lewellen, Tom K

    2010-01-01

    Positron emission tomography (PET) is a tool for metabolic imaging that has been utilized since the earliest days of nuclear medicine. A key component of such imaging systems is the detector modules—an area of research and development with a long, rich history. Development of detectors for PET has often seen the migration of technologies, originally developed for high energy physics experiments, into prototype PET detectors. Of the many areas explored, some detector designs go on to be incorporated into prototype scanner systems and a few of these may go on to be seen in commercial scanners. There has been a steady, often very diverse development of prototype detectors, and the pace has accelerated with the increased use of PET in clinical studies (currently driven by PET/CT scanners) and the rapid proliferation of pre-clinical PET scanners for academic and commercial research applications. Most of these efforts are focused on scintillator-based detectors, although various alternatives continue to be considered. For example, wire chambers have been investigated many times over the years and more recently various solid-state devices have appeared in PET detector designs for very high spatial resolution applications. But even with scintillators, there have been a wide variety of designs and solutions investigated as developers search for solutions that offer very high spatial resolution, fast timing, high sensitivity and are yet cost effective. In this review, we will explore some of the recent developments in the quest for better PET detector technology. PMID:18695301

  11. History of infrared detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  12. The Focusing Optics X-ray Solar Imager (FOXSI) SMEX Mission

    NASA Astrophysics Data System (ADS)

    Christe, S.; Shih, A. Y.; Krucker, S.; Glesener, L.; Saint-Hilaire, P.; Caspi, A.; Allred, J. C.; Battaglia, M.; Chen, B.; Drake, J. F.; Gary, D. E.; Goetz, K.; Gburek, S.; Grefenstette, B.; Hannah, I. G.; Holman, G.; Hudson, H. S.; Inglis, A. R.; Ireland, J.; Ishikawa, S. N.; Klimchuk, J. A.; Kontar, E.; Kowalski, A. F.; Massone, A. M.; Piana, M.; Ramsey, B.; Schwartz, R.; Steslicki, M.; Turin, P.; Ryan, D.; Warmuth, A.; Veronig, A.; Vilmer, N.; White, S. M.; Woods, T. N.

    2017-12-01

    We present FOXSI (Focusing Optics X-ray Solar Imager), a Small Explorer (SMEX) Heliophysics mission that is currently undergoing a Phase A concept study. FOXSI will provide a revolutionary new perspective on energy release and particle acceleration on the Sun. FOXSI is a direct imaging X-ray spectrometer with higher dynamic range and better than 10x the sensitivity of previous instruments. Flown on a 3-axis-stabilized spacecraft in low-Earth orbit, FOXSI uses high-angular-resolution grazing-incidence focusing optics combined with state-of-the-art pixelated solid-state detectors to provide direct imaging of solar hard X-rays for the first time. FOXSI is composed of a pair of x-ray telescopes with a 14-meter focal length enabled by a deployable boom. Making use of a filter-wheel and high-rate-capable solid-state detectors, FOXSI will be able to observe the largest flares without saturation while still maintaining the sensitivity to detect x-ray emission from weak flares, escaping electrons, and hot active regions. This mission concept is made possible by past experience with similar instruments on two FOXSI sounding rocket flights, in 2012 and 2014, and on the HEROES balloon flight in 2013. FOXSI's hard X-ray imager has a field of view of 9 arcminutes and an angular resolution of better than 8 arcsec; it will cover the energy range from 3 up to 50-70 keV with a spectral resolution of better than 1 keV; and it will have sub-second temporal resolution.

  13. The Focusing Optics X-ray Solar Imager (FOXSI) SMEX Mission

    NASA Astrophysics Data System (ADS)

    Christe, S.; Shih, A. Y.; Krucker, S.; Glesener, L.; Saint-Hilaire, P.; Caspi, A.; Allred, J. C.; Battaglia, M.; Chen, B.; Drake, J. F.; Gary, D. E.; Goetz, K.; Grefenstette, B.; Hannah, I. G.; Holman, G.; Hudson, H. S.; Inglis, A. R.; Ireland, J.; Ishikawa, S. N.; Klimchuk, J. A.; Kontar, E.; Kowalski, A. F.; Massone, A. M.; Piana, M.; Ramsey, B.; Gubarev, M.; Schwartz, R. A.; Steslicki, M.; Ryan, D.; Turin, P.; Warmuth, A.; White, S. M.; Veronig, A.; Vilmer, N.; Dennis, B. R.

    2016-12-01

    We present FOXSI (Focusing Optics X-ray Solar Imager), a recently proposed Small Explorer (SMEX) mission that will provide a revolutionary new perspective on energy release and particle acceleration on the Sun. FOXSI is a direct imaging X-ray spectrometer with higher dynamic range and better than 10x the sensitivity of previous instruments. Flown on a 3-axis stabilized spacecraft in low-Earth orbit, FOXSI uses high-angular-resolution grazing-incidence focusing optics combined with state-of-the-art pixelated solid-state detectors to provide direct imaging of solar hard X-rays for the first time. FOXSI is composed of two individual x-ray telescopes with a 14-meter focal length enabled by a deployable boom. Making use of a filter-wheel and high-rate-capable solid-state detectors, FOXSI will be able to observe the largest flares without saturation while still maintaining the sensitivity to detect x-ray emission from weak flares, escaping electrons, and hot active regions. This SMEX mission is made possible by past experience with similar instruments on two sounding rocket flights, in 2012 and 2014, and on the HEROES balloon flight in 2013. FOXSI will image the Sun with a field of view of 9 arcminutes and an angular resolution of better than 8 arcsec; it will cover the energy range from 3 to 100 keV with a spectral resolution of better than 1 keV; and it will have sub-second temporal resolution.

  14. Test study of boron nitride as a new detector material for dosimetry in high-energy photon beams.

    PubMed

    Poppinga, D; Halbur, J; Lemmer, S; Delfs, B; Harder, D; Looe, H K; Poppe, B

    2017-09-05

    The aim of this test study is to check whether boron nitride (BN) might be applied as a detector material in high-energy photon-beam dosimetry. Boron nitride exists in various crystalline forms. Hexagonal boron nitride (h-BN) possesses high mobility of the electrons and holes as well as a high volume resistivity, so that ionizing radiation in the clinical range of the dose rate can be expected to produce a measurable electrical current at low background current. Due to the low atomic numbers of its constituents, its density (2.0 g cm -3 ) similar to silicon and its commercial availability, h-BN appears as possibly suitable for the dosimetry of ionizing radiation. Five h-BN plates were contacted to triaxial cables, and the detector current was measured in a solid-state ionization chamber circuit at an applied voltage of 50 V. Basic dosimetric properties such as formation by pre-irradiation, sensitivity, reproducibility, linearity and temporal resolution were measured with 6 MV photon irradiation. Depth dose curves at quadratic field sizes of 10 cm and 40 cm were measured and compared to ionization chamber measurements. After a pre-irradiation with 6 Gy, the devices show a stable current signal at a given dose rate. The current-voltage characteristic up to 400 V shows an increase in the collection efficiency with the voltage. The time-resolved detector current behavior during beam interrupts is comparable to diamond material, and the background current is negligible. The measured percentage depth dose curves at 10 cm  ×  10 cm field size agreed with the results of ionization chamber measurements within  ±2%. This is a first study of boron nitride as a detector material for high-energy photon radiation. By current measurements on solid ionization chambers made from boron nitride chips we could demonstrate that boron nitride is in principle suitable as a detector material for high-energy photon-beam dosimetry.

  15. Test study of boron nitride as a new detector material for dosimetry in high-energy photon beams

    NASA Astrophysics Data System (ADS)

    Poppinga, D.; Halbur, J.; Lemmer, S.; Delfs, B.; Harder, D.; Looe, H. K.; Poppe, B.

    2017-09-01

    The aim of this test study is to check whether boron nitride (BN) might be applied as a detector material in high-energy photon-beam dosimetry. Boron nitride exists in various crystalline forms. Hexagonal boron nitride (h-BN) possesses high mobility of the electrons and holes as well as a high volume resistivity, so that ionizing radiation in the clinical range of the dose rate can be expected to produce a measurable electrical current at low background current. Due to the low atomic numbers of its constituents, its density (2.0 g cm-3) similar to silicon and its commercial availability, h-BN appears as possibly suitable for the dosimetry of ionizing radiation. Five h-BN plates were contacted to triaxial cables, and the detector current was measured in a solid-state ionization chamber circuit at an applied voltage of 50 V. Basic dosimetric properties such as formation by pre-irradiation, sensitivity, reproducibility, linearity and temporal resolution were measured with 6 MV photon irradiation. Depth dose curves at quadratic field sizes of 10 cm and 40 cm were measured and compared to ionization chamber measurements. After a pre-irradiation with 6 Gy, the devices show a stable current signal at a given dose rate. The current-voltage characteristic up to 400 V shows an increase in the collection efficiency with the voltage. The time-resolved detector current behavior during beam interrupts is comparable to diamond material, and the background current is negligible. The measured percentage depth dose curves at 10 cm  ×  10 cm field size agreed with the results of ionization chamber measurements within  ±2%. This is a first study of boron nitride as a detector material for high-energy photon radiation. By current measurements on solid ionization chambers made from boron nitride chips we could demonstrate that boron nitride is in principle suitable as a detector material for high-energy photon-beam dosimetry.

  16. First principles pulse pile-up balance equation and fast deterministic solution

    NASA Astrophysics Data System (ADS)

    Sabbatucci, Lorenzo; Fernández, Jorge E.

    2017-08-01

    Pulse pile-up (PPU) is an always present effect which introduces a distortion into the spectrum measured with radiation detectors and that worsen with the increasing emission rate of the radiation source. It is fully ascribable to the pulse handling circuitry of the detector and it is not comprised in the detector response function which is well explained by a physical model. The PPU changes both the number and the height of the recorded pulses, which are related, respectively, with the number of detected particles and their energy. In the present work, it is derived a first principles balance equation for second order PPU to obtain a post-processing correction to apply to X-ray measurements. The balance equation is solved for the particular case of rectangular pulse shape using a deterministic iterative procedure for which it will be shown the convergence. The proposed method, deterministic rectangular PPU (DRPPU), requires minimum amount of information and, as example, it is applied to a solid state Si detector with active or off-line PPU suppression circuitry. A comparison shows that the results obtained with this fast and simple approach are comparable to those from the more sophisticated procedure using precise detector pulse shapes.

  17. Comparison of various stopping gases for 3He-based position sensitive neutron detectors

    NASA Astrophysics Data System (ADS)

    Doumas, A.; Smith, G. C.

    2012-05-01

    A range of solid state, scintillator and gas based detectors are being developed for use at the next generation of high flux neutron facilities. Since gas detectors are expected to continue to play a key role in future specific thermal neutron experiments, a comparison of the performance characteristics of prospective stopping gases is beneficial. Gas detectors typically utilize the reaction 3He(n,p)t to detect thermal neutrons; the 3He gas is used in a mixture containing a particular stopping gas in order to maintain relatively short ranges for the proton and triton pair emitted from the n-3He reaction. Common stopping gases include hydrocarbons (e.g. propane), carbon tetrafluoride, and noble gases such as argon and xenon. For this study, we utilized the Monte Carlo simulation code "Stopping and Range of Ions in Matter" to analyze the expected behavior of argon, xenon, carbon dioxide, difluoroethane and octafluoropropane as stopping gases for thermal neutron detectors. We also compare these findings to our previously analyzed performance of propane, butane and carbon tetrafluoride. A discussion of these gases includes their behavior in terms of proton and triton range, ionization distribution and straggle.

  18. A mercuric iodide detector system for X-ray astronomy. II - Results from flight tests of a balloon borne instrument

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Vanderspek, R. K.; Ricker, G. R.

    1983-01-01

    To establish the expected sensitivity of a new hard X-ray telescope design, described by Ricker et al., an experiment was conducted to measure the background counting rate at balloon altitudes (40 km) of mercuric iodide, a room temperature solid state X-ray detector. The prototype detector consisted of two thin mercuric iodide (HgI2) detectors surrounded by a large bismuth germanate scintillator operated in anticoincidence. The bismuth germanate shield vetoed most of the background counting rate induced by atmospheric gamma-rays, neutrons and cosmic rays. A balloon-borne gondola containing a prototype detector assembly was designed, constructed and flown twice in the spring of 1982 from Palestine, TX. The second flight of this instrument established a differential background counting rate of 4.2 + or - 0.7 x 10 to the -5th counts/s sq cm keV over the energy range of 40-80 keV. This measurement was within 50 percent of the predicted value. The measured rate is about 5 times lower than previously achieved in shielded NaI/CsI or Ge systems operating in the same energy range.

  19. Characterization of a MOSkin detector for in vivo skin dose measurements during interventional radiology procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safari, M. J.; Wong, J. H. D.; Ng, K. H., E-mail: ngkh@um.edu.my

    2015-05-15

    Purpose: The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures. Methods: The calibration and reproducibility of the MOSkin detector and its dependency on different radiation beam qualitiesmore » were carried out using RQR standard radiation qualities in free-in-air geometry. Studies of the other characterization parameters, such as the dose linearity and dependency on exposure angle, field size, frame rate, depth-dose, and source-to-surface distance (SSD), were carried out using a solid water phantom under a clinical x-ray unit. Results: The MOSkin detector showed good reproducibility (94%) and dose linearity (99%) for the dose range of 2 to 213 cGy. The sensitivity did not significantly change with the variation of SSD (±1%), field size (±1%), frame rate (±3%), or beam energy (±5%). The detector angular dependence was within ±5% over 360° and the dose recorded by the MOSkin detector in different depths of a solid water phantom was in good agreement with the Markus parallel plate ionization chamber to within ±3%. Conclusions: The MOSkin detector proved to be reliable when exposed to different field sizes, SSDs, depths in solid water, dose rates, frame rates, and radiation incident angles within a clinical x-ray beam. The MOSkin detector with water equivalent depth equal to 0.07 mm is a suitable detector for in vivo skin dosimetry during interventional radiology procedures.« less

  20. Characterization of a MOSkin detector for in vivo skin dose measurements during interventional radiology procedures.

    PubMed

    Safari, M J; Wong, J H D; Ng, K H; Jong, W L; Cutajar, D L; Rosenfeld, A B

    2015-05-01

    The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures. The calibration and reproducibility of the MOSkin detector and its dependency on different radiation beam qualities were carried out using RQR standard radiation qualities in free-in-air geometry. Studies of the other characterization parameters, such as the dose linearity and dependency on exposure angle, field size, frame rate, depth-dose, and source-to-surface distance (SSD), were carried out using a solid water phantom under a clinical x-ray unit. The MOSkin detector showed good reproducibility (94%) and dose linearity (99%) for the dose range of 2 to 213 cGy. The sensitivity did not significantly change with the variation of SSD (± 1%), field size (± 1%), frame rate (± 3%), or beam energy (± 5%). The detector angular dependence was within ± 5% over 360° and the dose recorded by the MOSkin detector in different depths of a solid water phantom was in good agreement with the Markus parallel plate ionization chamber to within ± 3%. The MOSkin detector proved to be reliable when exposed to different field sizes, SSDs, depths in solid water, dose rates, frame rates, and radiation incident angles within a clinical x-ray beam. The MOSkin detector with water equivalent depth equal to 0.07 mm is a suitable detector for in vivo skin dosimetry during interventional radiology procedures.

  1. A mercuric detector system for X-ray astronomy. 2. Results from flight tests of a balloon borne instrument

    NASA Technical Reports Server (NTRS)

    Vallerga, J.; Vanderspek, R. K.; Ricker, G. R.

    1982-01-01

    To establish the expected sensitivity of a new hard X-ray telescope design, an experiment was conducted to measure the background counting rate at balloon altitudes (40 km) of mercuric iodide, a room temperature solid state X-ray detector. The prototype detector consisted of two thin mercuric iodide (HgI2) detectors surrounded by a large bismuth germanate (Bi4Ge3O12) scintillator operated in anticoincidence. The bismuth germanate shield vetoed most of the background counting rate induced by atmospheric gamma-rays, neutrons and cosmic rays. A balloon-borne gondola containing a prototype detector assembly was designed, constructed and flown twice in the spring of 1982 from Palestine, Texas. The second flight of this instrument established a differential background counting rate of 4.2 O.7 x 10-5 counts/sec cm keV over the energy range of 40 to 80 keV. This measurement was within 50% of the predicted value. The measured rate is approx 5 times lower than previously achieved in shielded NaI/CsI or Ge systems operating in the same energy range. The prediction was based on a Monte Carlo simulation of the detector assembly in the radiation environment at float altitude.

  2. Crystal Growth and Characterization of THO2 and UxTh1-xO2

    DTIC Science & Technology

    2013-03-01

    bulk actinide crystals would open up new possibilities for the detection of weapons of mass destruction, the study of the effect of aging on...way of growing bulk actinide materials of optical quality. These refractory oxide single crystals offer potential applications in thorium nuclear...fuel technology, wide-band-gap uranium-based direct-conversion solid state neutron detectors, and understanding how actinide fuels age with time. ThO2

  3. Solid State Research

    DTIC Science & Technology

    1991-02-15

    imaging in the 3- to 5-/im spectral band [2], Extension of the photoresponse into the long-wavelength infrared ( LWIR ) spectral band, ranging from 8 to 14...jUm, has been demonstrated for IrSi arrays [3]. Recently, a new type of Si-based LWIR detector, utilizing internal photoemission over the hetero...quality thermal images in the LWIR spectral band without uniformity correction. The Geo.44Sio.56 composition was chosen in order to permit low-dark

  4. High-Performance Thermoelectric Semiconductors

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre; Caillat, Thierry; Borshchevsky, Alexander

    1994-01-01

    Figures of merit almost double current state-of-art thermoelectric materials. IrSb3 is semiconductor found to exhibit exceptional thermoelectric properties. CoSb3 and RhSb3 have same skutterudite crystallographic structure as IrSb3, and exhibit exceptional transport properties expected to contribute to high thermoelectric performance. These three compounds form solid solutions. Combination of properties offers potential for development of new high-performance thermoelectric materials for more efficient thermoelectric power generators, coolers, and detectors.

  5. IEEE Solid-State Sensors Workshop Held in Hilton Head Island, South Carolina, on 2-5 June 1986

    DTIC Science & Technology

    1987-06-01

    from photonic to electronic energy due to a lack of optical switches. An active The ...to guage parts or been freedom from electrical noise. determine if the cutting tool is present. frmeetiaro In almost all situations there is a high ...surface, stripped from the prism, resulting in a The system is further enhanced if a spoiler loss of energy at the detector. With the is used

  6. Comparison of 2 micron Ho and 10 micron CO2 lidar for atmospheric backscatter and Doppler windshear detection

    NASA Technical Reports Server (NTRS)

    Killinger, Dennis

    1991-01-01

    The development of eye-safe, solid-state Lidar systems is discussed, with an emphasis on Coherent Doppler Lidar for Atmospheric Wind Measurements. The following subject areas are covered: tunable Ho DIAL (Differential Absorption Lidar)/lidar atmospheric measurements; atmospheric turbulence measurements and detector arrays; diurnal measurements of C(sub n)(sup 2) for KSC lidar measurements; and development of single-frequency Ho laser/lidar.

  7. Laser-Induced Fluorescence Measurements for Optical Single Atom Detection for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Parzuchowski, Kristen; Singh, Jaideep; Wenzl, Jennifer; Frisbie, Dustin; Johnson, Maegan

    2016-09-01

    We propose a new highly selective detector to measure rare nuclear reactions relevant for nuclear astrophysics. Our primary interest is the 22Ne(α , n) 25Mg reaction, which is a primary source of neutrons for the s-process. Our proposed detector, in conjunction with a recoil separator, captures the recoil products resulting from the reaction in a cryogenically frozen thin film of solid neon. The fluorescence spectra of the captured atoms is shifted from the absorption spectra by hundreds of nanometers. This allows for the optical detection of individual fluorescence photons against a background of intense excitation light. We will describe our initial studies of laser-induced fluorescence of Yb and Mg in solid Ne. Neon is an attractive medium because it is optically transparent and provides efficient, pure, stable, & chemically inert confinement for a wide variety of atomic and molecular species. Yb is used as a test atom because of its similar atomic structure to Mg and much brighter fluorescence signal. This work is supported by funds from Michigan State University.

  8. Monitoring complex detectors: the uSOP approach in the Belle II experiment

    NASA Astrophysics Data System (ADS)

    Di Capua, F.; Aloisio, A.; Ameli, F.; Anastasio, A.; Branchini, P.; Giordano, R.; Izzo, V.; Tortone, G.

    2017-08-01

    uSOP is a general purpose single board computer designed for deep embedded applications in control and monitoring of detectors, sensors and complex laboratory equipments. It is based on the AM3358 (1 GHz ARM Cortex A8 processor), equipped with USB and Ethernet interfaces. On-board RAM and solid state storage allows hosting a full LINUX distribution. In this paper we discuss the main aspects of the hardware and software design and the expandable peripheral architecture built around field busses. We report on several applications of uSOP system in the Belle II experiment, presently under construction at KEK (Tsukuba, Japan). In particular we will report the deployment of uSOP in the monitoring system framework of the endcap electromagnetic calorimeter.

  9. Preliminary design study. Shuttle modular scanning spectroradiometer

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Fundamental concepts on which to base a detailed design for a Shuttle Modular Scanning Spectroradiometer were developed, and a preliminary design is presented. The recommended design features modularity and flexibility. It includes a 75-cm f/1.7-telescope assembly in an all-reflective Schmidt configuration, a solid state scan system (pushbroom) with high resolution over a 15 deg field of view, and ten detector channels covering the spectral range from 0.45 to 12.5 micrometers. It uses charge transfer device techniques to accommodate a large number of detector elements for earth observation measurements. Methods for in-flight radiometric calibration, for image motion compensation, and for data processing are described. Recommendations for ground support equipment are included, and interfaces with the shuttle orbiter vehicle are illustrated.

  10. The ISPM experiment for spectral, composition and anistropy measurements of charged particles at low energie

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Gold, R. E.; Anderson, K. A.; Armstrong, T. P.; Lin, R. P.; Krimigis, S. M.; Pick, M.; Roelof, E. C.; Sarris, E. T.; Simnett, G. M.

    1983-01-01

    The Heliosphere Instrument for Spectral, Composition, and Anisotropy at Low Energies (HI-SCALE) designed to measure interplanetary ions and electrons is described. Ions and electrons are detected by five separate solid-state detector telescopes oriented to give complete pitch angle coverage from the spinning spacecraft. Ion elemental abundances are determined by a telescope using a thin front detector element in a three-element telescope. Experiment operation is controlled by a microprocessor-based data system. Inflight calibration is provided by radioactive sources mounted on closable telescope covers. Ion and electron spectral information is determined using broad-energy-range rate channels, and a pulse-height analyzer for more detailed spectra. The instrument weighs 5.775 kg and uses 4.0 W power.

  11. Alkali halide microstructured optical fiber for X-ray detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeHaven, S. L., E-mail: stanton.l.dehaven@nasa.gov, E-mail: russel.a.wincheski@nasa.gov; Wincheski, R. A., E-mail: stanton.l.dehaven@nasa.gov, E-mail: russel.a.wincheski@nasa.gov; Albin, S., E-mail: salbin@nsu.edu

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. Themore » results and associated materials difference are discussed.« less

  12. Ionizing radiation fluxes and dose measurements during the Kosmos 1887 satellite flight.

    PubMed

    Charvat, J; Spurny, F; Kopecka, B; Votockova, I

    1990-01-01

    The results of dosimetric experiments performed during the flight of Kosmos 1887 biosatellite are presented. Two kinds of measurements were performed on the external surface of the satellite. First, the fluences and spectra of low energy charged particles were established. It was found that most of the particles registered by means of solid state nuclear track detectors are helium nuclei. Tracks of oxygen nuclei and some heavier charged particles were also observed. Thermoluminescent detectors were used to establish absorbed doses in open space on the satellite's surface and behind thin shielding. It was found that these doses were rather high; nevertheless, their decrease with shielding thickness is very rapid. Dosimetric and other consequences of the results obtained are analyzed and discussed.

  13. Solid xenon radiation detectors

    NASA Astrophysics Data System (ADS)

    Dolinski, Michelle J.

    2014-03-01

    Cryogenic liquid xenon detectors have become a popular technology in the search for rare events, such as dark matter interactions and neutrinoless double beta decay. The power of the liquid xenon detector technology is in the combination of the ionization and scintillation signals, resulting in particle discrimination and improved energy resolution over the ionization-only signal. The improved energy resolution results from a unique anti-correlation phenomenon that has not been described from first principles. Solid xenon bolometers, under development at Drexel University, are expected to have excellent counting statistics in the phonon channel, with energy resolution of 0.1% or better. This additional energy channel may offer the final piece of the puzzle in understanding liquid xenon detector energy response. Supported by a grant from the Charles E. Kaufman Foundation.

  14. ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector

    PubMed Central

    2013-01-01

    ZnO nanoneedle arrays were grown vertically on a fluorine-doped tin oxide-coated glass by hydrothermal method at a relatively low temperature. A self-powered photoelectrochemical cell-type UV detector was fabricated using the ZnO nanoneedles as the active photoanode and H2O as the electrolyte. This solid-liquid heterojunction offers an enlarged ZnO/water contact area and a direct pathway for electron transport simultaneously. By connecting this UV photodetector to an ammeter, the intensity of UV light can be quantified using the output short-circuit photocurrent without a power source. High photosensitivity, excellent spectral selectivity, and fast photoresponse at zero bias are observed in this UV detector. The self-powered behavior can be well explained by the formation of a space charge layer near the interface of the solid-liquid heterojunction, which results in a built-in potential and makes the solid-liquid heterojunction work in photovoltaic mode. PMID:24103153

  15. Pulse-resolved intensity measurements at a hard X-ray FEL using semi-transparent diamond detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Thomas; Freund, Wolfgang; Boesenberg, Ulrike

    Solid-state ionization chambers are presented based on thin diamond crystals that allow pulse-resolved intensity measurements at a hard X-ray free-electron laser (FEL), up to the 4.5 MHz repetition rate that will become available at the European XFEL. Due to the small X-ray absorption of diamond the thin detectors are semi-transparent which eases their use as non-invasive monitoring devices in the beam. FELs are characterized by strong pulse-to-pulse intensity fluctuations due to the self-amplified spontaneous emission (SASE) process and in many experiments it is mandatory to monitor the intensity of each individual pulse. Two diamond detectors with different electrode materials, berylliummore » and graphite, were tested as intensity monitors at the XCS endstation of the Linac Coherent Light Source (LCLS) using the pink SASE beam at 9 keV. The performance is compared with LCLS standard monitors that detect X-rays backscattered from thin SiN foils placed in the beam. In conclusion, the graphite detector can also be used as a beam position monitor although with rather coarse resolution.« less

  16. Cosmic ray particle dosimetry and trajectory tracing. [cosmic ray track analysis for Apollo 17 BIOCORE

    NASA Technical Reports Server (NTRS)

    Cruty, M. R.; Benton, E. V.; Turnbill, C. E.; Philpott, D. E.

    1975-01-01

    Five pocket mice (Perognathus longimembris) were flown on Apollo XVII, each with a solid-state (plastic) nuclear track detector implanted beneath its scalp. The subscalp detectors were sensitive to HZE cosmic ray particles with a LET greater than or approximately equal to 0.15 million electron volts per micrometer (MeV/micron). A critical aspect of the dosimetry of the experiment involved tracing individual particle trajectories through each mouse head from particle tracks registered in the individual subscalp detectors, thereby establishing a one-to-one correspondence between a trajectory location in the tissue and the presence or absence of a lesion. The other major aspect was the identification of each registered particle. An average of 16 particles with Z greater than or equal to 6 and 2.2 particles with Z greater than or equal to 20 were found per detector. The track density, 29 tracks/sq cm, when adjusted for detection volume, was in agreement with the photographic emulsion data from an area dosimeter located next to the flight package.

  17. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Zhang, Yang; Xu, Qiang; Wei, Haotong; Fang, Yanjun; Wang, Qi; Deng, Yehao; Li, Tao; Gruverman, Alexei; Cao, Lei; Huang, Jinsong

    2017-04-01

    The monolithic integration of new optoelectronic materials with well-established inexpensive silicon circuitry is leading to new applications, functionality and simple readouts. Here, we show that single crystals of hybrid perovskites can be integrated onto virtually any substrates, including silicon wafers, through facile, low-temperature, solution-processed molecular bonding. The brominated (3-aminopropyl)triethoxysilane molecule binds the native oxide of silicon and participates in the perovskite crystal with its ammonium bromide group, yielding a solid mechanical and electrical connection. The dipole of the bonding molecule reduces device noise while retaining signal intensity. The reduction of dark current enables the detectors to be operated at increased bias, resulting in a sensitivity of 2.1 × 104 µC Gyair-1 cm-2 under 8 keV X-ray radiation, which is over a thousand times higher than the sensitivity of amorphous selenium detectors. X-ray imaging with both perovskite pixel detectors and linear array detectors reduces the total dose by 15-120-fold compared with state-of-the-art X-ray imaging systems.

  18. JFET front-end circuits integrated in a detector-grade silicon substrate

    NASA Astrophysics Data System (ADS)

    Manghisoni, M.; Ratti, L.; Re, V.; Speziali, V.; Traversi, G.; Dalla Betta, G. F.; Boscardin, M.; Batignani, G.; Giorgi, M.; Bosisio, L.

    2003-08-01

    This paper presents the design and experimental results relevant to front-end circuits integrated on detector-grade high resistivity silicon. The fabrication technology is made available by the Istituto per la Ricerca Scientifica e Tecnologica (ITC-IRST), Trento, Italy and allows using a common substrate for different kinds of active devices, such as N-channel JFETs and MOSFETs, and for pixel, microstrip, and PIN detectors. This research activity is being carried out in the framework of a project aiming at the fabrication of a multichannel mixed analog-digital chip for the readout of solid-state detectors integrated in the same substrate. Possible applications are in the field of medical and industrial imaging and space and high energy physics experiments. An all-JFET charge sensitive amplifier, which can use either a resistive or a nonresistive feedback network, has been characterized. The two configurations have been compared to each other, paying particular attention to noise performances, in view of the design of the complete readout channel. Operation capability in harsh radiation environment has been evaluated through exposure to /spl gamma/-rays from a /sup 60/Co source.

  19. Pulse-resolved intensity measurements at a hard X-ray FEL using semi-transparent diamond detectors

    DOE PAGES

    Roth, Thomas; Freund, Wolfgang; Boesenberg, Ulrike; ...

    2018-01-01

    Solid-state ionization chambers are presented based on thin diamond crystals that allow pulse-resolved intensity measurements at a hard X-ray free-electron laser (FEL), up to the 4.5 MHz repetition rate that will become available at the European XFEL. Due to the small X-ray absorption of diamond the thin detectors are semi-transparent which eases their use as non-invasive monitoring devices in the beam. FELs are characterized by strong pulse-to-pulse intensity fluctuations due to the self-amplified spontaneous emission (SASE) process and in many experiments it is mandatory to monitor the intensity of each individual pulse. Two diamond detectors with different electrode materials, berylliummore » and graphite, were tested as intensity monitors at the XCS endstation of the Linac Coherent Light Source (LCLS) using the pink SASE beam at 9 keV. The performance is compared with LCLS standard monitors that detect X-rays backscattered from thin SiN foils placed in the beam. In conclusion, the graphite detector can also be used as a beam position monitor although with rather coarse resolution.« less

  20. Solid state control system for oil well bailer pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senghaas, K. A.; Senghaas, P.

    1985-05-14

    A solid state switching controller for use with various types of oil well bailer pumps. Individually programmable steps with lockouts provide multiple mutual exclusivity between various circuit operations. A trickle charge battery system powers the control circuits. A tank overflow float protects against oil spillage. An automatic production rate adjustment circuit is provided which increases cycle time in proportion to the rate of production. The circuit includes a low power voltage detector for disabling the control circuits until the line voltage is acceptable. A three-phase power and control system with an isolation transformer for the controls avoids unreliable ground connections.more » The timers include a dividing circuit with an RC circuit. All power actuated apparatus are actuated by triac switches which are controlled by an opto driver. The bailer brake is pulse actuated for allowing the bailer to sink into crude oil without excess cable looseness.« less

  1. Micro pulse laser radar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D. (Inventor)

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  2. Strategies and limitations for fluorescence detection of XAFS at high flux beamlines

    DOE PAGES

    Heald, Steve M.

    2015-02-17

    The issue of detecting the XAFS signal from dilute samples is discussed in detail with the aim of making best use of high flux beamlines that provide up to 10 13 photons -1. Various detection methods are compared, including filters with slits, solid state detectors, crystal analyzers and combinations of these. These comparisons rely on simulations that use experimentally determined parameters. It is found that inelastic scattering places a fundamental limit on detection, and that it is important to take proper account of the polarization dependence of the signals. The combination of a filter–slit system with a solid state detectormore » is a promising approach. With an optimized system good performance can be obtained even if the total count rate is limited to 10 7 Hz. Detection schemes with better energy resolution can help at the largest dilutions if their collection efficiency and count rate limits can be improved.« less

  3. Micro pulse lidar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering has been demonstrated. The transmitter of the micropulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited by optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that systems built on the micropulse lidar concept are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  4. Optimized "detectors" for dynamics analysis in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Smith, Albert A.; Ernst, Matthias; Meier, Beat H.

    2018-01-01

    Relaxation in nuclear magnetic resonance (NMR) results from stochastic motions that modulate anisotropic NMR interactions. Therefore, measurement of relaxation-rate constants can be used to characterize molecular-dynamic processes. The motion is often characterized by Markov processes using an auto-correlation function, which is assumed to be a sum of multiple decaying exponentials. We have recently shown that such a model can lead to severe misrepresentation of the real motion, when the real correlation function is more complex than the model. Furthermore, multiple distributions of motion may yield the same set of dynamics data. Therefore, we introduce optimized dynamics "detectors" to characterize motions which are linear combinations of relaxation-rate constants. A detector estimates the average or total amplitude of motion for a range of motional correlation times. The information obtained through the detectors is less specific than information obtained using an explicit model, but this is necessary because the information contained in the relaxation data is ambiguous, if one does not know the correct motional model. On the other hand, if one has a molecular dynamics trajectory, one may calculate the corresponding detector responses, allowing direct comparison to experimental NMR dynamics analysis. We describe how to construct a set of optimized detectors for a given set of relaxation measurements. We then investigate the properties of detectors for a number of different data sets, thus gaining an insight into the actual information content of the NMR data. Finally, we show an example analysis of ubiquitin dynamics data using detectors, using the DIFRATE software.

  5. SU-E-T-506: Intercomparison Study On Small Field Output Factor Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamonti, C; Casati, M; Compagnucci, A

    2015-06-15

    Purpose In radiotherapy, uncertainties due to small field measurements (SFM) introduce systematic errors to the treatment process and the development of new dosimeters for quality assurance programs is a challenge. In this work we analyze the behavior of seven detectors measuring output factors of 6MV photon beam. Methods The dosimeters employed are: a single cristal diamond detector (SCCD) developed at the University of Rome Tor Vergata, a silicon diode developed within the project MAESTRO, a IBA Razor silicon diode, A1SL and A26 Exradin ion chambers, an EBT3 Gafchromic film and the Exradin W1 Scintillator.Diamond sensitive volume is a cylinder 2.2mmmore » in diameter and 1μm thick. MAESTRO diode is 2×2mm2 active area. Razor sensitive volume is a cylinder 0.6 mm in diameter and 0.02 mm thick. A16 and A1Sl have a collecting volume of 0,015cc and 0,053cc. The W1 is an optical fiber with an active volume of 0.002cc. All measurements were performed in a water phantom, with detector positioned at the isocenter (SSD=90cm, d=10cm), MAESTRO diode being sandwiched in solid water to obtain an equivalent experimental setup. Results These measurements are challenging due to the absence of charged particle equilibrium conditions, detector size and positioning problems. They are in good agreement among each other, especially GAF, Razor, W1 and SCDD. Maximum deviations reported are related to the field 0.8×0.8cm2 for MAESTRO and chambers data with respect to EBT3: around 15% (A1SLvsEBT3), 16% (MAESTROvsEBT3). Razor and W1 show a deviation around 3% with respect to SCDD. Conclusion In this work measurements made with a variety of detectors are compared. These study show the possibility to choose different detectors for SFM and that smaller ion chambers are still not competitive with solid state detectors. Silicon, diamond and optical fiber dosimeters show a similar behavior with minor discrepancies for the smallest field.« less

  6. The SoLid experiment

    NASA Astrophysics Data System (ADS)

    Kalousis, L. N.; SoLid Collaboration

    2017-09-01

    The SoLid experiment is a short-baseline project, probing the disappearance of reactor antineutrinos using a novel detector design. Installed at a very short distance of ˜ 5.5 - 10 m from the BR2 research reactor at SCK·CEN in Mol (Belgium) it will be able to search for active-to-sterile neutrino oscillations, exploring most of the allowed parameter region. SoLid will make use of a highly segmented detector, built from 5 cm PVT cubes, interleaved with 6LiF:ZnS(Ag) screens, and read out by optical fibers and Silicon Photomultipliers (SiPMs). The detector granularity allows for the localization of the positron and neutron signals from antineutrino interactions and the robust neutron identification capabilities, offered by the 6LiF:ZnS(Ag) inorganic scintillator, provide background suppression to an unparalleled level. This paper reviews the experimental layout and current status of SoLid. Emphasis is put on the challenges one faces towards this measurement, focusing on the decisions and strategy adapted by the SoLid collaboration. The analysis scheme and the details of the oscillation framework are also presented, highlighting the sensitivity contour and physics potential of SoLid. Finally, other physics topics, such as, reactor monitoring or measurement of the 235U spectrum are also covered.

  7. Solid State Research

    DTIC Science & Technology

    1989-02-15

    decreased growth rate along the flow direction. We have used sus- ceptor rotation to time-average these nonuniform growth rates and have achieved...example, at an H2 flow of 14 slpm the nonuniformity is reduced to < 2 percent across a 4-cm diameter. S.C. Palmateer A. Napoleone S.H. Groves D.L...infrared ( LWIR ) spectral band from 8 to 14 /urn. Previous studies5 have shown that IrSi detectors can have values of A.c exceeding 6 /um

  8. The Detection of Faint Space Objects Using Solid State Imaging Detectors.

    DTIC Science & Technology

    1983-12-31

    are con.iposed of baryonic matter . New arguments were presented against halos being composed of planets or asteroids. D. Hegyi was also invited to...being made up of baryonic matter . 5.0 THE CHARGE-COUPLED DEVICE IMAGING SYSTEM Our major hardware improvement during the past year is a stainless steel...Hegyi Department of Physics University of Michigan Ann Arbor, Michigan ABSIR:CT The problems with massive halos being composed of baryonic matter are

  9. Innovative research in the design and operation of large telescopes for space: Aspects of giant telescopes in space

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.

    1985-01-01

    The capability and understanding of how to finish the reflector surfaces needed for large space telescopes is discussed. The technology for making very light glass substrates for mirrors is described. Other areas of development are in wide field imaging design for very fast primaries, in data analysis and retrieval methods for astronomical images, and in methods for making large area closely packed mosaics of solid state array detectors.

  10. Determination of Pu and 241Am in soils by instrumental methods

    NASA Astrophysics Data System (ADS)

    Yaroshevich, O. J.; Zhuk, I. V.; Lomonosova, E. M.; Svetlakova, N. N.; Mironov, V. P.; Kudryashov, V. P.; Bushuev, A. V.

    1995-06-01

    A method based on the detection of x- and low energy γ-radiation for determining the activity of plutonium and americium-241 in soils and sediments is described. The results of x- and γ-radiation spectral measurements are presented. Possible ways to increase the sensitivity of the method are discussed. The results of measurements of α-particle activity distributions with solid state nuclear track detectors for depth profiling of different types of soils are also presented.

  11. Compact Solid State Terahertz Detectors

    DTIC Science & Technology

    2007-07-09

    We think that the noise in our Be doped GaAs quantum well structures is of the shot noise origin as in conventional GaAs QWIPs designed for mid...University of Leeds as follows: Within the frame of this project attention will be focussed on the low-frequency noise of the proposed devices. More...specifically, the Johnson and shot noise , as well as 1/f noise spectra, will be measured at various temperatures from 4 K up to 300 K. The figure

  12. Energy spectra and pitch angle distributions of storm-time and substorm injected protons.

    NASA Technical Reports Server (NTRS)

    Konradi, A.; Williams, D. J.; Fritz, T. A.

    1973-01-01

    Discussion of the energy spectra and pitch angle distributions of ring current protons observed with the solid-state proton detector of Explorer 45 during the main and fast recovery phases of a storm on Dec. 17, 1971. Appearances of characteristic changes in the pitch angle distributions of roughly 100-eV protons are interpreted as pitch angle dispersion of rapidly injected protons during their azimuthal drift at L values above 5.

  13. Highly Sensitive and Wide-Band Tunable Terahertz Response of Plasma Waves Based on Graphene Field Effect Transistors

    PubMed Central

    Wang, Lin; Chen, Xiaoshuang; Yu, Anqi; Zhang, Yang; Ding, Jiayi; Lu, Wei

    2014-01-01

    Terahertz (THz) technology is becoming a spotlight of scientific interest due to its promising myriad applications including imaging, spectroscopy, industry control and communication. However, one of the major bottlenecks for advancing this field is due to lack of well-developed solid-state sources and detectors operating at THz gap which serves to mark the boundary between electronics and photonics. Here, we demonstrate exceptionally wide tunable terahertz plasma-wave excitation can be realized in the channel of micrometer-level graphene field effect transistors (FET). Owing to the intrinsic high propagation velocity of plasma waves (>~108 cm/s) and Dirac band structure, the plasma-wave graphene-FETs yield promising prospects for fast sensing, THz detection, etc. The results indicate that the multiple guide-wave resonances in the graphene sheets can lead to the deep sub-wavelength confinement of terahertz wave and with Q-factor orders of magnitude higher than that of conventional 2DEG system at room temperature. Rooted in this understanding, the performance trade-off among signal attenuation, broadband operation, on-chip integrability can be avoided in future THz smart photonic network system by merging photonics and electronics. The unique properties presented can open up the exciting routes to compact solid state tunable THz detectors, filters, and wide band subwavelength imaging based on the graphene-FETs. PMID:24969065

  14. Scalability, Scintillation Readout and Charge Drift in a Kilogram Scale Solid Xenon Particle Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, J.; Cease, H.; Jaskierny, W. F.

    2014-10-23

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. We observed a reduced amount of photons in solid phase compared to that in liquid phase. We used amore » conventional time projection chamber system to measure the electron drift time in a kilogram of solid xenon and observed faster electron drift speed in the solid phase xenon compared to that in the liquid phase.« less

  15. Calibration of BAS-TR image plate response to high energy (3-300 MeV) carbon ions

    NASA Astrophysics Data System (ADS)

    Doria, D.; Kar, S.; Ahmed, H.; Alejo, A.; Fernandez, J.; Cerchez, M.; Gray, R. J.; Hanton, F.; MacLellan, D. A.; McKenna, P.; Najmudin, Z.; Neely, D.; Romagnani, L.; Ruiz, J. A.; Sarri, G.; Scullion, C.; Streeter, M.; Swantusch, M.; Willi, O.; Zepf, M.; Borghesi, M.

    2015-12-01

    The paper presents the calibration of Fuji BAS-TR image plate (IP) response to high energy carbon ions of different charge states by employing an intense laser-driven ion source, which allowed access to carbon energies up to 270 MeV. The calibration method consists of employing a Thomson parabola spectrometer to separate and spectrally resolve different ion species, and a slotted CR-39 solid state detector overlayed onto an image plate for an absolute calibration of the IP signal. An empirical response function was obtained which can be reasonably extrapolated to higher ion energies. The experimental data also show that the IP response is independent of ion charge states.

  16. Calibration of BAS-TR image plate response to high energy (3-300 MeV) carbon ions.

    PubMed

    Doria, D; Kar, S; Ahmed, H; Alejo, A; Fernandez, J; Cerchez, M; Gray, R J; Hanton, F; MacLellan, D A; McKenna, P; Najmudin, Z; Neely, D; Romagnani, L; Ruiz, J A; Sarri, G; Scullion, C; Streeter, M; Swantusch, M; Willi, O; Zepf, M; Borghesi, M

    2015-12-01

    The paper presents the calibration of Fuji BAS-TR image plate (IP) response to high energy carbon ions of different charge states by employing an intense laser-driven ion source, which allowed access to carbon energies up to 270 MeV. The calibration method consists of employing a Thomson parabola spectrometer to separate and spectrally resolve different ion species, and a slotted CR-39 solid state detector overlayed onto an image plate for an absolute calibration of the IP signal. An empirical response function was obtained which can be reasonably extrapolated to higher ion energies. The experimental data also show that the IP response is independent of ion charge states.

  17. Effects of anode geometry on forward wide-angle neon ion emissions in 3.5 kJ plasma focus device by novel mega-size panorama polycarbonate image detectors

    NASA Astrophysics Data System (ADS)

    Sohrabi, M.; Soltani, Z.; Sarlak, Z.

    2018-03-01

    Forward wide-angle neon ion emissions in a 3.5 kJ plasma focus device (PFD) were studied using 5 different anode top geometries; hollow-end cylinder, solid triangle, solid hemisphere, hollow-end cone and flat-end cone. Position-sensitive mega-size panorama polycarbonate ion image detectors (MS-PCID) developed by dual-cell circular mega-size electrochemical etching (MS-ECE) systems were applied for processesing wide-angle neon ion images on MS-PCIDs exposed on the PFD cylinder top base under a single pinch shot. The images can be simply observed, analyzed and relatively quantified in terms of ion emission angular distributions even by the unaided eyes. By analysis of the forward neon ion emission images, the ion emission yields, ion emission angular distributions, iso-fluence ion contours and solid angles of ion emissions in 4π PFD space were determined. The neon ion emission yields on the PFD cylinder top base are in an increasing order ~2.1×109, ~2.2 ×109, ~2.8×109, ~2.9×109, and ~3.5×109 neon ions/shot for the 5 stated anode top geometries respectively. The panorama neon ion images as diagnosed even by the unaided eyes demonstrate the lowest and highest ion yields from the hollow-end cylinder and flat-end cone anode tops respectively. Relative dynamic qualitative neon ion spectrometry was made by the unaided eyes demonstrating relative neon ion energy as they appear. The study also demonstrates the unique power of the MS-PCID/MS-ECE imaging system as an advanced state-of-the-art ion imaging method for wide-angle dynamic parametric studies in PFD space and other ion study applications.

  18. Speciation of metal(loid)s in environmental samples by X-ray absorption spectroscopy: a critical review.

    PubMed

    Gräfe, Markus; Donner, Erica; Collins, Richard N; Lombi, Enzo

    2014-04-25

    Element specificity is one of the key factors underlying the widespread use and acceptance of X-ray absorption spectroscopy (XAS) as a research tool in the environmental and geo-sciences. Independent of physical state (solid, liquid, gas), XAS analyses of metal(loid)s in complex environmental matrices over the past two decades have provided important information about speciation at environmentally relevant interfaces (e.g. solid-liquid) as well as in different media: plant tissues, rhizosphere, soils, sediments, ores, mineral process tailings, etc. Limited sample preparation requirements, the concomitant ability to preserve original physical and chemical states, and independence from crystallinity add to the advantages of using XAS in environmental investigations. Interpretations of XAS data are founded on sound physical and statistical models that can be applied to spectra of reference materials and mixed phases, respectively. For spectra collected directly from environmental matrices, abstract factor analysis and linear combination fitting provide the means to ascertain chemical, bonding, and crystalline states, and to extract quantitative information about their distribution within the data set. Through advances in optics, detectors, and data processing, X-ray fluorescence microprobes capable of focusing X-rays to micro- and nano-meter size have become competitive research venues for resolving the complexity of environmental samples at their inherent scale. The application of μ-XANES imaging, a new combinatorial approach of X-ray fluorescence spectrometry and XANES spectroscopy at the micron scale, is one of the latest technological advances allowing for lateral resolution of chemical states over wide areas due to vastly improved data processing and detector technology. Copyright © 2014. Published by Elsevier B.V.

  19. SuperADAM: Upgraded polarized neutron reflectometer at the Institut Laue-Langevin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devishvili, A.; Zhernenkov, K.; Institut Laue-Langevin, BP 156, 38042 Grenoble

    2013-02-15

    A new neutron reflectometer SuperADAM has recently been built and commissioned at the Institut Laue-Langevin, Grenoble, France. It replaces the previous neutron reflectometer ADAM. The new instrument uses a solid state polarizer/wavelength filter providing a highly polarized (up to 98.6%) monochromatic neutron flux of 8 Multiplication-Sign 10{sup 4} n cm{sup -2} s{sup -1} with monochromatization {Delta}{lambda}/{lambda}= 0.7% and angular divergence {Delta}{alpha}= 0.2 mrad. The instrument includes both single and position sensitive detectors. The position sensitive detector allows simultaneous measurement of specular reflection and off-specular scattering. Polarization analysis for both specular reflection and off-specular scattering is achieved using either mirror analyzersmore » or a {sup 3}He spin filter cell. High efficiency detectors, low background, and high flux provides a dynamic range of up to seven decades in reflectivity. Detailed specifications and the instrument capabilities are illustrated with examples of recently collected data in the fields of thin film magnetism and thin polymer films.« less

  20. Moon based global field airglow: For Artemis or any common Lunar Lander

    NASA Astrophysics Data System (ADS)

    Kozlowski, R. W. H.; Sprague, A. L.; Sandel, B. R.; Hunten, D. M.; Broadfoot, A. L.

    1994-06-01

    An inexpensive, small mass, airglow experiment consisting of a suite of airglow detectors is planned for one or more lunar landers. Solid state detectors measuring light through narrow band filters or concave gratings can integrate emissions from lunar atmospheric constituents and store the information for relay to earth when convenient. The proposed instrument is a simplified version of the Shuttle-borne Arizona Imager-Spectrograph. These zenith and near horizon viewing detectors may allow us to monitor fluctuations in atomic species of oxygen, calcium, sodium, potassium, argon, and neon and OH, if present. This choice of observations would monitor outgassing from the interior (Ar), meteoritic dust flux (Na, K) solar wind sputtering (O, Ca), and outgassing from the surface (implanted Ne, Na, K). A global network could be inexpensively deployed aboard landers carrying a variety of other selenographic instrumentation. Powered by solar cells such a field network will return data applicable to a wide variety of interplanetary medium and solar-lunar interaction problems.

  1. Sub-THz Imaging Using Non-Resonant HEMT Detectors.

    PubMed

    Delgado-Notario, Juan A; Velazquez-Perez, Jesus E; Meziani, Yahya M; Fobelets, Kristel

    2018-02-10

    Plasma waves in gated 2-D systems can be used to efficiently detect THz electromagnetic radiation. Solid-state plasma wave-based sensors can be used as detectors in THz imaging systems. An experimental study of the sub-THz response of II-gate strained-Si Schottky-gated MODFETs (Modulation-doped Field-Effect Transistor) was performed. The response of the strained-Si MODFET has been characterized at two frequencies: 150 and 300 GHz: The DC drain-to-source voltage transducing the THz radiation (photovoltaic mode) of 250-nm gate length transistors exhibited a non-resonant response that agrees with theoretical models and physics-based simulations of the electrical response of the transistor. When imposing a weak source-to-drain current of 5 μA, a substantial increase of the photoresponse was found. This increase is translated into an enhancement of the responsivity by one order of magnitude as compared to the photovoltaic mode, while the NEP (Noise Equivalent Power) is reduced in the subthreshold region. Strained-Si MODFETs demonstrated an excellent performance as detectors in THz imaging.

  2. SuperADAM: Upgraded polarized neutron reflectometer at the Institut Laue-Langevin

    NASA Astrophysics Data System (ADS)

    Devishvili, A.; Zhernenkov, K.; Dennison, A. J. C.; Toperverg, B. P.; Wolff, M.; Hjörvarsson, B.; Zabel, H.

    2013-02-01

    A new neutron reflectometer SuperADAM has recently been built and commissioned at the Institut Laue-Langevin, Grenoble, France. It replaces the previous neutron reflectometer ADAM. The new instrument uses a solid state polarizer/wavelength filter providing a highly polarized (up to 98.6%) monochromatic neutron flux of 8 × 104 n cm-2 s-1 with monochromatization Δλ/λ = 0.7% and angular divergence Δα = 0.2 mrad. The instrument includes both single and position sensitive detectors. The position sensitive detector allows simultaneous measurement of specular reflection and off-specular scattering. Polarization analysis for both specular reflection and off-specular scattering is achieved using either mirror analyzers or a 3He spin filter cell. High efficiency detectors, low background, and high flux provides a dynamic range of up to seven decades in reflectivity. Detailed specifications and the instrument capabilities are illustrated with examples of recently collected data in the fields of thin film magnetism and thin polymer films.

  3. Neutron detection using the superconducting Nb-based current-biased kinetic inductance detector

    NASA Astrophysics Data System (ADS)

    Shishido, Hiroaki; Yamaguchi, Hiroyuki; Miki, Yuya; Miyajima, Shigeyuki; Oikawa, Kenichi; Harada, Masahide; Hidaka, Mutsuo; Oku, Takayuki; Arai, Masatoshi; Fujimaki, Akira; Ishida, Takekazu

    2017-09-01

    We demonstrate neutron detection using a solid-state 3He-free superconducting current-biased kinetic inductance detector (CB-KID), which consists of a superconducting Nb meander line and 10B neutron absorption layer. The CB-KID is based on the transient process of kinetic inductance of Cooper pairs induced by the nuclear reaction between 10B and neutrons. Therefore, the CB-KID can be operated in a wide superconducting region in the bias current-temperature diagram, as demonstrated in this paper. The transient change of the kinetic inductance induces the electromagnetic wave pulse under a DC bias current. The signal propagates along the meander line toward both sides with opposite polarity, where the signal polarity is dominated by the bias current direction. The full width at half maximum of the signals remains on the order of a few tens of ns, which confirms the high-speed operation of our detectors. We determine the neutron incident position within 1.3 mm accuracy in one dimension using the multichannel CB-KIDs.

  4. SuperADAM: upgraded polarized neutron reflectometer at the Institut Laue-Langevin.

    PubMed

    Devishvili, A; Zhernenkov, K; Dennison, A J C; Toperverg, B P; Wolff, M; Hjörvarsson, B; Zabel, H

    2013-02-01

    A new neutron reflectometer SuperADAM has recently been built and commissioned at the Institut Laue-Langevin, Grenoble, France. It replaces the previous neutron reflectometer ADAM. The new instrument uses a solid state polarizer/wavelength filter providing a highly polarized (up to 98.6%) monochromatic neutron flux of 8 × 10(4) n cm(-2) s(-1) with monochromatization Δλ∕λ = 0.7% and angular divergence Δα = 0.2 mrad. The instrument includes both single and position sensitive detectors. The position sensitive detector allows simultaneous measurement of specular reflection and off-specular scattering. Polarization analysis for both specular reflection and off-specular scattering is achieved using either mirror analyzers or a (3)He spin filter cell. High efficiency detectors, low background, and high flux provides a dynamic range of up to seven decades in reflectivity. Detailed specifications and the instrument capabilities are illustrated with examples of recently collected data in the fields of thin film magnetism and thin polymer films.

  5. Development of Solid Xenon Bolometers

    NASA Astrophysics Data System (ADS)

    Dolinski, Michelle; Hansen, Erin

    2016-09-01

    Cryogenic liquid xenon detectors have become a popular technology in the search for rare events, such as dark matter interactions and neutrinoless double beta decay. The power of liquid xenon detector technology is in the combination of ionization and scintillation signals, resulting in particle discrimination and improved energy resolution over the ionization-only signal. The improved energy resolution results from a microscopic anti-correlation phenomenon that has not been described from first principles. Solid xenon bolometers operated at 10 mK are expected to have excellent counting statistics in the phonon channel, with energy resolution of 0.1% or better. This additional energy channel may offer the final piece of the puzzle in understanding liquid xenon detector energy response. We present work toward the development and characterization of solid xenon bolometers at Drexel University. Funding for this project was provided by the Charles E. Kaufman Foundation of The Pittsburgh Foundation.

  6. Studies on radon/thoron and their decay products in granite quarries around Bangalore city, India

    NASA Astrophysics Data System (ADS)

    Ningappa, C.; Sannappa, J.; Chandrashekara, M. S.; Paramesh, L.

    2009-08-01

    The radon survey was performed in granite quarries around Bangalore rural district and Bangalore city as part of a lung cancer epidemiological study. Long duration measurements of indoor and outdoor radon, thoron and their progenies concentrations were made around granite quarries of Bangalore rural district by using Solid State Nuclear Track Detector (SSNTD, LR-115, Type-II Plastic track detector) during summer and winter period (2006-07). The increase of radioactivity in granite quarries and inhalation dose to workers and populations near the quarries have been summarized. The higher concentrations of radon and thoron in granite quarries suggest radiation health effects on workers and public around the quarries is higher than permissible levels. The results are presented and analyzed with reference to ICRP limits.

  7. TrackEtching - A Java based code for etched track profile calculations in SSNTDs

    NASA Astrophysics Data System (ADS)

    Muraleedhara Varier, K.; Sankar, V.; Gangadathan, M. P.

    2017-09-01

    A java code incorporating a user friendly GUI has been developed to calculate the parameters of chemically etched track profiles of ion-irradiated solid state nuclear track detectors. Huygen's construction of wavefronts based on secondary wavelets has been used to numerically calculate the etched track profile as a function of the etching time. Provision for normal incidence and oblique incidence on the detector surface has been incorporated. Results in typical cases are presented and compared with experimental data. Different expressions for the variation of track etch rate as a function of the ion energy have been utilized. The best set of values of the parameters in the expressions can be obtained by comparing with available experimental data. Critical angle for track development can also be calculated using the present code.

  8. Technology Needs for Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Gamma ray astronomy is currently in an exciting period of multiple missions and a wealth of data. Results from INTEGRAL, Fermi, AGILE, Suzaku and Swift are making large contributions to our knowledge of high energy processes in the universe. The advances are due to new detector and imaging technologies. The steps to date have been from scintillators to solid state detectors for sensors and from light buckets to coded aperture masks and pair telescopes for imagers. A key direction for the future is toward focusing telescopes pushing into the hard X-ray regime and Compton telescopes and pair telescopes with fine spatial resolution for medium and high energy gamma rays. These technologies will provide finer imaging of gamma-ray sources. Importantly, they will also enable large steps forward in sensitivity by reducing background.

  9. Characterization of Noble Gas Ion Beam Fabricated Single Molecule Nanopore Detectors

    NASA Astrophysics Data System (ADS)

    Rollings, Ryan; Ledden, Bradley; Shultz, John; Fologea, Daniel; Li, Jiali; Chervinsky, John; Golovchenko, Jene

    2006-03-01

    Nanopores fabricated with low energy noble gas ion beams in a silicon nitride membrane can be employed as the fundamental element of single biomolecule detection and characterization devices [1,2]. With the help of X-ray Photoelectron Spectroscopy (XPS) and Rutherford Backscattering (RBS), we demonstrate that the electrical noise properties, and hence ultimate sensitivity of nanopore single molecule detectors depends on ion beam species and nanopore annealing conditions. .1. Li, J., D. Stein, C. McMullan, D. Branton, M.J. Aziz, and J.A. Golovchenko, Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(12 July): p. 166-169. 2. Li, J., M. Gershow, D. Stein, E. Brandin, and J.A. Golovchenko, DNA Molecules and Configurations in a Solid-state Nanopore Microscope. Nature Materials, 2003. 2: p. 611-615.

  10. Assessment of alpha radioactivity in lipstick, nailpolish, toothpaste and vermilion using CR-39 detector.

    PubMed

    Ghosh, Dipak; Deb, Argha; Maiti, Sunil; Haldar, Subrata; Bera, Sukumar; Sengupta, Rosalima; Bhaitacharyya, Rini

    2010-04-01

    Human beings are always exposed to radiation from chemical cosmetics. In order to collect information regarding the radioactivity of chemical cosmetics used in our daily life, we studied the alpha radioactivity in different cosmetics samples, such as lipsticks, nail-polish, toothpaste and vermilion. The significant accumulation ofradionuclide in and on the tissues, directly or indirectly exposed due to the lipsticks, toothpaste, vermilion, may cause health hazards. Different samples of these cosmetic materials (Indian and foreign brands) were collected from the local markets of Kolkata, India. CR-39--a useful solid state nuclear track detector (SSNTD) was used to detect alpha radioactivity of these samples. Such exhaustive measurement of radioactivity in lipsticks, nail-polish, toothpaste and vermilion has not been reported so far.

  11. LECTURES ON PHYSICS, BIOPHYSICS, AND CHEMISTRY FOR HIGH SCHOOL SCIENCE TEACHERS GIVEN AT THE ERNEST O. LAWRENCE RADIATION LABORATORY, BERKELEY, CALIFORNIA, JUNE-AUGUST 1959

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calhoon, E.C.; Starring, P.W. eds.

    1959-08-01

    Lectures given at the Ernest 0. Lawrence Radiation Laboratory on physics, biophysics, and chemistry for high school science teachers are presented. Topics covered include a mathematics review, atomic physics, nuclear physics, solid-state physics, elementary particles, antiparticies, design of experiments, high-energy particle accelerators, survey of particle detectors, emulsion as a particle detector, counters used in high-energy physics, bubble chambers, computer programming, chromatography, the transuranium elements, health physics, photosynthesis, the chemistry and physics of virus, the biology of virus, lipoproteins and heart disease, origin and evolution of the solar system, the role of space satellites in gathering astronomical data, and radiation andmore » life in space. (M.C.G.)« less

  12. Proton beam spatial distribution and Bragg peak imaging by photoluminescence of color centers in lithium fluoride crystals at the TOP-IMPLART linear accelerator

    NASA Astrophysics Data System (ADS)

    Piccinini, M.; Ronsivalle, C.; Ampollini, A.; Bazzano, G.; Picardi, L.; Nenzi, P.; Trinca, E.; Vadrucci, M.; Bonfigli, F.; Nichelatti, E.; Vincenti, M. A.; Montereali, R. M.

    2017-11-01

    Solid-state radiation detectors based on the photoluminescence of stable point defects in lithium fluoride crystals have been used for advanced diagnostics during the commissioning of the segment up to 27 MeV of the TOP-IMPLART proton linear accelerator for proton therapy applications, under development at ENEA C.R. Frascati, Italy. The LiF detectors high intrinsic spatial resolution and wide dynamic range allow obtaining two-dimensional images of the beam transverse intensity distribution and also identifying the Bragg peak position with micrometric precision by using a conventional optical fluorescence microscope. Results of the proton beam characterization, among which, the estimation of beam energy components and dynamics, are reported and discussed for different operating conditions of the accelerator.

  13. Use of photovoltaic detector for photocatalytic activity estimation

    NASA Astrophysics Data System (ADS)

    Das, Susanta Kumar; Satapathy, Pravakar; Rao, P. Sai Shruti; Sabar, Bilu; Panda, Rudrashish; Khatua, Lizina

    2018-05-01

    Photocatalysis is a very important process and have numerous applications. Generally, to estimate the photocatalytic activity of newly grown material, its reaction rate constant w.r.t to some standard commercial TiO2 nanoparticles like Degussa P25 is evaluated. Here a photovoltaic detector in conjunction with laser is used to determine this rate constant. This method is tested using Zinc Orthotitanate (Zn2TiO4) nanoparticles prepared by solid state reaction and it is found that its reaction rate constant is six times higher than that of P25. The value is found to be close to the value found by a conventional system. Our proposed system is much more cost-effective than the conventional one and has the potential to do real time monitoring of the photocatalytic activity.

  14. Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging

    DOEpatents

    Parker, S.

    1995-10-24

    A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z{sub 1} above upper collimator plane, distance z{sub 2} above the lower collimator plane, and distance z{sub 3} above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v{sub 1}, v{sub 2}, v{sub 3} proportional to z{sub 1}, z{sub 2} and z{sub 3}, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site. 5 figs.

  15. Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging

    DOEpatents

    Parker, Sherwood

    1995-01-01

    A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z.sub.1 above upper collimator plane, distance z.sub.2 above the lower collimator plane, and distance z.sub.3 above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v.sub.1, v.sub.2, v.sub.3 proportional to z.sub.1, z.sub.2 and z.sub.3, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site.

  16. Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies.

    PubMed

    Jeong, Tae Won; Singh, P K; Scullion, C; Ahmed, H; Kakolee, K F; Hadjisolomou, P; Alejo, A; Kar, S; Borghesi, M; Ter-Avetisyan, S

    2016-08-01

    The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.

  17. Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies

    NASA Astrophysics Data System (ADS)

    Jeong, Tae Won; Singh, P. K.; Scullion, C.; Ahmed, H.; Kakolee, K. F.; Hadjisolomou, P.; Alejo, A.; Kar, S.; Borghesi, M.; Ter-Avetisyan, S.

    2016-08-01

    The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.

  18. PTW-diamond detector: dose rate and particle type dependence.

    PubMed

    Fidanzio, A; Azario, L; Miceli, R; Russo, A; Piermattei, A

    2000-11-01

    In this paper the suitability of a PTW natural diamond detector (DD) for relative and reference dosimetry of photon and electron beams, with dose per pulse between 0.068 mGy and 0.472 mGy, was studied and the results were compared with those obtained by a stereotactic silicon detector (SFD). The results show that, in the range of the examined dose per pulse the DD sensitivity changes up to 1.8% while the SFD sensitivity changes up to 4.5%. The fitting parameter, delta, used to correct the dose per pulse dependence of solid state detectors, was delta = 0.993 +/- 0.002 and delta = 1.025 +/- 0.002 for the diamond detector and for the silicon diode, respectively. The delta values were found to be independent of particle type of two conventional beams (a 10 MV x-ray beam and a 21 MeV electron beam). So if delta is determined for a radiotherapy beam, it can be used to correct relative dosimetry for other conventional radiotherapy beams. Moreover the diamond detector shows a calibration factor which is independent of beam quality and particle type, so an empirical dosimetric formalism is proposed here to obtain the reference dosimetry. This formalism is based on a dose-to-water calibration factor and on an empirical coefficient, that takes into account the reading dependence on the dose per pulse.

  19. Characterization of MOSkin detector for in vivo skin dose measurement during megavoltage radiotherapy

    PubMed Central

    Jong, Wei Loong; Wong, Jeannie Hsiu Ding; Ng, Kwan Hoong; Ho, Gwo Fuang; Cutajar, Dean L.; Rosenfeld, Anatoly B.

    2014-01-01

    In vivo dosimetry is important during radiotherapy to ensure the accuracy of the dose delivered to the treatment volume. A dosimeter should be characterized based on its application before it is used for in vivo dosimetry. In this study, we characterize a new MOSFET‐based detector, the MOSkin detector, on surface for in vivo skin dosimetry. The advantages of the MOSkin detector are its water equivalent depth of measurement of 0.07 mm, small physical size with submicron dosimetric volume, and the ability to provide real‐time readout. A MOSkin detector was calibrated and the reproducibility, linearity, and response over a large dose range to different threshold voltages were determined. Surface dose on solid water phantom was measured using MOSkin detector and compared with Markus ionization chamber and GAFCHROMIC EBT2 film measurements. Dependence in the response of the MOSkin detector on the surface of solid water phantom was also tested for different (i) source to surface distances (SSDs); (ii) field sizes; (iii) surface dose; (iv) radiation incident angles; and (v) wedges. The MOSkin detector showed excellent reproducibility and linearity for dose range of 50 cGy to 300 cGy. The MOSkin detector showed reliable response to different SSDs, field sizes, surface, radiation incident angles, and wedges. The MOSkin detector is suitable for in vivo skin dosimetry. PACS number: 87.55.Qr PMID:25207573

  20. Scintillator and solid-state neutron detectors and their applications

    NASA Astrophysics Data System (ADS)

    Carturan, Sara Maria; Marchi, Tommaso; Fanchini, Erica; De Vita, Raffaella; Finocchiaro, Paolo; Pappalardo, Alfio

    2014-10-01

    The application range of neutron detectors covers many topics, not only involving experimental research, but spanning tens of industrial, health, transport, cultural heritage fields of interest. Several studies focus on new scintillating materials where the light response, under fast and slow neutrons exposure, is triggered by proton recoil or by the presence of neutron capture materials as 10B, 6Li or 157Gd. Neutron monitors, where the robustness of silicon-based detectors can be fully exploited by coupling with suitable neutron absorber/converter materials, have recently proved their outstanding performances. Discrimination between neutron signals from other radiations, such as - or cosmic rays, is achieved through timing techniques or with pulse shape analysis. Furthermore, the choice of the detection/discrimination techniques depends on the type of application the detector will be used for. An example is Radiation Portal Monitors (RPM) for cargo inspection or luggage control that are required to satisfy specific international standards for and neutron detection efficiencies. This paper is an overview of some of the National Institute of Nuclear Physics (INFN) activities in the field of neutron detection, involving novel technologies. We will describe the most recent advances related to scintillators and silicon-based detectors coupled with thin films of suitable converters for neutron detection and we will discuss applications in the field of nuclear security.

  1. Radiation Design of Ion Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Sittler, Ed; Cooper, John; Christian, Eric; Moore, Tom; Sturner, Steve; Paschalidis, Nick

    2011-01-01

    In the harsh radiation environment of Jupiter and with the JUpiter ICy moon Explorer (JUICE) mission including two Europa flybys where local intensities are approx. 150 krad/month behind 100 mils of Al shielding, so background from penetrating radiation can be a serious issue for detectors inside an Ion Mass Spectrometer (IMS). This can especially be important for minor ion detection designs. Detectors of choice for time-of-flight (TOF) designs are microchannel plates (MCP) and some designs may include solid state detectors (SSD). The standard approach is to use shielding designs so background event rates are low enough that the detector max rates and lifetimes are first not exceeded and then the more stringent requirement that the desired measurement can successfully be made (i.e., desired signal is sufficiently greater than background noise after background subtraction is made). GEANT codes are typically used along with various electronic techniques, but such designs need to know how the detectors will respond to the simulated primary and secondary radiations produced within the instrument. We will be presenting some preliminary measurements made on the response of MCPs to energetic electrons (20 ke V to 1400 ke V) using a Miniature TOF (MTOF) device and the High Energy Facility at Goddard Space Flight Center which has a Van de Graaff accelerator.

  2. Technical Note: Detective quantum efficiency simulation of a-Se imaging detectors using ARTEMIS.

    PubMed

    Fang, Yuan; Ito, Takaaki; Nariyuki, Fumito; Kuwabara, Takao; Badano, Aldo; Karim, Karim S

    2017-08-01

    This work studies the detective quantum efficiency (DQE) of a-Se-based solid state x-ray detectors for medical imaging applications using ARTEMIS, a Monte Carlo simulation tool for modeling x-ray photon, electron and charged carrier transport in semiconductors with the presence of applied electric field. ARTEMIS is used to model the signal formation process in a-Se. The simulation model includes x-ray photon and high-energy electron interactions, and detailed electron-hole pair transport with applied detector bias taking into account drift, diffusion, Coulomb interactions, recombination and trapping. For experimental validation, the DQE performance of prototype a-Se detectors is measured following IEC Testing Standard 62220-1-3. Comparison of simulated and experimental DQE results show reasonable agreement for RQA beam qualities. Experimental validation demonstrated within 5% percentage difference between simulation and experimental DQE results for spatial frequency above 0.25 cycles/mm using uniform applied electric field for RQA beam qualities (RQA5, RQA7 and RQA9). Results include two different prototype detectors with thicknesses of 240 μm and 1 mm. ARTEMIS can be used to model the DQE of a-Se detectors as a function of x-ray energy, detector thickness, and spatial frequency. The ARTEMIS model can be used to improve understanding of the physics of x-ray interactions in a-Se and in optimization studies for the development of novel medical imaging applications. © 2017 American Association of Physicists in Medicine.

  3. Evaluation of Differences in Response of DOD Portable Instruments and Solid-State Detectors used by MEXT for Measurement of External Radiations with Attention to the Cosmic Radiation Component

    DTIC Science & Technology

    2014-03-01

    sources. 15. SUBJECT TERMS Operation Tomodachi, Radiation Dose, Department of Defense, Japan, Fukushima , Earthquake, Tsunami, Cosmic Radiation 16...were reported along with data collected after the releases from the Fukushima Daiichi Nuclear Power Station (FDNPS) began contributing to the...Araki, S.; Ohta, Y.; Ikeuchi, Y.; 2012. “Changes of Radionuclides in the Environment in Chiba, Japan, after the Fukushima Nuclear Power Plant Accident

  4. Quantum Dots Microstructured Optical Fiber for X-Ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, Stan; Williams, Phillip; Burke, Eric

    2015-01-01

    Microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide are presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dot application technique are discussed.

  5. The 1.06 micrometer avalanche photodiode detectors with integrated circuit preamplifiers

    NASA Technical Reports Server (NTRS)

    Eden, R. C.

    1975-01-01

    The development of a complete solid state 1.06 micron optical receiver which can be used in optical communications at data rates approaching 1.5 Gb/s, or in other applications requiring sensitive, short-pulse detection, is reported. This work entailed both the development of a new type of heterojunction 3-5 semiconductor alloy avalanche photodiode and an extremely charge-sensitive wideband low-noise preamp design making use of GaAs Schottky barrier-gate field effect transistors.

  6. Densification and Thermal Properties of Zirconium Diboride Based Ceramics

    DTIC Science & Technology

    2012-01-01

    pulse on the front face and the radiant energy going to an infrared detector on the back face of the specimen...changes going across a row of the periodic table (e.g., Zr, Nb, Mo…) because of the filling of bonding and anti-bonding states in the hybrid orbitals...the relatively small amounts of ZrC (i.e., ə wt%) likely to go into solid solution with the ZrB2, based on the Zr-B-C phase diagram.6 (2

  7. High-resolution imaging and target designation through clouds or smoke

    DOEpatents

    Perry, Michael D.

    2003-01-01

    A method and system of combining gated intensifiers and advances in solid-state, short-pulse laser technology, compact systems capable of producing high resolution (i.e., approximately less than 20 centimeters) optical images through a scattering medium such as dense clouds, fog, smoke, etc. may be achieved from air or ground based platforms. Laser target designation through a scattering medium is also enabled by utilizing a short pulse illumination laser and a relatively minor change to the detectors on laser guided munitions.

  8. Cherenkov Water Detectors in Particle Physics and Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Petrukhin, A. A.; Yashin, I. I.

    2017-12-01

    Among various types of Cherenkov detectors (solid, liquid and gaseous) created for different studies, the most impressive development was gained by water detectors: from the first detector with a volume of several liters in which the Cherenkov radiation was discovered, to the IceCube detector with a volume of one cubic kilometer. The review of the development of Cherenkov water detectors for various purposes and having different locations - ground-based, underground and underwater-is presented in the paper. The prospects of their further development are also discussed.

  9. Monte Carlo study of microdosimetric diamond detectors

    NASA Astrophysics Data System (ADS)

    Solevi, Paola; Magrin, Giulio; Moro, Davide; Mayer, Ramona

    2015-09-01

    Ion-beam therapy provides a high dose conformity and increased radiobiological effectiveness with respect to conventional radiation-therapy. Strict constraints on the maximum uncertainty on the biological weighted dose and consequently on the biological weighting factor require the determination of the radiation quality, defined as the types and energy spectra of the radiation at a specific point. However the experimental determination of radiation quality, in particular for an internal target, is not simple and the features of ion interactions and treatment delivery require dedicated and optimized detectors. Recently chemical vapor deposition (CVD) diamond detectors have been suggested as ion-beam therapy microdosimeters. Diamond detectors can be manufactured with small cross sections and thin shapes, ideal to cope with the high fluence rate. However the sensitive volume of solid state detectors significantly deviates from conventional microdosimeters, with a diameter that can be up to 1000 times the height. This difference requires a redefinition of the concept of sensitive thickness and a deep study of the secondary to primary radiation, of the wall effects and of the impact of the orientation of the detector with respect to the radiation field. The present work intends to study through Monte Carlo simulations the impact of the detector geometry on the determination of radiation quality quantities, in particular on the relative contribution of primary and secondary radiation. The dependence of microdosimetric quantities such as the unrestricted linear energy L and the lineal energy y are investigated for different detector cross sections, by varying the particle type (carbon ions and protons) and its energy.

  10. Development of an MRI-compatible digital SiPM detector stack for simultaneous PET/MRI.

    PubMed

    Düppenbecker, Peter M; Weissler, Bjoern; Gebhardt, Pierre; Schug, David; Wehner, Jakob; Marsden, Paul K; Schulz, Volkmar

    2016-02-01

    Advances in solid-state photon detectors paved the way to combine positron emission tomography (PET) and magnetic resonance imaging (MRI) into highly integrated, truly simultaneous, hybrid imaging systems. Based on the most recent digital SiPM technology, we developed an MRI-compatible PET detector stack, intended as a building block for next generation simultaneous PET/MRI systems. Our detector stack comprises an array of 8 × 8 digital SiPM channels with 4 mm pitch using Philips Digital Photon Counting DPC 3200-22 devices, an FPGA for data acquisition, a supply voltage control system and a cooling infrastructure. This is the first detector design that allows the operation of digital SiPMs simultaneously inside an MRI system. We tested and optimized the MRI-compatibility of our detector stack on a laboratory test bench as well as in combination with a Philips Achieva 3 T MRI system. Our design clearly reduces distortions of the static magnetic field compared to a conventional design. The MRI static magnetic field causes weak and directional drift effects on voltage regulators, but has no direct impact on detector performance. MRI gradient switching initially degraded energy and timing resolution. Both distortions could be ascribed to voltage variations induced on the bias and the FPGA core voltage supply respectively. Based on these findings, we improved our detector design and our final design shows virtually no energy or timing degradations, even during heavy and continuous MRI gradient switching. In particular, we found no evidence that the performance of the DPC 3200-22 digital SiPM itself is degraded by the MRI system.

  11. Initial experiments with gel-water: towards MRI-linac dosimetry and imaging.

    PubMed

    Alnaghy, Sarah J; Gargett, Maegan; Liney, Gary; Petasecca, Marco; Begg, Jarrad; Espinoza, Anthony; Newall, Matthew K; Duncan, Mitchell; Holloway, Lois; Lerch, Michael L F; Lazea, Mircea; Rosenfeld, Anatoly B; Metcalfe, Peter

    2016-12-01

    Tracking the position of a moving radiation detector in time and space during data acquisition can replicate 4D image-guided radiotherapy (4DIGRT). Magnetic resonance imaging (MRI)-linacs need MRI-visible detectors to achieve this, however, imaging solid phantoms is an issue. Hence, gel-water, a material that provides signal for MRI-visibility, and which will in future work, replace solid water for an MRI-linac 4DIGRT quality assurance tool, is discussed. MR and CT images of gel-water were acquired for visualisation and electron density verification. Characterisation of gel-water at 0 T was compared to Gammex-RMI solid water, using MagicPlate-512 (M512) and RMI Attix chamber; this included percentage depth dose, tissue-phantom ratio (TPR 20/10 ), tissue-maximum ratio (TMR), profiles, output factors, and a gamma analysis to investigate field penumbral differences. MR images of a non-powered detector in gel-water demonstrated detector visualisation. The CT-determined gel-water electron density agreed with the calculated value of 1.01. Gel-water depth dose data demonstrated a maximum deviation of 0.7% from solid water for M512 and 2.4% for the Attix chamber, and by 2.1% for TPR 20/10 and 1.0% for TMR. FWHM and output factor differences between materials were ≤0.3 and ≤1.4%. M512 data passed gamma analysis with 100% within 2%, 2 mm tolerance for multileaf collimator defined fields. Gel-water was shown to be tissue-equivalent for dosimetry and a feasible option to replace solid water.

  12. Characterization of a synthetic single crystal diamond Schottky diode for radiotherapy electron beam dosimetry.

    PubMed

    Di Venanzio, C; Marinelli, Marco; Milani, E; Prestopino, G; Verona, C; Verona-Rinati, G; Falco, M D; Bagalà, P; Santoni, R; Pimpinella, M

    2013-02-01

    To investigate the dosimetric properties of synthetic single crystal diamond based Schottky diodes under irradiation with therapeutic electron beams from linear accelerators. A single crystal diamond detector was fabricated and tested under 6, 8, 10, 12, and 15 MeV electron beams. The detector performances were evaluated using three types of commercial detectors as reference dosimeters: an Advanced Markus plane parallel ionization chamber, a Semiflex cylindrical ionization chamber, and a p-type silicon detector. Preirradiation, linearity with dose, dose rate dependence, output factors, lateral field profiles, and percentage depth dose profiles were investigated and discussed. During preirradiation the diamond detector signal shows a weak decrease within 0.7% with respect to the plateau value and a final signal stability of 0.1% (1σ) is observed after about 5 Gy. A good linear behavior of the detector response as a function of the delivered dose is observed with deviations below ±0.3% in the dose range from 0.02 to 10 Gy. In addition, the detector response is dose rate independent, with deviations below 0.3% in the investigated dose rate range from 0.17 to 5.45 Gy∕min. Percentage depth dose curves obtained from the diamond detector are in good agreement with the ones from the reference dosimeters. Lateral beam profile measurements show an overall good agreement among detectors, taking into account their respective geometrical features. The spatial resolution of solid state detectors is confirmed to be better than that of ionization chambers, being the one from the diamond detector comparable to that of the silicon diode. A good agreement within experimental uncertainties was also found in terms of output factor measurements between the diamond detector and reference dosimeters. The observed dosimetric properties indicate that the tested diamond detector is a suitable candidate for clinical electron beam dosimetry.

  13. Stable glow discharge detector

    DOEpatents

    Koo, Jackson C.; Yu, Conrad M.

    2004-05-18

    A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) stable glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The stable glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma and a solid rod electrode. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured. The solid rod electrode provides greater stability and thus easier alignment.

  14. Determination of the activity concentration of a 238 Pu solution by the defined solid angle method utilizing a novel dual diaphragm-detector assembly.

    PubMed

    Aguiar, Julio C; Galiano, Eduardo; Arenillas, Pablo

    2005-08-01

    The activity concentration of a (238)Pu solution was measured by the determined solid angle method employing a novel dual diaphragm-detector assembly, which has been previously described. Due to the special requirements of the detector, a new type of source holder was developed, which consisted of sandwiching the radioisotope between two organic films called VYNS. It was experimentally demonstrated that the VYNS films do not absorb alpha particles, but reduce their energy by an average of 22 keV.A mean activity concentration for (238)Pu of 359.10+/-0.8 kBq/g was measured.

  15. Novel electro-optical coupling technique for magnetic resonance-compatible positron emission tomography detectors.

    PubMed

    Olcott, Peter D; Peng, Hao; Levin, Craig S

    2009-01-01

    A new magnetic resonance imaging (MRI)-compatible positron emission tomography (PET) detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL) diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.

  16. Influence of magnetic fields on charge sharing caused by diffusion in medipix detectors with a Si sensor

    NASA Astrophysics Data System (ADS)

    Jamil, Ako; Filipenko, Mykhaylo; Gleixner, Thomas; Anton, Gisela; Michel, Thilo

    2016-02-01

    The spatial and energy resolution of hybrid photon counting pixel detectors like the Timepix detector can suffer from charge sharing. Due to diffusion an initially point-like charge carrier distribution generated by ionizing radiation becomes a typically Gaussian-like distribution when arriving at the pixel electrodes. This leads to loss of charge information in edge pixels if the amount of charge in the pixel fall below the discriminator threshold. In this work we investigated the reduction of charge sharing by applying a magnetic field parallel to the electric drift field inside the sensor layer. The reduction of diffusion by a magnetic field is well known for gases. With realistic assumptions for the mean free path of charge carriers in semiconductors, a similar effect should be observable in solid state materials. We placed a Medipix-2 detector in the magnetic field of a medical MR device with a maximum magnetic field of 3 T and illuminated it with photons and α-particles from 241Am. We observe that with a magnetic field of 3000 mT the mean cluster size is reduced by 0.75 %.

  17. AN ALTERNATIVE CALIBRATION OF CR-39 DETECTORS FOR RADON DETECTION BEYOND THE SATURATION LIMIT.

    PubMed

    Franci, Daniele; Aureli, Tommaso; Cardellini, Francesco

    2016-12-01

    Time-integrated measurements of indoor radon levels are commonly carried out using solid-state nuclear track detectors (SSNTDs), due to the numerous advantages offered by this radiation detection technique. However, the use of SSNTD also presents some problems that may affect the accuracy of the results. The effect of overlapping tracks often results in the underestimation of the detected track density, which leads to the reduction of the counting efficiency for increasing radon exposure. This article aims to address the effect of overlapping tracks by proposing an alternative calibration technique based on the measurement of the fraction of the detector surface covered by alpha tracks. The method has been tested against a set of Monte Carlo data and then applied to a set of experimental data collected at the radon chamber of the Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, at the ENEA centre in Casaccia, using CR-39 detectors. It has been proved that the method allows to extend the detectable range of radon exposure far beyond the intrinsic limit imposed by the standard calibration based on the track density. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Germanium: From Its Discovery to SiGe Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haller, E.E.

    2006-06-14

    Germanium, element No.32, was discovered in 1886 by Clemens Winkler. Its first broad application was in the form of point contact Schottky diodes for radar reception during WWII. The addition of a closely spaced second contact led to the first all-solid-state electronic amplifier device, the transistor. The relatively low bandgap, the lack of a stable oxide and large surface state densities relegated germanium to the number 2 position behind silicon. The discovery of the lithium drift process, which made possible the formation of p-i-n diodes with fully depletable i-regions several centimeters thick, led germanium to new prominence as the premiermore » gamma-ray detector. The development of ultra-pure germanium yielded highly stable detectors which have remained unsurpassed in their performance. New acceptors and donors were discovered and the electrically active role of hydrogen was clearly established several years before similar findings in silicon. Lightly doped germanium has found applications as far infrared detectors and heavily Neutron Transmutation Doped (NTD) germanium is used in thermistor devices operating at a few milliKelvin. Recently germanium has been rediscovered by the silicon device community because of its superior electron and hole mobility and its ability to induce strains when alloyed with silicon. Germanium is again a mainstream electronic material.« less

  19. A high-throughput, multi-channel photon-counting detector with picosecond timing

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Fraser, G. W.; Miller, G. M.; Ashton, T. J. R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.

    2009-06-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.

  20. Development of dual solid cryogens for high reliability refrigeration system

    NASA Technical Reports Server (NTRS)

    Caren, R. P.; Coston, R. M.

    1967-01-01

    High reliability solid cryogen refrigeration system consists of a container initially filled with a solid cryogen which is coupled thermally to an infrared detector by means of a link of high thermal conductivity extending from a heat exchanger within the cryogen container.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocci, Valerio; Chiodi, Giacomo; Iacoangeli, Francesco

    The necessity to use Photo Multipliers (PM) as light detector limited in the past the use of crystals in radiation handled device preferring the Geiger approach. The Silicon Photomultipliers (SiPMs) are very small and cheap, solid photon detectors with good dynamic range and single photon detection capability, they are usable to supersede cumbersome and difficult to use Photo Multipliers (PM). A SiPM can be coupled with a scintillator crystal to build efficient, small and solid radiation detector. A cost effective and easily replicable Hardware software module for SiPM detector readout is made using the ArduSiPM solution. The ArduSiPM is anmore » easily battery operable handled device using an Arduino DUE (an open Software/Hardware board) as processor board and a piggy-back custom designed board (ArduSiPM Shield), the Shield contains all the blocks features to monitor, set and acquire the SiPM using internet network. (authors)« less

  2. Ultrafast secondary emission X-ray imaging detectors: A possible application to TRD

    NASA Astrophysics Data System (ADS)

    Akkerman, A.; Breskin, A.; Chechik, R.; Elkind, V.; Gibrekhterman, A.; Majewski, S.

    1992-05-01

    Fist high accuracy, X-ray imaging at high photon flux can be achieved when coupling thin solid convertors to gaseous electron multipliers, operating at low gas pressures. Secondary electrons emitted from the convertor foil are multiplied in several successive amplification elements. The obvious advantages of solid X-ray convertors, as compared to gaseous conversion, are the production of parallax-free images and the fast (subnanosecond) response. These X-ray detectors have many potential applications in basic and applied research. Of particular interest is the possibility of an efficient and ultrafast high resolution imaging of transition radiation (TR), with a reduced d E/d x background. We present experimental results on the operation of secondary emission X-ray (SEX) detectors, their detection efficiency, localization and time resolution. The experimental work is accompanied by mathematical modelling and computer simulation of transition radiation detectors (TRDs) based on CsI TR convertors.

  3. Micro-Fabricated Solid-State Radiation Detectors for Active Personal Dosimetry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Chen, Liang-Yu

    2007-01-01

    Active radiation dosimetry is important to human health and equipment functionality for space applications outside the protective environment of a space station or vehicle. This is especially true for long duration missions to the moon, where the lack of a magnetic field offers no protection from space radiation to those on extravehicular activities. In order to improve functionality, durability and reliability of radiation dosimeters for future NASA lunar missions, single crystal silicon carbide devices and scintillating fiber detectors are currently being investigated for applications in advanced extravehicular systems. For many years, NASA Glenn Research Center has led significant efforts in silicon carbide semiconductor technology research and instrumentation research for sensor applications under extreme conditions. This report summarizes the technical progress and accomplishments toward characterization of radiation-sensing components for the recommendation of their fitness for advanced dosimetry development.

  4. The Focusing Optics X-ray Solar Imager: Second Flight and Recent Results

    NASA Astrophysics Data System (ADS)

    Christe, S.; Krucker, S.; Glesener, L.; Ishikawa, S. N.; Ramsey, B.; Buitrago Casas, J. C.; Foster, N.

    2014-12-01

    Solar flares accelerate particles up to high energies through various acceleration mechanisms which are not currently understood. Hard X-rays are the most direct diagnostic of flare-accelerated electrons. However past and current hard x-ray observation lack the sensitivity and dynamic range necessary to observe the faint signature of accelerated electrons in the acceleration region, the solar corona. These limitations can be easily overcome through the use of HXR focusing optics coupled with solid state pixelated detectors. We present on recent updates on the FOXSI sounding rocket program. During its first flight FOXSI observed imaged a microflare with simultaneous observations by RHESSI. We present recent imaging analysis of the FOXSI observations and detailed comparison with RHESSI. New detector calibration results are also presented and, time-permitting, preliminary results from the second launch of FOXSI scheduled for December 2014.

  5. Small Radiation Beam Dosimetry for Radiosurgery of Trigeminal Neuralgia: One Case Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Garduno, O. A.; Larraga-Gutierrez, J. M.; Unidad de Radioneurocirugia, Instituto Nacional de Neurologia y Neurocirugia. Insurgentes Sur 3677, Col. La Fama, C. P. 14269, Tlalpan, Mexico, D. F.

    2008-08-11

    The use of small radiation beams for trigeminal neuralgia (TN) treatment requires high precision and accuracy in dose distribution calculations and delivery. Special attention must be kept on the type of detector to be used. In this work, the use of GafChromic EBT registered radiochromic and X-OMAT V2 radiographic films for small radiation beam characterization is reported. The dosimetric information provided by the films (total output factors, tissue maximum ratios and off axis ratios) is compared against measurements with a shielded solid state (diode) reference detector. The film dosimetry was used for dose distribution calculations for the treatment of trigeminalmore » neuralgia radiosurgery. Comparison of the isodose curves shows that the dosimetry produced with the X-OMAT radiographic film overestimates the dose distributions in the penumbra region.« less

  6. An organic dye with very large Stokes-shift and broad tunability of fluorescence: Potential two-photon probe for bioimaging and ultra-sensitive solid-state gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Tingchao; Tian, Xiaoqing; Lin, Xiaodong, E-mail: linxd@szu.edu.cn, E-mail: hdsun@ntu.edu.sg

    Light-emitting nonlinear optical molecules, especially those with large Stokes shifts and broad tunability of their emission wavelength, have attracted considerable attention for various applications including biomedical imaging and fluorescent sensors. However, most fluorescent chromophores have only limited potential for such applications due to small Stokes shifts, narrow tunability of fluorescence emissions, and small optical nonlinearity in highly polar solvents. In this work, we demonstrate that a two-photon absorbing stilbene chromophore exhibits a large two-photon absorption action cross-section (ηδ = 320 GM) in dimethylsulfoxide (DMSO) and shows broad fluorescence tunability (125 nm) by manipulating the polarity of the surrounding medium. Importantly, a very large Stokesmore » shift of up to 227 nm is achieved in DMSO. Thanks to these features, this chromophore can be utilized as a two-photon probe for bioimaging applications and in an ultrasensitive solid-state gas detector.« less

  7. The University of Chicago cosmic ray electrons and nuclei experiment on the H spacecraft

    NASA Technical Reports Server (NTRS)

    Meyer, P.; Evenson, P.

    1978-01-01

    The University of Chicago instrument on the Heliocentric spacecraft (MEH experiment) will measure the energy spectrum of cosmic electrons in the range 5-400 MeV. In addition, the energy spectra and relative abundances of nuclei from protons to the iron group, with energies ranging from 30 MeV/n to 15 GeV/n, will be determined. Primary scientific objectives involve the study of the long and short term variability of these components as a probe of the structure of the heliosphere. Particles are identified by multiparameter analysis using the pulse height analyzed signals from eight active detectors - silicon solid state, plastic and crystal scintillators are solid and gas Cerenkov counters. Data return is optimized by a three level priority logic scheme.

  8. Innovative instrumentation for mineralogical and elemental analyses of solid extraterrestrial surfaces: The Backscatter Moessbauer Spectrometer/X Ray Fluorescence analyzer (BaMS/XRF)

    NASA Technical Reports Server (NTRS)

    Shelfer, T. D.; Morris, Richard V.; Nguyen, T.; Agresti, D. G.; Wills, E. L.

    1994-01-01

    We have developed a four-detector research-grade backscatter Moessbauer spectrometer (BaMS) instrument with low resolution x-ray fluorescence analysis (XRF) capability. A flight-qualified instrument based on this design would be suitable for use on missions to the surfaces of solid solar-system objects (Moon, Mars, asteroids, etc.). Target specifications for the flight instrument are as follows: mass less than 500 g; volumes less than 300 cu cm; and power less than 2 W. The BaMS/XRF instrument would provide data on the oxidation state of iron and its distribution among iron-bearing mineralogies and elemental composition information. This data is a primary concern for the characterization of extraterrestrial surface materials.

  9. Scalability study of solid xenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, J.; Cease, H.; Jaskierny, W. F.

    2015-04-01

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employed a cryostat cooled by liquid nitrogen combined with a xenon purification and chiller system. A modified {\\it Bridgeman's technique} reproduces a large scale optically transparent solid xenon.

  10. Low dose digital X-ray imaging with avalanche amorphous selenium

    NASA Astrophysics Data System (ADS)

    Scheuermann, James R.; Goldan, Amir H.; Tousignant, Olivier; Léveillé, Sébastien; Zhao, Wei

    2015-03-01

    Active Matrix Flat Panel Imagers (AMFPI) based on an array of thin film transistors (TFT) have become the dominant technology for digital x-ray imaging. In low dose applications, the performance of both direct and indirect conversion detectors are limited by the electronic noise associated with the TFT array. New concepts of direct and indirect detectors have been proposed using avalanche amorphous selenium (a-Se), referred to as high gain avalanche rushing photoconductor (HARP). The indirect detector utilizes a planar layer of HARP to detect light from an x-ray scintillator and amplify the photogenerated charge. The direct detector utilizes separate interaction (non-avalanche) and amplification (avalanche) regions within the a-Se to achieve depth-independent signal gain. Both detectors require the development of large area, solid state HARP. We have previously reported the first avalanche gain in a-Se with deposition techniques scalable to large area detectors. The goal of the present work is to demonstrate the feasibility of large area HARP fabrication in an a-Se deposition facility established for commercial large area AMFPI. We also examine the effect of alternative pixel electrode materials on avalanche gain. The results show that avalanche gain > 50 is achievable in the HARP layers developed in large area coaters, which is sufficient to achieve x-ray quantum noise limited performance down to a single x-ray photon per pixel. Both chromium (Cr) and indium tin oxide (ITO) have been successfully tested as pixel electrodes.

  11. Hexagonal boron nitride neutron detectors with high detection efficiencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maity, A.; Grenadier, S. J.; Li, J.

    Here, neutron detectors fabricated from 10B enriched hexagonal boron nitride (h- 10BN or h-BN) epilayers have demonstrated the highest thermal neutron detection efficiency among solid-state neutron detectors to date at about 53%. In this work, photoconductive-like vertical detectors with a detection area of 1 × 1 mm 2 were fabricated from 50 μm thick free-standing h-BN epilayers using Ni/Au and Ti/Al bilayers as ohmic contacts. Leakage currents, mobility-lifetime (μτ) products under UV photoexcitation, and neutron detection efficiencies have been measured for a total of 16 different device configurations. The results have unambiguously identified that detectors incorporating the Ni/Au bilayer onmore » both surfaces as ohmic contacts and using the negatively biased top surface for neutron irradiation are the most desired device configurations. It was noted that high growth temperatures of h- 10BN epilayers on sapphire substrates tend to yield a higher concentration of oxygen impurities near the bottom surface, leading to a better device performance by the chosen top surface for irradiation than by the bottom. Preferential scattering of oxygen donors tends to reduce the mobility of holes more than that of electrons, making the biasing scheme with the ability of rapidly extracting holes at the irradiated surface while leaving the electrons to travel a large average distance inside the detector at a preferred choice. When measured against a calibrated 6LiF filled micro-structured semiconductor neutron detector, it was shown that the optimized configuration has pushed the detection efficiency of h-BN neutron detectors to 58%. These detailed studies also provided a better understanding of growth-mediated impurities in h-BN epilayers and their effects on the charge collection and neutron detection efficiencies.« less

  12. Hexagonal boron nitride neutron detectors with high detection efficiencies

    NASA Astrophysics Data System (ADS)

    Maity, A.; Grenadier, S. J.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2018-01-01

    Neutron detectors fabricated from 10B enriched hexagonal boron nitride (h-10BN or h-BN) epilayers have demonstrated the highest thermal neutron detection efficiency among solid-state neutron detectors to date at about 53%. In this work, photoconductive-like vertical detectors with a detection area of 1 × 1 mm2 were fabricated from 50 μm thick free-standing h-BN epilayers using Ni/Au and Ti/Al bilayers as ohmic contacts. Leakage currents, mobility-lifetime (μτ) products under UV photoexcitation, and neutron detection efficiencies have been measured for a total of 16 different device configurations. The results have unambiguously identified that detectors incorporating the Ni/Au bilayer on both surfaces as ohmic contacts and using the negatively biased top surface for neutron irradiation are the most desired device configurations. It was noted that high growth temperatures of h-10BN epilayers on sapphire substrates tend to yield a higher concentration of oxygen impurities near the bottom surface, leading to a better device performance by the chosen top surface for irradiation than by the bottom. Preferential scattering of oxygen donors tends to reduce the mobility of holes more than that of electrons, making the biasing scheme with the ability of rapidly extracting holes at the irradiated surface while leaving the electrons to travel a large average distance inside the detector at a preferred choice. When measured against a calibrated 6LiF filled micro-structured semiconductor neutron detector, it was shown that the optimized configuration has pushed the detection efficiency of h-BN neutron detectors to 58%. These detailed studies also provided a better understanding of growth-mediated impurities in h-BN epilayers and their effects on the charge collection and neutron detection efficiencies.

  13. Hexagonal boron nitride neutron detectors with high detection efficiencies

    DOE PAGES

    Maity, A.; Grenadier, S. J.; Li, J.; ...

    2018-01-23

    Here, neutron detectors fabricated from 10B enriched hexagonal boron nitride (h- 10BN or h-BN) epilayers have demonstrated the highest thermal neutron detection efficiency among solid-state neutron detectors to date at about 53%. In this work, photoconductive-like vertical detectors with a detection area of 1 × 1 mm 2 were fabricated from 50 μm thick free-standing h-BN epilayers using Ni/Au and Ti/Al bilayers as ohmic contacts. Leakage currents, mobility-lifetime (μτ) products under UV photoexcitation, and neutron detection efficiencies have been measured for a total of 16 different device configurations. The results have unambiguously identified that detectors incorporating the Ni/Au bilayer onmore » both surfaces as ohmic contacts and using the negatively biased top surface for neutron irradiation are the most desired device configurations. It was noted that high growth temperatures of h- 10BN epilayers on sapphire substrates tend to yield a higher concentration of oxygen impurities near the bottom surface, leading to a better device performance by the chosen top surface for irradiation than by the bottom. Preferential scattering of oxygen donors tends to reduce the mobility of holes more than that of electrons, making the biasing scheme with the ability of rapidly extracting holes at the irradiated surface while leaving the electrons to travel a large average distance inside the detector at a preferred choice. When measured against a calibrated 6LiF filled micro-structured semiconductor neutron detector, it was shown that the optimized configuration has pushed the detection efficiency of h-BN neutron detectors to 58%. These detailed studies also provided a better understanding of growth-mediated impurities in h-BN epilayers and their effects on the charge collection and neutron detection efficiencies.« less

  14. Development of an MRI-compatible digital SiPM detector stack for simultaneous PET/MRI

    PubMed Central

    Düppenbecker, Peter M; Weissler, Bjoern; Gebhardt, Pierre; Schug, David; Wehner, Jakob; Marsden, Paul K; Schulz, Volkmar

    2016-01-01

    Abstract Advances in solid-state photon detectors paved the way to combine positron emission tomography (PET) and magnetic resonance imaging (MRI) into highly integrated, truly simultaneous, hybrid imaging systems. Based on the most recent digital SiPM technology, we developed an MRI-compatible PET detector stack, intended as a building block for next generation simultaneous PET/MRI systems. Our detector stack comprises an array of 8 × 8 digital SiPM channels with 4 mm pitch using Philips Digital Photon Counting DPC 3200-22 devices, an FPGA for data acquisition, a supply voltage control system and a cooling infrastructure. This is the first detector design that allows the operation of digital SiPMs simultaneously inside an MRI system. We tested and optimized the MRI-compatibility of our detector stack on a laboratory test bench as well as in combination with a Philips Achieva 3 T MRI system. Our design clearly reduces distortions of the static magnetic field compared to a conventional design. The MRI static magnetic field causes weak and directional drift effects on voltage regulators, but has no direct impact on detector performance. MRI gradient switching initially degraded energy and timing resolution. Both distortions could be ascribed to voltage variations induced on the bias and the FPGA core voltage supply respectively. Based on these findings, we improved our detector design and our final design shows virtually no energy or timing degradations, even during heavy and continuous MRI gradient switching. In particular, we found no evidence that the performance of the DPC 3200-22 digital SiPM itself is degraded by the MRI system. PMID:28458919

  15. In-Flight Performance of the Soft X-Ray Spectrometer Detector System on ASTRO-H

    NASA Technical Reports Server (NTRS)

    Porter, Frederick S.; Boyce, Kevin R.; Chiao, Meng P.; Eckart, Megan E.; Fujimoto, Ryuichi; Ishisaki, Yoshitaka; Kelley, Richard L.; Kilbourne, Carolina A.; Leutenegger, Maurice A.; McCammon, Dan; hide

    2016-01-01

    The SXS instrument was launched aboard the Astro-H observatory on February 17, 2016. The SXS spectrometer is based on a high sensitivity x-ray calorimeter detector system that has been successfully deployed in many ground and sub-orbital spectrometers. The instrument was to provide essential diagnostics for nearly every class of x-ray emitting objects from the atmosphere of Jupiter to the outskirts of galaxy clusters, without degradation for spatially extended objects. The SXS detector system consisted of a 36-pixel cryogenic microcalorimeter array operated at a heat sink temperature of 50 mK. In pre-flight testing, the detector system demonstrated a resolving power of better than 1300 at 6 keV with a simultaneous band-pass from below 0.3 keV to above 12 keV with a timing precision better than 100 microsecond. In addition, a solid-state anti-coincidence detector was placed directly behind the detector array for background suppression. The detector error budget included the measured interference from the SXS cooling system and the spacecraft. Additional margin for on-orbit gain-stability, and on-orbit spacecraft interference were also included predicting an on-orbit performance that meets or exceeds the 7 eV FWHM at 6 keV requirement. The actual on-orbit spectral resolution was better than 5 eV FWHM at 6 keV, easily satisfying the instrument requirement. Here we discuss the actual on-orbit performance of the SXS detector system and compare this to performance in pre-flight testing and the on-orbit predictions. We will also discuss the on-orbit gain stability, additional on-orbit interference, and measurements of the on-orbit background.

  16. In-flight performance of the soft x-ray spectrometer detector system on Astro-H

    NASA Astrophysics Data System (ADS)

    Porter, Frederick S.; Boyce, Kevin R.; Chiao, Meng P.; Eckart, Megan E.; Fujimoto, Ryuichi; Ishisaki, Yoshitaka; Kilbourne, Caroline Anne; Leutenegger, Maurice A.; McCammon, Daniel; Mitsuda, Kazuhisa; Sato, Kosuke; Seta, Hiromi; Sawada, Makoto; Sneiderman, Gary A.; Szymkowiak, Andrew E.; Takei, Yoh; Tashiro, Makoto S.; Tsujimoto, Masahiro; Watanabe, Tomomi; Yamada, Shinya

    2018-01-01

    The soft x-ray spectrometer (SXS) instrument was launched aboard the Astro-H (Hitomi) observatory on February 17, 2016. The SXS is based on a high-sensitivity x-ray calorimeter detector system that has been successfully deployed in many ground and suborbital spectrometers. The instrument was to provide essential diagnostics for nearly every class of x-ray emitting objects from the atmosphere of Jupiter to the outskirts of galaxy clusters, without degradation for spatially extended objects. The SXS detector system consisted of a 36-pixel cryogenic microcalorimeter array operated at a heat sink temperature of 50 mK. In preflight testing, the detector system demonstrated a resolving power of better than 1300 at 6 keV with a simultaneous bandpass from below 0.3 keV to above 12 keV with a timing precision better than 100 μs. In addition, a solid-state anticoincidence detector was placed directly behind the detector array for background suppression. The detector error budget included the measured interference from the SXS cooling system and the spacecraft. Additional margin for on-orbit gain stability and on-orbit spacecraft interference were also included predicting an on-orbit performance that meets or exceeds the 7-eV FWHM at 6-keV requirement. The actual on-orbit spectral resolution was better than 5 eV FWHM at 6 keV, easily satisfying the instrument requirement. Here, we discuss the actual on-orbit performance of the SXS detector system and compare this to performance in preflight testing and the on-orbit predictions. We will also discuss the on-orbit gain stability, additional on-orbit interference, and measurements of the on-orbit background.

  17. IBIC characterisation of novel detectors for single atom doping of quantum computer devices

    NASA Astrophysics Data System (ADS)

    Yang, Changyi; Jamieson, David N.; Pakes, Chris I.; George, Damien P.; Hearne, Sean M.; Dzurak, Andrew S.; Gauja, Eric; Stanley, F.; Clark, R. G.

    2003-09-01

    Single ion implantation and online detection is highly desirable for the emerging application, in which single 31P ions need to be inserted in prefabricated silicon cells to construct solid-state quantum bits (qubits). In order to fabricate qubit arrays, we have developed novel detectors that employ detector electrodes adjacent to the prefabricated cells that can detect single keV ion strikes appropriate for the fabrication of shallow phosphorus arrays. The method utilises a high purity silicon substrate with very high resistivity, a thin SiO 2 surface layer, nanometer masks for the lateral positioning single phosphorus implantation, biased electrodes applied to the surface of the silicon and sensitive electronics that can detect the charge transient from single keV ion strikes. A TCAD (Technology Computer Aided Design) software package was applied in the optimisation of the device design and simulation of the detector performance. Here we show the characterisation of these detectors using ion beam induced charge (IBIC) with a focused 2 MeV He ions in a nuclear microprobe. The IBIC imaging method in a nuclear microprobe allowed us to measure the dead-layer thickness of the detector structure (required to be very thin for successful detection of keV ions), and the spatial distribution of the charge collection efficiency around the entire region of the detector. We show that our detectors have near 100% charge collection efficiency for MeV ions, extremely thin dead-layer thickness (about 7 nm) and a wide active region extending laterally from the electrodes (10-20 μm) where qubit arrays can be constructed. We demonstrate that the device can be successfully applied in the detection of keV ionisation energy from single events of keV X-rays and keV 31P ions.

  18. NuLat: A Novel Design for a Reactor Anti-Neutrino Detector

    NASA Astrophysics Data System (ADS)

    Rountree, S. Derek; NuLat Collaboration

    2015-04-01

    NuLat is a proposed very-short baseline (3-10m) reactor electron antineutrino (anti-νe) experiment that will probe the current best fit for light sterile neutrino mixing, the 5 MeV excess seen in current short baseline reactor experiments, and serve as a portable surface detector for cooperative (~ 30m baseline) surface monitoring of reactors. The NuLat detector will use an optically segmented 3D Raghavan optical lattice (ROL) detector that channels light via total internal reflection from a scintillation event down the 3 primary axes to the detector faces. The high degree of segmentation allows for each voxel's energy to be determined independently of other voxels, thus providing high temporal and spatial resolution and energy reconstruction independent of position. NuLat detects anti-νe via inverse beta decay (IBD), which produces a positron and a neutron. Most of the time, the positron deposits its kinetic energy into a single voxel allowing superior derivation of the incident anti-νe's energy. The final state neutron is captured via (n, α) on 6 Li or 10 B after a characteristic delay time giving a coincidence tag. This talk will discuss the physics reach of NuLat using a solid loaded scintillator, and the timeline of the NuLat reactor anti-νe program. This research has been funded in part by the National Science Foundation on Award Numbers 1001394 and 1001078.

  19. Gravitational wave detection using laser interferometry beyond the standard quantum limit

    NASA Astrophysics Data System (ADS)

    Heurs, M.

    2018-05-01

    Interferometric gravitational wave detectors (such as advanced LIGO) employ high-power solid-state lasers to maximize their detection sensitivity and hence their reach into the universe. These sophisticated light sources are ultra-stabilized with regard to output power, emission frequency and beam geometry; this is crucial to obtain low detector noise. However, even when all laser noise is reduced as far as technically possible, unavoidable quantum noise of the laser still remains. This is a consequence of the Heisenberg Uncertainty Principle, the basis of quantum mechanics: in this case, it is fundamentally impossible to simultaneously reduce both the phase noise and the amplitude noise of a laser to arbitrarily low levels. This fact manifests in the detector noise budget as two distinct noise sources-photon shot noise and quantum radiation pressure noise-which together form a lower boundary for current-day gravitational wave detector sensitivities, the standard quantum limit of interferometry. To overcome this limit, various techniques are being proposed, among them different uses of non-classical light and alternative interferometer topologies. This article explains how quantum noise enters and manifests in an interferometric gravitational wave detector, and gives an overview of some of the schemes proposed to overcome this seemingly fundamental limitation, all aimed at the goal of higher gravitational wave event detection rates. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  20. Gravitational wave detection using laser interferometry beyond the standard quantum limit.

    PubMed

    Heurs, M

    2018-05-28

    Interferometric gravitational wave detectors (such as advanced LIGO) employ high-power solid-state lasers to maximize their detection sensitivity and hence their reach into the universe. These sophisticated light sources are ultra-stabilized with regard to output power, emission frequency and beam geometry; this is crucial to obtain low detector noise. However, even when all laser noise is reduced as far as technically possible, unavoidable quantum noise of the laser still remains. This is a consequence of the Heisenberg Uncertainty Principle, the basis of quantum mechanics: in this case, it is fundamentally impossible to simultaneously reduce both the phase noise and the amplitude noise of a laser to arbitrarily low levels. This fact manifests in the detector noise budget as two distinct noise sources-photon shot noise and quantum radiation pressure noise-which together form a lower boundary for current-day gravitational wave detector sensitivities, the standard quantum limit of interferometry. To overcome this limit, various techniques are being proposed, among them different uses of non-classical light and alternative interferometer topologies. This article explains how quantum noise enters and manifests in an interferometric gravitational wave detector, and gives an overview of some of the schemes proposed to overcome this seemingly fundamental limitation, all aimed at the goal of higher gravitational wave event detection rates.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).

  1. Cross correlation calculations and neutron scattering analysis for a portable solid state neutron detection system

    NASA Astrophysics Data System (ADS)

    Saltos, Andrea

    In efforts to perform accurate dosimetry, Oakes et al. [Nucl. Intrum. Mehods. (2013)] introduced a new portable solid state neutron rem meter based on an adaptation of the Bonner sphere and the position sensitive long counter. The system utilizes high thermal efficiency neutron detectors to generate a linear combination of measurement signals that are used to estimate the incident neutron spectra. The inversion problem associated to deduce dose from the counts in individual detector elements is addressed by applying a cross-correlation method which allows estimation of dose with average errors less than 15%. In this work, an evaluation of the performance of this system was extended to take into account new correlation techniques and neutron scattering contribution. To test the effectiveness of correlations, the Distance correlation, Pearson Product-Moment correlation, and their weighted versions were performed between measured spatial detector responses obtained from nine different test spectra, and the spatial response of Library functions generated by MCNPX. Results indicate that there is no advantage of using the Distance Correlation over the Pearson Correlation, and that weighted versions of these correlations do not increase their performance in evaluating dose. Both correlations were proven to work well even at low integrated doses measured for short periods of time. To evaluate the contribution produced by room-return neutrons on the dosimeter response, MCNPX was used to simulate dosimeter responses for five isotropic neutron sources placed inside different sizes of rectangular concrete rooms. Results show that the contribution of scattered neutrons to the response of the dosimeter can be significant, so that for most cases the dose is over predicted with errors as large as 500%. A possible method to correct for the contribution of room-return neutrons is also assessed and can be used as a good initial estimate on how to approach the problem.

  2. New cardiac cameras: single-photon emission CT and PET.

    PubMed

    Slomka, Piotr J; Berman, Daniel S; Germano, Guido

    2014-07-01

    Nuclear cardiology instrumentation has evolved significantly in the recent years. Concerns about radiation dose and long acquisition times have propelled developments of dedicated high-efficiency cardiac SPECT scanners. Novel collimator designs, such as multipinhole or locally focusing collimators arranged in geometries that are optimized for cardiac imaging, have been implemented to enhance photon-detection sensitivity. Some of these new SPECT scanners use solid-state photon detectors instead of photomultipliers to improve image quality and to reduce the scanner footprint. These new SPECT devices allow dramatic up to 7-fold reduction in acquisition times or similar reduction in radiation dose. In addition, new hardware for photon attenuation correction allowing ultralow radiation doses has been offered by some vendors. To mitigate photon attenuation artifacts for the new SPECT scanners not equipped with attenuation correction hardware, 2-position (upright-supine or prone-supine) imaging has been proposed. PET hardware developments have been primarily driven by the requirements of oncologic imaging, but cardiac imaging can benefit from improved PET image quality and improved sensitivity of 3D systems. The time-of-flight reconstruction combined with resolution recovery techniques is now implemented by all major PET vendors. These new methods improve image contrast and image resolution and reduce image noise. High-sensitivity 3D PET without interplane septa allows reduced radiation dose for cardiac perfusion imaging. Simultaneous PET/MR hybrid system has been developed. Solid-state PET detectors with avalanche photodiodes or digital silicon photomultipliers have been introduced, and they offer improved imaging characteristics and reduced sensitivity to electromagnetic MR fields. Higher maximum count rate of the new PET detectors allows routine first-pass Rb-82 imaging, with 3D PET acquisition enabling clinical utilization of dynamic imaging with myocardial flow measurements for this tracer. The availability of high-end CT component in most PET/CT configurations enables hybrid multimodality cardiac imaging protocols with calcium scoring or CT angiography or both. Copyright © 2014. Published by Elsevier Inc.

  3. Advances in Raman spectroscopy for In Situ Identification of Minerals and Organics on Diverse Planetary Surfaces: from Mars to Titan

    NASA Astrophysics Data System (ADS)

    Blacksberg, J.; Alerstam, E.; Maruyama, Y.; Cochrane, C.; Rossman, G. R.

    2015-12-01

    We present recent developments in time-resolved Raman spectroscopy for in situ planetary surface exploration, aimed at identification of both minerals and organics. Raman is a non-destructive surface technique that requires no sample preparation. Raman spectra are highly material specific and can be used for identification of a wide range of unknown samples. In combination with micro-scale imaging and point mapping, Raman spectroscopy can be used to directly interrogate rocks and regolith materials, while placing compositional analyses within a microtextural context, essential for understanding surface evolutionary pathways. Due to these unique capabilities, Raman spectroscopy is of great interest for the exploration of all rocky and icy bodies, for example Mars, Venus, the Moon, Mars' moons, asteroids, comets, Europa, and Titan. In this work, we focus on overcoming one of the most difficult challenges faced in Raman spectroscopy: interference from background fluorescence of the very minerals and organics that we wish to characterize. To tackle this problem we use time-resolved Raman spectroscopy, which separates the Raman from background processes in the time domain. This same technique also enables operation in daylight without the need for light shielding. Two key components are essential for the success of this technique: a fast solid-state detector and a short-pulse laser. Our detector is a custom developed Single Photon Avalanche Diode (SPAD) array, capable of sub-ns time-gating. Our pulsed lasers are solid-state miniature pulsed microchip lasers. We discuss optimization of laser and detector parameters for our application. We then present Raman spectra of particularly challenging planetary analog samples to demonstrate the unique capabilities of this time-resolved Raman instrument, for example, Mars-analog clays and Titan-analog organics. The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA).

  4. Phantom evaluation of a cardiac SPECT/VCT system that uses a common set of solid-state detectors for both emission and transmission scans.

    PubMed

    Bai, Chuanyong; Conwell, Richard; Kindem, Joel; Babla, Hetal; Gurley, Mike; De Los Santos, Romer; Old, Rex; Weatherhead, Randy; Arram, Samia; Maddahi, Jamshid

    2010-06-01

    We developed a cardiac SPECT system (X-ACT) with low dose volume CT transmission-based attenuation correction (AC). Three solid-state detectors are configured to form a triple-head system for emission scans and reconfigured to form a 69-cm field-of-view detector arc for transmission scans. A near mono-energetic transmission line source is produced from the collimated fluorescence x-ray emitted from a lead target when the target is illuminated by a narrow polychromatic x-ray beam from an x-ray tube. Transmission scans can be completed in 1 min with insignificant patient dose (deep dose equivalent <5 muSv). We used phantom studies to evaluate (1) the accuracy of the reconstructed attenuation maps, (2) the effect of AC on image uniformity, and (3) the effect of AC on defect contrast (DC). The phantoms we used included an ACR phantom, an anthropomorphic phantom with a uniform cardiac insert, and an anthropomorphic phantom with two defects in the cardiac insert. The reconstructed attenuation coefficient of water at 140 keV was .150 +/- .003/cm in the uniform region of the ACR phantom, .151 +/- .003/cm and .151 +/- .002/cm in the liver and cardiac regions of the anthropomorphic phantom. The ACR phantom images with AC showed correction of the bowing effect due to attenuation in the images without AC (NC). The 17-segment scores of the images of the uniform cardiac insert were 78.3 +/- 6.5 before and 87.9 +/- 3.3 after AC (average +/- standard deviation). The inferior-to-anterior wall ratio and the septal-to-lateral wall ratio were .99 and 1.16 before and 1.02 and 1.00 after AC. The DC of the two defects was .528 and .156 before and .628 and .173 after AC. The X-ACT system generated accurate attenuation maps with 1-minute transmission scans. AC improved image quality and uniformity over NC.

  5. Debris Detector Verification by Hvi-Tests

    NASA Astrophysics Data System (ADS)

    Bauer, Waldemar; Drolshagen, Gerhard; Vörsmann, Peter; Romberg, Oliver; Putzar, Robin

    Information regarding Space Debris (SD) or Micrometeoroids (MM) impacting on spacecraft (S/C) or payloads (P/L) can be obtained by using environmental models e.g. MASTER (ESA) or ORDEM (NASA). The validation of such models is performed by comparison of simulated results with measured or orbital observed data. The latter is utilised for large particles and can be obtained from ground based or space based radars or telescopes. Data regarding very small but abundant particles can also be gained by analysis of retrieved hardware (e.g. Hubble Space Telescope, Space Shuttle Windows), which are brought from orbit back to Earth. Furthermore, in-situ impact detectors are an essential source for information on small size meteoroids and space debris. These kind of detectors are placed in orbit and collect impact data regarding SD and MM, sending data near real time via telemetry. Compared to the impact data which is gained by analysis of retrieved surfaces, the detected data comprise additional information regarding exact impact time and, depending on the type of detector, on the orbit and particles composition. Nevertheless, existing detectors have limitations. Since the detection area is small, statistically meaningful number of impacts are obtained for very small particles only. Measurements of particles in the size range of hundreds of microns to mm which are potentially damaging to S/C require larger sensor areas. To make use of the advantages of in-situ impact detectors and to increase the amount of impact data an innovative impact detector concept is currently under development at DLR in Bremen. Different to all previous impact detectors the Solar Generator based Impact Detector (SOLID) is not an add-on component on the S/C. SOLID makes use of existing subsystems of the S/C and adopts them for impact detection purposes. Since the number of impacts on a target in space depends linearly on the exposed area, the S/C solar panels offer a unique opportunity to use them for impact detection. Considering that the SOLID method could be applied to several S/Cs in different orbits, the spatial coverage in space concerning SD and MM can be significantly increased. In this way the method allows to generate large amount of impact data, which can be used for environmental model validation. This paper focuses on the verification of the SOLID method by Hypervelocity Impact (HVI) tests performed at Fraunhofer EMI. The test set-up as well as achieved results are presented and discussed.

  6. Analysis of Technology for Solid State Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1997-01-01

    Over the past few years, considerable advances have been made in the areas of the diode-pumped, eye-safe, solid state lasers, wide bandwidth, semiconductor detectors operating in the near-infrared region. These advances have created new possibilities for the development of low-cost, reliable, and compact coherent lidar systems for measurements of atmospheric winds and aerosol backscattering from a space-based platform. The work performed by the UAH personnel concentrated on design and analyses of solid state pulsed coherent lidar systems capable of measuring atmospheric winds from space, and design and perform laboratory experiments and measurements in support of solid state laser radar remote sensing systems which are to be designed, deployed, and used by NASA to measure atmospheric processes and constituents. A lidar testbed system was designed and analyzed by considering the major space operational and environmental requirements, and its associated physical constraints. The lidar optical system includes a wedge scanner and the compact telescope designed by the UAH personnel. The other major optical components included in the design and analyses were: polarizing beam splitter, routing mirrors, wave plates, signal beam derotator, and lag angle compensator. The testbed lidar optical train was designed and analyzed, and different design options for mounting and packaging the lidar subsystems and components and support structure were investigated. All the optical components are to be mounted in a stress-free and stable manner to allow easy integration and alignment, and long term stability. This lidar system is also intended to be used for evaluating the performance of various lidar subsystems and components that are to be integrated into a flight unit and for demonstrating the integrity of the signal processing algorithms by performing actual atmospheric measurements from a ground station.

  7. Diamond detectors for high-temperature transactinide chemistry experiments

    NASA Astrophysics Data System (ADS)

    Steinegger, Patrick; Dressler, Rugard; Eichler, Robert; Piguet, Dave; Streuli, Silvan; Türler, Andreas

    2017-04-01

    Here, we present the fabrication details and functional tests of diamond-based α-spectroscopic sensors, dedicated for high-temperature experiments, targeting the chemistry of transactinide elements. Direct heating studies with this sensor material, revealed a current upper temperature threshold for a safe α-spectroscopic operation of Tdet = 453 K . Up to this temperature, the diamond sensor could be operated in a stable manner over long time periods of the order of days. A satisfying resolution of ≈ 50 keVFWHM was maintained throughout all conducted measurements. However, exceeding the mentioned temperature limit led to a pronounced spectroscopic degradation in the range of 453 - 473 K , thereby preventing any further α-spectroscopic application. These findings are in full agreement with available literature data. The presented detector development generally enables the chemical investigation of more short-lived and less volatile transactinide elements and their compounds, yet unreachable with the currently employed silicon-based solid state sensors. In a second part, the design, construction, and α-spectroscopic performance of a 4-segmented diamond detector, dedicated and used for transactinide element research, is given as an application example.

  8. Sub-THz Imaging Using Non-Resonant HEMT Detectors

    PubMed Central

    Delgado-Notario, Juan A.; Meziani, Yahya M.; Fobelets, Kristel

    2018-01-01

    Plasma waves in gated 2-D systems can be used to efficiently detect THz electromagnetic radiation. Solid-state plasma wave-based sensors can be used as detectors in THz imaging systems. An experimental study of the sub-THz response of II-gate strained-Si Schottky-gated MODFETs (Modulation-doped Field-Effect Transistor) was performed. The response of the strained-Si MODFET has been characterized at two frequencies: 150 and 300 GHz: The DC drain-to-source voltage transducing the THz radiation (photovoltaic mode) of 250-nm gate length transistors exhibited a non-resonant response that agrees with theoretical models and physics-based simulations of the electrical response of the transistor. When imposing a weak source-to-drain current of 5 μA, a substantial increase of the photoresponse was found. This increase is translated into an enhancement of the responsivity by one order of magnitude as compared to the photovoltaic mode, while the NEP (Noise Equivalent Power) is reduced in the subthreshold region. Strained-Si MODFETs demonstrated an excellent performance as detectors in THz imaging. PMID:29439437

  9. A Lidar for Making Range Resolved CO2 Measurements within the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Burris, John; Riris, Haris; Andrews, Arlyn; Krainak, Mike; Sun, Xiaoli; Abshire, Jim; Colarco, Amelia; Heaps, William

    2006-01-01

    A ground based differential absorption lidar is under development at NASA's Goddard Space Flight Center to make range resolved measurements of CO2 within the planetary boundary layer. This is a direct detection lidar designed for both photon counting and analog use. Technology being developed for this instrument will be discussed including efforts in fiber lasers, optical parametric amplifiers and both InGaAs and HgCdTe solid-state detectors. The capabilities of this system are investigated and preliminary results presented.

  10. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1986-01-01

    The analysis of the beryllium-filtered data from Flight 17.020 was completed. The data base provided by the Wisconsin diffuse X-ray sky survey is being analyzed by correlating the B and C band emission with individual velocity components of neutral hydrogen. Work on a solid state detector to be used in high resolution spectroscopy of diffuse or extend X-ray sources is continuing. A series of 21 cm observations was completed. A paper on the effects of process parameter variation on the reflectivity of sputter-deposited tungsten-carvon multilayers was published.

  11. Some aspects of optical feedback with cadmium sulfide and related photoconductors. [for extended frequency response

    NASA Technical Reports Server (NTRS)

    Katzberg, S. J.

    1974-01-01

    A primary limitation of many solid state photoconductors used in electro-optical systems is their slow response in converting varying light intensities into electrical signals. An optical feedback technique is presented which can extend the frequency response of systems that use these detectors by orders of magnitude without adversely affecting overall signal-to-noise ratio performance. The technique is analyzed to predict the improvement possible and a system is implemented using cadmium sulfide to demonstrate the effectiveness of the technique and the validity of the analysis.

  12. Carrier-envelope-offset phase control of ultrafast optical rectification in resonantly excited semiconductors.

    PubMed

    Van Vlack, C; Hughes, S

    2007-04-20

    Ultrashort pulse light-matter interactions in a semiconductor are investigated within the regime of resonant optical rectification. Using pulse envelope areas of around 1.5-3.5 pi, a single-shot dependence on carrier-envelope-offset phase (CEP) is demonstrated for 5 fs pulse durations. A characteristic phase map is predicted for several different frequency regimes using parameters for thin-film GaAs. We subsequently suggest a possible technique to extract the CEP, in both sign and amplitude, using a solid state detector.

  13. Four passive sampling elements (quatrefoil)--II. Film badges for monitoring radon and its progeny.

    PubMed

    Tommasino, L; Tokonami, S

    2011-05-01

    The four passive samplers (quatrefoil) already described in a parallel paper, make it possible to obtain thin radiation sources, useful for alpha and beta counting by any passive and real-time detector. In the present paper, the applications of this quatrefoil for measuring radon gas by etch-track detectors will be described. In the case of radon measurements, different solids have been identified, with radon-sorption partition coefficients related to air from 1 to 2000. Uniquely compact radon badges can be obtained by using a layer of these solids facing an alpha track-etch detector. These radon badges make it possible to overcome most of the shortcomings of existing passive monitors. Moreover, these badges show promise for studying the radon solubility of polymer films.

  14. Three-dimensional architecture for solid state radiation detectors

    DOEpatents

    Parker, S.

    1999-03-30

    A radiation-damage resistant radiation detector is formed on a substrate formed of a material doped with a first conductivity type dopant. The detector includes at least one first electrode formed of first conductivity type dopant, and at least one second electrode that is spaced-apart from the first electrode and formed of a second conductivity type dopant. Each first and second electrode penetrates into the substrate from a substrate surface, and one or more electrodes may penetrate entirely through the substrate, that is traversing from one surface to the other surface. Particulate and/or electromagnetic radiation penetrating at least a surface of the substrate releases electrons and holes in substrate regions. Because the electrodes may be formed entirely through the substrate thickness, the released charges will be a relatively small distance from at least a portion of such an electrode, e.g., a distance less than the substrate thickness. The electrons and/or holes traverse the small distance and are collected by said electrodes, thus promoting rapid detection of the radiation. By providing one or more electrodes with a dopant profile radially graded in a direction parallel to a substrate surface, an electric field results that promotes rapid collection of released electrons and said holes. Monolithic combinations of such detectors may be fabricated including CMOS electronics to process radiation signals. 45 figs.

  15. Three-dimensional architecture for solid state radiation detectors

    DOEpatents

    Parker, Sherwood

    1999-01-01

    A radiation-damage resistant radiation detector is formed on a substrate formed of a material doped with a first conductivity type dopant. The detector includes at least one first electrode formed of first conductivity type dopant, and at least one second electrode that is spaced-apart from the first electrode and formed of a second conductivity type dopant. Each first and second electrode penetrates into the substrate from a substrate surface, and one or more electrodes may penetrate entirely through the substrate, that is traversing from one surface to the other surface. Particulate and/or electromagnetic radiation penetrating at least a surface of the substrate releases electrons and holes in substrate regions. Because the electrodes may be formed entirely through the substrate thickness, the released charges will be a relatively small distance from at least a portion of such an electrode, e.g., a distance less than the substrate thickness. The electrons and/or holes traverse the small distance and are collected by said electrodes, thus promoting rapid detection of the radiation. By providing one or more electrodes with a dopant profile radially graded in a direction parallel to a substrate surface, an electric field results that promotes rapid collection of released electrons and said holes. Monolithic combinations of such detectors may be fabricated including CMOS electronics to process radiation signals.

  16. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications

    DOE PAGES

    Rosenberg, M. J.; Séguin, F. H.; Waugh, C. J.; ...

    2014-04-14

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ~0.5–8 MeV protons. When the fluence of incident particles becomes too high, the overlap of particle tracks leads to under-counting at typical processing conditions (5h etch in 6N NaOH at 80°C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detectionmore » of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 ×10 6 cm -2. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ~50, increasing the operating yield upper limit by a comparable amount.« less

  17. Ultrahigh-resolution CT and DR scanner

    NASA Astrophysics Data System (ADS)

    DiBianca, Frank A.; Gupta, Vivek; Zou, Ping; Jordan, Lawrence M.; Laughter, Joseph S.; Zeman, Herbert D.; Sebes, Jeno I.

    1999-05-01

    A new technique called Variable-Resolution X-ray (VRX) detection that dramatically increases the spatial resolution in computed tomography (CT) and digital radiography (DR) is presented. The technique is based on a principle called 'projective compression' that allows the resolution element of a CT detector to scale with the subject or field size. For very large (40 - 50 cm) field sizes, resolution exceeding 2 cy/mm is possible and for very small fields, microscopy is attainable with resolution exceeding 100 cy/mm. Several effects that could limit the performance of VRX detectors are considered. Experimental measurements on a 16-channel, CdWO4 scintillator + photodiode test array yield a limiting MTF of 64 cy/mm (8(mu) ) in the highest-resolution configuration reported. Preliminary CT images have been made of small anatomical specimens and small animals using a storage phosphor screen in the VRX mode. Measured detector resolution of the CT projection data exceeds 20 cy/mm (less than 25 (mu) ); however, the final, reconstructed CT images produced thus far exhibit 10 cy/mm (50 (mu) ) resolution because of non-flatness of the storage phosphor plates, focal spot effects and the use of a rudimentary CT reconstruction algorithm. A 576-channel solid-state detector is being fabricated that is expected to achieve CT image resolution in excess of that of the 26-channel test array.

  18. Novel scintillators and silicon photomultipliers for nuclear physics and applications

    NASA Astrophysics Data System (ADS)

    Jenkins, David

    2015-06-01

    Until comparatively recently, scintillator detectors were seen as an old-fashioned tool of nuclear physics with more attention being given to areas such as gamma-ray tracking using high-purity germanium detectors. Next-generation scintillator detectors, such as lanthanum bromide, which were developed for the demands of space science and gamma- ray telescopes, are found to have strong applicability to low energy nuclear physics. Their excellent timing resolution makes them very suitable for fast timing measurements and their much improved energy resolution compared to conventional scintillators promises to open up new avenues in nuclear physics research which were presently hard to access. Such "medium-resolution" spectroscopy has broad interest across several areas of contemporary interest such as the study of nuclear giant resonances. In addition to the connections to space science, it is striking that the demands of contemporary medical imaging have strong overlap with those of experimental nuclear physics. An example is the interest in PET-MRI combined imaging which requires putting scintillator detectors in a high magnetic field environment. This has led to strong advances in the area of silicon photomultipliers, a solid-state replacement for photomultiplier tubes, which are insensitive to magnetic fields. Broad application to nuclear physics of this technology may be foreseen.

  19. Assessment of the Influence of the RaD-X Balloon Payload on the Onboard Radiation Detectors

    NASA Technical Reports Server (NTRS)

    Gronoff, Guilluame; Mertens, Christopher J.; Norman, Ryan B.; Straume, Tore; Lusby, Terry C.

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission, launched on 25 September 2015, provided dosimetric measurements above the Pfotzer maximum. The goal of taking these measurements is to improve aviation radiation models by providing a characterization of cosmic ray primaries, which are the source of radiation exposure at aviation altitudes. The RaD-X science payload consists of four instruments. The main science instrument is a tissue-equivalent proportional counter (TEPC). The other instruments consisted of three solid state silicon dosimeters: Liulin, Teledyne total ionizing dose (TID) and RaySure detectors. The instruments were housed in an aluminum structure protected by a foam cover. The structure partially shielded the detectors from cosmic rays but also created secondary particles, modifying the ambient radiation environment observed by the instruments. Therefore, it is necessary to account for the influence of the payload structure on the measured doses. In this paper, we present the results of modeling the effect of the balloon payload on the radiation detector measurements using a Geant-4 (GEometry ANd Tracking) application. Payload structure correction factors derived for the TEPC, Liulin, and TID instruments are provided as a function of altitude. Overall, the payload corrections are no more than a 7% effect on the radiation environment measurements.

  20. CVD-diamond-based position sensitive photoconductive detector for high-flux x-rays and gamma rays.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, D.

    1999-04-19

    A position-sensitive photoconductive detector (PSPCD) using insulating-type CVD diamond as its substrate material has been developed at the Advanced Photon Source (APS). Several different configurations, including a quadrant pattern for a x-ray-transmitting beam position monitor (TBPM) and 1-D and 2-D arrays for PSPCD beam profilers, have been developed. Tests on different PSPCD devices with high-heat-flux undulator white x-ray beam, as well as with gamma-ray beams from {sup 60}Co sources have been done at the APS and National Institute of Standards and Technology (NIST). It was proven that the insulating-type CVD diamond can be used to make a hard x-ray andmore » gamma-ray position-sensitive detector that acts as a solid-state ion chamber. These detectors are based on the photoconductivity principle. A total of eleven of these TBPMs have been installed on the APS front ends for commissioning use. The linear array PSPCD beam profiler has been routinely used for direct measurements of the undulator white beam profile. More tests with hard x-rays and gamma rays are planned for the CVD-diamond 2-D imaging PSPCD. Potential applications include a high-dose-rate beam profiler for fourth-generation synchrotrons radiation facilities, such as free-electron lasers.« less

  1. Cherenkov light imaging tests with state-of-the-art solid state photon counter for the CLAS12 RICH detector

    NASA Astrophysics Data System (ADS)

    Balossino, Ilaria; Barion, L.; Contalbrigo, M.; Lenisa, P.; Lucherini, V.; Malaguti, R.; Mirazita, M.; Movsisyan, A.; Squerzanti, S.; Turisini, M.

    2017-12-01

    A large area ring-imaging Cherenkov detector will be operated for hadron identification in the 3 GeV / c to 8 GeV / c momentum range at the CLAS12 experiment at the upgraded continuous electron beam accelerator facility of Jefferson Lab. The detector, consisting of aerogel radiator, composite mirrors and photon counters, will be built with a hybrid optics design to allow the detection of Cherenkov light for both forward and large angle hadron tracks. The active area has to be densely packed and highly segmented, covering about 1m2 with pixels of 6mm2 , and to allow a time resolution of 1 ns. A technology that can offer a cost-effective solution and low material budget could be Silicon Photomultipliers (SiPM) thanks to their high gain at low bias voltage, fast timing, good single-photoelectron resolution and insensitivity to magnetic fields. An investigation is ongoing on samples of 3 × 3mm2 SiPM of different micro-cell size to assess the single photon detection capability in the presence of high dark count rate due to thermal generation effects, after-pulses or optical cross-talk and to study the response to the moderate radiation damage expected at CLAS12. In this work, a brief review of the latest and most interesting results from these studies will be shown.

  2. X-Ray Computed Tomography Monitors Damage in Composites

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1997-01-01

    The NASA Lewis Research Center recently codeveloped a state-of-the-art x-ray CT facility (designated SMS SMARTSCAN model 100-112 CITA by Scientific Measurement Systems, Inc., Austin, Texas). This multipurpose, modularized, digital x-ray facility includes an imaging system for digital radiography, CT, and computed laminography. The system consists of a 160-kV microfocus x-ray source, a solid-state charge-coupled device (CCD) area detector, a five-axis object-positioning subassembly, and a Sun SPARCstation-based computer system that controls data acquisition and image processing. The x-ray source provides a beam spot size down to 3 microns. The area detector system consists of a 50- by 50- by 3-mm-thick terbium-doped glass fiber-optic scintillation screen, a right-angle mirror, and a scientific-grade, digital CCD camera with a resolution of 1000 by 1018 pixels and 10-bit digitization at ambient cooling. The digital output is recorded with a high-speed, 16-bit frame grabber that allows data to be binned. The detector can be configured to provide a small field-of-view, approximately 45 by 45 mm in cross section, or a larger field-of-view, approximately 60 by 60 mm in cross section. Whenever the highest spatial resolution is desired, the small field-of-view is used, and for larger samples with some reduction in spatial resolution, the larger field-of-view is used.

  3. Status and Future of GOES X-Ray Sensor Observations

    NASA Astrophysics Data System (ADS)

    Viereck, R.; Biesecker, D.

    2008-05-01

    The GOES X-Ray Sensor (XRS) has provided x-ray irradiance measurements in the 0.05 to 0.8 nm spectral band for nearly 30 years. These observations define the magnitude of x-ray flares. There are three issues that should be brought to the attention of the scientific community. First, today's XRS data have multiplicative factors of 0.7 and 0.85 that have been applied to the data to make recent (since GOES 8) observations match the earlier ones. We now believe that these factors are not correct and should be removed. There are implications on the magnitudes of flares and the historic record. The second issue is the current state of the XRS sensors. Two concurrent satellites, GOES 11 and GOES 12, now have failed XRS systems and the GOES 13 XRS (soon to be deployed) is only partially functioning leaving a serious vulnerability in the near future. The third issue is the future of these observations. From the beginning, the XRS detectors have been gas ionization cells which have proven to be very robust and stable. The future GOES R+ XRS instruments will be changing to solid state silicon diode detectors. The possible implications of this new detector technology should be considered as well. Details of these three issues will be presented and the implications discussed. Alternatives for the multiplicative factor and the failed XRS's will be presented.

  4. Determination of indoor radon concentrations at the elementary schools of Fatih district in Istanbul

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt, A., E-mail: aziz.kurt@istanbul.edu.tr; Yalcin, L. Sahin, E-mail: latife.sahin@gmail.com; Oktem, Y., E-mail: sgyks@istanbul.edu.tr

    Radon is an odorless, tasteless, colorless noble radioactive gas which is produced within the radioactive decay chain of Uranium. The Radon forms in rocks, diffuses into soil and then escapes into atmosphere. When human exposure to high concentration of radon gas from inside, risk of developing lung cancer is increased. There are many methods to determine {sup 222}Rn concentration in the air. In this study, radon concentration of confined air spaces were measured by using LR-115 solid state nuclear track detectors. 509 LR-115 nuclear trace detectors were placed to 25 schools in Fatih District and they effective dose values weremore » calculated. The results of measurements showed that the radon concentration varies between 40-395 Bq/m{sup 3}. This results compared with Turkey’s limits (400 Bq/m{sup 3}) are low, conversely higher compared with WHO’s limits (100 Bq/m{sup 3}).« less

  5. X-ray absorption fine structure (XAFS) spectroscopy using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Shrivastava, B. D.

    2012-05-01

    The X-ray absorption fine structure (XAFS) spectra are best recorded when a highly intense beam of X-rays from a synchrotron is used along with a good resolution double crystal or curved crystal spectrometer and detectors like ionization chambers, scintillation counters, solid state detectors etc. Several synchrotrons around the world have X-ray beamlines dedicated specifically to XAFS spectroscopy. Fortunately, the Indian synchrotron (Indus-2) at Raja Ramanna Centre for Advanced Technology (RRCAT) at Indore has started operation. A dispersive type EXAFS beamline called BL-8 has been commissioned at this synchrotron and another beamline having double crystal monochromator (DCM) is going to be commissioned shortly. In Indian context, in order that more research workers use these beamlines, the study of XAFS spectroscopy using synchrotron radiation becomes important. In the present work some of the works done by our group on XAFS spectroscopy using synchrotron radiation have been described.

  6. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography.

    PubMed

    Paixão, Lucas; Oliveira, Bruno Beraldo; Viloria, Carolina; de Oliveira, Marcio Alves; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro

    2015-01-01

    Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL) of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography.

  7. Apparatus and method using a holographic optical element for converting a spectral distribution to image points

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J. (Inventor); Scott, Vibart S. (Inventor); Marzouk, Marzouk (Inventor)

    2001-01-01

    A holographic optical element transforms a spectral distribution of light to image points. The element comprises areas, each of which acts as a separate lens to image the light incident in its area to an image point. Each area contains the recorded hologram of a point source object. The image points can be made to lie in a line in the same focal plane so as to align with a linear array detector. A version of the element has been developed that has concentric equal areas to match the circular fringe pattern of a Fabry-Perot interferometer. The element has high transmission efficiency, and when coupled with high quantum efficiency solid state detectors, provides an efficient photon-collecting detection system. The element may be used as part of the detection system in a direct detection Doppler lidar system or multiple field of view lidar system.

  8. Measurement of 238U and 232Th in Petrol, Gas-oil and Lubricant Samples by Using Nuclear Track Detectors and Resulting Radiation Doses to the Skin of Mechanic Workers.

    PubMed

    Misdaq, M A; Chaouqi, A; Ouguidi, J; Touti, R; Mortassim, A

    2015-10-01

    Workers in repair shops of vehicles (cars, buses, truck, etc.) clean carburetors, check fuel distribution, and perform oil changes and greasing. To explore the exposure pathway of (238)U and (232)Th and its decay products to the skin of mechanic workers, these radionuclides were measured inside petrol, gas-oil, and lubricant material samples by means of CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs), and corresponding annual committed equivalent doses to skin were determined. The maximum total equivalent effective dose to skin due to the (238)U and (232)Th series from the application of different petrol, gas-oil, and lubricant samples by mechanic workers was found equal to 1.2 mSv y(-1) cm(-2).

  9. How the confocal laser scanning microscope entered biological research.

    PubMed

    Amos, W B; White, J G

    2003-09-01

    A history of the early development of the confocal laser scanning microscope in the MRC Laboratory of Molecular Biology in Cambridge is presented. The rapid uptake of this technology is explained by the wide use of fluorescence in the 80s. The key innovations were the scanning of the light beam over the specimen rather than vice-versa and a high magnification at the level of the detector, allowing the use of a macroscopic iris. These were followed by an achromatic all-reflective relay system, a non-confocal transmission detector and novel software for control and basic image processing. This design was commercialized successfully and has been produced and developed over 17 years, surviving challenges from alternative technologies, including solid-state scanning systems. Lessons are pointed out from the unusual nature of the original funding and research environment. Attention is drawn to the slow adoption of the instrument in diagnostic medicine, despite promising applications.

  10. Time Series Analysis of Soil Radon Data Using Multiple Linear Regression and Artificial Neural Network in Seismic Precursory Studies

    NASA Astrophysics Data System (ADS)

    Singh, S.; Jaishi, H. P.; Tiwari, R. P.; Tiwari, R. C.

    2017-07-01

    This paper reports the analysis of soil radon data recorded in the seismic zone-V, located in the northeastern part of India (latitude 23.73N, longitude 92.73E). Continuous measurements of soil-gas emission along Chite fault in Mizoram (India) were carried out with the replacement of solid-state nuclear track detectors at weekly interval. The present study was done for the period from March 2013 to May 2015 using LR-115 Type II detectors, manufactured by Kodak Pathe, France. In order to reduce the influence of meteorological parameters, statistical analysis tools such as multiple linear regression and artificial neural network have been used. Decrease in radon concentration was recorded prior to some earthquakes that occurred during the observation period. Some false anomalies were also recorded which may be attributed to the ongoing crustal deformation which was not major enough to produce an earthquake.

  11. Molecular Imaging in the College of Optical Sciences – An Overview of Two Decades of Instrumentation Development

    PubMed Central

    Furenlid, Lars R.; Barrett, Harrison H.; Barber, H. Bradford; Clarkson, Eric W.; Kupinski, Matthew A.; Liu, Zhonglin; Stevenson, Gail D.; Woolfenden, James M.

    2015-01-01

    During the past two decades, researchers at the University of Arizona’s Center for Gamma-Ray Imaging (CGRI) have explored a variety of approaches to gamma-ray detection, including scintillation cameras, solid-state detectors, and hybrids such as the intensified Quantum Imaging Device (iQID) configuration where a scintillator is followed by optical gain and a fast CCD or CMOS camera. We have combined these detectors with a variety of collimation schemes, including single and multiple pinholes, parallel-hole collimators, synthetic apertures, and anamorphic crossed slits, to build a large number of preclinical molecular-imaging systems that perform Single-Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), and X-Ray Computed Tomography (CT). In this paper, we discuss the themes and methods we have developed over the years to record and fully use the information content carried by every detected gamma-ray photon. PMID:26236069

  12. Study of the properties of new SPM detectors

    NASA Astrophysics Data System (ADS)

    Stewart, A. G.; Greene-O'Sullivan, E.; Herbert, D. J.; Saveliev, V.; Quinlan, F.; Wall, L.; Hughes, P. J.; Mathewson, A.; Jackson, J. C.

    2006-02-01

    The operation and performance of multi-pixel, Geiger-mode APD structures referred to as Silicon Photomultiplier (SPM) are reported. The SPM is a solid state device that has emerged over the last decade as a promising alternative to vacuum PMTs. This is due to their comparable performance in addition to their lower bias operation and power consumption, insensitivity to magnetic fields and ambient light, smaller size and ruggedness. Applications for these detectors are numerous and include life sciences, nuclear medicine, particle physics, microscopy and general instrumentation. With SPM devices, many geometrical and device parameters can be adjusted to optimize their performance for a particular application. In this paper, Monte Carlo simulations and experimental results for 1mm2 SPM structures are reported. In addition, trade-offs involved in optimizing the SPM in terms of the number and size of pixels for a given light intensity, and its affect on the dynamic range are discussed.

  13. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography*

    PubMed Central

    Paixão, Lucas; Oliveira, Bruno Beraldo; Viloria, Carolina; de Oliveira, Marcio Alves; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro

    2015-01-01

    Objective Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Materials and Methods Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL) of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Results Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. Conclusion The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography. PMID:26811553

  14. Bulk Crystal Growth, and High-Resolution X-ray Diffraction Results of LiZnAs Semiconductor Material

    NASA Astrophysics Data System (ADS)

    Montag, Benjamin W.; Reichenberger, Michael A.; Sunder, Madhana; Ugorowski, Philip B.; Nelson, Kyle A.; Henson, Luke C.; McGregor, Douglas S.

    2017-08-01

    LiZnAs is being explored as a candidate for solid-state neutron detectors. The compact form, solid-state device would have greater efficiency than present day gas-filled 3He and 10BF3 detectors. Devices fabricated from LiZnAs having either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) as constituent atoms may provide a material for compact high efficiency neutron detectors. The 6Li( n, t)4He reaction yields a total Q-value of 4.78 MeV, an energy larger than that of the 10B reaction, which can easily be identified above background radiations. LiZnAs material was synthesized by preparing equimolar portions of Li, Zn, and As sealed under vacuum (10-6 Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace (Montag et al. in J Cryst Growth 412:103, 2015). The raw synthesized LiZnAs was purified by a static vacuum sublimation in quartz (Montag et al. in J Cryst Growth 438:99, 2016). Bulk crystalline LiZnAs ingots were grown from the purified material with a high-temperature Bridgman-style growth process described here. One of the largest LiZnAs ingots harvested was 9.6 mm in diameter and 4.2 mm in length. Samples were harvested from the ingot and were characterized for crystallinity using a Bruker AXS Inc. D8 AXS Inc. D2 CRYSO, energy dispersive x-ray diffractometer, and a Bruker AXS Inc. D8 DISCOVER, high-resolution x-ray diffractometer equipped with molybdenum radiation, Gobel mirror, four bounce germanium monochromator and a scintillation detector. The primary beam divergence was determined to be 0.004°, using a single crystal Si standard. The x-ray based characterization revealed that the samples nucleated in the (110) direction and a high-resolution open detector rocking curve recorded on the (220) LiZnAs yielded a full width at half maximum (FWHM) of 0.235°. Sectional pole figures using off-axis reflections of the (211) LiZnAs confirmed in-plane ordering, and also indicated the presence of multiple domains. The LiZnAs bulk crystals exhibited a Primitive Cubic Bravais lattice instead of the commonly reported Face-centered Cubic Bravais lattice. The lattice constant was determined to be 5.5146 ± 0.0003 Å.

  15. Performance of a full scale prototype detector at the BR2 reactor for the SoLid experiment

    NASA Astrophysics Data System (ADS)

    Abreu, Y.; Amhis, Y.; Arnold, L.; Ban, G.; Beaumont, W.; Bongrand, M.; Boursette, D.; Castle, B. C.; Clark, K.; Coupé, B.; Cussans, D.; De Roeck, A.; D'Hondt, J.; Durand, D.; Fallot, M.; Ghys, L.; Giot, L.; Guillon, B.; Ihantola, S.; Janssen, X.; Kalcheva, S.; Kalousis, L. N.; Koonen, E.; Labare, M.; Lehaut, G.; Manzanillas, L.; Mermans, J.; Michiels, I.; Moortgat, C.; Newbold, D.; Park, J.; Pestel, V.; Petridis, K.; Piñera, I.; Pommery, G.; Popescu, L.; Pronost, G.; Rademacker, J.; Ryckbosch, D.; Ryder, N.; Saunders, D.; Schune, M.-H.; Simard, L.; Vacheret, A.; Van Dyck, S.; Van Mulders, P.; van Remortel, N.; Vercaemer, S.; Verstraeten, M.; Weber, A.; Yermia, F.

    2018-05-01

    The SoLid collaboration has developed a new detector technology to detect electron anti-neutrinos at close proximity to the Belgian BR2 reactor at surface level. A 288 kg prototype detector was deployed in 2015 and collected data during the operational period of the reactor and during reactor shut-down. Dedicated calibration campaigns were also performed with gamma and neutron sources. This paper describes the construction of the prototype detector with a high control on its proton content and the stability of its operation over a period of several months after deployment at the BR2 reactor site. All detector cells provide sufficient light yields to achieve a target energy resolution of better than 20%/√E(MeV). The capability of the detector to track muons is exploited to equalize the light response of a large number of channels to a precision of 3% and to demonstrate the stability of the energy scale over time. Particle identification based on pulse-shape discrimination is demonstrated with calibration sources. Despite a lower neutron detection efficiency due to triggering constraints, the main backgrounds at the reactor site were determined and taken into account in the shielding strategy for the main experiment. The results obtained with this prototype proved essential in the design optimization of the final detector.

  16. Isolation and characterization of antimicrobial food components.

    PubMed

    Papetti, Adele

    2012-04-01

    Nowadays there is an evident growing interest in natural antimicrobial compounds isolated from food matrices. According to the type of matrix, different isolation and purification steps are needed and as these active compounds belong to different chemical classes, also different chromatographic and electrophoretic methods coupled with various detectors (the most used diode array detector and mass spectrometer) have to be performed. This review covers recent steps made in the fundamental understanding of sample preparation methods as well as of analytical tools useful for the complete characterization of bioactive food compounds. The most commonly used methods for extraction of natural antimicrobial compounds are the conventional liquid-liquid or solid-liquid extraction and the modern techniques such as pressurized liquid extraction, microwave-assisted extraction, ultrasound-assisted extraction, solid-phase micro-extraction, supercritical fluid extraction, and matrix solid phase dispersion. The complete characterization of the compounds is achieved using both monodimensional chromatographic processes (LC, nano-LC, GC, and CE coupled with different type of detectors) and, recently, using comprehensive two-dimensional systems (LC×LC and GC×GC). Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Low-picomolar limits of detection using high-power light-emitting diodes for fluorescence.

    PubMed

    de Jong, Ebbing P; Lucy, Charles A

    2006-05-01

    Fluorescence detectors are ever more frequently being used with light-emitting diodes (LEDs) as the light source. Technological advances in the solid-state lighting industry have produced LEDs which are also suitable tools in analytical measurements. LEDs are now available which deliver 700 mW of radiometric power. While this greater light power can increase the fluorescence signal, it is not trivial to make proper use of this light. This new generation of LEDs has a large emitting area and a highly divergent beam. This presents a classic problem in optics where one must choose between either a small focused light spot, or high light collection efficiency. We have selected for light collection efficiency, which yields a light spot somewhat larger than the emitting area of the LED. This light is focused onto a flow cell. Increasing the detector cell internal diameter (i.d.) produces gains in (sensitivity)3. However, since the detector cell i.d. is smaller than the LED spot size, scattering of excitation light towards the detector remains a significant source of background signal. This can be minimized through the use of spectral filters and spatial filters in the form of pinholes. The detector produced a limit of detection (LOD) of 3 pM, which is roughly three orders of magnitude lower than other reports of LED-based fluorescence detectors. Furthermore, this LOD comes within a factor of six of much more expensive laser-based fluorescence systems. This detector has been used to monitor a separation from a gel filtration column of fluorescently labeled BSA from residual labeling reagent. The LOD of fluorescently labeled BSA is 25 pM.

  18. Preliminary Experiments Using a Passive Detector for Measuring Indoor 220Rn Progeny Concentrations with an Aerosol Chamber.

    PubMed

    Sorimachi, Atsuyuki; Tokonami, Shinji; Kranrod, Chutima; Ishikawa, Tetsuo

    2015-06-01

    This paper describes preliminary experiments using a passive detector for integrating measurements of indoor thoron (²²⁰Rn) progeny concentrations with an aerosol chamber. A solid state nuclear detector (CR-39) covered with a thin aluminum-vaporized polyethylene plate (Mylar film) was used to detect only alpha particles emitted from ²¹²Po due to ²²⁰Rn progeny deposited on the detector surfaces. The initial experiment showed that Mylar film with area density of more than 5 mg cm⁻² was suitable to cut off completely alpha particles of 7.7 MeV from ²¹⁴Po of ²²²Rn progeny decay. In the experiment using the passive detector, it was observed that the net track density increased linearly with an increase of time-integrating ²²⁰Rn progeny concentration. As a result of dividing deposition rates by atom concentrations, the deposition velocity was given as 0.023 cm s⁻¹ for total ²²⁰Rn progeny. The model estimates of deposition velocities were 0.330 cm s⁻¹ for unattached ²²⁰Rn progeny and 0.0011 cm s⁻¹ for aerosol-attached ²²⁰Rn progeny using Lai-Nazaroff formulae. These deposition velocities were in the same range with the results reported in the literature. It was also found that the exposure experiments showed little influence of vertical profiles and surface orientations of the passive detector in the chamber on the detection responses, which was in good agreement with that in the model estimates. Furthermore, it was inferred that the main uncertainty of the passive detector was inhomogeneous deposition of Rn progeny onto its detection surfaces.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, J C; Karmanos Cancer Institute McLaren-Macomb, Clinton Township, MI; Knill, C

    Purpose: To determine small field correction factors for PTW’s microDiamond detector in Elekta’s Gamma Knife Model-C unit. These factors allow the microDiamond to be used in QA measurements of output factors in the Gamma Knife Model-C; additionally, the results also contribute to the discussion on the water equivalence of the relatively-new microDiamond detector and its overall effectiveness in small field applications. Methods: The small field correction factors were calculated as k correction factors according to the Alfonso formalism. An MC model of the Gamma Knife and microDiamond was built with the EGSnrc code system, using BEAMnrc and DOSRZnrc user codes.more » Validation of the model was accomplished by simulating field output factors and measurement ratios for an available ABS plastic phantom and then comparing simulated results to film measurements, detector measurements, and treatment planning system (TPS) data. Once validated, the final k factors were determined by applying the model to a more waterlike solid water phantom. Results: During validation, all MC methods agreed with experiment within the stated uncertainties: MC determined field output factors agreed within 0.6% of the TPS and 1.4% of film; and MC simulated measurement ratios matched physically measured ratios within 1%. The final k correction factors for the PTW microDiamond in the solid water phantom approached unity to within 0.4%±1.7% for all the helmet sizes except the 4 mm; the 4 mm helmet size over-responded by 3.2%±1.7%, resulting in a k factor of 0.969. Conclusion: Similar to what has been found in the Gamma Knife Perfexion, the PTW microDiamond requires little to no corrections except for the smallest 4 mm field. The over-response can be corrected via the Alfonso formalism using the correction factors determined in this work. Using the MC calculated correction factors, the PTW microDiamond detector is an effective dosimeter in all available helmet sizes. The authors would like to thank PTW (Friedberg, Germany) for providing the PTW microDiamond detector for this research.« less

  20. A modified detector concept for SuperCDMS: The HiZIP and its charge performance

    NASA Astrophysics Data System (ADS)

    Page, Kedar Mohan

    SuperCDMS is a leading direct dark matter search experiment which uses solid state detectors (Ge crystals) at milliKelvin temperatures to look for nuclear recoils caused by dark matter interactions in the detector. 'Weakly Interacting Massive Particles' (WIMPs) are the most favoured dark matter candidate particles. SuperCDMS, like many other direct dark matter search experiments, primarily looks for WIMPs. The measurement of both the ionization and the lattice vibration (phonon) signals from an interaction in the detector allow it to discriminate against electron recoils which are the main source of background for WIMP detection. SuperCDMS currently operates about 9 kgs worth of germanium detectors at the Soudan underground lab in northern Minnesota. In its next phase, SuperCDMS SNOLAB, it plans to use 100-200 kg of target mass (Ge) which would allow it to probe more of the interesting and unexplored parameter space for WIMPs predicted by theoretical models. The SuperCDMS Queen's Test Facility is a detector testing facility which is intended to serve detector testing and detector research and development purposes for the SuperCDMS experiment. A modified detector called the 'HiZIP' (Half-iZIP), which is reduced in complexity in comparison to the currently used iZIP (interleaved Z-sensitive Ionization and Phonon mediated) detectors, is studied in this thesis. The HiZIP detector design also serves to discriminate against background from multiple scatter events occurring close to the surfaces in a single detector. Studies carried out to compare the surface event leakage in the HiZIP detector using limited information from iZIP data taken at SuperCDMS test facility at UC Berkley produce a highly conservative upper limit of 5 out of 10,000 events at 90% confidence level. This upper limit is the best among many different HiZIP configurations that were investigated and is comparable to the upper limit calculated for an iZIP detector in the same way using the same data. A real HiZIP device operated at Queen's Test Facility produced an exposure limited 90% upper limit of about 1 in 100 events for surface event leakage. The data used in these studies contain true nuclear recoil events from cosmogenic and ambient neutrons. This background was not subtracted in the calculation of the upper limits stated above and hence they are highly conservative. A surface event source was produced by depositing lead-210 from radon exposure onto a copper plate. This source was then used to take data for a surface event discrimination study of the HiZIP detector operated at Queen's Test Facility. A study of the contribution of the noise from capacitive crosstalk between charge sensors in a HiZIP detector configuration was investigated, confirming the expectation that no significant drop in performance is to be expected due to this effect.

  1. High efficiency proportional neutron detector with solid liner internal structures

    DOEpatents

    Kisner, Roger Allen; Holcomb, David Eugene; Brown, Gilbert M.

    2014-08-05

    A tube-style neutron detector, a panel-style neutron detector incorporating a plurality of tube-style neutron detectors, and a panel-style neutron detector including a plurality of anode wires are provided. A plurality of channels is provided in a neutron detector such that each channel has an inner surface of a coating layer including a neutron-absorbing material. A wire anode is provided at end of each channel so that electrons generated by a charged daughter particle generated by a neutron are collected to detect a neutron-matter interaction. Moderator units can be incorporated into a neutron detector to provide improved detection efficiencies and/or to determine neutron energy spectrum. Gas-based proportional response from the neutron detectors can be employed for special nuclear material (SNM) detection. This neutron detector can provide similar performance to .sup.3He-based detectors without requiring .sup.3He and without containing toxic, flammable, or high-pressure materials.

  2. Dentists' use of digital radiographic techniques: Part I - intraoral X-ray: a questionnaire study of Swedish dentists.

    PubMed

    Svenson, Björn; Ståhlnacke, Katri; Karlsson, Reet; Fält, Anna

    2018-03-01

    The present study aims to gain knowledge about the dentist's use and choice of digital intraoral imaging methods. A questionnaire sent to 2481 dentists within the Swedish Dental Society contained questions about the type of X-ray technique used, problems experienced with digital radiography, and reasons for choosing digital technology, and about indications, clinic size and type of service. Response rate was 53%. Ninety-eight percent of the dentists had made the transition to digital radiography; only 2% used film technique, and solid-state detector (SSD) was the most used digital technique. More years in service decreases the likelihood of applying individual indications for performing a full mouth examination. More retakes were done with SSDs compared to storage phosphor plates. Reasons for choosing digital techniques were that work was easier and communication with the patients improved. However, dentists also experienced problems with digital techniques, such as exposure and projection errors and inadequate image quality. The Swedish Radiation Safety Authority states that all radiological examinations should be justified, something not always followed. This study showed that 98% of the respondents, Swedish dentists within the Swedish Dental Society, used digital techniques, and the most used was the solid-state technique.

  3. Fan-less long range alpha detector

    DOEpatents

    MacArthur, D.W.; Bounds, J.A.

    1994-05-10

    A fan-less long range alpha detector is disclosed which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces. 2 figures.

  4. Fan-less long range alpha detector

    DOEpatents

    MacArthur, Duncan W.; Bounds, John A.

    1994-01-01

    A fan-less long range alpha detector which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces.

  5. A tool to convert CAD models for importation into Geant4

    NASA Astrophysics Data System (ADS)

    Vuosalo, C.; Carlsmith, D.; Dasu, S.; Palladino, K.; LUX-ZEPLIN Collaboration

    2017-10-01

    The engineering design of a particle detector is usually performed in a Computer Aided Design (CAD) program, and simulation of the detector’s performance can be done with a Geant4-based program. However, transferring the detector design from the CAD program to Geant4 can be laborious and error-prone. SW2GDML is a tool that reads a design in the popular SOLIDWORKS CAD program and outputs Geometry Description Markup Language (GDML), used by Geant4 for importing and exporting detector geometries. Other methods for outputting CAD designs are available, such as the STEP format, and tools exist to convert these formats into GDML. However, these conversion methods produce very large and unwieldy designs composed of tessellated solids that can reduce Geant4 performance. In contrast, SW2GDML produces compact, human-readable GDML that employs standard geometric shapes rather than tessellated solids. This paper will describe the development and current capabilities of SW2GDML and plans for its enhancement. The aim of this tool is to automate importation of detector engineering models into Geant4-based simulation programs to support rapid, iterative cycles of detector design, simulation, and optimization.

  6. Preliminary results from an indoor radon thoron survey in Hungary.

    PubMed

    Szeiler, G; Somlai, J; Ishikawa, T; Omori, Y; Mishra, R; Sapra, B K; Mayya, Y S; Tokonami, S; Csordás, A; Kovács, T

    2012-11-01

    More than half of the radiation dose of natural origin comes from radon. However, according to some surveys in certain cases, the radiation dose originating from thoron may be considerable. Among the factors disturbing the measurement of radon, the presence of thoron may also influence the measured radon value, making the estimated radiation exposure imprecise. Thoron has previously been surveyed, mainly in Asia; however, recent surveys for some European locations have found that significant thoron concentrations also need to be considered. In this survey, several types of commercially available SSNTDs (solid-state nuclear track detectors) capable of measuring both radon and thoron were placed at the same time in 73 houses and 7 workplaces in Hungary with 3-month exposition periods. In order to measure thoron, the distance of the detector sets was fixed as 15-20 cm from the walls. The radon concentration was measured with five types of SSNTDs: NRPB, NRPB SSI, Raduet, DTPS and DRPS. The first four types had relatively good accordance (within ± 10 %), but the results of the DRPS detectors were considerably lower when compared with other detectors for radon concentrations over 100 Bq m(-3). The thoron averages were provided by two different types of detectors: Raduet and DTPS. The difference between their average results was more than 30 % and was six times the maximum values. Therefore, the thoron measurement results were judged to be erroneous, and their measurement protocol should be clearly established for future work.

  7. Development of an ultrahigh-performance infrared detector platform for advanced spectroscopic sensing systems

    NASA Astrophysics Data System (ADS)

    Jain, Manish; Wicks, Gary; Marshall, Andrew; Craig, Adam; Golding, Terry; Hossain, Khalid; McEwan, Ken; Howle, Chris

    2014-05-01

    Laser-based stand-off sensing of threat agents (e.g. explosives, toxic industrial chemicals or chemical warfare agents), by detection of distinct infrared spectral absorption signature of these materials, has made significant advances recently. This is due in part to the availability of infrared and terahertz laser sources with significantly improved power and tunability. However, there is a pressing need for a versatile, high performance infrared sensor that can complement and enhance the recent advances achieved in laser technology. This work presents new, high performance infrared detectors based on III-V barrier diodes. Unipolar barrier diodes, such as the nBn, have been very successful in the MWIR using InAs(Sb)-based materials, and in the MWIR and LWIR using type-II InAsSb/InAs superlattice-based materials. This work addresses the extension of the barrier diode architecture into the SWIR region, using GaSb-based and InAs-based materials. The program has resulted in detectors with unmatched performance in the 2-3 μm spectral range. Temperature dependent characterization has shown dark currents to be diffusion limited and equal to, or within a factor of 5, of the Rule 07 expression for Auger-limited HgCdTe detectors. Furthermore, D* values are superior to those of existing detectors in the 2-3 μm band. Of particular significance to spectroscopic sensing systems is the ability to have near-background limited performance at operation temperatures compatible with robust and reliable solid state thermoelectric coolers.

  8. Photodetection Characterization of SiPM Technologies for their Application in Scintillator based Neutron Detectors

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Durini, D.; Degenhardt, C.; van Waasen, S.

    2018-01-01

    Small-angle neutron scattering (SANS) experiments have become one of the most important techniques in the investigation of the properties of material on the atomic scale. Until 2001, nearly exclusively 3He-based detectors were used for neutron detection in these experiments, but due to the scarcity of 3He and its steeply rising price, researchers started to look for suitable alternatives. Scintillation based solid state detectors appeared as a prominent alternative. Silicon photomultipliers (SiPM), having single photon resolution, lower bias voltages compared to photomultiplier tubes (PMT), insensitivity to magnetic fields, low cost, possibility of modular design and higher readout rates, have the potential of becoming a photon detector of choice in scintillator based neutron detectors. The major concerns for utilizing the SiPM technology in this kind of applications are the increase in their noise performance and the decrease in their photon detection efficiency (PDE) due to direct exposure to neutrons. Here, a detailed comparative analysis of the PDE performance in the range between UV and NIR parts of the spectra for three different SiPM technologies, before and after irradiation with cold neutrons, has been carried out. For this investigation, one digital and two analog SiPM arrays were irradiated with 5Å wavelength cold neutrons and up to a dose of 6×1012 n/cm2 at the KWS-1 instrument of the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany.

  9. SoLid: An innovative anti-neutrino detector for searching oscillations at the SCK•CEN BR2 reactor

    NASA Astrophysics Data System (ADS)

    Abreu, Yamiel; SoLid Collaboration

    2017-02-01

    The SoLid experiment intends to search for active-to-sterile anti-neutrino oscillations at a very short baseline from the SCK•CEN BR2 research reactor (Mol, Belgium). A novel detector approach to measure reactor anti-neutrinos was developed based on an innovative sandwich of composite polyvinyl-toluene and 6LiF:ZnS(Ag) scintillators. The system is highly segmented and read out by a network of wavelength shifting fibers and SiPM. High experimental sensitivity can be achieved compared to other standard technologies thanks to the combination of high granularity, good neutron-gamma discrimination using 6LiF:ZnS(Ag) scintillator and precise localisation of the Inverse Beta Decay products. This technology can be considered as a new generation of an anti-neutrino detector. This compact system requires limited passive shielding and relies on spatial topology to determine the different classes of backgrounds. We will describe the principle of detection and the detector design. Particular focus on the neutron discrimination will be made, as well as on the capability to use cosmic muons for channel equalisation and energy calibration. The performance of the first 288 kg SoLid module (SM1), based on the data taken at BR2 from February to September 2015, will be presented. We will conclude with the next phase, which will start in 2016, and the future plans of the experiment.

  10. Initial dissolution kinetics of cocrystal of carbamazepine with nicotinamide.

    PubMed

    Hattori, Yusuke; Sato, Maiko; Otsuka, Makoto

    2015-11-01

    Objectives of this study are investigating the initial dissolution kinetics of the cocrystal of carbamazepine (CBZ) with nicotinamide (NIC) and understanding its initial dissolution process. Cocrystal solids of CBZ with NIC were prepared by co-milling and solvent evaporation methods. The formation of cocrystal solid was verified via X-ray diffraction measurement. Dissolution tests of the solids were performed using an original flow cell and ultraviolet-visible spectroscopic detector. The spectra monitored in situ were analyzed to determine the dissolved compounds separately using the classical least squares regression method. The initial dissolution profiles were interpreted using simultaneous model of dissolution and phase changes. In the initial dissolution, CBZ in the cocrystal structure dissolved in water and it was suggested that CBZ reached a metastable intermediate state simultaneously with dissolution. The cocrystal solid prepared by solvent evaporation provided a higher rate constant of the phase change than that prepared by co-milling. Our results thus support the use of evaporation as the method of choice to produce ordered cocrystal structures. We suggest that CBZ forms dihydrate during the dissolution process; however, during the initial phase of dissolution, CBZ changes to a metastable intermediate phase. © 2015 Royal Pharmaceutical Society.

  11. Dual-Chamber/Dual-Anode Proportional Counter Incorporating an Intervening Thin-Foil Solid Neutron Converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boatner, Lynn A; Neal, John S; Blackston, Matthew A

    2012-01-01

    A dual-chamber/dual-anode gas proportional counter utilizing thin solid 6LiF or 10B neutron converters coated on a 2-micon-thick Mylar film that is positioned between the two counter chambers and anodes has been designed, fabricated, and tested using a variety of fill gases including naturally abundant helium. In this device, neutron conversion products emitted from both sides of the coated converter foil are detected rather than having half of the products absorbed in the wall of a conventional tube type counter where the solid neutron converter is deposited on the tube wall. Geant4-based radiation transport calculations were used to determine the optimummore » neutron converter coating thickness for both isotopes. Solution methods for applying these optimized-thickness coatings on a Mylar film were developed that were carried out at room temperature without any specialized equipment and that can be adapted to standard coating methods such as silk screen or ink jet printing. The performance characteristics of the dual-chamber/dual-anode neutron detector were determined for both types of isotopically enriched converters. The experimental performance of the 6LiF converter-based detector was described well by modeling results from Geant4. Additional modeling studies of multiple-foil/multiple-chamber/anode configurations addressed the basic issue of the relatively longer absorption range of neutrons versus the shorter range of the conversion products for 6LiF and 10B. Combined with the experimental results, these simulations indicate that a high-performance neutron detector can be realized in a single device through the application of these multiple-foil/solid converter, multiple-chamber detector concepts.« less

  12. Nebula: reconstruction and visualization of scattering data in reciprocal space.

    PubMed

    Reiten, Andreas; Chernyshov, Dmitry; Mathiesen, Ragnvald H

    2015-04-01

    Two-dimensional solid-state X-ray detectors can now operate at considerable data throughput rates that allow full three-dimensional sampling of scattering data from extended volumes of reciprocal space within second to minute time-scales. For such experiments, simultaneous analysis and visualization allows for remeasurements and a more dynamic measurement strategy. A new software, Nebula , is presented. It efficiently reconstructs X-ray scattering data, generates three-dimensional reciprocal space data sets that can be visualized interactively, and aims to enable real-time processing in high-throughput measurements by employing parallel computing on commodity hardware.

  13. Nebula: reconstruction and visualization of scattering data in reciprocal space

    PubMed Central

    Reiten, Andreas; Chernyshov, Dmitry; Mathiesen, Ragnvald H.

    2015-01-01

    Two-dimensional solid-state X-ray detectors can now operate at considerable data throughput rates that allow full three-dimensional sampling of scattering data from extended volumes of reciprocal space within second to minute time­scales. For such experiments, simultaneous analysis and visualization allows for remeasurements and a more dynamic measurement strategy. A new software, Nebula, is presented. It efficiently reconstructs X-ray scattering data, generates three-dimensional reciprocal space data sets that can be visualized interactively, and aims to enable real-time processing in high-throughput measurements by employing parallel computing on commodity hardware. PMID:25844083

  14. Angularly-selective transmission imaging in a scanning electron microscope.

    PubMed

    Holm, Jason; Keller, Robert R

    2016-08-01

    This work presents recent advances in transmission scanning electron microscopy (t-SEM) imaging control capabilities. A modular aperture system and a cantilever-style sample holder that enable comprehensive angular selectivity of forward-scattered electrons are described. When combined with a commercially available solid-state transmission detector having only basic bright-field and dark-field imaging capabilities, the advances described here enable numerous transmission imaging modes. Several examples are provided that demonstrate how contrast arising from diffraction to mass-thickness can be obtained. Unanticipated image contrast at some imaging conditions is also observed and addressed. Published by Elsevier B.V.

  15. Anomalous soil radon fluctuations - signal of earthquakes in Nepal and eastern India regions

    NASA Astrophysics Data System (ADS)

    Deb, Argha; Gazi, Mahasin; Barman, Chiranjib

    2016-12-01

    The present paper deals with pre-seismic soil radon-222 recorded at two different locations 200 m apart, at Jadavpur University main campus, Kolkata, India. Solid state nuclear track detector method is used for detection of the radioactive radon gas. Two simultaneous 4-month long time series data have been analysed. Anomalous fluctuations in the radon datasets have been observed prior to recent earthquakes in Nepal and eastern India during the monitoring period, mainly, the massive 25th April 7.8 M Nepal earthquake. The simultaneous measurements assist in identifying seismogenic radon precursor efficiently.

  16. Atmospheric science on the Galileo mission

    NASA Technical Reports Server (NTRS)

    Hunten, D. M.; Colin, L.; Hansen, J. E.

    1986-01-01

    The atmospheric science goals of the Galileo mission, and instruments of the probe and orbiter are described. The current data available, and the goals of the Galileo mission concerning the chemical composition of the Jovian atmosphere; the thermal structure of the atmosphere; the nature of cloud particles and cloud layering; the radiative energy balance; atmospheric dynamics; and the upper atmosphere are discussed. The objectives and operations of the atmospheric structure instrument, neutral mass spectrometer, helium abundance interferometer, nephelometer, net flux radiometer, lightning and radio emission detector, solid state imaging system, NIR mapping spectrometer, photopolarimeter radiometer, and UV spectrometer are examined.

  17. An Open-path Laser Transmissometer for Atmospheric Extinction Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandran, P. M. Satheesh; Krishnakumar, C. P.; Varma, Ravi

    2011-10-20

    A transmissometer is an optical instrument which measures transmitted intensity of monochromatic light over a fixed pathlength. Prototype of a simple laser transmissometer has been developed for transmission (or extinction) measurements through suspended absorbers and scatterers in the atmosphere over tens of meters. Instrument consists of a continuous green diode pumped solid state laser, transmission optics, photodiode detectors and A/D data acquisition components. A modulated laser beam is transmitted and subsequently reflected and returned to the unit by a retroreflecting mirror assembly placed several tens of meters away. Results from an open-path field measurement of the instrument are described.

  18. Quantum Dots Microstructured Optical Fiber for X-Ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, S. L.; Williams, P. A.; Burke, E. R.

    2015-01-01

    A novel concept for the detection of x-rays with microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide is presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dots application technique are discussed.

  19. Trace Element Mapping of a Biological Specimen by a Full-Field X-ray Fluorescence Imaging Microscope with a Wolter Mirror

    NASA Astrophysics Data System (ADS)

    Hoshino, Masato; Yamada, Norimitsu; Ishino, Toyoaki; Namiki, Takashi; Watanabe, Norio; Aoki, Sadao

    2007-01-01

    A full-field X-ray fluorescence imaging microscope with a Wolter mirror was applied to the element mapping of alfalfa seeds. The X-ray fluorescence microscope was built at the Photon Factory BL3C2 (KEK). X-ray fluorescence images of several growing stages of the alfalfa seeds were obtained. X-ray fluorescence energy spectra were measured with either a solid state detector or a CCD photon counting method. The element distributions of iron and zinc which were included in the seeds were obtained using a photon counting method.

  20. An Inexpensive Optical Absorption Experiment

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2006-09-01

    This optical absorption experiment can be put together in only a few minutes with materials found in most secondary or undergraduate stockrooms. The absorption material is the partly transparent flexible anti-static plastic material used to package solid-state devices. The detector is a hand-held photographic exposure meter of the type that was in common use before the advent of point-and-shoot cameras. A graph of the intensity of the transmitted light as a function of the number of sheets of the material is a decreasing exponential. The emphasis of the experiment is on the mathematical form.

  1. Method for registration of solar cosmic rays by detecting neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, A. V.; Mordovskoy, M. V., E-mail: mvmordovsk@mail.ru; Skorkin, V. M.

    2016-12-15

    We consider a method of detecting the ionizing component of solar cosmic rays (SCRs) with energy from tens of MeV to tens of GeV by measuring the energy loss of SCR protons and light nuclei in scintillators and the multiplicity of the local neutron generation in a converter. Scintillation detectors based on stilbene, lithium glass, and solid-state photomultiplier tubes are capable of detecting fast neutrons with a temporal resolution of 10 ns and rejecting the gamma-ray background in the measuring system. The method will allow investigating the nucleon components of primary SCRs in circumterrestrial space.

  2. Advanced Multilayer Composite Heavy-Oxide Scintillator Detectors for High Efficiency Fast Neutron Detection

    NASA Astrophysics Data System (ADS)

    Ryzhikov, Vladimir D.; Naydenov, Sergei V.; Pochet, Thierry; Onyshchenko, Gennadiy M.; Piven, Leonid A.; Smith, Craig F.

    2018-01-01

    We have developed and evaluated a new approach to fast neutron and neutron-gamma detection based on large-area multilayer composite heterogeneous detection media consisting of dispersed granules of small-crystalline scintillators contained in a transparent organic (plastic) matrix. Layers of the composite material are alternated with layers of transparent plastic scintillator material serving as light guides. The resulting detection medium - designated as ZEBRA - serves as both an active neutron converter and a detection scintillator which is designed to detect both neutrons and gamma-quanta. The composite layers of the ZEBRA detector consist of small heavy-oxide scintillators in the form of granules of crystalline BGO, GSO, ZWO, PWO and other materials. We have produced and tested the ZEBRA detector of sizes 100x100x41 mm and greater, and determined that they have very high efficiency of fast neutron detection (up to 49% or greater), comparable to that which can be achieved by large sized heavy-oxide single crystals of about Ø40x80 cm3 volume. We have also studied the sensitivity variation to fast neutron detection by using different types of multilayer ZEBRA detectors of 100 cm2 surface area and 41 mm thickness (with a detector weight of about 1 kg) and found it to be comparable to the sensitivity of a 3He-detector representing a total cross-section of about 2000 cm2 (with a weight of detector, including its plastic moderator, of about 120 kg). The measured count rate in response to a fast neutron source of 252Cf at 2 m for the ZEBRA-GSO detector of size 100x100x41 mm3 was 2.84 cps/ng, and this count rate can be doubled by increasing the detector height (and area) up to 200x100 mm2. In summary, the ZEBRA detectors represent a new type of high efficiency and low cost solid-state neutron detector that can be used for stationary neutron/gamma portals. They may represent an interesting alternative to expensive, bulky gas counters based on 3He or 10B neutron detection technologies.

  3. An empirical formula to calculate the full energy peak efficiency of scintillation detectors.

    PubMed

    Badawi, Mohamed S; Abd-Elzaher, Mohamed; Thabet, Abouzeid A; El-khatib, Ahmed M

    2013-04-01

    This work provides an empirical formula to calculate the FEPE for different detectors using the effective solid angle ratio derived from experimental measurements. The full energy peak efficiency (FEPE) curves of the (2″(*)2″) NaI(Tl) detector at different seven axial distances from the detector were depicted in a wide energy range from 59.53 to 1408keV using standard point sources. The distinction was based on the effects of the source energy and the source-to-detector distance. A good agreement was noticed between the measured and calculated efficiency values for the source-to-detector distances at 20, 25, 30, 35, 40, 45 and 50cm. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Iron charge states observed in the solar wind

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.; Galvin, A. B.; Gloeckler, G.; Hovestadt, D.; Klecker, B.; Scholer, M.

    1983-01-01

    Solar wind measurements from the ULECA sensor of the Max-Planck-Institut/University of Maryland experiment on ISEE-3 are reported. The low energy section of approx the ULECA sensor selects particles by their energy per charge (over the range 3.6 keV/Q to 30 keV/Q) and simultaneously measures their total energy with two low-noise solid state detectors. Solar wind Fe charge state measurements from three time periods of high speed solar wind occurring during a post-shock flow and a coronal hole-associated high speed stream are presented. Analysis of the post-shock flow solar wind indicates the charge state distributions for Fe were peaked at approx +16, indicative of an unusually high coronal temperature (3,000,000 K). In contrast, the Fe charge state distribution observed in a coronal hole-associated high speed stream peaks at approx -9, indicating a much lower coronal temperature (1,400,000 K). This constitutes the first reported measurements of iron charge states in a coronal hole-associated high speed stream.

  5. A study of the effects of strong magnetic fields on the image resolution of PET scanners

    NASA Astrophysics Data System (ADS)

    Burdette, Don J.

    Very high resolution images can be achieved in small animal PET systems utilizing solid state silicon pad detectors. In such systems using detectors with sub-millimeter intrinsic resolutions, the range of the positron is the largest contribution to the image blur. The size of the positron range effect depends on the initial positron energy and hence the radioactive tracer used. For higher energy positron emitters, such as 68Ga and 94mTc, the variation of the annihilation point dominates the spatial resolution. In this study two techniques are investigated to improve the image resolution of PET scanners limited by the range of the positron. One, the positron range can be reduced by embedding the PET field of view in a strong magnetic field. We have developed a silicon pad detector based PET instrument that can operate in strong magnetic fields with an image resolution of 0.7 mm FWHM to study this effect. Two, iterative reconstruction methods can be used to statistically correct for the range of the positron. Both strong magnetic fields and iterative reconstruction algorithms that statistically account for the positron range distribution are investigated in this work.

  6. Advanced active quenching circuit for ultra-fast quantum cryptography.

    PubMed

    Stipčević, Mario; Christensen, Bradley G; Kwiat, Paul G; Gauthier, Daniel J

    2017-09-04

    Commercial photon-counting modules based on actively quenched solid-state avalanche photodiode sensors are used in a wide variety of applications. Manufacturers characterize their detectors by specifying a small set of parameters, such as detection efficiency, dead time, dark counts rate, afterpulsing probability and single-photon arrival-time resolution (jitter). However, they usually do not specify the range of conditions over which these parameters are constant or present a sufficient description of the characterization process. In this work, we perform a few novel tests on two commercial detectors and identify an additional set of imperfections that must be specified to sufficiently characterize their behavior. These include rate-dependence of the dead time and jitter, detection delay shift, and "twilighting". We find that these additional non-ideal behaviors can lead to unexpected effects or strong deterioration of the performance of a system using these devices. We explain their origin by an in-depth analysis of the active quenching process. To mitigate the effects of these imperfections, a custom-built detection system is designed using a novel active quenching circuit. Its performance is compared against two commercial detectors in a fast quantum key distribution system with hyper-entangled photons and a random number generator.

  7. Detector to detector corrections: a comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams.

    PubMed

    Azangwe, Godfrey; Grochowska, Paulina; Georg, Dietmar; Izewska, Joanna; Hopfgartner, Johannes; Lechner, Wolfgang; Andersen, Claus E; Beierholm, Anders R; Helt-Hansen, Jakob; Mizuno, Hideyuki; Fukumura, Akifumi; Yajima, Kaori; Gouldstone, Clare; Sharpe, Peter; Meghzifene, Ahmed; Palmans, Hugo

    2014-07-01

    The aim of the present study is to provide a comprehensive set of detector specific correction factors for beam output measurements for small beams, for a wide range of real time and passive detectors. The detector specific correction factors determined in this study may be potentially useful as a reference data set for small beam dosimetry measurements. Dose response of passive and real time detectors was investigated for small field sizes shaped with a micromultileaf collimator ranging from 0.6 × 0.6 cm(2) to 4.2 × 4.2 cm(2) and the measurements were extended to larger fields of up to 10 × 10 cm(2). Measurements were performed at 5 cm depth, in a 6 MV photon beam. Detectors used included alanine, thermoluminescent dosimeters (TLDs), stereotactic diode, electron diode, photon diode, radiophotoluminescent dosimeters (RPLDs), radioluminescence detector based on carbon-doped aluminium oxide (Al2O3:C), organic plastic scintillators, diamond detectors, liquid filled ion chamber, and a range of small volume air filled ionization chambers (volumes ranging from 0.002 cm(3) to 0.3 cm(3)). All detector measurements were corrected for volume averaging effect and compared with dose ratios determined from alanine to derive a detector correction factors that account for beam perturbation related to nonwater equivalence of the detector materials. For the detectors used in this study, volume averaging corrections ranged from unity for the smallest detectors such as the diodes, 1.148 for the 0.14 cm(3) air filled ionization chamber and were as high as 1.924 for the 0.3 cm(3) ionization chamber. After applying volume averaging corrections, the detector readings were consistent among themselves and with alanine measurements for several small detectors but they differed for larger detectors, in particular for some small ionization chambers with volumes larger than 0.1 cm(3). The results demonstrate how important it is for the appropriate corrections to be applied to give consistent and accurate measurements for a range of detectors in small beam geometry. The results further demonstrate that depending on the choice of detectors, there is a potential for large errors when effects such as volume averaging, perturbation and differences in material properties of detectors are not taken into account. As the commissioning of small fields for clinical treatment has to rely on accurate dose measurements, the authors recommend the use of detectors that require relatively little correction, such as unshielded diodes, diamond detectors or microchambers, and solid state detectors such as alanine, TLD, Al2O3:C, or scintillators.

  8. Production and characterization of pure cryogenic inertial fusion targets

    NASA Astrophysics Data System (ADS)

    Boyd, B. A.; Kamerman, G. W.

    An experimental cryogenic inertial fusion target generator and two optical techniques for automated target inspection are described. The generator produces 100 microns diameter solid hydrogen spheres at a rate compatible with fueling requirements of conceptual inertial fusion power plants. A jet of liquified hydrogen is disrupted into droplets by an ultrasonically excited nozzle. The droplets solidify into microspheres while falling through a chamber maintained below the hydrogen triple point pressure. Stable operation of the generator has been demonstrated for up to three hours. The optical inspection techniques are computer aided photomicrography and coarse diffraction pattern analysis (CDPA). The photomicrography system uses a conventional microscope coupled to a computer by a solid state camera and digital image memory. The computer enhances the stored image and performs feature extraction to determine pellet parameters. The CDPA technique uses Fourier transform optics and a special detector array to perform optical processing of a target image.

  9. Solid Xenon Project

    NASA Astrophysics Data System (ADS)

    Balakishiyeva, Durdana N.; Mahapatra, Rupak; Saab, Tarek; Yoo, Jonghee

    2010-08-01

    Crystals like Germanium and Silicon need to be grown in specialized facilities which is time and money costly. It takes many runs to test the detector once it's manufactured and mishaps are very probable. It is of a great challenge to grow big germanium crystals and that's why stacking them up in a tower is the only way at the moment to increase testing mass. Liquid Noble gas experiments experiencing contamination problems, their predicted energy resolution at 10 keV and lower energy range is not as good as predicted. Every experiment is targeting one specific purpose, looking for one thing. Why not to design an experiment that is diverse and build a detector that can search for Dark Matter, Solar Axions, Neutrinoless Double Beta decay, etc. Solid Xenon detector is such detector. We designed a simple Xenon crystal growing chamber that was put together at Fermi National Accelerator Laboratory. The first phase of this experiment was to demonstrate that a good, crack free Xenon crystal can be grown (regardless of many failed attempts by various groups) and our first goal, 1 kg crystal, was successful.

  10. Method for the detection of nitro-containing compositions using ultraviolet photolysis

    DOEpatents

    Reagen, William K.; Lancaster, Gregory D.; Partin, Judy K.; Moore, Glenn A.

    2000-01-01

    A method for detecting nitro-containing compositions (e.g. nitrate/nitrite materials) in water samples and on solid substrates. In a water sample, ultraviolet light is applied to the sample so that dissolved nitro compositions therein will photolytically dissociate into gaseous nitrogen oxides (NO.sub.2(g) and/or NO.sub.(g)). A carrier gas is then introduced into the sample to generate a gaseous stream which includes the carrier gas combined with any gaseous nitrogen oxides. The carrier gas is thereafter directed into a detector. To detect nitro-compositions on solid substrates, ultraviolet light is applied thereto. A detector is then used to detect any gaseous nitrogen oxides which are photolytically generated during ultraviolet illumination. An optional carrier gas may be applied to the substrate during illumination to produce a gaseous stream which includes the carrier gas and any gaseous nitrogen oxides. The gaseous stream is then supplied to the detector.

  11. Directional radiation detectors

    DOEpatents

    Dowell, Jonathan L.

    2017-09-12

    Directional radiation detectors and systems, methods, and computer-readable media for using directional radiation detectors to locate a radiation source are provided herein. A directional radiation detector includes a radiation sensor. A radiation attenuator partially surrounds the radiation sensor and defines an aperture through which incident radiation is received by the radiation sensor. The aperture is positioned such that when incident radiation is received directly through the aperture and by the radiation sensor, a source of the incident radiation is located within a solid angle defined by the aperture. The radiation sensor senses at least one of alpha particles, beta particles, gamma particles, or neutrons.

  12. Personal radiation detector at a high technology readiness level that satisfies DARPA's SN-13-47 and SIGMA program requirements

    NASA Astrophysics Data System (ADS)

    Ginzburg, D.; Knafo, Y.; Manor, A.; Seif, R.; Ghelman, M.; Ellenbogen, M.; Pushkarsky, V.; Ifergan, Y.; Semyonov, N.; Wengrowicz, U.; Mazor, T.; Kadmon, Y.; Cohen, Y.; Osovizky, A.

    2015-06-01

    There is a need to develop new personal radiation detector (PRD) technologies that can be mass produced. On August 2013, DARPA released a request for information (RFI) seeking innovative radiation detection technologies. In addition, on December 2013, a Broad Agency Announcement (BAA) for the SIGMA program was released. The RFI requirements focused on a sensor that should possess three main properties: low cost, high compactness and radioisotope identification capabilities. The identification performances should facilitate the detection of a hidden threat, ranging from special nuclear materials (SNM) to commonly used radiological sources. Subsequently, the BAA presented the specific requirements at an instrument level and provided a comparison between the current market status (state-of-the-art) and the SIGMA program objectives. This work presents an optional alternative for both the detection technology (sensor with communication output and without user interface) for DARPA's initial RFI and for the PRD required by the SIGMA program. A broad discussion is dedicated to the method proposed to fulfill the program objectives and to the selected alternative that is based on the PDS-GO design and technology. The PDS-GO is the first commercially available PRD that is based on a scintillation crystal optically coupled with a silicon photomultiplier (SiPM), a solid-state light sensor. This work presents the current performance of the instrument and possible future upgrades based on recent technological improvements in the SiPM design. The approach of utilizing the SiPM with a commonly available CsI(Tl) crystal is the key for achieving the program objectives. This approach provides the appropriate performance, low cost, mass production and small dimensions; however, it requires a creative approach to overcome the obstacles of the solid-state detector dark current (noise) and gain stabilization over a wide temperature range. Based on the presented results, we presume that the proposed approach of SiPM, with pixel size of 35 μm, coupled to a scintillation material (for gamma and neutron detection) ensures the availability and low cost of the key components. Furthermore, automated manufacturing process enables mass production, thereby fulfilling the SIGMA program requirements, both as a sensor (assimilated with mobile device) and as a full detection device.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, K; Li, X; Liu, B

    Purpose: To accurately measure CT bow-tie profiles from various manufacturers and to provide non-proprietary information for CT system modeling. Methods: A GOS-based linear detector (0.8 mm per pixel and 51.2 cm in length) with a fast data sampling speed (0.24 ms/sample) was used to measure the relative profiles of bow-tie filters from a collection of eight CT scanners by three different vendors, GE (LS Xtra, LS VCT, Discovery HD750), Siemens (Sensation 64, Edge, Flash, Force), and Philips (iBrilliance 256). The linear detector was first calibrated for its energy response within typical CT beam quality ranges and compared with an ionmore » chamber and analytical modeling (SPECTRA and TASMIP). A geometrical calibration process was developed to determine key parameters including the distance from the focal spot to the linear detector, the angular increment of the gantry at each data sampling, the location of the central x-ray on the linear detector, and the angular response of the detector pixel. Measurements were performed under axial-scan modes for most representative bow-tie filters and kV selections from each scanner. Bow-tie profiles were determined by re-binning the measured rotational data with an angular accuracy of 0.1 degree using the calibrated geometrical parameters. Results: The linear detector demonstrated an energy response as a solid state detector, which is close to the CT imaging detector. The geometrical calibration was proven to be sufficiently accurate (< 1mm in error for distances >550 mm) and the bow-tie profiles measured from rotational mode matched closely to those from the gantry-stationary mode. Accurate profiles were determined for a total of 21 bow-tie filters and 83 filter/kV combinations from the abovementioned scanner models. Conclusion: A new improved approach of CT bow-tie measurement was proposed and accurate bow-tie profiles were provided for a broad list of CT scanner models.« less

  14. Discriminative detection of deposited radon daughters on CR-39 track detectors using TRIAC II code

    NASA Astrophysics Data System (ADS)

    Patiris, D. L.; Ioannides, K. G.

    2009-07-01

    A method for detecting deposited 218Po and 214Po by a spectrometric study of CR-39 solid state nuclear track detectors is described. The method is based on the application of software imposed selection criteria, concerning the geometrical and optical properties of the tracks, which correspond to tracks created by alpha particles of specific energy falling on the detector at given angles of incidence. The selection criteria were based on a preliminary study of tracks' parameters (major and minor axes and mean value of brightness), using the TRIAC II code. Since no linear relation was found between the energy and the geometric characteristics of the tracks (major and minor axes), we resorted to the use of an additional parameter in order to classify the tracks according to the particles' energy. Since the brightness of tracks is associated with the tracks' depth, the mean value of brightness was chosen as the parameter of choice. To reduce the energy of the particles, which are emitted by deposited 218Po and 214Po into a quantifiable range, the detectors were covered with an aluminum absorber material. In this way, the discrimination of radon's daughters was finally accomplished by properly selecting amongst all registered tracks. This method could be applied as a low cost tool for the study of the radon's daughters behavior in air.

  15. Editorial

    NASA Astrophysics Data System (ADS)

    Bruzzi, Mara; Pace, Emanuele; Talamonti, Cinzia

    2013-12-01

    The 9th edition of the International Conference on Radiation Effects on Semiconductor Materials, Detectors and Devices (RESMDD), held in Florence, at Dipartimento di Fisica ed Astronomia on October 9-12, 2012, was aimed at discussing frontier research activities in several application fields as in nuclear and particle physics, astrophysics, medical and solid-state physics. Main topics discussed in this conference are tracking performance of heavily irradiated silicon detectors, developments required for the luminosity upgrade of the Large Hadron Collider (HL-LHC), radiation effects on semiconductor materials for medical (radiotherapy dosimeters, imaging devices), astrophysics (UV, X- and γ-ray detectors) and environmental applications, microscopic defect analysis of irradiated semiconductor materials and related radiation hardening technologies. On the first day the conference hosted a short course intended to introduce fundamentals in the development of semiconductor detectors for medical applications to graduate and PhD students, post-docs and young researchers, both engineers and physicists. Directors of the School were Prof. Marta Bucciolini of the University of Florence and INFN, Italy and Dr. Carlo Civinini, INFN Firenze, Italy. Emphasis was placed on the underlying physical principles, instrument design, factors affecting performance, and applications in both the clinical and preclinical applications. The School was attended by nearly 40 students/ young researchers. We warmly thank the Directors for organizing this interesting event and the professors and researchers who gave lessons, for sharing their experience and knowledge with the students.

  16. Image reconstruction in cone-beam CT with a spherical detector using the BPF algorithm

    NASA Astrophysics Data System (ADS)

    Zuo, Nianming; Zou, Yu; Jiang, Tianzi; Pan, Xiaochuan

    2006-03-01

    Both flat-panel detectors and cylindrical detectors have been used in CT systems for data acquisition. The cylindrical detector generally offers a sampling of a transverse image plane more uniformly than does a flat-panel detector. However, in the longitudinal dimension, the cylindrical and flat-panel detectors offer similar sampling of the image space. In this work, we investigate a detector of spherical shape, which can yield uniform sampling of the 3D image space because the solid angle subtended by each individual detector bin remains unchanged. We have extended the backprojection-filtration (BPF) algorithm, which we have developed previously for cone-beam CT, to reconstruct images in cone-beam CT with a spherical detector. We also conduct computer-simulation studies to validate the extended BPF algorithm. Quantitative results in these numerical studies indicate that accurate images can be obtained from data acquired with a spherical detector by use of our extended BPF cone-beam algorithms.

  17. Surface dose measurements with commonly used detectors: a consistent thickness correction method

    PubMed Central

    Higgins, Patrick

    2015-01-01

    The purpose of this study was to review application of a consistent correction method for the solid state detectors, such as thermoluminescent dosimeters (chips (cTLD) and powder (pTLD)), optically stimulated detectors (both closed (OSL) and open (eOSL)), and radiochromic (EBT2) and radiographic (EDR2) films. In addition, to compare measured surface dose using an extrapolation ionization chamber (PTW 30‐360) with other parallel plate chambers RMI‐449 (Attix), Capintec PS‐033, PTW 30‐329 (Markus) and Memorial. Measurements of surface dose for 6 MV photons with parallel plate chambers were used to establish a baseline. cTLD, OSLs, EDR2, and EBT2 measurements were corrected using a method which involved irradiation of three dosimeter stacks, followed by linear extrapolation of individual dosimeter measurements to zero thickness. We determined the magnitude of correction for each detector and compared our results against an alternative correction method based on effective thickness. All uncorrected surface dose measurements exhibited overresponse, compared with the extrapolation chamber data, except for the Attix chamber. The closest match was obtained with the Attix chamber (−0.1%), followed by pTLD (0.5%), Capintec (4.5%), Memorial (7.3%), Markus (10%), cTLD (11.8%), eOSL (12.8%), EBT2 (14%), EDR2 (14.8%), and OSL (26%). Application of published ionization chamber corrections brought all the parallel plate results to within 1% of the extrapolation chamber. The extrapolation method corrected all solid‐state detector results to within 2% of baseline, except the OSLs. Extrapolation of dose using a simple three‐detector stack has been demonstrated to provide thickness corrections for cTLD, eOSLs, EBT2, and EDR2 which can then be used for surface dose measurements. Standard OSLs are not recommended for surface dose measurement. The effective thickness method suffers from the subjectivity inherent in the inclusion of measured percentage depth‐dose curves and is not recommended for these types of measurements. PACS number: 87.56.‐v PMID:26699319

  18. Origins of the changing detector response in small megavoltage photon radiation fields.

    PubMed

    Fenwick, John D; Georgiou, Georgios; Rowbottom, Carl G; Underwood, Tracy S A; Kumar, Sudhir; Nahum, Alan E

    2018-06-08

    Differences in detector response between measured small fields, f clin, and wider reference fields, f msr , can be overcome by using correction factors [Formula: see text] or by designing detectors with field-size invariant responses. The changing response in small fields is caused by perturbations of the electron fluence within the detector sensitive volume. For solid-state detectors, it has recently been suggested that these perturbations might be caused by the non-water-equivalent effective atomic numbers Z of detector materials, rather than by their non-water-like densities. Using the EGSnrc Monte Carlo code we have analyzed the response of a PTW 60017 diode detector in a 6 MV beam, calculating the [Formula: see text] correction factor from computed doses absorbed by water and by the detector sensitive volume in 0.5  ×  0.5 and 4  ×  4 cm 2 fields. In addition to the 'real' detector, fully modelled according to the manufacturer's blue-prints, we calculated doses and [Formula: see text] factors for a 'Z  →  water' detector variant in which mass stopping-powers and microscopic interaction coefficients were set to those of water while preserving real material densities, and for a 'density  →  1' variant in which densities were set to 1 g cm -3 , leaving mass stopping-powers and interaction coefficients at real levels. [Formula: see text] equalled 0.910  ±  0.005 (2 standard deviations) for the real detector, was insignificantly different at 0.912  ±  0.005 for the 'Z  →  H 2 O' variant, but equalled 1.012  ±  0.006 for the 'density  →  1' variant. For the 60017 diode in a 6 MV beam, then, [Formula: see text] was determined primarily by the detector's density rather than its atomic composition. Further calculations showed this remained the case in a 15 MV beam. Interestingly, the sensitive volume electron fluence was perturbed more by detector atomic composition than by density; however, the density-dependent perturbation varied with field-size, whereas the Z-dependent perturbation was relatively constant, little affecting [Formula: see text].

  19. Radiation dose reduction using a CdZnTe-based computed tomography system: Comparison to flat-panel detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Huy Q.; Ducote, Justin L.; Molloi, Sabee

    2010-03-15

    Purpose: Although x-ray projection mammography has been very effective in early detection of breast cancer, its utility is reduced in the detection of small lesions that are occult or in dense breasts. One drawback is that the inherent superposition of parenchymal structures makes visualization of small lesions difficult. Breast computed tomography using flat-panel detectors has been developed to address this limitation by producing three-dimensional data while at the same time providing more comfort to the patients by eliminating breast compression. Flat panels are charge integrating detectors and therefore lack energy resolution capability. Recent advances in solid state semiconductor x-ray detectormore » materials and associated electronics allow the investigation of x-ray imaging systems that use a photon counting and energy discriminating detector, which is the subject of this article. Methods: A small field-of-view computed tomography (CT) system that uses CdZnTe (CZT) photon counting detector was compared to one that uses a flat-panel detector for different imaging tasks in breast imaging. The benefits afforded by the CZT detector in the energy weighting modes were investigated. Two types of energy weighting methods were studied: Projection based and image based. Simulation and phantom studies were performed with a 2.5 cm polymethyl methacrylate (PMMA) cylinder filled with iodine and calcium contrast objects. Simulation was also performed on a 10 cm breast specimen. Results: The contrast-to-noise ratio improvements as compared to flat-panel detectors were 1.30 and 1.28 (projection based) and 1.35 and 1.25 (image based) for iodine over PMMA and hydroxylapatite over PMMA, respectively. Corresponding simulation values were 1.81 and 1.48 (projection based) and 1.85 and 1.48 (image based). Dose reductions using the CZT detector were 52.05% and 49.45% for iodine and hydroxyapatite imaging, respectively. Image-based weighting was also found to have the least beam hardening effect. Conclusions: The results showed that a CT system using an energy resolving detector reduces the dose to the patient while maintaining image quality for various breast imaging tasks.« less

  20. Instrumentation for air quality measurements.

    NASA Technical Reports Server (NTRS)

    Loewenstein, M.

    1973-01-01

    Comparison of the new generation of air quality monitoring instruments with some more traditional methods. The first generation of air quality measurement instruments, based on the use of oxidant coulometric cells, nitrogen oxide colorimetry, carbon monoxide infrared analyzers, and other types of detectors, is compared with new techniques now coming into wide use in the air monitoring field and involving the use of chemiluminescent reactions, optical absorption detectors, a refinement of the carbon monoxide infrared analyzer, electrochemical cells based on solid electrolytes, and laser detectors.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, T.P.

    Sensors for the determination of pH have been developed which are based on the immobilization of direct dyes at hydrolyzed cellulosic films. The performance and structural characteristics of the sensors were investigated by a variety of spectroscopic methods, and applications for remote sensing were developed. Films of cellulose acetate were base hydrolyzed in 0.07 M KOH to yield a porous support structure. The structural changes resulting from the hydrolysis on cellulose acetate were probed with infrared internal reflectance spectroscopy. The progress of the hydrolysis reaction was monitored by the changes in vibrational modes of the acetyl group, and other spectralmore » changes indicated changes in film thickness as a result of solvent incorporation. Direct dyes, including Congo Red and C. I. Direct Blue 8, were then immobilized at these porous cellulosic films. The optical response characteristics of the Congo Red pH sensor were characterized, including the UV-visible absorption spectra as a function of pH, the response time as a function of ionic strength and ionic size of electrolyte, the long-term stability of the sensor, the effects of metal-ion interference, and the concentration of Congo Red in the polymer film. The structural characteristics of the sensor were investigated by internal reflectance spectroscopy and resonance-enhanced Raman spectroscopy, and the protonation sites were identified as the two azo groups of Congo Red. Infrared internal reflection spectra of immobilized Congo Red led to the development of a sensor for pH based on infrared spectroscopy. Finally, a two-wavelength fiber-optic photometer, which is based on solid-state sources and detectors, and a fiber-optic photometer, which is based on solid-state sources and detectors, and a fiber-optic probe were developed for pH determinations using Congo Red and C. I. Direct Blue 8 pH sensors.« less

  2. The PHOBOS detector at RHIC

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Basilev, S.; Baum, R.; Betts, R. R.; Białas, A.; Bindel, R.; Bogucki, W.; Budzanowski, A.; Busza, W.; Carroll, A.; Ceglia, M.; Chang, Y.-H.; Chen, A. E.; Coghen, T.; Connor, C.; Czyż, W.; Dabrowski, B.; Decowski, M. P.; Despet, M.; Fita, P.; Fitch, J.; Friedl, M.; Gałuszka, K.; Ganz, R.; Garcia, E.; George, N.; Godlewski, J.; Gomes, C.; Griesmayer, E.; Gulbrandsen, K.; Gushue, S.; Halik, J.; Halliwell, C.; Haridas, P.; Hayes, A.; Heintzelman, G. A.; Henderson, C.; Hollis, R.; Hołyński, R.; Hofman, D.; Holzman, B.; Johnson, E.; Kane, J.; Katzy, J.; Kita, W.; Kotuła, J.; Kraner, H.; Kucewicz, W.; Kulinich, P.; Law, C.; Lemler, M.; Ligocki, J.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Neal, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Patel, M.; Pernegger, H.; Plesko, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Ross, D.; Rosenberg, L.; Ryan, J.; Sanzgiri, A.; Sarin, P.; Sawicki, P.; Scaduto, J.; Shea, J.; Sinacore, J.; Skulski, W.; Steadman, S. G.; Stephans, G. S. F.; Steinberg, P.; Straczek, A.; Stodulski, M.; Strek, M.; Stopa, Z.; Sukhanov, A.; Surowiecka, K.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zalewski, K.; Żychowski, P.; Phobos Collaboration

    2003-03-01

    This manuscript contains a detailed description of the PHOBOS experiment as it is configured for the Year 2001 running period. It is capable of detecting charged particles over the full solid angle using a multiplicity detector and measuring identified charged particles near mid-rapidity in two spectrometer arms with opposite magnetic fields. Both of these components utilize silicon pad detectors for charged particle detection. The minimization of material between the collision vertex and the first layers of silicon detectors allows for the detection of charged particles with very low transverse momenta, which is a unique feature of the PHOBOS experiment. Additional detectors include a time-of-flight wall which extends the particle identification range for one spectrometer arm, as well as sets of scintillator paddle and Cherenkov detector arrays for event triggering and centrality selection.

  3. Characteristic of x-ray tomography performance using CdTe timepix detector

    NASA Astrophysics Data System (ADS)

    Zain, R. M.; O'Shea, V.; Maneuski, D.

    2017-01-01

    X-ray Computed Tomography (CT) is a non-destructive technique for visualizing interior features within solid objects, and for obtaining digital information on their 3-D geometries and properties. The selection of CdTe Timepix detector has a sufficient performance of imaging detector is based on quality of detector performance and energy resolution. The study of Modulation Transfer Function (MTF) shows a 70% contrast at 4 lp/mm was achieved for the 55 µm pixel pitch detector with the 60 kVp X-ray tube and 5 keV noise level. No significant degradation in performance was observed for X-ray tube energies of 20 - 60 keV. The paper discusses the application of the CdTe Timepix detector to produce a good quality image of X-ray tomography imaging.

  4. Mercury cadmium telluride infrared detector development in India: status and issues

    NASA Astrophysics Data System (ADS)

    Singh, R. N.

    2009-05-01

    In the present paper, we describe the development of Long Wave Infrared (8-12 μm) linear and 2-D IR FPA detectors using HgCdTe for use in thermal imagers and IIR seekers. In this direction, Solid State Physics Laboratory(SSPL) (DRDO) tried to concentrate initially in the bulk growth and characterization of HgCdTe during the early eighties. Some efforts were then made to develop a LWIR photoconductive type MCT array in linear configuration with the IRFPA processed on bulk MCT crystals grown in the laboratory. Non availability of quality epilayers with the required specification followed by the denial of supply of CdTe, CdZnTe and even high purity Te by advanced countries, forced us to shift our efforts during early nineties towards development of 60 element PC IR detectors. High performance linear PC arrays were developed. A novel horizontal casting procedure was evolved for growing high quality bulk material using solid state recrystallization technique. Efforts for ultra purification of Te to 7N purity with the help of a sister concern has made it possible to have this material indigenously. Having succeded in the technology for growing single crystalline CdZnTe with (111) orientation and LPE growth of HgCdTe epilayers on CdZnTe substrates an attempt was made to establish the fabrication of 2D short PV arrays showing significant IR response. Thus a detailed technological knowhow for passivation, metallization, ion implanted junction formation, etc. was generated. Parallel work on the development of a matching CCD Mux readout in silicon by Semiconductor Complex Limited was also completed which was tested first in stand-alone mode followed by integration with IRFPAs through indigenously-developed indium bumps. These devices were integrated into an indigenously fabricated glass dewar cooled by a self-developed JT minicooler. In recent years, the LPE (Liquid Phase Epitaxy) growth from Terich route has been standardized for producing epitaxial layers with high compositional and thickness uniformity leading to a respectable stage of maturity in FPA technology.

  5. Compact pulse width modulation circuitry for silicon photomultiplier readout.

    PubMed

    Bieniosek, M F; Olcott, P D; Levin, C S

    2013-08-07

    The adoption of solid-state photodetectors for positron emission tomography (PET) system design and the interest in 3D interaction information from PET detectors has lead to an increasing number of readout channels in PET systems. To handle these additional readout channels, PET readout electronics should be simplified to reduce the power consumption, cost, and size of the electronics for a single channel. Pulse-width modulation (PWM), where detector pulses are converted to digital pulses with width proportional to the detected photon energy, promises to simplify PET readout by converting the signals to digital form at the beginning of the processing chain, and allowing a single time-to-digital converter to perform the data acquisition for many channels rather than routing many analogue channels and digitizing in the back end. Integrator based PWM systems, also known as charge-to-time converters (QTCs), are especially compact, reducing the front-end electronics to an op-amp integrator with a resistor discharge, and a comparator. QTCs, however, have a long dead-time during which dark count noise is integrated, reducing the output signal-to-noise ratio. This work presents a QTC based PWM circuit with a gated integrator that shows performance improvements over existing QTC based PWM. By opening and closing an analogue switch on the input of the integrator, the circuit can be controlled to integrate only the portions of the signal with a high signal-to-noise ratio. It also allows for multiplexing different detectors into the same PWM circuit while avoiding uncorrelated noise propagation between photodetector channels. Four gated integrator PWM circuits were built to readout the spatial channels of two position sensitive solid-state photomultiplier (PS-SSPM). Results show a 4 × 4 array 0.9 mm × 0.9 mm × 15 mm of LYSO crystals being identified on the 5 mm × 5 mm PS-SSPM at room temperature with no degradation for twofold multiplexing. In principle, much larger multiplexing ratios are possible, limited only by count rate issues.

  6. Phantom evaluation of a cardiac SPECT/VCT system that uses a common set of solid-state detectors for both emission and transmission scans

    PubMed Central

    Conwell, Richard; Kindem, Joel; Babla, Hetal; Gurley, Mike; De Los Santos, Romer; Old, Rex; Weatherhead, Randy; Arram, Samia; Maddahi, Jamshid

    2010-01-01

    Background We developed a cardiac SPECT system (X-ACT) with low dose volume CT transmission-based attenuation correction (AC). Three solid-state detectors are configured to form a triple-head system for emission scans and reconfigured to form a 69-cm field-of-view detector arc for transmission scans. A near mono-energetic transmission line source is produced from the collimated fluorescence x-ray emitted from a lead target when the target is illuminated by a narrow polychromatic x-ray beam from an x-ray tube. Transmission scans can be completed in 1 min with insignificant patient dose (deep dose equivalent <5 μSv). Methods We used phantom studies to evaluate (1) the accuracy of the reconstructed attenuation maps, (2) the effect of AC on image uniformity, and (3) the effect of AC on defect contrast (DC). The phantoms we used included an ACR phantom, an anthropomorphic phantom with a uniform cardiac insert, and an anthropomorphic phantom with two defects in the cardiac insert. Results The reconstructed attenuation coefficient of water at 140 keV was .150 ± .003/cm in the uniform region of the ACR phantom, .151 ± .003/cm and .151 ± .002/cm in the liver and cardiac regions of the anthropomorphic phantom. The ACR phantom images with AC showed correction of the bowing effect due to attenuation in the images without AC (NC). The 17-segment scores of the images of the uniform cardiac insert were 78.3 ± 6.5 before and 87.9 ± 3.3 after AC (average ± standard deviation). The inferior-to-anterior wall ratio and the septal-to-lateral wall ratio were .99 and 1.16 before and 1.02 and 1.00 after AC. The DC of the two defects was .528 and .156 before and .628 and .173 after AC. Conclusion The X-ACT system generated accurate attenuation maps with 1-minute transmission scans. AC improved image quality and uniformity over NC. PMID:20169476

  7. Planetary Surface Exploration Using Time-Resolved Laser Spectroscopy on Rovers and Landers

    NASA Astrophysics Data System (ADS)

    Blacksberg, Jordana; Alerstam, Erik; Maruyama, Yuki; Charbon, Edoardo; Rossman, George

    2013-04-01

    Planetary surface exploration using laser spectroscopy has become increasingly relevant as these techniques become a reality on Mars surface missions. The ChemCam instrument onboard the Curiosity rover is currently using laser induced breakdown spectroscopy (LIBS) on a mast-mounted platform to measure elemental composition of target rocks. The RLS Raman Spectrometer is included on the payload for the ExoMars mission to be launched in 2018 and will identify minerals and organics on the Martian surface. We present a next-generation instrument that builds on these widely used techniques to provide a means for performing both Raman spectroscopy and LIBS in conjunction with microscopic imaging. Microscopic Raman spectroscopy with a laser spot size smaller than the grains of interest can provide surface mapping of mineralogy while preserving morphology. A very small laser spot size (~ 1 µm) is often necessary to identify minor phases that are often of greater interest than the matrix phases. In addition to the difficulties that can be posed by fine-grained material, fluorescence interference from the very same material is often problematic. This is particularly true for many of the minerals of interest that form in environments of aqueous alteration and can be highly fluorescent. We use time-resolved laser spectroscopy to eliminate fluorescence interference that can often make it difficult or impossible to obtain Raman spectra. As an added benefit, we have found that with small changes in operating parameters we can include microscopic LIBS using the same hardware. This new technique relies on sub-ns, high rep-rate lasers with relatively low pulse energy and compact solid state detectors with sub-ns time resolution. The detector technology that makes this instrument possible is a newly developed Single-Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. The use of this solid state time-resolved detector offers a significant reduction in size, weight, power, and overall complexity - making time resolved detection feasible for planetary applications. We will discuss significant advances leading to the feasibility of a compact time-resolved spectrometer. We will present results on planetary analog minerals to demonstrate the instrument performance including fluorescence rejection and combined Raman-LIBS capability.

  8. Conceptual study of a heavy-ion-ERDA spectrometer for energies below 6 MeV

    NASA Astrophysics Data System (ADS)

    Julin, Jaakko; Sajavaara, Timo

    2017-09-01

    Elastic recoil detection analysis (ERDA) is a well established technique and it offers unique capabilities in thin film analysis. Simultaneous detection and depth profiling of all elements, including hydrogen, is possible only with time-of-flight ERDA. Bragg ionization chambers or ΔE - E detectors can also be used to identify the recoiling element if sufficiently high energies are used. The chief limitations of time-of-flight ERDA are the beam induced sample damage and the requirement of a relatively large accelerator. In this paper we propose a detector setup, which could be used with 3 MeV to 6 MeV medium heavy beams from either a single ended accelerator (40Ar) or from a tandem accelerator (39K). The detector setup consists of two timing detectors and a gas ionization chamber energy detector. Compared to use of very heavy low energy ions the hydrogen recoils with this beam have sufficient energy to be detected with current gas ionization chamber energy detector. To reduce the beam induced damage the proposed detector setup covers a solid angle larger than 1 msr, roughly an order of magnitude improvement over most time-of-flight ERDA setups. The setup could be used together with a small accelerator to be used for light element analysis of approximately 50 nm films. The concept is tested with 39K beam from a 1.7 MV Pelletron tandem accelerator with the Jyväskylä ToF-ERDA setup. In addition to the measurements effects related to low energies and increase in the solid angle are simulated with Monte Carlo methods.

  9. Study of solid-conversion gaseous detector based on GEM for high energy X-ray industrial CT.

    PubMed

    Zhou, Rifeng; Zhou, Yaling

    2014-01-01

    The general gaseous ionization detectors are not suitable for high energy X-ray industrial computed tomography (HEICT) because of their inherent limitations, especially low detective efficiency and large volume. The goal of this study was to investigate a new type of gaseous detector to solve these problems. The novel detector was made by a metal foil as X-ray convertor to improve the conversion efficiency, and the Gas Electron Multiplier (hereinafter "GEM") was used as electron amplifier to lessen its volume. The detective mechanism and signal formation of the detector was discussed in detail. The conversion efficiency was calculated by using EGSnrc Monte Carlo code, and the transport course of photon and secondary electron avalanche in the detector was simulated with the Maxwell and Garfield codes. The result indicated that this detector has higher conversion efficiency as well as less volume. Theoretically this kind of detector could be a perfect candidate for replacing the conventional detector in HEICT.

  10. Instrumentation and Future Missions in the Upcoming Era of X-ray Polarimetry

    NASA Astrophysics Data System (ADS)

    Fabiani, Sergio

    2018-05-01

    The maturity of current detectors based on technologies that range from solid state to gases renewed the interest for X-ray polarimetry, raising the enthusiasm of a wide scientific community to improve the performance of polarimeters as well as to produce more detailed theoretical predictions. We will introduce the basic concepts about measuring the polarization of photons, especially in the X-rays, and we will review the current state of the art of polarimeters in a wide energy range from soft~to hard X-rays, from solar flares to distant astrophysical sources. We will introduce relevant examples of polarimeters developed from the recent past up to the panorama of upcoming space missions to show how the recent development of the technology is allowing reopening the observational window of X-ray polarimetry.

  11. Unattended Radiation Sensor Systems for Remote Terrestrial Applications and Nuclear Nonproliferation

    NASA Astrophysics Data System (ADS)

    van den Berg, Lodewijk; Proctor, Alan E.; Pohl, Ken R.; Bolozdynya, Alex; De Vito, Raymond

    2002-10-01

    The design of instrumentation for remote sensing presents special requirements in the areas of power consumption, long-term stability, and compactness. At the same time, the high sensitivity and resolution of the devices needs to be preserved. This paper will describe several instruments suitable for remote sensing developed under the sponsorship of the Defense Threat Reduction Agency (DTRA). The first is a system consisting of a mechanical cryocooler coupled with a high-purity germanium (HPGe) detector. The system is portable and can be operated for extended periods of time at remote locations without servicing. The second is a hand-held radiation intensity meter with high sensitivity that can operate for several months on two small batteries. Intensity signals above a set limit can be transmitted to a central monitoring station by cable or radio transmission. The third is a small module incorporating one or more high resolution mercuric iodide detectors and front end electronics. This unit can be operated using standard electronic systems, or it can be connected to a separately designed, pocket-size module that can provide power to any detector system and can process detector signals. It incorporates a shaping amplifier, a multichannel analyzer, and gated integrator electronics to process the slow signal pulses generated by room temperature solid state detectors. The fourth is a high pressure xenon (HPXe) ionization chamber filled with very pure xenon gas at high pressure, so that the efficiency and spectral resolution are increased above the normally available gas-filled tubes. The performance of these systems will be described and discussed.

  12. The use of ultrasonic properties of CR-39 track detectors in neutron dosimetry

    NASA Astrophysics Data System (ADS)

    Afifi, H.; El-Sersy, A.; Khaled, N.

    2004-01-01

    The longitudinal and shear wave ultrasonic velocities have been measured before and after exposing 5-mm thick CR-39 solid state nuclear track detectors to both a mixed field of gamma-rays and fast neutrons from an Am-Be source in the ranges from 0 to 10 4 mSv. The change in the intermolecular structure as caused by the fast neutron exposure was studied by the ultrasonic pulse echo method at a frequency of 2 MHz and at room temperature. The elastic coefficients, Poisson's ratio, microhardness, ultrasonic absorption coefficient and internal friction have been determined. The study shows that the gamma-ray irradiation had no effect on the ultrasonic properties of CR-39 at least at the used doses. However, all the ultrasonic properties are influenced by the fast neutrons at doses up to 10 4 mSv. Our experimental results confirmed that the ultrasonic technique is useful for fast neutron detection, by exploiting the differences in mechanical properties of CR-39.

  13. SuperHERO: The Next Generation Hard X-Ray HEROES Telescope

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Gaskin, Jessica A.; Christe, Steven D.; Elsner, Ronald F.; Ramsey, Brian D.; Seller, Paul; Shih, Albert Y.; Stuchlik, David W.; Swartz, Douglas A.; Tenant, Allyn F.; hide

    2014-01-01

    SuperHERO is a new high-sensitivity Long Duration Balloon (LDB)-capable, hard-x-ray (20-75 keV) telescope for making novel astrophysics and heliophysics observations. The proposed SuperHERO payload will be developed jointly by the Astrophysics Office at NASA Marshall Space Flight Center, the Solar Physics Laboratory and Wallops Flight Facility at NASA Goddard Space Flight Center. SuperHERO is a follow-on payload to the High Energy Replicated Optics to Explore the Sun (HEROES) balloon-borne telescope that recently launched from Fort Sumner, NM in September of 2013. The HEROES core instrument is a hard x-ray telescope consisting of x-ray 109 optics configured into 8 modules. Each module is aligned to a matching gas-filled detector at a focal length of 6 m. SuperHERO will make significant improvements to the HEROES payload, including: new solid-state multi-pixel CdTe detectors, additional optics, the Wallops Arc-Second Pointer, alignment monitoring systems and lighter gondola.

  14. SuperHERO: The Next Generation Hard X-ray HEROES Telescope

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica A.; Christe, Steven D.; Wilson-Hodge, Colleen; Shih, Albert Y. M.; Ramsey, Brian D.; Tennant, Allyn F.; Swartz, Douglas A.

    2014-01-01

    SuperHERO is a new high-sensitivity Long Duration Balloon (LDB)-capable, hard-x-ray (20-75 keV) telescope for making novel astrophysics and heliophysics observations. The proposed SuperHERO payload will be developed jointly by the Astrophysics Office at NASA Marshall Space Flight Center, the Solar Physics Laboratory and Wallops Flight Facility at NASA Goddard Space Flight Center. SuperHERO is a follow-on payload to the High Energy Replicated Optics to Explore the Sun (HEROES) balloon-borne telescope that recently launched from Fort Sumner, NM in September of 2013. The HEROES core instrument is a hard x-ray telescope consisting of x-ray 109 optics configured into 8 modules. Each module is aligned to a matching gas-filled detector at a focal length of 6 m. SuperHERO will make significant improvements to the HEROES payload, including: new solid-state multi-pixel CdTe detectors, additional optics, the Wallops Arc-Second Pointer, alignment monitoring systems and lighter gondola.

  15. Hybrid AlGaN-SiC Avalanche Photodiode for Deep-UV Photon Detection

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Herrero, Federico A.; Sigwarth, John; Goldsman, Neil; Akturk, Akin

    2010-01-01

    The proposed device is capable of counting ultraviolet (UV) photons, is compatible for inclusion into space instruments, and has applications as deep- UV detectors for calibration systems, curing systems, and crack detection. The device is based on a Separate Absorption and Charge Multiplication (SACM) structure. It is based on aluminum gallium nitride (AlGaN) absorber on a silicon carbide APD (avalanche photodiode). The AlGaN layer absorbs incident UV photons and injects photogenerated carriers into an underlying SiC APD that is operated in Geiger mode and provides current multiplication via avalanche breakdown. The solid-state detector is capable of sensing 100-to-365-nanometer wavelength radiation at a flux level as low as 6 photons/pixel/s. Advantages include, visible-light blindness, operation in harsh environments (e.g., high temperatures), deep-UV detection response, high gain, and Geiger mode operation at low voltage. Furthermore, the device can also be designed in array formats, e.g., linear arrays or 2D arrays (micropixels inside a superpixel).

  16. Terahertz multiheterodyne spectroscopy using laser frequency combs

    DOE PAGES

    Yang, Yang; Burghoff, David; Hayton, Darren J.; ...

    2014-07-01

    The terahertz region is of great importance for spectroscopy since many molecules have absorption fingerprints there. Frequency combs based on terahertz quantum cascade lasers feature broadband coverage and high output powers in a compact package, making them an attractive option for broadband spectroscopy. Here, we demonstrate the first multiheterodyne spectroscopy using two terahertz quantum cascade laser combs. Over a spectral range of 250 GHz, we achieve average signal-to-noise ratios of 34 dB using cryogenic detectors and 24 dB using room-temperature detectors, all in just 100 μs. As a proof of principle, we use these combs to measure the broadband transmissionmore » spectrum of etalon samples and show that, with proper signal processing, it is possible to extend the multiheterodyne spectroscopy to quantum cascade laser combs operating in pulsed mode. Here, this greatly expands the range of quantum cascade lasers that could be suitable for these techniques and allows for the creation of completely solid-state terahertz laser spectrometers.« less

  17. Measurement of radon exhalation rate in various building materials and soil samples

    NASA Astrophysics Data System (ADS)

    Bala, Pankaj; Kumar, Vinod; Mehra, Rohit

    2017-03-01

    Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpur districts of Himachal Pradesh has been done with solid state alpha track detectors, LR-115 type-II plastic track detectors. The radon exhalation rate for the soil samples varies from 39.1 to 91.2 mBq kg-1 h-1 with a mean value 59.7 mBq kg-1 h-1. Also the radium concentration of the studied area is found and it varies from 30.6 to 51.9 Bq kg-1 with a mean value 41.6 Bq kg-1. The exhalation rate for the building material samples varies from 40.72 (sandstone) to 81.40 mBq kg-1 h-1 (granite) with a mean value of 59.94 mBq kg-1 h-1.

  18. New flavor production in. gamma. ,. mu. ,. nu. , and hadron beams. [Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojcicki, S.

    1980-01-01

    During the last few years the main emphasis in the study of heavy particle production (mainly charm) by means other than e/sup +/e/sup -/ annihilation has been on the production mechanisms. This review concentrates mainly on the production data in ..gamma.., ..mu.., ..nu.., and hadron beams. The heavy flavor searches divide themselves naturally into three categories, each one characterized by its own peculiar advantages and shortcomings; these are summarized briefly. Then the following topics are taken up: charm production by hadrons (central production, forward production - ..lambda../sub c/ and D production, anomalies and discrepancies), charm production by photons and muons,more » new flavor production by neutrinos, status of heavier flavors, and production bound flavors (eta/sub c/ search, UPSILON muoproduction, J/psi and UPSILON hadroproduction, J/psi muoproduction). In his outlook for the future, the author presents a few words concerning the status of detectors: emulsions, high-resolution streamer chambers, high-resolution bubble chambers, and solid-state detectors. 83 references, 36 figures, 4 tables. (RWR)« less

  19. Origins of the changing detector response in small megavoltage photon radiation fields

    NASA Astrophysics Data System (ADS)

    Fenwick, John D.; Georgiou, Georgios; Rowbottom, Carl G.; Underwood, Tracy S. A.; Kumar, Sudhir; Nahum, Alan E.

    2018-06-01

    Differences in detector response between measured small fields, f clin, and wider reference fields, f msr , can be overcome by using correction factors or by designing detectors with field-size invariant responses. The changing response in small fields is caused by perturbations of the electron fluence within the detector sensitive volume. For solid-state detectors, it has recently been suggested that these perturbations might be caused by the non-water-equivalent effective atomic numbers Z of detector materials, rather than by their non-water-like densities. Using the EGSnrc Monte Carlo code we have analyzed the response of a PTW 60017 diode detector in a 6 MV beam, calculating the correction factor from computed doses absorbed by water and by the detector sensitive volume in 0.5  ×  0.5 and 4  ×  4 cm2 fields. In addition to the ‘real’ detector, fully modelled according to the manufacturer’s blue-prints, we calculated doses and factors for a ‘Z  →  water’ detector variant in which mass stopping-powers and microscopic interaction coefficients were set to those of water while preserving real material densities, and for a ‘density  →  1’ variant in which densities were set to 1 g cm‑3, leaving mass stopping-powers and interaction coefficients at real levels. equalled 0.910  ±  0.005 (2 standard deviations) for the real detector, was insignificantly different at 0.912  ±  0.005 for the ‘Z  →  H2O’ variant, but equalled 1.012  ±  0.006 for the ‘density  →  1’ variant. For the 60017 diode in a 6 MV beam, then, was determined primarily by the detector’s density rather than its atomic composition. Further calculations showed this remained the case in a 15 MV beam. Interestingly, the sensitive volume electron fluence was perturbed more by detector atomic composition than by density; however, the density-dependent perturbation varied with field-size, whereas the Z-dependent perturbation was relatively constant, little affecting .

  20. Fast Photon Monte Carlo for Water Cherenkov Detectors

    NASA Astrophysics Data System (ADS)

    Latorre, Anthony; Seibert, Stanley

    2012-03-01

    We present Chroma, a high performance optical photon simulation for large particle physics detectors, such as the water Cerenkov far detector option for LBNE. This software takes advantage of the CUDA parallel computing platform to propagate photons using modern graphics processing units. In a computer model of a 200 kiloton water Cerenkov detector with 29,000 photomultiplier tubes, Chroma can propagate 2.5 million photons per second, around 200 times faster than the same simulation with Geant4. Chroma uses a surface based approach to modeling geometry which offers many benefits over a solid based modelling approach which is used in other simulations like Geant4.

  1. Response of Solid He-4 to External Stress: Interdigital Capacitor Solid Level Detector and Optical Interferometer

    NASA Technical Reports Server (NTRS)

    Fay, J.; Wada, Y.; Masutomi, R.; Elkholy, T.; Kojima, H.

    2003-01-01

    Two experiments are being conducted to observe the liquid/solid interface of He-4 near 1 K. Interesting instabilities are expected to occur when the solid is non-hydrostatically stressed. (1)A compact interdigital capacitor is used as a level detector to observe solid He-4 to which stresses are applied externally. The capacitor consists of 38 interlaced 50 m wide and 3.8 mm long gold films separated by 50 m and deposited onto a 5 mm by 5 mm sapphire substrate. The capacitor is placed on one flat end wall of a cylindrical chamber (xx mm diameter and xx mm long). The solid is grown to a known height and a stress is applied by a tubular PZT along the cylindrical axis. The observed small change in height of the solid at the wall is linearly proportional to the applied stress. The solid height decreases under compressive stress but does not change under tensile stress. The response of the solid on compressive stress is consistent with the expected quadratic dependence on strain. (2)Interferometric techniques are being developed for observing the solid He-4 surface profile. A laser light source is brought into the low temperature region via single mode optical fiber. The interference pattern is transmitted back out of the low temperature apparatus via optical fiber bundle. The solid He-4 growth chamber will be equipped with two PZT's such that stress can be applied from orthogonal directions. Orthogonally applied stress is expected to induce surface instability with island-like deformation on a grid pattern. Apparatus design and progress of its construction are described.

  2. LEICA - A low energy ion composition analyzer for the study of solar and magnetospheric heavy ions

    NASA Technical Reports Server (NTRS)

    Mason, Glenn M.; Hamilton, Douglas C.; Walpole, Peter H.; Heuerman, Karl F.; James, Tommy L.; Lennard, Michael H.; Mazur, Joseph E.

    1993-01-01

    The SAMPEX LEICA instrument is designed to measure about 0.5-5 MeV/nucleon solar and magnetospheric ions over the range from He to Ni. The instrument is a time-of-flight mass spectrometer which measures particle time-of-flight over an about 0.5 m path, and the residual energy deposited in an array of Si solid state detectors. Large area microchannel plates are used, resulting in a large geometrical factor for the instrument (0.6 sq cm sr) which is essential for accurate compositional measurements in small solar flares, and in studies of precipitating magnetospheric heavy ions.

  3. A rocket-borne data-manipulation experiment using a microprocessor

    NASA Technical Reports Server (NTRS)

    Davis, L. L.; Smith, L. G.; Voss, H. D.

    1979-01-01

    The development of a data-manipulation experiment using a Z-80 microprocessor is described. The instrumentation is included in the payloads of two Nike Apache sounding rockets used in an investigation of energetic particle fluxes. The data from an array of solid-state detectors and an electrostatic analyzer is processed to give the energy spectrum as a function of pitch angle. The experiment performed well in its first flight test: Nike Apache 14.543 was launched from Wallops Island at 2315 EST on 19 June 1978. The system was designed to be easily adaptable to other data-manipulation requirements and some suggestions for further development are included.

  4. Nanophotonic rare-earth quantum memory with optically controlled retrieval

    NASA Astrophysics Data System (ADS)

    Zhong, Tian; Kindem, Jonathan M.; Bartholomew, John G.; Rochman, Jake; Craiciu, Ioana; Miyazono, Evan; Bettinelli, Marco; Cavalli, Enrico; Verma, Varun; Nam, Sae Woo; Marsili, Francesco; Shaw, Matthew D.; Beyer, Andrew D.; Faraon, Andrei

    2017-09-01

    Optical quantum memories are essential elements in quantum networks for long-distance distribution of quantum entanglement. Scalable development of quantum network nodes requires on-chip qubit storage functionality with control of the readout time. We demonstrate a high-fidelity nanophotonic quantum memory based on a mesoscopic neodymium ensemble coupled to a photonic crystal cavity. The nanocavity enables >95% spin polarization for efficient initialization of the atomic frequency comb memory and time bin-selective readout through an enhanced optical Stark shift of the comb frequencies. Our solid-state memory is integrable with other chip-scale photon source and detector devices for multiplexed quantum and classical information processing at the network nodes.

  5. A portable battery-powered flow injection monitor for the in situ analysis of nitrate in natural waters

    PubMed Central

    Blundell, N. J.; Hopkins, A.; Worsfold, P. J.; Casey, H.

    1993-01-01

    The design and performance of a portable, automated flow injection (FI)-based photometric monitor are described. The system is controlled by an in-house microcomputer system that enables the monitor (including a solid state detector) to operate from a 12 V battery supply. The monitor uses the cadmium reduction/diazotization method to analyse for nitrate with a linear range of 0 to 12 mg l-1 and a limit of detection of 0.05 mg l-1 (NO3-N). The hardware and software design, monitor performance and results obtained during unattended operation are presented. PMID:18924971

  6. Evaluation of a pointwise microcirculation assessment method using liquid and multilayered tissue simulating phantoms

    NASA Astrophysics Data System (ADS)

    Fredriksson, Ingemar; Saager, Rolf B.; Durkin, Anthony J.; Strömberg, Tomas

    2017-11-01

    A fiber-optic probe-based instrument, designed for assessment of parameters related to microcirculation, red blood cell tissue fraction (fRBC), oxygen saturation (S), and speed resolved perfusion, has been evaluated using state-of-the-art tissue phantoms. The probe integrates diffuse reflectance spectroscopy (DRS) at two source-detector separations and laser Doppler flowmetry, using an inverse Monte Carlo method for identifying the parameters of a multilayered tissue model. Here, we characterize the accuracy of the DRS aspect of the instrument using (1) liquid blood phantoms containing yeast and (2) epidermis-dermis mimicking solid-layered phantoms fabricated from polydimethylsiloxane, titanium oxide, hemoglobin, and coffee. The root-mean-square (RMS) deviations for fRBC for the two liquid phantoms were 11% and 5.3%, respectively, and 11% for the solid phantoms with highest hemoglobin signatures. The RMS deviation for S was 5.2% and 2.9%, respectively, for the liquid phantoms, and 2.9% for the solid phantoms. RMS deviation for the reduced scattering coefficient (μs‧), for the solid phantoms was 15% (475 to 850 nm). For the liquid phantoms, the RMS deviation in average vessel diameter (D) was 1 μm. In conclusion, the skin microcirculation parameters fRBC and S, as well as, μs‧ and D are estimated with reasonable accuracy.

  7. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    NASA Astrophysics Data System (ADS)

    Ravindran, V. R.; Sreelakshmi, C.; Vibin, Vibin

    2008-09-01

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CT image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.

  8. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravindran, V. R.; Sreelakshmi, C.; Vibin

    2008-09-26

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CTmore » image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.« less

  9. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor

    NASA Astrophysics Data System (ADS)

    Glenn, David R.; Bucher, Dominik B.; Lee, Junghyun; Lukin, Mikhail D.; Park, Hongkun; Walsworth, Ronald L.

    2018-03-01

    Quantum systems that consist of solid-state electronic spins can be sensitive detectors of nuclear magnetic resonance (NMR) signals, particularly from very small samples. For example, nitrogen–vacancy centres in diamond have been used to record NMR signals from nanometre-scale samples, with sensitivity sufficient to detect the magnetic field produced by a single protein. However, the best reported spectral resolution for NMR of molecules using nitrogen–vacancy centres is about 100 hertz. This is insufficient to resolve the key spectral identifiers of molecular structure that are critical to NMR applications in chemistry, structural biology and materials research, such as scalar couplings (which require a resolution of less than ten hertz) and small chemical shifts (which require a resolution of around one part per million of the nuclear Larmor frequency). Conventional, inductively detected NMR can provide the necessary high spectral resolution, but its limited sensitivity typically requires millimetre-scale samples, precluding applications that involve smaller samples, such as picolitre-volume chemical analysis or correlated optical and NMR microscopy. Here we demonstrate a measurement technique that uses a solid-state spin sensor (a magnetometer) consisting of an ensemble of nitrogen–vacancy centres in combination with a narrowband synchronized readout protocol to obtain NMR spectral resolution of about one hertz. We use this technique to observe NMR scalar couplings in a micrometre-scale sample volume of approximately ten picolitres. We also use the ensemble of nitrogen–vacancy centres to apply NMR to thermally polarized nuclear spins and resolve chemical-shift spectra from small molecules. Our technique enables analytical NMR spectroscopy at the scale of single cells.

  10. Resonances and thresholds in the Rydberg-level population of multiply charged ions at solid surfaces

    NASA Astrophysics Data System (ADS)

    Nedeljković, Lj. D.; Nedeljković, N. N.

    1998-12-01

    We present a theoretical study of resonances and thresholds, two specific features of Rydberg-state formation of multiply charged ions (Z=6, 7, and 8) escaping a solid surface at intermediate velocities (v~1 a.u.) in the normal emergence geometry. The resonances are recognized in pronounced maxima of the experimentally observed population curves of Ar VIII ions for resonant values of the principal quantum number n=nres=11 and for the angular momentum quantum numbers l=1 and 2. Absence of optical signals in detectors of beam-foil experiments for n>nthr of S VI and Cl VII ions (with l=0, 1, and 2) and Ar VIII for l=0 is interpreted as a threshold phenomenon. An interplay between resonance and threshold effects is established within the framework of quantum dynamics of the low angular momentum Rydberg-state formation, based on a generalization of Demkov-Ostrovskii's charge-exchange model. In the model proposed, the Ar VIII resonances appear as a consequence of electron tunneling in the very vicinity of the ion-surface potential barrier top and at some critical ion-surface distances Rc. The observed thresholds are explained by means of a decay mechanism of ionic Rydberg states formed dominantly above the Fermi level EF of a solid conduction band. The theoretically predicted resonant and threshold values, nres and nthr of the principal quantum number n, as well as the obtained population probabilities Pnl=Pnl(v,Z), are in sufficiently good agreement with all available experimental findings.

  11. Using electron-tunneling refrigerators to cool electrons, membranes, and sensors

    NASA Astrophysics Data System (ADS)

    Miller, Nathan A.

    Many cryogenic devices require temperatures near 100 mK for optimal performance, such as thin-film, superconducting detectors. Examples include the submillimeter SCUBA camera on the James Clerk Maxwell Telescope, high-resolution X-ray sensors for semiconductor defect analysis, and a planned satellite to search for polarization in the cosmic microwave background. The cost, size, and complexity of refrigerators used to reach 100 mK (dilution and adiabatic demagnetization refrigerators) are significant and alternative technologies are desirable. We demonstrate work on developing a new option for cooling detectors to 100 mK bath temperatures. Solid-state refrigerators based on Normal metal/Insulator/Superconductor (NIS) tunnel junctions can provide cooling from pumped 3He bath temperatures (˜300 mK) to 100 mK. The cooling mechanism is the preferential tunneling of the highest energy (hottest) electrons from the normal metal through the biased tunnel junctions into the superconductor. When NIS refrigerators are combined with a micro-machined membrane, both the electrons and phonons of the membrane can be cooled. We have developed NIS-cooled membranes with both large temperature reductions and large cooling powers. We have shown the first cooling of a bulk material by cooling a neutron transmutation doped (NTD) thermistor. The fabrication of NIS refrigerators can be integrated with existing detector technology. For the first time, we have successfully integrated NIS refrigerators with both mm-wave and X-ray detectors. In particular, we have cooled X-ray detectors by more than 100 mK and have achieved a resolution of <10 eV at 6 keV at a bath temperature 85 mK above the transition temperature of the detector. The use of integrated NIS refrigerators makes the remarkable performance of cryogenic detectors available from 300 mK platforms. We have also performed preliminary work towards building a general-purpose cooling platform for microelectronics devices on separate chips.

  12. Design and evaluation of a SiPM-based large-area detector module for positron emission imaging

    NASA Astrophysics Data System (ADS)

    Alva-Sánchez, H.; Murrieta-Rodríguez, T.; Calva-Coraza, E.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M.

    2018-03-01

    The design and evaluation of a large-area detector module for positron emission imaging applications, is presented. The module features a SensL ArrayC-60035-64P-PCB solid state detector (8×8 array of tileable silicon photomultipliers by SensL, 7.2 mm pitch) covering a total area of 57.4×57.4 mm2. The detector module was formed using a pixelated array of 40×40 lutetium-yttrium oxyorthosilicate (LYSO) scintillator crystal elements with 1.43 mm pitch. A 7 mm thick coupling light guide was used to allow light sharing between adjacent SiPM. A 16-channel symmetric charge division (SCD) readout board was designed to multiplex the number of signals from 64 to 16 (8 columns and 8 rows) and a center-of-gravity algorithm to identify the position. Data acquisition and digitization was accomplished using a custom-made system based on FPGAs boards. Crystal maps were obtained using 18F-positron sources and Voronoi diagrams were used to correct for geometric distortions and to generate a non-uniformity correction matrix. All measurements were taken at a controlled room temperature of 22oC. The crystal maps showed minor distortion, 90% of the 1600 total crystal elements could be identified, a mean peak-to-valley ratio of 4.3 was obtained and a 10.8% mean energy resolution for 511 keV annihilation photons was determined. The performance of the detector using our own readout board was compared to that using two different commercially readout boards using the same detector module arrangement. We show that these large-area SiPM arrays, combined with a 16-channel SCD readout board, can offer high spatial resolution, excellent energy resolution and detector uniformity and thus, can be used for positron emission imaging applications.

  13. Charged-particle spectroscopy in organic semiconducting single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciavatti, A.; Basiricò, L.; Fraboni, B.

    2016-04-11

    The use of organic materials as radiation detectors has grown, due to the easy processability in liquid phase at room temperature and the possibility to cover large areas by means of low cost deposition techniques. Direct charged-particle detectors based on solution-grown Organic Semiconducting Single Crystals (OSSCs) are shown to be capable to detect charged particles in pulse mode, with very good peak discrimination. The direct charged-particle detection in OSSCs has been assessed both in the planar and in the vertical axes, and a digital pulse processing algorithm has been used to perform pulse height spectroscopy and to study the chargemore » collection efficiency as a function of the applied bias voltage. Taking advantage of the charge spectroscopy and the good peak discrimination of pulse height spectra, an Hecht-like behavior of OSSCs radiation detectors is demonstrated. It has been possible to estimate the mobility-lifetime value in organic materials, a fundamental parameter for the characterization of radiation detectors, whose results are equal to μτ{sub coplanar} = (5 .5 ± 0.6 ) × 10{sup −6} cm{sup 2}/V and μτ{sub sandwich} = (1 .9 ± 0.2 ) × 10{sup −6} cm{sup 2}/V, values comparable to those of polycrystalline inorganic detectors. Moreover, alpha particles Time-of-Flight experiments have been carried out to estimate the drift mobility value. The results reported here indicate how charged-particle detectors based on OSSCs possess a great potential as low-cost, large area, solid-state direct detectors operating at room temperature. More interestingly, the good detection efficiency and peak discrimination observed for charged-particle detection in organic materials (hydrogen-rich molecules) are encouraging for their further exploitation in the detection of thermal and high-energy neutrons.« less

  14. Security of six-state quantum key distribution protocol with threshold detectors

    PubMed Central

    Kato, Go; Tamaki, Kiyoshi

    2016-01-01

    The security of quantum key distribution (QKD) is established by a security proof, and the security proof puts some assumptions on the devices consisting of a QKD system. Among such assumptions, security proofs of the six-state protocol assume the use of photon number resolving (PNR) detector, and as a result the bit error rate threshold for secure key generation for the six-state protocol is higher than that for the BB84 protocol. Unfortunately, however, this type of detector is demanding in terms of technological level compared to the standard threshold detector, and removing the necessity of such a detector enhances the feasibility of the implementation of the six-state protocol. Here, we develop the security proof for the six-state protocol and show that we can use the threshold detector for the six-state protocol. Importantly, the bit error rate threshold for the key generation for the six-state protocol (12.611%) remains almost the same as the one (12.619%) that is derived from the existing security proofs assuming the use of PNR detectors. This clearly demonstrates feasibility of the six-state protocol with practical devices. PMID:27443610

  15. Photoacoustic Spectroscopy for Chemical Detection

    DTIC Science & Technology

    2012-09-01

    refractive index using combinations of probe sources and detectors , PAS measures the pressure wave produced by sample heating.3 Successful applications of...a Thermo Scientific Nicolet 6700 FTIR spectrometer equipped with a potassium bromide (KBr) beamsplitter and a mercury cadmium telluride ( MCT )-A...narrow band–650 cm-1 cutoff) detector . A GladiATRTM (Pike Technologies) accessory was used to collect infrared spectra of solid samples using

  16. Detection of positive and negative ions from a flowing atmospheric pressure afterglow using a Mattauch-Herzog mass spectrograph equipped with a Faraday-strip array detector.

    PubMed

    Schilling, Gregory D; Shelley, Jacob T; Barnes, James H; Sperline, Roger P; Denton, M Bonner; Barinaga, Charles J; Koppenaal, David W; Hieftje, Gary M

    2010-01-01

    An ambient desorption/ionization (ADI) source, known as the flowing atmospheric pressure afterglow (FAPA), has been coupled to a Mattauch-Herzog mass spectrograph (MHMS) equipped with a focal plane camera (FPC) array detector. The FAPA ionization source enables direct mass spectral analysis of solids, liquids, and gases through either positive or negative ionization modes. In either case, spectra are generally simple with dominant peaks being the molecular ions or protonated molecular ions. Use of the FAPA source with the MHMS allows the FPC detector to be characterized for the determination of molecular species, whereas previously only atomic mass spectrometry (MS) has been demonstrated. Furthermore, the FPC is shown to be sensitive to negative ions without the need to change any detector parameters. The analysis of solid, liquid, and gaseous samples through positive and negative ionization is demonstrated with detection limits (1-25 fmol/s, approximately 0.3-10 pg of analyte per mL of helium) surpassing those obtained with the FAPA source coupled to a time-of-flight mass analyzer. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  17. A system for measuring bubble voidage and frequency around tubes immersed in a fluidized bed of particles

    NASA Astrophysics Data System (ADS)

    Whitty, Kevin J.; Siddoway, Michael

    2010-07-01

    Gas-solid fluidized beds are common in chemical processing and energy production industries. These types of reactors frequently have banks of tubes immersed within the bed to provide heating or cooling, and it is important that the fluid dynamics within these bundles is efficient and uniform. This paper presents a simple, low-cost method for quantitatively analyzing the behavior of gas bubbles within banks of tubes in a fluidized bed cold flow model. Two probes, one containing an infrared emitter and one containing an infrared (IR) detector, are placed into adjacent glass tubes such that the emitter and detector face each other. As bubbles pass through the IR beam, the detector signal increases due to less solid material blocking the path between the emitter and detector. By calibrating the signal response to known voidage of the material, one can measure the bubble voidage at various locations within the tube bundle. The rate and size of bubbles passing through the beam can also be determined by high frequency data collection and subsequent analysis. This technique allows one to develop a map of bubble voidage within a fluidized bed, which can be useful for model validation and system optimization.

  18. A system for measuring bubble voidage and frequency around tubes immersed in a fluidized bed of particles.

    PubMed

    Whitty, Kevin J; Siddoway, Michael

    2010-07-01

    Gas-solid fluidized beds are common in chemical processing and energy production industries. These types of reactors frequently have banks of tubes immersed within the bed to provide heating or cooling, and it is important that the fluid dynamics within these bundles is efficient and uniform. This paper presents a simple, low-cost method for quantitatively analyzing the behavior of gas bubbles within banks of tubes in a fluidized bed cold flow model. Two probes, one containing an infrared emitter and one containing an infrared (IR) detector, are placed into adjacent glass tubes such that the emitter and detector face each other. As bubbles pass through the IR beam, the detector signal increases due to less solid material blocking the path between the emitter and detector. By calibrating the signal response to known voidage of the material, one can measure the bubble voidage at various locations within the tube bundle. The rate and size of bubbles passing through the beam can also be determined by high frequency data collection and subsequent analysis. This technique allows one to develop a map of bubble voidage within a fluidized bed, which can be useful for model validation and system optimization.

  19. Improved background suppression for radiative capture reactions at LUNA with HPGe and BGO detectors

    NASA Astrophysics Data System (ADS)

    Boeltzig, A.; Best, A.; Imbriani, G.; Junker, M.; Aliotta, M.; Bemmerer, D.; Broggini, C.; Bruno, C. G.; Buompane, R.; Caciolli, A.; Cavanna, F.; Chillery, T.; Ciani, G. F.; Corvisiero, P.; Csedreki, L.; Davinson, T.; deBoer, R. J.; Depalo, R.; Di Leva, A.; Elekes, Z.; Ferraro, F.; Fiore, E. M.; Formicola, A.; Fülöp, Z.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, G.; Kochanek, I.; Menegazzo, R.; Mossa, V.; Pantaleo, F. R.; Paticchio, V.; Perrino, R.; Piatti, D.; Prati, P.; Schiavulli, L.; Stöckel, K.; Straniero, O.; Strieder, F.; Szücs, T.; Takács, M. P.; Trezzi, D.; Wiescher, M.; Zavatarelli, S.

    2018-02-01

    Direct measurements of small nuclear reaction cross sections require a low background in the signal region of interest to achieve the necessary sensitivity. We describe two complementary detector setups that have been used for studies of ({{p}},γ ) reactions with solid targets at the Laboratory for Underground Nuclear Astrophysics (LUNA): a high-purity germanium detector and a bismuth germanate (BGO) detector. We present the effect of a customised lead shielding on the measured background spectra in the two detector setups at LUNA. We developed a model to describe the contributions of environmental and intrinsic backgrounds in the BGO detector measurements. Furthermore we present an upgrade of the data acquisition system for our BGO detector, which allows us to exploit the features of the segmented detector and overcome some of the limitations encountered in previous experiments. We conclude with a discussion on the improved sensitivity of the presented setups, and the benefits for ongoing and possible future measurements.

  20. Application of TlBr to nuclear medicine imaging

    NASA Astrophysics Data System (ADS)

    Cirignano, Leonard; Kim, Hadong; Kargar, Alireza; Churilov, Alexei V.; Ciampi, Guido; Higgins, William; Kim, Suyoung; Barber, Bradford; Haston, Kyle; Shah, Kanai

    2012-10-01

    Thallium bromide (TlBr) has been under development for room temperature gamma ray spectroscopy due to high density, high Z and wide bandgap of the material. Furthermore, its low melting point (460 °C), cubic crystal structure and congruent melting with no solid-solid phase transitions between the melting point and room temperature, TlBr can be grown by relatively simple melt based methods. As a result of improvements in material processing and detector fabrication over the last several years, TlBr with electron mobility-lifetime products (μeτe) in the mid 10-3 cm2/V range has been obtained. In this paper we are going to report on our unipolar charging TlBr results for the application as a small animal imaging. For SPECT application, about 5 mm thick pixellated detectors were fabricated and tested. About 1 % FWHM at 662 keV energy resolution was estimated at room temperature. By applying the depth correction technique, less than 1 % energy resolution was estimated. We are going to report the results from orthogonal strip TlBr detector for PET application. In this paper we also present our latest detector highlights and recent progress made in long term stability of TlBr detectors at or near room temperature. This work is being supported by the Domestic Nuclear Detection Office (DNDO) and the Department of Energy (DOE).

  1. Time-Gated Raman Spectroscopy for Quantitative Determination of Solid-State Forms of Fluorescent Pharmaceuticals.

    PubMed

    Lipiäinen, Tiina; Pessi, Jenni; Movahedi, Parisa; Koivistoinen, Juha; Kurki, Lauri; Tenhunen, Mari; Yliruusi, Jouko; Juppo, Anne M; Heikkonen, Jukka; Pahikkala, Tapio; Strachan, Clare J

    2018-04-03

    Raman spectroscopy is widely used for quantitative pharmaceutical analysis, but a common obstacle to its use is sample fluorescence masking the Raman signal. Time-gating provides an instrument-based method for rejecting fluorescence through temporal resolution of the spectral signal and allows Raman spectra of fluorescent materials to be obtained. An additional practical advantage is that analysis is possible in ambient lighting. This study assesses the efficacy of time-gated Raman spectroscopy for the quantitative measurement of fluorescent pharmaceuticals. Time-gated Raman spectroscopy with a 128 × (2) × 4 CMOS SPAD detector was applied for quantitative analysis of ternary mixtures of solid-state forms of the model drug, piroxicam (PRX). Partial least-squares (PLS) regression allowed quantification, with Raman-active time domain selection (based on visual inspection) improving performance. Model performance was further improved by using kernel-based regularized least-squares (RLS) regression with greedy feature selection in which the data use in both the Raman shift and time dimensions was statistically optimized. Overall, time-gated Raman spectroscopy, especially with optimized data analysis in both the spectral and time dimensions, shows potential for sensitive and relatively routine quantitative analysis of photoluminescent pharmaceuticals during drug development and manufacturing.

  2. On-demand generation of background-free single photons from a solid-state source

    NASA Astrophysics Data System (ADS)

    Schweickert, Lucas; Jöns, Klaus D.; Zeuner, Katharina D.; Covre da Silva, Saimon Filipe; Huang, Huiying; Lettner, Thomas; Reindl, Marcus; Zichi, Julien; Trotta, Rinaldo; Rastelli, Armando; Zwiller, Val

    2018-02-01

    True on-demand high-repetition-rate single-photon sources are highly sought after for quantum information processing applications. However, any coherently driven two-level quantum system suffers from a finite re-excitation probability under pulsed excitation, causing undesirable multi-photon emission. Here, we present a solid-state source of on-demand single photons yielding a raw second-order coherence of g(2 )(0 )=(7.5 ±1.6 )×10-5 without any background subtraction or data processing. To this date, this is the lowest value of g(2 )(0 ) reported for any single-photon source even compared to the previously reported best background subtracted values. We achieve this result on GaAs/AlGaAs quantum dots embedded in a low-Q planar cavity by employing (i) a two-photon excitation process and (ii) a filtering and detection setup featuring two superconducting single-photon detectors with ultralow dark-count rates of (0.0056 ±0.0007 ) s-1 and (0.017 ±0.001 ) s-1, respectively. Re-excitation processes are dramatically suppressed by (i), while (ii) removes false coincidences resulting in a negligibly low noise floor.

  3. Survey of background scattering from materials found in small-angle neutron scattering.

    PubMed

    Barker, J G; Mildner, D F R

    2015-08-01

    Measurements and calculations of beam attenuation and background scattering for common materials placed in a neutron beam are presented over the temperature range of 300-700 K. Time-of-flight (TOF) measurements have also been made, to determine the fraction of the background that is either inelastic or quasi-elastic scattering as measured with a 3 He detector. Other background sources considered include double Bragg diffraction from windows or samples, scattering from gases, and phonon scattering from solids. Background from the residual air in detector vacuum vessels and scattering from the 3 He detector dome are presented. The thickness dependence of the multiple scattering correction for forward scattering from water is calculated. Inelastic phonon background scattering at small angles for crystalline solids is both modeled and compared with measurements. Methods of maximizing the signal-to-noise ratio by material selection, choice of sample thickness and wavelength, removal of inelastic background by TOF or Be filters, and removal of spin-flip scattering with polarized beam analysis are discussed.

  4. Survey of background scattering from materials found in small-angle neutron scattering

    PubMed Central

    Barker, J. G.; Mildner, D. F. R.

    2015-01-01

    Measurements and calculations of beam attenuation and background scattering for common materials placed in a neutron beam are presented over the temperature range of 300–700 K. Time-of-flight (TOF) measurements have also been made, to determine the fraction of the background that is either inelastic or quasi-elastic scattering as measured with a 3He detector. Other background sources considered include double Bragg diffraction from windows or samples, scattering from gases, and phonon scattering from solids. Background from the residual air in detector vacuum vessels and scattering from the 3He detector dome are presented. The thickness dependence of the multiple scattering correction for forward scattering from water is calculated. Inelastic phonon background scattering at small angles for crystalline solids is both modeled and compared with measurements. Methods of maximizing the signal-to-noise ratio by material selection, choice of sample thickness and wavelength, removal of inelastic background by TOF or Be filters, and removal of spin-flip scattering with polarized beam analysis are discussed. PMID:26306088

  5. Field experience on indoor radon, thoron and their progenies with solid-state detectors in a survey of Kosovo and Metohija (Balkan region).

    PubMed

    Gulan, L; Milic, G; Bossew, P; Omori, Y; Ishikawa, T; Mishra, R; Mayya, Y S; Stojanovska, Z; Nikezic, D; Vuckovic, B; Zunic, Z S

    2012-11-01

    Since 1996/97, indoor radon has been measured in scattered locations around Kosovo. In the most recent campaign, apart from radon, thoron and Rn and Tn progenies have also been measured. The current survey involves 48 houses, in which different detectors have been deployed side-by-side in one room, in order to measure indoor radon and thoron gas with RADUET devices based on CR-39 detectors (analysed by Japanese collaborators) and with direct thoron and radon progeny sensor (DTPS and DRPS) devices based on LR-115 detectors (analysed by collaborators from India). Estimated arithmetic mean values of concentrations in 48 houses are 122 Bq m(-3) for radon and 136 Bq m(-3) for thoron. Those for equilibrium equivalent radon concentration and equilibrium equivalent thoron concentration based on measurements in 48 houses are 40 and 2.1 Bq m(-3), respectively. The arithmetic mean value of the equilibrium factor is estimated to be 0.50 ± 0.23 for radon and 0.037 ± 0.041 for thoron. The preliminary results of these measurements are reported, particularly regarding DTPS and DRPS being set up in real field conditions for the first time in the Balkan region. The results are to be understood under the caveat of open questions related to measurement protocols which yield reproducible and representative results, and to quality assurance of Tn and Rn/Tn progeny measurements in general, some of which are discussed.

  6. A new method to detect anisotropic electron events with SOHO/EPHIN

    NASA Astrophysics Data System (ADS)

    Banjac, Saša; Kühl, Patrick; Heber, Bernd

    2016-07-01

    The EPHIN instrument (Electron Proton Helium INstrument) forms a part of the COSTEP experiment (COmprehensive SupraThermal and Energetic Particle Analyzer) within the CEPAC collaboration on board of the SOHO spacecraft (SOlar and Heliospheric Observatory). The EPHIN sensor is a stack of six solid-state detectors surrounded by an anti-coincidence. It measures energy spectra of electrons in the range 250 keV to >8.7 MeV, and hydrogen and helium isotopes in the range 4~MeV/n to >53~MeV/n. In order to improve the isotopic resolution, the first two detectors have been segmented: 5 segments form a ring enclosing a central segment. This does not only allow to correct the energy-losses in the detectors for the different path-length in the detectors but allows also an estimation of the arrival direction of the particles with respect to the sensor axis. Utilizing an extensive GEANT 4 Monte-Carlo simulation of the sensor head we computed the scattering-induced modifications to the input angular distribution and developed an inversion method that takes into account the poor counting statistics by optimizing the corresponding algorithm. This improvement makes it possible for the first time to detect long lasting anisotropies in the 1~MeV-3~MeV electron flux with a single telescope on a three-axis stabilized spacecraft. We present the method and its application to several events with strong anisotropies. For validation, we compare our data with the WIND-3DP results.

  7. Towards a disposable in vivo miniature implantable fluorescence detector

    NASA Astrophysics Data System (ADS)

    Bellis, Stephen; Jackson, J. Carlton; Mathewson, Alan

    2006-02-01

    In the field of fluorescent microscopy, neuronal activity, diabetes and drug treatment are a few of the wide ranging biomedical applications that can be monitored with the use of dye markers. Historically, in-vivo fluorescent detectors consist of implantable probes coupled by optical fibre to sophisticated bench-top instrumentation. These systems typically use laser light to excite the fluorescent marker dies and using sensors, such as the photo-multiplier tube (PMT) or charge coupled devices (CCD), detect the fluorescent light that is filtered from the total excitation. Such systems are large and expensive. In this paper we highlight the first steps toward a fully implantable in-vivo fluorescence detection system. The aim is to make the detector system small, low cost and disposable. The current prototype is a hybrid platform consisting of a vertical cavity surface emitting laser (VCSEL) to provide the excitation and a filtered solid state Geiger mode avalanche photo-diode (APD) to detect the emitted fluorescence. Fluorescence detection requires measurement of extremely low levels of light so the proposed APD detectors combine the ability to count individual photons with the added advantage of being small in size. At present the exciter and sensor are mounted on a hybrid PCB inside a 3mm diameter glass tube.This is wired to external electronics, which provide quenching, photon counting and a PC interface. In this configuration, the set-up can be used for in-vitro experimentation and in-vivo analysis conducted on animals such as mice.

  8. Development and performance of a suprathermal electron spectrometer to study auroral precipitations

    NASA Astrophysics Data System (ADS)

    Ogasawara, Keiichi; Grubbs, Guy; Michell, Robert G.; Samara, Marilia; Stange, Jason L.; Trevino, John A.; Webster, James; Jahn, Jörg-Micha

    2016-05-01

    The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3-20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.

  9. Development and performance of a suprathermal electron spectrometer to study auroral precipitations.

    PubMed

    Ogasawara, Keiichi; Grubbs, Guy; Michell, Robert G; Samara, Marilia; Stange, Jason L; Trevino, John A; Webster, James; Jahn, Jörg-Micha

    2016-05-01

    The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3-20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.

  10. DANSS: Detector of the reactor AntiNeutrino based on Solid Scintillator

    NASA Astrophysics Data System (ADS)

    Alekseev, I.; Belov, V.; Brudanin, V.; Danilov, M.; Egorov, V.; Filosofov, D.; Fomina, M.; Hons, Z.; Kazartsev, S.; Kobyakin, A.; Kuznetsov, A.; Machikhiliyan, I.; Medvedev, D.; Nesterov, V.; Olshevsky, A.; Ponomarev, D.; Rozova, I.; Rumyantseva, N.; Rusinov, V.; Salamatin, A.; Shevchik, Ye.; Shirchenko, M.; Shitov, Yu.; Skrobova, N.; Starostin, A.; Svirida, D.; Tarkovsky, E.; Tikhomirov, I.; Vlášek, J.; Zhitnikov, I.; Zinatulina, D.

    2016-11-01

    The DANSS project is aimed at creating a relatively compact neutrino spectrometer which does not contain any flammable or other dangerous liquids and may therefore be located very close to the core of an industrial power reactor. As a result, it is expected that high neutrino flux would provide about 15,000 IBD interactions per day in the detector with a sensitive volume of 1 m3. High segmentation of the plastic scintillator will allow to suppress a background down to a ~1% level. Numerous tests performed with a simplified pilot prototype DANSSino under a 3 GWth reactor of the Kalinin NPP have demonstrated operability of the chosen design. The DANSS detector surrounded with a composite shield is movable by means of a special lifting gear, varying the distance to the reactor core in a range from 10 m to 12 m. Due to this feature, it could be used not only for the reactor monitoring, but also for fundamental research including short-range neutrino oscillations to the sterile state. Supposing one-year measurement, the sensitivity to the oscillation parameters is expected to reach a level of sin2(2θnew) ~ 5 × 10-3 with Δ m2 ⊂ (0.02-5.0) eV2.

  11. STED microscopy visualizes energy deposition of single ions in a solid-state detector beyond diffraction limit

    NASA Astrophysics Data System (ADS)

    Niklas, M.; Henrich, M.; Jäkel, O.; Engelhardt, J.; Abdollahi, A.; Greilich, S.

    2017-05-01

    Fluorescent nuclear track detectors (FNTDs) allow for visualization of single-particle traversal in clinical ion beams. The point spread function of the confocal readout has so far hindered a more detailed characterization of the track spots—the ion’s characteristic signature left in the FNTD. Here we report on the readout of the FNTD by optical nanoscopy, namely stimulated emission depletion microscopy. It was firstly possible to visualize the track spots of carbon ions and protons beyond the diffraction limit of conventional light microscopy with a resolving power of approximately 80 nm (confocal: 320 nm). A clear discrimination of the spatial width, defined by the full width half maximum of track spots from particles (proton and carbon ions), with a linear energy transfer (LET) ranging from approximately 2-1016 keV µm-1 was possible. Results suggest that the width depends on LET but not on particle charge within the uncertainties. A discrimination of particle type by width thus does not seem possible (as well as with confocal microscopy). The increased resolution, however, could allow for refined determination of the cross-sectional area facing substantial energy deposition. This work could pave the way towards development of optical nanoscopy-based analysis of radiation-induced cellular response using cell-fluorescent ion track hybrid detectors.

  12. Development and Performance of a Suprathermal Electron Spectrometer to Study Auroral Precipitations

    NASA Technical Reports Server (NTRS)

    Ogasawara, Keiichi; Grubbs, Guy, II; Michell, Robert G.; Samara, Maria; Stange, Jason L.; Trevino, John A.; Webster, James; Jahn, Jorg-Micha

    2016-01-01

    The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3-20 keV range for APDs, and 7 keV resolution for greater than 20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker F1at Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.

  13. Development and performance of a suprathermal electron spectrometer to study auroral precipitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogasawara, Keiichi, E-mail: kogasawara@swri.edu; Stange, Jason L.; Trevino, John A.

    2016-05-15

    The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3−20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation tomore » read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.« less

  14. Data acquisition system for segmented reactor antineutrino detector

    NASA Astrophysics Data System (ADS)

    Hons, Z.; Vlášek, J.

    2017-01-01

    This paper describes the data acquisition system used for data readout from the PMT channels of a segmented detector of reactor antineutrinos with active shielding. Theoretical approach to the data acquisition is described and two possible solutions using QDCs and digitizers are discussed. Also described are the results of the DAQ performance during routine data taking operation of DANSS. DANSS (Detector of the reactor AntiNeutrino based on Solid Scintillator) is a project aiming to measure a spectrum of reactor antineutrinos using inverse beta decay (IBD) in a plastic scintillator. The detector is located close to an industrial nuclear reactor core and is covered by passive and active shielding. It is expected to have about 15000 IBD interactions per day. Light from the detector is sensed by PMT and SiPM.

  15. Electrocatalytic cermet gas detector/sensor

    DOEpatents

    Vogt, Michael C.; Shoemarker, Erika L.; Fraioli, deceased, Anthony V.

    1995-01-01

    An electrocatalytic device for sensing gases. The gas sensing device includes a substrate layer, a reference electrode disposed on the substrate layer comprised of a nonstoichiometric chemical compound enabling oxygen diffusion therethrough, a lower reference electrode coupled to the reference electrode, a solid electrolyte coupled to the lower reference electrode and an upper catalytically active electrode coupled to the solid electrolyte.

  16. Simulation study comparing the helmet-chin PET with a cylindrical PET of the same number of detectors

    NASA Astrophysics Data System (ADS)

    Ahmed, Abdella M.; Tashima, Hideaki; Yoshida, Eiji; Nishikido, Fumihiko; Yamaya, Taiga

    2017-06-01

    There is a growing interest in developing brain PET scanners with high sensitivity and high spatial resolution for early diagnosis of neurodegenerative diseases and studies of brain functions. Sensitivity of the PET scanner can be improved by increasing the solid angle. However, conventional PET scanners are designed based on a cylindrical geometry, which may not be the most efficient design for brain imaging in terms of the balance between sensitivity and cost. We proposed a dedicated brain PET scanner based on a hemispheric shape detector and a chin detector (referred to as the helmet-chin PET), which is designed to maximize the solid angle by increasing the number of lines-of-response in the hemisphere. The parallax error, which PET scanners with a large solid angle tend to have, can be suppressed by the use of depth-of-interaction detectors. In this study, we carry out a realistic evaluation of the helmet-chin PET using Monte Carlo simulation based on the 4-layer GSO detector which consists of a 16  ×  16  ×  4 array of crystals with dimensions of 2.8  ×  2.8  ×  7.5 mm3. The purpose of this simulation is to show the gain in imaging performance of the helmet-chin PET compared with the cylindrical PET using the same number of detectors in each configuration. The sensitivity of the helmet-chin PET evaluated with a cylindrical phantom has a significant increase, especially at the top of the (field-of-view) FOV. The peak-NECR of the helmet-chin PET is 1.4 times higher compared to the cylindrical PET. The helmet-chin PET provides relatively low noise images throughout the FOV compared to the cylindrical PET which exhibits enhanced noise at the peripheral regions. The results show the helmet-chin PET can significantly improve the sensitivity and reduce the noise in the reconstructed images.

  17. Calibration of the JET neutron activation system for DT operation

    NASA Astrophysics Data System (ADS)

    Bertalot, L.; Roquemore, A. L.; Loughlin, M.; Esposito, B.

    1999-01-01

    The neutron activation system at JET is a pneumatic transfer system capable of positioning activation samples close to the plasma. Its primary purpose is to provide a calibration for the time-dependent neutron yield monitors (fission chambers and solid state detectors). Various activation reactions with different high energy thresholds were used including 56Fe(n,p) 56Mn, 27Al(n,α) 24Na, 93Nb(n,2n) 92mNb, and 28Si(n,p) 28Al reactions. The silicon reaction, with its short half life (2.25 min), provides a prompt determination of the 14 MeV DT yield. The neutron induced γ-ray activity of the Si samples was measured using three sodium iodide scintillators, while two high purity germanium detectors were used for other foils. It was necessary to use a range of sample masses and different counting geometries in order to cover the wide range of neutron yields (1015-1019 neutrons) while avoiding excessive count rates in the detectors. The absolute full energy peak efficiency calibration of the detectors was measured taking into account the source-detector geometry, the self-attenuation of the samples and cross-talk effects. An error analysis of the neutron yield measurement was performed including uncertainties in efficiency calibration, neutron transport calculations, cross sections, and counting statistics. Cross calibrations between the different irradiation ends were carried out in DD and DT (with 1% and 10% tritium content) discharges. The effect of the plasma vertical displacement was also experimentally studied. An agreement within 10% was found between the 14 MeV neutron yields measured from Si, Fe, Al, Nb samples in DT discharges.

  18. The Radiation Assessment Detector (RAD) Investigation

    NASA Astrophysics Data System (ADS)

    Hassler, D. M.; Zeitlin, C.; Wimmer-Schweingruber, R. F.; Böttcher, S.; Martin, C.; Andrews, J.; Böhm, E.; Brinza, D. E.; Bullock, M. A.; Burmeister, S.; Ehresmann, B.; Epperly, M.; Grinspoon, D.; Köhler, J.; Kortmann, O.; Neal, K.; Peterson, J.; Posner, A.; Rafkin, S.; Seimetz, L.; Smith, K. D.; Tyler, Y.; Weigle, G.; Reitz, G.; Cucinotta, F. A.

    2012-09-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) is an energetic particle detector designed to measure a broad spectrum of energetic particle radiation. It will make the first-ever direct radiation measurements on the surface of Mars, detecting galactic cosmic rays, solar energetic particles, secondary neutrons, and other secondary particles created both in the atmosphere and in the Martian regolith. The radiation environment on Mars, both past and present, may have implications for habitability and the ability to sustain life. Radiation exposure is also a major concern for future human missions. The RAD instrument combines charged- and neutral-particle detection capability over a wide dynamic range in a compact, low-mass, low-power instrument. These capabilities are required in order to measure all the important components of the radiation environment. RAD consists of the RAD Sensor Head (RSH) and the RAD Electronics Box (REB) integrated together in a small, compact volume. The RSH contains a solid-state detector telescope with three silicon PIN diodes for charged particle detection, a thallium doped Cesium Iodide scintillator, plastic scintillators for neutron detection and anti-coincidence shielding, and the front-end electronics. The REB contains three circuit boards, one with a novel mixed-signal ASIC for processing analog signals and an associated control FPGA, another with a second FPGA to communicate with the rover and perform onboard analysis of science data, and a third board with power supplies and power cycling or "sleep"-control electronics. The latter enables autonomous operation, independent of commands from the rover. RAD is a highly capable and highly configurable instrument that paves the way for future compact energetic particle detectors in space.

  19. Implementation of the P barANDA Planar-GEM tracking detector in Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Divani Veis, Nazila; Ehret, Andre; Firoozabadi, Mohammad M.; Karabowicz, Radoslaw; Maas, Frank; Saito, Nami; Saito, Takehiko R.; Voss, Bernd; PANDA Gem-Tracker Subgroup

    2018-02-01

    The P barANDA experiment at FAIR will be performed to investigate different aspects of hadron physics using anti-proton beams interacting with a fixed nuclear target. The experimental setup consists of a complex series of detector components covering a large solid angle. A detector with a gaseous active media equipped with gas electron multiplier (GEM) technique will be employed to measure tracks of charged particles at forward direction in order to achieve a high momentum resolution. In this work, a full setup of the GEM tracking detector has been implemented in the P barANDA Monte Carlo simulation package (PandaRoot) based on the current technical and conceptual design, and the expected performance of the P barANDA GEM-tracking detector has been investigated. Furthermore, material-budget studies in terms of the radiation length of the P barANDA GEM-tracking detector have been made in order to investigate the effect of the detector materials and its associated structures to particle measurements.

  20. Measurement of Isobaric Analogue Resonances of 47Ar with the Active-Target Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Bradt, Joshua William

    While the nuclear shell model accurately describes the structure of nuclei near stability, the structure of unstable, neutron-rich nuclei is still an area of active research. One region of interest is the set of nuclei near N=28. The shell model suggests that these nuclei should be approximately spherical due to the shell gap predicted by their magic number of neutrons; however, experiments have shown that the nuclei in this region rapidly become deformed as protons are removed from the spherical 48Ca. This makes 46Ar a particularly interesting system as it lies in a transition region between 48Ca and lighter isotones that are known to be deformed. An experiment was performed at the National Superconducting Cyclotron Laboratory (NSCL) to measure resonant proton scattering on 46Ar. The resonances observed in this reaction correspond to unbound levels in the 47K intermediate state nucleus which are isobaric analogues of states in the 47Ar nucleus. By measuring the spectroscopic factors of these states in 47Ar, we gain information about the single-particle structure of this system, which is directly related to the size of the N=28 shell gap. Four resonances were observed: one corresponding to the ground state in 47Ar, one corresponding its first excited 1/2- state, and two corresponding to 1/2+ states in either 47Ar or the intermediate state nucleus. However, only a limited amount of information about these states could be recovered due to the low experimental statistics and limited angular resolution caused by pileup rejection and the inability to accurately reconstruct the beam particle track. In addition to the nuclear physics motivations, this experiment served as the radioactive beam commissioning for the Active-Target Time Projection Chamber (AT-TPC). The AT-TPC is a new gas-filled charged particle detector built at the NSCL to measure low-energy radioactive beams from the ReA3 facility. Since the gas inside the detector serves as both the tracking medium and the scattering target, reactions are measured over a continuous range of energies with near-4π solid angle coverage. This experiment demonstrated that tracks recorded by the AT-TPC can be reconstructed to a good resolution, and it established the feasibility of performing similar experiments with this detector in the future.

Top