Sample records for solid state replacement

  1. A solid state video recorder as a direct replacement of a mechanically driven disc recording device in a security system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terry, P.L.

    1989-01-01

    Whether upgrading or developing a security system, investing in a solid state video recorder may prove to be quite prudent. Even though the initial cost of a solid state recorder may be more expensive, when comparing it to a disc recorder it is practically maintenance free. Thus, the cost effectiveness of a solid state video recorder over an extended period of time more than justifies the initial expense. This document illustrates the use of a solid state video recorder as a direct replacement. It replaces a mechanically driven disc recorder that existed in a synchronized video recording system. The originalmore » system was called the Universal Video Disc Recorder System. The modified system will now be referred to as the Solid State Video Recording System. 5 figs.« less

  2. Solid-State Thyratron Replacement. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Ian

    2017-12-12

    Under this SBIR, DTI developed a solid-state switch as an alternative to legacy thyratron equipment. Our Phase II objective was to make a solid-state thyratron replacement that would provide equivalent or better performance, much higher reliability (at least a 20 year lifetime, compared to a thyratron’s two-year lifetime) and would sell for ~3x the cost of a thyratron, or less than $40k. We were successful in building a solid-state switch which could reliably function as a thyratron replacement. The unit was designed to directly replace the thyratrons currently being used at SLAC’s Linac Coherent Light Source (LCLS), and was builtmore » in a tank that was small enough to fit into the existing thyratron cabinet, providing a true form-fit-function replacement path. We tested the switch at the full operating specifications: 48 kV, 6.3 kA, and 1 µs risetime. We also demonstrated a peak-to-peak pulse jitter of 1.5 ns, which is five times shorter than is typical for thyratrons. This lower jitter would improve the performance of the LCLS beam. The predicted reliability is more than 80 years, which is 40 times greater than a thyratron.« less

  3. Mercury free microscopy: an opportunity for core facility directors.

    PubMed

    Baird, T Regan; Kaufman, Daniel; Brown, Claire M

    2014-07-01

    Mercury Free Microscopy (MFM) is a new movement that encourages microscope owners to choose modern mercury free light sources to replace more traditional mercury based arc lamps. Microscope performance is enhanced with new solid state technologies because they offer a more stable light intensity output and have a more uniform light output across the visible spectrum. Solid state sources not only eliminate mercury but also eliminate the cost of consumable bulbs (lifetime ∼200 hours), use less energy, reduce the instrument down time when bulbs fail and reduce the staff time required to replace and align bulbs. With lifetimes on the order of tens of thousands of hours, solid state replacements can pay for themselves over their lifetime with the omission of consumable, staff (no need to replace and align bulbs) and energy costs. Solid state sources are also sustainable and comply with institutional and government body mandates to reduce energy consumption, carbon footprints and hazardous waste. MFM can be used as a mechanism to access institutional financial resources for sustainable technology through a variety of stakeholders to defray the cost to microscope owners for the initial purchase of solid state sources or the replacement cost of mercury based sources. Core facility managers can take a lead in this area as "green" ambassadors for their institution by championing a local MFM program that will save their institution money and energy and eliminate mercury from the waste stream. Managers can leverage MFM to increase the visibility of their facility, their impact within the institution, and as a vital educational resource for scientific and administrative consultation.

  4. Analysis of S-band solid-state transmitters for the solar power satellite

    NASA Technical Reports Server (NTRS)

    Belohoubek, E. F.; Ettenberg, M.; Huang, H. C.; Nowogrodzki, M.; Sechi, F. N.

    1979-01-01

    The possibility of replacing the Reference System antenna in which thermionic devices are used for the dc-to-microwave conversion, with solid-state elements was explored. System, device, and antenna module tradeoff investigations strongly point toward the desirability of changing the transmitter concept to a distributed array of relatively low power elements, deriving their dc power directly from the solar cell array and whose microwave power outputs are combined in space. The approach eliminates the thermal, weight, and dc-voltage distribution problems of a system in which high power tubes are simply replaced with clusters of solid state amplifiers. The proposed approach retains the important advantages of a solid state system: greatly enhanced reliability and graceful degradation of the system.

  5. SU-D-209-01: Can Fluoroscopic Air-Kerma Rates Be Reliably Measured with Solid-State Meters?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, C; Thai, L; Wagner, L

    Purpose: Ionization chambers remain the standard for calibration of air-kerma rate measuring devices. Despite their strong energy-dependent response, solid state radiation detectors are increasingly used, primarily due to their efficiency in making standardized measurements. To test the reliability of these devices in measuring air-kerma rates, we compared ion chambers measurements with solid-state measurements for various mobile fluoroscopes operated at different beam qualities and air-kerma rates. Methods: Six mobile fluoroscopes (GE OEC models 9800 and 9900) were used to generate test beams. Using various field sizes and dose rate controls, copper attenuators and a lead attenuator were placed at the imagemore » receptor in varying combinations to generate a range of air-kerma rates. Air-kerma rates at 30 centimeters from the image receptors were measured using two 6-cm{sup 3} ion chambers with electrometers (Radcal, models 1015 and 9015) and two with solid state detectors (Unfors Xi and Raysafe X2). No error messages occurred during measurements. However, about two months later, one solid-state device stopped working and was replaced by the manufacturer. Two out of six mobile fluoroscopic units were retested with the replacement unit. Results: Generally, solid state and ionization chambers agreed favorably well, with two exceptions. Before replacement of the detector, the Xi meter when set in the “RF High” mode deviated from ion chamber readings by factors of 2 and 10 with no message indicating error in measurement. When set in the “RF Low” mode, readings were within −4% to +3%. The replacement Xi detector displayed messages alerting the user when settings were not compatible with air-kerma rates. Conclusion: Air-kerma rates can be measured favorably well using solid-state devices, but users must be aware of the possibility that readings can be grossly in error with no discernible indication for the deviation.« less

  6. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility prepare a solid state recorder for installation in a protective enclosure as part of the prelaunch preparations for STS-82, the second Hubble Space Telescope servicing mission. The digital solid state recorder will replace one of three engineering/science tape recorders on Hubble. The solid state recorder has no moving parts to wear out. It also is more flexible than a reel-to-reel recorder and can store 10 times as much data. Liftoff aboard Discovery is targeted Feb. 11 with a crew of seven.

    NASA Image and Video Library

    1997-01-16

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility prepare a solid state recorder for installation in a protective enclosure as part of the prelaunch preparations for STS-82, the second Hubble Space Telescope servicing mission. The digital solid state recorder will replace one of three engineering/science tape recorders on Hubble. The solid state recorder has no moving parts to wear out. It also is more flexible than a reel-to-reel recorder and can store 10 times as much data. Liftoff aboard Discovery is targeted Feb. 11 with a crew of seven.

  7. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility install a solid state recorder into a transport assembly in its protective enclosure as part of the prelaunch preparations for STS-82, the second Hubble Space Telescope servicing mission. The digital solid state recorder will replace one of three engineering/science tape recorders on Hubble. The solid state recorder has no moving parts to wear out. It also is more flexible than a reel-to-reel recorder and can store 10 times as much data. Liftoff aboard Discovery is targeted Feb. 11 with a crew of seven.

    NASA Image and Video Library

    1997-01-16

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility install a solid state recorder into a transport assembly in its protective enclosure as part of the prelaunch preparations for STS-82, the second Hubble Space Telescope servicing mission. The digital solid state recorder will replace one of three engineering/science tape recorders on Hubble. The solid state recorder has no moving parts to wear out. It also is more flexible than a reel-to-reel recorder and can store 10 times as much data. Liftoff aboard Discovery is targeted Feb. 11 with a crew of seven.

  8. Conceptual design of 100 TW solid state laser system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMordie, J.A.

    1995-12-31

    Currently the main solid state laser facilities used for plasma physics research in the United Kingdom are the VULCAN laser at the Rutherford Appleton Laboratory and the HELEN facility at the Atomic Weapons Establishment. In the future it is proposed to replace HELEN with a new 100 TW facility to come on line early in the next century. A brief review is given of the VULCAN and HELEN. Then the authors discuss the design for the HELEN replacement.

  9. Progress and prospect on failure mechanisms of solid-state lithium batteries

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Chen, Bingbing; Wang, Longlong; Cui, Guanglei

    2018-07-01

    By replacing traditional liquid organic electrolyte with solid-state electrolyte, the solid-state lithium batteries powerfully come back to the energy storage field due to their eminent safety and energy density. In recent years, a variety of solid-state lithium batteries based on excellent solid-state electrolytes are developed. However, the performance degradation of solid-state lithium batteries during cycling and storing is still a serious challenge for practical application. Therefore, this review summarizes the research progress of solid-state lithium batteries from the perspectives of failure phenomena and failure mechanisms. Additionally, the development of methodologies on studying the failure mechanisms of solid-state lithium batteries is also reviewed. Moreover, some perspectives on the remaining questions for understanding the failure behaviors and achieving long cycle life, high safety and high energy density solid-state lithium batteries are presented. This review will help researchers to recognize the status of solid-state lithium batteries objectively and attract much more research interest in conquering the failure issues of solid-state lithium batteries.

  10. Solid state switch

    DOEpatents

    Merritt, Bernard T.; Dreifuerst, Gary R.

    1994-01-01

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

  11. Solid state switch

    DOEpatents

    Merritt, B.T.; Dreifuerst, G.R.

    1994-07-19

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

  12. Synthesis of POSS-based ionic conductors with low glass transition temperatures for efficient solid-state dye-sensitized solar cells.

    PubMed

    Zhang, Wei; Wang, Zhong-Sheng

    2014-07-09

    Replacing liquid-state electrolytes with solid-state electrolytes has been proven to be an effective way to improve the durability of dye-sensitized solar cells (DSSCs). We report herein the synthesis of amorphous ionic conductors based on polyhedral oligomeric silsesquioxane (POSS) with low glass transition temperatures for solid-state DSSCs. As the ionic conductor is amorphous and in the elastomeric state at the operating temperature of DSSCs, good pore filling in the TiO2 film and good interfacial contact between the solid-state electrolyte and the TiO2 film can be guaranteed. When the POSS-based ionic conductor containing an allyl group is doped with only iodine as the solid-state electrolyte without any other additives, power conversion efficiency of 6.29% has been achieved with good long-term stability under one-sun soaking for 1000 h.

  13. Recent Developments of All-Solid-State Lithium Secondary Batteries with Sulfide Inorganic Electrolytes.

    PubMed

    Xu, Ruochen; Zhang, Shengzhao; Wang, Xiuli; Xia, Yan; Xia, Xinhui; Wu, Jianbo; Gu, Changdong; Tu, Jiangping

    2018-04-20

    Due to the increasing demand of security and energy density, all-solid-state lithium ion batteries have become the promising next-generation energy storage devices to replace the traditional liquid batteries with flammable organic electrolytes. In this Minireview, we focus on the recent developments of sulfide inorganic electrolytes for all-solid-state batteries. The challenges of assembling bulk-type all-solid-state batteries for industrialization are discussed, including low ionic conductivity of the present sulfide electrolytes, high interfacial resistance and poor compatibility between electrolytes and electrodes. Many efforts have been focused on the solutions for these issues. Although some progresses have been achieved, it is still far away from practical application. The perspectives for future research on all-solid-state lithium ion batteries are presented. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Solid State Light Evaluation in the U.S. Lab Mockup

    NASA Technical Reports Server (NTRS)

    Maida, James c.; Bowen, Charles K.; Wheelwright, Chuck

    2009-01-01

    This document constitutes the publication of work performed by the Space Human Factors Laboratory (mail code SF5 at the time) at the Johnson Space Center (JSC) in the months of June and July of 2000. At that time, the Space Human Factors Laboratory was part of the Space Human Factors Branch in the Flight Projects Division of the Space and Life Directorate. This report was originally to be a document for internal consumption only at JSC as it was seen to be only preliminary work for the further development of solid state illumination for general lighting on future space vehicles and the International Space Station (ISS). Due to funding constraints, immediate follow-on efforts were delayed and the need for publication of this document was overcome by other events. However, in recent years and with the development and deployment of a solid state light luminaire prototype on ISS, the time was overdue for publishing this information for general distribution and reference. Solid state lights (SSLs) are being developed to potentially replace the general luminaire assemblies (GLAs) currently in service in the International Space Station (ISS) and included in designs of modules for the ISS. The SSLs consist of arrays of light emitting diodes (LEDs), small solid state electronic devices that produce visible light in proportion to the electrical current flowing through them. Recent progressive advances in electrical power-to-light conversion efficiency in LED technology have allowed the consideration of LEDs as replacements for incandescent and fluorescent light sources in many circumstances, and their inherent advantages in ruggedness, reliability, and life expectancy make them attractive for applications in spacecraft. One potential area of application for the SSLs in the U.S. Laboratory Module of the ISS. This study addresses the suitability of the SSLs as replacements for the GLAs in this application.

  15. A self-forming composite electrolyte for solid-state sodium battery with ultra-long cycle life

    DOE PAGES

    Zhang, Zhizhen; Yang, Xiao -Qing; Zhang, Qinghua; ...

    2016-10-31

    Replacing organic liquid electrolyte with inorganic solid electrolytes (SE) can potentially address the inherent safety problems in conventional rechargeable batteries. Furthermore, all-solid-state batteries have been plagues by the relatively low ionic conductivity of solid electrolytes and large charge-transfer resistance resulted from solid-solid interfaces between electrode materials and solid electrolytes. Here we report a new design strategy for improving the ionic conductivity of solid electrolyte by self-forming a composite material. An optimized Na + ion conducting composite electrolyte derived from the NASICON structure was successfully synthesized, yielding ultra-high ionic conductivity of 3.4 mS cm –1 at 25°C and 14 ms cmmore » –1 at 80°C.« less

  16. A motionless actuation system for magnetic shape memory devices

    NASA Astrophysics Data System (ADS)

    Armstrong, Andrew; Finn, Kevin; Hobza, Anthony; Lindquist, Paul; Rafla, Nader; Müllner, Peter

    2017-10-01

    Ni-Mn-Ga is a Magnetic Shape Memory (MSM) alloy that changes shape in response to a variable magnetic field. We can intentionally manipulate the shape of the material to function as an actuator, and the material can thus replace complicated small electromechanical systems. In previous work, a very simple and precise solid-state micropump was developed, but a mechanical rotation was required to translate the position of the magnetic field. This mechanical rotation defeats the purpose of the motionless solid-state device. Here we present a solid-state electromagnetic driver to linearly progress the position of the applied magnetic field and the associated shrinkage. The generated magnetic field was focused at either of two pole pieces, providing a mechanism for moving the localized shrinkage in the MSM element. We confirmed that our driver has sufficient strength to actuate the MSM element using optical microscopy. We validated the whole design by comparing results obtained with finite element analysis with the experimentally measured flux density. This drive system serves as a possible replacement to the mechanical rotation of the magnetic field by using a multi-pole electromagnet that sweeps the magnetic field across the MSM micropump element, solid-state switching the current to each pole piece in the multi-pole electromagnet.

  17. Solid-state-based laser system as a replacement for Ar+ lasers.

    PubMed

    Beck, Tobias; Rein, Benjamin; Sörensen, Fabian; Walther, Thomas

    2016-09-15

    We report on a solid-state-based laser system at 1028 nm. The light is generated by a diode laser seeded ytterbium fiber amplifier. In two build-up cavities, its frequency is doubled and quadrupled to 514 nm and 257 nm, respectively. At 514 nm, the system delivers up to 4.7 W of optical power. In the fourth harmonic, up to 173 mW are available limited by the nonlinear crystal. The frequency of the laser is mode-hop-free tunable by 16 GHz in 10 ms in the UV. Therefore, the system is suitable as a low maintenance, efficient, and tunable narrowband replacement for frequency doubled Ar+ laser systems.

  18. Residual water bactericide monitor development program

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A silver-ion bactericidal monitor is considered for the Space Shuttle Potable Water System. Potentiometric measurement using an ion-selective electrode is concluded to be the most feasible of available techniques. Four commercially available electrodes and a specially designed, solid-state, silver-sulfide electrode were evaluated for their response characteristics and suitability for space use. The configuration of the solid-state electrode with its Nernstian response of 10 to 10,000 ppb silver shows promise for use in space. A pressurized double-junction reference electrode with a quartz-fiber junction and a replaceable bellows electrolyte reservoir was designed verification-tested, and paired with a solid-state silver-sulfide electrode in a test fixture.

  19. Modular nonvolatile solid state recorder (MONSSTR) update

    NASA Astrophysics Data System (ADS)

    Klang, Mark R.; Small, Martin B.; Beams, Tom

    2001-12-01

    Solid state recorders have begun replacing traditional tape recorders in fulfilling the requirement to record images on airborne platforms. With the advances in electro-optical, IR, SAR, Multi and Hyper-spectral sensors and video recording requirements, solid state recorders have become the recorder of choice. Solid state recorders provide the additional storage, higher sustained bandwidth, less power, less weight and smaller footprint to meet the current and future recording requirements. CALCULEX, Inc., manufactures a non-volatile flash memory solid state recorder called the MONSSTR (Modular Non-volatile Solid State Recorder). MONSSTR is being used to record images from many different digital sensors on high performance aircraft such as the RF- 4, F-16 and the Royal Air Force Tornado. MONSSTR, with its internal multiplexer, is also used to record instrumentation data. This includes multiple streams of PCM and multiple channels of 1553 data. Instrumentation data is being recorded by MONSSTR systems in a range of platforms including F-22, F-15, F-16, Comanche Helicopter and US Navy torpedos. MONSSTR can also be used as a cockpit video recorder. This paper will provide an update of the MONSSTR.

  20. CALiPER Special Summary Report: Retail Replacement Lamp Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-04-01

    CALiPER testing has evaluated many products for commercial lighting markets and found some excellent performers. However, many of these are not available on the retail market. This special testing was undertaken to identify and test solid-state lighting (SSL) replacement lamp products that are available to the general public through retail stores and websites.

  1. End-to-end system test for solid-state microdosemeters.

    PubMed

    Pisacane, V L; Dolecek, Q E; Malak, H; Dicello, J F

    2010-08-01

    The gold standard in microdosemeters has been the tissue equivalent proportional counter (TEPC) that utilises a gas cavity. An alternative is the solid-state microdosemeter that replaces the gas with a condensed phase (silicon) detector with microscopic sensitive volumes. Calibrations of gas and solid-state microdosemeters are generally carried out using radiation sources built into the detector that impose restrictions on their handling, transportation and licensing in accordance with the regulations from international, national and local nuclear regulatory bodies. Here a novel method is presented for carrying out a calibration and end-to-end system test of a microdosemeter using low-energy photons as the initiating energy source, thus obviating the need for a regulated ionising radiation source. This technique may be utilised to calibrate both a solid-state microdosemeter and, with modification, a TEPC with the higher average ionisation energy of a gas.

  2. Gadolinium Scandium Gallium Garnet (GSGG) as a Solid-State Laser Host

    DTIC Science & Technology

    1987-07-01

    o*SATI CODSi1.SBEC EM (otne nrvrs fnceayad dniy nb)k ubr ~~~~~~~~ Gadolinium Scandium Gallium Garnet (GSGG)asaSldtteLerHt 17. ABSTRACT 6.SUJCTTEM...certain other garnet materials for replacement. It also addresses the solid-state laser host material Gadolinium Scandium Gal- lium Garnet (GSGG) and its...by neodymium-doped yttrium aluminum garnet (Nd:YAG) or other mate- rials for most applications. In the years after the invention of the ruby laser, in

  3. Technical note: Use of a digital and an optical Brix refractometer to estimate total solids in milk replacer solutions for calves.

    PubMed

    Floren, H K; Sischo, W M; Crudo, C; Moore, D A

    2016-09-01

    The Brix refractometer is used on dairy farms and calf ranches for colostrum quality (estimation of IgG concentration), estimation of serum IgG concentration in neonatal calves, and nonsalable milk evaluation of total solids for calf nutrition. Another potential use is to estimate the total solids concentrations of milk replacer mixes as an aid in monitoring feeding consistency. The purpose of this study was to evaluate the use of Brix refractometers to estimate total solids in milk replacer solutions and evaluate different replacer mixes for osmolality. Five different milk replacer powders (2 milk replacers with 28% crude protein and 25% fat and 3 with 22% crude protein and 20% fat) were mixed to achieve total solids concentrations from approximately 5.5 to 18%, for a total of 90 different solutions. Readings from both digital and optical Brix refractometers were compared with total solids. The 2 types of refractometers' readings correlated well with one another. The digital and optical Brix readings were highly correlated with the total solids percentage. A value of 1.08 to 1.47 would need to be added to the Brix reading to estimate the total solids in the milk replacer mixes with the optical and digital refractometers, respectively. Osmolality was correlated with total solids percentage of the mixes, but the relationship was different depending on the type of milk replacer. The Brix refractometer can be beneficial in estimating total solids concentration in milk replacer mixes to help monitor milk replacer feeding consistency. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Diode pumped solid-state laser oscillators for spectroscopic applications

    NASA Technical Reports Server (NTRS)

    Byer, R. L.; Basu, S.; Fan, T. Y.; Kozlovsky, W. J.; Nabors, C. D.; Nilsson, A.; Huber, G.

    1987-01-01

    The rapid improvement in diode laser pump sources has led to the recent progress in diode laser pumped solid state lasers. To date, electrical efficiencies of greater than 10 percent were demonstrated. As diode laser costs decrease with increased production volume, diode laser and diode laser array pumped solid state lasers will replace the traditional flashlamp pumped Nd:YAG laser sources. The use of laser diode array pumping of slab geometry lasers will allow efficient, high peak and average power solid state laser sources to be developed. Perhaps the greatest impact of diode laser pumped solid state lasers will be in spectroscopic applications of miniature, monolithic devices. Single-stripe diode-pumped operation of a continuous-wave 946 nm Nd:YAG laser with less than 10 m/w threshold was demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. The KNbO3 and periodically poled LiNbO3 appear to be the most promising.

  5. A new solid-state, frequency-doubled neodymium-YAG photocoagulation system.

    PubMed

    Jalkh, A E; Pflibsen, K; Pomerantzeff, O; Trempe, C L; Schepens, C L

    1988-06-01

    We have developed a solid-state laser system that produces a continuous green monochromatic laser beam of 532 nm by doubling the frequency of a neodymium-YAG laser wavelength of 1064 nm with a potassium-titamyl-phosphate crystal. Photocoagulation burns of equal size and intensity were placed in two rabbit eyes with the solid-state laser system and the regular green argon laser system, respectively, using the same slit-lamp mode of delivery. Histologic findings of lesion sections revealed no important differences between the two systems. In theory, the longer wavelength of the solid-state laser offers the advantages of less scattering in ocular media, higher absorption by oxyhemoglobin, and less absorption by macular xanthophyll than the 514-nm wavelength of the regular green argon laser. The solid-state laser has impressive technical advantages: it contains no argon-ion gas tube that wears out and is expensive to replace; it is much more power efficient, and thus considerably smaller and compact; it is sturdier and easily movable; it does not require external cooling; it uses a 220-V monophasic alternating current; and it requires little maintenance.

  6. Analysis of energy efficient highway lighting retrofits.

    DOT National Transportation Integrated Search

    2015-06-01

    Solid state lighting technology is advancing rapidly to a point where light emitting diode (LED) lighting : systems can be viable replacements for existing lighting systems using high pressure sodium (HPS). The : present report summarizes analyses co...

  7. Diode-pumped DUV cw all-solid-state laser to replace argon ion lasers

    NASA Astrophysics Data System (ADS)

    Zanger, Ekhard; Liu, B.; Gries, Wolfgang

    2000-04-01

    The slim series DELTATRAINTM-worldwide the first integrated cw diode-pumped all-solid-state DUV laser at 266 nm with a compact, slim design-has been developed. The slim design minimizes the DUV DPSSL footprint and thus greatly facilitates the replacement of commonly used gas ion lasers, including these with intra-cavity frequency doubling, in numerous industrial and scientific applications. Such a replacement will result in an operation cost reduction by several thousands US$DLR each year for one unit. Owing to its unique geometry-invariant frequency doubling cavity- based on the LAS patent-pending DeltaConcept architecture- this DUV laser provides excellent beam-pointing stability of <2 (mu) rad/ degree(s)C and power stability of <2%. The newest design of the cavity block has adopted a cemented resonator with each component positioned precisely inside a compact monolithic metal block. The automatic and precise crystal shifter ensures long operation lifetime of > 5000 hours of whole 266 nm laser. The microprocessor controlled power supply provides an automatic control of the whole 266 nm laser, making this DUV laser a hands-off system which can meet tough requirements posed by numerous industrial and scientific applications. It will replace the commonplace ion laser as the future DUV laser of choice.

  8. Solid-State Recorders Enhance Scientific Data Collection

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Under Small Business Innovation Research (SBIR) contracts with Goddard Space Flight Center, SEAKR Engineering Inc., of Centennial, Colorado, crafted a solid-state recorder (SSR) to replace the tape recorder onboard a Spartan satellite carrying NASA's Inflatable Antenna Experiment. Work for that mission and others has helped SEAKR become the world leader in SSR technology for spacecraft. The company has delivered more than 100 systems, more than 85 of which have launched onboard NASA, military, and commercial spacecraft including imaging satellites that provide much of the high-resolution imagery for online mapping services like Google Earth.

  9. Liquid and Solid Meal Replacement Products Differentially Affect Postprandial Appetite and Food Intake in Older Adults

    PubMed Central

    Stull, April J.; Apolzan, John W.; Thalacker-Mercer, Anna E.; Iglay, Heidi B.; Campbell, Wayne W.

    2008-01-01

    Liquid and solid foods are documented to elicit differential appetitive and food intake responses. This study was designed to assess the influences of liquid vs solid meal replacement products on postprandial appetite ratings and subsequent food intake in healthy older adults. This study used a randomized and crossover design with two 1-day trials (1 week between trials), and 24 adults (12 men and 12 women) aged 50 to 80 years with body mass index (calculated as kg/m2) between 22 and 30 participated. After an overnight fast, the subjects consumed meal replacement products as either a beverage (liquid) or a bar (solid). The meal replacement products provided 25% of each subject's daily estimated energy needs with comparable macro-nutrient compositions. Subjects rated their appetite on a 100 mm quasilogarithmic visual analog scale before and 15, 30, 45, 60, 90, 120, and 150 minutes after consuming the meal replacement product. At minute 120, each subject consumed cooked oatmeal ad libitum to a “comfortable level of fullness.” Postprandial composite (area under the curve from minute 15 to minute 120) hunger was higher (P=0.04) for the liquid vs solid meal replacement products and desire to eat (P=0.15), preoccupation with thoughts of food (P=0.07), and fullness (P=0.25) did not differ for the liquid vs solid meal replacement products. On average, the subjects consumed 13.4% more oatmeal after the liquid vs solid (P=0.006) meal replacement product. These results indicate that meal replacement products in liquid and solid form do not elicit comparable appetitive and ingestive behavior responses and that meal replacement products in liquid form blunt the postprandial decline in hunger and increase subsequent food intake in older adults. PMID:18589034

  10. Solid-State Ultracapacitor for Improved Energy Storage

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy

    2015-01-01

    NASA's Marshall Space Flight Center has developed a solid-state ultracapacitor using a novel nanocomposite, dielectric material. The material's design is based on the internal barrier layer capacitance (IBLC) concept, and it uses novel dielectric and metallic conductive ink formulations. Novel processing methods developed by NASA provide for unique dielectric properties at the grain level. Nanoscale raw material powders are tailored using a variety of techniques and then formulated into a special ink. This dielectric ink is used with novel metallic conductive ink to print a capacitor layer structure into any design necessary to meet a range of technical requirements. The innovation is intended to replace current range safety batteries that NASA uses to power the systems that destroy off-course space vehicles. A solid-state design provides the needed robustness and safety for this demanding application.

  11. A kinetic study of the replacement of calcite marble by fluorite

    NASA Astrophysics Data System (ADS)

    Trindade Pedrosa, Elisabete; Boeck, Lena; Putnis, Christine V.; Putnis, Andrew

    2016-04-01

    Replacement reactions are relevant in any situation that involves the reequilibration between a solid and an aqueous fluid phase and are commonly controlled by an interface-coupled dissolution-precipitation mechanism (Putnis and Putnis, 2007). These reactions control many large-scale Earth processes whenever aqueous fluids are available, such as during metamorphism, metasomatism, and weathering. An important consequence of coupled dissolution-precipitation is the generation of porosity in the product phase that then allows the infiltration of the fluid within the mineral being replaced. Understanding the mechanism and kinetics of the replacement of carbonates by fluorite has application in earth sciences and engineering. Fluorite (CaF2) occurs in all kinds of rocks (igneous, sedimentary, and metamorphic) and its origin is commonly associated with hydrothermal fluids. Moreover, calcium carbonate has been suggested as a successful seed material for the sequestration of fluoride from contaminated waters (Waghmare and Arfin, 2015). The aim of the present work is to investigate aspects of the replacement of calcium carbonate by fluorite to better understand the mechanism and kinetics of this reaction. Small cubes (˜ 3 × 3 × 3 mm) of Carrara marble (CaCO3 > 99 %) were cut and reacted with a 4 M ammonium fluoride (NH4F) solution for different times (1 to 48 hours) and temperatures (60, 80, 100, and 140 ° C). The microstructure of the product phases was analysed using SEM. The kinetics of replacement was monitored from the Rietveld analysis of X-ray powder diffraction patterns of the products as a function of temperature and reaction time. After reaction, all samples preserved their size and external morphology (a pseudomorphic replacement) and the product phase (fluorite) was highly porous. The activation energy Ea (kJ/mol) of the replacement reaction was empirically determined by both model-fitting and model-free methods. The isoconversional method yielded an empirical activation energy of 41 kJ/mol, and a statistical approach applied to the model-fitting method revealed that the replacement of Carrara marble by fluorite is better fitted to a diffusion-controlled process. This is consistent with ion diffusion through the fluid phase. These results suggest that the replacement reaction is dependent on the fluid migration rate through the newly formed porosity. Putnis, A., Putnis C.V., 2007. The mechanism of reequilibration of solids in the presence of a fluid phase. Journal of Solid State Chemistry, 180, 1783-1786. Waghmare, S.S., Arfin, T. (2015). Fluoride removal from water by calcium materials: A state-of-the-art review. Int. J. Innov. Res. Sci. Eng. Technol. 4, 8090-8102.

  12. Light quality and efficiency of consumer grade solid state lighting products

    NASA Astrophysics Data System (ADS)

    Dam-Hansen, Carsten; Corell, Dennis Dan; Thorseth, Anders; Poulsen, Peter Behrensdorff

    2013-03-01

    The rapid development in flux and efficiency of Light Emitting Diodes (LED) has resulted in a flooding of the lighting market with Solid State Lighting (SSL) products. Many traditional light sources can advantageously be replaced by SSL products. There are, however, large variations in the quality of these products, and some are not better than the ones they are supposed to replace. A lack of quality demands and standards makes it difficult for consumers to get an overview of the SSL products. Here the results of a two year study investigating SSL products on the Danish market are presented. Focus has been on SSL products for replacement of incandescent lamps and halogen spotlights. The warm white light and good color rendering properties of these traditional light sources are a must for lighting in Denmark and the Nordic countries. 266 SSL replacement lamps have been tested for efficiency and light quality with respect to correlated color temperature and color rendering properties. This shows a trade-off between high color rendering warm white light and energy efficiency. The lumen and color maintenance over time has been investigated and results for products running over 11000 h will be presented. A new internet based SSL product selection tool will be shown. Here the products can be compared on efficiency, light quality parameters, thus providing a better basis for the selection of SSL products for consumers.

  13. The Solid State Image Sensor's Contribution To The Development Of Silicon Technology

    NASA Astrophysics Data System (ADS)

    Weckler, Gene P.

    1985-12-01

    Until recently, a solid-state image sensor with full television resolution was a dream. However, the dream of a solid state image sensor has been a driving force in the development of silicon technology for more than twenty-five years. There are probably many in the main stream of semiconductor technology who would argue with this; however, the solid state image sensor was conceived years before the invention of the semi conductor RAM or the microprocessor (i.e., even before the invention of the integrated circuit). No other potential application envisioned at that time required such complexity. How could anyone have ever hoped in 1960 to make a semi conductor chip containing half-a-million picture elements, capable of resolving eight to twelve bits of infornation, and each capable of readout rates in the tens of mega-pixels per second? As early as 1960 arrays of p-n junctions were being investigated as the optical targets in vidicon tubes, replacing the photoconductive targets. It took silicon technology several years to catch up with these dreamers.

  14. 2005 40th Annual Armament Systems: Guns - Ammunition - Rockets - Missiles Conference and Exhibition. Volume 3: Wednesday

    DTIC Science & Technology

    2005-04-28

    Lessons Learned, Mr. David F. Fair, US Army ARDEC Propellant Replacement for the 105-mm M67 Propelling Charge, Ms. Adriana L. Eng, US Army ARDEC Lead...Application of Lessons Learned Mr. David F. Fair, US Army ARDEC Propellant Replacement for the 105-mm Artillery Propelling Charge Ms. Adriana L. Eng...high voltage power supply (several kV and kA ) • Solid state Switching device • Appropriate dimensions en properties of: • Exploding foil • Flyer

  15. The Operating Principle of a Fully Solid State Active Magnetic Regenerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar

    As an alternative refrigeration technology, magnetocaloric refrigeration has the potential to be safer, quieter, more efficient, and more environmentally friendly than the conventional vapor compression refrigeration technology. Most of the reported active magnetic regenerator (AMR) systems that operate based on the magnetocaloric effect use heat transfer fluid to exchange heat, which results in complicated mechanical subsystems and components such as rotating valves and hydraulic pumps. This paper presents an operating principle of a fully solid state AMR, in which an alternative mechanism for heat transfer between the AMR and the heat source/sink is proposed. The operating principle of the fullymore » solid state AMR is based on moving rods/sheets (e.g. copper, brass, iron or aluminum), which are employed to replace the heat transfer fluid. Such fully solid state AMR would provide a significantly higher heat transfer rate than a conventional AMR because the conductivity of moving solid rods/plates is high and it enables the increase in the machine operating frequency hence the cooling capacity. The details of operating principle are presented and discussed here. One of the key enabling features for this technology is the contact between the moving rods/sheets and magnetocaloric material, and heat exchange mechanism at the heat source/sink. This paper provides an overview of the design for a fully solid state magnetocaloric refrigeration system along with guidelines for their optimal design.« less

  16. Linear friction welding for constructing and repairing rail for high speed and intercity passenger service rail : final report.

    DOT National Transportation Integrated Search

    2016-08-01

    This project developed a solid-state welding process based on linear friction welding (LFW) technology. While resistance flash welding or : thermite techniques are tried and true methods for joining rails and performing partial rail replacement repai...

  17. David LoVullo | NREL

    Science.gov Websites

    , NREL Technical Report (2017) Energy Assessment Toolkits, NREL Technical Report (2017) Solid-State Lighting Replacement and Maintenance of Lighting Design Goals, NREL Technical Report (2017) Nevada National Security Site 23 Solar and Storage Assessment, NREL Technical Report (2016) Tiller Ranger Station Net Zero

  18. NASA satellite communications application research, phase 2 addendum. Efficient high power, solid state amplifier for EHF communications

    NASA Technical Reports Server (NTRS)

    Benet, James

    1994-01-01

    This document is an addendum to the NASA Satellite Communications Application Research (SCAR) Phase 2 Final Report, 'Efficient High Power, Solid State Amplifier for EHF Communications.' This report describes the work performed from 1 August 1993 to 11 March 1994, under contract number NASW-4513. During this reporting period an array of transistor amplifiers was repaired by replacing all MMIC amplifier chips. The amplifier array was then tested using three different feedhorn configurations. Descriptions, procedures, and results of this testing are presented in this report, and conclusions are drawn based on the test results obtained.

  19. Fault detection monitor circuit provides ''self-heal capability'' in electronic modules - A concept

    NASA Technical Reports Server (NTRS)

    Kennedy, J. J.

    1970-01-01

    Self-checking technique detects defective solid state modules used in electronic test and checkout instrumentation. A ten bit register provides failure monitor and indication for 1023 comparator circuits, and the automatic fault-isolation capability permits the electronic subsystems to be repaired by replacing the defective module.

  20. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    NASA Astrophysics Data System (ADS)

    Kartini, Evvy; Manawan, Maykel

    2016-02-01

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say "the most important emerging energy technology" is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner's cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes, promise the potential to replace organic liquid electrolytes and thereby improve the safety of next-generation high-energy batteries. Li3PO4 has been proved to be a good candidate for solid electrolyte, due to its easy in preparation, low cost, high melting temperature and good compatibility with the electrode materials. In the present work, Li3PO4 has been prepared by wet chemical reaction, a simple method with the advantage of recycling a waste product H3PO4. The crystal structure has been characterized by both neutron and x-ray diffraction. The use of neutron scattering plays important role on observing the light atoms such as lithium ion. The x-ray diffraction results showed the crystal structure of orthorhombic phase P m n 21 (31), that belongs to the β-Li3PO4, with the lattice parameters are a = 6.123872, b = 5.250211, c = 4.876378. The conductivity of β-Li3PO4 was around 10-8 S/cm. Furthermore, the future application of the solid electrolyte layer in lithium ion battery will also be considered. It is concluded that the used of local resources on producing the solid electrolyte Li3PO4 for lithium ion battery will give more added values to the researches and national industry.

  1. Realisation of an all solid state lithium battery using solid high temperature plastic crystal electrolytes exhibiting liquid like conductivity.

    PubMed

    Shekibi, Youssof; Rüther, Thomas; Huang, Junhua; Hollenkamp, Anthony F

    2012-04-07

    Replacement of volatile and combustible electrolytes in conventional lithium batteries is desirable for two reasons: safety concerns and increase in specific energy. In this work we consider the use of an ionic organic plastic crystal material (IOPC), N-ethyl-N-methylpyrrolidinium tetrafluoroborate, [C2mpyr][BF(4)], as a solid-state electrolyte for lithium battery applications. The effect of inclusion of 1 to 33 mol% lithium tetrafluoroborate, LiBF(4), into [C2mpyr][BF(4)] has been investigated over a wide temperature range by differential scanning calorimetry (DSC), impedance spectroscopy, cyclic voltammetry and cycling of full Li|LiFePO(4) batteries. The increases in ionic conductivity by orders of magnitude observed at higher temperature are most likely associated with an increase in Li ion mobility in the highest plastic phase. At concentrations >5 mol% LiBF(4) the ionic conductivity of these solid-state composites is comparable to the ionic conductivity of room temperature ionic liquids. Galvanostatic cycling of Li|Li symmetrical cells showed that the reversibility of the lithium metal redox reaction at the interface of this plastic crystal electrolyte is sufficient for lithium battery applications. For the first time we demonstrate an all solid state lithium battery incorporating solid electrolytes based on IOPC as opposed to conventional flammable organic solvents.

  2. Innovative design and material solutions of thermal contact layers for high heat flux applications in fusion devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Federici, G.; Matera, R.; Chiocchio, S.

    1994-11-01

    One difficulty associated with the design and development of sacrificial plasma facing components that have to handle the high heat and particle fluxes in ITER is achieving the necessary contact conductance between the plasma protection material and the high-conductivity substrate in contact with the coolant. This paper presents a novel bond idea which is proposed as one of the options for the sacrificial energy dump targets located at the bottom of the divertor legs. The bonded joint in this design concept provides thermal and electrical contact between the armour and the cooled sub-structure while promoting remote, in-situ maintenance repair andmore » an easy replaceability of the armour part without disturbing the cooling pipes or rewelding neutron irradiated materials. To provide reliable and demountable adhesion, the bond consists of a metal alloy, treated in the semi-solid phase so that it leads to a fine dispersion of a globular solid phase into a liquid matrix (rheocast process). This thermal bond layer would normally operate in the solid state but could be brought reversibly to the semi-solid state during the armour replacement simply by heating it slightly above its solidus temperature. Material and design options are discussed in this paper. Possible methods of installation and removal are described, and lifetime considerations are addressed. In order to validate this concept within the ITER time-frame, a R&D programme must be rapidly implemented.« less

  3. IMPACT OF DECISION-MAKING STRATEGIES AND COMMUNICATION PROCESSES ON THE PUBLIC ACCEPTABILITY OF MUNICIPAL WASTE COMBUSTION RESIDUE UTILIZATION IN THE UNITED STATES

    EPA Science Inventory

    Of the identified current and proposed construction projects in which municipal solid waste combustion residues replace traditionally used materials, approximately half are located on landfills or other property controlled by project sponsors, one third are in publicly accessible...

  4. Production of Mycophenolic Acid by Penicillium brevicompactum Using Solid State Fermentation.

    PubMed

    Patel, Gopal; Patil, Mahesh D; Soni, Surbhi; Chisti, Yusuf; Banerjee, Uttam Chand

    2017-05-01

    Solid-state fermentation using the microfungus Penicillium brevicompactum for the production of mycophenolic acid is reported in this paper. Of the initial substrates tested (whole wheat, cracked wheat, long grain Basmati rice, and short grain Parmal rice), Parmal rice proved to be the best. Under initial conditions, using steamed Parmal rice with 80% (w/w) initial moisture content, a maximum mycophenolic acid concentration of 3.4 g/kg substrate was achieved in 12 days of fermentation at 25 °C. The above substrate was supplemented with the following additional nutrients (g/L packed substrate): glucose 40.0, peptone 54.0, KH 2 PO 4 8.0, MgSO4⋅7H 2 O 2.0, glycine 7.0, and methionine 1.65 (initial pH 5.0). A small amount of a specified trace element solution was also added. The final mycophenolic acid concentration was increased to nearly 4 g/kg substrate by replacing glucose with molasses. Replacing Parmal rice with rice bran as substrate further improved the mycophenolic acid production to nearly 4.5 g/kg substrate.

  5. Corneal reshaping using a pulsed UV solid-state laser

    NASA Astrophysics Data System (ADS)

    Ren, Qiushi; Simon, Gabriel; Parel, Jean-Marie A.; Shen, Jin-Hui; Takesue, Yoshiko

    1993-06-01

    Replacing the gas ArF (193 nm) excimer laser with a solid state laser source in the far-UV spectrum region would eliminate the hazards of a gas laser and would reduce its size which is desirable for photo-refractive keratectomy (PRK). In this study, we investigated corneal reshaping using a frequency-quintupled (213 nm) pulsed (10 ns) Nd:YAG laser coupled to a computer-controlled optical scanning delivery system. Corneal topographic measurements showed myopic corrections ranging from 2.3 to 6.1 diopters. Post-operative examination with the slit-lamp and operating microscope demonstrated a smoothly ablated surface without corneal haze. Histological results showed a smoothly sloping surface without recognizable steps. The surface quality and cellular effects were similar to that of previously described excimer PRK. Our study demonstrated that a UV solid state laser coupled to an optical scanning delivery system is capable of reshaping the corneal surface with the advantage of producing customized, aspheric corrections without corneal haze which may improve the quality of vision following PRK.

  6. Traveling-Wave Tubes

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1998-01-01

    The traveling-wave tube (TWT) is a vacuum device invented in the early 1940's used for amplification at microwave frequencies. Amplification is attained by surrendering kinetic energy from an electron beam to a radio frequency (RF) electromagnetic wave. The demand for vacuum devices has been decreased largely by the advent of solid-state devices. However, although solid state devices have replaced vacuum devices in many areas, there are still many applications such as radar, electronic countermeasures and satellite communications, that require operating characteristics such as high power (Watts to Megawatts), high frequency (below 1 GHz to over 100 GHz) and large bandwidth that only vacuum devices can provide. Vacuum devices are also deemed irreplaceable in the music industry where musicians treasure their tube-based amplifiers claiming that the solid-state and digital counterparts could never provide the same "warmth" (3). The term traveling-wave tube includes both fast-wave and slow-wave devices. This article will concentrate on slow-wave devices as the vast majority of TWTs in operation fall into this category.

  7. Design and performance of a vacuum-bottle solid-state calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bracken, D.S.; Biddle, R.; Cech, R.

    1997-11-01

    EG and G Mound Applied Technologies calorimetry personnel have developed a small, thermos-bottle solid-state calorimeter, which is now undergoing performance testing at Los Alamos National Laboratory. The thermos-bottle solid-state calorimeter is an evaluation prototype for characterizing the heat output of small heat standards and other homogeneous heat sources. The current maximum sample size is 3.5 in. long with a diameter of 0.8 in. The overall size of the thermos bottle and thermoelectric cooling device is 9.25 in. high by 3.75 in. diameter and less than 3 lb. Coupling this unit with compact electronics and a laptop computer makes this calorimetermore » easily hand carried by a single individual. This compactness was achieved by servo controlling the reference temperature below room temperature and replacing the water bath used in conventional calorimeter design with the thermos-bottle insulator. Other design features will also be discussed. The performance of the calorimeter will be presented.« less

  8. Solid-state Marx based two-switch voltage modulator for the On-Line Isotope Mass Separator accelerator at the European Organization for Nuclear Research

    NASA Astrophysics Data System (ADS)

    Redondo, L. M.; Silva, J. Fernando; Canacsinh, H.; Ferrão, N.; Mendes, C.; Soares, R.; Schipper, J.; Fowler, A.

    2010-07-01

    A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.

  9. Creation of Novel Solid-Solution Alloy Nanoparticles on the Basis of Density-of-States Engineering by Interelement Fusion.

    PubMed

    Kobayashi, Hirokazu; Kusada, Kohei; Kitagawa, Hiroshi

    2015-06-16

    Currently 118 known elements are represented in the periodic table. Of these 118 elements, only about 80 elements are stable, nonradioactive, and widely available for our society. From the viewpoint of the "elements strategy", we need to make full use of the 80 elements to bring out their latent ability and create innovative materials. Furthermore, there is a strong demand that the use of rare or toxic elements be reduced or replaced while their important properties are retained. Advanced science and technology could create higher-performance materials even while replacing or reducing minor or harmful elements through the combination of more abundant elements. The properties of elements are correlated directly with their electronic states. In a solid, the magnitude of the density of states (DOS) at the Fermi level affects the physical and chemical properties. In the present age, more attention has been paid to improving the properties of materials by means of alloying elements. In particular, the solid-solution-type alloy is advantageous because the properties can be continuously controlled by tuning the compositions and/or combinations of the constituent elements. However, the majority of bulk alloys are of the phase-separated type under ambient conditions, where constituent elements are immiscible with each other. To overcome the challenge of the bulk-phase metallurgical aspects, we have focused on the nanosize effect and developed methods involving "nonequilibrium synthesis" or "a process of hydrogen absorption/desorption". We propose a new concept of "density-of-states engineering" for the design of materials having the most desirable and suitable properties by means of "interelement fusion". In this Account, we describe novel solid-solution alloys of Pd-Pt, Ag-Rh, and Pd-Ru systems in which the constituent elements are immiscible in the bulk state. The homogeneous solid-solution alloys of Pd and Pt were created from Pd core/Pt shell nanoparticles using a hydrogen absorption/desorption process as a trigger. Several atom percent replacements of Pd with Pt atoms resulted in a significantly enhanced hydrogen absorption capacity compared with Pd nanoparticles. AgxRh1-x and PdxRu1-x solid-solution alloy nanoparticles were also developed by nonequilibrium synthesis based on a polyol method. The AgxRh1-x nanoparticles demonstrated hydrogen storage properties, although pure metal nanoparticles of each constituent element do not adsorb hydrogen. AgxRh1-x is therefore considered to possess a similar electronic structure to Pd as a synthetic pseudo-palladium. The PdxRu1-x nanoparticles showed enhanced catalytic activity for CO oxidation, with the highest catalytic activity found using the equimolar Pd0.5Ru0.5 nanoparticles. The catalytic activity of the Pd0.5Ru0.5 nanoparticles exceeds that of the widely used and best-performing Ru catalysts for CO oxidation and is also higher than that of neighboring Rh on the periodic table. Our present work provides a guiding principle for the design of a suitable DOS shape according to the intended physical and/or chemical properties and a method for the development of novel solid-solution alloys.

  10. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kartini, Evvy; Manawan, Maykel

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say “the most important emerging energy technology” is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is stillmore » the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner’s cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes, promise the potential to replace organic liquid electrolytes and thereby improve the safety of next-generation high-energy batteries. Li{sub 3}PO{sub 4} has been proved to be a good candidate for solid electrolyte, due to its easy in preparation, low cost, high melting temperature and good compatibility with the electrode materials. In the present work, Li{sub 3}PO{sub 4} has been prepared by wet chemical reaction, a simple method with the advantage of recycling a waste product H{sub 3}PO{sub 4}. The crystal structure has been characterized by both neutron and x-ray diffraction. The use of neutron scattering plays important role on observing the light atoms such as lithium ion. The x-ray diffraction results showed the crystal structure of orthorhombic phase P m n 21 (31), that belongs to the β-Li{sub 3}PO{sub 4}, with the lattice parameters are a = 6.123872, b = 5.250211, c = 4.876378. The conductivity of β-Li{sub 3}PO{sub 4} was around 10{sup −8} S/cm. Furthermore, the future application of the solid electrolyte layer in lithium ion battery will also be considered. It is concluded that the used of local resources on producing the solid electrolyte Li{sub 3}PO{sub 4} for lithium ion battery will give more added values to the researches and national industry.« less

  11. Demonstration of LED Retrofit Lamps at the Smithsonian American Art Museum, Washington, DC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Naomi J.; Rosenfeld, Scott M.

    This report documents observations and results obtained from a lighting demonstration project conducted under the U.S. Department of Energy GATEWAY Solid-State Lighting (SSL) Technology Demonstration Program at the Smithsonain American Art Museum in Washington, DC. LED Lamp samples were tested in the museum workshop, temporarily installed in a gallery for feedback, and ultimately replaced all traditional incandescent lamps in one gallery of modernist art at the American Art Museum and partially replacing lamps in two galleries at the Musesum's Renwick Gallery. This report describes the selection and testing process, technology challenges, perceptions, economics, energy use, and mixed results of usignmore » LED replacement lamps in art galleries housing national treasures.« less

  12. The Dram As An X-Ray Sensor

    NASA Astrophysics Data System (ADS)

    Jacobs, Alan M.; Cox, John D.; Juang, Yi-Shung

    1987-01-01

    A solid-state digital x-ray detector is described which can replace high resolution film in industrial radiography and has potential for application in some medical imaging. Because of the 10 micron pixel pitch on the sensor, contact magnification radiology is possible and is demonstrated. Methods for frame speed increase and integration of sensor to a large format are discussed.

  13. A Na+ Superionic Conductor for Room-Temperature Sodium Batteries

    NASA Astrophysics Data System (ADS)

    Song, Shufeng; Duong, Hai M.; Korsunsky, Alexander M.; Hu, Ning; Lu, Li

    2016-08-01

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10-3 S cm-1. We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor.

  14. A Na+ Superionic Conductor for Room-Temperature Sodium Batteries

    PubMed Central

    Song, Shufeng; Duong, Hai M.; Korsunsky, Alexander M.; Hu, Ning; Lu, Li

    2016-01-01

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10−3 S cm−1. We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor. PMID:27572915

  15. A Na(+) Superionic Conductor for Room-Temperature Sodium Batteries.

    PubMed

    Song, Shufeng; Duong, Hai M; Korsunsky, Alexander M; Hu, Ning; Lu, Li

    2016-08-30

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10(-3) S cm(-1). We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor.

  16. Compact high voltage solid state switch

    DOEpatents

    Glidden, Steven C.

    2003-09-23

    A compact, solid state, high voltage switch capable of high conduction current with a high rate of current risetime (high di/dt) that can be used to replace thyratrons in existing and new applications. The switch has multiple thyristors packaged in a single enclosure. Each thyristor has its own gate drive circuit that circuit obtains its energy from the energy that is being switched in the main circuit. The gate drives are triggered with a low voltage, low current pulse isolated by a small inexpensive transformer. The gate circuits can also be triggered with an optical signal, eliminating the trigger transformer altogether. This approach makes it easier to connect many thyristors in series to obtain the hold off voltages of greater than 80 kV.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinzey, Bruce R.; Myer, Michael

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in a residential street lighting application, under the U.S. Department of Energy GATEWAY Solid-State Lighting Technology Demonstration Program. In this project, eight 100W (nominal) high-pressure sodium cobra head fixtures were replaced with a like number of LED street light luminaires manufactured by Leotek, Inc. The Leotek product achieved an estimated payback in the Lija Loop installation of about 20 years for replacement scenarios and a much shorter 7.6 years for new installations. Much of the associated energy savings (55%) supporting these payback periods, however, weremore » achieved by reducing average horizontal photopic illuminance a similar amount (53%). Examined from a different perspective, the measured performance suggests that the Leotek product is at approximate parity with the HPS cobra head in terms of average delivered photopic illumination for a given power consumption. HPS comprises the second most efficacious street lighting technology available, exceeded only by low pressure sodium (LPS). LPS technology is not considered suitable for most street lighting applications due to its monochromatic spectral output and poor color rendering ability; therefore, this LED product is performing at an efficiency level comparable to its primary competition in this application.« less

  18. Energy issues in microwave food processing: A review of developments and the enabling potentials of solid-state power delivery.

    PubMed

    Atuonwu, J C; Tassou, S A

    2018-01-23

    The enormous magnitude and variety of microwave applications in household, commercial and industrial food processing creates a strong motivation for improving the energy efficiency and hence, sustainability of the process. This review critically assesses key energy issues associated with microwave food processing, focusing on previous energy performance studies, energy performance metrics, standards and regulations. Factors affecting energy-efficiency are categorised into source, load and source-load matching factors. This highlights the need for highly-flexible and controllable power sources capable of receiving real-time feedback on load properties, and effecting rapid control actions to minimise reflections, heating non-uniformities and other imperfections that lead to energy losses. A case is made for the use of solid-state amplifiers as alternatives to conventional power sources, magnetrons. By a full-scale techno-economic analysis, including energy aspects, it is shown that the use of solid-state amplifiers as replacements to magnetrons is promising, not only from an energy and overall technical perspective, but also in terms of economics.

  19. Equation of state for shock compression of distended solids

    NASA Astrophysics Data System (ADS)

    Grady, Dennis; Fenton, Gregg; Vogler, Tracy

    2014-05-01

    Shock Hugoniot data for full-density and porous compounds of boron carbide, silicon dioxide, tantalum pentoxide, uranium dioxide and playa alluvium are investigated for the purpose of equation-of-state representation of intense shock compression. Complications of multivalued Hugoniot behavior characteristic of highly distended solids are addressed through the application of enthalpy-based equations of state of the form originally proposed by Rice and Walsh in the late 1950's. Additive measures of cold and thermal pressure intrinsic to the Mie-Gruneisen EOS framework is replaced by isobaric additive functions of the cold and thermal specific volume components in the enthalpy-based formulation. Additionally, experimental evidence reveals enhancement of shock-induced phase transformation on the Hugoniot with increasing levels of initial distension for silicon dioxide, uranium dioxide and possibly boron carbide. Methods for addressing this experimentally observed feature of the shock compression are incorporated into the EOS model.

  20. Equation of State for Shock Compression of High Distension Solids

    NASA Astrophysics Data System (ADS)

    Grady, Dennis

    2013-06-01

    Shock Hugoniot data for full-density and porous compounds of boron carbide, silicon dioxide, tantalum pentoxide, uranium dioxide and playa alluvium are investigated for the purpose of equation-of-state representation of intense shock compression. Complications of multivalued Hugoniot behavior characteristic of highly distended solids are addressed through the application of enthalpy-based equations of state of the form originally proposed by Rice and Walsh in the late 1950's. Additivity of cold and thermal pressure intrinsic to the Mie-Gruneisen EOS framework is replaced by isobaric additive functions of the cold and thermal specific volume components in the enthalpy-based formulation. Additionally, experimental evidence supports acceleration of shock-induced phase transformation on the Hugoniot with increasing levels of initial distention for silicon dioxide, uranium dioxide and possibly boron carbide. Methods for addressing this experimentally observed facet of the shock compression are introduced into the EOS model.

  1. An All-Solid-State High Repetiton Rate Titanium:Sapphire Laser System For Resonance Ionization Laser Ion Sources

    NASA Astrophysics Data System (ADS)

    Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.

    2009-03-01

    On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.

  2. Biogas production from rice straw by solid-state anaerobic digestion

    NASA Astrophysics Data System (ADS)

    Shitophyta, Lukhi Mulia; Budiyono, Fuadi, Ahmad M.

    2015-12-01

    Biogas production from lignocellulosic biomass can be used as an alternative fuel to replace fossil fuels. Lignocellulose can be obtained from agricultural crop residues, such as rice straw. The aims of this study were to determine the effects of F/I ratio, total solid content, and physical pretreatment on biogas production by solid-state anaerobic digestion. The kinetics of biogas production were also examined in this study. The results showed that the biogas yield decreased by the increasing of F/I ratio. Meanwhile, the increase TS content of 22% to 24% also decreased the biogas yield. Physical pretreatment had no a significant effect on biogas yield (p > 0.05). The highest biogas yield of 248.4 L/kg VS was obtained at an F/I ratio of 2, TS content of 22%, and particle size of 2 mm. The kinetics of biogas production from rice straw followed the first-order kinetic model with the highest rate constant (k) of 0.0861 day-1.

  3. Proteins as "dopable" bio-electronic materials

    NASA Astrophysics Data System (ADS)

    Cahen, David

    2013-02-01

    Proteins are surprisingly good solid-state electronic conductors. This holds also for proteins without any known biological electron transfer function. How do they do it? To answer this question we measure solid-state electron transport (ETp) across proteins that are "dry" (only tightly bound water, to retain the conformation, still present). We compare results for the electron transfer (ET) protein, Azurin (Az), the proton-pumping membrane protein Bacteriorhodopsin (bR), and for Human and Bovine Serum Albumin (HSA and BSA). Clear differences between these proteins are seen, which preserve their structure in the solid state measurement configuration. Importantly for future bioelectronics, the results are sensitive to protein modification, e.g., removing or disconnecting the retinal in bR and removing or replacing the Cu redox centre in Az. These cofactors can thus be viewed as natural dopants for proteins. Insight in the ETp mechanism comes from temperature-dependent studies. Az shows 40-360K temperature-independent ETp across its 3.5 nm long axis, until its denaturation temperature, indicative of tunneling. Cu removal, replacement (by Zn) or deuteration changes this to thermally activated ETp. This suggests hopping and involvement of the amide backbone in the ETp. The latter, which rhymes with indications from ETp experiments on oligopeptide and simulations of ET in proteins, opens the way for modeling what otherwise is an awfully complex system. Below 200K all proteins and their variants show temperature-independent ETp. We can furthermore make a totally electrically inactive protein, HSA, into an efficient ETp medium by doping it with natural poly-ene. Putting our data in perspective by comparing them to all known protein ETp data in the literature, we conclude that, in general, proteins are well described as dopable molecular wires.

  4. Development of longitudinally excited CO2 laser

    NASA Astrophysics Data System (ADS)

    Masroon, N. S.; Tanaka, M.; Tei, M.; Uno, K.; Tsuyama, M.; Nakano, H.

    2018-05-01

    Simple, compact, and affordable discharged-pumped CO2 laser controlled by a fast high voltage solid state switch has been developed. In this study, longitudinal excitation scheme has been adapted for simple configuration. In the longitudinal excitation scheme, the discharge is produced along the direction of the laser axis, and the electrodes are well separated with a small discharge cross-section. Triggered spark gap switch is usually used to switch out the high voltage because of simple and low cost. However, the triggered spark gap operates in the arc mode and suffer from recovery problem causing a short life time and low efficiency for high repetition rate operation. As a result, there is now considerable interest in replacing triggered spark gap switch with solid state switches. Solid state switches have significant advantages compared to triggered spark gap switch which include longer service lifetime, low cost and stable high trigger pulse. We have developed simple and low cost fast high voltage solid state switch that consists of series connected-MOSFETs. It has been installed to the longitudinally excited CO2 laser to realize the gap switch less operation. Characteristics of laser oscillation by varying the discharge length, charging voltage, capacitance and gas pressure have been evaluated. Longer discharge length produce high power of laser oscillation. Optimum charging voltage and gas pressure were existed for longitudinally excited CO2 laser.

  5. A study of two statistical methods as applied to shuttle solid rocket booster expenditures

    NASA Technical Reports Server (NTRS)

    Perlmutter, M.; Huang, Y.; Graves, M.

    1974-01-01

    The state probability technique and the Monte Carlo technique are applied to finding shuttle solid rocket booster expenditure statistics. For a given attrition rate per launch, the probable number of boosters needed for a given mission of 440 launches is calculated. Several cases are considered, including the elimination of the booster after a maximum of 20 consecutive launches. Also considered is the case where the booster is composed of replaceable components with independent attrition rates. A simple cost analysis is carried out to indicate the number of boosters to build initially, depending on booster costs. Two statistical methods were applied in the analysis: (1) state probability method which consists of defining an appropriate state space for the outcome of the random trials, and (2) model simulation method or the Monte Carlo technique. It was found that the model simulation method was easier to formulate while the state probability method required less computing time and was more accurate.

  6. Physical principles and current status of emerging non-volatile solid state memories

    NASA Astrophysics Data System (ADS)

    Wang, L.; Yang, C.-H.; Wen, J.

    2015-07-01

    Today the influence of non-volatile solid-state memories on persons' lives has become more prominent because of their non-volatility, low data latency, and high robustness. As a pioneering technology that is representative of non-volatile solidstate memories, flash memory has recently seen widespread application in many areas ranging from electronic appliances, such as cell phones and digital cameras, to external storage devices such as universal serial bus (USB) memory. Moreover, owing to its large storage capacity, it is expected that in the near future, flash memory will replace hard-disk drives as a dominant technology in the mass storage market, especially because of recently emerging solid-state drives. However, the rapid growth of the global digital data has led to the need for flash memories to have larger storage capacity, thus requiring a further downscaling of the cell size. Such a miniaturization is expected to be extremely difficult because of the well-known scaling limit of flash memories. It is therefore necessary to either explore innovative technologies that can extend the areal density of flash memories beyond the scaling limits, or to vigorously develop alternative non-volatile solid-state memories including ferroelectric random-access memory, magnetoresistive random-access memory, phase-change random-access memory, and resistive random-access memory. In this paper, we review the physical principles of flash memories and their technical challenges that affect our ability to enhance the storage capacity. We then present a detailed discussion of novel technologies that can extend the storage density of flash memories beyond the commonly accepted limits. In each case, we subsequently discuss the physical principles of these new types of non-volatile solid-state memories as well as their respective merits and weakness when utilized for data storage applications. Finally, we predict the future prospects for the aforementioned solid-state memories for the next generation of data-storage devices based on a comparison of their performance. [Figure not available: see fulltext.

  7. Replacement policy of residential lighting optimized for cost, energy, and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Liu, Lixi; Keoleian, Gregory A.; Saitou, Kazuhiro

    2017-11-01

    Accounting for 10% of the electricity consumption in the US, artificial lighting represents one of the easiest ways to cut household energy bills and greenhouse gas (GHG) emissions by upgrading to energy-efficient technologies such as compact fluorescent lamps (CFL) and light emitting diodes (LED). However, given the high initial cost and rapidly improving trajectory of solid-state lighting today, estimating the right time to switch over to LEDs from a cost, primary energy, and GHG emissions perspective is not a straightforward problem. This is an optimal replacement problem that depends on many determinants, including how often the lamp is used, the state of the initial lamp, and the trajectories of lighting technology and of electricity generation. In this paper, multiple replacement scenarios of a 60 watt-equivalent A19 lamp are analyzed and for each scenario, a few replacement policies are recommended. For example, at an average use of 3 hr day-1 (US average), it may be optimal both economically and energetically to delay the adoption of LEDs until 2020 with the use of CFLs, whereas purchasing LEDs today may be optimal in terms of GHG emissions. In contrast, incandescent and halogen lamps should be replaced immediately. Based on expected LED improvement, upgrading LED lamps before the end of their rated lifetime may provide cost and environmental savings over time by taking advantage of the higher energy efficiency of newer models.

  8. Aircraft Photovoltaic Power-Generating System.

    NASA Astrophysics Data System (ADS)

    Doellner, Oscar Leonard

    Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet -engine design modifications incorporating this concept not only save weight (and thus fuel), but are--in themselves --favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project. This new electrical power-generating system offers solid-state reliability with electrical power-output capability comparable to that of existing aircraft electromechanical power-generating systems (alternators and generators). In addition to improvements in aircraft performance, significant aircraft fuel- and weight-saving advantages are projected.

  9. Introduction to the Solid State Based Interior Lighting System for ISS

    NASA Technical Reports Server (NTRS)

    Maida, James C.

    2014-01-01

    Solid state lighting assembly (SSLA) were designed to replace general luminaire assembly (GLA) for both general interior illumination and improved circadian rhythm through melatonin control using multiple spectrums. To accomplish these goals, the light is design to operate in 3 modes with 3 distinct spectrum. The different spectrum provide control of the blue portion of the light which impacts melatonin production in humans which impacts sleep. General mode is a 4500K "neutral" light spectrum intended to the be the default mode of operation for day to day operations. Pre-sleep mode is a 2700K "warm" light spectrum intended to be used by the crew at the end of the work day. Phase-shift mode is a 6500K "cool" light spectrum intended to be used for altering the crew's sleep patterns.

  10. Potential High-Temperature Shape-Memory-Alloy Actuator Material Identified

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Gaydosh, Darrell J.; Biles, Tiffany A.; Garg, Anita

    2005-01-01

    Shape-memory alloys are unique "smart materials" that can be used in a wide variety of adaptive or "intelligent" components. Because of a martensitic solid-state phase transformation in these materials, they can display rather unusual mechanical properties including shape-memory behavior. This phenomenon occurs when the material is deformed at low temperatures (below the martensite finish temperature, Mf) and then heated through the martensite-to-austenite phase transformation. As the material is heated to the austenite finish temperature Af, it is able to recover its predeformed shape. If a bias is applied to the material as it tries to recover its original shape, work can be extracted from the shape-memory alloy as it transforms. Therefore, shape-memory alloys are being considered for compact solid-state actuation devices to replace hydraulic, pneumatic, or motor-driven systems.

  11. Growing large columnar grains of CH3NH3PbI3 using the solid-state reaction method enhanced by less-crystallized nanoporous PbI2 films

    NASA Astrophysics Data System (ADS)

    Zheng, Huifeng; Wang, Weiqi; Liu, Yangqiao; Sun, Jing

    2017-03-01

    Compact, pinhole-free and PbI2-free perovskite films, are desirable for high-performance perovskite solar cells (PSCs), especially if large columnar grains are obtained in which the adverse effects of grain boundaries will be minimized. However, the conventional solid-state reaction methods, originated from the two-step method, failed to grow columnar grains of CH3NH3PbI3 in a facile way. Here, we demonstrate a strategy for growing large columnar grains of CH3NH3PbI3, by less-crystallized nanoporous PbI2 (ln-PbI2) film enhanced solid-state reaction method. We demonstrated columnar grains were obtainable only when ln-PbI2 films were applied. Therefore, the replacement of compact PbI2 by ln-PbI2 in the solid-sate reaction, leads to higher power conversion efficiency, better reproducibility, better stability and less hysteresis. Furthermore, by systematically investigating the effects of annealing temperature and duration, we found that an annealing temperature ≥120 °C was also critical for growing columnar grains. With the optimal process, a champion efficiency of 16.4% was obtained and the average efficiency reached 14.2%. Finally, the mechanism of growing columnar grains was investigated, in which a VPb″ -assisted hooping model was proposed. This work reveals the origins of grain growth in the solid-state reaction method, which will contribute to preparing high quality perovskite films with much larger columnar grains.

  12. Power Supply For 25-Watt Arc Lamp

    NASA Technical Reports Server (NTRS)

    Leighty, B. D.

    1985-01-01

    Dual-voltage circuitry both strikes and maintains arc. New power supply designed (and several units already in use) that replaces relay/choke combination with solid-state starter. New power supply consists of two main sections. First section (low voltage power supply section) is 84-volt directcurrent supply. Second section (high-voltage starter circuit) is CockroftWalton voltage multiplier. Used as light sources for schlieren, shadowgraph, and other flow-visualization techniques.

  13. Statistical Optimization of Laccase Production and Delignification of Sugarcane Bagasse by Pleurotus ostreatus in Solid-State Fermentation

    PubMed Central

    Karp, Susan Grace; Faraco, Vincenza; Amore, Antonella; Letti, Luiz Alberto Junior; Thomaz Soccol, Vanete; Soccol, Carlos Ricardo

    2015-01-01

    Laccases are oxidative enzymes related to the degradation of phenolic compounds, including lignin units, with concomitant reduction of oxygen to water. Delignification is a necessary pretreatment step in the process of converting plant biomass into fermentable sugars. The objective of this work was to optimize the production of laccases and to evaluate the delignification of sugarcane bagasse by Pleurotus ostreatus in solid-state fermentation. Among eight variables (pH, water activity, temperature, and concentrations of CuSO4, (NH4)2SO4, KH2PO4, asparagine, and yeast extract), copper sulfate and ammonium sulfate concentrations were demonstrated to significantly influence laccase production. The replacement of ammonium sulfate by yeast extract and the addition of ferulic acid as inducer provided increases of 5.7- and 2.0-fold, respectively, in laccase activity. Optimization of laccase production as a function of yeast extract, copper sulfate, and ferulic acid concentrations was performed by response surface methodology and optimal concentrations were 6.4 g/L, 172.6 μM, and 1.86 mM, respectively. Experimentally, the maximum laccase activity of 151.6 U/g was produced at the 5th day of solid-state fermentation. Lignin content in sugarcane bagasse was reduced from 31.89% to 26.36% after 5 days and to 20.79% after 15 days by the biological treatment of solid-state fermentation. PMID:26180784

  14. Design and test of a high power electromechanical actuator for thrust vector control

    NASA Technical Reports Server (NTRS)

    Cowan, J. R.; Myers, W. N.

    1992-01-01

    NASA-Marshall is involved in the development of electromechanical actuators (EMA) for thrust-vector control (TVC) system testing and implementation in spacecraft control/gimballing systems, with a view to the replacement of hydraulic hardware. TVC system control is furnished by solid state controllers and power supplies; a pair of resolvers supply position feedback to the controller for precise positioning. Performance comparisons between EMA and hydraulic TVC systems are performed.

  15. Process for making solid-state radiation-emitting composition

    DOEpatents

    Ashley, Carol S.; Brinker, C. Jeffrey; Reed, Scott; Walko, Robert J.

    1993-01-01

    The invention provides a process for loading an aerogel substrate with tritium and the resultant compositions. According to the process, an aerogel substrate is hydrolyzed so that surface OH groups are formed. The hydrolyzed aerogel is then subjected to tritium exchange employing, for example, a tritium-containing gas, whereby tritium atoms replace H atoms of surface OH groups. OH and/or CH groups of residual alcohol present in the aerogel may also undergo tritium exchange.

  16. Process for making solid-state radiation-emitting composition

    DOEpatents

    Ashley, C.S.; Brinker, C.J.; Reed, S.; Walko, R.J.

    1993-08-31

    The invention provides a process for loading an aerogel substrate with tritium and the resultant compositions. According to the process, an aerogel substrate is hydrolyzed so that surface OH groups are formed. The hydrolyzed aerogel is then subjected to tritium exchange employing, for example, a tritium-containing gas, whereby tritium atoms replace H atoms of surface OH groups. OH and/or CH groups of residual alcohol present in the aerogel may also undergo tritium exchange.

  17. Design and test of a high power electromechanical actuator for thrust vector control

    NASA Astrophysics Data System (ADS)

    Cowan, J. R.; Myers, W. N.

    1992-07-01

    NASA-Marshall is involved in the development of electromechanical actuators (EMA) for thrust-vector control (TVC) system testing and implementation in spacecraft control/gimballing systems, with a view to the replacement of hydraulic hardware. TVC system control is furnished by solid state controllers and power supplies; a pair of resolvers supply position feedback to the controller for precise positioning. Performance comparisons between EMA and hydraulic TVC systems are performed.

  18. Short communication: Bacterial counts in recycled manure solids bedding replaced daily or deep packed in freestalls.

    PubMed

    Sorter, D E; Kester, H J; Hogan, J S

    2014-05-01

    An experiment was conducted to compare bacterial counts of mastitis pathogens in deep-packed manure solids bedding with those in manure solids bedding replaced daily from mattresses. Eighteen Holstein cows were housed in 1 pen with 18 stalls. One row of 9 stalls was equipped with mattresses topped with bedding. The back one-third of these stalls toward the alleyway was covered in 25 mm of recycled manure solids, which was removed daily for the next 6 d and replaced with bedding from the brisket board and lunge space areas of stalls. The second row of 9 stalls was bedded for 3 wk with 100 to 150 mm of deep-pack recycled manure bedding from which only fecal matter was removed daily. After 3 wk, bedding treatments were changed between rows in a switchback design. Mean total gram-negative bacterial counts did not differ between treatments throughout the experiment. Coliform and Klebsiella spp. bacterial counts were lower in daily replaced bedding compared with deep pack across the experiment and on each of d 0, 1, 2, and 6. Streptococcal counts were reduced in daily replacement stalls compared with deep-pack stalls on d 0 and greater in daily replacement stalls compared with deep-pack stalls on d 1, 2, and 6. Daily replacement of recycled manure bedding from the back one-third of the stalls appeared to be an effective approach to reducing exposure to coliforms, specifically Klebsiella, but not streptococci. However, bacterial counts in bedding from both treatments were elevated throughout the trial and resulted in considerable risk for exposure to teats and development of intramammary infections. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. A comparative study of the hydrogen-bonding patterns and prototropism in solid 2-thiocytosine (potential antileukemic agent) and cytosine, as studied by 1H-14N NQDR and QTAIM/ DFT.

    PubMed

    Latosińska, Jolanta N; Seliger, Janez; Zagar, Veselko; Burchardt, Dorota V

    2012-01-01

    A potential antileukemic and anticancer agent, 2-thiocytosine (2-TC), has been studied experimentally in the solid state by (1)H-(14)N NMR-NQR double resonance (NQDR) and theoretically by the quantum theory of atoms in molecules (QTAIM)/density functional theory (DFT). Eighteen resonance frequencies on (14)N were detected at 180 K and assigned to particular nitrogen sites (-NH(2), -N=, and -NH-) in 2-thiocytosine. Factors such as the nonequivalence of molecules (connected to the duplication of sites) and possible prototropic tautomerism (capable of modifying the type of site due to proton transfer) were taken into account during frequency assignment. The result of replacing oxygen with sulfur, which leads to changes in the intermolecular interaction pattern and molecular aggregation, is discussed. This study demonstrates the advantages of combining NQDR and DFT to extract detailed information on the H-bonding properties of crystals with complex H-bonding networks. Solid-state properties were found to have a profound impact on the stabilities and reactivities of both compounds.

  20. Pillar-structured neutron detector based multiplicity system

    DOE PAGES

    Murphy, John W.; Shao, Qinghui; Voss, Lars F.; ...

    2017-10-04

    This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm 2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252more » neutron source, in which the source mass, system efficiency, and die-away time were determined. As a result, this demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.« less

  1. Solid-state laser source of narrowband ultraviolet B light for skin disease care with advanced performance

    NASA Astrophysics Data System (ADS)

    Tarasov, Aleksandr A.; Chu, Hong; Buchwald, Kristian

    2015-02-01

    Two years ago we reported about the development of solid state laser source for medical skin treatment with wavelength 310.6 nm and average power 200 mW. Here we describe the results of investigation of the advanced version of the laser, which is a more compact device with increased output power and flat top beam profile. Ti: Sapphire laser, the main module of our source, was modified and optimized such, that UV average power of the device was increased 1.7 times. Fiber optic homogenizer was replaced by articulated arm with diffraction diffuser, providing round spot with flat profile at the skin. We investigated and compare characteristics of Ti: Sapphire lasers with volume Bragg grating and with fused silica transmission grating, which was used first time for Ti: Sapphire laser spectral selection and tuning. Promising performance of last gratings is demonstrated.

  2. Solid state power controllers

    NASA Technical Reports Server (NTRS)

    Gibbs, R. S.

    1973-01-01

    The rationale, analysis, design, breadboarding and testing of the incremental functional requirements are reported that led to the development of prototype 1 and 5 Amp dc and 1 Amp ac solid state power controllers (SSPC's). The SSPC's are to be considered for use as a replacement of electro-mechanical relays and circuit breakers in future spacecraft and aircraft. They satisfy the combined function of both the relay and circuit breaker and can be remotely controlled by small signals, typically 10 mA, 5 to 28 Vdc. They have the advantage over conventional relay/circuit breaker systems in that they can be located near utilization equipment and the primary ac or dc bus. The low level control, trip indication and status signals can be circuited by small guage wire for control, computer interface, logic, electrical multiplexing, unboard testing, and power management and distribution purposes. This results in increased system versatility at appreciable weight saving and increased reliability.

  3. Analysis of lasers as a solution to efficiency droop in solid-state lighting

    DOE PAGES

    Chow, Weng W.; Crawford, Mary H.

    2015-10-06

    This letter analyzes the proposal to mitigate the efficiency droop in solid-state light emitters by replacing InGaN light-emitting diodes (LEDs) with lasers. The argument in favor of this approach is that carrier-population clamping after the onset of lasing limits carrier loss to that at threshold, while stimulated emission continues to grow with injection current. A fully quantized (carriers and light) theory that is applicable to LEDs and lasers (above and below threshold) is used to obtain a quantitative evaluation. The results confirm the potential advantage of higher laser output power and efficiency above lasing threshold, while also indicating disadvantages includingmore » low efficiency prior to lasing onset, sensitivity of lasing threshold to temperature, and the effects of catastrophic laser failure. As a result, a solution to some of these concerns is suggested that takes advantage of recent developments in nanolasers.« less

  4. Pillar-structured neutron detector based multiplicity system

    NASA Astrophysics Data System (ADS)

    Murphy, John W.; Shao, Qinghui; Voss, Lars F.; Kerr, Phil L.; Fabris, Lorenzo; Conway, Adam M.; Nikolic, Rebecca J.

    2018-01-01

    This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252 neutron source, in which the source mass, system efficiency, and die-away time were determined. This demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.

  5. Possibilities of municipal solid waste incinerator fly ash utilisation.

    PubMed

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.

  6. STS-103 Discovery rolls over to VAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The orbiter Discovery rolls along the tow-way to the Vehicle Assembly Building where it will be mated with an external tank and solid rocket boosters for its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode.

  7. KSC-99padig024

    NASA Image and Video Library

    1999-11-04

    KENNEDY SPACE CENTER, FLA. -- Orbiter Discovery begins rolling into the Vehicle Assembly Building for stacking with an external tank and solid rocket boosters for its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode

  8. KSC-99pp1279

    NASA Image and Video Library

    1999-11-04

    KENNEDY SPACE CENTER, FLA. -- The orbiter Discovery rolls along the tow-way to the Vehicle Assembly Building where it will be mated with an external tank and solid rocket boosters for its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode

  9. KSC-99pp1280

    NASA Image and Video Library

    1999-11-04

    KENNEDY SPACE CENTER, FLA. -- The orbiter Discovery rolls along the tow-way to the Vehicle Assembly Building where it will be mated with an external tank and solid rocket boosters for its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode

  10. KSC-99padig021

    NASA Image and Video Library

    1999-11-04

    KENNEDY SPACE CENTER, FLA. -- Orbiter Discovery is moved from the Orbiter Processing Facility bay 1 (at left) to the Vehicle Assembly Building for mating with an external tank and solid rocket boosters. Launch date for Discovery on mission STS-103, the third Hubble Space Telescope servicing mission, is under review for early December. The mission is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode

  11. Exciton-Delocalizing Ligands Can Speed Up Energy Migration in Nanocrystal Solids.

    PubMed

    Azzaro, Michael S; Dodin, Amro; Zhang, Diana Y; Willard, Adam P; Roberts, Sean T

    2018-05-09

    Researchers have long sought to use surface ligands to enhance energy migration in nanocrystal solids by decreasing the physical separation between nanocrystals and strengthening their electronic coupling. Exciton-delocalizing ligands, which possess frontier molecular orbitals that strongly mix with nanocrystal band-edge states, are well-suited for this role because they can facilitate carrier-wave function extension beyond the nanocrystal core, reducing barriers for energy transfer. This report details the use of the exciton-delocalizing ligand phenyldithiocarbamate (PDTC) to tune the transport rate and diffusion length of excitons in CdSe nanocrystal solids. A film composed of oleate-terminated CdSe nanocrystals is subjected to a solid-state ligand exchange to replace oleate with PDTC. Exciton migration in the films is subsequently investigated by femtosecond transient absorption. Our experiments indicate that the treatment of nanocrystal films with PDTC leads to rapid (∼400 fs) downhill energy migration (∼80 meV), while no such migration occurs in oleate-capped films. Kinetic Monte Carlo simulations allow us to extract both rates and length scales for exciton diffusion in PDTC-treated films. These simulations reproduce dynamics observed in transient absorption measurements over a range of temperatures and confirm excitons hop via a Miller-Abrahams mechanism. Importantly, our experiments and simulations show PDTC treatment increases the exciton hopping rate to 200 fs, an improvement of 5 orders of magnitude relative to oleate-capped films. This exciton hopping rate stands as one of the fastest determined for CdSe solids. The facile, room-temperature processing and improved transport properties offered by the solid-state exchange of exciton-delocalizing ligands show they offer promise for the construction of strongly coupled nanocrystal arrays.

  12. KSC-99padig036

    NASA Image and Video Library

    1999-11-13

    KENNEDY SPACE CENTER, FLA. -- Towering atop the mobile launcher platform and crawler transporter, Space Shuttle Discovery negotiates a turn in the crawlerway on its trek from the Vehicle Assembly Building to Launch Pad 39B. While at the pad, the orbiter, external tank and solid rocket boosters will undergo final preparations for the STS-103 launch targeted for Dec. 6, 1999, at 2:37 a.m. EST. The mission is a "call-up" due to the need to replace portions of the pointing system the gyros which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be installing a Fine Guidance Sensor, a new enhanced computer, a solid-state digital recorder, and a new spare transmitter to replace older equipment, and replacing degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The STS-103 crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, Mission Specialist Steven L. Smith, Mission Specialist C. Michael Foale (Ph.D.), Mission Specialist John M. Grunsfeld (Ph.D.), and Mission Specialist Claude Nicollier of Switzerland, and Mission Specialist Jean-François Clervoy of France, both with the European Space Agency

  13. KSC-99padig035

    NASA Image and Video Library

    1999-11-13

    KENNEDY SPACE CENTER, FLA. -- Under low clouds and fog, Space Shuttle Discovery makes its trek along the stretch of crawlerway between the Vehicle Assembly Building and Launch Pad 39B atop the mobile launcher platform and crawler transporter. Once at the pad, the orbiter, external tank and solid rocket boosters will undergo final preparations for the STS-103 launch targeted for Dec. 6, 1999, at 2:37 a.m. EST. The mission is a "call-up" due to the need to replace portions of the pointing system the gyros which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be installing a Fine Guidance Sensor, a new enhanced computer, a solid-state digital recorder, and a new spare transmitter to replace older equipment, and replacing degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The STS-103 crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, Mission Specialist Steven L. Smith, Mission Specialist C. Michael Foale (Ph.D.), Mission Specialist John M. Grunsfeld (Ph.D.), and Mission Specialist Claude Nicollier of Switzerland, and Mission Specialist Jean-François Clervoy of France, both with the European Space Agency

  14. KSC-99padig033

    NASA Image and Video Library

    1999-11-13

    KENNEDY SPACE CENTER, FLA. -- Under low clouds and fog, Space Shuttle Discovery makes its trek along the stretch of crawlerway between the Vehicle Assembly Building and Launch Pad 39B atop the mobile launcher platform and crawler transporter. Once at the pad, the orbiter, external tank and solid rocket boosters will undergo final preparations for the STS-103 launch targeted for Dec. 6, 1999, at 2:37 a.m. EST. The mission is a "call-up" due to the need to replace portions of the pointing system the gyros which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be installing a Fine Guidance Sensor, a new enhanced computer, a solid-state digital recorder, and a new spare transmitter to replace older equipment, and replacing degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The STS-103 crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, Mission Specialist Steven L. Smith, Mission Specialist C. Michael Foale (Ph.D.), Mission Specialist John M. Grunsfeld (Ph.D.), and Mission Specialist Claude Nicollier of Switzerland, and Mission Specialist Jean-François Clervoy of France, both with the European Space Agency.

  15. Cryogenic Tm: YAG Laser in the Near Infrared

    DTIC Science & Technology

    2015-05-29

    Applications Group. The focus of his work at Lincoln Laboratory has been solid-state lasers including microchip lasers , external-cavity diode lasers ...REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < Cryogenic Tm:YAG Laser in the Near Infrared* Tso Yee Fan...Senior Member, IEEE, Juan R. Ochoa, and Patricia A. Reed Abstract- Thulium laser operation on the 3H4 - 3H6 transition at 823 nm has been demonstrated

  16. Organic Lasers: Recent Developments on Materials, Device Geometries, and Fabrication Techniques.

    PubMed

    Kuehne, Alexander J C; Gather, Malte C

    2016-11-09

    Organic dyes have been used as gain medium for lasers since the 1960s, long before the advent of today's organic electronic devices. Organic gain materials are highly attractive for lasing due to their chemical tunability and large stimulated emission cross section. While the traditional dye laser has been largely replaced by solid-state lasers, a number of new and miniaturized organic lasers have emerged that hold great potential for lab-on-chip applications, biointegration, low-cost sensing and related areas, which benefit from the unique properties of organic gain materials. On the fundamental level, these include high exciton binding energy, low refractive index (compared to inorganic semiconductors), and ease of spectral and chemical tuning. On a technological level, mechanical flexibility and compatibility with simple processing techniques such as printing, roll-to-roll, self-assembly, and soft-lithography are most relevant. Here, the authors provide a comprehensive review of the developments in the field over the past decade, discussing recent advances in organic gain materials, which are today often based on solid-state organic semiconductors, as well as optical feedback structures, and device fabrication. Recent efforts toward continuous wave operation and electrical pumping of solid-state organic lasers are reviewed, and new device concepts and emerging applications are summarized.

  17. Rechargeable membraneless glucose biobattery: Towards solid-state cathodes for implantable enzymatic devices

    NASA Astrophysics Data System (ADS)

    Yazdi, Alireza Ahmadian; Preite, Roberto; Milton, Ross D.; Hickey, David P.; Minteer, Shelley D.; Xu, Jie

    2017-03-01

    Enzymatic biobatteries can be implanted in living organisms to exploit the chemical energy stored in physiological fluids. Generally, commonly-used electron donors (such as sugars) are ubiquitous in physiological environments, while electron acceptors such as oxygen are limited due to many factors including solubility, temperature, and pressure. The wide range of solid-state cathodes, however, may replace the need for oxygen breathing electrodes and serve in enzymatic biobatteries for implantable devices. Here, we have fabricated a glucose biobattery suitable for in vivo applications employing a glucose oxidase (GOx) anode coupled to a solid-state Prussian Blue (PB) thin-film cathode. PB is a non-toxic material and its electrochemistry enables fast regeneration if used in a secondary cell. This novel biobattery can effectively operate in a membraneless architecture as PB can reduce the peroxide produced by some oxidase enzymes. The resulting biobattery delivers a maximum power and current density of 44 μW cm-2 and 0.9 mA cm-2 , respectively, which is ca. 37% and 180% higher than an equivalent enzymatic fuel cell equipped with a bilirubin oxidase cathode. Moreover, the biobattery demonstrated a stable performance over 20 cycles of charging and discharging periods with only ca. 3% loss of operating voltage.

  18. Visualization Skills: A Prerequisite to Advanced Solid Modeling

    ERIC Educational Resources Information Center

    Gow, George

    2007-01-01

    Many educators believe that solid modeling software has made teaching two- and three-dimensional visualization skills obsolete. They claim that the visual tools built into the solid modeling software serve as a replacement for the CAD operator's personal visualization skills. They also claim that because solid modeling software can produce…

  19. Demonstration of coherent addition of multiple gratings for high-energy chirped-pulse-amplified lasers.

    PubMed

    Kessler, Terrance J; Bunkenburg, Joachim; Huang, Hu; Kozlov, Alexei; Meyerhofer, David D

    2004-03-15

    Petawatt solid-state lasers require meter-sized gratings to reach multiple-kilojoule energy levels without laser-induced damage. As an alternative to large single gratings, we demonstrate that smaller, coherently added (tiled) gratings can be used for subpicosecond-pulse compression. A Fourier-transform-limited, 650-fs chirped-pulse-amplified laser pulse is maintained by replacing a single compression grating with a tiled-grating assembly. Grating tiling provides a means to scale the energy and irradiance of short-pulse lasers.

  20. KSC-99pp1320

    NASA Image and Video Library

    1999-11-16

    KENNEDY SPACE CENTER, FLA. -- STS-103's Hubble servicing cargo is transferred from the payload changeout room at Launch Pad 39B to the payload bay in Space Shuttle Discovery. STS-103 is a "call-up" mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST

  1. KSC-99pp1321

    NASA Image and Video Library

    1999-11-16

    KENNEDY SPACE CENTER, FLA. -- Workers oversee the transfer of STS-103's Hubble servicing cargo from the payload changeout room at Launch Pad 39B to the payload bay in Space Shuttle Discovery. STS-103 is a "call-up" mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST

  2. Filamentous fungi and media for cellulase production in solid state cultures

    PubMed Central

    Kilikian, B.V.; Afonso, L.C.; Souza, T.F.C.; Ferreira, R.G.; Pinheiro, I.R.

    2014-01-01

    Cellulase production was evaluated in two reference strains (T. reesei Rut-C30 and T. reesei QM9414), two strains isolated from a sugarcane cultivation area (Trichoderma sp. IPT778 and T. harzianum rifai IPT821) and one strain isolated in a program for biodiversity preservation in São Paulo state (Myceliophthora thermophila M77). Solid state cultures were performed using sugarcane bagasse (C), wheat bran (W) and/or soybean bran (S). The highest FPA was 10.6 U/gdm for M77 in SC (10:90) at 80% moisture, which was 4.4 times higher than production in pure W. C was a strong inducer of cellulase production, given that the production level of 6.1 U/gdm in WC (40:60) was 2.5 times higher than in pure W for strain M77; T. reesei Rut-C30 did not respond as strongly with about 1.6-fold surplus production. S advantageously replaced W, as the surplus production on SC (20:80) was 2.3 times relative to WC (20:80) for M77. PMID:24948946

  3. Effect of solid feed on energy and protein utilization in milk-fed veal calves.

    PubMed

    Labussiere, E; Dubois, S; van Milgen, J; Bertrand, G; Noblet, J

    2009-03-01

    Little knowledge on the digestive and metabolic utilization of solid feed in veal calves is available. The objectives of the study were to determine the effects of 2 solid feeds offered at 2 feeding levels (FL90 and FL105) in addition to a milk replacer on heat production (HP) and protein and fat deposition in veal calves. Sixteen calves (148.0 +/- 3.7 kg) received milk replacer (75% of a reference DE allowance) and solid feeds that consisted of corn grain and pelleted hydrolyzed wheat gluten without (CO) or with (CS) chopped wheat straw. The solid feed supply provided 15 or 30% of the reference DE allowance to achieve FL90 or FL105, resulting in 4 treatments: CO90, CS90, CO105, and CS105. A fifth treatment consisted of using the milk replacer alone at FL90 (treatment M90) and was measured in 4 other calves. All calves were kept individually for 7 d in a respiration chamber to estimate energy and N balances and fasting HP. The digestibility coefficients of DM, OM, GE, and major nutrients were at least 94% for M90 and decreased when solid feed was added (P < 0.05). Methane production was negligible in M90 calves and increased when solid feed was given (ranging 8 to 23 L/d between CO90 and CS105, P < 0.01), indicative of ruminal fermentation. The provision of increasing amounts of solid feed decreased urinary energy in connection with a tendency (P = 0.09) for a reduction of urinary glucose excretion. The metabolizability of DE was greater with the milk replacer (95.6%) and decreased when straw was added (P < 0.01). Neither CO90 or CS90 affected HP and total energy retention (P > 0.05). Dietary treatment had no effect (P > 0.05) on activity HP (53 kJ/kg of BW(0.85) daily) but did affect thermic effect of feeding; efficiency of utilizing ME for maintenance and growth was greatest for the M90 calves (84.5%, P = 0.02). Fasting HP tended (P = 0.09) to increase at the greatest FL (308 vs. 298 kJ/kg of BW(0.85) daily). Maintenance ME requirement increased (P = 0.04) from 364 to 382 kJ/kg of BW(0.85) daily when feeding level increased (P = 0.04) but was not affected by ingestion of solid feed. The provision of solid feed to veal calves was associated with a reduced efficiency of N retention (P = 0.04), and energy retained as protein tended to decrease (P = 0.08), probably as a result of an imbalanced AA supply of the solid feeds. The data were used to calculate the energy contents of solid feed. The utilization of energy from solid feed differed from that of milk replacer.

  4. STS-103 Discovery rolls over to VAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this aerial view, the orbiter Discovery is out of the Orbiter Processing Facility (OPF) bay 1 and rolling back before onto the tow-way for its rollover to the Vehicle Assembly Building where it will be mated with an external tank and solid rocket boosters before its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode.

  5. KSC-99pp1281

    NASA Image and Video Library

    1999-11-04

    KENNEDY SPACE CENTER, FLA. -- The orbiter Discovery sits inside the Vehicle Assembly Building (VAB) after its rollover from the Orbiter Processing Facility (OPF) bay 1. In the VAB, Discovery will be mated with an external tank and solid rocket boosters for its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode

  6. KSC-99padig023

    NASA Image and Video Library

    1999-11-04

    KENNEDY SPACE CENTER, FLA. -- Orbiter Discovery is rolled over to the Vehicle Assembly Building from the Orbiter Processing Facility bay 1. In the VAB it will be mated with an external tank and solid rocket boosters for its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode

  7. KSC-99pp1277

    NASA Image and Video Library

    1999-11-04

    In this aerial view, the orbiter Discovery is out of the Orbiter Processing Facility (OPF) bay 1 and rolling back before onto the tow-way for its rollover to the Vehicle Assembly Building where it will be mated with an external tank and solid rocket boosters before its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode

  8. Solid state power controllers

    NASA Technical Reports Server (NTRS)

    Gibbs, R. S.

    1974-01-01

    Solid state power controllers (SSPC's) are to be considered for use as replacements of electromechanical relays and circuit breakers in future spacecraft and aircraft. They satisfy the combined function of both the relay and circuit breaker and can be remotely controlled by small signals, typically 10 mA, 5 to 28 v(dc). They have the advantage over conventional relay/circuit breaker systems in that they can be located near the utilization equipment and the primary ac or dc bus. The low level control, trip indication and status signals can be circuited by small gauge wire for control, computer interface, logic, electrical multiplexing, onboard testing, power management, and distribution purposes. This results in increased system versatility at appreciable weight saving and increased reliability. Conventional systems require the heavy gage load wiring and the control wiring to be routed from the bus to the load to other remote relay contacts, switches, sensors, etc. and to the circuit breaker located in the flight engineer's compartment for purposes of manual reset.

  9. Oxide Dissolution and Oxygen Diffusion in Solid-State Recycled Ti-6Al-4V: Numerical Modeling, Verification by Nanoindentation, and Effects on Grain Growth and Recrystallization

    NASA Astrophysics Data System (ADS)

    Lui, E. W.; Palanisamy, S.; Dargusch, M. S.; Xia, K.

    2017-12-01

    The oxide dissolution and oxygen diffusion during annealing of Ti-6Al-4V solid-state recycled from machining chips by equal-channel angular pressing (ECAP) have been investigated using nanoindentation and numerical modeling. The hardness profile from nanoindentation was converted into the oxygen concentration distribution using the Fleisher and Friedel model. An iterative fitting method was then employed to revise the ideal model proposed previously, leading to correct predictions of the oxide dissolution times and oxygen concentration profiles and verifying nanoindentation as an effective method to measure local oxygen concentrations. Recrystallization started at the prior oxide boundaries where local strains were high from the severe plastic deformation incurred in the ECAP recycling process, forming a band of ultrafine grains whose growth was retarded by solute dragging thanks to high oxygen concentrations. The recrystallized fine-grained region would advance with time to eventually replace the lamellar structure formed during ECAP.

  10. Solid-state fermentation of soybean residues for bioflocculant production in a pilot-scale bioreactor system.

    PubMed

    Zulkeflee, Zufarzaana; Sánchez, Antoni

    2014-01-01

    An innovative approach using soybean residues for the production of bioflocculants through solid-state fermentation was carried out in 4.5 L near-to-adiabatic bioreactors at pilot-scale level. An added inoculum of the strain Bacillus subtilis UPMB13 was tested in comparison with control reactors without any inoculation after the thermophilic phase of the fermentation. The flocculating performances of the extracted bioflocculants were tested on kaolin suspensions, and crude bioflocculants were obtained from 20 g of fermented substrate through ethanol precipitation. The production of bioflocculants was observed to be higher during the death phase of microbial growth. The bioflocculants were observed to be granular in nature and consisted of hydroxyl, carboxyl and methoxyl groups that aid in their flocculating performance. The results show the vast potential of the idea of using wastes to produce bioactive materials that can replace the current dependence on chemicals, for future prospect in water treatment applications.

  11. Garnet and clinopyroxene pseudomorphs: example of local mass balance in the Caledonides of western Norway.

    NASA Astrophysics Data System (ADS)

    Centrella, Stephen; Austrheim, Håkon; Putnis, Andrew

    2015-04-01

    The Precambrian granulite facies rocks of Lindås Nappe, Bergen Arcs, Caledonides of W.Norway are partially hydrated at amphibolites and eclogite facies conditions. The Lindås Nappe outcrop over an area of ca 1000 km2 where relict granulite facies lenses make up only ca 10%. At Hillandsvatnet, garnetite displays sharp hydration fronts across which the granulite facies assemblage composed of garnet (70%) and clinopyroxene (30%) is replaced by an amphibolite facies mineralogy defined by chlorite, epidote and amphibole. This setting allows us to assess the mechanism of fluid transport through an initially low permeability rock and how this induces changes of texture and element transport. The replacement of garnet and clinopyroxene is pseudomorphic so that the grain shapes of the garnet and clinopyroxene are preserved even if when they are completely replaced. This requires that the reactive fluids must pass through the solid crystal grains and this can be achieved by an interface coupled dissolution-precipitation mechanism. Porosity generation is a key feature of this mechanism (Putnis and Austrheim 2012). The porosity is not only a consequence of reduction in solid molar volume but depends on the relative solubilities of parent and product phases in the reactive fluid. Putnis et al. 2007 and Xia et al. 2009 have shown that even in pseudomorphic reactions where the molar volume increases, porosity may still be generated by the reaction. This is fundamental in understanding the element mobility and the mass transfer in a low permeability rock even more when the bulk rock composition of these two rocks stay unchanged; except a gain in water during amphibolitisation. The textural evolution during the replacement of garnet by pargasite, epidote and chlorite and pyroxene by hornblende and quartz in our rock sample conforms to that expected by a coupled dissolution-precipitation mechanism. SEM and Microprobe analysis coupled with the software XMapTools V 1.06.1 .(Lanari et al., 2014) were used to quantify the local mass transfer required during the replacement processes and to identify the importance of fluid in metamorphic reactions. Lanari, P., Vidal, O., Andrade, V. de, Dubacq, B., Lewin, E., Grosch, E.G., and Schwartz, S., 2014, XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry. In: Computers & Geosciences, v. 62, p. 227-240. Putnis A, Austrheim H (2012) Mechanisms of metasomatism and metamorphism on the local mineral scale: The role of dissolution-reprecipitation during mineral re-equilibration. In: Metasomatism and the chemical transformation of rock; the role of fluids in terrestrial and extraterrestrial processes, Springer pp 141-170. Putnis A, Putnis CV (2007) The mechanism of reequilibration of solids in the presence of a fluid phase. J Solid State Chem 180: 1783-1786. Xia F, Brugger J, Chen G, Ngothai Y, O'Neill B, Putnis A, Pring A (2009) Mechanism and kinetics of pseudomorphic mineral replacement reactions: a case study of the replacement of pentlandite by violarite, Geochim Cosmochim Acta 73: 1945-1969. ase fill in your abstract text.

  12. Solid Waste Assurance Program Implementation Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irons, L.G.

    1995-06-19

    On June 6, 1995, a waiver to Hanford Site Solid Waste Acceptance Criteria, was approved by the US Department of Energy Richland Operations Office (RL) to replace the low-level, mixed, and transuranic (TRU) generator assessment programs with the Solid Waste Assurance Program (SWAP). This is associated with a waiver that was approved on March 16, 1995 to replace the Storage/Disposal Approval Record (SDAR) requirements with the Waste Specification System (WSS). This implementation plan and the SWAP applies to Solid Waste Disposal (SWD) functions, facilities, and personnel who perform waste acceptance, verification, receipt, and management functions of dangerous, radioactive, and mixedmore » waste from on- and off-site generators who ship to or within the Hanford Site for treatment, storage, and/or disposal (TSD) at SWD TSD facilities.« less

  13. Characterization of Sb-doped Bi(2)UO(6) solid solutions by X-ray diffraction and X-ray absorption spectroscopy.

    PubMed

    Misra, N L; Yadav, A K; Dhara, Sangita; Mishra, S K; Phatak, Rohan; Poswal, A K; Jha, S N; Sinha, A K; Bhattacharyya, D

    2013-01-01

    The preparation and characterization of Sb-doped Bi(2)UO(6) solid solutions, in a limited composition range, is reported for the first time. The solid solutions were prepared by solid-state reactions of Bi(2)O(3), Sb(2)O(3) and U(3)O(8) in the required stoichiometry. The reaction products were characterized by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) measurements at the Bi and U L(3) edges. The XRD patterns indicate the precipitation of additional phases in the samples when Sb doping exceeds 4 at%. The chemical shifts of the Bi absorption edges in the samples, determined from the XANES spectra, show a systematic variation only up to 4 at% of Sb doping and support the results of XRD measurements. These observations are further supported by the local structure parameters obtained by analysis of the EXAFS spectra. The local structure of U is found to remain unchanged upon Sb doping indicating that Sb(+3) ions replace Bi(+3) during the doping of Bi(2)UO(6) by Sb.

  14. Sintering of Lead-Free Piezoelectric Sodium Potassium Niobate Ceramics

    PubMed Central

    Malič, Barbara; Koruza, Jurij; Hreščak, Jitka; Bernard, Janez; Wang, Ke; Fisher, John G.; Benčan, Andreja

    2015-01-01

    The potassium sodium niobate, K0.5Na0.5NbO3, solid solution (KNN) is considered as one of the most promising, environment-friendly, lead-free candidates to replace highly efficient, lead-based piezoelectrics. Since the first reports of KNN, it has been recognized that obtaining phase-pure materials with a high density and a uniform, fine-grained microstructure is a major challenge. For this reason the present paper reviews the different methods for consolidating KNN ceramics. The difficulties involved in the solid-state synthesis of KNN powder, i.e., obtaining phase purity, the stoichiometry of the perovskite phase, and the chemical homogeneity, are discussed. The solid-state sintering of stoichiometric KNN is characterized by poor densification and an extremely narrow sintering-temperature range, which is close to the solidus temperature. A study of the initial sintering stage revealed that coarsening of the microstructure without densification contributes to a reduction of the driving force for sintering. The influences of the (K + Na)/Nb molar ratio, the presence of a liquid phase, chemical modifications (doping, complex solid solutions) and different atmospheres (i.e., defect chemistry) on the sintering are discussed. Special sintering techniques, such as pressure-assisted sintering and spark-plasma sintering, can be effective methods for enhancing the density of KNN ceramics. The sintering behavior of KNN is compared to that of a representative piezoelectric lead zirconate titanate (PZT). PMID:28793702

  15. Lithium Metal-Copper Vanadium Oxide Battery with a Block Copolymer Electrolyte

    DOE PAGES

    Devaux, Didier; Wang, Xiaoya; Thelen, Jacob L.; ...

    2016-09-08

    Lithium (Li) batteries comprising multivalent positive active materials such as copper vanadium oxide have high theoretical capacity. These batteries with a conventional liquid electrolyte exhibit limited cycle life because of copper dissolution into the electrolyte. In this paper, we report here on the characterization of solid-state Li metal batteries with a positive electrode based on α-Cu 6.9V 6O 18.9 (α-CuVO 3). We replaced the liquid electrolyte by a nanostructured solid block copolymer electrolyte comprising of a mixture of polystyrene-b-poly(ethylene oxide) (SEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. In situ X-ray diffraction was used to follow the Li insertion/de-insertion mechanism into themore » α-CuVO 3 host material and its reversibility. In situ X-ray scattering revealed that the multistep electrochemical reactions involved are similar in the presence of liquid or solid electrolyte. The capacity fade of the solid-state batteries is less rapid than that of α-CuVO 3–Li metal batteries with a conventional liquid electrolyte. Hard X-ray microtomography revealed that upon cycling, voids and Cu-rich agglomerates were formed at the interface between the Li metal and the SEO electrolyte. Finally, the void volume and the volume occupied by the Cu-rich agglomerates were independent of C-rate and cycle number.« less

  16. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries

    PubMed Central

    Fu, Kun (Kelvin); Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D.; Hu, Liangbing

    2016-01-01

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium’s highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (∼3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion–conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li+ transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10−4 S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm2 for around 500 h and a current density of 0.5 mA/cm2 for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium–sulfur batteries. PMID:27307440

  17. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres.

    PubMed

    Taniyasu, Yoshitaka; Kasu, Makoto; Makimoto, Toshiki

    2006-05-18

    Compact high-efficiency ultraviolet solid-state light sources--such as light-emitting diodes (LEDs) and laser diodes--are of considerable technological interest as alternatives to large, toxic, low-efficiency gas lasers and mercury lamps. Microelectronic fabrication technologies and the environmental sciences both require light sources with shorter emission wavelengths: the former for improved resolution in photolithography and the latter for sensors that can detect minute hazardous particles. In addition, ultraviolet solid-state light sources are also attracting attention for potential applications in high-density optical data storage, biomedical research, water and air purification, and sterilization. Wide-bandgap materials, such as diamond and III-V nitride semiconductors (GaN, AlGaN and AlN; refs 3-10), are potential materials for ultraviolet LEDs and laser diodes, but suffer from difficulties in controlling electrical conduction. Here we report the successful control of both n-type and p-type doping in aluminium nitride (AlN), which has a very wide direct bandgap of 6 eV. This doping strategy allows us to develop an AlN PIN (p-type/intrinsic/n-type) homojunction LED with an emission wavelength of 210 nm, which is the shortest reported to date for any kind of LED. The emission is attributed to an exciton transition, and represents an important step towards achieving exciton-related light-emitting devices as well as replacing gas light sources with solid-state light sources.

  18. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries

    NASA Astrophysics Data System (ADS)

    Kun, Kelvin; Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D.; Hu, Liangbing

    2016-06-01

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (˜3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion-conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li+ transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10-4 S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm2 for around 500 h and a current density of 0.5 mA/cm2 for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium-sulfur batteries.

  19. A complete carbon counter electrode for high performance quasi solid state dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Arbab, Alvira Ayoub; Peerzada, Mazhar Hussain; Sahito, Iftikhar Ali; Jeong, Sung Hoon

    2017-03-01

    The proposed research describes the design and fabrication of a quasi-solid state dye sensitized solar cells (Q-DSSCs) with a complete carbon based counter electrode (CC-CE) and gel infused membrane electrolyte. For CE, the platinized fluorinated tin oxide glass (Pt/FTO) was replaced by the soft cationic functioned multiwall carbon nanotubes (SCF-MWCNT) catalytic layer coated on woven carbon fiber fabric (CFF) prepared on handloom by interlacing of carbon filament tapes. SCF-MWCNT were synthesized by functionalization of cationised lipase from Candida Ragusa. Cationised enzyme solution was prepared at pH ∼3 by using acetic acid. The cationic enzyme functionalization of MWCNT causes the minimum damage to the tubular morphology and assist in fast anchoring of negative iodide ions present in membrane electrolyte. The high electrocatalytic activity and low charge transfer resistance (RCT = 2.12 Ω) of our proposed system of CC-CE shows that the woven CFF coated with cationised lipase treated carbon nanotubes enriched with positive surface ions. The Q-DSSCs fabricated with CC-CE and 5 wt% PEO gel infused PVDF-HFP membrane electrolyte exhibit power conversion efficiency of 8.90% under masking. Our suggested low cost and highly efficient system of CC-CE helps the proposed quasi-solid state DSSCs structure to stand out as sustainable next generation solar cells.

  20. Phosphorescent heterobimetallic complexes involving platinum(iv) and rhenium(vii) centers connected by an unsupported μ-oxido bridge.

    PubMed

    Molaee, Hajar; Nabavizadeh, S Masoud; Jamshidi, Mahboubeh; Vilsmeier, Max; Pfitzner, Arno; Samandar Sangari, Mozhgan

    2017-11-28

    Heterobimetallic compounds [(C^N)LMe 2 Pt(μ-O)ReO 3 ] (C^N = ppy, L = PPh 3 , 2a; C^N = ppy, L = PMePh 2 , 2b; C^N = bhq, L = PPh 3 , 2c; C^N = bhq, L = PMePh 2 , 2d) containing a discrete unsupported Pt(iv)-O-Re(vii) bridge have been synthesized through a targeted synthesis route. The compounds have been prepared by a single-pot synthesis in which the Pt(iv) precursor [PtMe 2 I(C^N)L] complexes are allowed to react easily with AgReO 4 in which the iodide ligand of the starting Pt(iv) complex is replaced by an ReO 4 - anion. In these Pt-O-Re complexes, the Pt(iv) centers have an octahedral geometry, completed by a cyclometalated bidentate ligand (C^N), two methyl groups and a phosphine ligand, while the Re(vii) centers have a tetrahedral geometry. Elemental analysis, single crystal X-ray diffraction analysis and multinuclear NMR spectroscopy are used to establish their identities. The new complexes exhibit phosphorescence emission in the solid and solution states at 298 and 77 K, which is an uncommon property of platinum complexes with an oxidation state of +4. According to DFT calculations, we found that this emission behavior in the new complexes originates from ligand centered 3 LC (C^N) character with a slight amount of metal to ligand charge transfer ( 3 MLCT). The solid-state emission data of the corresponding cycloplatinated(iv) precursor complexes [PtMe 2 I(C^N)L], 1a-1d, pointed out that the replacement of I - by an ReO 4 - anion helps enhancing the emission efficiency besides shifting the emission wavelengths.

  1. Recent developments in plastic scintillators with pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Zaitseva, N. P.; Glenn, A. M.; Mabe, A. N.; Carman, M. L.; Hurlbut, C. R.; Inman, J. W.; Payne, S. A.

    2018-05-01

    The paper reports results of studies conducted to improve scintillation performance of plastic scintillators capable of neutron/gamma pulse-shape discrimination (PSD). Compositional modifications made with the polymer matrix improved physical stability, allowing for increased loads of the primary dye that, in combination with selected secondary dyes, provided enhanced PSD especially important for the lower energy ranges. Additional measurements were made with a newly-introduced PSD plastic EJ-276, that replaces the first commercially produced EJ-299. Comparative studies conducted with the new materials and EJ-309 liquids at large scale (up to 10 cm) show that current plastics may provide scintillation and PSD performance sufficient for the replacement of liquid scintillators. Comparison to stilbene single crystals compliments the information about the status of the solid-state materials recently developed for fast neutron detection applications.

  2. Mission Specialist Smith is suited and ready for launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Operations and Checkout Building, STS-103 Mission Specialist Steven L. Smith signals he is suited up and ready for launch. Other crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists C. Michel Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Jean-Frangois Clervoy of France and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. The STS-103 mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. After the 8-day, 21-hour mission, Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:30 p.m. EST.

  3. The new MSFC Solar vector magnetograph. Center director's discretionary fund

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; West, E. A.; Cumings, N. P.

    1984-01-01

    The unique MSFC solar vector magnetograph allows measurements of all three components of the Sun's photospheric magnetic field over a wide field-of-view with spatial resolution determined by a 2.7 x 2.7 arc second pixel size. This system underwent extensive modifications to improve its sensitivity and temporal response. The modifications included replacing an SEC vidicon detector with a solid-state CCD camera; replacing the original digital logic circuitry with an electronic controller and a computer to provide complete, programmable control over the entire operation of the magnetograph; and installing a new polarimeter which consists of a single electro-optical modulator coupled with interchangeable waveplates mounted on a rotating assembly. The system is described and results of calibrations and tests are presented. Initial observations of solar magnetic fields with the new magnetograph are presented.

  4. Metal Halide Solid-State Surface Treatment for High Efficiency PbS and PbSe QD Solar Cells

    PubMed Central

    Crisp, Ryan W.; Kroupa, Daniel M.; Marshall, Ashley R.; Miller, Elisa M.; Zhang, Jianbing; Beard, Matthew C.; Luther, Joseph M.

    2015-01-01

    We developed a layer-by-layer method of preparing PbE (E = S or Se) quantum dot (QD) solar cells using metal halide (PbI2, PbCl2, CdI2, or CdCl2) salts dissolved in dimethylformamide to displace oleate surface ligands and form conductive QD solids. The resulting QD solids have a significant reduction in the carbon content compared to films treated with thiols and organic halides. We find that the PbI2 treatment is the most successful in removing alkyl surface ligands and also replaces most surface bound Cl- with I-. The treatment protocol results in PbS QD films exhibiting a deeper work function and band positions than other ligand exchanges reported previously. The method developed here produces solar cells that perform well even at film thicknesses approaching a micron, indicating improved carrier transport in the QD films. We demonstrate QD solar cells based on PbI2 with power conversion efficiencies above 7%. PMID:25910183

  5. Metal halide solid-state surface treatment for high efficiency PbS and PbSe QD solar cells.

    PubMed

    Crisp, Ryan W; Kroupa, Daniel M; Marshall, Ashley R; Miller, Elisa M; Zhang, Jianbing; Beard, Matthew C; Luther, Joseph M

    2015-04-24

    We developed a layer-by-layer method of preparing PbE (E = S or Se) quantum dot (QD) solar cells using metal halide (PbI2, PbCl2, CdI2, or CdCl2) salts dissolved in dimethylformamide to displace oleate surface ligands and form conductive QD solids. The resulting QD solids have a significant reduction in the carbon content compared to films treated with thiols and organic halides. We find that the PbI2 treatment is the most successful in removing alkyl surface ligands and also replaces most surface bound Cl(-) with I(-). The treatment protocol results in PbS QD films exhibiting a deeper work function and band positions than other ligand exchanges reported previously. The method developed here produces solar cells that perform well even at film thicknesses approaching a micron, indicating improved carrier transport in the QD films. We demonstrate QD solar cells based on PbI2 with power conversion efficiencies above 7%.

  6. Metal Halide Solid-State Surface Treatment for High Efficiency PbS and PbSe QD Solar Cells

    DOE PAGES

    Crisp, R. W.; Kroupa, D. M.; Marshall, A. R.; ...

    2015-04-24

    We developed a layer-by-layer method of preparing PbE (E = S or Se) quantum dot (QD) solar cells using metal halide (PbI 2, PbCl 2, CdI 2, or CdCl 2) salts dissolved in dimethylformamide to displace oleate surface ligands and form conductive QD solids. The resulting QD solids have a significant reduction in the carbon content compared to films treated with thiols and organic halides. We find that the PbI 2 treatment is the most successful in removing alkyl surface ligands and also replaces most surface bound Cl- with I-. The treatment protocol results in PbS QD films exhibiting amore » deeper work function and band positions than other ligand exchanges reported previously. The method developed here produces solar cells that perform well even at film thicknesses approaching a micron, indicating improved carrier transport in the QD films. We demonstrate QD solar cells based on PbI 2 with power conversion efficiencies above 7%.« less

  7. Utilization of oleogels as a replacement for solid fat in aerated baked goods: Physicochemical, rheological, and tomographic characterization

    USDA-ARS?s Scientific Manuscript database

    Canola oil-carnauba wax oleogels were evaluated as a replacement for shortening in a baked cake system. The use of oleogels produced cake batters with a lower pseudoplastic property and also contributed to their viscous nature. The shortening replacement with oleogels at up to 50% was effective in m...

  8. La{sup 3+} doping of the Sr{sub 2}CoWO{sub 6} double perovskite: A structural and magnetic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, C.A.; Viola, M.C.; Pedregosa, J.C.

    2008-11-15

    La-doped Sr{sub 2}CoWO{sub 6} double perovskites have been prepared in air in polycrystalline form by solid-state reaction. These materials have been studied by X-ray powder diffraction (XRPD), neutron powder diffraction (NPD) and magnetic susceptibility. The structural refinement was performed from combined XRPD and NPD data (D2B instrument, {lambda}=1.594 A). At room temperature, the replacement of Sr{sup 2+} by La{sup 3+} induces a change of the tetragonal structure, space group I4/m of the undoped Sr{sub 2}CoWO{sub 6} into the distorted monoclinic crystal structure, space group P2{sub 1}/n, Z=2. The structure of La-doped phases contains alternating CoO{sub 6} and (Co/W)O{sub 6} octahedra,more » almost fully ordered. On the other hand, the replacement of Sr{sup 2+} by La{sup 3+} induces a partial replacement of W{sup 6+} by Co{sup 2+} into the B sites, i.e. Sr{sub 2-x}La{sub x}CoW{sub 1-y}Co{sub y}O{sub 6} (y=x/4) with segregation of SrWO{sub 4}. Magnetic and neutron diffraction measurements indicate an antiferromagnetic ordering below T{sub N}=24 K independently of the La-substitution. - Graphical abstract: La-doped Sr{sub 2}CoWO{sub 6} double perovskites have been prepared in polycrystalline form by solid-state reaction. The general formula of these compounds is Sr{sub 2-x}La{sub x}CoW{sub 1-y}Co{sub y}O{sub 6} (y=x/4). XRPD, NPD and magnetic susceptibility studies were performed. The structure of monoclinic La-doped phases contains alternating CoO{sub 6} and (Co/W)O{sub 6} octahedra, almost fully ordered. NPD and magnetic measurements indicate an antiferromagnetic ordering at low temperature.« less

  9. Humidity-swing mechanism for CO2 capture from ambient air.

    PubMed

    Yang, Hao; Singh, Manmilan; Schaefer, Jacob

    2018-05-10

    A humidity-swing polymeric sorbent captures CO2 from ambient air at room temperature simply by changing the humidity level. To date there has been no direct experimental evidence to characterize the chemical mechanism for this process. In this report we describe the use of solid-state NMR to study the humidity-swing CO2 absorption/desorption cycle directly. We find that at low humidity levels CO2 is absorbed as HCO3-. At high humidity levels, HCO3- is replaced by hydrated OH- and the absorbed CO2 is released.

  10. Aircraft photovoltaic power-generating system

    NASA Astrophysics Data System (ADS)

    Doellner, Oscar Leonard

    Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet-engine design modifications incorporating this concept not only save weight (and thus fuel), but are - in themselves - favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project.

  11. Preliminary flight prototype silver ion monitoring system

    NASA Technical Reports Server (NTRS)

    Brady, J.

    1974-01-01

    The design, fabrication, and testing of a preliminary flight prototype silver ion monitoring system based on potentiometric principles and utilizing a solid-state silver sulfide electrode paired with a pressurized double-junction reference electrode housing a replaceable electrolyte reservoir is described. The design provides automatic electronic calibration utilizing saturated silver bromide solution as a silver ion standard. The problem of loss of silver ion from recirculating fluid, its cause, and corrective procedures are reported. The instability of the silver sulfide electrode is discussed as well as difficulties met in implementing the autocalibration procedure.

  12. Solid-state fermentation of industrial solid wastes from the fruits of milk thistle Silybum marianum for feed quality improvement.

    PubMed

    Li, Fang; Li, Feng; Zhao, Ting; Mao, Guanghua; Zou, Ye; Zheng, Daheng; Takase, Mohammed; Feng, Weiwei; Wu, Xiangyang; Yang, Liuqing

    2013-08-01

    The industrial solid wastes generated during the production of silymarin from the fruits of milk thistle Silybum marianum was used as the substrate. Preparation and evaluation of the feeds produced by solid-state fermentation (SSF) of the industrial solid wastes was carried out. The protein content of the fermented feed (FF) from a combination of Aspergillus niger and Candida tropicalis was the highest among the examined strains. The optimal process parameters for protein enrichment with SSF using A. niger and C. tropicalis included incubation temperature of 30.8 °C, fermentation time of 87.0 h, and initial moisture content of 59.7 %. Under these conditions, the value additions of FF occurred. The fiber of FF was decreased by 25.07 %, while the digestibility of protein, protein content, and the ratio of total essential amino acids to total amino acids were increased by 79.85, 16.22, and 8.21 %, respectively. The analysis indicated that FF contained 1.44 mg/kg flavonoids and 0.5 mg/kg silybin, which significantly increased by 2.42 and 1.63 times, respectively than those in unfermented substrates. FF recorded reduced molecular weight of proteins from 20.1 to 44.3 kDa to below 14.3 kDa. The results of feeding trial of FF replacement with soybean meal in broilers diets for 8 weeks showed that FF significantly improved carcass characteristics including abdominal fat rate, serum biochemical parameters including aspartate transaminase, blood urea nitrogen and high density lipoprotein cholesterol, and immune responses of broilers. A potential feed quality improvement was achieved through mixed strains SSF of industrial solid wastes of S. marianum fruits.

  13. STS-103 crew pose in front of Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During Terminal Countdown Demonstration Test (TDCT) activities at Launch Pad 39B, the STS-103 crew pose in front of the flame trench, which is situated underneath the Mobile Launcher Platform holding Space Shuttle Discovery. Standing left to right are Mission Specialists Claude Nicollier of Switzerland, who is with the European Space Agency (ESA), C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Pilot Scott J. Kelly, Commander Curtis L. Brown Jr., and Mission Specialists Jean-Frangois Clervoy of France, also with ESA, and Steven L. Smith. One of the solid rocket boosters and the external tank that are attached to Discovery can be seen in the photo. The flame trench is made of concrete and refractory brick, and contains an orbiter flame deflector on one side and solid rocket booster flame deflector on the other. The deflectors protect the flame trench floor and pad surface from the intense heat of launch. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  14. KSC-99pp1324

    NASA Image and Video Library

    1999-11-16

    During Terminal Countdown Demonstration Test (TDCT) activities at Launch Pad 39B, the STS-103 crew pose in front of the flame trench, which is situated underneath the Mobile Launcher Platform holding Space Shuttle Discovery. Standing left to right are Mission Specialists Claude Nicollier of Switzerland, who is with the European Space Agency (ESA), C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Pilot Scott J. Kelly, Commander Curtis L. Brown Jr., and Mission Specialists Jean-François Clervoy of France, also with ESA, and Steven L. Smith. One of the solid rocket boosters and the external tank that are attached to Discovery can be seen in the photo. The flame trench is made of concrete and refractory brick, and contains an orbiter flame deflector on one side and solid rocket booster flame deflector on the other. The deflectors protect the flame trench floor and pad surface from the intense heat of launch. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a "call-up" mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST

  15. Tunable femtosecond lasers with low pump thresholds

    NASA Astrophysics Data System (ADS)

    Oppo, Karen

    The work in this thesis is concerned with the development of tunable, femtosecond laser systems, exhibiting low pump threshold powers. The main motive for this work was the development of a low threshold, self-modelocked Ti:Al2O3 laser in order to replace the conventional large-frame argon-ion pump laser with a more compact and efficient all-solid-state alternative. Results are also presented for an all-solid-state, self-modelocked Cr:LiSAF laser, however most of this work is concerned with self-modelocked Ti:Al2O3 laser systems. In chapter 2, the operation of a regeneratively-initiated, and a hard-aperture self- modelocked Ti:Al2O3 laser, pumped by an argon-ion laser, is discussed. Continuous- wave oscillation thresholds as low as 160mW have been demonstrated, along with self-modelocked threshold powers as low as 500mW. The measurement and suppression of phase noise on modelocked lasers is discussed in chapter 3. This is followed by a comparison of the phase noise characteristics of the regeneratively-initiated, and hard-aperture self-modelocked Ti:Al2O3 lasers. The use of a synchronously-operating, high resolution electron-optical streak camera in the evaluation of timing jitter is also presented. In chapter 4, the construction and self-modelocked operation of an all-solid-state Ti:Al2O3 laser is described. The all-solid-state alternative to the conventional argon-ion pump laser was a continuous-wave, intracavity-frequency doubled, diode-laser pumped Nd:YLF ring laser. At a total diode-laser pump power of 10W, this minilaser was capable of producing a single frequency output of 1W, at 523.5nm in a TEM00 beam. The remainder of this thesis looks at the operation of a self-modelocked Ti:Al2O3 laser generating ultrashort pulses at wavelengths as long as 1053nm. The motive for this work was the development of an all-solid-state, self- modelocked Ti:Al2O3 laser operating at 1053nm, for use as a master oscillator in a Nd:glass power chain.

  16. Solid State Ultracapacitor

    NASA Technical Reports Server (NTRS)

    Rolin, Terry D.

    2015-01-01

    NASA analyzes, tests, packages, and fabricates electrical, electronic, and electromechanical (EEE) parts used in space vehicles. One area that NASA wishes to advance is energy storage and delivery. Currently, space vehicles use rechargeable batteries that utilize silver zinc or lithium ion electrochemical processes. These current state-of-the-art rechargeable batteries cannot be rapidly charged, contain harmful chemicals, and suffer from early wear-out mechanisms. A solid state ultracapacitor is an EEE part that offers significant advantages over current electrochemical and electrolytic devices. The objective of this research is to develop an internal barrier layer ultracapacitor (IBLC) using novel dielectric materials as a battery replacement with a focus on these advantages: longer life, lower mass-toweight ratio, rapid charging, on-demand pulse power, improved on-pad standby time without maintenance, and environmental friendliness. The approach is unique in two areas. A deposition technique is used that has been shown to produce a more uniformly coated nanoparticle than sol-gel, which has resulted in colossal permittivities. These particles are then distributed in an ink formulation developed at NASA Marshall Space Flight Center (MSFC) and deposited utilizing a 3D aerosol jet technique. This additive manufacturing technique controls layer thickness, resulting in extremely large capacitance and energy density.

  17. Heat capacity and magnetocaloric effect in manganites (La 1- yEu y) 0.7Pb 0.3MnO 3 ( y:0.2; 0.6)

    NASA Astrophysics Data System (ADS)

    Kartashev, A. V.; Flerov, I. N.; Volkov, N. V.; Sablina, K. A.

    2010-03-01

    Heat capacity and intensive magnetocaloric effect (MCE) in manganites (La 1- yEu y) 0.7Pb 0.3MnO 3 [ y=0.2; 0.6] (LEPM) were investigated by means of adiabatic calorimeter. The heat capacity anomaly as well as the values of both the intensive (Δ TAD) and the extensive (Δ SMCE) MCE were found to decrease upon increased replacement of La with nonmagnetic Eu. However, because of widening of the MCE peaks, the LEPM compounds show the relative cooling power, RCP/Δ H, comparable to other solid solutions of manganites. Owing to strong effect of Eu→La substitution on the Curie temperature, LEPM might have potential as the solid state refrigerants in multi-element cooling apparatus operating in a wide temperature range.

  18. Dipolar-dephasing 13C NMR studies of decomposed wood and coalified xylem tissue: Evidence for chemical structural changes associated with defunctionalization of lignin structural units during coalification

    USGS Publications Warehouse

    Hatcher, P.G.

    1988-01-01

    A series of decomposed and coalified gymnosperm woods was examined by conventional solid-state 13C nuclear magnetic resonance (NMR) and by dipolar-dephasing NMR techniques. The results of these NMR studies for a histologically related series of samples provide clues as to the nature of codification reactions that lead to the defunctionalization of lignin-derived aromatic structures. These reactions sequentially involve the following: (1) loss of methoxyl carbons from guaiacyl structural units with replacement by hydroxyls and increased condensation; (2) loss of hydroxyls or aryl ethers with replacement by hydrogen as rank increases from lignin to high-volatile bituminous coal; (3) loss of alkyl groups with continued replacement by hydrogen. The dipolar-dephasing data show that the early stages of coalification in samples examined (lignin to lignite) involve a decreasing degree of protonation on aromatic rings and suggest that condensation is significant during coalification at this early stage. An increasing degree of protonation on aromatic rings is observed as the rank of the sample increases from lignite to anthracite.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuenge, Jason R.

    The DOE Municipal Solid-State Street Lighting Consortium has evaluated four different LED replacements for existing ornamental post-top street lights in Sacramento, California. The project team was composed of the City and its consultant, PNNL (representing the Consortium), and the Sacramento Municipal Utility District. Product selection was finalized in March 2011, yielding one complete luminaire replacement and three lamp-ballast retrofit kits. Computer simulations, field measurements, and laboratory testing were performed to compare the performance and cost-effectiveness of the LED products relative to the existing luminaire with 100 W high-pressure sodium lamp. After it was confirmed the LED products were not equivalentmore » to HPS in terms of initial photopic illumination, the following parameters were scaled proportionally to enable equitable (albeit hypothetical) comparisons: light output, input wattage, and pricing. Four replacement scenarios were considered for each LED product, incorporating new IES guidance for mesopic multipliers and lumen maintenance extrapolation, but life cycle analysis indicated cost effectiveness was also unacceptable. Although LED efficacy and pricing continue to improve, this project serves as a timely and objective notice that LED technology may not be quite ready yet for such applications.« less

  20. Hubble (HST) hardware is inspected in PHSF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility, part of the servicing equipment for the third Hubble Space Telescope Servicing Mission (SM-3A), STS-103, is given a black light inspection. The hardware is undergoing final testing and integration of payload elements. Mission STS-103 is a 'call-up' due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  1. KSC-99pp1078

    NASA Image and Video Library

    1999-08-25

    In the Payload Hazardous Servicing Facility, a worker gives a black light inspection to part of the servicing equipment for the third Hubble Space Telescope Servicing Mission (SM-3A), STS-103. The hardware is undergoing final testing and integration of payload elements. Mission STS-103 is a "call-up" due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review

  2. KSC-99pp1079

    NASA Image and Video Library

    1999-08-25

    In the Payload Hazardous Servicing Facility, part of the servicing equipment for the third Hubble Space Telescope Servicing Mission (SM-3A), STS-103, is given a black light inspection. The hardware is undergoing final testing and integration of payload elements. Mission STS-103 is a "call-up" due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review

  3. Role of second-sphere coordination in anion binding: Synthesis, characterization and X-ray structure of hexaamminecobalt(III) chloride hydrogen phthalate trihydrate and sodium hexaamminecobalt(III) benzoate monohydrate

    NASA Astrophysics Data System (ADS)

    Sharma, Raj Pal; Bala, Ritu; Sharma, Rajni; Kariuki, B. M.; Rychlewska, Urszula; Warżajtis, Beata

    2005-06-01

    In an effort to utilize [Co(NH 3) 6] 3+cation as a new host for carboxylate ions, orange coloured crystalline solids of composition [Co(NH 3) 6]Cl(C 8H 5O 4) 2·3H 2O ( 1) and Na[Co(NH 3) 6](C 7H 5O 2) 4·H 2O ( 2) were obtained by reacting hot aqueous solutions of hexaamminecobalt(III) chloride with potassium hydrogen phthalate and sodium benzoate in 1:3 molar ratio, respectively. The title complex salts were characterized by elemental analyses and spectroscopic studies (IR, UV/Visible and NMR). Single crystal X-ray structure determinations revealed the formation of second-sphere coordination complexes based on hydrogen bond interactions. In complex salt 1 only two out of three ionisable chloride ions present in [Co(NH 3) 6]Cl 3 were replaced by two CHO4- ions whereas in complex salt 2 all the three ionisable chloride ions present in [Co(NH 3) 6]Cl 3 were replaced and the final product was an adduct with another mole of sodium benzoate in solid state. The crystal lattice is stabilized by electrostatic forces of attraction and predominantly N-H⋯O interactions.

  4. STS-103 Discovery rolls over to VAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    After making a turn in front of the Orbiter Processing Facility (OPF) bay 1, the orbiter Discovery begins moving along the tow-way to the Vehicle Assembly Building as KSC workers watch. At the VAB, Discovery will be mated with an external tank and solid rocket boosters for its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode.

  5. KSC-99pp1278

    NASA Image and Video Library

    1999-11-04

    KENNEDY SPACE CENTER, FLA. -- After making a turn in front of the Orbiter Processing Facility (OPF) bay 1, the orbiter Discovery begins moving along the tow-way to the Vehicle Assembly Building as KSC workers watch. At the VAB, Discovery will be mated with an external tank and solid rocket boosters for its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode

  6. 3D Fiber-Network-Reinforced Bicontinuous Composite Solid Electrolyte for Dendrite-free Lithium Metal Batteries.

    PubMed

    Li, Dan; Chen, Long; Wang, Tianshi; Fan, Li-Zhen

    2018-02-28

    Replacement of flammable organic liquid electrolytes with solid Li + conductors is a promising approach to realize excellent performance of Li metal batteries. However, ceramic electrolytes are either easily reduced by Li metal or penetrated by Li dendrites through their grain boundaries, and polymer electrolytes are also faced with instability on the electrode/electrolyte interface and weak mechanical property. Here, we report a three-dimensional fiber-network-reinforced bicontinuous solid composite electrolyte with flexible Li + -conductive network (lithium aluminum titanium phosphate (LATP)/polyacrylonitrile), which helps to enhance electrochemical stability on the electrode/electrolyte interface by isolating Li and LATP and suppress Li dendrites growth by mechanical reinforcement of fiber network for the composite solid electrolyte. The composite electrolyte shows an excellent electrochemical stability after 15 days of contact with Li metal and has an enlarged tensile strength (10.72 MPa) compared to the pure poly(ethylene oxide)-bistrifluoromethanesulfonimide lithium salt electrolyte, leading to a long-term stability and safety of the Li symmetric battery with a current density of 0.3 mA cm -2 for 400 h. In addition, the composite electrolyte also shows good electrochemical and thermal stability. These results provide such fiber-reinforced membranes that present stable electrode/electrolyte interface and suppress lithium dendrite growth for high-safety all-solid-state Li metal batteries.

  7. Designs for surge immunity in critical electronic facilities

    NASA Technical Reports Server (NTRS)

    Roberts, Edward F., Jr.

    1991-01-01

    In recent years, Federal Aviation Administration (FAA) embarked on a program replacing older tube type electronic equipment with newer solid state equipment. This replacement program dramatically increased the susceptibility of the FAA's facilities to lightning related damages. The proposal is presented of techniques which may be employed to lessen the susceptibility of new FAA electronic facility designs to failures resulting from lightning related surges and transients as well as direct strikes. The general concept espoused is one of a consistent system approach employing both perimeter and internal protection. It compares the technique presently employed to reduce electronic noise with other techniques which reduce noise while lowering susceptibility to lightning related damage. It is anticipated that these techniques will be employed in the design of an Air Traffic Control Tower in a high isokeraunic area. This facility would be subjected to rigorous monitoring over a multi-year period to provide quantitative data hopefully supporting the advantage of this design.

  8. KSC-99pp1439

    NASA Image and Video Library

    1999-12-17

    An olivaceous cormorant soars in the cloud-streaked sky near the Space Shuttle Discovery as it waits for liftoff on mission STS-103. To the left of Discovery is the Rotating Service Structure, rolled back on Dec. 16 in preparation for launch. At right is a 290-foot-high water tank with a capacity of 300,000 gallons. The tank is part of the sound suppression water system used during launch. The STS-103 mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. The mission is expected to last about 8 days and 21 hours. Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:25 p.m. EST

  9. The STS-103 crew address family and friends at Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-103 crew address family and friends at Launch Pad 39B. From left to right are Pilot Scott J. Kelly, Commander Curtis L. Brown Jr., and Mission Specialists C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Jean-Frangois Clervoy of France , Claude Nicollier of Switzerland and Steven L. Smith. Nicollier and Clervoy are with the European Space Agency. In the background is Space Shuttle Discovery, alongside the lighted Fixed Service Structure. The STS-103 mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. The mission is expected to last about 8 days and 21 hours. Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:25 p.m. EST.

  10. STS-103 MS Smith prepares to enter orbiter from White Room

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-103 Mission Specialist Steven L. Smith, in his orange launch and entry suit, waits for assistance from closeout crew members in the White Room before entering the orbiter. From left, they are NASA Quality Assurance Specialist Danny Wyatt, United Space Alliance (USA) Mechanical Technician Vinny Defranzo and USA Orbiter Vehicle Closeout Chief Travis Thompson. The White Room is an environmental chamber at the end of the orbiter access arm on the fixed service structure. It provides entry to the orbiter crew compartment. The mission, to service the Hubble Space Telescope, is scheduled to lift off at 7:50 p.m. EST Dec. 19 on mission STS-103, servicing the Hubble Space Telescope. Objectives for the nearly eight-day mission include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Discovery is expected to land at KSC Monday, Dec. 27, at about 5:24 p.m. EST.

  11. STS-103 Mission Specialist Smith suits up before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    After donning his launch and entry suit, sts-103 Mission Specialist Steven L. Smith shows a positive attitude over the second launch attempt for Space Shuttle Discovery. The previous launch attempt on Dec. 17 was scrubbed about 8:52 p.m. due to numerous violations of weather launch commit criteria at KSC. Smith and other crew members Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland and Jean-Francois Clervoy of France are scheduled to lift off at 7:50 p.m. EST Dec. 19 on mission STS-103, servicing the Hubble Space Telescope. Objectives for the nearly eight-day mission include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Discovery is expected to land at KSC Monday, Dec. 27, at about 5:24 p.m. EST.

  12. KSC-99pp1480

    NASA Image and Video Library

    1999-12-19

    KENNEDY SPACE CENTER, FLA. -- STS-103 Commander Curtis L. Brown Jr., in his orange launch and entry suit, enjoys a laugh with closeout crew members in the White Room before entering the orbiter. From left are United Space Alliance (USA) Mechanical Technician Rene Arriens, USA Orbiter Vehicle Closeout Chief Travis Thompson, and NASA Quality Assurance Specialist Danny Wyatt. The white room is an environmental chamber at the end of the orbiter access arm on the fixed service structure. It provides entry to the orbiter crew compartment. The mission, to service the Hubble Space Telescope, is scheduled to lift off at 7:50 p.m. EST Dec. 19 on mission STS-103, servicing the Hubble Space Telescope. Objectives for the nearly eight-day mission include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Discovery is expected to land at KSC Monday, Dec. 27, at about 5:24 p.m. EST

  13. Challenges and opportunities of the bio-pesticides production by solid-state fermentation: filamentous fungi as a model.

    PubMed

    De la Cruz Quiroz, Reynaldo; Roussos, Sevastianos; Hernández, Daniel; Rodríguez, Raúl; Castillo, Francisco; Aguilar, Cristóbal N

    2015-01-01

    In recent years, production and use of bio-pesticides have increasing and replacing some synthetic chemical pesticides applied to food commodities. In this review, biological control is focused as an alternative, to some synthetic chemical treatments that cause environmental, human health, and food quality risks. In addition, several phytopathogenic microorganisms have developed resistance to some of these synthetic chemicals and become more difficult to control. Worldwide, the bio-pesticides market is growing annually at a rate of 44% in North America, 20% in Europe and Oceania, 10% in Latin and South American countries and 6% in Asia. Use of agro-industrial wastes and solid-state fermentation (SSF) technology offers an alternative to bio-pesticide production with advantages versus conventional submerged fermentations, as reduced cost and energy consumption, low production of residual water and high stability products. In this review, recent data about state of art regarding bio-pesticides production under SSF on agroindustrial wastes will be discussed. SSF can be defined as a microbial process that generally occurs on solid material in the absence of free water. This material has the ability to absorb water with or without soluble nutrients, since the substrate must have water to support the microorganism's growth and metabolism. Changes in water content are analyzed in order to select the conditions for a future process, where water stress can be combined with the best spore production conditions, obtaining in this way an inexpensive biotechnological option for modern agriculture in developing countries.

  14. Digital imaging with solid state x-ray image intensifiers

    NASA Astrophysics Data System (ADS)

    Damento, Michael A.; Radspinner, Rachel; Roehrig, Hans

    1999-10-01

    X-ray cameras in which a CCD is lens coupled to a large phosphor screen are known to suffer from a loss of x-ray signal due to poor light collection from conventional phosphors, making them unsuitable for most medical imaging applications. By replacing the standard phosphor with a solid-state image intensifier, it may be possible to improve the signal-to-noise ratio of the images produced with these cameras. The solid-state x-ray image intensifier is a multi- layer device in which a photoconductor layer controls the light output from an electroluminescent phosphor layer. While prototype devices have been used for direct viewing and video imaging, they are only now being evaluated in a digital imaging system. In the present work, the preparation and evaluation of intensifiers with a 65 mm square format are described. The intensifiers are prepared by screen- printing or doctor blading the following layers onto an ITO coated glass substrate: ZnS phosphor, opaque layer, CdS photoconductor, and carbon conductor. The total thickness of the layers is approximately 350 micrometers , 350 VAC at 400 Hz is applied to the device for operation. For a given x-ray dose, the intensifiers produce up to three times the intensity (after background subtracting) of Lanex Fast Front screens. X-ray images produced with the present intensifiers are somewhat noisy and their resolution is about half that of Lanex screens. Modifications are suggested which could improve the resolution and noise of the intensifiers.

  15. Comparative evaluation of agroindustrial byproducts for the production of alkaline protease by wild and mutant strains of Bacillus subtilis in submerged and solid state fermentation.

    PubMed

    Mukhtar, Hamid; Haq, Ikramul

    2013-01-01

    The present study describes the screening of different agroindustrial byproducts for enhanced production of alkaline protease by a wild and EMS induced mutant strain of Bacillus subtilis IH-72(EMS8). During submerged fermentation, different agro-industrial byproducts were tested which include defatted seed meals of rape, guar, sunflower, gluten, cotton, soybean, and gram. In addition to these meals, rice bran, wheat bran, and wheat flour were also evaluated for protease production. Of all the byproducts tested, soybean meal at a concentration of 20 g/L gave maximum production of the enzyme, that is, 5.74  ±  0.26 U/mL from wild and 11.28  ±  0.45 U/mL from mutant strain, during submerged fermentation. Different mesh sizes (coarse, medium, and fine) of the soybean meal were also evaluated, and a finely ground soybean meal (fine mesh) was found to be the best. In addition to the defatted seed meals, their alkali extracts were also tested for the production of alkaline protease by Bacillus subtilis, but these were proved nonsignificant for enhanced production of the enzyme. The production of the enzyme was also studied in solid state fermentation, and different agro-industrial byproducts were also evaluated for enzyme production. Wheat bran partially replaced with guar meal was found as the best substrate for maximum enzyme production under solid state fermentation conditions.

  16. Comparative Evaluation of Agroindustrial Byproducts for the Production of Alkaline Protease by Wild and Mutant Strains of Bacillus subtilis in Submerged and Solid State Fermentation

    PubMed Central

    Haq, Ikramul

    2013-01-01

    The present study describes the screening of different agroindustrial byproducts for enhanced production of alkaline protease by a wild and EMS induced mutant strain of Bacillus subtilis IH-72EMS8. During submerged fermentation, different agro-industrial byproducts were tested which include defatted seed meals of rape, guar, sunflower, gluten, cotton, soybean, and gram. In addition to these meals, rice bran, wheat bran, and wheat flour were also evaluated for protease production. Of all the byproducts tested, soybean meal at a concentration of 20 g/L gave maximum production of the enzyme, that is, 5.74  ±  0.26 U/mL from wild and 11.28  ±  0.45 U/mL from mutant strain, during submerged fermentation. Different mesh sizes (coarse, medium, and fine) of the soybean meal were also evaluated, and a finely ground soybean meal (fine mesh) was found to be the best. In addition to the defatted seed meals, their alkali extracts were also tested for the production of alkaline protease by Bacillus subtilis, but these were proved nonsignificant for enhanced production of the enzyme. The production of the enzyme was also studied in solid state fermentation, and different agro-industrial byproducts were also evaluated for enzyme production. Wheat bran partially replaced with guar meal was found as the best substrate for maximum enzyme production under solid state fermentation conditions. PMID:24294129

  17. Solid state replacement of rotating mirror cameras

    NASA Astrophysics Data System (ADS)

    Frank, Alan M.; Bartolick, Joseph M.

    2007-01-01

    Rotating mirror cameras have been the mainstay of mega-frame per second imaging for decades. There is still no electronic camera that can match a film based rotary mirror camera for the combination of frame count, speed, resolution and dynamic range. The rotary mirror cameras are predominantly used in the range of 0.1 to 100 micro-seconds per frame, for 25 to more than a hundred frames. Electron tube gated cameras dominate the sub microsecond regime but are frame count limited. Video cameras are pushing into the microsecond regime but are resolution limited by the high data rates. An all solid state architecture, dubbed 'In-situ Storage Image Sensor' or 'ISIS', by Prof. Goji Etoh has made its first appearance into the market and its evaluation is discussed. Recent work at Lawrence Livermore National Laboratory has concentrated both on evaluation of the presently available technologies and exploring the capabilities of the ISIS architecture. It is clear though there is presently no single chip camera that can simultaneously match the rotary mirror cameras, the ISIS architecture has the potential to approach their performance.

  18. Overview and Highlights of WOLEDs and Organic Solar Cells: From Research to Applications

    NASA Astrophysics Data System (ADS)

    Chan, Maggie Mei-Yee; Tao, Chi-Hang; Yam, Vivian Wing-Wah

    Solid-state organic devices are at the vanguard of new generation of electronic components owing to their promise to be easily manufactured onto flexible substrates that potentially reduce the mass production cost for large modules. With the great efforts on improving the power efficiency that meets the realistic requirements for commercial applications, white organic light-emitting devices (WOLEDs) and organic solar cells have attracted much attention over the past two decades and are targeted as the effective ways for reducing the energy consumption and developing renewable energy in the world. Because of their great potentials to generate tremendous savings in both cost and energy usage, WOLEDs are considered as new generations of solid-state lighting sources to replace the incandescent bulbs, while organic solar cells are the most promising candidates to complement the inorganic silicon solar cells for electricity generation. Here, we will provide a survey on the recent developments of WOLEDs and organic solar cells and their current status in these fields. Resistances and hampers to the widespread acceptances of these two areas of developments are also discussed.

  19. Numerical Analysis on Effect of Areal Gas Distribution Pipe on Characteristics Inside COREX Shaft Furnace

    NASA Astrophysics Data System (ADS)

    Wu, Shengli; Du, Kaiping; Xu, Jian; Shen, Wei; Kou, Mingyin; Zhang, Zhekai

    2014-07-01

    In recent years, two parallel pipes of areal gas distribution (AGD) were installed into the COREX shaft furnace to improve the furnace efficiency. A three-dimensional mathematical model at steady state, which takes a modified three-interface unreacted core model into consideration, is developed in the current work to describe the effect of the AGD pipe on the inner characteristics of shaft furnace. The accuracy of the model is evaluated using the plant operational data. The AGD pipe effectively improves the uniformity of reducing gas distribution, which leads to an increase in gas temperature and concentration of CO or H2 around the AGD pipe, and hence it further contributes to the iron oxide reduction. As a result, the top gas utilization rate and the solid metallization rate (MR) at the bottom outlet are increased by 0.015 and 0.11, respectively. In addition, the optimizations of the flow volume ratio (FVR) of the reducing gas fed through the AGD inlet and the AGD pipe arrangement are further discussed based on the gas flow distribution and the solid MR. Despite the relative suitability of the current FVR (60%), it is still meaningful to enable a manual adjustment of FVR, instead of having it driven by pressure difference, to solve certain production problems. On the other hand, considering the flatter distribution of gas flow, the higher solid MR, and easy installation and replacement, the cross distribution arrangement of AGD pipe with a length of 3 m is recommended to replace the current AGD pipe arrangement.

  20. High Performance OLED Panel and Luminaire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spindler, Jeffrey

    2017-02-20

    In this project, OLEDWorks developed and demonstrated the technology required to produce OLED lighting panels with high energy efficiency and excellent light quality. OLED panels developed in this program produce high quality warm white light with CRI greater than 85 and efficacy up to 80 lumens per watt (LPW). An OLED luminaire employing 24 of the high performance panels produces practical levels of illumination for general lighting, with a flux of over 2200 lumens at 60 LPW. This is a significant advance in the state of the art for OLED solid-state lighting (SSL), which is expected to be a complementarymore » light source to the more advanced LED SSL technology that is rapidly replacing all other traditional forms of lighting.« less

  1. Amylose-potassium oleate inclusion complex in plain set-style yogurt.

    PubMed

    Singh, Mukti; Byars, Jeffrey A; Kenar, James A

    2014-05-01

    Health and wellness aspirations of U.S. consumers continue to drive the demand for lower fat from inherently beneficial foods such as yogurt. Removing fat from yogurt negatively affects the gel strength, texture, syneresis, and storage of yogurt. Amylose-potassium oleate inclusion complexes (AIC) were used to replace skim milk solids to improve the quality of nonfat yogurt. The effect of AIC on fermentation of yogurt mix and strength of yogurt gel was studied and compared to full-fat samples. Texture, storage modulus, and syneresis of yogurt were observed over 4 weeks of storage at 4 °C. Yogurt mixes having the skim milk solids partially replaced by AIC fermented at a similar rate as yogurt samples with no milk solids replaced and full-fat milk. Initial viscosity was higher for yogurt mixes with AIC. The presence of 3% AIC strengthened the yogurt gel as indicated by texture and rheology measurements. Yogurt samples with 3% AIC maintained the gel strength during storage and resulted in low syneresis after storage for 4 wk. © 2014 Institute of Food Technologists®

  2. Utilization of Oleogels as a Replacement for Solid Fat in Aerated Baked Goods: Physicochemical, Rheological, and Tomographic Characterization.

    PubMed

    Kim, Joo Young; Lim, Jeongtaek; Lee, JaeHwan; Hwang, Hong-Sik; Lee, Suyong

    2017-02-01

    Canola oil-carnauba wax oleogels were evaluated as a replacement for shortening in a baked cake system. The use of oleogels produced cake batters with a lower pseudoplastic property and also contributed to their viscous nature. The shortening replacement with oleogels at up to 50% was effective in maintaining the ability to hold air cells into the cake batters. The volume of cakes had an overall tendency to decrease with increasing shortening replacement with oleogels, leading to increased cake firmness. The tomographic analysis demonstrated that the total porosity and fragmentation index were reduced in the oleogel cakes, showing a more connected solid structure. The levels of saturated fatty acids in the cakes containing oleogels were significantly reduced to 13.3%, compared to the control with shortening (74.2%). As a result, the use of oleogels for shortening up to 25% produced cakes with lower levels of saturated fatty acids without quality loss. © 2016 Institute of Food Technologists®.

  3. Method of forming a foamed thermoplastic polymer

    DOEpatents

    Duchane, D.V.; Cash, D.L.

    1984-11-21

    A solid thermoplastic polymer is immersed in an immersant solution comprising a compatible carrier solvent and an infusant solution containing an incompatible liquid blowing agent for a time sufficient for the immersant solution to infuse into the polymer. The carrier solvent is then selectively extracted, preferably by a solvent exchange process in which the immersant solution is gradually diluted with and replaced by the infusant solution, so as to selectively leave behind the infustant solution permanently entrapped in the polymer. The polymer is then heated to volatilize the blowing agent and expand the polymer into a foamed state.

  4. Real-time control system for adaptive resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flath, L; An, J; Brase, J

    2000-07-24

    Sustained operation of high average power solid-state lasers currently requires an adaptive resonator to produce the optimal beam quality. We describe the architecture of a real-time adaptive control system for correcting intra-cavity aberrations in a heat capacity laser. Image data collected from a wavefront sensor are processed and used to control phase with a high-spatial-resolution deformable mirror. Our controller takes advantage of recent developments in low-cost, high-performance processor technology. A desktop-based computational engine and object-oriented software architecture replaces the high-cost rack-mount embedded computers of previous systems.

  5. Design of optimum solid oxide membrane electrolysis cells for metals production

    DOE PAGES

    Guan, Xiaofei; Pal, Uday B.

    2015-12-24

    Oxide to metal conversion is one of the most energy-intensive steps in the value chain for metals production. Solid oxide membrane (SOM) electrolysis process provides a general route for directly reducing various metal oxides to their respective metals, alloys, or intermetallics. Because of its lower energy use and ability to use inert anode resulting in zero carbon emission, SOM electrolysis process emerges as a promising technology that can replace the state-of-the-art metals production processes. In this paper, a careful study of the SOM electrolysis process using equivalent DC circuit modeling is performed and correlated to the experimental results. Finally, amore » discussion on relative importance of each resistive element in the circuit and on possible ways of lowering the rate-limiting resistive elements provides a generic guideline for designing optimum SOM electrolysis cells.« less

  6. A Membrane Model from Implicit Elasticity Theory

    PubMed Central

    Freed, A. D.; Liao, J.; Einstein, D. R.

    2014-01-01

    A Fungean solid is derived for membranous materials as a body defined by isotropic response functions whose mathematical structure is that of a Hookean solid where the elastic constants are replaced by functions of state derived from an implicit, thermodynamic, internal-energy function. The theory utilizes Biot’s (1939) definitions for stress and strain that, in 1-dimension, are the stress/strain measures adopted by Fung (1967) when he postulated what is now known as Fung’s law. Our Fungean membrane model is parameterized against a biaxial data set acquired from a porcine pleural membrane subjected to three, sequential, proportional, planar extensions. These data support an isotropic/deviatoric split in the stress and strain-rate hypothesized by our theory. These data also demonstrate that the material response is highly non-linear but, otherwise, mechanically isotropic. These data are described reasonably well by our otherwise simple, four-parameter, material model. PMID:24282079

  7. Estimation of Crystallinity of Nifedipine-Polyvinylpyrrolidone Solid Dispersion by Usage of Terahertz Time-Domain Spectroscopy and of X-Ray Powder Diffractometer.

    PubMed

    Takeuchi, Issei; Shimakura, Kemmaro; Kuroda, Hideki; Nakajima, Takehisa; Goto, Satoru; Makino, Kimiko

    2015-12-01

    Crystalline state of pharmaceutical materials is of great importance in preparation of pharmaceutics, because their physicochemical properties affect bioavailability, quality of products, therapeutic level and manufacturing process. In this study, we have estimated time-dependent changes of nifedipine in nifedipine-polyvinylpyrrolidone (PVP) solid dispersion by measuring terahertz time-domain spectroscopy (THz-TDS) and by X-ray powder diffractometry (XRPD), and compared their correlativity. Crystallinity of nifedipine-PVP solid dispersion was changed by storing the amorphous sample at 25°C-75°C and relative humidity of over 80% for 0.25-24.00 h. To compare the results of two types of measurements, we have used a general method of linear regression analysis. Crystallinities estimated using THz-TDS were plotted on the x-axis and that of XRPD were on the y-axis. From the result of the calculation, the correlativity of them was confirmed. THz-TDS has the capability of becoming the replacement of XRPD. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. NMR Crystallography of a Carbanionic Intermediate in Tryptophan Synthase: Chemical Structure, Tautomerization, and Reaction Specificity.

    PubMed

    Caulkins, Bethany G; Young, Robert P; Kudla, Ryan A; Yang, Chen; Bittbauer, Thomas J; Bastin, Baback; Hilario, Eduardo; Fan, Li; Marsella, Michael J; Dunn, Michael F; Mueller, Leonard J

    2016-11-23

    Carbanionic intermediates play a central role in the catalytic transformations of amino acids performed by pyridoxal-5'-phosphate (PLP)-dependent enzymes. Here, we make use of NMR crystallography-the synergistic combination of solid-state nuclear magnetic resonance, X-ray crystallography, and computational chemistry-to interrogate a carbanionic/quinonoid intermediate analogue in the β-subunit active site of the PLP-requiring enzyme tryptophan synthase. The solid-state NMR chemical shifts of the PLP pyridine ring nitrogen and additional sites, coupled with first-principles computational models, allow a detailed model of protonation states for ionizable groups on the cofactor, substrates, and nearby catalytic residues to be established. Most significantly, we find that a deprotonated pyridine nitrogen on PLP precludes formation of a true quinonoid species and that there is an equilibrium between the phenolic and protonated Schiff base tautomeric forms of this intermediate. Natural bond orbital analysis indicates that the latter builds up negative charge at the substrate C α and positive charge at C4' of the cofactor, consistent with its role as the catalytic tautomer. These findings support the hypothesis that the specificity for β-elimination/replacement versus transamination is dictated in part by the protonation states of ionizable groups on PLP and the reacting substrates and underscore the essential role that NMR crystallography can play in characterizing both chemical structure and dynamics within functioning enzyme active sites.

  9. NMR Crystallography of a Carbanionic Intermediate in Tryptophan Synthase: Chemical Structure, Tautomerization, and Reaction Specificity

    PubMed Central

    2016-01-01

    Carbanionic intermediates play a central role in the catalytic transformations of amino acids performed by pyridoxal-5′-phosphate (PLP)-dependent enzymes. Here, we make use of NMR crystallography—the synergistic combination of solid-state nuclear magnetic resonance, X-ray crystallography, and computational chemistry—to interrogate a carbanionic/quinonoid intermediate analogue in the β-subunit active site of the PLP-requiring enzyme tryptophan synthase. The solid-state NMR chemical shifts of the PLP pyridine ring nitrogen and additional sites, coupled with first-principles computational models, allow a detailed model of protonation states for ionizable groups on the cofactor, substrates, and nearby catalytic residues to be established. Most significantly, we find that a deprotonated pyridine nitrogen on PLP precludes formation of a true quinonoid species and that there is an equilibrium between the phenolic and protonated Schiff base tautomeric forms of this intermediate. Natural bond orbital analysis indicates that the latter builds up negative charge at the substrate Cα and positive charge at C4′ of the cofactor, consistent with its role as the catalytic tautomer. These findings support the hypothesis that the specificity for β-elimination/replacement versus transamination is dictated in part by the protonation states of ionizable groups on PLP and the reacting substrates and underscore the essential role that NMR crystallography can play in characterizing both chemical structure and dynamics within functioning enzyme active sites. PMID:27779384

  10. Characterization of a water-solid interaction in a partially ordered system.

    PubMed

    Chakravarty, Paroma; Lubach, Joseph W

    2013-11-04

    GNE068-PC, a developmental compound, was previously characterized to be mesomorphous, i.e. having long-range order associated with significant local molecular disorder (Chakravarty et. al., Mol. Pharmaceutics, accepted). The compound was exposed to moisture under different relative humidity conditions ranging from 11% to 60% RH at room temperature (RT) for 7 days, and the resultant product phases were characterized. The partially ordered sample progressively lost crystallinity (long-range order) and birefringence (orientational order) upon exposure to increasing RH conditions, leading to the formation of a completely disordered amorphous phase at 60% RH (RT). Long-range positional order was irrecoverable even after moisture removal from the sample exposed to 60% RH. This was attributed to replacement of residual ethyl acetate by water, the former being critical for maintenance of long-range order in the material. In addition, water sorption appeared to irreversibly alter the molecular orientation, thereby affecting sample birefringence. Solid-state NMR revealed increases in (1)H and (13)C spin-lattice relaxation times (T1) going from the mesomorphous phase to the fully amorphous phase. This was indicative of reduction in lattice mobility, likely due to the decreased motion of the aromatic portions of the molecule, in particular C17, which showed the most dramatic increase in (13)C T1. This is likely due to decrease in available free volume upon water sorption. Drying of the hydrated disordered phase showed somewhat greater mobility than the hydrated phase, likely due to increased relative free volume through removal of water. A water-solid interaction therefore irreversibly changed the solid-state makeup of GNE068-PC.

  11. La 3+ doping of the Sr 2CoWO 6 double perovskite: A structural and magnetic study

    NASA Astrophysics Data System (ADS)

    López, C. A.; Viola, M. C.; Pedregosa, J. C.; Carbonio, R. E.; Sánchez, R. D.; Fernández-Díaz, M. T.

    2008-11-01

    La-doped Sr 2CoWO 6 double perovskites have been prepared in air in polycrystalline form by solid-state reaction. These materials have been studied by X-ray powder diffraction (XRPD), neutron powder diffraction (NPD) and magnetic susceptibility. The structural refinement was performed from combined XRPD and NPD data (D2B instrument, λ=1.594 Å). At room temperature, the replacement of Sr 2+ by La 3+ induces a change of the tetragonal structure, space group I4/ m of the undoped Sr 2CoWO 6 into the distorted monoclinic crystal structure, space group P2 1/ n, Z=2. The structure of La-doped phases contains alternating CoO 6 and (Co/W)O 6 octahedra, almost fully ordered. On the other hand, the replacement of Sr 2+ by La 3+ induces a partial replacement of W 6+ by Co 2+ into the B sites, i.e. Sr 2-xLa xCoW 1-yCo yO 6 ( y= x/4) with segregation of SrWO 4. Magnetic and neutron diffraction measurements indicate an antiferromagnetic ordering below TN=24 K independently of the La-substitution.

  12. KSC-99pp1473

    NASA Image and Video Library

    1999-12-19

    Space Shuttle Discovery hurtles through clouds of smoke and steam in its successful launch on mission STS-103. Liftoff occurred at 7:50 p.m. EST from Launch Pad 39B. On board are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland and Jean-François Clervoy of France. Nicollier and Clervoy are with the European Space Agency. STS-103 is a Hubble Servicing Mission, with three planned space walks designed to install new equipment and replace old. The primary objective is to replace the gyroscopes that make up the three Rate Sensor Units. Extravehicular activities include installing a new computer, changing out one of the Fine Guidance Sensors, replacing a tape recorder with a new solid state recorder, and installing a voltage/temperature improvement kit, and begin repairing the insulation on the telescope's outer surface. After the 7-day, 21-hour mission, Discovery is targeted to land at KSC Monday, Dec. 27, at about 5:24 p.m. EST. This is the 27th flight of Discovery and the 96th mission in the Space Shuttle Program. It is the third launch at Kennedy Space Center in 1999

  13. KSC-99pp1048

    NASA Image and Video Library

    1999-08-13

    In the Payload Hazardous Servicing Facility (PHSF), a worker begins to open the protective covering over a part of payload flight hardware for the third Hubble Space Telescope Servicing Mission (SM-3A). The hardware will undergo final testing and integration of payload elements in the PHSF. Mission STS-103 is a "call-up" mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-103 is currently targeted for Oct. 14 but the date is under review

  14. KSC-99pp1049

    NASA Image and Video Library

    1999-08-13

    In the Payload Hazardous Servicing Facility (PHSF), workers remove the protective covering from a part of payload flight hardware for the third Hubble Space Telescope Servicing Mission (SM-3A). The hardware will undergo final testing and integration of payload elements in the PHSF. Mission STS-103 is a "call-up" mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-103 is currently targeted for Oct. 14 but the date is under review

  15. KSC-99pp1289

    NASA Image and Video Library

    1999-11-05

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39B, the open doors of the payload canister, inside the environmentally controlled Payload Changeout Room, reveal the Hubble Servicing Mission cargo. At the top is the Orbital Replacement Unit Carrier and at the bottom is the Flight Support System. Installation of the payload into Discovery is slated for Friday, Nov. 12. The mission is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode

  16. PA Discussion Topics

    DTIC Science & Technology

    2011-02-04

    Solid Oxide fuel cell and Lithium Ion battery (~150 watts) • Enables extended mission durations • 12 hours of full power; 30 hours of silent watch...Hybrid fuel cell system is designed to replace the existing lead-acid batteries with an upgraded Solid Oxide fuel cell and Lithium Ion battery (~250

  17. Redesigned Gas Mass Flow Sensors for Space Shuttle Pressure Control System and Fuel Cell System

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A program was conducted to determine if a state of the art micro-machined silicon solid state flow sensor could be used to replace the existing space shuttle orbiter flow sensors. The rather aggressive goal was to obtain a new sensor which would also be a multi-gas sensor and operate over a much wider flow range and with a higher degree of accuracy than the existing sensors. Two types of sensors were tested. The first type was a venturi throat design and the second was a bypass design. The accuracy of venturi design was found to be marginally acceptable. The bypass sensor was much better although it still did not fully reach the accuracy goal. Two main problems were identified which would require further work.

  18. Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device.

    PubMed

    Coogan, Jessica S; Francis, W Loren; Eliason, Travis D; Bredbenner, Todd L; Stemper, Brian D; Yoganandan, Narayan; Pintar, Frank A; Nicolella, Daniel P

    2016-01-01

    Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3-L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3-L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with the normal intact nucleus.

  19. Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device

    PubMed Central

    Coogan, Jessica S.; Francis, W. Loren; Eliason, Travis D.; Bredbenner, Todd L.; Stemper, Brian D.; Yoganandan, Narayan; Pintar, Frank A.; Nicolella, Daniel P.

    2016-01-01

    Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3–L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3–L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with the normal intact nucleus. PMID:27990418

  20. Isotopic replacement of pigments and a lipid in chlorosomes from Chlorobium limicola: characterization of the resultant chlorosomes.

    PubMed

    Kakitani, Yoshinori; Harada, Ken-ichi; Mizoguchi, Tadashi; Koyama, Yasushi

    2007-06-05

    Pigments including bacteriochlorophyll (BChl) c, carotenoids, and a trace of BChl a together with a lipid, monogalactosyl diglyceride (MGDG), were extracted with chloroform/methanol (1:1 v/v) from an aqueous suspension (50 mM Tris-HCl, pH 8.0) of chlorosomes from Chlorobium limicola; other lipids and proteins were left behind in the aqueous layer by funnel separation. The chloroform layer was dried by purging N2 gas, dissolved in methanol, and rapidly injected into the aqueous layer to reassemble chlorosomes. This technique has been developed to replace one-half of the inherent 12C-BChl c by 13C-BChl c to identify the intermolecular 13C...13C magnetic dipole correlation peaks (that are supposed to reduce their intensities to one-fourth by reducing the 13C-BChl c concentration into one-half) and to determine the structure of BChl c aggregates in the rod elements by means of solid-state NMR spectroscopy. The isotopically replaced chlorosomes were characterized (1) by sucrose density gradient centrifugation, zeta potential measurement, electron microscopy, and dynamic light scattering measurement to determine the morphology of chlorosomes, (2) by 13C NMR spectroscopy, electronic absorption and circular dichroism spectroscopies, and low-angle X-ray diffraction to determine the pigment assembly in the rod elements, and (3) by subpicosecond time-resolved absorption spectroscopy to determine the excited-state dynamics in the pigment assembly. The results characterized the reassembled chlorosomes to have (1) similar but longer morphological structures, (2) almost the same pigment assembly in the rod elements, and (3) basically the same excited-state dynamics in the pigment assembly.

  1. STS-103 crew take part in CEIT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a Crew Equipment Interface Test, STS-103 Commander Curtis L. Brown Jr. (left) and Pilot Scott J. Kelly look at a replacement computer for the Hubble Space Telescope. The payload hardware is in the Payload Hazardous Servicing Facility. Other members of the crew are Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with the new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  2. KSC-99pp1092

    NASA Image and Video Library

    1999-09-02

    During a Crew Equipment Interface Test, STS-103 Commander Curtis L. Brown Jr. (left) and Pilot Scott J. Kelly look at a replacement computer for the Hubble Space Telescope. The payload hardware is in the Payload Hazardous Servicing Facility. Other members of the crew are Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-François Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with the new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review

  3. STS-103 crew take part in CEIT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility, members of the STS-103 crew get instructions on use of rib clamps for the Shield Shell Replacement Fabric (SSRF) task on repair of the Hubble Space Telescope. The seven-member crew are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  4. KSC-99pp1088

    NASA Image and Video Library

    1999-09-02

    In the Payload Hazardous Servicing Facility, members of the STS-103 crew get instructions on use of rib clamps for the Shield Shell Replacement Fabric (SSRF) task on repair of the Hubble Space Telescope. The seven-member crew are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-François Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review

  5. Reuse of solid petroleum waste in the manufacture of porcelain stoneware tile.

    PubMed

    Pinheiro, B C A; Holanda, J N F

    2013-03-30

    This study investigates the incorporation of solid petroleum waste as raw material into a porcelain stoneware tile body, in replacement to natural kaolin material by up to 5 wt.%. Tile formulations containing solid petroleum waste were pressed and fired at 1240 °C by using a fast-firing cycle. The tile pieces were tested to determine their properties (linear shrinkage, water absorption, apparent density, and flexural strength), sintered microstructure, and leaching toxicity. The results therefore indicated that the growing addition of solid petroleum waste into tile formulations leads to a decrease of linear shrinkage, apparent density, and flexural strength, and to an increase of water absorption of the produced tile materials. It was also found that the replacement of kaolin with solid petroleum waste, in the range up to 2.5 wt.%, allows the production of porcelain stoneware tile (group BIa, ISO 13006 standard). All concentrations of Ag, As, Ba, Cd, Cr (total), Hg, and Pb of the fired porcelain stoneware tile pieces in the leachate comply with the current regulatory limits. These results indicate that the solid petroleum waste could be used for high-quality porcelain stoneware tile production, thus giving rise to a new possibility for an environmentally friendly management of this abundant waste. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Defence and security applications of quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.

    2016-09-01

    Quantum Cascade Lasers (QCL) have seen tremendous recent application in the realm of Defence and Security. And, in many instances replacing traditional solid state lasers as the source of choice for Countermeasures, Remote Sensing, In-situ Sensing, Through-Barrier Sensing, and many others. Following their development and demonstration in the early 1990's, QCL's reached some maturity and specific defence and security application prior to 2005; with much initial development fostered by DARPA initiatives in the US, dstl, MoD, and EOARD funding initiatives in the UK, and University level R&D such as those by Prof Manijeh Razeghi at Northwestern University [1], and Prof Ted Masselink at Humboldt University [2]. As QCL's provide direct mid-IR laser output for electrical input, they demonstrate high quantum efficiency compared with diode pumped solid state lasers with optical parametric oscillators (OPOs) to generate mid-Infrared output. One particular advantage of QCL's is their very broad operational bandwidth, extending from the terahertz to the near-infrared spectral regions. Defence and Security areas benefiting from QCL's include: Countermeasures, Remote Sensing, Through-the-Wall Sensing, and Explosive Detection. All information used to construct this paper obtained from open sources.

  7. 300 mW of coherent light at 488 nm using a generic approach

    NASA Astrophysics Data System (ADS)

    Karamehmedović, Emir; Pedersen, Christian; Andersen, Martin T.; Tidemand-Lichtenberg, Peter

    2008-02-01

    We present a generic approach for efficient generation of CW light with a predetermined wavelength within the visible or UV spectrum. Based on sum-frequency generation (SFG), the circulating intra-cavity field of a high-finesse diode pumped CW solid-state laser (DPSSL) and the output from a tapered, single-frequency external cavity diode laser (ECDL) are mixed inside a 10 mm periodically poled KTP crstal (pp-KTP). The pp-KTP is situated inside the DPSSL cavity to enhance conversion efficiency of the nonlinear mixing process. This approach combines different solid state technologies; the tuneability of ECDLs, the high intra-cavity filed of DPSSLs and flexible quasi phase matching in pp-tapered ECDL with a center wavelength of 766 nm in combination with a high finesse Nd:YVo4 laser at 1342 nm. Up to 308 mW of light at 488nm was measured in our experiments. The conversion of te ECDL beam was up to 47% after it was transmitted through a PM fiber, and up to 32% without fiber coupling. Replacing the seed laser and the nonlinear crystal makes it possible to generate light at virtually any desired wavelength withing the visible spectrum.

  8. Profiling planktonic biomass using element-specific, multicomponent nuclear magnetic resonance spectroscopy.

    PubMed

    Komatsu, Takanori; Kobayashi, Toshiya; Hatanaka, Minoru; Kikuchi, Jun

    2015-06-02

    Planktonic metabolism plays crucial roles in Earth's elemental cycles. Chemical speciation as well as elemental stoichiometry is important for advancing our understanding of planktonic roles in biogeochemical cycles. In this study, a multicomponent solid-state nuclear magnetic resonance (NMR) approach is proposed for chemical speciation of cellular components, using several advanced NMR techniques. Measurements by ssNMR were performed on (13)C and (15)N-labeled Euglena gracilis, a flagellated protist. 3D dipolar-assisted rotational resonance, double-cross-polarization (1)H-(13)C correlation spectroscopy, and (1)H-(13)C solid-state heteronuclear single quantum correlation spectroscopy successively allowed characterization of cellular components. These techniques were then applied to E. gracilis cultured in high and low ammonium media to demonstrate the power of this method for profiling and comparing cellular components. Cellular NMR spectra indicated that ammonium induced both paramylon degradation and amination. Arginine was stored as a nitrogen reserve and ammonium replaced by arginine catabolism via the arginine dihydrolase pathway. (15)N and (31)P cellular ssNMR indicated arginine and polyphosphate accumulation in E. gracilis, respectively. This chemical speciation technique will contribute to environmental research by providing detailed information on environmental chemical properties.

  9. Electrochemically addressable trisradical rotaxanes organized within a metal–organic framework

    DOE PAGES

    McGonigal, Paul R.; Deria, Pravas; Hod, Idan; ...

    2015-08-17

    The organization of trisradical rotaxanes within the channels of a Zr 6-based metal–organic framework (NU-1000) has been achieved postsynthetically by solvent-assisted ligand incorporation. Robust ZrIV–carboxylate bonds are forged between the Zr clusters of NU-1000 and carboxylic acid groups of rotaxane precursors (semirotaxanes) as part of this building block replacement strategy. Ultraviolet–visible–near-infrared (UV-Vis-NIR), electron paramagnetic resonance (EPR), and 1H nuclear magnetic resonance (NMR) spectroscopies all confirm the capture of redox-active rotaxanes within the mesoscale hexagonal channels of NU-1000. Cyclic voltammetry measurements performed on electroactive thin films of the resulting material indicate that redox-active viologen subunits located on the rotaxane components canmore » be accessed electrochemically in the solid state. In contradistinction to previous methods, this strategy for the incorporation of mechanically interlocked molecules within porous materials circumvents the need for de novo synthesis of a metal–organic framework, making it a particularly convenient approach for the design and creation of solid-state molecular switches and machines. In conclusion, the results presented here provide proof-of-concept for the application of postsynthetic transformations in the integration of dynamic molecular machines with robust porous frameworks.« less

  10. Method of forming a foamed thermoplastic polymer

    DOEpatents

    Duchane, David V.; Cash, David L.

    1986-01-01

    A method of forming a foamed thermoplastic polymer. A solid thermoplastic lymer is immersed in an immersant solution comprising a compatible carrier solvent and an infusant solution containing an incompatible liquid blowing agent for a time sufficient for the immersant solution to infuse into the polymer. The carrier solvent is then selectively extracted, preferably by a solvent exchange process in which the immersant solution is gradually diluted with and replaced by the infusant solution, so as to selectively leave behind the infusant solution permanently entrapped in the polymer. The polymer is then heated to volatilize the blowing agent and expand the polymer into a foamed state.

  11. Combined caloric effects in a multiferroic Ni-Mn-Ga alloy with broad refrigeration temperature region

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Li, Zongbin; Yang, Bo; Qian, Suxin; Gan, Weimin; Gong, Yuanyuan; Li, Yang; Zhao, Dewei; Liu, Jian; Zhao, Xiang; Zuo, Liang; Wang, Dunhui; Du, Youwei

    2017-04-01

    Solid-state refrigeration based on the caloric effects is promising to replace the traditional vapor-compressing refrigeration technology due to environmental protection and high efficiency. However, the narrow working temperature region has hindered the application of these refrigeration technologies. In this paper, we propose a method of combined caloric, through which a broad refrigeration region can be realized in a multiferroic alloy, Ni-Mn-Ga, by combining its elastocaloric and magnetocaloric effects. Moreover, the materials' efficiency of elastocaloric effect has been greatly improved in our sample. These results illuminate a promising way to use multiferroic alloys for refrigeration with a broad refrigeration temperature region.

  12. Fluid mechanics of heart valves.

    PubMed

    Yoganathan, Ajit P; He, Zhaoming; Casey Jones, S

    2004-01-01

    Valvular heart disease is a life-threatening disease that afflicts millions of people worldwide and leads to approximately 250,000 valve repairs and/or replacements each year. Malfunction of a native valve impairs its efficient fluid mechanic/hemodynamic performance. Artificial heart valves have been used since 1960 to replace diseased native valves and have saved millions of lives. Unfortunately, despite four decades of use, these devices are less than ideal and lead to many complications. Many of these complications/problems are directly related to the fluid mechanics associated with the various mechanical and bioprosthetic valve designs. This review focuses on the state-of-the-art experimental and computational fluid mechanics of native and prosthetic heart valves in current clinical use. The fluid dynamic performance characteristics of caged-ball, tilting-disc, bileaflet mechanical valves and porcine and pericardial stented and nonstented bioprostheic valves are reviewed. Other issues related to heart valve performance, such as biomaterials, solid mechanics, tissue mechanics, and durability, are not addressed in this review.

  13. STS-103 MS Smith and MS Clervoy prepare to enter orbiter from White Room

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the White Room, STS-103 Mission Specialists Steven L. Smith and Jean-Francois Clervoy, in their orange launch and entry suits, are getting ready to enter Space Shuttle Discovery. Assisting them are closeout crew members (from left) United Space Alliance (USA) Mechanical Technician Rene Arriens, NASA Quality Assurance Specialist Danny Wyatt, USA Orbiter Vehicle Closeout Chief Travis Thompson and USA Mechanical Technician Vinny Defranzo. The White Room is an environmental chamber at the end of the orbiter access arm on the fixed service structure. It provides entry to the orbiter crew compartment. The mission, to service the Hubble Space Telescope, is scheduled to lift off at 7:50 p.m. EST Dec. 19 on mission STS-103, servicing the Hubble Space Telescope. Objectives for the nearly eight-day mission include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Discovery is expected to land at KSC Monday, Dec. 27, at about 5:24 p.m. EST.

  14. KSC-99pp1287

    NASA Image and Video Library

    1999-11-05

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39B, the payload canister for Space Shuttle Discovery, for mission STS-103, is lifted up the Rotating Service Structure. Installation of the payload into Discovery is slated for Friday, Nov. 12. The mission is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode

  15. Thermal Characterization of Epoxy Adhesive by Hotfire Testing

    NASA Technical Reports Server (NTRS)

    Spomer, Ken A.; Haddock, M. Reed; McCool, Alex (Technical Monitor)

    2001-01-01

    This paper describes subscale solid-rocket motor hot-fire testing of epoxy adhesives in flame surface bondlines to evaluate heat-affected depth, char depth and ablation rate. Hot-fire testing is part of an adhesive down-selection program on the Space Shuttle Solid Rocket Motor Nozzle to provide additional confidence in the down-selected adhesives. The current nozzle structural adhesive bond system is being replaced due to obsolescence. Prior to hot-fire testing, adhesives were tested for chemical, physical and mechanical properties, which resulted in the selection of two potential replacement adhesives, Resin Technology Group's TIGA 321 and 3M's EC2615XLW. Hot-fire testing consisted of four forty-pound charge (FPC) motors fabricated in configurations that would allow side-by-side comparison testing of the candidate replacement adhesives with the current RSRM adhesives. Results of the FPC motor testing show that: 1) the phenolic char depths on radial bondlines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used, 2) the replacement candidate adhesive char depths are equivalent to the char depths of the current adhesives, 3) the heat-affected depths of the candidate and current adhesives are equivalent, and 4) the ablation rates for both replacement adhesives were equivalent to the current adhesives.

  16. Effect of shortening replacement with oleogels on the rheological and tomographic characteristics of aerated baked goods.

    PubMed

    Lim, Jeongtaek; Jeong, Sungmin; Lee, JaeHwan; Park, Sungkwon; Lee, Jonggil; Lee, Suyong

    2017-08-01

    A great deal of effort has been made to reduce the use of shortening owing to the high level of saturated fats as well as the presence of trans fats. Grape seed oil high in unsaturated fats was structured with candelilla wax to form solid-like oleogels that were utilized as a shortening replacer in aerated baked goods, specifically muffins. Muffin batters with greater amounts of oleogels exhibited lower viscosity, greater shear-thinning behavior and less elastic nature. The shortening replacement with oleogels significantly increased the specific gravity of the batters, consequently affecting the muffin volume after baking. X-ray tomography indicated a lower fragmentation index (i.e. a more connected solid structure) in the oleogel-incorporated muffins, which was correlated with more enclosed and isolated air cells. A stress relaxation test showed that the shortening replacement with oleogels produced muffins with a firmer and springier texture. Based on fatty acid compositions, the ratio of saturated to unsaturated fatty acids was significantly reduced from 2.81 to 0.41. Use of the oleogels as a shortening replacer at a ratio of 1:3 by weight was effective in producing muffins with comparable quality attributes to the control with shortening. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Teaching Sustainable Development Concepts in the Laboratory: A Solid-Liquid Extraction Experiment

    ERIC Educational Resources Information Center

    Parajo, Juan Carlos; Dominguez, Herminia; Santos, Valentin; Alonso, Jose Luis; Garrote, Gil

    2008-01-01

    One of the principles of sustainable development is to replace chemicals traditionally derived from oil with alternative, renewable materials. For example, phenol and phenol derivatives currently used in the manufacture of wood adhesives can be replaced (at least in part) by biopolymers extracted from biomass. In this work, pine bark (a renewable…

  18. Testing of milk replacers for Mycobacterium avium subsp. paratuberculosis by PCR and bacterial culture as a possible source for Johne's disease (paratuberculosis) in calves.

    PubMed

    Khol, Johannes Lorenz; Braun, Anna Lena; Slana, Iva; Kralik, Petr; Wittek, Thomas

    2017-09-01

    Johne's disease (paratuberculosis) is caused by Mycobacterium avium subsp. paratuberculosis (MAP) and can lead to severe economic losses in the affected cattle herds. The transmission of the disease occurs mainly orally, by the ingestion of MAP, which is shed in the feces and milk of infected animals. Calves show a high susceptibility for the infection compared to adult animals. The use of milk replacers can, therefore, contribute to the prevention of the transmission of the disease to calves in MAP-positive herds by preventing the ingestion of the bacterium with milk from infected animals. The objective of this study was to test milk replacers for calves for the presence of MAP by bacteriological culture and PCR. Therefore, commercially available milk replacers for calves were purchased from 15 different companies. All of the products were tested for MAP by solid culture and real time quantitative PCR (qPCR) targeting IS900 and F57. During the present study, MAP could not be detected by qPCR or solid culture in commercially available milk replacers for calf rearing. The results of the present study underpins that the use of milk replacers for calf rearing might contribute to the reduction of MAP intake by calves in JD positive herds. Additional studies, including more products with a higher diversity, are needed to further elucidate the presence or absence of MAP in milk replacers for calves. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil

    NASA Astrophysics Data System (ADS)

    Tommasi, AndréA.; Vauchez, Alain; Femandes, Luis A. D.; Porcher, Carla C.

    1994-04-01

    In a lithospheric-scale, orogen-parallel transcurrent shear zone of the Pan-African Dom Feliciano belt of southern Brazil, two successive generations of magmas, an early calc-alkaline and a late peraluminous, have been emplaced during deformation. Microstructures show that these granitoids experienced a progressive deformation from magmatic to solid state under decreasing temperature conditions. Magmatic deformation is indicated by the coexistence of aligned K-feldspar, plagioclase, micas, and/or tourmaline with undeformed quartz. Submagmatic deformation is characterized by strain features, such as fractures, lattice bending, or replacement reactions affecting only the early crystallized phases. High-temperature solid-state deformation is characterized by extensive grain boundary migration in quartz, myrmekitic K-feldspar replacement, and dynamic recrystallization of both K-feldspar and plagioclase. Decreasing temperature during solid-state deformation is inferred from changes in quartz crystallographic fabrics, decrease in grain size of recrystallized feldspars, and lower Ti amount in recrystallized biotites. Final low-temperature deformation is characterized by feldspar replacement by micas. The geochemical evolution of the synkinematic magmatism, from calc-alkaline metaluminous granodiorites with intermediate 87Sr/86Sr initial ratio to peraluminous granites with very high 87Sr/86Sr initial ratio, suggests an early lower crustal source or a mixed mantle/crustal source, followed by a middle to upper crustal source for the melts. Shearing in lithospheric faults may induce partial melting in the lower crust by shear heating in the upper mantle, but, whatever the process initiating partial melting, lithospheric transcurrent shear zones may collect melt at different depths. Because they enhance the vertical permeability of the crust, these zones may then act as heat conductors (by advection), promoting an upward propagation of partial melting in the crust. Synkinematic granitoids localize most, if not all, deformation in the studied shear zone. The regional continuity and the pervasive character of the magmatic fabric in the various synkinematic granitic bodies, consistently displaying similar plane and direction of flow, argue for accommodation of large amounts of orogen-parallel movement by viscous deformation of these magmas. Moreover, activation of high-temperature deformation mechanisms probably allowed a much easier deformation of the hot synkinematic granites than of the colder country rock and, consequently, contributed significantly to the localization of deformation. Finally, the small extent of the low-temperature deformation suggests that the strike-slip deformation ended approximately synchronously with the final cooling of the peraluminous granites. The evolution of the deformation reflects the strong influence of synkinematic magma emplacement and subsequent cooling on the thermomechanical evolution of the shear zone. Magma intrusion in an orogen-scale transcurrent shear zone deeply modifies the rheological behavior of the continental crust. It triggers an efficient thermomechanical softening localized within the fault that may subsist long enough for large displacements to be accommodated. Therefore the close association of deformation and synkinematic magmatism probably represents an important factor controlling the mechanical response of continental plates in collisional environments.

  20. Radiation damage and waste management options for the SOMBRERO final focus system and neutron dumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latkowski, J F; Meier, W R; Reyes, S

    1999-08-09

    Previous studies of the safety and environmental aspects of the SOMBRERO inertial fusion energy (IFE) power plant design did not completely address the issues associated with the final focus system. While past work calculated neutron fluences for a grazing incidence metal mirror (GIMM) and a final focus mirror, scattering off of the final optical component was not included, and thus, fluences in the final focus mirror were significantly underestimated. In addition, past work did not consider neutron-induced gamma-rays. Finally, power plant lifetime waste volumes may have been underestimated as neutron activation of the neutron dumps and building structure were notmore » addressed. In the present work, a modified version of the SOMBRERO target building is presented where a significantly larger open solid-angle fraction (5%) is used to enhance beam smoothing of a diode-pumped solid-state laser (DPSSL). The GIMMs are replaced with transmissive fused silica wedges and have been included in three -dimensional neutron and photon transport calculations. This work shows that a power plant with a large open solid-angle fraction, needed for beam smoothing with a DPSSL, is acceptable from tritium breeding, and neutron activation points-of-view.« less

  1. Novel Li[(CF3SO2)(n-C4F9SO2)N]-Based Polymer Electrolytes for Solid-State Lithium Batteries with Superior Electrochemical Performance.

    PubMed

    Ma, Qiang; Qi, Xingguo; Tong, Bo; Zheng, Yuheng; Feng, Wenfang; Nie, Jin; Hu, Yong-Sheng; Li, Hong; Huang, Xuejie; Chen, Liquan; Zhou, Zhibin

    2016-11-02

    Solid polymer electrolytes (SPEs) would be promising candidates for application in high-energy rechargeable lithium (Li) batteries to replace the conventional organic liquid electrolytes, in terms of the enhanced safety and excellent design flexibility. Herein, we first report novel perfluorinated sulfonimide salt-based SPEs, composed of lithium (trifluoromethanesulfonyl)(n-nonafluorobutanesulfonyl)imide (Li[(CF 3 SO 2 )(n-C 4 F 9 SO 2 )N], LiTNFSI) and poly(ethylene oxide) (PEO), which exhibit relatively efficient ionic conductivity (e.g., 1.04 × 10 -4 S cm -1 at 60 °C and 3.69 × 10 -4 S cm -1 at 90 °C) and enough thermal stability (>350 °C), for rechargeable Li batteries. More importantly, the LiTNFSI-based SPEs could not only deliver the excellent interfacial compatibility with electrodes (e.g., Li-metal anode, LiFePO 4 and sulfur composite cathodes), but also afford good cycling performances for the Li|LiFePO 4 (>300 cycles at 1C) and Li-S cells (>500 cycles at 0.5C), in comparison with the conventional LiTFSI (Li[(CF 3 SO 2 ) 2 N])-based SPEs. The interfacial impedance and morphology of the cycled Li-metal electrodes are also comparatively analyzed by electrochemical impedance spectra and scanning electron microscopy, respectively. These indicate that the LiTNFSI-based SPEs would be potential alternatives for application in high-energy solid-state Li batteries.

  2. A Membrane Model from Implicit Elasticity Theory. Application to Visceral Pleura

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freed, Alan D.; Liao, Jun; Einstein, Daniel R.

    2013-11-27

    A Fungean solid is derived for membranous materials as a body defined by isotropic response functions whose mathematical structure is that of a Hookean solid where the elastic constants are replaced by functions of state derived from an implicit, thermodynamic, internal energy function. The theory utilizes Biot’s (Lond Edinb Dublin Philos Mag J Sci 27:468–489, 1939) definitions for stress and strain that, in one-dimension, are the stress/strain measures adopted by Fung (Am J Physiol 28:1532–1544, 1967) when he postulated what is now known as Fung’s law. Our Fungean membrane model is parameterized against a biaxial data set acquired from amore » porcine pleural membrane subjected to three, sequential, proportional, planar extensions. These data support an isotropic/deviatoric split in the stress and strain-rate hypothesized by our theory. These data also demonstrate that the material response is highly nonlinear but, otherwise, mechanically isotropic. These data are described reasonably well by our otherwise simple, four-parameter, material model.« less

  3. Molecular sieve catalysts for the regioselective and shape- selective oxyfunctionalization of alkanes in air.

    PubMed

    Thomas, J M; Raja, R; Sankar, G; Bell, R G

    2001-03-01

    Framework-substituted, molecular-sieve, aluminophosphate, microporous solids are the centerpieces of a new approach to the aerobic oxyfunctionalization of saturated hydrocarbons. The sieves, and the few percent of the Al(III) sites within them that are replaced by catalytically active, transition-metal ions in high oxidation states (Co(III), Mn(III), Fe(III)), are designed so as to allow free access of oxygen in to and out of the interior of these high-area solids. Certain metal-substituted, molecular sieves permit only end-on approach of linear alkanes to the active centers, thereby favoring enhanced reactivity of the terminal methyl groups. By optimizing cage dimension, with respect to that of the hydrocarbon reactant, as well as adjusting the average separation of active centers within a cage, and by choosing the sieve with the appropriate pore aperture, highly selective conversions such as n-hexane to hexanoic acid or adipic acid, and cyclohexane to cyclohexanol, cyclohexanone, or adipic acid, may be effected at low temperature, heterogeneously in air.

  4. Fast, Large-Area, Wide-Bandgap UV Photodetector for Cherenkov Light Detection

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.

    2013-01-01

    Due to limited resources available for power and space for payloads, miniaturizing and integrating instrumentation is a high priority for addressing the challenges of manned and unmanned deep space missions to high Earth orbit (HEO), near Earth objects (NEOs), Lunar and Martian orbits and surfaces, and outer planetary systems, as well as improvements to high-altitude aircraft safety. New, robust, and compact detectors allow future instrumentation packages more options in satisfying specific mission goals. A solid-state ultraviolet (UV) detector was developed with a theoretical fast response time and large detection area intended for application to Cherenkov detectors. The detector is based on the wide-bandgap semiconductor zinc oxide (ZnO), which in a bridge circuit can detect small, fast pulses of UV light like those required for Cherenkov detectors. The goal is to replace the role of photomultiplier tubes in Cherenkov detectors with these solid-state devices, saving on size, weight, and required power. For improving detection geometry, a spherical detector to measure high atomic number and energy (HZE) ions from any direction has been patented as part of a larger space radiation detector system. The detector will require the development of solid-state UV photodetectors fast enough (2 ns response time or better) to detect the shockwave of Cherenkov light emitted as the ions pass through a quartz, sapphire, or acrylic ball. The detector must be small enough to fit in the detector system structure, but have an active area large enough to capture enough Cherenkov light from the sphere. The detector is fabricated on bulk single-crystal undoped ZnO. Inter - digitated finger electrodes and contact pads are patterned via photolithography, and formed by sputtered metal of silver, platinum, or other high-conductivity metal.

  5. Hexachloroethane Obscurant Replacement

    DTIC Science & Technology

    2012-01-01

    were not totally dispersed in aerosol form; significant solid slag formation was observed. Thus, smoke density efficiency was only one quarter of that...determine smoke density and analyze for toxicity of combustion gases and particulates. Results: Compositions containing divalent zinc and...solid slag formation was observed. Thus, smoke density efficiency was only one quarter of that of the hexachloroethane containing baseline. The

  6. Variable diffusion rates during exsolution coarsening in the presence of fluids.

    NASA Astrophysics Data System (ADS)

    Putnis, Andrew; Prent, Alexander

    2017-04-01

    The scale of exsolution textures in mineral solid solutions has long been used as an indicator of thermal history during cooling. The theory of spinodal decomposition in an anisotropic solid and subsequent coarsening of exsolution textures as a function of temperature and cooling rate is well developed (see Petrishcheva et al., 2009 and Abart et al., 2009 for a review of the Cahn-Hilliard theory). For the case of exsolution in the alkali feldspar solid solution [(Na,K)AlSi3O8] the characteristic texture shows compositional fluctuations in Na,K with a wavelength that depends on the cooling rate. The cooling rate is determined from knowledge of the Na-K interdiffusion coefficient, assuming that the unmixing is simply due to the interdiffusion of Na and K in an otherwise fixed tetrahedral Al,Si framework. Cryptoperthites and mesoperthites with a periodic lamellar microstructure are considered to be the end-result of such a solid-state exsolution process. Later-stage fluid infiltration results in patch perthites that are formed at a sharp replacement front by a dissolution-precipitation mechanism (Parsons et al., 2015). Patch perthites have an easily recognizable texture and are clear indicators of a reaction with an aqueous solution. The distinction is thus drawn between crypto- and meso-perthite showing periodic lamellae, associated with a solid-state exsolution process, and the patch perthite showing irregular domains of Na-rich and K-rich feldspars associated with a fluid mediated reprecipitation process. However, the presence of fluids can also enhance the coarsening of lamellar exsolution textures, retaining an apparently solid-state microstructure but with a length scale that is dependent on local recrystallization driven by fluid infiltration. Examples will be given from alkali feldspars in granitic rocks where it is clearly demonstrable that cooling rates cannot be inferred from such exsolution textures. The variability in Na,K diffusion rates and thus different length scales of exsolution are likely to be due to the efficiency of diffusional transport through a fluid phase, which is influenced by differences in fluid-induced micro- and nano-porosity. Abart R. et al. (2009) Am. J. Sci. 309, 450-475. Petrishcheva E. and Abart R. (2009) Am. J. Sci, 309, 431-449. Parsons I. et al., (2015) Am. Min. 100, 1277-1303.

  7. MMIC Replacement for Gunn Diode Oscillators

    NASA Technical Reports Server (NTRS)

    Crowe, Thomas W.; Porterfield, David

    2011-01-01

    An all-solid-state replacement for high-frequency Gunn diode oscillators (GDOs) has been proposed for use in NASA s millimeter- and submillimeter-wave sensing instruments. Highly developed microwave oscillators are used to achieve a low-noise and highly stable reference signal in the 10-40-GHz band. Compact amplifiers and high-power frequency multipliers extend the signal to the 100-500-GHz band with minimal added phase noise and output power sufficient for NASA missions. This technology can achieve improved output power and frequency agility, while maintaining phase noise and stability comparable to other GDOs. Additional developments of the technology include: a frequency quadrupler to 145 GHz with 18 percent efficiency and 15 percent fixed tuned bandwidth; frequency doublers featuring 124, 240, and 480 GHz; an integrated 874-GHz subharmonic mixer with a mixer noise temperature of 3,000 K DSB (double sideband) and mixer conversion loss of 11.8 dB DSB; a high-efficiency frequency tripler design with peak output power of 23 mW and 14 mW, and efficiency of 16 and 13 percent, respectively; millimeter-wave integrated circuit (MMIC) power amplifiers to the 30-40 GHz band with high DC power efficiency; and an 874-GHz radiometer suitable for airborne observation with state-of-the-art sensitivity at room temperature and less than 5 W of total power consumption.

  8. Hubble (HST) hardware arrives at KSC for servicing mission, STS-103

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A shipping container with payload flight hardware for the Third Hubble Space Telescope Servicing Mission (SM-3A) sits on a flatbed trailer for transfer to the Payload Hazardous Servicing Facility where it will undergo final testing and integration of payload elements. Mission STS-103 is a 'call-up' mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-93 is currently targeted for Oct. 14 but under review, pending the launch date of a prior mission, STS-99, also under review.

  9. KSC-99pp1474

    NASA Image and Video Library

    1999-12-19

    Turning night into day for a few moments while belching clouds of smoke and steam, Space Shuttle Discovery hurtles into the black sky on mission STS-103. The successful liftoff occurred at 7:50 p.m. EST from Launch Pad 39B. On board are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland and Jean-François Clervoy of France. Nicollier and Clervoy are with the European Space Agency. STS-103 is a Hubble Servicing Mission, with three planned space walks designed to install new equipment and replace old. The primary objective is to replace the gyroscopes that make up the three Rate Sensor Units. Extravehicular activities include installing a new computer, changing out one of the Fine Guidance Sensors, replacing a tape recorder with a new solid state recorder, and installing a voltage/temperature improvement kit, and begin repairing the insulation on the telescope's outer surface. After the 7-day, 21-hour mission, Discovery is targeted to land at KSC Monday, Dec. 27, at about 5:24 p.m. EST. This is the 27th flight of Discovery and the 96th mission in the Space Shuttle Program. It is the third launch at Kennedy Space Center in 1999

  10. Hubble (HST) hardware is unwrapped in the PHSF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility (PHSF), a worker begins to open the protective covering over a part of payload flight hardware for the third Hubble Space Telescope Servicing Mission (SM-3A). The hardware will undergo final testing and integration of payload elements in the PHSF. Mission STS-103 is a 'call-up' mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-103 is currently targeted for Oct. 14 but the date is under review.

  11. Hubble (HST) hardware is uncrated in the PHSF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility (PHSF), a crane lifts equipment for mission STS-103 out of its shipping container to move it to a workstand. The equipment is the first part of payload flight hardware for the third Hubble Space Telescope Servicing Mission (SM-3A). The hardware will undergo final testing and integration of payload elements in the PHSF. Mission STS-103 is a 'call-up' mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-103 is currently targeted for Oct. 14 but the date is under review.

  12. Hubble (HST) hardware is uncrated in the PHSF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility (PHSF), a crane lifts equipment for mission STS-103 out of its shipping container. The equipment is the first part of payload flight hardware for the third Hubble Space Telescope Servicing Mission (SM-3A). The hardware will undergo final testing and integration of payload elements in the PHSF. Mission STS-103 is a 'call-up' mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-103 is currently targeted for Oct. 14 but the date is under review.

  13. STS-103 crew take part in CEIT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility, some of the STS-103 crew look over lubrication devices to be used during their mission. The seven-member crew are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  14. KSC-99pp1038

    NASA Image and Video Library

    1999-08-12

    A C-5 air cargo plane opens to reveal a shipping container with payload flight hardware for the Third Hubble Space Telescope Servicing Mission (SM-3A). The hardware will be taken to the Payload Hazardous Servicing Facility for final testing and integration of payload elements. Mission STS-103 is a "call-up" mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-93 is currently targeted for Oct. 14 but under review, pending the launch date of a prior mission, STS-99, also under review

  15. KSC-99pp1039

    NASA Image and Video Library

    1999-08-12

    A shipping container with payload flight hardware for the Third Hubble Space Telescope Servicing Mission (SM-3A) is ready for transfer onto a transporter from the C-5 air cargo plane that brought it to KSC. The hardware will be taken to the Payload Hazardous Servicing Facility for final testing and integration of payload elements. Mission STS-103 is a "call-up" mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-93 is currently targeted for Oct. 14 but under review, pending the launch date of a prior mission, STS-99, also under review

  16. KSC-99pp1087

    NASA Image and Video Library

    1999-09-02

    In the Payload Hazardous Servicing Facility, some of the STS-103 crew look over lubrication devices to be used during their mission. The seven-member crew are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-François Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review

  17. KSC-99pp1041

    NASA Image and Video Library

    1999-08-12

    A shipping container with payload flight hardware for the Third Hubble Space Telescope Servicing Mission (SM-3A) sits on a flatbed trailer for transfer to the Payload Hazardous Servicing Facility where it will undergo final testing and integration of payload elements. Mission STS-103 is a "call-up" mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-93 is currently targeted for Oct. 14 but under review, pending the launch date of a prior mission, STS-99, also under review

  18. KSC-99pp1050

    NASA Image and Video Library

    1999-08-13

    KENNEDY SPACE CENTER, FLA. -- Inside the Payload Hazardous Servicing Facility (PHSF), a part of payload flight hardware, intended for the third Hubble Space Telescope Servicing Mission (SM-3A), is revealed after its protective cover has been removed. The hardware will undergo final testing and integration of payload elements in the PHSF. Mission STS-103 is a "call-up" mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-103 is currently targeted for Oct. 14 but the date is under review

  19. KSC-99pp1043

    NASA Image and Video Library

    1999-08-13

    In the Payload Hazardous Servicing Facility (PHSF), a crane lifts equipment for mission STS-103 out of its shipping container to move it to a workstand. The equipment is the first part of payload flight hardware for the third Hubble Space Telescope Servicing Mission (SM-3A). The hardware will undergo final testing and integration of payload elements in the PHSF. Mission STS-103 is a "call-up" mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-103 is currently targeted for Oct. 14 but the date is under review

  20. KSC-99pp1042

    NASA Image and Video Library

    1999-08-13

    In the Payload Hazardous Servicing Facility (PHSF), a crane lifts equipment for mission STS-103 out of its shipping container. The equipment is the first part of payload flight hardware for the third Hubble Space Telescope Servicing Mission (SM-3A). The hardware will undergo final testing and integration of payload elements in the PHSF. Mission STS-103 is a "call-up" mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-103 is currently targeted for Oct. 14 but the date is under review

  1. KSC-99pp1040

    NASA Image and Video Library

    1999-08-12

    A shipping container with payload flight hardware for the Third Hubble Space Telescope Servicing Mission (SM-3A) is transferred onto a transporter from the C-5 air cargo plane that brought it to KSC. The hardware will be taken to the Payload Hazardous Servicing Facility for final testing and integration of payload elements. Mission STS-103 is a "call-up" mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-93 is currently targeted for Oct. 14 but under review, pending the launch date of a prior mission, STS-99, also under review

  2. KSC-99pp1037

    NASA Image and Video Library

    1999-08-12

    A C-5 air cargo plane lands at Kennedy Space Center carrying the payload flight hardware for the Third Hubble Space Telescope Servicing Mission (SM-3A). The hardware will be taken to the Payload Hazardous Servicing Facility for final testing and integration of payload elements. Mission STS-103 is a "call-up" mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-93 is currently targeted for Oct. 14 but under review, pending the launch date of a prior mission, STS-99, also under review

  3. KSC-99pp1044

    NASA Image and Video Library

    1999-08-13

    In the Payload Hazardous Servicing Facility (PHSF), workers check the placement of equipment, part of mission STS-103, onto a workstand. The equipment is the first part of payload flight hardware for the third Hubble Space Telescope Servicing Mission (SM-3A). The hardware will undergo final testing and integration of payload elements in the PHSF. Mission STS-103 is a "call-up" mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-103 is currently targeted for Oct. 14 but the date is under review

  4. Hubble (HST) hardware is moved to a workstand in the PHSF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility (PHSF), workers check the placement of equipment, part of mission STS-103, onto a workstand. The equipment is the first part of payload flight hardware for the third Hubble Space Telescope Servicing Mission (SM-3A). The hardware will undergo final testing and integration of payload elements in the PHSF. Mission STS-103 is a 'call-up' mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-103 is currently targeted for Oct. 14 but the date is under review.

  5. Improved Boundary Layer Module (BLM) for the Solid Performance Program (SPP)

    NASA Astrophysics Data System (ADS)

    Coats, D. E.; Cebeci, T.

    1982-03-01

    The requirements for a replacement to the Bartz boundary layer code, the standard method of computing the performance loss due to viscous effects by the solid performance program, were discussed by the propulsion community along with four nationally recognized boundary layer experts. A consensus was reached regarding the preferred features for the analysis of the replacement code. The major points that were agreed upon are: (1) finite difference methods are preferred over integral methods; (2) a single equation eddy viscosity model was considered to be adequate for the purpose of computing performance loss; (3) a variable grid capability in both coordinate directions would be required; (4) a proven finite difference algorithm which is not stability restricted should be used, that is, an implicit numerical scheme would be required; and (5) the replacement code should be able to compute both turbulent and laminar flows. The program should treat mass addition at the wall as well as being able to calculate a stagnation point starting line.

  6. Emerging applications of spark plasma sintering in all solid-state lithium-ion batteries and beyond

    NASA Astrophysics Data System (ADS)

    Zhu, Hongzheng; Liu, Jian

    2018-07-01

    Solid-state batteries have received increasing attention due to their high safety aspect and high energy and power densities. However, the development of solid-state batteries is hindered by inferior solid-solid interfaces between the solid-state electrolyte and electrode, which cause high interfacial resistance, reduced Li-ion and electron transfer rate, and limited battery performance. Recently, spark plasma sintering (SPS) is emerging as a promising technique for fabricating solid-state electrolyte and electrode pellets with clean and intimate solid-solid interfaces. During the SPS process, the unique reaction mechanism through the combination of current, pressure and high heating rate allow the formation of desirable solid-solid interfaces between active material particles. Herein, this work focuses on the overview of the application of SPS for fabricating solid-state electrolyte and electrode in all solid-state Li-ion batteries, and beyond, such as solid-state Li-S and Na-ion batteries. The correlations among SPS parameters, interfacial resistance, and electrochemical properties of solid-state electrolytes and electrodes are discussed for different material systems. In the end, we point out future opportunities and challenges associated with SPS application in the hot area of solid-state batteries. It is expected that this timely review will stimulate more fundamental and applied research in the development of solid-state batteries by SPS.

  7. STS-103 crew take part in CEIT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility, a member of the STS-103 crew checks out rib clamp to be used on the Shield Shell Replacement Fabric (SSRF) task on repair of the Hubble Space Telescope. The seven-member crew, taking part in a Crew Equipment Interface Test, are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  8. Piezoelectric Ceramics of the (1 − x)Bi0.50Na0.50TiO3–xBa0.90Ca0.10TiO3 Lead-Free Solid Solution: Chemical Shift of the Morphotropic Phase Boundary, a Case Study for x = 0.06

    PubMed Central

    Vivar-Ocampo, Rodrigo; Pardo, Lorena; Ávila, David; Morán, Emilio; González, Amador M.; Bucio, Lauro; Villafuerte-Castrejón, María-Elena

    2017-01-01

    Research and development of lead-free piezoelectric materials are still the hottest topics in the field of piezoelectricity. One of the most promising lead-free family of compounds to replace lead zirconate–titanate for actuators is that of Bi0.50Na0.50TiO3 (BNT) based solid solutions. The pseudo-binary (1 − x)Bi0.50Na0.50TiO3–xBa1 − yCayTiO3 system has been proposed for high temperature capacitors and not yet fully explored as piezoelectric material. In this work, the solid solution with x = 0.06 and y = 0.10 was obtained by two different synthesis routes: solid state and Pechini, aiming at using reduced temperatures, both in synthesis (<800 °C) and sintering (<1150 °C), while maintaining appropriated piezoelectric performance. Crystal structure, ceramic grain size, and morphology depend on the synthesis route and were analyzed by X-ray diffraction, together with scanning and transmission electron microscopy. The effects of processing and ceramic microstructure on the structural, dielectric, ferroelectric, and piezoelectric properties were discussed in terms of a shift of the Morphotropic Phase Boundary, chemically induced by the synthesis route. PMID:28773096

  9. Piezoelectric Ceramics of the (1 - x)Bi0.50Na0.50TiO₃-xBa0.90Ca0.10TiO₃ Lead-Free Solid Solution: Chemical Shift of the Morphotropic Phase Boundary, a Case Study for x = 0.06.

    PubMed

    Vivar-Ocampo, Rodrigo; Pardo, Lorena; Ávila, David; Morán, Emilio; González, Amador M; Bucio, Lauro; Villafuerte-Castrejón, María-Elena

    2017-07-01

    Research and development of lead-free piezoelectric materials are still the hottest topics in the field of piezoelectricity. One of the most promising lead-free family of compounds to replace lead zirconate-titanate for actuators is that of Bi 0.50 Na 0.50 TiO₃ (BNT) based solid solutions. The pseudo-binary (1 - x )Bi 0.50 Na 0.50 TiO₃- x Ba 1 - y Ca y TiO₃ system has been proposed for high temperature capacitors and not yet fully explored as piezoelectric material. In this work, the solid solution with x = 0.06 and y = 0.10 was obtained by two different synthesis routes: solid state and Pechini, aiming at using reduced temperatures, both in synthesis (<800 °C) and sintering (<1150 °C), while maintaining appropriated piezoelectric performance. Crystal structure, ceramic grain size, and morphology depend on the synthesis route and were analyzed by X-ray diffraction, together with scanning and transmission electron microscopy. The effects of processing and ceramic microstructure on the structural, dielectric, ferroelectric, and piezoelectric properties were discussed in terms of a shift of the Morphotropic Phase Boundary, chemically induced by the synthesis route.

  10. Solid oxide fuel cells fueled with reducible oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Steven S.; Fan, Liang Shih

    A direct-electrochemical-oxidation fuel cell for generating electrical energy includes a cathode provided with an electrochemical-reduction catalyst that promotes formation of oxygen ions from an oxygen-containing source at the cathode, a solid-state reduced metal, a solid-state anode provided with an electrochemical-oxidation catalyst that promotes direct electrochemical oxidation of the solid-state reduced metal in the presence of the oxygen ions to produce electrical energy, and an electrolyte disposed to transmit the oxygen ions from the cathode to the solid-state anode. A method of operating a solid oxide fuel cell includes providing a direct-electrochemical-oxidation fuel cell comprising a solid-state reduced metal, oxidizing themore » solid-state reduced metal in the presence of oxygen ions through direct-electrochemical-oxidation to obtain a solid-state reducible metal oxide, and reducing the solid-state reducible metal oxide to obtain the solid-state reduced metal.« less

  11. Iodine-stabilized single-frequency green InGaN diode laser.

    PubMed

    Chen, Yi-Hsi; Lin, Wei-Chen; Shy, Jow-Tsong; Chui, Hsiang-Chen

    2018-01-01

    A 520-nm InGaN diode laser can emit a milliwatt-level, single-frequency laser beam when the applied current slightly exceeds the lasing threshold. The laser frequency was less sensitive to diode temperature and could be finely tuned by adjusting the applied current. Laser frequency was stabilized onto a hyperfine component in an iodine transition through the saturated absorption spectroscopy. The uncertainty of frequency stabilization was approximately 8×10 -9 at a 10-s integration time. This compact laser system can replace the conventional green diode-pumped solid-state laser and applied as a frequency reference. A single longitudinal mode operational region with diode temperature, current, and output power was investigated.

  12. KSC-99pp1364

    NASA Image and Video Library

    1999-11-24

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39B, the STS-103 payload awaits closing of Discovery's payload bay doors. The payload, which will enable the crew of seven to service the Hubble Space Telescope, consists of gyroscopes that allow the telescope to point at stars, galaxies and planets; a Fine Guidance Sensor, a new enhanced computer to replace an older model, a solid-state digital recorder, a new spare transmitter, and new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of Space Shuttle Discovery on mission STS-103 is targeted for Dec. 9 at 1:10 a.m. EST

  13. Challenges of utilizing healthy fats in foods.

    PubMed

    Vieira, Samantha A; McClements, David Julian; Decker, Eric A

    2015-05-01

    Over the past few decades, the Dietary Guidelines for Americans has consistently recommended that consumers decrease consumption of saturated fatty acids due to the correlation of saturated fatty acid intake with coronary artery disease. This recommendation has not been easy to achieve because saturated fatty acids play an important role in the quality, shelf life, and acceptability of foods. This is because solid fats are critical to producing desirable textures (e.g., creaminess, lubrication, and melt-away properties) and are important in the structure of foods such as frozen desserts, baked goods, and confectionary products. In addition, replacement of saturated fats with unsaturated fats is limited by their susceptibility to oxidative rancidity, which decreases product shelf life, causes destruction of vitamins, and forms potentially toxic compounds. This article will discuss the fundamental chemical and physical properties in fats and how these properties affect food texture, structure, flavor, and susceptibility to degradation. The current sources of solid fats will be reviewed and potential replacements for solid fats will be discussed. © 2015 American Society for Nutrition.

  14. Challenges of Utilizing Healthy Fats in Foods123

    PubMed Central

    Vieira, Samantha A; McClements, David Julian; Decker, Eric A

    2015-01-01

    Over the past few decades, the Dietary Guidelines for Americans has consistently recommended that consumers decrease consumption of saturated fatty acids due to the correlation of saturated fatty acid intake with coronary artery disease. This recommendation has not been easy to achieve because saturated fatty acids play an important role in the quality, shelf life, and acceptability of foods. This is because solid fats are critical to producing desirable textures (e.g., creaminess, lubrication, and melt-away properties) and are important in the structure of foods such as frozen desserts, baked goods, and confectionary products. In addition, replacement of saturated fats with unsaturated fats is limited by their susceptibility to oxidative rancidity, which decreases product shelf life, causes destruction of vitamins, and forms potentially toxic compounds. This article will discuss the fundamental chemical and physical properties in fats and how these properties affect food texture, structure, flavor, and susceptibility to degradation. The current sources of solid fats will be reviewed and potential replacements for solid fats will be discussed. PMID:25979504

  15. Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives.

    PubMed

    Kalhoff, Julian; Eshetu, Gebrekidan Gebresilassie; Bresser, Dominic; Passerini, Stefano

    2015-07-08

    Lithium-ion batteries are becoming increasingly important for electrifying the modern transportation system and, thus, hold the promise to enable sustainable mobility in the future. However, their large-scale application is hindered by severe safety concerns when the cells are exposed to mechanical, thermal, or electrical abuse conditions. These safety issues are intrinsically related to their superior energy density, combined with the (present) utilization of highly volatile and flammable organic-solvent-based electrolytes. Herein, state-of-the-art electrolyte systems and potential alternatives are briefly surveyed, with a particular focus on their (inherent) safety characteristics. The challenges, which so far prevent the widespread replacement of organic carbonate-based electrolytes with LiPF6 as the conducting salt, are also reviewed herein. Starting from rather "facile" electrolyte modifications by (partially) replacing the organic solvent or lithium salt and/or the addition of functional electrolyte additives, conceptually new electrolyte systems, including ionic liquids, solvent-free, and/or gelled polymer-based electrolytes, as well as solid-state electrolytes, are also considered. Indeed, the opportunities for designing new electrolytes appear to be almost infinite, which certainly complicates strict classification of such systems and a fundamental understanding of their properties. Nevertheless, these innumerable opportunities also provide a great chance of developing highly functionalized, new electrolyte systems, which may overcome the afore-mentioned safety concerns, while also offering enhanced mechanical, thermal, physicochemical, and electrochemical performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Technical potential of electricity production from municipal solid waste disposed in the biggest cities in Brazil: landfill gas, biogas and thermal treatment.

    PubMed

    de Souza, Samuel Nm; Horttanainen, Mika; Antonelli, Jhonatas; Klaus, Otávia; Lindino, Cleber A; Nogueira, Carlos Ec

    2014-10-01

    This article presents an analysis of possibilities for electrical energy production by using municipal solid waste disposed in the biggest Brazilian cities. Currently, the municipal solid waste in Brazil is collected and disposed of at landfills, but there are also other technologies, which in addition to dealing with the garbage can also provide benefits in terms of energy provision. The following scenarios were studied in this work: electricity production from landfill gas (reference scenario); incineration of all municipal solid waste; anaerobic digestion of organic waste and incineration of refuse-derived fuel fractions after being separated in separation plants. According to this study, the biggest cities in Brazil generate about 18.9 million tonnes of municipal solid waste per year (2011), of which 51.5% is biogenic matter. The overall domestic consumption of electricity is 480,120 GWh y(-1) in Brazil and the municipal solid waste incineration in the 16 largest cities in the country could replace 1.8% of it using incinerators. The city of São Paulo could produce 637 GWh y(-1) with landfill gas, 2368 GWh y(-1) with incineration of municipal solid waste and 1177 GWh y(-1) with incineration of refuse-derived fuel. The latter two scenarios could replace 27% and 13.5% of the residential electrical energy consumption in the city. This shows that thermal treatment might be a viable option of waste-to-energy in Brazil. © The Author(s) 2014.

  17. Singlet Fission and Excimer Formation in Disordered Solids of Alkyl-Substituted 1,3-Diphenylisobenzofurans.

    PubMed

    Dron, Paul I; Michl, Josef; Johnson, Justin C

    2017-11-16

    We describe the preparation and excited state dynamics of three alkyl derivatives of 1,3-diphenylisobenzofuran (1) in both solutions and thin films. The substitutions are intended to disrupt the slip-stacked packing observed in crystals of 1 while maintaining the favorable energies of singlet and triplet for singlet fission (SF). All substitutions result in films that are largely amorphous as judged by the absence of strong X-ray diffraction peaks. The films of 1 carrying a methyl in the para position of one phenyl ring undergo SF relatively efficiently (≥75% triplet yield, Φ T ) but more slowly than thin films of 1. When the methyl is replaced with a t-butyl, kinetic competition in the excited state favors excimer formation rather than SF (Φ T = 55%). When t-Bu groups are placed in both meta positions of the phenyl substituent, SF is slowed further and Φ T = 35%.

  18. The search for and analysis of direct samples of early Solar System aqueous fluids.

    PubMed

    Zolensky, Michael E; Bodnar, Robert J; Yurimoto, Hisayoshi; Itoh, Shoichi; Fries, Marc; Steele, Andrew; Chan, Queenie H-S; Tsuchiyama, Akira; Kebukawa, Yoko; Ito, Motoo

    2017-05-28

    We describe the current state of the search for direct, surviving samples of early, inner Solar System fluids-fluid inclusions in meteorites. Meteoritic aqueous fluid inclusions are not rare, but they are very tiny and their characterization is at the state of the art for most analytical techniques. Meteoritic fluid inclusions offer us a unique opportunity to study early Solar System brines in the laboratory. Inclusion-by-inclusion analyses of the trapped fluids in carefully selected samples will, in the immediate future, provide us detailed information on the evolution of fluids as they interacted with anhydrous solid materials. Thus, real data can replace calculated fluid compositions in thermochemical calculations of the evolution of water and aqueous reactions in comets, asteroids, moons and the terrestrial planets.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  19. Nonlinear effects in thermal stress analysis of a solid propellant rocket motor

    NASA Technical Reports Server (NTRS)

    Francis, E. C.; Peeters, R. L.; Murch, S. A.

    1976-01-01

    Direct characterization procedures were used to determine the relaxation modulus as a function of time, temperature, and state of strain. Using the quasi-elastic method of linearviscoelasticity, these properties were employed in a finite element computer code to analyze a thick-walled, nonlinear viscoelastic cylinder in the state of plane strain bonded to a thin (but stiff) elastic casing and subjected to slow thermal cooling. The viscoelastic solution is then expressed as a sequence of elastic finite element solutions. The strain-dependent character of the relaxation modulus is included by replacing the single relaxation curve used in the linear viscoelastic theory by a family of relaxation functions obtained at various strain levels. These functions may be regarded as a collection of stress histories or responses to specific loads (in this case, step strains) with which the cooldown solution is made to agree by iterations on the modulus and strain level.

  20. Progress in LED technology for solid-state lighting

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Jy; Guth, Greg; Cesaratto, John M.; Shchekin, Oleg B.; Soer, Wouter A.; Götz, Werner; Bonné, Ron; Song, Zhihua F.; den Breejen, Jeroen

    2017-02-01

    As solid-state lighting adoption moves from bulb socket replacement to lighting system engineering, luminaire manufacturers are beginning to actualize far greater cost savings through luminaire optimization rather than the simplistic process of component cost pareto management. Indeed, there are an increasing number of applications in which we see major shifts in the value chain in terms of increasing the L1 (LED) and L2 (LED array on PCB) value. The L1 value increase stems from a number of factors ranging from simply higher performing LEDs reducing the LED count, to L1 innovation such as high voltage LEDs, optimizing driver efficiency or to the use of high luminance LEDs enabling compact optics, allowing not only more design freedom but also cost reduction through space and weight savings. The L2 value increase is realized predominantly through increasing L2 performance with the use of algorithms that optimize L1 selection and placement and/or through L2 integration of drivers, control electronics, sensors, secondary lens and/or environmental protection, which is also initiating level collapse in the value chain. In this paper we will present the L1 and L2 innovations that are enabling this disruption as well as provide examples of fixture/luminaire level benefits.

  1. Polyplanar optical display electronics

    NASA Astrophysics Data System (ADS)

    DeSanto, Leonard; Biscardi, Cyrus

    1997-07-01

    The polyplanar optical display (POD) is a unique display screen which can be used with any projection source. The prototype ten inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a 100 milliwatt green solid- state laser at 532 nm as its light source. To produce real- time video, the laser light is being modulated by a digital light processing (DLP) chip manufactured by Texas Instruments. In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the digital micromirror device (DMD) circuit board is removed from the Texas Instruments DLP light engine assembly. Due to the compact architecture of the projection system within the display chassis, the DMD chip is operated remotely from the Texas Instruments circuit board. We discuss the operation of the DMD divorced from the light engine and the interfacing of the DMD board with various video formats including the format specific to the B-52 aircraft. A brief discussion of the electronics required to drive the laser is also presented.

  2. Tensile Strength and Hardness Correlations with Microscopy in Friction welded Aluminium to Copper

    NASA Astrophysics Data System (ADS)

    Satish, Rengarajan; Seshagiri Rao, Vaddi; Ananthapadmanaban, Dattaguru; Ravi, Balappa

    2016-01-01

    Aluminium and copper are good conductors of heat and electricity, copper being the better conductor, is a costly metal indeed. On the other hand, aluminium is cheap, easily available and also has a lower density than copper. Hence, worldwide efforts are being made to partially replace copper wire. Solid state welding should be used to join aluminium to copper. This is because the use of fusion welding results in brittle phases formed in the weld interface. One of the solid state welding techniques used for joining aluminium to copper is friction welding. In this paper, an attempt has been made to join aluminium to copper by friction welding by varying the friction welding parameters, namely friction pressure, upset pressure, burn-off length and speed of rotation of the workpiece. Nine different friction welding parameter combinations were used during welding in accordance with ASTM standards and results have been reported. Tensile strength and hardness tests were carried out for each parameter combination. Optimum friction welding parameter combination was identified with respect to tensile strength. Scanning Electron Microscopy and Electron dispersive spectroanalysis were obtained to identify modes of fracture and presence of intermetallic phases for each friction welding combination with the aim to narrow down friction welding parameters that give good properties on the whole.

  3. Effect of Gallium Substitution on Lithium-Ion Conductivity and Phase Evolution in Sputtered Li7-3 xGa xLa3Zr2O12 Thin Films.

    PubMed

    Rawlence, M; Filippin, A N; Wäckerlin, A; Lin, T-Y; Cuervo-Reyes, E; Remhof, A; Battaglia, C; Rupp, J L M; Buecheler, S

    2018-04-25

    Replacing the liquid electrolyte in conventional lithium-ion batteries with thin-film solid-state lithium-ion conductors is a promising approach for increasing energy density, lifetime, and safety. In particular, Li 7 La 3 Zr 2 O 12 is appealing due to its high lithium-ion conductivity and wide electrochemical stability window. Further insights into thin-film processing of this material are required for its successful integration into solid-state batteries. In this work, we investigate the phase evolution of Li 7-3 x Ga x La 3 Zr 2 O 12 in thin films with various amounts of Li and Ga for stabilizing the cubic phase. Through this work, we gain valuable insights into the crystallization processes unique to thin films and are able to form dense Li 7-3 x Ga x La 3 Zr 2 O 12 layers stabilized in the cubic phase with high in-plane lithium-ion conductivities of up to 1.6 × 10 -5 S cm -1 at 30 °C. We also note the formation of cubic Li 7 La 3 Zr 2 O 12 at the relatively low temperature of 500 °C.

  4. Reversible Immobilization of Proteins in Sensors and Solid-State Nanopores.

    PubMed

    Ananth, Adithya; Genua, María; Aissaoui, Nesrine; Díaz, Leire; Eisele, Nico B; Frey, Steffen; Dekker, Cees; Richter, Ralf P; Görlich, Dirk

    2018-05-01

    The controlled functionalization of surfaces with proteins is crucial for many analytical methods in life science research and biomedical applications. Here, a coating for silica-based surfaces is established which enables stable and selective immobilization of proteins with controlled orientation and tunable surface density. The coating is reusable, retains functionality upon long-term storage in air, and is applicable to surfaces of complex geometry. The protein anchoring method is validated on planar surfaces, and then a method is developed to measure the anchoring process in real time using silicon nitride solid-state nanopores. For surface attachment, polyhistidine tags that are site specifically introduced into recombinant proteins are exploited, and the yeast nucleoporin Nsp1 is used as model protein. Contrary to the commonly used covalent thiol chemistry, the anchoring of proteins via polyhistidine tag is reversible, permitting to take proteins off and replace them by other ones. Such switching in real time in experiments on individual nanopores is monitored using ion conductivity. Finally, it is demonstrated that silica and gold surfaces can be orthogonally functionalized to accommodate polyhistidine-tagged proteins on silica but prevent protein binding to gold, which extends the applicability of this surface functionalization method to even more complex sensor devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The STS-103 crew with loved ones at Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-103 crew pose for photographers with their loved ones at Launch Pad 39B. Space Shuttle Discovery is in the background, next to the Fixed Service Structure lit up like a Christmas tree. Viewed left to right are Mission Specialist Steven L. Smith and his wife, Peggy; Pilot Scott J. Kelly and his wife, Leslie; Commander Curtis L. Brown Jr. and his fiancee, Ann Brickert; Mission Specialist C. Michael Foale; Laurence Clervoy and her husband, Mission Specialist Jean-Frangois Clervoy; Mission Specialist John M. Grunsfeld and his wife, Carol; Mission Specialist Claude Nicollier and his wife, Susana. Nicollier and Clervoy are with the European Space Agency. The mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. The mission is expected to last about 8 days and 21 hours. Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:25 p.m. EST.

  6. Organ donation and transplantation in Canada: insights from the Canadian Organ Replacement Register.

    PubMed

    Kim, Sang Joseph; Fenton, Stanley Sa; Kappel, Joanne; Moist, Louise M; Klarenbach, Scott W; Samuel, Susan M; Singer, Lianne G; Kim, Daniel H; Young, Kimberly; Webster, Greg; Wu, Juliana; Ivis, Frank; de Sa, Eric; Gill, John S

    2014-01-01

    To provide an overview of the transplant component of the Canadian Organ Replacement Register (CORR). CORR is the national registry of organ failure in Canada. It has existed in some form since 1972 and currently houses data on patients with end-stage renal disease and solid organ transplants (kidney and/or non-kidney). The transplant component of CORR receives data on a voluntary basis from individual transplant centres and organ procurement organizations across the country. Coverage for transplant procedures is comprehensive and complete. Long-term outcomes are tracked based on follow-up reports from participating transplant centres. The longitudinal nature of CORR provides an opportunity to observe the trajectory of a patient's journey with organ failure over their life span. Research studies conducted using CORR data inform both practitioners and health policy makers alike. The importance of registry data in monitoring and improving care for Canadian transplant candidates/recipients cannot be over-stated. This paper provides an overview of the transplant data in CORR including its history, data considerations, recent findings, new initiatives, and future directions.

  7. KSC-99padig047

    NASA Image and Video Library

    1999-12-17

    After sunup, which is obscured by a cloud-filled sky, Space Shuttle Discovery waits atop the mobile launcher platform for launch of mission STS-103. At the top is seen the external tank gaseous oxygen vent arm system with the vent hood (commonly called the "beanie cap") poised above the external tank. The retractable arm and the beanie cap are designed to vent gaseous oxygen vapors away from the Space Shuttle. The arm truss section is 65 feet long and the diameter of the vent hood is 13 feet. Extending toward the cabin of the orbiter below is the orbiter access arm, with the environmental chamber (called the White Room) at the end. Through this chamber the crew enters the orbiter. The STS-103 mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. The mission is expected to last about 8 days and 21 hours. Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:25 p.m. EST

  8. STS-103 Discovery rolls over to VAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The orbiter Discovery sits inside the Vehicle Assembly Building (VAB) after its rollover from the Orbiter Processing Facility (OPF) bay rocket boosters for its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode.

  9. KSC-99padig020

    NASA Image and Video Library

    1999-11-04

    KENNEDY SPACE CENTER, FLA. -- Orbiter Discovery begins its rollover to the Vehicle Assembly Building (in the background) after leaving the Orbiter Processing Facility bay 1. Launch date for Discovery on mission STS-103, the third Hubble Space Telescope servicing mission, is under review for early December. The mission is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode

  10. Power generation using spinel manganese-cobalt oxide as a cathode catalyst for microbial fuel cell applications.

    PubMed

    Mahmoud, Mohamed; Gad-Allah, Tarek A; El-Khatib, K M; El-Gohary, Fatma

    2011-11-01

    This study focused on the use of spinel manganese-cobalt (Mn-Co) oxide, prepared by a solid state reaction, as a cathode catalyst to replace platinum in microbial fuel cells (MFCs) applications. Spinel Mn-Co oxides, with an Mn/Co atomic ratios of 0.5, 1, and 2, were prepared and examined in an air cathode MFCs which was fed with a molasses-laden synthetic wastewater and operated in batch mode. Among the three Mn-Co oxide cathodes and after 300 h of operation, the Mn-Co oxide catalyst with Mn/Co atomic ratio of 2 (MnCo-2) exhibited the highest power generation 113 mW/m2 at cell potential of 279 mV, which were lower than those for the Pt catalyst (148 mW/m2 and 325 mV, respectively). This study indicated that using spinel Mn-Co oxide to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Stimulated emission and optical properties of pyranyliden fragment containing compounds in PVK matrix

    NASA Astrophysics Data System (ADS)

    Vembris, Aivars; Zarins, Elmars; Kokars, Valdis

    2017-10-01

    Organic solid state lasers are thoughtfully investigated due to their potential applications in communication, sensors, biomedicine, etc. Low amplified spontaneous emission (ASE) excitation threshold value is essential for further use of the material in devices. Intramolecular interaction limits high molecule density load in the matrix. It is the case of the well-known red light emitting laser dye - 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM). The lowest ASE threshold value of the mentioned laser dye could be obtained within the concentration range between 2 and 4 wt%. At higher concentration threshold energy drastically increases. In this work optical and ASE properties of three original DCM derivatives in poly(N-vinylcarbazole) (PVK) at various concentrations will be discussed. One of the derivatives is modified DCM dye in which the methyl substituents in the electron donor part have been replaced with bulky trityloxyethyl groups (DWK-1). These sterically significant functional groups do not influence electron transitions in the dye but prevent aggregation of the molecules. The chemical structure of the second investigated compound is similar to DWK-1 where the methyl group is replaced with the tert-butyl substituent (DWK-1TB). The third derivative (DWK-2) consists of two N,N-di(trityloxyethyl)amino electron donor groups. All results were compared with DCM:PVK system. Photoluminescence quantum yield (PLQY) is up to ten times larger for DWK-1TB with respect to DCM systems. Bulky trityloxyethyl groups prevent aggregation of the molecules thus decreasing interaction between dyes and amount of non-radiative decays. The red shift of the photoluminescence and amplified spontaneous emission at higher concentrations were observed due to the solid state solvation effect. The increase of the investigated dye density in the matrix with a smaller reduction in PLQY resulted in low ASE threshold energy. The lowest threshold value was obtained around 21 μJ/cm2 (2.1 kW/cm2) in DWK-1TB:PVK films.

  12. Preliminary Investigation of an Active PLZT Lens

    NASA Technical Reports Server (NTRS)

    Lightsey, W. D.; Peters, B. R.; Reardon, P. J.; Wong, J. K.

    2001-01-01

    The design, analysis and preliminary testing of a prototype Adjustable Focus Optical Correction Lens (AFOCL) is described. The AFOCL is an active optical component composed of solid state lead lanthanum-modified zirconate titanate (PLZT) ferroelectric ceramic with patterned indium tin oxide (ITO) transparent surface electrodes that modulate the refractive index of the PLZT to function as an electro-optic lens. The AFOCL was developed to perform optical re-alignment and wavefront correction to enhance the performance of Ultra-Lightweight Structures and Space Observatories (ULSSO). The AFOCL has potential application as an active optical component within a larger optical system. As such, information from a wavefront sensor would be processed to provide input to the AFOCL to drive the sensed wavefront to the desired shape and location. While offering variable and rapid focussing capability (controlled wavefront manipulation) similar to liquid crystal based spatial light modulators (SLM), the AFOCL offers some potential advantages because it is a solid-state, stationary, low-mass, rugged, and thin optical element that can produce wavefront quality comparable to the solid refractive lens it replaces. The AFOCL acts as a positive or negative lens by producing a parabolic phase-shift in the PLZT material through the application of a controlled voltage potential across the ITO electrodes. To demonstrate the technology, a 4 mm diameter lens was fabricated to produce 5-waves of optical power operating at 2.051 micrometer wavelength. Optical metrology was performed on the device to measure focal length, optical quality, and efficiency for a variety of test configurations. The data was analyzed and compared to theoretical data available from computer-based models of the AFOCL.

  13. Coordinated garbage collection for raid array of solid state disks

    DOEpatents

    Dillow, David A; Ki, Youngjae; Oral, Hakki S; Shipman, Galen M; Wang, Feiyi

    2014-04-29

    An optimized redundant array of solid state devices may include an array of one or more optimized solid-state devices and a controller coupled to the solid-state devices for managing the solid-state devices. The controller may be configured to globally coordinate the garbage collection activities of each of said optimized solid-state devices, for instance, to minimize the degraded performance time and increase the optimal performance time of the entire array of devices.

  14. Lightweight Energy Absorbers for Blast Containers

    NASA Technical Reports Server (NTRS)

    Balles, Donald L.; Ingram, Thomas M.; Novak, Howard L.; Schricker, Albert F.

    2003-01-01

    Kinetic-energy-absorbing liners made of aluminum foam have been developed to replace solid lead liners in blast containers on the aft skirt of the solid rocket booster of the space shuttle. The blast containers are used to safely trap the debris from small explosions that are initiated at liftoff to sever frangible nuts on hold-down studs that secure the spacecraft to a mobile launch platform until liftoff.

  15. The molecular bacterial load assay replaces solid culture for measuring early bactericidal response to antituberculosis treatment.

    PubMed

    Honeyborne, Isobella; Mtafya, Bariki; Phillips, Patrick P J; Hoelscher, Michael; Ntinginya, Elias N; Kohlenberg, Anke; Rachow, Andrea; Rojas-Ponce, Gabriel; McHugh, Timothy D; Heinrich, Norbert

    2014-08-01

    We evaluated the use of the molecular bacterial load (MBL) assay, for measuring viable Mycobacterium tuberculosis in sputum, in comparison with solid agar and liquid culture. The MBL assay provides early information on the rate of decline in bacterial load and has technical advantages over culture in either form. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Enhancement of Biogas Production from Rice Husk by NaOH and Enzyme Pretreatment

    NASA Astrophysics Data System (ADS)

    Syafrudin; Nugraha, Winardi Dwi; Agnesia, Shandy Sarima; Matin, Hashfi Hawali Abdul; Budiyono

    2018-02-01

    Biogas is a renewable energy source that can be used as an alternative fuel to replace fossil fuel such as oil and natural gas. This research aims to analyze the impact of NaOH (Sodium hydroxide) and enzyme usage on the production of rice husk biogas using Solid State Anaerobic Digestion (SS-AD). Generally, SS-AD occurs at solid concentrations higher than 15%. The waste of rice husk are used as substrate with a C/N ratio of 25% and the total of solid that are used is 21%. Rice husk contains high lignin, therefore it is handled with chemical and biological treatment. The chemical preliminary treatment was using NaOH with various concentrations from 3%, 6% and 9% while the biological preliminary treatment was using enzyme with various concentration from 5%, 8%, and 11%. The biogas that is produced then measured every two days during 60 days of research with the biogas volume as a parameter observed. The result of the research shows that preliminary treatment with NaOH and enzyme can increase the production of biogas. The highest biogas production was obtained by the NaOH pretreatment using 6% NaOH which was 497 ml and by enzyme pretreatment using 11% enzyme which was 667,5 ml.

  17. Replacing American Breakfast Foods with Ready-To-Eat (RTE) Cereals Increases Consumption of Key Food Groups and Nutrients among US Children and Adults: Results of an NHANES Modeling Study.

    PubMed

    Rehm, Colin D; Drewnowski, Adam

    2017-09-13

    Replacing the typical American breakfast with ready-to-eat cereals (RTECs) may improve diet quality. Our goal was to assess the impact of RTECs on diet quality measures for different age groups, using substitution modeling. Dietary intakes came from the 2007-2010 National Health and Examination Surveys (NHANES; n = 18,112). All breakfast foods, excluding beverages, were replaced on a per calorie basis, with frequency-weighted and age/race specific RTECs. Model 1 replaced foods with RTECs alone; Model 2 replaced foods with RTECs and milk. Diet quality measures were based on desirable food groups and nutrients, Healthy Eating Index (HEI)-2010 scores, and estimated diet costs. Model 1 diets were significantly higher in whole grains (+84.6%), fiber (+14.3%), vitamin D (+14.0%), iron (+54.5%) and folic acid (+104.6%), as compared to observed diets. Model 2 diets were additionally higher in dairy (+15.8%), calcium (+11.3%) and potassium (+3.95%). In Model 1, added sugar increased (+5.0%), but solid fats declined (-10.9%). Energy from solid fats and added sugars declined (-3.2%) in both models. Model 2 offered higher diet quality (57.1 vs. 54.6, p -value < 0.01) at a lower cost ($6.70 vs. $6.92; p < 0.01), compared to observed diets. Substitution modeling of NHANES data can assess the nutritional and economic impact of dietary guidance.

  18. Replacing American Breakfast Foods with Ready-To-Eat (RTE) Cereals Increases Consumption of Key Food Groups and Nutrients among US Children and Adults: Results of an NHANES Modeling Study

    PubMed Central

    Rehm, Colin D.; Drewnowski, Adam

    2017-01-01

    Replacing the typical American breakfast with ready-to-eat cereals (RTECs) may improve diet quality. Our goal was to assess the impact of RTECs on diet quality measures for different age groups, using substitution modeling. Dietary intakes came from the 2007–2010 National Health and Examination Surveys (NHANES; n = 18,112). All breakfast foods, excluding beverages, were replaced on a per calorie basis, with frequency-weighted and age/race specific RTECs. Model 1 replaced foods with RTECs alone; Model 2 replaced foods with RTECs and milk. Diet quality measures were based on desirable food groups and nutrients, Healthy Eating Index (HEI)-2010 scores, and estimated diet costs. Model 1 diets were significantly higher in whole grains (+84.6%), fiber (+14.3%), vitamin D (+14.0%), iron (+54.5%) and folic acid (+104.6%), as compared to observed diets. Model 2 diets were additionally higher in dairy (+15.8%), calcium (+11.3%) and potassium (+3.95%). In Model 1, added sugar increased (+5.0%), but solid fats declined (−10.9%). Energy from solid fats and added sugars declined (−3.2%) in both models. Model 2 offered higher diet quality (57.1 vs. 54.6, p-value < 0.01) at a lower cost ($6.70 vs. $6.92; p < 0.01), compared to observed diets. Substitution modeling of NHANES data can assess the nutritional and economic impact of dietary guidance. PMID:28902145

  19. On Critical States, Rupture States and Interlocking Strength of Granular Materials.

    PubMed

    Szalwinski, Chris M

    2017-07-27

    The Mohr-Coulomb theory of strength identifies cohesion and internal friction as the two principal contributions to the shear strength of a granular material. The contribution of cohesion in over-compacted granular materials has been challenged and replacing cohesion with interlocking has been proposed. A theory of rupture strength that includes interlocking is derived herein. The physics-chemistry concept of critical state is elaborated to accommodate granular materials, based on empirical definitions established in the fields of soil mechanics and bulk solids' flow. A surface in state space, called the critical compaction surface, separates over-compacted states from lightly compacted states. The intersection of this surface with the Mohr-Coulomb envelope forms the critical state surface for a granular material. The rupture strength of an over-compacted granular material is expressed as the sum of cohesion, internal friction and interlocking strength. Interlocking strength is the shear strength contribution due to over-compaction and vanishes at critical state. The theory allows migrations from one critical state to another. Changes in specific volume during such migrations are related to changes in mean-normal effective stress and uncoupled from changes in shearing strain. The theory is reviewed with respect to two established research programs and underlying assumptions are identified.

  20. A review of lithium and non-lithium based solid state batteries

    NASA Astrophysics Data System (ADS)

    Kim, Joo Gon; Son, Byungrak; Mukherjee, Santanu; Schuppert, Nicholas; Bates, Alex; Kwon, Osung; Choi, Moon Jong; Chung, Hyun Yeol; Park, Sam

    2015-05-01

    Conventional lithium-ion liquid-electrolyte batteries are widely used in portable electronic equipment such as laptop computers, cell phones, and electric vehicles; however, they have several drawbacks, including expensive sealing agents and inherent hazards of fire and leakages. All solid state batteries utilize solid state electrolytes to overcome the safety issues of liquid electrolytes. Drawbacks for all-solid state lithium-ion batteries include high resistance at ambient temperatures and design intricacies. This paper is a comprehensive review of all aspects of solid state batteries: their design, the materials used, and a detailed literature review of various important advances made in research. The paper exhaustively studies lithium based solid state batteries, as they are the most prevalent, but also considers non-lithium based systems. Non-lithium based solid state batteries are attaining widespread commercial applications, as are also lithium based polymeric solid state electrolytes. Tabular representations and schematic diagrams are provided to underscore the unique characteristics of solid state batteries and their capacity to occupy a niche in the alternative energy sector.

  1. STS-103 Discovery rolls over to VAB

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this aerial view, the tail of the orbiter Discovery can be seen as it begins rolling out of the Orbiter Processing Facility (OPF) bay 1 (center left of photo). Behind it is the tow-way, which leads from the Shuttle Landing Facility past the OPF. In the foreground is the new road under construction as part of the Safe Haven project. And at right is the one of two crawlers used to move the Shuttles to the launch pad. Discovery is moving to the Vehicle Assembly Building for stacking with an external tank and solid rocket boosters before its launch on mission STS-103. The launch date is currently under review for early December. STS-103, the third Hubble Space Telescope servicing mission, is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode.

  2. STS-103 crew take part in CEIT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility, STS-103 Mission Specialist Steven L. Smith (right) and other members of the crew look over new Multi-Layer Insulation (MLI) intended for the Hubble Space Telescope. The seven-member crew, taking part in a Crew Equipment Interface Test, are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with the MLI. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  3. KSC-99pp1477

    NASA Image and Video Library

    1999-12-19

    KENNEDY SPACE CENTER, FLA. -- As if spawned by the clouds of smoke and steam below, the Space Shuttle Discovery shoots into the night sky on mission STS-103. The brilliant light creates a reflection of the launch in the water nearby. Liftoff occurred at 7:50 p.m. EST from Launch Pad 39B. On board are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland and Jean-François Clervoy of France. Nicollier and Clervoy are with the European Space Agency. STS-103 is a Hubble Servicing Mission, with three planned space walks designed to install new equipment and replace old. The primary objective is to replace the gyroscopes that make up the three Rate Sensor Units. Extravehicular activities include installing a new computer, changing out one of the Fine Guidance Sensors, replacing a tape recorder with a new solid state recorder, and installing a voltage/temperature improvement kit, and begin repairing the insulation on the telescope's outer surface. After the 7-day, 21-hour mission, Discovery is expected to land at KSC Monday, Dec. 27, at about 5:24 p.m. EST. This is the 27th flight of Discovery and the 96th mission in the Space Shuttle Program. It is the third launch at Kennedy Space Center in 1999

  4. KSC-99pp1331

    NASA Image and Video Library

    1999-11-16

    In the bunker at Launch Pad 39B, STS-103 Mission Specialist Jean-François Clervoy of France, who is with the European Space Agency (ESA), tries on an oxygen mask during Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. Other crew members taking part are Commander Curtis L. Brown Jr. and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), plus Claude Nicollier of Switzerland, who is also with ESA. STS-103 is a "call-up" mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST

  5. Hubble (HST) hardware arrives at KSC for servicing mission, STS-103

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A shipping container with payload flight hardware for the Third Hubble Space Telescope Servicing Mission (SM-3A) is transferred onto a transporter from the C-5 air cargo plane that brought it to KSC. The hardware will be taken to the Payload Hazardous Servicing Facility for final testing and integration of payload elements. Mission STS-103 is a 'call-up' mission which is being planned due to the need to replace portions of the Hubble's pointing system, the gyros, which have begun to fail. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of STS-93 is currently targeted for Oct. 14 but under review, pending the launch date of a prior mission, STS-99, also under review.

  6. STS-103 crew take part in CEIT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility, the STS-103 crew look over equipment to be used during their mission. The seven-member crew, taking part in a Crew Equipment Interface Test, are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  7. STS-103 crew take part in CEIT in PHSF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a Crew Equipment Interface Test (CEIT), members of the STS-103 crew check out a portable foot restraint on the Flight Support System that will be used on the mission, repairing the Hubble Space Telescope. The seven-member crew comprises Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  8. STS-103 MS Clervoy tries on oxygen mask

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the bunker at Launch Pad 39B, STS-103 Mission Specialist Jean-Frangois Clervoy of France, who is with the European Space Agency (ESA), tries on an oxygen mask during Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. Other crew members taking part are Commander Curtis L. Brown Jr. and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), plus Claude Nicollier of Switzerland, who is also with ESA. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  9. STS-103 crew take part in CEIT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility, members of the STS-103 crew look at some of the equipment to be used during their mission. The seven-member crew are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  10. KSC-99pp1098

    NASA Image and Video Library

    1999-09-02

    During a Crew Equipment Interface Test (CEIT), members of the STS-103 crew check out a portable foot restraint on the Flight Support System that will be used on the mission, repairing the Hubble Space Telescope. The seven-member crew comprises Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D), Claude Nicollier of Switzerland, and Jean-François Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review

  11. KSC-99pp1332

    NASA Image and Video Library

    1999-11-16

    In the bunker at Launch Pad 39B, STS-103 Pilot Scott J. Kelly (left) and Mission Specialist John M. Grunsfeld (Ph.D.) (right) try on oxygen masks during Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. Other crew members taking part are Commander Curtis L. Brown Jr. and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), and Jean-François Clervoy of France and Claude Nicollier of Switzerland, who are with the European Space Agency. STS-103 is a "call-up" mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST

  12. KSC-99pp1089

    NASA Image and Video Library

    1999-09-02

    In the Payload Hazardous Servicing Facility, members of the STS-103 crew look at some of the equipment to be used during their mission. The seven-member crew are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-François Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review

  13. KSC-99pp1342

    NASA Image and Video Library

    1999-11-17

    Taking a break during emergency egress training at Launch Pad 39B are (left to right) STS-103 Mission Specialists Jean-François Clervoy of France, Claude Nicollier of Switzerland, Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists John M. Grunsfeld (Ph.D.), C. Michael Foale (Ph.D.) and Steven L. Smith. Clervoy and Nicollier are with the European Space Agency. The training is part of Terminal Countdown Demonstration Test (TCDT) activities that also include opportunities to inspect the mission payloads in the orbiter's payload bay and simulated countdown exercises. STS-103 is a "call-up" mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST

  14. KSC-99pp1086

    NASA Image and Video Library

    1999-09-02

    In the Payload Hazardous Servicing Facility, the STS-103 crew look over equipment to be used during their mission. The seven-member crew, taking part in a Crew Equipment Interface Test, are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-François Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review

  15. KSC-99pp1347

    NASA Image and Video Library

    1999-11-17

    STS-103 Mission Commander Curtis L. Brown Jr. sits inside orbiter Discovery waiting for the start of a simulated countdown exercise. The simulation is part of Terminal Countdown Demonstration Test (TCDT) activities. The TCDT also provides the crew with emergency egress training and opportunities to inspect their mission payload in the orbiter's payload bay. Other crew members taking part in the TCDT are Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Jean-François Clervoy of France, and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. STS-103 is a "call-up" mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST

  16. Portable Hydraulic Powerpack

    NASA Technical Reports Server (NTRS)

    Anderson, L. A.; Henry, R. L.; Fedor, O. H.; Owens, L. J.

    1986-01-01

    Rechargeable hydraulic powerpack functions as lightweight, compact source of mechanical energy. Self-contained hydraulic powerpack derives energy from solid chemical charge. Combustion of charge initiated by small hammer, and revolving feeder replaces charges expended. Combustion gases cool during expansion in turbine and not too hot for release to atmosphere. Unit has applications driving wheelchairs and operating drills, winches, and other equipment in remote areas. Also replaces electric motors and internal-combustion engines as source of power in explosive atmospheres.

  17. U.S. Strategic Nuclear Forces: Background, Developments, and Issues

    DTIC Science & Technology

    2016-09-27

    meet the terms of the New START Treaty. The Air Force is also modernizing the Minuteman missiles, replacing and upgrading their rocket motors...began in 1998 and has been replacing the propellant, the solid rocket fuel, in the Minuteman motors to extend the life of the rocket motors. A...complete the program. It has not requested additional funding in subsequent years. Propulsion System Rocket Engine Program (PSRE) According to the Air

  18. High-power all-fiber ultra-low noise laser

    NASA Astrophysics Data System (ADS)

    Zhao, Jian; Guiraud, Germain; Pierre, Christophe; Floissat, Florian; Casanova, Alexis; Hreibi, Ali; Chaibi, Walid; Traynor, Nicholas; Boullet, Johan; Santarelli, Giorgio

    2018-06-01

    High-power ultra-low noise single-mode single-frequency lasers are in great demand for interferometric metrology. Robust, compact all-fiber lasers represent one of the most promising technologies to replace the current laser sources in use based on injection-locked ring resonators or multi-stage solid-state amplifiers. Here, a linearly polarized high-power ultra-low noise all-fiber laser is demonstrated at a power level of 100 W. Special care has been taken in the study of relative intensity noise (RIN) and its reduction. Using an optimized servo actuator to directly control the driving current of the pump laser diode, we obtain a large feedback bandwidth of up to 1.3 MHz. The RIN reaches - 160 dBc/Hz between 3 and 20 kHz.

  19. KSC-99pp1366

    NASA Image and Video Library

    1999-11-24

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39B, Discovery's payload bay doors close on the STS-103 payload. STS-103 is a Hubble Space Telescope servicing mission. The payload, which will enable the crew of seven to service the Hubble Space Telescope, consists of gyroscopes that allow the telescope to point at stars, galaxies and planets; a Fine Guidance Sensor; a new enhanced computer to replace an older model; a solid-state digital recorder; a new spare transmitter; and new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of Space Shuttle Discovery on mission STS-103 is targeted for Dec. 9 at 1:10 a.m. EST

  20. Experimental and Numerical Characterization of Polymer Nanocomposites for Solid Rocket Motor Internal Insulation

    DTIC Science & Technology

    2009-09-30

    combustion chamber. Kevlar®-filled ethylene-propylene-diene rubber ( EPDM ) is the baseline insulation material for solid rocket motor cases. A novel...filled EPDM is the industry standard for this application. Since the elastic modulus of rubbers is low, they also act as absorbers during...Santoprene® thermoplastic rubber is already demonstrating their performance capability to replace EPDM in automotive weather seal applications [18]. An

  1. High power CO2 coherent ladar haven't quit the stage of military affairs

    NASA Astrophysics Data System (ADS)

    Zhang, Heyong

    2015-05-01

    The invention of the laser in 1960 created the possibility of using a source of coherent light as a transmitter for a laser radar (ladar). Coherent ladar shares many of the basic features of more common microwave radars. However, it is the extremely short operating wavelength of lasers that introduces new military applications, especially in the area of missile identification, space target tracking, remote rang finding, camouflage discrimination and toxic agent detection. Therefore, the most popular application field such as laser imaging and ranging were focused on CO2 laser in the last few decades. But during the development of solid state and fiber laser, some people said that the CO2 laser will be disappeared and will be replaced by the solid and fiber laser in the field of military and industry. The coherent CO2 laser radar will have the same destiny in the field of military affairs. However, to my opinion, the high power CO2 laser will be the most important laser source for laser radar and countermeasure in the future.

  2. Pre-treatment of domestic wastewater with pre-composting tanks: evaluation of existing systems.

    PubMed

    Gajurel, D R; Benn, O; Li, Z; Behrendt, J; Otterpohl, R

    2003-01-01

    A relatively new technology called pre-composting tank or Rottebehaelter, retaining solid material and draining water to a certain extent, has been found to be an interesting component of decentralised systems to replace the usual septic tank. Results of the investigation revealed that solid material which has been retained in the pre-composting tanks still contained a high percentage of water. However, there was no odour problem at and near the tanks. The pre-composted materials have to be further composted together with household and garden wastes for a year prior to their use as soil conditioner. The filtrate is further treated in a constructed wetland. One of the major advantages of this system compared to other systems, such as septic tanks, is that it does not deprive agriculture of the valuable nutrients and soil conditioner from human excreta and does not require an expensive tanker truck. It can be the most appropriate system for application in regions where there is a demand for local reuse of the end product. It has to be stated that maintenance is a crucial factor.

  3. Ceramic Electrolyte Membrane Technology: Enabling Revolutionary Electrochemical Energy Storage

    DTIC Science & Technology

    2015-10-05

    ion batteries . Solid-state Li- ion batteries could significantly improve safety and eliminate the need for complex...advancing ceramic electrolyte technology for use in solid-state Li- ion batteries . Solid-state Li- ion batteries could significantly improve safety and...technology for use in solid-state Li- ion batteries and high specific energy Li-S and Li- air batteries . Solid-state Li- ion batteries could

  4. 4D porosity evolution during solid-solid replacement reaction in mineral system (KBr, KCl)

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Hamilton, Andrea; Koehn, Daniel; Shipton, Zoe

    2017-04-01

    An extensive understanding of the controlling mechanisms of phase transformation is key in geosciences to better predicting the evolution of the physical parameters of rocks (porosity, permeability, and rheology) from centimetre-scale (e.g. fingering in siltstones) to kilometer-scale (e.g. Dolostone geobodies), in both the diagenetic and metamorphic domains. This contribution reports the 4D monitoring of a KBr crystal at different time steps during an experimental, fluid-mediated replacement reaction with KCl. Volumes are reconstructed based on density contrast using non-destructive X-ray Computed Tomography (XCT) at a resolution of 3 microns. A sample of KBr was immersed in a static bath of saturated KCl at room temperature and pressure. 5 scans were performed during the reaction at 5, 10, 20, 35 and 55 minutes, until 50% of the original crystal was replaced. As a control experiment, two samples reacted continuously for 15 and 55 minutes, respectively. Each 3D dataset was reconstructed to visualize and quantify the different mineral phases, the porosity distribution and connectivity, along with the reaction front morphology. In the case of successive baths, results show that the front morphology evolves from rough with small fingers to flat and thick during the reaction, suggesting a switch between advection and diffusion controlled reactant distribution through time. This switch is also reflected in the mass evolution and the rate of propagation of the replaced zone, being rapid in the first 20 minutes before reaching steady state. The porosity develops perpendicular to the crystal wall, suggesting a self-organization process governed by advection, before connecting laterally. While the reaction changes from advection controlled to diffusion controlled, the direction of the connected pores becomes parallel to the crystal walls. This phenomenon is not observed when the crystal is reacting discontinuously for 55 minutes. In the latter case, self-organization similar to extended fingering is observed, suggesting the advection to diffusion switch is related to the successive stop of reaction progress for scanning. In both cases, when considering only the reacting zone of the crystal, we can estimate the porosity created by Br-Cl substitution at 30%. The evolution of connected porosity distribution helps to understand how fluid flow can migrate in a transforming rock, for example during dolomitisation, a phenomenon extensively observed in sedimentary basins.

  5. Packaging of solid state devices

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.

    2006-01-03

    A package for one or more solid state devices in a single module that allows for operation at high voltage, high current, or both high voltage and high current. Low thermal resistance between the solid state devices and an exterior of the package and matched coefficient of thermal expansion between the solid state devices and the materials used in packaging enables high power operation. The solid state devices are soldered between two layers of ceramic with metal traces that interconnect the devices and external contacts. This approach provides a simple method for assembling and encapsulating high power solid state devices.

  6. Optimum random and age replacement policies for customer-demand multi-state system reliability under imperfect maintenance

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Luan; Chang, Chin-Chih; Sheu, Dwan-Fang

    2016-04-01

    This paper proposes the generalised random and age replacement policies for a multi-state system composed of multi-state elements. The degradation of the multi-state element is assumed to follow the non-homogeneous continuous time Markov process which is a continuous time and discrete state process. A recursive approach is presented to efficiently compute the time-dependent state probability distribution of the multi-state element. The state and performance distribution of the entire multi-state system is evaluated via the combination of the stochastic process and the Lz-transform method. The concept of customer-centred reliability measure is developed based on the system performance and the customer demand. We develop the random and age replacement policies for an aging multi-state system subject to imperfect maintenance in a failure (or unacceptable) state. For each policy, the optimum replacement schedule which minimises the mean cost rate is derived analytically and discussed numerically.

  7. Quality-of-Life (QOL) during Screening for Phase 1 Trial Studies in Patients with Advanced Solid Tumors and Its Impact on Risk for Serious Adverse Events.

    PubMed

    Anwar, Sidra; Tan, Wei; Hong, Chi-Chen; Admane, Sonal; Dozier, Askia; Siedlecki, Francine; Whitworth, Amy; DiRaddo, Ann Marie; DePaolo, Dawn; Jacob, Sandra M; Ma, Wen Wee; Miller, Austin; Adjei, Alex A; Dy, Grace K

    2017-06-26

    Background : Serious adverse events (SAEs) and subject replacements occur frequently in phase 1 oncology clinical trials. Whether baseline quality-of-life (QOL) or social support can predict risk for SAEs or subject replacement among these patients is not known. Methods : Between 2011-2013, 92 patients undergoing screening for enrollment into one of 22 phase 1 solid tumor clinical trials at Roswell Park Cancer Institute were included in this study. QOL Questionnaires (EORTC QLQ-C30 and FACT-G), Medical Outcomes Study Social Support Survey (MOSSSS), Charlson comorbidity scores (CCS) and Royal Marsden scores (RMS) were obtained at baseline. Frequency of dose limiting toxicities (DLTs), subject replacement and SAEs that occurred within the first 4 cycles of treatment were recorded. Fisher's exact test and Mann-Whitney-Wilcoxon test were used to study the association between categorical and continuous variables, respectively. A linear transformation was used to standardize QOL scores. p -value ≤ 0.05 was considered statistically significant. Results : Baseline QOL, MOSSSS, CCS and RMS were not associated with subject replacement nor DLTs. Baseline EORTC QLQ-C30 scores were significantly lower among patients who encountered SAEs within the first 4 cycles ( p = 0.04). Conclusions : Lower (worse) EORTC QLQ-C30 score at baseline is associated with SAE occurrence during phase 1 oncology trials.

  8. Impact of paper and cardboard suppression on OFMSW anaerobic digestion.

    PubMed

    Fonoll, X; Astals, S; Dosta, J; Mata-Alvarez, J

    2016-10-01

    Mechanical-biological treatment plants treat municipal solid waste to recover recyclable materials, nutrients and energy. Waste paper and cardboard (WP), the second main compound in municipal solid waste (∼30% in weight basis), is typically used for biogas generation. However, its recovery is gaining attention as it can be used to produce add-value products like bioethanol and residual derived fuel. Nevertheless, WP suppression or replacement will impact anaerobic digestion in terms of biogas production, process stability and digestate management. Two lab-scale reactors were used to assess the impact of WP in anaerobic digestion performance. A control reactor was only fed with biowaste (BioW), while a second reactor was fed with two different mixtures of BioW and WP, i.e. 85/15% and 70/30% (weight basis). Results indicate that either replacing half of the WP by BioW or removing half of the WP has little impact on the methane production. When removing half of the WP, methane production could be sustained by a larger waste biodegradability. The replacement of all WP by BioW increased the reactor methane production (∼37%), while removing all WP would have reduced the methane production about 15%. Finally, replacing WP loading rate by BioW led to a system less tolerant to instability periods and with poorer digestate quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Solid state recorders for airborne reconnaissance

    NASA Astrophysics Data System (ADS)

    Klang, Mark R.

    2003-08-01

    Solid state recorders have become the recorder of choice for meeting airborne ruggedized requirements for reconnaissance and flight test. The cost of solid state recorders have decreased over the past few years that they are now less expense than the traditional high speed tape recorders. CALCULEX, Inc manufactures solid state recorders called MONSSTR (Modular Non-volatile Solid State Recorder). MONSSTR is being used on many different platforms such as F/A-22, Global Hawk, F-14, F-15, F-16, U-2, RF-4, and Tornado. This paper will discuss the advantages of using solid state recorders to meet the airborne reconnaissance requirement and the ability to record instrumentation data. The CALCULEX recorder has the ability to record sensor data and flight test data in the same chassis. This is an important feature because it eliminates additional boxes on the aircraft. The major advantages to using a solid state recorder include; reliability, small size, light weight, and power. Solid state recorders also have a larger storage capacity and higher bandwidth capability than other recording devices.

  10. The solid-state terahertz spectrum of MDMA (Ecstasy) - A unique test for molecular modeling assignments

    NASA Astrophysics Data System (ADS)

    Allis, Damian G.; Hakey, Patrick M.; Korter, Timothy M.

    2008-10-01

    The terahertz (THz, far-infrared) spectrum of 3,4-methylene-dioxymethamphetamine hydrochloride (Ecstasy) is simulated using solid-state density functional theory. While a previously reported isolated-molecule calculation is noteworthy for the precision of its solid-state THz reproduction, the solid-state calculation predicts that the isolated-molecule modes account for only half of the spectral features in the THz region, with the remaining structure arising from lattice vibrations that cannot be predicted without solid-state molecular modeling. The molecular origins of the internal mode contributions to the solid-state THz spectrum, as well as the proper consideration of the protonation state of the molecule, are also considered.

  11. EPDM rocket motor insulation

    NASA Technical Reports Server (NTRS)

    Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

    2003-01-01

    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components and with appropriate adjustment of curing and other additives functionally-required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g. powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf life characteristics.

  12. EPDM rocket motor insulation

    NASA Technical Reports Server (NTRS)

    Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

    2008-01-01

    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components, and, with appropriate adjustment of curing and other additives, functionally required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g., powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf-life characteristics.

  13. EPDM rocket motor insulation

    NASA Technical Reports Server (NTRS)

    Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

    2004-01-01

    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components, and, with appropriate adjustment of curing and other additives, functionally required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g., powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf-life characteristics.

  14. Subscale solid motor nozzle tests, phase 4 and nozzle materials screening and thermal characterization, phase 5

    NASA Technical Reports Server (NTRS)

    Arnold, J.; Dodson, J.; Laub, B.

    1979-01-01

    Subscale solid motor nozzles containing a baseline material or low cost materials to be considered as potential replacements for the baseline material are designed and tested. Data are presented from tests of four identically designed 2.5 inch throat diameter nozzles and one 7 inch throat diameter nozzle. The screening of new candidate low cost materials, as well as their thermophysical and thermochemical characterization is also discussed.

  15. Growth of a sea urchin-like rutile TiO2 hierarchical microsphere film on Ti foil for a quasi-solid-state dye-sensitized solar cell.

    PubMed

    Ri, Jin Hyok; Wu, Shufang; Jin, Jingpeng; Peng, Tianyou

    2017-11-30

    A sea urchin-like rutile TiO 2 microsphere (RMS) film was fabricated on Ti foil via a hydrothermal process. The resulting rutile TiO 2 hierarchical microspheres with a diameter of 5-6 μm are composed of nanorods with a diameter of ∼200 nm and a length of 1-2 μm. The sea urchin-like hierarchical structure leads to the Ti foil-based RMS film possessing much better light-scattering capability in the visible region than the bare Ti foil. By using it as an underlayer of a nanosized anatase TiO 2 film (bTPP3) derived from a commercially available paste (TPP3), the corresponding bilayer Ti foil-based quasi-solid-state dye-sensitized solar cell (DSSC) only gives a conversion efficiency of 4.05%, much lower than the single bTPP3 film-based one on Ti foil (5.97%). By spin-coating a diluted TPP3 paste (sTPP3) on the RMS film prior to scraping the bTPP3 film, the resulting RMS/sTPP3/bTPP3 film-based DSSC achieves a significantly enhanced efficiency (7.27%). The electrochemical impedance spectra (EIS) show that the RMS/sTPP3/bTPP3 film possesses better electron transport capability and longer electron lifetime than the bTPP3 film. This work not only provides the first example of directly growing rutile TiO 2 hierarchically structured microsphere film on Ti foil suitable for replacing the rigid, heavy and expensive transparent conductive oxide (TCO) glass substrate to serve as a light-scattering underlayer of Ti foil-based quasi-solid-state DSSCs, but also paves a new route to develop Ti foil-based flexible DSSCs with high efficiency, low cost and a wide application field through optimizing the composition and structure of the photoanode.

  16. CLARIFICATION OF POTOMAC RIVER WATER WITH CATIONIC POLYELECTROLYTES

    DTIC Science & Technology

    of normal amounts of chlorine, act effectively as a sole coagulant. It can replace a conventional metal salt in a system comprised of a solids-contact upflow type coagulation basin and a pressure- diatomite filter.

  17. The dominant role of side chains in supramolecular double helical organisation in synthetic tripeptides

    NASA Astrophysics Data System (ADS)

    Sharma, Ankita; Tiwari, Priyanka; Dutt Konar, Anita

    2018-06-01

    Peptide self-assembled nanostructures have attracted attention recently owing to their promising applications in diversified avenues. To validate the importance of sidechains in supramolecular architectural stabilization, herein this report describes the self-assembly propensities involving weak interactions in a series of model tripeptides Boc-Xaa-Aib-Yaa-OMe I-IV, (where Xaa = 4-F-Phe/NMeSer/Ile & Yaa = Tyr in peptide I-III respectively and Xaa = 4-F-Phe & Yaa = Ile in peptide IV) differing in terminal side chains. The solid state structural analysis reveals that tripeptide (I) displays supramolecular preference for double helical architecture. However, when slight modification has been introduced in the N-terminal side chains disfavour the double helical organisation (Peptide II and III). Indeed the peptides display sheet like ensemble within the framework. Besides replacement of C-terminal Tyr by Ile in peptide I even do not promote the architecture, emphasizing the dominant role of balance of side chains in stabilizing double helical organisation. The CD measurements, concentration dependant studies, NMR titrations and ROESY spectra are well in agreement with the solid state conformational investigation. Moreover the morphological experiments utilizing FE-SEM, support the heterogeneity present in the peptides. Thus this work may not only hold future promise in understanding the structure and function of neurodegenerative diseases but also assist in rational design of protein modification in biologically active peptides.

  18. Optimization of the polyplanar optical display electronics for a monochrome B-52 display

    NASA Astrophysics Data System (ADS)

    DeSanto, Leonard

    1998-09-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten-inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a new 200 mW green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by a Digital Light Processing (DLPTM) chip manufactured by Texas Instruments (TI). In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMDTM) chip is operated remotely from the Texas Instruments circuit board. In order to achieve increased brightness a monochrome digitizing interface was investigated. The operation of the DMDTM divorced from the light engine and the interfacing of the DMDTM board with the RS-170 video format specific to the B-52 aircraft will be discussed, including the increased brightness of the monochrome digitizing interface. A brief description of the electronics required to drive the new 200 mW laser is also presented.

  19. Photoluminescence Properties of Ca3Si2O7: Pr3+ Orange-Red Phosphors Prepared by High-Temperature Solid-State Method

    NASA Astrophysics Data System (ADS)

    Peng, Zhi-Qing; Chen, Rong; Feng, Wen-Lin

    2018-06-01

    Novel luminescent materials Ca3-xSi2O7: xPr3+ were successfully prepared by the high-temperature solid-state method. The crystal structure, morphology, and optical spectrum were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), and spectroscopy, respectively. The XRD patterns of the samples indicate that the crystal structure is monoclinic symmetry. The SEM shows that the selected sample has good crystallinity although its appearance is irregular and scalelike. The peak of the excitation spectrum of the sample is located at around 449 nm, corresponding to 3H4→3P2 transition of Pr3+. The peak of the emission spectrum of the sample is situated at around 612 nm which is attributed to 3P0→3H6 transition of Pr3+, and the colour is orange-red. The optimum concentration for Pr3+ replaced Ca2+ sites in Ca3Si2O7: Pr3+ is 0.75 mol%. The lifetime (8.48 μs) of a typical sample (Ca2.9925Pr0.0075)Si2O7 is obtained. It reveals that orange-red phosphors Ca3-xSi2O7: xPr3+ possess remarkable optical properties and can be used in white light emitting devices.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, D.; Ladipo, F.T.; Braddock-Wilking, J.

    Low temperature crystal structures of (DABCO)H{sup +}Co(CO){sub 4}{sup -} (1) and (DABCO)H{sup +}Co(CO){sub 3}PPh{sub 3}{sup -} (2) (DABCO = 1,4-diazabicyclooctane) indicate that both salts exhibit N-H...Co hydrogen bonding. IR and NMR data indicate that these hydrogen bonded species persist in nonpolar solvents such as toluene, but exist as solvent separated ions in more polar solvents. Replacement of the axial CO ligand by PPh{sub 3} leads to a shortening of the N...Co separation in the solid state from 3.437(3) to 3.294(6) A. This change is accompanied by an increase in the angle between the equatorial carbonyl ligands. Thus, the crystallographic resultsmore » suggest a strengthening of the N-H...Co hydrogen bond upon increasing the basicity of the metal center, the first observation of this type in the solid state. This assertion is supported by variable-temperature {sup 1}H and {sup 13}C NMR data in toluene-d{sub 8} solution which, discussed in the light of ab initio calculations, indicate that the barrier to a fluxional process involving cleavage of the N-H...Co hydrogen bond is greater in 2 than in 1. The crystal structures of 1 and 2 have been determined by X-ray diffraction at 135(5) and 123(5) K, respectively. 19 refs., 2 figs., 5 tabs.« less

  1. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    NASA Technical Reports Server (NTRS)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; hide

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  2. Solid state lighting devices and methods with rotary cooling structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koplow, Jeffrey P.

    Solid state lighting devices and methods for heat dissipation with rotary cooling structures are described. An example solid state lighting device includes a solid state light source, a rotating heat transfer structure in thermal contact with the solid state light source, and a mounting assembly having a stationary portion. The mounting assembly may be rotatably coupled to the heat transfer structure such that at least a portion of the mounting assembly remains stationary while the heat transfer structure is rotating. Examples of methods for dissipating heat from electrical devices, such as solid state lighting sources are also described. Heat dissipationmore » methods may include providing electrical power to a solid state light source mounted to and in thermal contact with a heat transfer structure, and rotating the heat transfer structure through a surrounding medium.« less

  3. GaN Nanowire Arrays for Efficient Optical Read-Out and Optoelectronic Control of NV Centers in Diamond.

    PubMed

    Hetzl, Martin; Wierzbowski, Jakob; Hoffmann, Theresa; Kraut, Max; Zuerbig, Verena; Nebel, Christoph E; Müller, Kai; Finley, Jonathan J; Stutzmann, Martin

    2018-06-13

    Solid-state quantum emitters embedded in a semiconductor crystal environment are potentially scalable platforms for quantum optical networks operated at room temperature. Prominent representatives are nitrogen-vacancy (NV) centers in diamond showing coherent entanglement and interference with each other. However, these emitters suffer from inefficient optical outcoupling from the diamond and from fluctuations of their charge state. Here, we demonstrate the implementation of regular n-type gallium nitride nanowire arrays on diamond as photonic waveguides to tailor the emission direction of surface-near NV centers and to electrically control their charge state in a p-i-n nanodiode. We show that the electrical excitation of single NV centers in such a diode can efficiently replace optical pumping. By the engineering of the array parameters, we find an optical read-out efficiency enhanced by a factor of 10 and predict a lateral NV-NV coupling 3 orders of magnitude stronger through evanescently coupled nanowire antennas compared to planar diamond not covered by nanowires, which opens up new possibilities for large-scale on-chip quantum-computing applications.

  4. 300 GPM Solids Removal System A True Replacement for Back Flushable Powdered Filter Systems - 13607

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ping, Mark R.; Lewis, Mark

    2013-07-01

    The EnergySolutions Solids Removal System (SRS) utilizes stainless steel cross-flow ultra-filtration (XUF) technology which allows it to reliably remove suspended solids greater than one (1) micron from liquid radwaste streams. The SRS is designed as a pre-treatment step for solids separation prior to processing through other technologies such as Ion Exchange Resin (IER) and/or Reverse Osmosis (RO), etc. Utilizing this pre-treatment approach ensures successful production of reactor grade water while 1) decreasing the amount of radioactive water being discharged to the environment; and 2) decreasing the amount of radioactive waste that must ultimately be disposed of due to the eliminationmore » of spent powdered filter media. (authors)« less

  5. Architecture and method for a burst buffer using flash technology

    DOEpatents

    Tzelnic, Percy; Faibish, Sorin; Gupta, Uday K.; Bent, John; Grider, Gary Alan; Chen, Hsing-bung

    2016-03-15

    A parallel supercomputing cluster includes compute nodes interconnected in a mesh of data links for executing an MPI job, and solid-state storage nodes each linked to a respective group of the compute nodes for receiving checkpoint data from the respective compute nodes, and magnetic disk storage linked to each of the solid-state storage nodes for asynchronous migration of the checkpoint data from the solid-state storage nodes to the magnetic disk storage. Each solid-state storage node presents a file system interface to the MPI job, and multiple MPI processes of the MPI job write the checkpoint data to a shared file in the solid-state storage in a strided fashion, and the solid-state storage node asynchronously migrates the checkpoint data from the shared file in the solid-state storage to the magnetic disk storage and writes the checkpoint data to the magnetic disk storage in a sequential fashion.

  6. Smart design to resolve spectral overlapping of phosphor-in-glass for high-powered remote-type white light-emitting devices.

    PubMed

    Lee, Jin Seok; Arunkumar, P; Kim, Sunghoon; Lee, In Jae; Lee, Hyungeui; Im, Won Bin

    2014-02-15

    The white light-emitting diode (WLED) is a state-of-the-art solid state technology, which has replaced conventional lighting systems due to its reduced energy consumption, its reliability, and long life. However, the WLED presents acute challenges in device engineering, due to its lack of color purity, efficacy, and thermal stability of the lighting devices. The prime cause for inadequacies in color purity and luminous efficiency is the spectral overlapping of red components with yellow/green emissions when generating white light by pumping a blue InGaN chip with yellow YAG:Ce³⁺ phosphor, where red phosphor is included, to compensate for deficiencies in the red region. An innovative strategy was formulated to resolve this spectral overlapping by alternatively arranging phosphor-in-glass (PiG) through cutting and reassembling the commercial red CaAlSiN₃:Eu²⁺ and green Lu₃Al₅O₁₂:Ce³⁺ PiG. PiGs were fabricated using glass frits with a low softening temperature of 600°C, which exhibited excellent thermal stability and high transparency, improving life time even at an operating temperature of 200°C. This strategy overcomes the spectral overlapping issue more efficiently than the randomly mixed and patented stacking design of multiple phosphors for a remote-type WLED. The protocol for the current design of PiG possesses excellent thermal and chemical stability with high luminous efficiency and color purity is an attempt to make smarter solid state lighting for high-powered remote-type white light-emitting devices.

  7. Study and Implementation of White Power-LED Based Indoor Lighting Application for the Healthcare Sector

    NASA Astrophysics Data System (ADS)

    Chakraborty, A.; Ganguly, R.

    With the current technological growth in the field of device fabrication, white power-LED's are available for solid state lighting applications. This is a paradigm shift from electrical lighting to electronic lighting. The implemented systems are showing some promise by saving a considerable amount of energy as well as providing a good and acceptable illumination level. However, the `useful life' of such devices is an important parameter. If the proper device is not chosen, the desired reliability and performance will not be obtained. In the present work, different parameters associated with reliability of such LED's are studied. Four different varieties of LED's are put to test the `useful life' as per IESNA LM 79 standard. From the results obtained, the proper LED is chosen for further application. Subsequently, lighting design is done for a hospital waiting room (indoor application) with 24 × 7 lighting requirements for replacement of existing CFLs there. The calculations show that although the initial cost is higher for LED based lighting, yet the savings on energy and replacement of the lamp results in a payback time of less than a year.

  8. KSC-99pp1288

    NASA Image and Video Library

    1999-11-05

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39B, the payload canister for Space Shuttle Discovery, for mission STS-103, is lifted up the Rotating Service Structure. The hoses attached to the canister provide airconditioning until the canister is mated to the environmentally controlled Payload Changeout Room and the payload bay doors are open. Installation of the payload into Discovery is slated for Friday, Nov. 12. The mission is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will also be replacing a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode

  9. Aza-Bambusurils En Route to Anion Transporters.

    PubMed

    Singh, Mandeep; Solel, Ephrath; Keinan, Ehud; Reany, Ofer

    2016-06-20

    Previous calculations of anion binding with various bambusuril analogs predicted that the replacement of oxygen by nitrogen atoms to produce semiaza-bambus[6]urils would award these new cavitands with multiple anion binding properties. This study validates the hypothesis by efficient synthesis, crystallography, thermogravimetric analysis and calorimetry. These unique host molecules are easily accessible from the corresponding semithio-bambusurils in a one-pot reaction, which converts a single anion receptor into a potential anion channel. Solid-state structures exhibit simultaneous accommodation of three anions, linearly positioned within the cavity along the main symmetry axis. The ability to hold anions at a short distance of about 4 Å is reminiscent of natural chloride channels in E. coli, which exhibit similar distances between their adjacent anion binding sites. The calculated transition-state energy for double-anion movement through the channel suggests that although these host-guest complexes are thermodynamically stable they enjoy high kinetic flexibility to render them efficient anion channels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Engineering a Robust Photovoltaic Device with Quantum Dots and Bacteriorhodopsin

    PubMed Central

    2015-01-01

    We present a route toward a radical improvement in solar cell efficiency using resonant energy transfer and sensitization of semiconductor metal oxides with a light-harvesting quantum dot (QD)/bacteriorhodopsin (bR) layer designed by protein engineering. The specific aims of our approach are (1) controlled engineering of highly ordered bR/QD complexes; (2) replacement of the liquid electrolyte by a thin layer of gold; (3) highly oriented deposition of bR/QD complexes on a gold layer; and (4) use of the Forster resonance energy transfer coupling between bR and QDs to achieve an efficient absorbing layer for dye-sensitized solar cells. This proposed approach is based on the unique optical characteristics of QDs, on the photovoltaic properties of bR, and on state-of-the-art nanobioengineering technologies. It permits spatial and optical coupling together with control of hybrid material components on the bionanoscale. This method paves the way to the development of the solid-state photovoltaic device with the efficiency increased to practical levels. PMID:25383133

  11. Highly efficient solid state magnetoelectric gyrators

    NASA Astrophysics Data System (ADS)

    Leung, Chung Ming; Zhuang, Xin; Friedrichs, Daniel; Li, Jiefang; Erickson, Robert W.; Laletin, V.; Popov, M.; Srinivasan, G.; Viehland, D.

    2017-09-01

    An enhancement in the power-conversion-efficiency (η) of a magneto-electric (ME) gyrator has been found by the use of Mn-substituted nickel zinc ferrite. A trilayer gyrator of Mn-doped Ni0.8Zn0.2Fe2O3 and Pb(Zr,Ti)O3 has η = 85% at low power conditions (˜20 mW/in3) and η ≥ 80% at high power conditions (˜5 W/in3). It works close to fundamental electromechanical resonance in both direct and converse modes. The value of η is by far the highest reported so far, which is due to the high mechanical quality factor (Qm) of the magnetostrictive ferrite. Such highly efficient ME gyrators with a significant power density could become important elements in power electronics, potentially replacing electromagnetic and piezoelectric transformers.

  12. Multispectral linear array visible and shortwave infrared sensors

    NASA Astrophysics Data System (ADS)

    Tower, J. R.; Warren, F. B.; Pellon, L. E.; Strong, R.; Elabd, H.; Cope, A. D.; Hoffmann, D. M.; Kramer, W. M.; Longsderff, R. W.

    1984-08-01

    All-solid state pushbroom sensors for multispectral linear array (MLA) instruments to replace mechanical scanners used on LANDSAT satellites are introduced. A buttable, four-spectral-band, linear-format charge coupled device (CCD) and a buttable, two-spectral-band, linear-format, shortwave infrared CCD are described. These silicon integrated circuits may be butted end to end to provide multispectral focal planes with thousands of contiguous, in-line photosites. The visible CCD integrated circuit is organized as four linear arrays of 1024 pixels each. Each array views the scene in a different spectral window, resulting in a four-band sensor. The shortwave infrared (SWIR) sensor is organized as 2 linear arrays of 512 detectors each. Each linear array is optimized for performance at a different wavelength in the SWIR band.

  13. Ten inch Planar Optic Display

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiser, L.; Veligdan, J.

    A Planar Optic Display (POD) is being built and tested for suitability as a high brightness replacement for the cathode ray tube, (CRT). The POD display technology utilizes a laminated optical waveguide structure which allows a projection type of display to be constructed in a thin (I to 2 inch) housing. Inherent in the optical waveguide is a black cladding matrix which gives the display a black appearance leading to very high contrast. A Digital Micromirror Device, (DMD) from Texas Instruments is used to create video images in conjunction with a 100 milliwatt green solid state laser. An anamorphic opticalmore » system is used to inject light into the POD to form a stigmatic image. In addition to the design of the POD screen, we discuss: image formation, image projection, and optical design constraints.« less

  14. KSC-99pp1365

    NASA Image and Video Library

    1999-11-24

    KENNEDY SPACE CENTER, FLA. -- A worker at Launch Pad 39B watches as Discovery's payload bay doors close on the STS-103 payload. STS-103 is a Hubble Space Telescope servicing mission. The payload, which will enable the crew of seven to service the Hubble Space Telescope, consists of gyroscopes that allow the telescope to point at stars, galaxies and planets; a Fine Guidance Sensor; a new enhanced computer to replace an older model; a solid-state digital recorder; a new spare transmitter; and new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of Space Shuttle Discovery on mission STS-103 is targeted for Dec. 9 at 1:10 a.m. EST

  15. Thermal reactions of uranium metal, UO 2, U 3O 8, UF 4, and UO 2F 2 with NF 3 to produce UF 6

    NASA Astrophysics Data System (ADS)

    McNamara, Bruce; Scheele, Randall; Kozelisky, Anne; Edwards, Matthew

    2009-11-01

    This paper demonstrates that NF 3 fluorinates uranium metal, UO 2, UF 4, UO 3, U 3O 8, and UO 2F 2·2H 2O to produce the volatile UF 6 at temperatures between 100 and 550 °C. Thermogravimetric and differential thermal analysis reaction profiles are described that reflect changes in the uranium fluorination/oxidation state, physiochemical effects, and instances of discrete chemical speciation. Large differences in the onset temperatures for each system investigated implicate changes in mode of the NF 3 gas-solid surface interaction. These studies also demonstrate that NF 3 is a potential replacement fluorinating agent in the existing nuclear fuel cycle and in actinide volatility reprocessing.

  16. An Integrated, Evidence-Based Approach to Transitioning to Operations: Specifications for Future Replacement Lights on ISS

    NASA Technical Reports Server (NTRS)

    Leveton, Lauren; Brainard, George; Whitmire, Alexandra; Kubey, Alan; Maida, Jim; Bowen, Charles; Johnston, Smith

    2010-01-01

    The International Space Station (ISS) currently uses General Luminaire Assemblies (GLAs) as its primary light source. These GLAs are composed of fluorescent lighting and are integrated into the electrical system on Station. Seventy seven of these units are distributed throughout the vehicle, and many of the lights, having reached their lifespan, are no longer functional; while backup panels are available on orbit, it is anticipated that the supplies of fluorescents on the station will be exhausted by 2015. The ISS vehicle office is therefore preparing to replace all of the GLAs, with Solid State Light Assemblies (SSLAs) composed of white Light Emitting Diodes (LEDs). In the Spring of 2010, an announcement for the replacement lights was released. The announcement specified that proposed lighting systems should use LED technology, given certain power draw restrictions and no changes to how the lights are currently controlled (a central on/off switch per node, and a dial to turn on/off and increase brightness on each lighting unit). The replacement lights are to follow current specifications for brightness levels (lux) and color temperature (degrees Kelvin, or K). Reportedly, the lighting on orbit is dim and suboptimal. The average brightness of the lights (given all lights within a node are operational) is 291 lux; by comparison, recommended office lighting ranges from 200 to 500 lux, and daylight ranges on a typical overcast day, consists of 10,000 to 25,000 lux. Representatives from NASA Behavioral Health and Performance Element (BHP) and Human Factors and Habitability identified that maintaining current brightness levels limits visual acuity, work space, and the use of light as a countermeasure for improving circadian entrainment, hastening phase shifting, evoking acute alertness and enhancing performance. Revised lighting specifications are therefore needed to optimize the replacement lights for the ISS.

  17. Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries

    DOE PAGES

    Kerman, Kian; Luntz, Alan; Viswanathan, Venkatasubramanian; ...

    2017-06-09

    Solid state electrolyte systems boasting Li+ conductivity of >10 mS cm -1 at room temperature have opened the potential for developing a solid state battery with power and energy densities that are competitive with conventional liquid electrolyte systems. The primary focus of this review is twofold. First, differences in Li penetration resistance in solid state systems are discussed, and kinetic limitations of the solid state interface are highlighted. Second, technological challenges associated with processing such systems in relevant form factors are elucidated, and architectures needed for cell level devices in the context of product development are reviewed. Specific research vectorsmore » that provide high value to advancing solid state batteries are outlined and discussed.« less

  18. Solid state division progress report, period ending February 29, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-09-01

    Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials.

  19. STS-103 crew wait inside Discovery for simulated countdown exercise

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Strapped into their seats inside the orbiter Discovery for a simulated countdown exercise are (left to right) STS-103 Mission Specialists Claude Nicollier of Switzerland, Steven L. Smith, and C. Michael Foale (Ph.D.). The simulation is part of Terminal Countdown Demonstration Test (TCDT) activities. The TCDT also provides the crew with emergency egress training and opportunities to inspect their mission payload in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), and Jean-Fran'''ois Clervoy of France. Clervoy and Nicollier are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  20. STS-103 crew look over payload inside Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Launch Pad 39B, STS-103 Mission Specialist C. Michael Foale (Ph.D.) looks over the Hubble servicing cargo in the payload bay of Space Shuttle Discovery. The activity is part of the Terminal Countdown Demonstration Test (TCDT), which also provides the crew with emergency egress training and a simulated countdown exercise. Other crew members taking part in the TCDT are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, John M. Grunsfeld (Ph.D.), Jean- Fran'''ois Clervoy of France, and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  1. STS-103 crew wait inside Discovery for simulated countdown exercise

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Seated in the orbiter Discovery for a simulated countdown exercise is STS-103 Pilot Scott J. Kelly. The simulation is part of Terminal Countdown Demonstration Test (TCDT) activities. The TCDT also provides the crew with emergency egress training and opportunities to inspect their mission payload in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Curtis L. Brown Jr., and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Jean- Fran'''ois Clervoy of France, and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  2. STS-103 crew wait inside Discovery for simulated countdown exercise

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-103 Mission Specialist John M. Grunsfeld (Ph.D.) sits inside orbiter Discovery waiting for the start of a simulated countdown exercise. The simulation is part of Terminal Countdown Demonstration Test (TCDT) activities. The TCDT also provides the crew with emergency egress training and opportunities to inspect their mission payload in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), Jean-Fran'''ois Clervoy of France, and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  3. STS-103 crew wait inside Discovery for simulated countdown exercise

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-103 Mission Commander Curtis L. Brown Jr. sits inside orbiter Discovery waiting for the start of a simulated countdown exercise. The simulation is part of Terminal Countdown Demonstration Test (TCDT) activities. The TCDT also provides the crew with emergency egress training and opportunities to inspect their mission payload in the orbiter's payload bay. Other crew members taking part in the TCDT are Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Jean-Fran'''ois Clervoy of France, and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  4. STS-103 crew wait inside Discovery for simulated countdown exercise

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-103 Mission Specialists Jean-Fran'''ois Clervoy of France takes his seat inside the Space Shuttle Discovery during a practice launch countdown, part of Terminal Countdown Demonstration Test (TCDT) activities, while astronaut David 'Doc' Brown checks him out. The TCDT also provides the crew with emergency egress training and opportunities to inspect their mission payload in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  5. High performance of treated and washed MSWI bottom ash granulates as natural aggregate replacement within earth-moist concrete.

    PubMed

    Keulen, A; van Zomeren, A; Harpe, P; Aarnink, W; Simons, H A E; Brouwers, H J H

    2016-03-01

    Municipal solid waste incineration bottom ash was treated with specially designed dry and wet treatment processes, obtaining high quality bottom ash granulate fractions (BGF) suitable for up to 100% replacement of natural gravel in concrete. The wet treatment (using only water for separating and washing) significantly lowers the leaching of e.g. chloride and sulfate, heavy metals (antimony, molybdenum and copper) and dissolved organic carbon (DOC). Two potential bottom ash granulate fractions, both in compliance with the standard EN 12620 (aggregates for concrete), were added into earth-moist concrete mixtures. The fresh and hardened concrete physical performances (e.g. workability, strength and freeze-thaw) of high strength concrete mixtures were maintained or improved compared with the reference mixtures, even after replacing up to 100% of the initial natural gravel. Final element leaching of monolithic and crushed granular state BGF containing concretes, showed no differences with the gravel references. Leaching of all mixtures did not exceed the limit values set by the Dutch Soil Quality Degree. In addition, multiple-life-phase emission (pH static test) for the critical elements of input bottom ash, bottom ash granulate (BGF) and crushed BGF containing concrete were assessed. Simulation pH lowering or potential carbonation processes indicated that metal (antimony, barium, chrome and copper) and sulfate element leaching behavior are mainly pH dominated and controlled, although differ in mechanism and related mineral abundance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. STS-103 crew take part in CEIT in PHSF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a Crew Equipment Interface Test in the Payload Hazardous Servicing Facility, members of the STS-103 crew check out the Flight Support System (FSS)from above and below. The FSS is part of the primary payload on the mission to repair the Hubble Space Telescope. The seven-member crew comprises Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  7. KSC-99pp1099

    NASA Image and Video Library

    1999-09-03

    During a Crew Equipment Interface Test (CEIT), members of the STS-103 crew check out tools to be used on planned Extravehicular Activities (EVAs) on the mission for repair of the Hubble Space Telescope. In uniform, from left, are Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), Claude Nicollier of Switzerland, and John M. Grunsfeld (Ph.D.). Other crew members at KSC for the CEIT are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Jean-François Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review

  8. STS-103 crew take part in CEIT in the orbiter Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the mid-deck of the orbiter Discovery, STS-103 crew Commander Curtis L. Brown Jr. and Pilot Scott J. Kelly check out part of the equipment to be flown on the mission, the repair and upgrade of the Hubble Space Telescope. They are at KSC taking part in a Crew Equipment Interface Test along with other crew members Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-Fran'''ois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  9. STS-103 crew take part in CEIT in PHSF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Hazardous Servicing Facility, four STS-103 crew members check the Flight Support System avionics to be used for repair and upgrade of the Hubble Space Telescope. The crew are at KSC to take part in a Crew Equipment Interface Test. The seven-member crew comprises Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  10. STS-103 Pilot Scott Kelly and MS John Grunsfeld try on oxygen masks

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the bunker at Launch Pad 39B, STS-103 Pilot Scott J. Kelly (left) and Mission Specialist John M. Grunsfeld (Ph.D.) (right) try on oxygen masks during Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. Other crew members taking part are Commander Curtis L. Brown Jr. and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), and Jean-Frangois Clervoy of France and Claude Nicollier of Switzerland, who are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  11. STS-103 crew pose at 195-foot level of Fixed Service Structure

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the 195-foot level of the Fixed Service Structure on Launch Pad 39B, the STS-103 crew take a break from Terminal Countdown Demonstration Test (TCDT) activities. Standing from left to right are Mission Specialists Jean-Frangois Clervoy of France and Claude Nicollier of Switzerland, who are with the European Space Agency; Commander Curtis L. Brown Jr.; Pilot Scott J. Kelly; and Mission Specialists John M. Grunsfeld (Ph.D.), C. Michael Foale (Ph.D.) and Steven L. Smith. The TCDT provides the crew with the emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  12. Isoelectronic substitutions and aluminium alloying in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    NASA Astrophysics Data System (ADS)

    von Rohr, Fabian O.; Cava, Robert J.

    2018-03-01

    High-entropy alloys (HEAs) are a new class of materials constructed from multiple principal elements statistically arranged on simple crystallographic lattices. Due to the large amount of disorder present, they are excellent model systems for investigating the properties of materials intermediate between crystalline and amorphous states. Here we report the effects of systematic isoelectronic replacements, using Mo-Y, Mo-Sc, and Cr-Sc mixtures, for the valence electron count 4 and 5 elements in the body-centered cubic (BCC) Ta-Nb-Zr-Hf-Ti high-entropy alloy (HEA) superconductor. We find that the superconducting transition temperature Tc strongly depends on the elemental makeup of the alloy, and not exclusively its electron count. The replacement of niobium or tantalum by an isoelectronic mixture lowers the transition temperature by more than 60%, while the isoelectronic replacement of hafnium, zirconium, or titanium has a limited impact on Tc. We further explore the alloying of aluminium into the nearly optimal electron count [TaNb] 0.67(ZrHfTi) 0.33 HEA superconductor. The electron count dependence of the superconducting Tc for (HEA)Al x is found to be more crystallinelike than for the [TaNb] 1 -x(ZrHfTi) x HEA solid solution. For an aluminum content of x =0.4 the high-entropy stabilization of the simple BCC lattice breaks down. This material crystallizes in the tetragonal β -uranium structure type and superconductivity is not observed above 1.8 K.

  13. KSC-99pp1346

    NASA Image and Video Library

    1999-11-17

    STS-103 Mission Specialist John M. Grunsfeld (Ph.D.) sits inside orbiter Discovery waiting for the start of a simulated countdown exercise. The simulation is part of Terminal Countdown Demonstration Test (TCDT) activities. The TCDT also provides the crew with emergency egress training and opportunities to inspect their mission payload in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), Jean-François Clervoy of France, and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. STS-103 is a "call-up" mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST

  14. KSC-99pp1100

    NASA Image and Video Library

    1999-09-03

    In the Orbiter Processing Facility (OPF) bay 1, STS-103 Commander Curtis L. Brown Jr. sits in the command seat of the orbiter Discovery, inspecting the window. Brown and other crew members are at KSC to take part in a Crew Equipment Interface Test. The rest of the crew are Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Jean-François Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a "call-up" due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review

  15. KSC-99pp1328

    NASA Image and Video Library

    1999-11-16

    At Launch Pad 39B, STS-103 Commander Curtis L. Brown Jr. introduces the rest of the crew: (left to right) Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, Jean-François Clervoy of France, who is with the European Space Agency (ESA), John M. Grunsfeld (Ph.D.), C. Michael Foale (Ph.D.), and Claude Nicollier of Switzerland, who is also with ESA. As a preparation for launch, they have been participating in Terminal Countdown Demonstration Test (TCDT) activities at KSC. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a "call-up" mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST

  16. Effects of replacing dietary starch with neutral detergent-soluble fibre on ruminal fermentation, microbial synthesis and populations of ruminal cellulolytic bacteria using the rumen simulation technique (RUSITEC).

    PubMed

    Zhao, X H; Liu, C J; Liu, Y; Li, C Y; Yao, J H

    2013-12-01

    A rumen simulation technique (RUSITEC) apparatus with eight 800 ml fermenters was used to investigate the effects of replacing dietary starch with neutral detergent-soluble fibre (NDSF) by inclusion of sugar beet pulp in diets on ruminal fermentation, microbial synthesis and populations of ruminal cellulolytic bacteria. Experimental diets contained 12.7, 16.4, 20.1 or 23.8% NDSF substituted for starch on a dry matter basis. The experiment was conducted over two independent 15-day incubation periods with the last 8 days used for data collection. There was a tendency that 16.4% NDSF in the diet increased the apparent disappearance of organic matter (OM) and neutral detergent fibre (NDF). Increasing dietary NDSF level increased carboxymethylcellulase and xylanase activity in the solid fraction and apparent disappearance of acid detergent fibre (ADF) but reduced the 16S rDNA copy numbers of Ruminococcus albus in both liquid and solid fractions and R. flavefaciens in the solid fraction. The apparent disappearance of dietary nitrogen (N) was reduced by 29.6% with increased dietary NDSF. Substituting NDSF for starch appeared to increase the ratios of acetate/propionate and methane/volatile fatty acids (VFA) (mol/mol). Replacing dietary starch with NDSF reduced the daily production of ammonia-N and increased the growth of the solid-associated microbial pellets (SAM). Total microbial N flow and efficiency of microbial synthesis (EMS), expressed as g microbial N/kg OM fermented, tended to increase with increased dietary NDSF, but the numerical increase did not continue as dietary NDSF exceeded 20.1% of diet DM. Results suggested that substituting NDSF for starch up to 16.4% of diet DM increased digestion of nutrients (except for N) and microbial synthesis, and further increases (from 16.4% to 23.8%) in dietary NDSF did not repress microbial synthesis but did significantly reduce digestion of dietary N. © 2012 Blackwell Verlag GmbH.

  17. Initial experiments with gel-water: towards MRI-linac dosimetry and imaging.

    PubMed

    Alnaghy, Sarah J; Gargett, Maegan; Liney, Gary; Petasecca, Marco; Begg, Jarrad; Espinoza, Anthony; Newall, Matthew K; Duncan, Mitchell; Holloway, Lois; Lerch, Michael L F; Lazea, Mircea; Rosenfeld, Anatoly B; Metcalfe, Peter

    2016-12-01

    Tracking the position of a moving radiation detector in time and space during data acquisition can replicate 4D image-guided radiotherapy (4DIGRT). Magnetic resonance imaging (MRI)-linacs need MRI-visible detectors to achieve this, however, imaging solid phantoms is an issue. Hence, gel-water, a material that provides signal for MRI-visibility, and which will in future work, replace solid water for an MRI-linac 4DIGRT quality assurance tool, is discussed. MR and CT images of gel-water were acquired for visualisation and electron density verification. Characterisation of gel-water at 0 T was compared to Gammex-RMI solid water, using MagicPlate-512 (M512) and RMI Attix chamber; this included percentage depth dose, tissue-phantom ratio (TPR 20/10 ), tissue-maximum ratio (TMR), profiles, output factors, and a gamma analysis to investigate field penumbral differences. MR images of a non-powered detector in gel-water demonstrated detector visualisation. The CT-determined gel-water electron density agreed with the calculated value of 1.01. Gel-water depth dose data demonstrated a maximum deviation of 0.7% from solid water for M512 and 2.4% for the Attix chamber, and by 2.1% for TPR 20/10 and 1.0% for TMR. FWHM and output factor differences between materials were ≤0.3 and ≤1.4%. M512 data passed gamma analysis with 100% within 2%, 2 mm tolerance for multileaf collimator defined fields. Gel-water was shown to be tissue-equivalent for dosimetry and a feasible option to replace solid water.

  18. Program Enhances Drawings Of Three-Dimensional Objects

    NASA Technical Reports Server (NTRS)

    Hedgley, David R., Jr.

    1992-01-01

    SILHOUETTE is program for line drawings rendering any subset of polygons as silhouette. Program is improvement on, and replacement for, HIDDEN LINE COMPUTER CODE (ARC-11446). Offers combinations of silhouette and nonsilhouette specifications for arbitrary solid. Written in FORTRAN 77.

  19. Combustion characteristics of SMX and SMX based propellants

    NASA Astrophysics Data System (ADS)

    Reese, David A.

    This work investigates the combustion of the new solid nitrate ester 2,3-hydroxymethyl-2,3-dinitro-1,4-butanediol tetranitrate (SMX, C6H 8N6O16). SMX was synthesized for the first time in 2008. It has a melting point of 85 °C and oxygen balance of 0% to CO 2, allowing it to be used as an energetic additive or oxidizer in solid propellants. In addition to its neat combustion characteristics, this work also explores the use of SMX as a potential replacement for nitroglycerin (NG) in double base gun propellants and as a replacement for ammonium perchlorate in composite rocket propellants. The physical properties, sensitivity characteristics, and combustion behaviors of neat SMX were investigated. Its combustion is stable at pressures of up to at least 27.5 MPa (n = 0.81). The observed flame structure is nearly identical to that of other double base propellant ingredients, with a primary flame attached at the surface, a thick isothermal dark zone, and a luminous secondary flame wherein final recombination reactions occur. As a result, the burning rate and primary flame structure can be modeled using existing one-dimensional steady state techniques. A zero gas-phase activation energy approximation results in a good fit between modeled and observed behavior. Additionally, SMX was considered as a replacement for nitroglycerin in a double base propellant. Thermochemical calculations indicate improved performance when compared with the common double base propellant JA2 at SMX loadings above 40 wt-%. Also, since SMX is a room temperature solid, migration may be avoided. Like other nitrate esters, SMX is susceptible to decomposition over long-term storage due to the presence of excess acid in the crystals; the addition of stabilizers (e.g., derivatives of urea) during synthesis should be sufficient to prevent this. the addition of Both unplasticized and plasticized propellants were formulated. Thermal analysis of unplasticized propellant showed a distinct melt-recrystallization curve, which indicates that a solid phase solution is being formed between SMX and NC, and that SMX would not act as plasticizer. Analysis of propellant prepared with diethyleneglycol dinitrate (DEGDN) plasticizer indicates that the SMX is likely dissolved in the DEGDN. The plasticized material also showed similar hardness and modulus to JA2. However, both plasticized and unplasticized propellants exhibited deconsolidated burning at elevated pressures due to the high modulus of the propellant. Increased amounts of plasticizer or improved processing of the nitrocellulose should be investigated to remedy this issue. Safety characterization showed that sensitivity of the plasticized propellant is similar to JA2. In short, replacing NG with SMX results in a new family of propellants with acceptable safety characteristics and which may also offer improved theoretical performance. Finally, composite propellants based on SMX were theoretically and experimentally examined and compared to formulations based on ammonium perchlorate (AP). Thermochemical equilibrium calculations show that aluminized SMX-based formulations can achieve theoretical sea level specific impulse values upwards of 260 s-- slightly lower than an AP-based composite. Both ignition sensitivity (tested via drop weight impact, electro-static discharge, and BAM friction) and physical properties (hardness and thermal properties) are comparable to those of the AP-based formulations. However, the SMX-based formulation could be detonated using a high explosive donor charge in contact with the propellant, as do other low smoke propellants. Differential scanning calorimetry of the SMX-based propellant indicated an exotherm onset of 140 °C, which corresponds to the known decomposition temperature of SMX. The propellant has a high burning rate of 1.57 cm/s at 6.89 MPa, with a pressure exponent of 0.85. This high pressure sensitivity might be addressed using various energetic and/or stabilizing additives. With high density and performance, smokeless combustion products, and stable combustion, SMX appears to be a viable replacement for existing energetic ingredients in a wide variety of propellant, explosive, and pyrotechnic applications.

  20. Total ankle replacement systems available in the United States.

    PubMed

    Coetzee, J Chris; Deorio, James K

    2010-01-01

    Ankle replacement continues to be a viable option for treating patients with ankle arthritis. Over the past 10 years, there has been a significant increase in the number of ankle replacement systems available for use. Current controversy centers on whether fixed- or mobile-bearing devices are most advantageous. Most total ankle systems used outside the United States are mobile-bearing devices, whereas ankle replacement systems used in the United States are all essentially fixed-bearing devices. Not all ankles with degenerative changes are amenable to replacement surgery, and several exclusion criteria are well documented. Ankle replacement is especially complicated because of the ankle's proximity to the foot and the important role that the balance and alignment of the foot play in the success of the ankle replacement. Foot deformities should be treated before or at the time of ankle replacement surgery. Ignoring foot deformities can lead to failure of the ankle replacement. It is also of paramount importance to consider the stability of the ankle ligaments. An unstable ankle with a varus or valgus deformity of more than 20 degrees is probably not amenable to ankle replacement. There are currently no reliable options to predictably reconstruct the lateral or medial ligaments in these severe deformities. It is important to be aware of the ankle replacement systems currently available in the United States and understand the key features of each design. Devices approved by the US Food and Drug Administration, a device that is awaiting approval, and a device that is being evaluated by the Food and Drug Administration in a prospective randomized clinical trial are discussed, along with an objective comparison of fixed- and mobile-bearing devices.

  1. Solid-state modeling of the terahertz spectrum of the high explosive HMX.

    PubMed

    Allis, Damian G; Prokhorova, Darya A; Korter, Timothy M

    2006-02-09

    The experimental solid-state terahertz (THz) spectrum (3-120 cm(-1)) of the beta-crystal form of the high explosive octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been analyzed using solid-state density functional theory calculations. Various density functionals (both generalized gradient approximation and local density approximation) are compared in terms of their abilities to reproduce the experimentally observed solid-state structure and low-frequency vibrational motions. Good-to-excellent agreement between solid-state theory and experiment can be achieved in the THz region where isolated-molecule calculations fail to reproduce the observed spectral features, demonstrating a clear limitation of using isolated-molecule calculations for the assignment of THz frequency motions in molecular solids. The deficiency of isolated-molecule calculations is traced to modification of the molecular structure in the solid state through crystal packing effects and the formation of weak C-H...O hydrogen bonds.

  2. Optofluidic devices with integrated solid-state nanopores

    PubMed Central

    Hawkins, Aaron R.; Schmidt, Holger

    2016-01-01

    This review (with 90 refs.) covers the state of the art in optofluidic devices with integrated solid-state nanopores for use in detection and sensing. Following an introduction into principles of optofluidics and solid-state nanopore technology, we discuss features of solid-state nanopore based assays using optofluidics. This includes the incorporation of solid-state nanopores into optofluidic platforms based on liquid-core anti-resonant reflecting optical waveguides (ARROWs), methods for their fabrication, aspects of single particle detection and particle manipulation. We then describe the new functionalities provided by solid-state nanopores integrated into optofluidic chips, in particular acting as smart gates for correlated electro-optical detection and discrimination of nanoparticles. This enables the identification of viruses and λ-DNA, particle trajectory simulations, enhancing sensitivity by tuning the shape of nanopores. The review concludes with a summary and an outlook. PMID:27046940

  3. Radioactive Water Treatment at a United States Environmental Protection Agency Superfund Site - 12322

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckman, John C.

    2012-07-01

    A water treatment system at a United States Environmental Protection Agency (USEPA) Superfund site impacted by radiological contaminants is used to treat water entering the site. The United States Army Corps of Engineers (USACE) is actively managing the remedial action for the USEPA using contracts to support the multiple activities on site. The site is where former gas mantle production facilities operated around the turn of the century. The manufacturing facilities used thorium ores to develop the mantles and disposed of off-specification mantles and ore residuals in the surrounding areas. During Site remedial actions, both groundwater and surface water comesmore » into contact with contaminated soils and must be collected and treated at an on-site treatment facility. The radionuclides thorium and radium with associated progeny are the main concern for treatment. Suspended solids, volatile organic compounds, and select metals are also monitored during water treatment. The water treatment process begins were water is pumped to a collection tank where debris and grit settle out. Stored water is pumped to a coagulant tank containing poly-aluminum chloride to collect dissolved solids. The water passes into a reaction tube where aspirated air is added or reagent added to remove Volatile Organic Compounds (VOC'S) by mass transfer and convert dissolved iron to a solid. The water enters the flocculent polymer tank to drop solids out. The flocculated water overflows to a fluidized bed contact chamber to increase precipitation. Flocculation is where colloids of material drop out of suspension and settle. The settled solids are periodically removed and disposed of as radioactive waste. The water is passed through filters and an ion exchange process to extract the radionuclides. Several million liters of water are processed each year from two water treatment plants servicing different areas of the remediation site. Ion exchange resin and filter material are periodically replaced and disposed of as radioactive waste. A total of 0.85 m{sup 3} of waste sludge per year requires disposal on average, in addition to another 6.6 m{sup 3} of waste cartridge filters. All water discharges are regulated by a state of New Jersey Pollutant Discharge Elimination System Permit implemented by the Federal Water Pollution Control Act (Clean Water Act). Laboratory analyses are required to satisfy requirements of the state NPDES permit. Specific monitoring parameters and discharge rates will be provided. Use of the water treatment systems drastically reduces the amount of contaminated water requiring solidification and water disposal to near zero. Millions of liters of potentially contaminated water from excavation activities is treated and released within permit limits. A small volume of solid radioactive waste (21 cubic meters) is generated annually from water treatment process operations. Management of ground and surface water is effectively controlled in remediation areas by the use of sumps, erosion control measures and pumping of water to storage vessels. Continued excavations can be made as water impacting the site is effectively controlled. (authors)« less

  4. Solid-phase materials for chelating metal ions and methods of making and using same

    DOEpatents

    Harrup, Mason K.; Wey, John E.; Peterson, Eric S.

    2003-06-10

    A solid material for recovering metal ions from aqueous streams, and methods of making and using the solid material, are disclosed. The solid material is made by covalently bonding a chelating agent to a silica-based solid, or in-situ condensing ceramic precursors along with the chelating agent to accomplish the covalent bonding. The chelating agent preferably comprises a oxime type chelating head, preferably a salicylaldoxime-type molecule, with an organic tail covalently bonded to the head. The hydrocarbon tail includes a carbon-carbon double bond, which is instrumental in the step of covalently bonding the tail to the silica-based solid or the in-situ condensation. The invented solid material may be contacted directly with aqueous streams containing metal ions, and is selective to ions such as copper (II) even in the presence of such ions as iron (III) and other materials that are present in earthen materials. The solid material with high selectivity to copper may be used to recover copper from mining and plating industry streams, to replace the costly and toxic solvent extraction steps of conventional copper processing.

  5. Replacing American snacks with tree nuts increases consumption of key nutrients among US children and adults: results of an NHANES modeling study.

    PubMed

    Rehm, Colin D; Drewnowski, Adam

    2017-03-07

    Replacing typical American snacks with tree nuts may be an effective way to improve diet quality and compliance with the 2015-2020 Dietary Guidelines for Americans (DGAs). To assess and quantify the impact of replacing typical snacks with composite tree nuts or almonds on diet metrics, including empty calories (i.e., added sugars and solid fats), individual fatty acids, macronutrients, nutrients of public health concern, including sodium, fiber and potassium, and summary measures of diet quality. Food pattern modeling was implemented in the nationally representative 2009-2012 National Health and Examination Survey (NHANES) in a population of 17,444 children and adults. All between-meal snacks, excluding beverages, were replaced on a per calorie basis with a weighted tree nut composite, reflecting consumption patterns in the population. Model 1 replaced all snacks with tree nuts, while Model 2 exempted whole fruits, non-starchy vegetables, and whole grains (>50% of total grain content). Additional analyses were conducted using almonds only. Outcomes of interest were empty calories (i.e., solid fats and added sugars), saturated and mono- and polyunsaturated fatty acids, fiber, protein, sodium, potassium and magnesium. The Healthy Eating Index-2010, which measures adherence to the 2010 Dietary Guidelines for Americans, was used as a summary measure of diet quality. Compared to observed diets, modeled food patterns were significantly lower in empty calories (-20.1% and -18.7% in Model 1 and Model 2, respectively), added sugars (-17.8% and -16.9%), solid fats (-21.0% and -19.3%), saturated fat (-6.6% and -7.1%)., and sodium (-12.3% and -11.2%). Modeled patterns were higher in oils (65.3% and 55.2%), monounsaturated (35.4% and 26.9%) and polyunsaturated fats (42.0% and 35.7%), plant omega 3 s (53.1% and 44.7%), dietary fiber (11.1% and 14.8%), and magnesium (29.9% and 27.0%), and were modestly higher in potassium (1.5% and 2.9%). HEI-2010 scores were significantly higher in Model 1 (67.8) and in Model 2 (69.7) compared to observed diets (58.5). Replacing snacks with almonds only produced similar results; the decrease in sodium was more modest and no increase in plant omega-3 fats was observed. Replacing between-meal snacks with tree nuts or almonds led to more nutrient-rich diets that were lower in empty calories and sodium and had more favorable fatty acid profiles. Food pattern modeling using NHANES data can be used to assess the likely nutritional impact of dietary guidance.

  6. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries

    DOE PAGES

    Zhu, Yizhou; He, Xingfeng; Mo, Yifei

    2015-12-11

    All-solid-state Li-ion batteries based on ceramic solid electrolyte materials are a promising next-generation energy storage technology with high energy density and enhanced cycle life. The poor interfacial conductance is one of the key limitations in enabling all-solid-state Li-ion batteries. However, the origin of this poor conductance has not been understood, and there is limited knowledge about the solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. In this paper, we performed first principles calculations to evaluate the thermodynamics of the interfaces between solid electrolyte and electrode materials and to identify the chemical and electrochemical stabilities of these interfaces. Our computation results revealmore » that many solid electrolyte–electrode interfaces have limited chemical and electrochemical stability, and that the formation of interphase layers is thermodynamically favorable at these interfaces. These formed interphase layers with different properties significantly affect the electrochemical performance of all-solid-state Li-ion batteries. The mechanisms of applying interfacial coating layers to stabilize the interface and to reduce interfacial resistance are illustrated by our computation. This study demonstrates a computational scheme to evaluate the chemical and electrochemical stability of heterogeneous solid interfaces. Finally, the enhanced understanding of the interfacial phenomena provides the strategies of interface engineering to improve performances of all-solid-state Li-ion batteries.« less

  7. Draft environmental impact statement: Space Shuttle Advanced Solid Rocket Motor Program

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The proposed action is design, development, testing, and evaluation of Advanced Solid Rocket Motors (ASRM) to replace the motors currently used to launch the Space Shuttle. The proposed action includes design, construction, and operation of new government-owned, contractor-operated facilities for manufacturing and testing the ASRM's. The proposed action also includes transport of propellant-filled rocket motor segments from the manufacturing facility to the testing and launch sites and the return of used and/or refurbished segments to the manufacturing site.

  8. An extrapolation scheme for solid-state NMR chemical shift calculations

    NASA Astrophysics Data System (ADS)

    Nakajima, Takahito

    2017-06-01

    Conventional quantum chemical and solid-state physical approaches include several problems to accurately calculate solid-state nuclear magnetic resonance (NMR) properties. We propose a reliable computational scheme for solid-state NMR chemical shifts using an extrapolation scheme that retains the advantages of these approaches but reduces their disadvantages. Our scheme can satisfactorily yield solid-state NMR magnetic shielding constants. The estimated values have only a small dependence on the low-level density functional theory calculation with the extrapolation scheme. Thus, our approach is efficient because the rough calculation can be performed in the extrapolation scheme.

  9. Helix Fraying and Lipid-Dependent Structure of a Short Amphipathic Membrane-Bound Peptide Revealed by Solid-State NMR.

    PubMed

    Strandberg, Erik; Grau-Campistany, Ariadna; Wadhwani, Parvesh; Bürck, Jochen; Rabanal, Francesc; Ulrich, Anne S

    2018-06-14

    The amphipathic α-helical peptide KIA14 [(KIAGKIA) 2 -NH 2 ] was studied in membranes using circular dichroism and solid-state NMR spectroscopy to obtain global as well as local structural information. By analyzing 2 H NMR data from 10 analogues of KIA14 that were selectively labeled with Ala- d 3 , those positions that are properly folded into a helix could be determined within the membrane-bound peptide. The N-terminus was found to be unraveled, whereas positions 4-14 formed an ideal helix all the way to the C-terminus. The helicity did not change when Gly residues were replaced by Ala- d 3 but was reduced when Ile was replaced, indicating that large hydrophobic residues are required for membrane binding and helix formation. The reduced helicity was strongly correlated with a decrease in peptide-induced leakage from lipid vesicles. The orientation of the short KIA14 peptide was assessed in several lipid systems and compared with that of the longer KIA21 sequence [(KIAGKIA) 3 -NH 2 ]. In 1,2-dioleoyl- sn-glycero-3-phosphatidylcholine, both peptides are aligned flat on the membrane surface, whereas in 1,2-dimyristoyl- sn-glycero-3-phosphatidylcholine (DMPC)/1-myristoyl-2-hydroxy- sn-glycero-3-phosphatidylcholine (lyso-MPC) both are inserted into the membrane in an upright orientation. These two types of lipid systems had been selected for their strongly negative and positive spontaneous curvature, respectively. We propose that in these cases, the peptide orientation is largely determined by the lipid properties. On the other hand, in plain DMPC and 1,2-dilauroyl- sn-glycero-3-phosphatidylcholine, which have only a slight positive curvature, a marked difference in orientation is evident: the short KIA14 lies almost flat on the membrane surface, whereas the longer KIA21 is more tilted. We thus propose that out of the lipid systems tested here, DMPC (with hardly any curvature) is the least biased lipid system in which peptide orientation and realignment can be studied, allowing to compare and discriminate the intrinsic effects of the properties of the peptides as such.

  10. Solid-state rechargeable magnesium battery

    DOEpatents

    Shao, Yuyan; Liu, Jun; Liu, Tianbiao; Li, Guosheng

    2016-09-06

    Embodiments of a solid-state electrolyte comprising magnesium borohydride, polyethylene oxide, and optionally a Group IIA or transition metal oxide are disclosed. The solid-state electrolyte may be a thin film comprising a dispersion of magnesium borohydride and magnesium oxide nanoparticles in polyethylene oxide. Rechargeable magnesium batteries including the disclosed solid-state electrolyte may have a coulombic efficiency .gtoreq.95% and exhibit cycling stability for at least 50 cycles.

  11. Solid State Research, 1980:1.

    DTIC Science & Technology

    1980-02-15

    ESD-TR-79-325 H 1 Solid State Research 1980 Prepared under Electronic Systems Division Contract FI%28-80-C-0002 by Lincoln Laboratory MASSkCHIISETTS...it is no longer needed. MASSACHUSETTS IN*STITUTE OF TECHNOLOGY LINCOLN LABORATORY V SOLID STATE RESEARCH QUARTERLY TECHNICAL SUMMARY REPORT I NOVEMBER...January 1990. The topics covered a-e Solid State Device Research , Quantum Electronics, Materials Rese.rch, Microelec- tronics, and Analog Device

  12. High-volume recycled materials for sustainable pavement construction.

    DOT National Transportation Integrated Search

    2017-05-01

    The main objective of this research is to evaluate the feasibility of using high-volume recycled materials for concrete production in rigid pavement. The goal was to replace 50% of the solids with recycled materials and industrial by-products. The pe...

  13. Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries.

    PubMed

    Ju, Jiangwei; Wang, Yantao; Chen, Bingbing; Ma, Jun; Dong, Shanmu; Chai, Jingchao; Qu, Hongtao; Cui, Longfei; Wu, Xiuxiu; Cui, Guanglei

    2018-04-25

    Solid-state lithium batteries have drawn wide attention to address the safety issues of power batteries. However, the development of solid-state lithium batteries is substantially limited by the poor electrochemical performances originating from the rigid interface between solid electrodes and solid-state electrolytes. In this work, a composite of poly(vinyl carbonate) and Li 10 SnP 2 S 12 solid-state electrolyte is fabricated successfully via in situ polymerization to improve the rigid interface issues. The composite electrolyte presents a considerable room temperature conductivity of 0.2 mS cm -1 , an electrochemical window exceeding 4.5 V, and a Li + transport number of 0.6. It is demonstrated that solid-state lithium metal battery of LiFe 0.2 Mn 0.8 PO 4 (LFMP)/composite electrolyte/Li can deliver a high capacity of 130 mA h g -1 with considerable capacity retention of 88% and Coulombic efficiency of exceeding 99% after 140 cycles at the rate of 0.5 C at room temperature. The superior electrochemical performance can be ascribed to the good compatibility of the composite electrolyte with Li metal and the integrated compatible interface between solid electrodes and the composite electrolyte engineered by in situ polymerization, which leads to a significant interfacial impedance decrease from 1292 to 213 Ω cm 2 in solid-state Li-Li symmetrical cells. This work provides vital reference for improving the interface compatibility for room temperature solid-state lithium batteries.

  14. Modified Reference SPS with Solid State Transmitting Antenna

    NASA Technical Reports Server (NTRS)

    Woodcock, G. R.; Sperber, B. R.

    1980-01-01

    The development of solid state microwave power amplifiers for a solar power satellite transmitting antenna is discussed. State-of-the-art power-added efficiency, gain, and single device power of various microwave solid state devices are compared. The GaAs field effect transistors and the Si-bipolar transistors appear potentially feasible for solar power satellite use. The integration of solid state devices into antenna array elements is examined and issues concerning antenna integration and consequent satellite configurations are examined.

  15. Influence of starter protein content on growth of dairy calves in an enhanced early nutrition program.

    PubMed

    Stamey, J A; Janovick, N A; Kertz, A F; Drackley, J K

    2012-06-01

    Our objectives were to determine the effect of starter crude protein (CP) content on growth of Holstein calves from birth to 10 wk of age in an enhanced early nutrition program, and to compare the enhanced program to a conventional milk replacer program. Calves (64 female, 25 male) were assigned to 3 treatments in a randomized block design: 1) conventional milk replacer (20% CP, 20% fat) plus conventional starter [19.6% CP, dry matter (DM) basis], 2) enhanced milk replacer (28.5% CP, 15% fat) plus conventional starter, and 3) enhanced milk replacer plus high-CP starter (25.5% CP, DM basis). Calves began treatments (n=29, 31, and 29 for treatments 1 to 3) at 3 d of age. Conventional milk replacer (12.5% solids) was fed at 1.25% of birth body weight (BW) as DM daily in 2 feedings from wk 1 to 5 and at 0.625% of birth BW once daily during wk 6. Enhanced milk replacer (15% solids) was fed at 1.5% of BW as DM during wk 1 and 2% of BW as DM during wk 2 to 5, divided into 2 daily feedings. During wk 6, enhanced milk replacer was fed at 1% of BW as DM once daily. Calves were weaned at d 42. Starter was available for ad libitum intake starting on d 3. Starter intake was greater for calves fed conventional milk replacer. For calves fed enhanced milk replacer, starter intake tended to be greater for calves fed enhanced starter. During the weaning period, enhanced starter promoted greater starter DM intake than the conventional starter. Over the 10-wk study, the average daily gain of BW (0.64, 0.74, and 0.80 kg/d) was greater for calves fed enhanced milk replacer with either starter and, for calves fed enhanced milk replacer, tended to be greater for calves fed high-CP starter. Rates of change in withers height, body length, and heart girth were greater for calves fed enhanced milk replacer but did not differ between starter CP concentrations. The postweaning BW for enhanced milk replacer treatments was greater for calves receiving the enhanced starter at wk 8 (73.7, 81.3, and 85.8 kg) and wk 10 (88.0, 94.9, and 99.9 kg). Starter CP content did not affect height, length, or heart girth within enhanced milk replacer treatments. Regression analysis showed that gain of BW during the first week postweaning (wk 7) increased with greater 3-d mean starter intake in the week before weaning. Starter with 25.5% CP (DM basis) provided modest benefits in starter intake (particularly around weaning) and growth for dairy calves in an enhanced early nutrition program compared with a conventional starter (19.6% CP). Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Removal of Strontium from Drinking Water by Conventional ...

    EPA Pesticide Factsheets

    The United States Environmental Protection Agency Contaminant Candidate List 3 lists strontium as a contaminant for potential regulatory consideration in drinking water. There is very little data available on strontium removal from drinking water. As a result, there is an immediate need to perform treatment studies. The objective of this work is to evaluate the effectiveness of conventional and lime-soda ash softening treatments to remove strontium from surface and ground waters. Conventional drinking water treatment with aluminum and iron coagulants were able to achieve 12% and 5.9% strontium removal at best, while lime softening removed as much as 78% from natural strontium-containing ground water. Systematic fundamental experiments showed that strontium removal during the lime-soda ash softening was related to pH, calcium concentration and dissolved inorganic carbon concentration. Final strontium concentration was also directly associated with initial strontium concentration. Precipitated solids showed well-formed crystals or agglomerates of mixed solids, two polymorphs of calcium carbonate (vaterite and calcite), and strontianite, depending on initial water quality conditions. X-ray diffraction analysis suggested that strontium likely replaced calcium inside the crystal lattice and was likely mainly responsible for removal during lime softening. To inform the public.

  17. Glassy materials for lithium batteries: electrochemical properties and devices performances

    NASA Astrophysics Data System (ADS)

    Duclot, Michel; Souquet, Jean-Louis

    Amorphous or glassy materials may be used as electrolyte or electrode materials for lithium primary or secondary batteries. A first generation proceeded from classical coin cells in which the organic electrolyte was replaced by a high lithium conductive glassy electrolyte. The solid components were assembled under isostatic pressure. The main advantages of such cells are a good storage stability and ability to operate until 200°C. Nevertheless, the high resistivity of the glassy electrolyte below room temperature and a limited depth for charge and discharge cycles makes these cells not competitive compared to conventional lithium-ion batteries. More promising, are the thin films solid state microbatteries realised by successive depositions of electrodes and electrolyte. The low resistance of the electrolyte amorphous layer allows cycling at temperatures as low as -10°C. The total thickness of thin film batteries, including packaging is less than 100 μm. A capacity of about 100 μAh cm -2 with over 10 4 charge-discharge cycles at 90% in depth of discharge is well suited for energy independent smart cards or intelligent labels, which represent for these devices a large and unrivalled market.

  18. Toward dual hematopoietic stem-cell transplantation and solid-organ transplantation for sickle-cell disease

    PubMed Central

    Levine, Jeffrey; Abt, Peter; Henry, David; Porter, David L.

    2018-01-01

    Sickle-cell disease (SCD) leads to recurrent vaso-occlusive crises, chronic end-organ damage, and resultant physical, psychological, and social disabilities. Although hematopoietic stem-cell transplantation (HSCT) is potentially curative for SCD, this procedure is associated with well-recognized morbidity and mortality and thus is ideally offered only to patients at high risk of significant complications. However, it is difficult to identify patients at high risk before significant complications have occurred, and once patients experience significant organ damage, they are considered poor candidates for HSCT. In turn, patients who have experienced long-term organ toxicity from SCD such as renal or liver failure may be candidates for solid-organ transplantation (SOT); however, the transplanted organs are at risk of damage by the original disease. Thus, dual HSCT and organ transplantation could simultaneously replace the failing organ and eliminate the underlying disease process. Advances in HSCT conditioning such as reduced-intensity regimens and alternative donor selection may expand both the feasibility of and potential donor pool for transplantation. This review summarizes the current state of HSCT and organ transplantation in SCD and discusses future directions and the clinical feasibility of dual HSCT/SOT. PMID:29535106

  19. Replacement of Ablators with Phase-Change Material for Thermal Protection of STS Elements

    NASA Technical Reports Server (NTRS)

    Kaul, Raj K.; Stuckey, Irvin; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    As part of the research and development program to develop new Thermal Protection System (TPS) materials for aerospace applications at NASA's Marshall Space Flight Center (MSFC), an experimental study was conducted on a new concept for a non-ablative TPS material. Potential loss of TPS material and ablation by-products from the External Tank (ET) or Solid Rocket Booster (SRB) during Shuttle flight with the related Orbiter tile damage necessitates development of a non-ablative thermal protection system. The new Thermal Management Coating (TMC) consists of phase-change material encapsulated in micro spheres and a two-part resin system to adhere the coating to the structure material. The TMC uses a phase-change material to dissipate the heat produced during supersonic flight rather than an ablative material. This new material absorbs energy as it goes through a phase change during the heating portion of the flight profile and then the energy is slowly released as the phase-change material cools and returns to its solid state inside the micro spheres. The coating was subjected to different test conditions simulating design flight environments at the NASA/MSFC Improved Hot Gas Facility (IHGF) to study its performance.

  20. Use of Solid Waste (Foundry Slag) Mortar and Bamboo Reinforcement in Seismic Analysis for Single Storey Masonry Building

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Husain, A.; Ghani, F.; Alam, M. N.

    2013-11-01

    The conversion of large amount of solid waste (foundry slag) into alternate source of building material will contribute not only as a solution to growing waste problem, but also it will conserve the natural resources of other building material and thereby reduce the cost of construction. The present work makes an effort to safe and economic use of recycle mortar (1:6) as a supplementary material. Conventional and recycled twelve prisms were casted with varying percentage of solid waste (foundry slag) added (0, 10, 20, 30 %) replacing cement by weight and tested under compression testing machine. As the replacement is increasing, the strength is decreasing. 10 % replacement curve is very closed to 0 % whereas 20 % is farther and 30 % is farthest. 20 % replacement was chosen for dynamic testing as its strength is within permissible limit as per IS code. A 1:4 scale single storey brick model with half size brick was fabricated on shake table in the lab for dynamic testing using pure friction isolation system (coarse sand as friction material µ = 0.34). Pure friction isolation technique can be adopted economically in developing countries where low-rise building prevails due to their low cost. The superstructure was separated from the foundation at plinth level, so as to permit sliding of superstructure during severe earthquake. The observed values of acceleration and displacement responses compare fairly with the analytical values of the analytical model. It also concluded that 20 % replacement of cement by solid waste (foundry slag) could be safely adopted without endangering the safety of the masonry structures under seismic load.To have an idea that how much energy is dissipated through this isolation, the same model with fixed base was tested and results were compared with the isolated free sliding model and it has been observed that more than 60 % energy is dissipated through this pure friction isolation technique. In case of base isolation, no visible cracks were observed up to the table force of 4.25 kN (1,300 rpm), whereas for fixed base failure started at 800 rpm.To strengthen the fixed base model, bamboo reinforcement were used for economical point of view. Another model of same dimension with same mortar ratio was fabricated on the shake table with bamboo reinforcement as plinth band and lintel band. In addition another four round bamboo bars of 3 mm diameter were placed at each of the four corners of the model. The building model was tested and found very encouraging and surprising results. The model failure started at 1,600 rpm, which means that this model is surviving the double force in comparison with the non-bamboo reinforcement.

  1. Properties of concrete containing ground palm oil fuel ash as fine aggregate replacement

    NASA Astrophysics Data System (ADS)

    Saffuan, W. A.; Muthusamy, K.; Salleh, N. A. Mohd; Nordin, N.

    2017-11-01

    Environmental degradation resulting from increasing sand mining activities and disposal of palm oil fuel ash (POFA), a solid waste generated from palm oil mill needs to be resolved. Thus, the present research investigates the effect of ground palm oil fuel ash as partial fine aggregate replacement on workability, compressive and flexural strength of concrete. Five mixtures of concrete containing POFA as partial sand replacement designed with 0%, 10%, 20%, 30% and 40% of POFA by the weight of sand were used in this experimental work. The cube and beam specimens were casted and water cured up to 28 days before subjected to compressive strength and flexural strength testing respectively. Finding shows that concrete workability reduces as the amount of POFA added become larger. It is worth to note that 10% of POFA is the best amount to be used as partial fine aggregate replacement to produce concrete with enhanced strength.

  2. Reducing saturated fat with oleogel/shortening blends in a baked product.

    PubMed

    Mert, Behic; Demirkesen, Ilkem

    2016-05-15

    Short dough cookie structure, characterized by its aerated and tender texture, depends on the presence of solid fat during kneading. The objective of this study was to investigate the potential application of Candelilla wax (CDW) containing oleogels for partial replacement of the shortening in cookies. Oleogels were prepared with different amounts of CDW and blended with a commercial bakery shortening. After crystallizing the oleogel/shortening blends by using a pilot scale crystallization unit, the blends were evaluated in a cookie formulations. When the shortening was completely replaced with oleogel softer products were obtained compared to liquid oil, but they were harder than the shortening containing products. On the other hand, partial replacement of shortening with oleogels provided much more acceptable dough and cookie characteristics. Results suggest that gradual replacement of shortening with oleogels may be a suitable approach for reduction of saturated fat in short dough products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Lipid immiscibility and biophysical properties: Molecular order within and among unit cell volumes

    USDA-ARS?s Scientific Manuscript database

    Saturated and unsaturated fatty acids clearly have a discrete chemical structure in the solid state. In a saturated solution, the solid state and solution state are in chemical equilibrium. The lipid stearic acid packs in unit cell volumes in the liquid state as well as in the solid state. Normal...

  4. Solid-state optical refrigeration to sub-100 Kelvin regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melgaard, Seth D.; Albrecht, Alexander R.; Hehlen, Markus P.

    We report that since the first demonstration of net cooling twenty years ago, optical refrigeration of solids has progressed to outperform all other solid-state cooling processes. It has become the first and only solid-state refrigerator capable of reaching cryogenic temperatures, and now the first solid-state cooling below 100 K. Such substantial progress required a multi-disciplinary approach of pump laser absorption enhancement, material characterization and purification, and thermal management. Here we present the culmination of two decades of progress, the record cooling to ≈91K from room temperature.

  5. Solid-state optical refrigeration to sub-100 Kelvin regime

    DOE PAGES

    Melgaard, Seth D.; Albrecht, Alexander R.; Hehlen, Markus P.; ...

    2016-02-05

    We report that since the first demonstration of net cooling twenty years ago, optical refrigeration of solids has progressed to outperform all other solid-state cooling processes. It has become the first and only solid-state refrigerator capable of reaching cryogenic temperatures, and now the first solid-state cooling below 100 K. Such substantial progress required a multi-disciplinary approach of pump laser absorption enhancement, material characterization and purification, and thermal management. Here we present the culmination of two decades of progress, the record cooling to ≈91K from room temperature.

  6. Solid-state optical refrigeration to sub-100 Kelvin regime

    PubMed Central

    Melgaard, Seth D.; Albrecht, Alexander R.; Hehlen, Markus P.; Sheik-Bahae, Mansoor

    2016-01-01

    Since the first demonstration of net cooling twenty years ago, optical refrigeration of solids has progressed to outperform all other solid-state cooling processes. It has become the first and only solid-state refrigerator capable of reaching cryogenic temperatures, and now the first solid-state cooling below 100 K. Such substantial progress required a multi-disciplinary approach of pump laser absorption enhancement, material characterization and purification, and thermal management. Here we present the culmination of two decades of progress, the record cooling to ≈ 91 K from room temperature. PMID:26847703

  7. Comparison of solid-state and submerged-state fermentation for the bioprocessing of switchgrass to ethanol and acetate by Clostridium phytofermentans.

    PubMed

    Jain, Abhiney; Morlok, Charles K; Henson, J Michael

    2013-01-01

    The conversion of sustainable energy crops using microbiological fermentation to biofuels and bioproducts typically uses submerged-state processes. Alternatively, solid-state fermentation processes have several advantages when compared to the typical submerged-state processes. This study compares the use of solid-state versus submerged-state fermentation using the mesophilic anaerobic bacterium Clostridium phytofermentans in the conversion of switchgrass to the end products of ethanol, acetate, and hydrogen. A shift in the ratio of metabolic products towards more acetate and hydrogen production than ethanol production was observed when C. phytofermentans was grown under solid-state conditions as compared to submerged-state conditions. Results indicated that the end product concentrations (in millimolar) obtained using solid-state fermentation were higher than using submerged-state fermentation. In contrast, the total fermentation products (in weight of product per weight of carbohydrates consumed) and switchgrass conversion were higher for submerged-state fermentation. The conversion of xylan was greater than glucan conversion under both fermentation conditions. An initial pH of 7 and moisture content of 80 % resulted in maximum end products formation. Scanning electron microscopy study showed the presence of biofilm formed by C. phytofermentans growing on switchgrass under submerged-state fermentation whereas bacterial cells attached to surface and no apparent biofilm was observed when grown under solid-state fermentation. To our knowledge, this is the first study reporting consolidated bioprocessing of a lignocellulosic substrate by a mesophilic anaerobic bacterium under solid-state fermentation conditions.

  8. Superior Blends Solid Polymer Electrolyte with Integrated Hierarchical Architectures for All-Solid-State Lithium-Ion Batteries.

    PubMed

    Zhang, Dechao; Zhang, Long; Yang, Kun; Wang, Hongqiang; Yu, Chuang; Xu, Di; Xu, Bo; Wang, Li-Min

    2017-10-25

    Exploration of advanced solid electrolytes with good interfacial stability toward electrodes is a highly relevant research topic for all-solid-state batteries. Here, we report PCL/SN blends integrating with PAN-skeleton as solid polymer electrolyte prepared by a facile method. This polymer electrolyte with hierarchical architectures exhibits high ionic conductivity, large electrochemical windows, high degree flexibility, good flame-retardance ability, and thermal stability (workable at 80 °C). Additionally, it demonstrates superior compatibility and electrochemical stability toward metallic Li as well as LiFePO 4 cathode. The electrolyte/electrode interfaces are very stable even subjected to 4.5 V at charging state for long time. The LiFePO 4 /Li all-solid-state cells based on this electrolyte deliver high capacity, outstanding cycling stability, and superior rate capability better than those based on liquid electrolyte. This solid polymer electrolyte is eligible for next generation high energy density all-solid-state batteries.

  9. Replacing the nucleus pulposus of the intervertebral disk: prediction of suitable properties of a replacement material using finite element analysis.

    PubMed

    Meakin, J R

    2001-03-01

    An axisymmetric finite element model of a human lumbar disk was developed to investigate the properties required of an implant to replace the nucleus pulposus. In the intact disk, the nucleus was modeled as a fluid, and the annulus as an elastic solid. The Young's modulus of the annulus was determined empirically by matching model predictions to experimental results. The model was checked for sensitivity to the input parameter values and found to give reasonable behavior. The model predicted that removal of the nucleus would change the response of the annulus to compression. This prediction was consistent with experimental results, thus validating the model. Implants to fill the cavity produced by nucleus removal were modeled as elastic solids. The Poisson's ratio was fixed at 0.49, and the Young's modulus was varied from 0.5 to 100 MPa. Two sizes of implant were considered: full size (filling the cavity) and small size (smaller than the cavity). The model predicted that a full size implant would reverse the changes to annulus behavior, but a smaller implant would not. By comparing the stress distribution in the annulus, the ideal Young's modulus was predicted to be approximately 3 MPa. These predictions have implications for current nucleus implant designs. Copyright 2001 Kluwer Academic Publishers

  10. Lead-oxygen closed-loop battery system

    NASA Technical Reports Server (NTRS)

    Britz, W. J.; Boshers, W. A.; Kaufmann, J. J.

    1975-01-01

    Calculations show that battery can deliver up to 35 watt-hours per pound, conventional lead-acid batteries deliver 10 to 15 watt-hours per pound. Weight reduction is due to replacement of solid lead-peroxide electrodes with metal current-collector screen, catalyst, and Teflon membrane.

  11. SITE TECHNOLOGY CAPSULE: CLEAN BERKSHIRES, INC. THERMAL DESORPTION SYSTEM

    EPA Science Inventory

    The thermal desorption process devised by Clean Berkshires, Inc., works by vaporizing the organic contaminants from the soil with heat, isolating the contaminant! in a gas stream, and then destroying them in a high efficiency afterburner. The processed solids are either replaced ...

  12. 40 CFR 243.204-2 - Recommended procedures: Operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... collection system. These records should be used for scheduling maintenance and replacement, for budgeting, and for system evaluation and comparison. (b) The collection system should be reviewed on a regular...) SOLID WASTES GUIDELINES FOR THE STORAGE AND COLLECTION OF RESIDENTIAL, COMMERCIAL, AND INSTITUTIONAL...

  13. Monitoring Thermal Performance of Hollow Bricks with Different Cavity Fillers in Difference Climate Conditions

    NASA Astrophysics Data System (ADS)

    Pavlík, Zbyšek; Jerman, Miloš; Fořt, Jan; Černý, Robert

    2015-03-01

    Hollow brick blocks have found widespread use in the building industry during the last decades. The increasing requirements to the thermal insulation properties of building envelopes given by the national standards in Europe led the brick producers to reduce the production of common solid bricks. Brick blocks with more or less complex systems of internal cavities replaced the traditional bricks and became dominant on the building ceramics market. However, contrary to the solid bricks where the thermal conductivity can easily be measured by standard methods, the complex geometry of hollow brick blocks makes the application of common techniques impossible. In this paper, a steady-state technique utilizing a system of two climatic chambers separated by a connecting tunnel for sample positioning is used for the determination of the thermal conductivity, thermal resistance, and thermal transmittance ( U value) of hollow bricks with the cavities filled by air, two different types of mineral wool, polystyrene balls, and foam polyurethane. The particular brick block is provided with the necessary temperature- and heat-flux sensors and thermally insulated in the tunnel. In the climatic chambers, different temperatures are set. After steady-state conditions are established in the measuring system, the effective thermal properties of the brick block are calculated using the measured data. Experimental results show that the best results are achieved with hydrophilic mineral wool as a cavity filler; the worst performance exhibits the brick block with air-filled cavities.

  14. Polyplanar optical display electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSanto, L.; Biscardi, C.

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a 100 milliwatt green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by amore » Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments. In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) circuit board is removed from the Texas Instruments DLP light engine assembly. Due to the compact architecture of the projection system within the display chassis, the DMD{trademark} chip is operated remotely from the Texas Instruments circuit board. The authors discuss the operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with various video formats (CVBS, Y/C or S-video and RGB) including the format specific to the B-52 aircraft. A brief discussion of the electronics required to drive the laser is also presented.« less

  15. Optimization of the polyplanar optical display electronics for a monochrome B-52 display

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSanto, L.

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten-inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a new 200 mW green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by amore » Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments (TI). In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) chip is operated remotely from the Texas Instruments circuit board. In order to achieve increased brightness a monochrome digitizing interface was investigated. The operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with the RS-170 video format specific to the B-52 aircraft will be discussed, including the increased brightness of the monochrome digitizing interface. A brief description of the electronics required to drive the new 200 mW laser is also presented.« less

  16. Synthesis of azines in solid state: reactivity of solid hydrazine with aldehydes and ketones.

    PubMed

    Lee, Byeongno; Lee, Kyu Hyung; Cho, Jaeheung; Nam, Wonwoo; Hur, Nam Hwi

    2011-12-16

    Highly conjugated azines were prepared by solid state grinding of solid hydrazine and carbonyl compounds such as aldehydes and ketones, using a mortar and a pestle. Complete conversion to the azine product is generally achieved at room temperature within 24 h, without using solvents or additives. The solid-state reactions afford azines as the sole products with greater than 97% yield, producing only water and carbon dioxide as waste.

  17. 40 CFR 256.23 - Requirements for closing or upgrading open dumps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid... classification of existing solid waste disposal facilities according to the criteria. This classification shall... solid waste disposal facility; (2) The availability of State regulatory and enforcement powers; and (3...

  18. 40 CFR 256.23 - Requirements for closing or upgrading open dumps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid... classification of existing solid waste disposal facilities according to the criteria. This classification shall... solid waste disposal facility; (2) The availability of State regulatory and enforcement powers; and (3...

  19. Investigating Reaction-Driven Cracking

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.; Hirth, G.; Savage, H. M.

    2013-12-01

    Many metamorphic reactions lead to large volume changes, and potentially to reaction-driven cracking [1,2]. Large-scale hydration of mantle peridotite to produce serpentine or talc is invoked to explain the rheology of plate boundaries, the nature of earthquakes, and the seismic properties of slow-spread ocean crust and the 'mantle wedge' above subduction zones. Carbonation of peridotite may be an important sink in the global carbon cycle. Zones of 100% magnesite + quartz replacing peridotite, up to 200 m thick, formed where oceanic mantle was thrust over carbonate-bearing metasediments in Oman. Talc + carbonate is an important component of the matrix in subduction mélanges at Santa Catalina Island , California, and the Sanbagawa metamorphic belt, Japan. Engineered systems to emulate natural mineral carbonation could provide relatively inexpensive CO2 capture and storage [3]. More generally, engineered reaction-driven cracking could supplement or replace hydraulic fracture in geothermal systems, solution mining, and extraction of tight oil and gas. The controls on reaction-driven cracking are poorly understood. Hydration and carbonation reactions can be self-limiting, since they potentially reduce permeability and armor reactive surfaces [4]. Also, in some cases, hydration or carbonation may take place at constant volume. Small changes in volume due to precipitation of solid products increases stress, destabilizing solid reactants, until precipitation and dissolution rates become equal at a steady state stress [5]. In a third case, volume change due to precipitation of solid products causes brittle failure. This has been invoked on qualitative grounds to explain, e.g., complete serpentinization of mantle peridotite [6]. Below ~ 300°C, the available potential energy for hydration and carbonation of olivine could produce stresses of 100's of MPa [2], sufficient to fracture rocks to 10 km depth or more, causing brittle failure below the steady state stress required for constant volume replacement. Natural examples have fracture energy densities due to strain energy density of 100's of MPa [2]. Despite theory and observation, until now lab experiments on peridotite hydration and carbonation have not produced reaction-driven cracking. Slow kinetics and limited reactive surface area in low porosity samples may be the cause. Also, maximum stress may be limited by 'disjoining pressure', above which nano-films along grain boundaries collapse, and crystal growth essentially ceases [7]. To address these issues, we've begun experiments on analog materials with fast reaction rates, e.g., CaO + H2O = Ca(OH)2, to efficiently investigate the role of confining pressure and other factors on reaction-driven fracture events. Intriguingly, commercially available 'demolition mortar', largely CaO, produces stresses of 70 MPa or more around 1 inch bore holes at room T and P [8], even though there is a free surface at the top of the borehole, and hydration in a 'closed' system creates ~ 40% air-filled pore space. [1] Jamtveit et al EPSL 08 [2] Kelemen & Hirth EPSL 12 [3] Kelemen et al AREPS 11 [4] Aharonov et al JGR 98 [5] Fletcher & Merino GCA 01 [6] Macdonald & Fyfe T'phys 85 [7] Espinosa-Marzal & Scherer GSL Special Papers 10 [8] Laefer et al Mag Concrete Res 10

  20. Atomistic Simulation of Interfaces in Materials of Solid State Ionics

    NASA Astrophysics Data System (ADS)

    Ivanov-Schitz, A. K.; Mazo, G. N.

    2018-01-01

    The possibilities of describing correctly interfaces of different types in solids within a computer experiment using molecular statics simulation, molecular dynamics simulation, and quantum chemical calculations are discussed. Heterophase boundaries of various types, including grain boundaries and solid electrolyte‒solid electrolyte and ionic conductor‒electrode material interfaces, are considered. Specific microstructural features and mechanisms of the ion transport in real heterophase structures (cationic conductor‒metal anode and anionic conductor‒cathode) existing in solid state ionics devices (such as solid-state batteries and fuel cells) are discussed.

  1. Tunable solid state lasers for remote sensing; Proceedings of the Conference, Stanford University, CA, October 1-3, 1984

    NASA Technical Reports Server (NTRS)

    Byer, R. L. (Editor); Trebino, R. (Editor); Gustafson, E. K. (Editor)

    1985-01-01

    Papers are presented on solid-state lasers for remote sensing, diode-pumped Nd:YAG lasers, and tunable solid-state-laser systems. Topics discussed include titanium-sapphire tunable laser systems, the performance of slab geometry, and the development of slab lasers. Consideration is given to garnet host solid-state lasers, the growth of lasers and nonlinear materials, and nonlinear frequency conversion and tunable sources.

  2. Nanowire membrane-based nanothermite: towards processable and tunable interfacial diffusion for solid state reactions.

    PubMed

    Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun

    2013-01-01

    Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.

  3. Nanowire Membrane-based Nanothermite: towards Processable and Tunable Interfacial Diffusion for Solid State Reactions

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Wang, Peng-Peng; Zhang, Zhi-Cheng; Liu, Hui-Ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun

    2013-04-01

    Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nata, Iryanti Fatyasari, E-mail: yanti_tkunlam@yahoo.com; Irawan, Chairul; Mardina, Primata

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRSmore » concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.« less

  5. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty.

    PubMed

    Arabnejad, Sajad; Johnston, Burnett; Tanzer, Michael; Pasini, Damiano

    2017-08-01

    Current hip replacement femoral implants are made of fully solid materials which all have stiffness considerably higher than that of bone. This mechanical mismatch can cause significant bone resorption secondary to stress shielding, which can lead to serious complications such as peri-prosthetic fracture during or after revision surgery. In this work, a high strength fully porous material with tunable mechanical properties is introduced for use in hip replacement design. The implant macro geometry is based off of a short stem taper-wedge implant compatible with minimally invasive hip replacement surgery. The implant micro-architecture is fine-tuned to locally mimic bone tissue properties which results in minimum bone resorption secondary to stress shielding. We present a systematic approach for the design of a 3D printed fully porous hip implant that encompasses the whole activity spectrum of implant development, from concept generation, multiscale mechanics of porous materials, material architecture tailoring, to additive manufacturing, and performance assessment via in vitro experiments in composite femurs. We show that the fully porous implant with an optimized material micro-structure can reduce the amount of bone loss secondary to stress shielding by 75% compared to a fully solid implant. This result also agrees with those of the in vitro quasi-physiological experimental model and the corresponding finite element model for both the optimized fully porous and fully solid implant. These studies demonstrate the merit and the potential of tuning material architecture to achieve a substantial reduction of bone resorption secondary to stress shielding. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1774-1783, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. 76 FR 58496 - Agency Information Collection Activities; Proposed Collection; Comment Request; State Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... Activities; Proposed Collection; Comment Request; State Program Adequacy Determination: Municipal Solid Waste... States. Title: State Program Adequacy Determination: Municipal Solid Waste Landfills (MSWLFs) and Non... 4004(a) and Section 1008(a)(3). Section 4005(c) of RCRA, as amended by the Hazardous Solid Waste...

  7. Polyplanar optical display

    NASA Astrophysics Data System (ADS)

    Veligdan, James T.; Beiser, Leo; Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard

    1997-07-01

    The polyplanar optical display (POD) is a unique display screen which can be use with any projection source. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 100 milliwatt green solid state laser as its optical source. In order to produce real- time video, the laser light is being modulated by a digital light processing (DLP) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, we discuss the electronic interfacing to the DLP chip, the opto-mechanical design and viewing angle characteristics.

  8. Laser-driven polyplanar optic display

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veligdan, J.T.; Biscardi, C.; Brewster, C.

    1998-01-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte-black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 200 milliwatt green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP) chip manufactured by Texas Instruments, Inc. A variablemore » astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, the authors discuss the DLP chip, the optomechanical design and viewing angle characteristics.« less

  9. Laser-driven polyplanar optic display

    NASA Astrophysics Data System (ADS)

    Veligdan, James T.; Beiser, Leo; Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard

    1998-05-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte-black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 200 milliwatt green solid- state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLPTM) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, we discuss the DLPTM chip, the opto-mechanical design and viewing angle characteristics.

  10. High power fiber coupled diode lasers for display and lighting applications

    NASA Astrophysics Data System (ADS)

    Drovs, Simon; Unger, Andreas; Dürsch, Sascha; Köhler, Bernd; Biesenbach, Jens

    2017-02-01

    The performance of diode lasers in the visible spectral range has been continuously improved within the last few years, which was mainly driven by the goal to replace arc lamps in cinema or home projectors. In addition, the availability of such high power visible diode lasers also enables new applications in the medical field, but also the usage as pump sources for other solid state lasers. This paper summarizes the latest developments of fiber coupled sources with output power from 1.4 W to 120 W coupled into 100 μm to 400 μm fibers in the spectral range around 405 nm and 640 nm. New developments also include the use of fiber coupled multi single emitter arrays at 450 nm, as well as very compact modules with multi-W output power.

  11. University of Maryland Wall Washer Retrofit - LED Modules Replace Halogen Lamps in a Performing Arts Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkerson, Andrea M.; Abell, Thomas C.; Perrin, Tess E.

    The University of Maryland (UMD) began retrofitting halogen wall washers in the Clarice Smith Performing Arts Center (CSPAC) in April 2014. The U.S. Department of Energy (DOE) Solid-State Lighting (SSL) GATEWAY program documented this process through the final installation in March 2015, summarized in this report. The wall washers illuminate hallways lining the atrium, providing task illuminance for transitioning between spaces and visual interest to the atrium boundaries. The main goals of the retrofit were to maintain the visual appearance of the space while reducing maintenance costs – energy savings was considered an additional benefit by UMD Facilities Management. UMDmore » Facilities Management is pleased with the results of this retrofit, and continues to initiate LED retrofit projects across the UMD campus.« less

  12. Solid state phase change materials for thermal energy storage in passive solar heated buildings

    NASA Astrophysics Data System (ADS)

    Benson, D. K.; Christensen, C.

    1983-11-01

    A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.

  13. 30 CFR 872.29 - What are prior balance replacement funds?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false What are prior balance replacement funds? 872... § 872.29 What are prior balance replacement funds? “Prior balance replacement funds” are moneys we must... SMCRA, we distribute prior balance replacement funds to you, the State or Indian tribe, for seven years...

  14. 30 CFR 872.29 - What are prior balance replacement funds?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false What are prior balance replacement funds? 872... § 872.29 What are prior balance replacement funds? “Prior balance replacement funds” are moneys we must... SMCRA, we distribute prior balance replacement funds to you, the State or Indian tribe, for seven years...

  15. Solid-State Cloud Radar System (CRS) Upgrade and Deployment

    NASA Technical Reports Server (NTRS)

    McLinden, Matt; Heymsfield, Gerald; Li, Lihua; Racette, Paul; Coon, Michael; Venkatesh, Vijay

    2015-01-01

    The recent decade has brought rapid development in solid-state power amplifier (SSPA) technology. This has enabled the use of solid-state precipitation radar in place of high-power and high-voltage systems such as those that use Klystron or Magnetron transmitters. The NASA Goddard Space Flight Center has recently completed a comprehensive redesign of the 94 gigahertz Cloud Radar System (CRS) to incorporate a solid-state transmitter. It is the first cloud radar to achieve sensitivity comparable to that of a high-voltage transmitter using solid-state. The NASA Goddard Space Flight Center's Cloud Radar System (CRS) is a 94 gigahertz Doppler radar that flies on the NASA ER-2 high-altitude aircraft. The upgraded CRS system utilizes a state-of-the-art solid-state 94 gigahertz power amplifier with a peak transmit power of 30 watts. The modernized CRS system is detailed here with data results from its deployment during the 2014 Integrated Precipitation and Hydrology Experiment (IPHEX).

  16. Glass for Solid State Devices

    NASA Technical Reports Server (NTRS)

    Bailey, R. F.

    1982-01-01

    Glass film has low intrinsic compressive stress for isolating active layers of magnetic-bubble and other solid-state devices. Solid-state device structure incorporates low-stress glasses as barrier and spacer layers. Glass layers mechanically isolate substrate, conductor, and nickel/iron layers.

  17. Current status of solid-state lithium batteries employing solid redox polymerization cathodes

    NASA Astrophysics Data System (ADS)

    Visco, S. J.; Doeff, M. M.; Dejonghe, L. C.

    1991-03-01

    The rapidly growing demand for secondary batteries having high specific energy and power has naturally led to increased efforts in lithium battery technology. Still, the increased safety risks associated with high energy density systems has tempered the enthusiasm of proponents of such systems for use in the consumer marketplace. The inherent advantages of all-solid-state batteries in regards to safety and reliability are strong factors in advocating their introduction to the marketplace. However, the low ionic conductivity of solid electrolytes relative to nonaqueous liquid electrolytes implies low power densities for solid state systems operating at ambient temperatures. Recent advances in polymer electrolytes have led to the introduction of solid electrolytes having conductivities in the range of 10(exp -4)/ohm cm at room temperature; this is still two orders of magnitude lower than liquid electrolytes. Although these improved ambient conductivities put solid state batteries in the realm of practical devices, it is clear that solid state batteries using such polymeric separators will be thin film devices. Fortunately, thin film fabrication techniques are well established in the plastics and paper industry, and present the possibility of continuous web-form manufacturing. This style of battery manufacture should make solid polymer batteries very cost-competitive with conventional secondary cells. In addition, the greater geometric flexibility of thin film solid state cells should provide benefits in terms of the end-use form factor in device design. This work discusses the status of solid redox polymerization cathodes.

  18. STS-71, Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Frike, Robert W., Jr.

    1995-01-01

    The STS-71 Space Shuttle Program Mission Report summarizes the Payload activities and provides detailed data on the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance. STS-71 is the 100th United States manned space flight, the sixty-ninth Space Shuttle flight, the forty-fourth flight since the return-to-flight, the fourteenth flight of the OV-104 Orbiter vehicle Atlantis, and the first joint United States (U.S.)-Russian docking mission since 1975. In addition to the OV-104 Orbiter vehicle, the flight vehicle consisted of an ET that was designated ET-70; three SSMEs that were designated 2028, 2034, and 2032 in positions 1, 2, and 3, respectively; and two SRBs that were designated Bl-072. The RSRMs that were an integral part of the SRBs were designated 360L045A for the left SRB and 360W045B for the right SRB. The STS-71 mission was planned as a 1 0-day plus 1-day-extension mission plus 2 additional days for contingency operations and weather avoidance. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and perform on-orbit joint U.S.-Russian life sciences investigations, logistical resupply of the Mir Space Station, return of the United States astronaut flying on the Mir, the replacement of the Mir-18 crew with the two-cosmonaut Mir-19 crew, and the return of the Mir-18 crew to Earth. The secondary objectives were to perform the requirements of the IMAX Camera and the Shuttle Amateur Radio experiment-2 (SAREX-2).

  19. Entropy production in a fluid-solid system far from thermodynamic equilibrium.

    PubMed

    Chung, Bong Jae; Ortega, Blas; Vaidya, Ashwin

    2017-11-24

    The terminal orientation of a rigid body in a moving fluid is an example of a dissipative system, out of thermodynamic equilibrium and therefore a perfect testing ground for the validity of the maximum entropy production principle (MaxEP). Thus far, dynamical equations alone have been employed in studying the equilibrium states in fluid-solid interactions, but these are far too complex and become analytically intractable when inertial effects come into play. At that stage, our only recourse is to rely on numerical techniques which can be computationally expensive. In our past work, we have shown that the MaxEP is a reliable tool to help predict orientational equilibrium states of highly symmetric bodies such as cylinders, spheroids and toroidal bodies. The MaxEP correctly helps choose the stable equilibrium in these cases when the system is slightly out of thermodynamic equilibrium. In the current paper, we expand our analysis to examine i) bodies with fewer symmetries than previously reported, for instance, a half-ellipse and ii) when the system is far from thermodynamic equilibrium. Using two-dimensional numerical studies at Reynolds numbers ranging between 0 and 14, we examine the validity of the MaxEP. Our analysis of flow past a half-ellipse shows that overall the MaxEP is a good predictor of the equilibrium states but, in the special case of the half-ellipse with aspect ratio much greater than unity, the MaxEP is replaced by the Min-MaxEP, at higher Reynolds numbers when inertial effects come into play. Experiments in sedimentation tanks and with hinged bodies in a flow tank confirm these calculations.

  20. Assessing the Nation's Brackish Groundwater Resources

    NASA Astrophysics Data System (ADS)

    Stanton, J.; Anning, D. W.; Moore, R. B.; McMahon, P. B.; Bohlke, J. K.; McGuire, V. L.

    2014-12-01

    Declines in the amount of groundwater in storage as a result of groundwater development have led to concerns about the future availability of freshwater to meet drinking-water, agricultural, industrial, and environmental needs. Industry and public drinking-water suppliers have increasingly turned to nontraditional groundwater sources, such as moderately saline (brackish) groundwater, to supplement or replace the use of freshwater. Despite the growing demand for alternative water sources, a significant potential nontraditional water resource, brackish groundwater, was last assessed almost 50 years ago. The recently (2013) initiated USGS National Brackish Groundwater Assessment, which is part of the National Water Census, will provide an updated systematic national assessment of the distribution of significant brackish groundwater resources and critical information about the hydrogeologic and chemical characterization of brackish aquifers. As part of this study, updated national-scale maps of total dissolved-solids concentrations and chemical water types will be created using data from about 400,000 sites that have been compiled from over 30 national, regional, and state sources. However, available data are biased toward freshwater and shallow systems. Preliminary analysis indicates that about 75 percent of the dissolved-solids concentrations are from freshwater aquifers, and more than 80 percent represent depths less than 500 feet below land surface. Several techniques are used to extend the information contained in the compiled data. For about half of the sites, dissolved-solids concentration was estimated from specific conductance using statistical relations. In addition, for areas where chemical data are not available, regression models are being developed to predict the occurrence of brackish groundwater based on geospatial data such as geology and other variables that are correlated to dissolved-solids concentrations.

  1. Effects of Drying Process on an IgG1 Monoclonal Antibody Using Solid-State Hydrogen Deuterium Exchange with Mass Spectrometric Analysis (ssHDX-MS).

    PubMed

    Moussa, Ehab M; Wilson, Nathan E; Zhou, Qi Tony; Singh, Satish K; Nema, Sandeep; Topp, Elizabeth M

    2018-01-03

    Lyophilization and spray drying are widely used to manufacture solid forms of therapeutic proteins. Lyophilization is used to stabilize proteins vulnerable to degradation in solution, whereas spray drying is mainly used to prepare inhalation powders or as an alternative to freezing for storing bulk drug substance. Both processes impose stresses that may adversely affect protein structure, stability and bioactivity. Here, we compared lyophilization with and without controlled ice nucleation, and spray drying for their effects on the solid-state conformation and matrix interactions of a model IgG1 monoclonal antibody (mAb). Solid-state conformation and matrix interactions of the mAb were probed using solid-state hydrogen-deuterium exchange with mass spectrometric analysis (ssHDX-MS), and solid-state Fourier transform infrared (ssFTIR) and solid-state fluorescence spectroscopies. mAb conformation and/or matrix interactions were most perturbed in mannitol-containing samples and the distribution of states was more heterogeneous in sucrose and trehalose samples that were spray dried. The findings demonstrate the sensitivity of ssHDX-MS to changes weakly indicated by spectroscopic methods, and support the broader use of ssHDX-MS to probe formulation and process effects on proteins in solid samples.

  2. Rebuilding the Brookhaven high flux beam reactor: A feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brynda, W.J.; Passell, L.; Rorer, D.C.

    1995-01-01

    After nearly thirty years of operation, Brookhaven`s High Flux Beam Reactor (HFBR) is still one of the world`s premier steady-state neutron sources. A major center for condensed matter studies, it currently supports fifteen separate beamlines conducting research in fields as diverse as crystallography, solid-state, nuclear and surface physics, polymer physics and structural biology and will very likely be able to do so for perhaps another decade. But beyond that point the HFBR will be running on borrowed time. Unless appropriate remedial action is taken, progressive radiation-induced embrittlement problems will eventually shut it down. Recognizing the HFBR`s value as a nationalmore » scientific resource, members of the Laboratory`s scientific and reactor operations staffs began earlier this year to consider what could be done both to extend its useful life and to assure that it continues to provide state-of-the-art research facilities for the scientific community. This report summarizes the findings of that study. It addresses two basic issues: (i) identification and replacement of lifetime-limiting components and (ii) modifications and additions that could expand and enhance the reactor`s research capabilities.« less

  3. Cotton-Fiber-Filled Rubber Insulation

    NASA Technical Reports Server (NTRS)

    Anderson, Floyd A.

    1987-01-01

    Carbonization of fibers at high temperatures improves strength and erosion resistance. Cotton linters tested as replacement for asbestos filler currently used in rubber insulation in solid rocket motors. Cotton-filled rubber insulation has industrial uses; in some kinds of chemical- or metal-processing equipment, hoses, and protective clothing.

  4. Using biotechnology and genomics to improve biotic and abiotic stress in apple

    USDA-ARS?s Scientific Manuscript database

    Genomic sequencing, molecular biology, and transformation technologies are providing valuable tools to better understand the complexity of how plants develop, function, and respond to biotic and abiotic stress. These approaches should complement but not replace a solid understanding of whole plant ...

  5. 48 CFR 52.211-5 - Material Requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... materials and by-products generated from, and reused within, an original manufacturing process; provided... readjustments and material replacement. Recovered material means waste materials and by-products recovered or diverted from solid waste, but the term does not include those materials and by-products generated from...

  6. Profile structures of the voltage-sensor domain and the voltage-gated K+-channel vectorially oriented in a single phospholipid bilayer membrane at the solid-vapor and solid-liquid interfaces determined by x-ray interferometry

    PubMed Central

    Gupta, S.; Liu, J.; Strzalka, J.; Blasie, J. K.

    2011-01-01

    One subunit of the prokaryotic voltage-gated potassium ion channel from Aeropyrum pernix (KvAP) is comprised of six transmembrane α helices, of which S1–S4 form the voltage-sensor domain (VSD) and S5 and S6 contribute to the pore domain (PD) of the functional homotetramer. However, the mechanism of electromechanical coupling interconverting the closed-to-open (i.e., nonconducting-to-K+-conducting) states remains undetermined. Here, we have vectorially oriented the detergent (OG)-solubilized VSD in single monolayers by two independent approaches, namely “directed-assembly” and “self-assembly,” to achieve a high in-plane density. Both utilize Ni coordination chemistry to tether the protein to an alkylated inorganic surface via its C-terminal His6 tag. Subsequently, the detergent is replaced by phospholipid (POPC) via exchange, intended to reconstitute a phospholipid bilayer environment for the protein. X-ray interferometry, in which interference with a multilayer reference structure is used to both enhance and phase the specular x-ray reflectivity from the tethered single membrane, was used to determine directly the electron density profile structures of the VSD protein solvated by detergent versus phospholipid, and with either a moist He (moderate hydration) or bulk aqueous buffer (high hydration) environment to preserve a native structure conformation. Difference electron density profiles, with respect to the multilayer substrate itself, for the VSD-OG monolayer and VSD-POPC membranes at both the solid-vapor and solid-liquid interfaces, reveal the profile structures of the VSD protein dominating these profiles and further indicate a successful reconstitution of a lipid bilayer environment. The self-assembly approach was similarly extended to the intact full-length KvAP channel for comparison. The spatial extent and asymmetry in the profile structures of both proteins confirm their unidirectional vectorial orientation within the reconstituted membrane and indicate retention of the protein’s folded three-dimensional tertiary structure upon completion of membrane bilayer reconstitution. Moreover, the resulting high in-plane density of vectorially oriented protein within a fully hydrated single phospholipid bilayer membrane at the solid-liquid interface will enable investigation of their conformational states as a function of the transmembrane electric potential. PMID:22060407

  7. The visual assessment of broth cultures for tissue bank samples.

    PubMed

    Varettas, Kerry

    2017-09-01

    The bioburden screening process of allograft musculoskeletal tissue samples received at the South Eastern Area Laboratory Services includes the routine use of solid agar and cooked meat (CM) broth media. CM has been routinely sub-cultured onto solid agar plates after aerobic incubation at 35 °C. This study will evaluate whether a visual assessment of CM can replace sub-culture by an in vitro inoculation and a prospective study. Eight challenge organisms were serially diluted and inoculated into CM. The average inoculum of 0.5-5.5 CFU produced visible turbidity of CM after 24-h incubation for 7 of the challenge organisms with one organism producing turbidity after 48-h incubation. The prospective study evaluated 222 CM of which 213 were visually clear and no-growth on sub-culture and 9 turbid CM which were culture positive. Broth cultures are an integral part of the bioburden screening process of allograft musculoskeletal tissue and swab samples and visual assessment of CM can replace sub-culture.

  8. The effect of operating conditions on the performance of soil slurry-SBRs.

    PubMed

    Cassidy, D P; Irvine, R L

    2001-01-01

    Biological treatment of a silty clay loam with aged diesel fuel contamination was conducted in 8 L Soil Slurry-Sequencing Batch Reactors (SS-SBRs). The purpose was to monitor slurry conditions and evaluate reactor performance for varying solids concentration (5%, 25%, 40%, 50%), mixing speed (300 rpm, 700 rpm, 1200 rpm), retention time (8 d, 10 d, 20 d), and volume replaced per cycle (10%, 50%, 90%). Diesel fuel was measured in slurry and in filtered aqueous samples. Oxygen uptake rate (OUR) was monitored. Aggregate size was measured with sieve analyses. Biosurfactant production was quantified with surface tension measurements. Increasing solids concentration and decreasing mixing speed resulted in increased aggregate size, which in turn increased effluent diesel fuel concentrations. Diesel fuel removal was unaffected by retention time and volume replaced per cycle. Biosurfactant production occurred with all operating strategies. Foam thickness was related to surfactant concentration and mixing speed. OUR, surfactant concentration, and foam thickness increased with increasing diesel fuel added per cycle.

  9. Utilization of ferrochrome wastes such as ferrochrome ash and ferrochrome slag in concrete manufacturing.

    PubMed

    Acharya, Prasanna K; Patro, Sanjaya K

    2016-08-01

    Solid waste management is one of the subjects essentially addressing the current interest today. Due to the scarcity of land filling area, utilization of wastes in the construction sector has become an attractive proposition for disposal. Ferrochrome ash (FA) is a dust obtained as a waste material from the gas cleaning plant of Ferro alloy industries. It possesses the chemical requirements of granulated slag material used for the manufacture of Portland cement. Ferrochrome slag (FS) is another residue that is obtained as a solid waste by the smelting process during the production of stainless steel in Ferroalloy industries. FS possesses the required engineering properties of coarse aggregates. The possibility of using FA with lime for partial replacement of ordinary Portland cement (OPC) and FS for total replacement of natural coarse aggregates is explored in this research. The combined effect of FA with lime and FS-addition on the properties of concrete, such as workability, compressive strength, flexural strength, splitting tensile strength and sorptivity, were studied. Results of investigation revealed improvement in strength and durability properties of concrete on inclusion of FA and FS. Concrete mix containing 40% FA with 7% lime (replacing 47% OPC) and100% of FS (replacing 100% natural coarse aggregate) achieved the properties of normal concrete or even better properties at all ages. The results were confirmed by microscopic study such as X-ray diffraction and petrography examination. Environmental compatibility of concrete containing FA and FS was verified by the toxicity characteristic leaching procedure test. © The Author(s) 2016.

  10. NARC Rayon Replacement Program for the Space Shuttle Reusable Solid Rocket Motor Nozzle: Screening Summary

    NASA Technical Reports Server (NTRS)

    Cook, R. V.; Fairbourn, M. W.; Wendel, G. M.

    2000-01-01

    Thiokol Corporation and NASA MSFC are jointly developing a replacement for North American Rayon Corporation (NARC) Aerospace Grade Rayon (1650/720 continuous filament), the precursor for the Carbon Cloth Phenolic (CCP) ablatives used in the Space Shuttle Reusable Solid Rocket Motor (RSRM) Nozzles. NARC discontinued production of Aerospace Grade Rayon in September 1997. NASA maintains a stockpile of NARC Rayon to support RSRM production through the summer of 2005. The program plan for selection and qualification of a replacement for NARC rayon was approved in August 1998. Screening activities began in February 1999. The intent of this paper is to provide a summary of the data generated during the screening phase of the NARC Rayon Replacement Program. Twelve cellulose based fibers (rayon and lyocell) were evaluated. These fibers were supplied by three independent vendors. Many of these fibers were carbonized by two independent carbonizers. Each candidate was tested according to standard acceptance test methods at each step of the manufacturing process. Additional testing was performed with the candidate CCPS, including hot fire tests, Process studies and mechanical and thermal characterization. Six of the twelve fiber candidates tested were dropped at the conclusion of Phase 1. The reasons for the elimination of these candidates included; difficulties in processing the material in the whitegoods, carbon and CCP forms; poor composite mechanical performance; and future availability concerns. The remaining six fibers demonstrated enough promise to merit continued evaluation and optimization of the CCP fabrication process. Note: Certain CCP data falls under the restrictions of US export laws, (ITAR, etc.) and will not be included in this paper.

  11. Veal Calves Produce Less Antibodies against C. Perfringens Alpha Toxin Compared to Beef Calves.

    PubMed

    Valgaeren, Bonnie R; Pardon, Bart; Goossens, Evy; Verherstraeten, Stefanie; Roelandt, Sophie; Timbermont, Leen; Van Der Vekens, Nicky; Stuyvaert, Sabrina; Gille, Linde; Van Driessche, Laura; Haesebrouck, Freddy; Ducatelle, Richard; Van Immerseel, Filip; Deprez, Piet

    2015-07-10

    Enterotoxaemia is a disease with a high associated mortality rate, affecting beef and veal calves worldwide, caused by C. perfringens alpha toxin and perfringolysin. A longitudinal study was conducted to determine the dynamics of antibodies against these toxins in 528 calves on 4 beef and 15 veal farms. The second study aimed to determine the effect of solid feed intake on the production of antibodies against alpha toxin and perfringolysin. The control group only received milk replacer, whereas in the test group solid feed was provided. Maternal antibodies for alpha toxin were present in 45% of the veal calves and 66% of the beef calves. In beef calves a fluent transition from maternal to active immunity was observed for alpha toxin, whereas almost no veal calves developed active immunity. Perfringolysin antibodies significantly declined both in veal and beef calves. In the second study all calves were seropositive for alpha toxin throughout the experiment and solid feed intake did not alter the dynamics of alpha and perfringolysin antibodies. In conclusion, the present study showed that veal calves on a traditional milk replacer diet had significantly lower alpha toxin antibodies compared to beef calves in the risk period for enterotoxaemia, whereas no differences were noticed for perfringolysin.

  12. Veal Calves Produce Less Antibodies against C. Perfringens Alpha Toxin Compared to Beef Calves

    PubMed Central

    Valgaeren, Bonnie R.; Pardon, Bart; Goossens, Evy; Verherstraeten, Stefanie; Roelandt, Sophie; Timbermont, Leen; Van Der Vekens, Nicky; Stuyvaert, Sabrina; Gille, Linde; Van Driessche, Laura; Haesebrouck, Freddy; Ducatelle, Richard; Van Immerseel, Filip; Deprez, Piet

    2015-01-01

    Enterotoxaemia is a disease with a high associated mortality rate, affecting beef and veal calves worldwide, caused by C. perfringens alpha toxin and perfringolysin. A longitudinal study was conducted to determine the dynamics of antibodies against these toxins in 528 calves on 4 beef and 15 veal farms. The second study aimed to determine the effect of solid feed intake on the production of antibodies against alpha toxin and perfringolysin. The control group only received milk replacer, whereas in the test group solid feed was provided. Maternal antibodies for alpha toxin were present in 45% of the veal calves and 66% of the beef calves. In beef calves a fluent transition from maternal to active immunity was observed for alpha toxin, whereas almost no veal calves developed active immunity. Perfringolysin antibodies significantly declined both in veal and beef calves. In the second study all calves were seropositive for alpha toxin throughout the experiment and solid feed intake did not alter the dynamics of alpha and perfringolysin antibodies. In conclusion, the present study showed that veal calves on a traditional milk replacer diet had significantly lower alpha toxin antibodies compared to beef calves in the risk period for enterotoxaemia, whereas no differences were noticed for perfringolysin. PMID:26184311

  13. Thermal Characterization of Adhesive

    NASA Technical Reports Server (NTRS)

    Spomer, Ken A.

    1999-01-01

    The current Space Shuttle Reusable Solid Rocket Motor (RSRM) nozzle adhesive bond system is being replaced due to obsolescence. Down-selection and performance testing of the structural adhesives resulted in the selection of two candidate replacement adhesives, Resin Technology Group's Tiga 321 and 3M's EC2615XLW. This paper describes rocket motor testing of these two adhesives. Four forty-pound charge motors were fabricated in configurations that would allow side by side comparison testing of the candidate replacement adhesives and the current RSRM adhesives. The motors provided an environment where the thermal performance of adhesives in flame surface bondlines was compared. Results of the FPC testing show that: 1) The phenolic char depths on radial bond lines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used; 2) The adhesive char depth of the candidate replacement adhesives is less than the char depth of the current adhesives; 3) The heat-affected depth of the candidate replacement adhesives is less than the heat-affected depth of the current adhesives; and 4) The ablation rates for both replacement adhesives are slower than that of the current adhesives.

  14. Quantification and probabilistic modeling of CRT obsolescence for the State of Delaware.

    PubMed

    Schumacher, Kelsea A; Schumacher, Thomas; Agbemabiese, Lawrence

    2014-11-01

    The cessation of production and replacement of cathode ray tube (CRT) displays with flat screen displays have resulted in the proliferation of CRTs in the electronic waste (e-waste) recycle stream. However, due to the nature of the technology and presence of hazardous components such as lead, CRTs are the most challenging of electronic components to recycle. In the State of Delaware it is due to this challenge and the resulting expense combined with the large quantities of CRTs in the recycle stream that electronic recyclers now charge to accept Delaware's e-waste. Therefore it is imperative that the Delaware Solid Waste Authority (DSWA) understand future quantities of CRTs entering the waste stream. This study presents the results of an assessment of CRT obsolescence in the State of Delaware. A prediction model was created utilizing publicized sales data, a variety of lifespan data as well as historic Delaware CRT collection rates. Both a deterministic and a probabilistic approach using Monte Carlo Simulation (MCS) were performed to forecast rates of CRT obsolescence to be anticipated in the State of Delaware. Results indicate that the peak of CRT obsolescence in Delaware has already passed, although CRTs are anticipated to enter the waste stream likely until 2033. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Calculation of density of states for modeling photoemission using method of moments

    NASA Astrophysics Data System (ADS)

    Finkenstadt, Daniel; Lambrakos, Samuel G.; Jensen, Kevin L.; Shabaev, Andrew; Moody, Nathan A.

    2017-09-01

    Modeling photoemission using the Moments Approach (akin to Spicer's "Three Step Model") is often presumed to follow simple models for the prediction of two critical properties of photocathodes: the yield or "Quantum Efficiency" (QE), and the intrinsic spreading of the beam or "emittance" ɛnrms. The simple models, however, tend to obscure properties of electrons in materials, the understanding of which is necessary for a proper prediction of a semiconductor or metal's QE and ɛnrms. This structure is characterized by localized resonance features as well as a universal trend at high energy. Presented in this study is a prototype analysis concerning the density of states (DOS) factor D(E) for Copper in bulk to replace the simple three-dimensional form of D(E) = (m/π2 h3)p2mE currently used in the Moments approach. This analysis demonstrates that excited state spectra of atoms, molecules and solids based on density-functional theory can be adapted as useful information for practical applications, as well as providing theoretical interpretation of density-of-states structure, e.g., qualitatively good descriptions of optical transitions in matter, in addition to DFT's utility in providing the optical constants and material parameters also required in the Moments Approach.

  16. Impact of the economic downturn on total joint replacement demand in the United States: updated projections to 2021.

    PubMed

    Kurtz, Steven M; Ong, Kevin L; Lau, Edmund; Bozic, Kevin J

    2014-04-16

    Few studies have explored the role of the National Health Expenditure and macroeconomics on the utilization of total joint replacement. The economic downturn has raised questions about the sustainability of growth for total joint replacement in the future. Previous projections of total joint replacement demand in the United States were based on data up to 2003 using a statistical methodology that neglected macroeconomic factors, such as the National Health Expenditure. Data from the Nationwide Inpatient Sample (1993 to 2010) were used with United States Census and National Health Expenditure data to quantify historical trends in total joint replacement rates, including the two economic downturns in the 2000s. Primary and revision hip and knee arthroplasty were identified using codes from the International Classification of Diseases, Ninth Revision, Clinical Modification. Projections in total joint replacement were estimated using a regression model incorporating the growth in population and rate of arthroplasties from 1993 to 2010 as a function of age, sex, race, and census region using the National Health Expenditure as the independent variable. The regression model was used in conjunction with government projections of National Health Expenditure from 2011 to 2021 to estimate future arthroplasty rates in subpopulations of the United States and to derive national estimates. The growth trend for the incidence of joint arthroplasty, for the overall United States population as well as for the United States workforce, was insensitive to economic downturns. From 2009 to 2010, the total number of procedures increased by 6.0% for primary total hip arthroplasty, 6.1% for primary total knee arthroplasty, 10.8% for revision total hip arthroplasty, and 13.5% for revision total knee arthroplasty. The National Health Expenditure model projections for primary hip replacement in 2020 were higher than a previously projected model, whereas the current model estimates for total knee arthroplasty were lower. Economic downturns in the 2000s did not substantially influence the national growth trends for hip and knee arthroplasty in the United States. These latest updated projections provide a basis for surgeons, hospitals, payers, and policy makers to plan for the future demand for total joint replacement surgery.

  17. STS-103 crew take part in CEIT in OPF 1

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Orbiter Processing Facility (OPF) bay 1, STS-103 crew members check out equipment to be used on planned Extravehicular Activities (EVAs) on the mission for repair of the Hubble Space Telescope. They are taking part in a Crew Equipment Interface Test (CEIT) at KSC. From left are Mission Specialists C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, and Steven L. Smith. Other crew members at KSC for the CEIT are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  18. STS-103 crew look over payload inside Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Members of the STS-103 crew, with representatives from Goddard Space Flight Center, look over the Hubble servicing cargo in the payload bay of Space Shuttle Discovery at Launch Pad 39B. From left are Mission Specialist Steven L. Smith and Claude Nicollier of Switzerland; Steve Pataki and Dave Southwick, with Goddard; and Mission Commander Curtis L. Brown Jr. Inspecting the payload is part of the Terminal Countdown Demonstration Test (TCDT), which also provides the crew with emergency egress training and a simulated countdown exercise. Other crew members taking part in the TCDT are Pilot Scott J. Kelly, and Mission Specialists C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), and Jean- Fran'''ois Clervoy of France. Clervoy and Nicollier are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  19. STS-103 crew learn about use of slideware basket at Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the slidewire area of Launch Pad 39B, the STS-103 crew listen to use of the emergency egress equipment. From left are the trainer, with crew members Mission Specialists Steven L. Smith, Jean-Frangois Clervoy of France, Claude Nicollier of Switzerland, John M. Grunsfeld (Ph.D.), Pilot Steven J. Kelly, C. Michael Foale (Ph.D.), and (kneeling) Commander Curtis L. Brown Jr. Clervoy and Nicollier are both with the European Space Agency. As a preparation for launch, the crew have been participating in Terminal Countdown Demonstration Test (TCDT) activities at KSC. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  20. STS-103 crew take part in CEIT in the orbiter Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the payload bay of the orbiter Discovery, STS-103 Mission Specialists John M. Grunsfeld (Ph.D.), left, and Claude Nicollier of Switzerland, right, are briefed on part of the equipment they will use on their mission by a worker from Johnson Space Center, center. The mission involves the repair and upgrade of the Hubble Space Telescope. The crew, who are at KSC to take part in a Crew Equipment Interface Test, also includes Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), and Jean-Fran'''ois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS- 103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  1. STS-103 crew take part in CEIT in PHSF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a Crew Equipment Interface Test in the Payload Hazardous Servicing Facility, members of the STS-103 crew check out the top of the Flight Support System (FSS) for the mission, the repair and upgrade of the Hubble Space Telescope. The number one in the foreground refers to one of the berthing latches on the FSS. The seven-member crew comprises Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D), Claude Nicollier of Switzerland, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  2. STS-103 crew take part in CEIT in OPF 1

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Orbiter Processing Facility (OPF) bay 1, STS-103 crew members look over equipment to be used on planned Extravehicular Activities (EVAs) on the mission for repair of the Hubble Space Telescope. They are taking part in a Crew Equipment Interface Test (CEIT) at KSC. From left are Mission Specialists C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.) Claude Nicollier of Switzerland, and Steven L. Smith. Other crew members at KSC for the CEIT are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. Mission STS-103 is a 'call-up' due to the need to replace portions of the pointing system, the gyros, which have begun to fail on the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. The gyroscopes allow the telescope to point at stars, galaxies and planets. The STS-103 crew will not only replace gyroscopes, it will also replace a Fine Guidance Sensor and an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. The scheduled launch date in October is under review.

  3. Solid-propellant motors for high-incremental-velocity low-acceleration maneuvers in space

    NASA Technical Reports Server (NTRS)

    Shafer, J. I.

    1972-01-01

    The applicability of solid-propellant rockets into a regime of high-performance long-burning tasks beyond the capability of existing motors is discussed. Successful static test firings have demonstrated the feasibility of: (1) utilizing fully case-bonded end-burning propellant charges without mechanical stress relief; (2) using an all-carbon radiative nozzle markedly lighter than the flight-weight ablative nozzle it replaces, and (3) producing low spacecraft acceleration rates during the thrust transient through a controlled-flow igniter that promotes operation below the previous combustion limit.

  4. Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Xu, R. C.; Wang, X. L.; Zhang, S. Z.; Xia, Y.; Xia, X. H.; Wu, J. B.; Tu, J. P.

    2018-01-01

    Large interfacial resistance between electrode and electrolyte limits the development of high-performance all-solid-state batteries. Herein we report a uniform coating of Li7P3S11 solid electrolyte on MoS2 to form a MoS2/Li7P3S11 composite electrode for all-solid-state lithium ion batteries. The as-synthesized Li7P3S11 processes a high ionic of 2.0 mS cm-1 at room temperature. Due to homogeneous union and reduced interfacial resistance, the assembled all-solid-state batteries with the MoS2/Li7P3S11 composite electrode exhibit higher reversible capacity of 547.1 mAh g-1 at 0.1 C and better cycling stability than the counterpart based on untreated MoS2. Our study provides a new reference for design/fabrication of advanced electrode materials for high-performance all-solid-state batteries.

  5. Advanced solid-state NMR spectroscopy of natural organic matter

    USDA-ARS?s Scientific Manuscript database

    Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially the systematic approach to NOM characterization, and their ...

  6. Quantitative secondary electron detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Jyoti; Joy, David C.; Nayak, Subuhadarshi

    Quantitative Secondary Electron Detection (QSED) using the array of solid state devices (SSD) based electron-counters enable critical dimension metrology measurements in materials such as semiconductors, nanomaterials, and biological samples (FIG. 3). Methods and devices effect a quantitative detection of secondary electrons with the array of solid state detectors comprising a number of solid state detectors. An array senses the number of secondary electrons with a plurality of solid state detectors, counting the number of secondary electrons with a time to digital converter circuit in counter mode.

  7. 40 CFR Table Jj-3 to Subpart Jj of... - State-Specific Volatile Solids (VS) and Nitrogen (N) Excretion Rates for Cattle

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false State-Specific Volatile Solids (VS) and Nitrogen (N) Excretion Rates for Cattle JJ Table JJ-3 to Subpart JJ of Part 98 Protection of... Volatile Solids (VS) and Nitrogen (N) Excretion Rates for Cattle State Volatile solids excretion rate (kg...

  8. KSC-99pp1440

    NASA Image and Video Library

    1999-12-17

    A cloud-streaked sky provides backdrop for Space Shuttle Discovery as it waits for liftoff on mission STS-103 from Launch Pad 39B. The tower at its left is the Fixed Service Structure, topped by the 80-foot-tall fiberglass mast that helps provide protection from lightning strikes. Below it, extending outward, is the external tank gaseous oxygen vent arm system with the vent hood (commonly called the "beanie cap") poised above the external tank. The retractable arm and the beanie cap are designed to vent gaseous oxygen vapors away from the Space Shuttle. The arm truss section is 65 feet long and the diameter of the vent hood is 13 feet. Extending toward the cabin of the orbiter below is the orbiter access arm, with the environmental chamber (called the White Room) at the end. Through this chamber the crew enters the orbiter. The STS-103 mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. The mission is expected to last about 8 days and 21 hours. Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:25 p.m. EST

  9. STS-103 perfect night-time landing for Space Shuttle Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The orbiter Discovery looks like a blue ghost as it drops from the darkness onto lighted runway 33 at KSC's Shuttle Landing Facility. After traveling more than 3,267,000 miles on a successful eight-day mission to service the Hubble Space Telescope, the orbiter touches down at 7:00:47 p.m. EST. Aboard are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland and Jean-Frangois Clervoy of France, who spent the Christmas holiday in space in order to accomplish their mission before the end of 1999. During the mission, Discovery's four space-walking astronauts, Smith, Foale, Grunsfeld and Nicollier, spent 24 hours and 33 minutes upgrading and refurbishing Hubble, making it more capable than ever to renew its observations of the universe. Mission objectives included replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Hubble was released from the end of Discovery's robot arm on Christmas Day. This was the 96th flight in the Space Shuttle program and the 27th for the orbiter Discovery. The landing was the 20th consecutive Shuttle landing in Florida and the 13th night landing in Shuttle program history.

  10. KSC-99pp1511

    NASA Image and Video Library

    1999-12-27

    KENNEDY SPACE CENTER, Fla. -- The orbiter Discovery looks like a blue ghost as it drops from the darkness onto lighted runway 33 at KSC's Shuttle Landing Facility. After traveling more than 3,267,000 miles on a successful eight-day mission to service the Hubble Space Telescope, the orbiter touches down at 7:00:47 p.m. EST. Aboard are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland and Jean-François Clervoy of France, who spent the Christmas holiday in space in order to accomplish their mission before the end of 1999. During the mission, Discovery's four space-walking astronauts, Smith, Foale, Grunsfeld and Nicollier, spent 24 hours and 33 minutes upgrading and refurbishing Hubble, making it more capable than ever to renew its observations of the universe. Mission objectives included replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Hubble was released from the end of Discovery's robot arm on Christmas Day. This was the 96th flight in the Space Shuttle program and the 27th for the orbiter Discovery. The landing was the 20th consecutive Shuttle landing in Florida and the 13th night landing in Shuttle program history

  11. A survey of current solid state star tracker technology

    NASA Astrophysics Data System (ADS)

    Armstrong, R. W.; Staley, D. A.

    1985-12-01

    This paper is a survey of the current state of the art in design of star trackers for spacecraft attitude determination systems. Specific areas discussed are sensor technology, including the current state-of-the-art solid state sensors and techniques of mounting and cooling the sensor, analog image preprocessing electronics performance, and digital processing hardware and software. Three examples of area array solid state star tracker development are presented - ASTROS, developed by the Jet Propulsion Laboratory, the Retroreflector Field Tracker (RFT) by Ball Aerospace, and TRW's MADAN. Finally, a discussion of solid state line arrays explores the possibilities for one-dimensional imagers which offer simplified scan control electronics.

  12. Solid Phase Extraction (SPE) for Biodiesel Processing and Analysis

    DTIC Science & Technology

    2017-12-13

    1 METHODS ...sources. There are several methods than can be applied to development of separation techniques that may replace necessary water wash steps in...biodiesel refinement. Unfortunately, the most common methods are poorly suited or face high costs when applied to diesel purification. Distillation is

  13. 48 CFR 52.211-5 - Material Requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... readjustments and material replacement. Recovered material means waste materials and by-products recovered or diverted from solid waste, but the term does not include those materials and by-products generated from... is, or with new technology will become, a source of raw materials. (b) Unless this contract otherwise...

  14. Modeling solid-state transformations occurring in dissolution testing.

    PubMed

    Laaksonen, Timo; Aaltonen, Jaakko

    2013-04-15

    Changes in the solid-state form can occur during dissolution testing of drugs. This can often complicate interpretation of results. Additionally, there can be several mechanisms through which such a change proceeds, e.g. solvent-mediated transformation or crystal growth within the drug material itself. Here, a mathematical model was constructed to study the dissolution testing of a material, which undergoes such changes. The model consisted of two processes: the recrystallization of the drug from a supersaturated liquid state caused by the dissolution of the more soluble solid form and the crystal growth of the stable solid form at the surface of the drug formulation. Comparison to experimental data on theophylline dissolution showed that the results obtained with the model matched real solid-state changes and that it was able to distinguish between cases where the transformation was controlled either by solvent-mediated crystallization or solid-state crystal growth. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. 40 CFR 256.22 - Recommendations for State regulatory powers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Recommendations for State regulatory powers. 256.22 Section 256.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...

  16. 40 CFR 256.22 - Recommendations for State regulatory powers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Recommendations for State regulatory powers. 256.22 Section 256.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...

  17. 40 CFR 256.21 - Requirements for State regulatory powers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Requirements for State regulatory powers. 256.21 Section 256.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...

  18. 40 CFR 256.21 - Requirements for State regulatory powers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Requirements for State regulatory powers. 256.21 Section 256.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...

  19. 40 CFR 256.20 - Requirements for State legal authority.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Requirements for State legal authority. 256.20 Section 256.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...

  20. 40 CFR 256.20 - Requirements for State legal authority.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Requirements for State legal authority. 256.20 Section 256.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...

  1. 40 CFR 256.21 - Requirements for State regulatory powers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Requirements for State regulatory powers. 256.21 Section 256.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...

  2. 40 CFR 256.20 - Requirements for State legal authority.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Requirements for State legal authority. 256.20 Section 256.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...

  3. 40 CFR 256.22 - Recommendations for State regulatory powers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Recommendations for State regulatory powers. 256.22 Section 256.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...

  4. 40 CFR 256.20 - Requirements for State legal authority.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Requirements for State legal authority. 256.20 Section 256.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...

  5. 40 CFR 256.20 - Requirements for State legal authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Requirements for State legal authority. 256.20 Section 256.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...

  6. A zwitterionic gel electrolyte for efficient solid-state supercapacitors

    PubMed Central

    Peng, Xu; Liu, Huili; Yin, Qin; Wu, Junchi; Chen, Pengzuo; Zhang, Guangzhao; Liu, Guangming; Wu, Changzheng; Xie, Yi

    2016-01-01

    Gel electrolytes have attracted increasing attention for solid-state supercapacitors. An ideal gel electrolyte usually requires a combination of advantages of high ion migration rate, reasonable mechanical strength and robust water retention ability at the solid state for ensuring excellent work durability. Here we report a zwitterionic gel electrolyte that successfully brings the synergic advantages of robust water retention ability and ion migration channels, manifesting in superior electrochemical performance. When applying the zwitterionic gel electrolyte, our graphene-based solid-state supercapacitor reaches a volume capacitance of 300.8 F cm−3 at 0.8 A cm−3 with a rate capacity of only 14.9% capacitance loss as the current density increases from 0.8 to 20 A cm−3, representing the best value among the previously reported graphene-based solid-state supercapacitors, to the best of our knowledge. We anticipate that zwitterionic gel electrolyte may be developed as a gel electrolyte in solid-state supercapacitors. PMID:27225484

  7. Graphene/activated carbon supercapacitors with sulfonated-polyetheretherketone as solid-state electrolyte and multifunctional binder

    NASA Astrophysics Data System (ADS)

    Chen, Y.-R.; Chiu, K.-F.; Lin, H. C.; Chen, C.-L.; Hsieh, C. Y.; Tsai, C. B.; Chu, B. T. T.

    2014-11-01

    Sulfonated polyetheretherketone (SPEEK) has been synthesised by sulphonation process and used as the solid-state electrolyte, binder and surfactant for supercapacitors. Reduced graphene dispersed by SPEEK is used as a high-efficiency conducting additive in solid-state supercapacitors. It is found that SPEEK can improve the stability of the reduced graphene dispersion significantly, and therefore, the solid-state supercapacitors show a large decrease in IR drop and charge-transfer resistance (Rct), resulting in a higher rate capability. The solid-state supercapacitors with the activated carbon/reduced graphene/SPEEK/electrode can be operated from 1 to 8 A/g and exhibit capacity retention of 93%. The noteworthy is more than twice higher value for capacity retention by comparison with the solid-state supercapacitors using activated carbon/reduced graphene/PVDF electrode (capacity retention is 36%). The cell of reduced graphene with SPEEK can be cycled over 5000 times at 5 A/g with no capacitance fading.

  8. Cryogenic terahertz spectrum of (+)-methamphetamine hydrochloride and assignment using solid-state density functional theory.

    PubMed

    Hakey, Patrick M; Allis, Damian G; Ouellette, Wayne; Korter, Timothy M

    2009-04-30

    The cryogenic terahertz spectrum of (+)-methamphetamine hydrochloride from 10.0 to 100.0 cm(-1) is presented, as is the complete structural analysis and vibrational assignment of the compound using solid-state density functional theory. This cryogenic investigation reveals multiple spectral features that were not previously reported in room-temperature terahertz studies of the title compound. Modeling of the compound employed eight density functionals utilizing both solid-state and isolated-molecule methods. The results clearly indicate the necessity of solid-state simulations for the accurate assignment of solid-state THz spectra. Assignment of the observed spectral features to specific atomic motions is based on the BP density functional, which provided the best-fit solid-state simulation of the experimental spectrum. The seven experimental spectral features are the result of thirteen infrared-active vibrational modes predicted at a BP/DNP level of theory with more than 90% of the total spectral intensity associated with external crystal vibrations.

  9. Nanowire Membrane-based Nanothermite: towards Processable and Tunable Interfacial Diffusion for Solid State Reactions

    PubMed Central

    Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun

    2013-01-01

    Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants. PMID:23603809

  10. 22 CFR 51.10 - Replacement passports.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Replacement passports. 51.10 Section 51.10 Foreign Relations DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORTS General § 51.10 Replacement passports. A passport issuing office may issue a replacement passport without payment of applicable fees for...

  11. 22 CFR 51.10 - Replacement passports.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Replacement passports. 51.10 Section 51.10 Foreign Relations DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORTS General § 51.10 Replacement passports. A passport issuing office may issue a replacement passport without payment of applicable fees for...

  12. 22 CFR 51.10 - Replacement passports.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Replacement passports. 51.10 Section 51.10 Foreign Relations DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORTS General § 51.10 Replacement passports. A passport issuing office may issue a replacement passport without payment of applicable fees for...

  13. 22 CFR 51.10 - Replacement passports.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Replacement passports. 51.10 Section 51.10 Foreign Relations DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORTS General § 51.10 Replacement passports. A passport issuing office may issue a replacement passport without payment of applicable fees for...

  14. 22 CFR 51.10 - Replacement passports.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Replacement passports. 51.10 Section 51.10 Foreign Relations DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORTS General § 51.10 Replacement passports. A passport issuing office may issue a replacement passport without payment of applicable fees for...

  15. Technology transfer into the solid propulsion industry

    NASA Technical Reports Server (NTRS)

    Campbell, Ralph L.; Thomson, Lawrence J.

    1995-01-01

    This paper is a survey of the waste minimization efforts of industries outside of aerospace for possible applications in the manufacture of solid rocket motors (SRM) for NASA. The Redesigned Solid Rocket Motor (RSRM) manufacturing plan was used as the model for processes involved in the production of an SRM. A literature search was conducted to determine the recycling, waste minimization, and waste treatment methods used in the commercial sector that might find application in SRM production. Manufacturers, trade organizations, and professional associations were also contacted. Waste minimization efforts for current processes and replacement technologies, which might reduce the amount or severity of the wastes generated in SRM production, were investigated. An overview of the results of this effort are presented in this paper.

  16. An integrated autonomous rendezvous and docking system architecture using Centaur modern avionics

    NASA Technical Reports Server (NTRS)

    Nelson, Kurt

    1991-01-01

    The avionics system for the Centaur upper stage is in the process of being modernized with the current state-of-the-art in strapdown inertial guidance equipment. This equipment includes an integrated flight control processor with a ring laser gyro based inertial guidance system. This inertial navigation unit (INU) uses two MIL-STD-1750A processors and communicates over the MIL-STD-1553B data bus. Commands are translated into load activation through a Remote Control Unit (RCU) which incorporates the use of solid state relays. Also, a programmable data acquisition system replaces separate multiplexer and signal conditioning units. This modern avionics suite is currently being enhanced through independent research and development programs to provide autonomous rendezvous and docking capability using advanced cruise missile image processing technology and integrated GPS navigational aids. A system concept was developed to combine these technologies in order to achieve a fully autonomous rendezvous, docking, and autoland capability. The current system architecture and the evolution of this architecture using advanced modular avionics concepts being pursued for the National Launch System are discussed.

  17. Silicon Carbide MOSFET-Based Switching Power Amplifier for Precision Magnet Control

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth; Ziemba, Timothy; Prager, James; Picard, Julian

    2016-10-01

    Eagle Harbor Technologies, Inc. (EHT) is using the latest in solid-state switching technologies to advance the state-of-the-art in magnet control for fusion science. Silicon carbide (SiC) MOSFETs offer advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities. When comparing SiC and traditional silicon-based MOSFETs, SiC MOSFETs provide higher current carrying capability allowing for smaller package weights and sizes and lower operating temperature. To validate the design, EHT has developed a low-power switching power amplifier (SPA), which has been used for precision control of magnetic fields, including rapidly changing the fields in coils. This design has been incorporated in to a high power SPA, which has been bench tested. This high power SPA will be tested at the Helicity Injected Torus (HIT) at the University of Washington. Following successful testing, EHT will produce enough SiC MOSFET-based SPAs to replace all of the units at HIT, which allows for higher frequency operation and an overall increase in pulsed current levels.

  18. High temperature solid state storage cell

    DOEpatents

    Rea, Jesse R.; Kallianidis, Milton; Kelsey, G. Stephen

    1983-01-01

    A completely solid state high temperature storage cell comprised of a solid rechargeable cathode such as TiS.sub.2, a solid electrolyte which remains solid at the high temperature operating conditions of the cell and which exhibits high ionic conductivity at such elevated temperatures such as an electrolyte comprised of lithium iodide, and a solid lithium or other alkali metal alloy anode (such as a lithium-silicon alloy) with 5-50% by weight of said anode being comprised of said solid electrolyte.

  19. Prevalence of Total Hip and Knee Replacement in the United States.

    PubMed

    Maradit Kremers, Hilal; Larson, Dirk R; Crowson, Cynthia S; Kremers, Walter K; Washington, Raynard E; Steiner, Claudia A; Jiranek, William A; Berry, Daniel J

    2015-09-02

    Descriptive epidemiology of total joint replacement procedures is limited to annual procedure volumes (incidence). The prevalence of the growing number of individuals living with a total hip or total knee replacement is currently unknown. Our objective was to estimate the prevalence of total hip and total knee replacement in the United States. Prevalence was estimated using the counting method by combining historical incidence data from the National Hospital Discharge Survey and the Healthcare Cost and Utilization Project (HCUP) State Inpatient Databases from 1969 to 2010 with general population census and mortality counts. We accounted for relative differences in mortality rates between those who have had total hip or knee replacement and the general population. The 2010 prevalence of total hip and total knee replacement in the total U.S. population was 0.83% and 1.52%, respectively. Prevalence was higher among women than among men and increased with age, reaching 5.26% for total hip replacement and 10.38% for total knee replacement at eighty years. These estimates corresponded to 2.5 million individuals (1.4 million women and 1.1 million men) with total hip replacement and 4.7 million individuals (3.0 million women and 1.7 million men) with total knee replacement in 2010. Secular trends indicated a substantial rise in prevalence over time and a shift to younger ages. Around 7 million Americans are living with a hip or knee replacement, and consequently, in most cases, are mobile, despite advanced arthritis. These numbers underscore the substantial public health impact of total hip and knee arthroplasties. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  20. 40 CFR 256.22 - Recommendations for State regulatory powers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste... prohibit new open dumps and close or upgrade all existing open dumps. (a) Solid waste disposal standards... solid waste disposal facility. These procedures should include identification of future land use or the...

  1. 40 CFR 256.22 - Recommendations for State regulatory powers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste... prohibit new open dumps and close or upgrade all existing open dumps. (a) Solid waste disposal standards... solid waste disposal facility. These procedures should include identification of future land use or the...

  2. 40 CFR 256.21 - Requirements for State regulatory powers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste... be adequate to enforce solid waste disposal standards which are equivalent to or more stringent than the criteria for classification of solid waste disposal facilities (40 CFR part 257). Such authority...

  3. 40 CFR 256.21 - Requirements for State regulatory powers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste... be adequate to enforce solid waste disposal standards which are equivalent to or more stringent than the criteria for classification of solid waste disposal facilities (40 CFR part 257). Such authority...

  4. Crystallographic structure refinement with quadrupolar nuclei: a combined solid-state NMR and GIPAW DFT example using MgBr(2).

    PubMed

    Widdifield, Cory M; Bryce, David L

    2009-09-07

    Solid-state NMR spectroscopy and GIPAW DFT calculations reveal the pronounced sensitivity of (79/81)Br and (25)Mg quadrupolar coupling constants to subtle aspects of solid state structure which were not previously detected by pXRD methods.

  5. Method and system for making integrated solid-state fire-sets and detonators

    DOEpatents

    O'Brien, Dennis W.; Druce, Robert L.; Johnson, Gary W.; Vogtlin, George E.; Barbee, Jr., Troy W.; Lee, Ronald S.

    1998-01-01

    A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques.

  6. Extending the applicability of the Tkatchenko-Scheffler dispersion correction via iterative Hirshfeld partitioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bučko, Tomáš, E-mail: bucko@fns.uniba.sk; Department of Computational Materials Physics, Fakultät für Physik and Center for Computational Materials Science, Universität Wien, Sensengasse, Wien 1090; Lebègue, Sébastien, E-mail: sebastien.lebegue@univ-lorraine.fr

    2014-07-21

    Recently we have demonstrated that the applicability of the Tkatchenko-Scheffler (TS) method for calculating dispersion corrections to density-functional theory can be extended to ionic systems if the Hirshfeld method for estimating effective volumes and charges of atoms in molecules or solids (AIM’s) is replaced by its iterative variant [T. Bučko, S. Lebègue, J. Hafner, and J. Ángyán, J. Chem. Theory Comput. 9, 4293 (2013)]. The standard Hirshfeld method uses neutral atoms as a reference, whereas in the iterative Hirshfeld (HI) scheme the fractionally charged atomic reference states are determined self-consistently. We show that the HI method predicts more realistic AIMmore » charges and that the TS/HI approach leads to polarizabilities and C{sub 6} dispersion coefficients in ionic or partially ionic systems which are, as expected, larger for anions than for cations (in contrast to the conventional TS method). For crystalline materials, the new algorithm predicts polarizabilities per unit cell in better agreement with the values derived from the Clausius-Mosotti equation. The applicability of the TS/HI method has been tested for a wide variety of molecular and solid-state systems. It is demonstrated that for systems dominated by covalent interactions and/or dispersion forces the TS/HI method leads to the same results as the conventional TS approach. The difference between the TS/HI and TS approaches increases with increasing ionicity. A detailed comparison is presented for isoelectronic series of octet compounds, layered crystals, complex intermetallic compounds, and hydrides, and for crystals built of molecules or containing molecular anions. It is demonstrated that only the TS/HI method leads to accurate results for systems where both electrostatic and dispersion interactions are important, as illustrated for Li-intercalated graphite and for molecular adsorption on the surfaces in ionic solids and in the cavities of zeolites.« less

  7. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    DOEpatents

    Schwartz, Michael; White, James H.; Sammells, Anthony F.

    2005-09-27

    This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.

  8. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    DOEpatents

    Schwartz, Michael; White, James H.; Sammels, Anthony F.

    2000-01-01

    This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.

  9. What's in a Name Change?

    NASA Astrophysics Data System (ADS)

    Martin, Joseph D.

    2015-03-01

    When solid state physics emerged in the 1940s, its name was controversial. By the 1970s, some physicists came to prefer "condensed matter" as a way to identify the discipline of physics examining complex matter. Physicists and historians often gloss this transition as a simple rebranding of a problematically named field, but attention to the motives behind these names reveals telling nuances. "Solid state physics" and "condensed matter physics"—along with "materials science," which also emerged during the Cold War—were named in accordance with ideological commitments about the identity of physics. Historians, therefore, can profitably understand solid state and condensed matter physics as distinct disciplines. Condensed matter, rather than being continuous with solid state physics, should be considered alongside materials science as an outlet for specific frustrations with the way solid state was organized.

  10. Solid-State Powered X-band Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Othman, Mohamed A.K.; Nann, Emilio A.; Dolgashev, Valery A.

    2017-03-06

    In this report we disseminate the hot test results of an X-band 100-W solid state amplifier chain for linear accelerator (linac) applications. Solid state power amplifiers have become increasingly attractive solutions for achieving high power in radar and maritime applications. Here the performance of solid state amplifiers when driving an RF cavity is investigated. Commercially available, matched and fully-packaged GaN on SiC HEMTs are utilized, comprising a wideband driver stage and two power stages. The amplifier chain has a high poweradded- efficiency and is able to supply up to ~1.2 MV/m field gradient at 9.2 GHz in a simple testmore » cavity, with a peak power exceeding 100 W. These findings set forth the enabling technology for solid-state powered linacs.« less

  11. One piece microwave container screens for electrodeless lamps

    DOEpatents

    Turner, Brian; Ury, Michael

    1998-01-01

    A microwave powered electrodeless lamp includes an improved screen unit having mesh and solid sections with an internal reflector to reflect light into a light-transmitting chamber defined in the lamp microwave cavity by the reflector and the mesh section. A discharge envelope of a bulb is disposed in the light-transmitting chamber. Light emitted from the envelope is prevented by the reflector from entering the cavity portion bounded by the solid section of the screen. Replacing mesh material by solid metal material as part of the screen unit significantly reduces leakage of microwave energy from the lamp. The solid section has multiple compliant fingers defined therein for engaging the periphery of a flange on the waveguide unit so that a hose clamp can easily secure the screen to the assembly. Screen units of this type having different mesh section configurations can be interchanged in the lamp assembly to produce different respective illumination patterns.

  12. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems.

    PubMed

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-01-01

    Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.

  13. PERCHLORATE UPTAKE AND TRANSFORMATION IN AQUATIC PLANTS

    EPA Science Inventory

    Ammonium Perchlorate (AP) is produced on a large scale by the chemical industry, for a wide range of applications for example, as a strong oxidizing agent in solid rocket fuel. AP must be washed out of the inventory periodically due to its limited shelf-life,and replaced with a f...

  14. Amylose-potassium oleate inclusion complex in plain set-style yogurt

    USDA-ARS?s Scientific Manuscript database

    Amylose-potassium oleate inclusion complex (AIC) were used to replace skim milk solids in yogurt. The effect of AIC on yogurt fermentation and small amplitude oscillatory shear flow measurements of storage and loss moduli were studied and compared to full fat samples. Texture, storage modulus, and s...

  15. 40 CFR 63.3110 - What notifications must I submit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... elect to include the surface coating of new other motor vehicle bodies, body parts for new other motor vehicles, parts for new other motor vehicles, or aftermarket repair or replacement parts for other motor... volume of applied coating solids from: (i) The combined primer-surfacer, topcoat, final repair, glass...

  16. Properties of palm oil fuel ash cement sand brick containing pulverized cockle shell as partial sand replacement

    NASA Astrophysics Data System (ADS)

    Mat Aris, S.; Muthusamy, K.; Uzer, A.; Ahmad, S. Wan

    2018-04-01

    Environmental pollution caused by the disposal of solid wastes generated from both palm oil industry and cockle shell trade has motivated researches to explore the potential of these wastes. Integrating these wastes in production of construction material is one of the ways to reduce amount of waste thrown at dumping area. Thus, the present investigation investigates the performance of palm oil fuel ash (POFA) cement sand brick containing pulverized cockle shell as partial fine aggregate replacement. All mixes used contain 20% of POFA as partial cement replacement. Total of six mixes were prepared by adding a range of pulverized cockle shell that is 0%, 10%, 20%, 30%, 40% and 50% as partial sand replacement. The mixes were prepared in form of brick. All the water cured samples were tested for compressive strength and flexural strength until 28 days. Findings show that brick produced using 20% pulverized cockle shell exhibit the highest compressive strength and flexural strength also the lowest water absorption value.

  17. Effects of milk fat, cocoa butter, or selected fat replacers on flavor volatiles of chocolate ice cream.

    PubMed

    Welty, W M; Marshall, R T; Grün, I U; Ellersieck, M R

    2001-01-01

    Selected volatile compounds of chocolate ice creams containing 0.6, 4.0, 6.0, or 9.0% milk fat or containing 2.5% milk fat, cocoa butter, or one of three fat replacers (Simplesse, Dairy Lo, or Oatrim) were analyzed by gas chromatography and gas chromatography-mass spectrometry using headspace solid-phase microextraction. The headspace concentration of most of the selected volatile compounds increased with decreasing milk fat concentration. Fat replacers generally increased the concentration of volatiles found in the headspace compared with milk fat or cocoa butter. Few differences in flavor volatiles were found between the ice cream containing milk fat and the ice cream containing cocoa butter. Among the selected volatiles, the concentration of 2,5-dimethyl-3(2-methyl propyl) pyrazine was the most highly correlated (negatively) with the concentration of milk fat, and it best discriminated among ice creams containing milk fat, cocoa butter, or one of the fat replacers.

  18. Qatar NGL-2 pipeline problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Jundi, I.M.

    Qatar NGL/2 plant, commissioned in December, 1979, was designed to process the associated gas from the offshore crude oil fields of Qatar. The dehydrated sour lean gas and wet sour liquids are transported via two separate lines to Umm Said NGL Complex about 120 kms. from the central offshore station. The liquids line 300 mm diameter (12 inch) has suffered general and severe pitting corrosion. The lean gas line 600 mm diameter (24 inch) has suffered corrosion and extensively hydrogen induced cracking (HIC), also known as HIPC. Both lines never performed to their design parameters and many problems in themore » downstream facilities have been experienced. All efforts to clean the liquids lines from the solids (debris) have failed. This inturn interfered with the planned corrosion control programe, thus allowing corrosion to continue. Investigation work has been done by various specialists in an attempt to find the origin of the solids and to recommend necessary remedial actions. Should lines fall from pitting corrosion, the effect of liquids leak at a pressure of about 11000 kpa will be very dangerous especially if it occurs onshore. In order to protect the NGL-2 operations against possible risks, both interms of safety as well as losses in revenue, critically sections of the pipelines have been replaced, whilst the whole gas liquids pipelines would be replaced shortly. Supplementary documents to the API standards were prepared by QPC for the replaced pipelines.« less

  19. Leaching behaviour, mechanical and durability properties of mortar containing municipal incineration bottom ash

    NASA Astrophysics Data System (ADS)

    Morales Hernandez, Maria B.

    The review of municipal solid waste (MSW) management scheme has indicated that the amount of MSW sent to incineration plants will increase in the UK in coming years. Therefore, the amount of municipal solid waste incineration (MSWI) residues generated will increase significantly. MSWI residues are divided into MSWI fly ash (MSWI-FA) and MSWI bottom ash (MSWI-BA). MSWI-FA is classified as hazardous residue thereby requires special treatment before disposal. MSWI-BA is mostly disposed in landfill sites. MSWI-BA fraction with particle size diameter below approximately 2mm has low engineering properties and may have an adverse effect on the environment due to its high porosity, solubility and leachability of possible toxic compounds. This research programme has investigated new potential uses and leaching behaviour of mortar containing MSWI-BA with particle size diameters below 2.36mm. Fraction of MSWI-BA with particle size diameters (φ) below 2.36 mm (φ <2.36) was divided into different sub-fractions to evaluate their influence on compressive strength of concrete when used as partial replacement of cement or sand. MSWI-BA fraction with φ <212mum (fine fraction) and 212mum < φ2.36mm (coarse fraction) used as partial replacement of cement and sand respectively, showed higher compressive strength compared with the other fractions examined. In addition, replacing sand with the coarse fraction of MSWI-BA exhibited similar or higher strength than the reference mix. Examination of physical and chemical properties of the fine and coarse fractions of MSWI-BA unbound indicated that both fractions had potential to be used as replacement of cement or sand. However, the evaluation of their leaching behaviour suggested that they should be bound in cement-based systems to avoid leaching of potential toxic elements. Evaluation of physical, mechanical and sulfate resistance properties of mortars containing 15% of the fine fraction of MSWI-BA as a partial replacement of cement and 50% of the coarse fraction as partial replacement of sand indicated potential uses in concrete production. In addition, the leachability of mortar specimens containing 15% and 50% of MSWI-BA as partial replacement of cement and sand respectively was significantly reduced when compared to unbound MSWI-BA fractions.

  20. Solid-state and solution /sup 13/C NMR in the conformational analysis of methadone-hydrochloride and related narcotic analgesics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumner, S.C.J.

    1986-01-01

    Solid state and solution /sup 13/C NMR have been used to study the conformations of the racemic mixtures and single enantiomers of methadone hydrochloride, alpha and beta methadol hydrochloride, and alpha and beta acetylmethadol hydrochloride. The NMR spectra acquired for the compounds as solids, and in polar and nonpolar solvents are compared, in order to determine the conformation of the molecules in solution. To determine the reliability of assigning solution conformations by comparing solution and solid state chemical shift data, three bond coupling constants measured in solution are compared with those calculated from X-ray data. The conformations of the racemicmore » mixture and plus enantiomer of methadone hydrochloride have been shown to be very similar in the solid state, where minor differences in conformation can be seen by comparing NMR spectra obtained for the solids. Also shown is that the molecules of methadone hydrochloride have conformations in polar and in nonpolar solvents which are very similar to the conformation of the molecules in the solid state.« less

  1. Digital Cellular Solid Pressure Vessels: A Novel Approach for Human Habitation in Space

    NASA Technical Reports Server (NTRS)

    Cellucci, Daniel; Jenett, Benjamin; Cheung, Kenneth C.

    2017-01-01

    It is widely assumed that human exploration beyond Earth's orbit will require vehicles capable of providing long duration habitats that simulate an Earth-like environment - consistent artificial gravity, breathable atmosphere, and sufficient living space- while requiring the minimum possible launch mass. This paper examines how the qualities of digital cellular solids - high-performance, repairability, reconfigurability, tunable mechanical response - allow the accomplishment of long-duration habitat objectives at a fraction of the mass required for traditional structural technologies. To illustrate the impact digital cellular solids could make as a replacement to conventional habitat subsystems, we compare recent proposed deep space habitat structural systems with a digital cellular solids pressure vessel design that consists of a carbon fiber reinforced polymer (CFRP) digital cellular solid cylindrical framework that is lined with an ultra-high molecular weight polyethylene (UHMWPE) skin. We use the analytical treatment of a linear specific modulus scaling cellular solid to find the minimum mass pressure vessel for a structure and find that, for equivalent habitable volume and appropriate safety factors, the use of digital cellular solids provides clear methods for producing structures that are not only repairable and reconfigurable, but also higher performance than their conventionally manufactured counterparts.

  2. Solid State Division annual progress report for period ending December 31, 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkinson, M.K.; Young, F.W. Jr.

    1976-05-01

    Research activities are reported in programs on theoretical solid state physics, physical properties of solids, radiation effects in metals, neutron scattering, research materials, and isotope research materials. (JRD)

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henager, Charles H.; Kurtz, Richard J.; Canfield, Nathan L.

    The use of SiC composites in fusion environments likely requires joining of plates using reactive joining or brazing. One promising reactive joining method uses solid-state displacement reactions between Si and TiC to produce Ti3SiC2 + SiC. We continue to explore the processing envelope for this joint for the TITAN collaboration in order to produce optimal joints to undergo irradiation studies in HFIR. One noted feature of the joints produced using tape-calendared powders of TiC+Si has been the large void regions that have been apparently unavoidable. Although the produced joints are very strong, these voids are undesirable. In addition, the tapesmore » that were made for this joining were produced about 20 years ago and were aging. Therefore, we embarked on an effort to produce some new tape cast powders of TiC and Si that could replace our aging tape calendared materials.« less

  4. Automated determination of fibrillar structures by simultaneous model building and fiber diffraction refinement.

    PubMed

    Potrzebowski, Wojciech; André, Ingemar

    2015-07-01

    For highly oriented fibrillar molecules, three-dimensional structures can often be determined from X-ray fiber diffraction data. However, because of limited information content, structure determination and validation can be challenging. We demonstrate that automated structure determination of protein fibers can be achieved by guiding the building of macromolecular models with fiber diffraction data. We illustrate the power of our approach by determining the structures of six bacteriophage viruses de novo using fiber diffraction data alone and together with solid-state NMR data. Furthermore, we demonstrate the feasibility of molecular replacement from monomeric and fibrillar templates by solving the structure of a plant virus using homology modeling and protein-protein docking. The generated models explain the experimental data to the same degree as deposited reference structures but with improved structural quality. We also developed a cross-validation method for model selection. The results highlight the power of fiber diffraction data as structural constraints.

  5. Beyond the random-phase approximation for the electron correlation energy: the importance of single excitations.

    PubMed

    Ren, Xinguo; Tkatchenko, Alexandre; Rinke, Patrick; Scheffler, Matthias

    2011-04-15

    The random-phase approximation (RPA) for the electron correlation energy, combined with the exact-exchange (EX) energy, represents the state-of-the-art exchange-correlation functional within density-functional theory. However, the standard RPA practice--evaluating both the EX and the RPA correlation energies using Kohn-Sham (KS) orbitals from local or semilocal exchange-correlation functionals--leads to a systematic underbinding of molecules and solids. Here we demonstrate that this behavior can be corrected by adding a "single excitation" contribution, so far not included in the standard RPA scheme. A similar improvement can also be achieved by replacing the non-self-consistent EX total energy by the corresponding self-consistent Hartree-Fock total energy, while retaining the RPA correlation energy evaluated using KS orbitals. Both schemes achieve chemical accuracy for a standard benchmark set of noncovalent intermolecular interactions.

  6. Polyplanar optic display for cockpit application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veligdan, J.; Biscardi, C.; Brewster, C.

    1998-04-01

    The Polyplanar Optical Display (POD) is a high contrast display screen being developed for cockpit applications. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a long lifetime, (10,000 hour), 200 mW green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments,more » Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design and speckle reduction, the authors discuss the electronic interfacing to the DLP{trademark} chip, the opto-mechanical design and viewing angle characteristics.« less

  7. Polyplanar optic display

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veligdan, J.; Biscardi, C.; Brewster, C.

    1997-07-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 100 milliwatt green solid state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments, Inc.more » A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, the authors discuss the electronic interfacing to the DLP{trademark} chip, the opto-mechanical design and viewing angle characteristics.« less

  8. Polyplanar optic display for cockpit application

    NASA Astrophysics Data System (ADS)

    Veligdan, James T.; Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Freibott, William C.

    1998-09-01

    The Polyplanar Optical Display (POD) is a high contrast display screen being developed for cockpit applications. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a long lifetime, (10,000 hour), 200 mW green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLPTM) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design and speckle reduction, we discuss the electronic interfacing to the DLPTM chip, the opto-mechanical design and viewing angle characteristics.

  9. Design considerations for imaging charge-coupled device

    NASA Astrophysics Data System (ADS)

    1981-04-01

    The image dissector tube, which was formerly used as detector in star trackers, will be replaced by solid state imaging devices. The technology advances of charge transfer devices, like the charge-coupled device (CCD) and the charge-injection device (CID) have made their application to star trackers an immediate reality. The Air Force in 1979 funded an American Aerospace company to develop an imaging CCD (ICCD) star sensor for the Multimission Attitude Determination and Autonomous Navigation (MADAN) system. The MADAN system is a technology development for a strapdown attitude and navigation system which can be used on all Air Force 3-axis stabilized satellites. The system will be autonomous and will provide real-time satellite attitude and position information. The star sensor accuracy provides an overall MADAN attitude accuracy of 2 arcsec for star rates up to 300 arcsec/sec. The ICCD is basically an integrating device. Its pixel resolution in not yet satisfactory for precision applications.

  10. Batteries for electric road vehicles.

    PubMed

    Goodenough, John B; Braga, M Helena

    2018-01-15

    The dependence of modern society on the energy stored in a fossil fuel is not sustainable. An immediate challenge is to eliminate the polluting gases emitted from the roads of the world by replacing road vehicles powered by the internal combustion engine with those powered by rechargeable batteries. These batteries must be safe and competitive in cost, performance, driving range between charges, and convenience. The competitive performance of an electric car has been demonstrated, but the cost of fabrication, management to ensure safety, and a short cycle life have prevented large-scale penetration of the all-electric road vehicle into the market. Low-cost, safe all-solid-state cells from which dendrite-free alkali-metal anodes can be plated are now available; they have an operating temperature range from -20 °C to 80 °C and they permit the design of novel high-capacity, high-voltage cathodes providing fast charge/discharge rates. Scale-up to large multicell batteries is feasible.

  11. Towards 3rd generation organic tandem solar cells with 20% efficiency: Accelerated discovery and rational design of carbon-based photovoltaic materials through massive distributed volunteer computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aspuru-Guzik, Alan

    2016-11-04

    Clean, affordable, and renewable energy sources are urgently needed to satisfy the 10s of terawatts (TW) energy need of human beings. Solar cells are one promising choice to replace traditional energy sources. Our broad efforts have expanded the knowledge of possible donor materials for organic photovoltaics, while increasing access of our results to the world through the Clean Energy Project database (www.molecularspace.org). Machine learning techniques, including Gaussian Processes have been used to calibrate frontier molecular orbital energies, and OPV bulk properties (open-circuit voltage, percent conversion efficiencies, and short-circuit current). This grant allowed us to delve into the solid-state properties ofmore » OPVs (charge-carrier dynamics). One particular example allowed us to predict charge-carrier dynamics and make predictions about future hydrogen-bonded materials.« less

  12. Reversible monolayer-to-crystalline phase transition in amphiphilic silsesquioxane at the air-water interface

    DOE PAGES

    Banerjee, R.; Sanyal, M. K.; Bera, M. K.; ...

    2015-02-17

    We report on the counter intuitive reversible crystallisation of two-dimensional monolayer of Trisilanolisobutyl Polyhedral Oligomeric SilSesquioxane (TBPOSS) on water surface using synchrotron x-ray scattering measurements. Amphiphilic TBPOSS form rugged monolayers and Grazing Incidence X-ray Scattering (GIXS) measurements reveal that the in-plane inter-particle correlation peaks, characteristic of two-dimensional system, observed before transition is replaced by intense localized spots after transition. The measured x-ray scattering data of the non-equilibrium crystalline phase on the air-water interface could be explained with a model that assumes periodic stacking of the TBPOSS dimers. These crystalline stacking relaxes upon decompression and the TBPOSS layer retains its initialmore » monolayer state. The existence of these crystals in compressed phase is confirmed by atomic force microscopy measurements by lifting the materials on a solid substrate.« less

  13. All Solid State Rechargeable Lithium Batteries using Block Copolymers

    NASA Astrophysics Data System (ADS)

    Hallinan, Daniel; Balsara, Nitash

    2011-03-01

    The growing need for alternative energy and increased demand for mobile technology require higher density energy storage. Existing battery technologies, such as lithium ion, are limited by theoretical energy density as well as safety issues. Other battery chemistries are promising options for dramatically increasing energy density. Safety can be improved by replacing the flammable, reactive liquids used in existing lithium-ion battery electrolytes with polymer electrolytes. Block copolymers are uniquely suited for this task because ionic conductivity and mechanical strength, both important properties in battery formulation, can be independently controlled. In this study, lithium batteries were assembled using lithium metal as negative electrode, polystyrene-b-poly(ethylene oxide) copolymer with lithium salt as electrolyte, and a positive electrode. The positive electrode consisted of polymer electrolyte for ion conduction, carbon for electron conduction, and an active material. Batteries were charged and discharged over many cycles. The battery cycling results were compared to a conventional battery chemistry.

  14. Spectroscopic investigation of the Cr to Tm energy transfer in Yttrium Aluminum Garnet (YAG) crystals

    NASA Technical Reports Server (NTRS)

    Dibartolo, B.

    1988-01-01

    New and interesting schemes have recently been considered for the efficient operation of solid-state ionic laser systems. Often the available data on these systems were obtained only because they seemed directly related to the laser performance and provide no insight into the physical processes. A more systematic approach is desirable, where more attention is devoted to the elementary basic processes and to the nature of the mechanisms at work. It is with this aim that we have undertaken the present study. Yttrium Aluminum Garnet (Y4Al5O12), called YAG, has two desirable properties as host for rare earth impurities: (1) trivalent rare earth ions can replace the yttrium without any charge compensation problem, and (2) YAG crystals have high cutoff energies. The results of measurements and calculations indicate that the Cr(3+) ion in YAG can be used to sensitize efficiently the Tm(3+) ion.

  15. High-efficency stable 213-nm generation for LASIK application

    NASA Astrophysics Data System (ADS)

    Wang, Zhenglin; Alameh, Kamal; Zheng, Rong

    2005-01-01

    213nm Solid-state laser technology provides an alternative method to replace toxic excimer laser in LASIK system. In this paper, we report a compact fifth harmonic generation system to generate high pulse energy 213nm laser from Q-switched Nd:YAG laser for LASIK application based on three stages harmonic generation procedures. A novel crystal housing was specifically designed to hold the three crystals with each crystal has independent, precise angular adjustment structure and automatic tuning control. The crystal temperature is well maintained at ~130°C to improve harmonic generation stability and crystal operation lifetime. An output pulse energy 35mJ is obtained at 213nm, corresponding to total conversion efficiency ~10% from 1064nm pump laser. In system verification tests, the 213nm output power drops less than 5% after 5 millions pulse shots and no significant damage appears in the crystals.

  16. Time Series Analysis of Soil Radon Data Using Multiple Linear Regression and Artificial Neural Network in Seismic Precursory Studies

    NASA Astrophysics Data System (ADS)

    Singh, S.; Jaishi, H. P.; Tiwari, R. P.; Tiwari, R. C.

    2017-07-01

    This paper reports the analysis of soil radon data recorded in the seismic zone-V, located in the northeastern part of India (latitude 23.73N, longitude 92.73E). Continuous measurements of soil-gas emission along Chite fault in Mizoram (India) were carried out with the replacement of solid-state nuclear track detectors at weekly interval. The present study was done for the period from March 2013 to May 2015 using LR-115 Type II detectors, manufactured by Kodak Pathe, France. In order to reduce the influence of meteorological parameters, statistical analysis tools such as multiple linear regression and artificial neural network have been used. Decrease in radon concentration was recorded prior to some earthquakes that occurred during the observation period. Some false anomalies were also recorded which may be attributed to the ongoing crustal deformation which was not major enough to produce an earthquake.

  17. Adaptation of a 15-ft-dia ribbon parachute and a 73-ft cross main recovery parachute for cargo delivery from high altitude

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pepper, W.B.; Lucero, H.; Klimas, P.C.

    1984-01-01

    An existing parachute system has been adapted for delivery of a resupply container at high altitudes from aircraft. The parachute system consists of a 15-ft diameter ribbon parachute reefed for 10 seconds and a 73-ft diameter cross parachute reefed for 10 seconds. A solid state recorder in the 2341 1b drop test vehicle was used to obtain deceleration history with time. Two drop tests using the Navy A7 aircraft were conducted at Stallion Site, White Sands Missile Range, New Mexico. Drop release conditions were 250 KCAS at 20,000 ft above sea level from the first test and 230 KCAS atmore » 22,000 ft msl for the second. A new load transfer bridle was designed and tested to release the first stage parachute and replace a costly mechanical load plate.« less

  18. Rhamnolipid biosurfactants: evolutionary implications, applications and future prospects from untapped marine resource.

    PubMed

    Kiran, George Seghal; Ninawe, Arun Shivanth; Lipton, Anuj Nishanth; Pandian, Vijayalakshmi; Selvin, Joseph

    2016-01-01

    Rhamnolipid-biosurfactants are known to be produced by the genus Pseudomonas, however recent literature reported that rhamnolipids (RLs) are distributed among diverse microbial genera. To integrate the evolutionary implications of rhamnosyl transferase among various groups of microorganisms, a comprehensive comparative motif analysis was performed amongst bacterial producers. Findings on new RL-producing microorganism is helpful from a biotechnological perspective and to replace infective P. aeruginosa strains which ultimately ensure industrially safe production of RLs. Halotolerant biosurfactants are required for efficient bioremediation of marine oil spills. An insight on the exploitation of marine microbes as the potential source of RL biosurfactants is highlighted in the present review. An economic production process, solid-state fermentation using agro-industrial and industrial waste would increase the scope of biosurfactants commercialization. Potential and prospective applications of RL-biosurfactants including hydrocarbon bioremediation, heavy metal removal, antibiofilm activity/biofilm disruption and greener synthesis of nanoparticles are highlighted in this review.

  19. Tribological properties of surfaces

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1978-01-01

    The real area of contact between two solid surfaces is only a small portion of the apparent area. Deformation of these areas can result in solid state contact through surface films. For clean solid to solid contact strong adhesive bonding occurs across the interface. Under these conditions many properties of the solid such as the metallurgical and chemical nature of metals can influence adhesion, friction, and wear behavior. The presence of gases, liquids, and solid films on the surface of solids alter markedly tribological characteristics. These surface films can also considerably change the mechanical effects of solid state contact on bulk material behavior.

  20. Characterization of Pharmaceutical Cocrystals and Salts by Dynamic Nuclear Polarization-Enhanced Solid-State NMR Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma

    Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less

Top