Solid state lighting devices and methods with rotary cooling structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P.
Solid state lighting devices and methods for heat dissipation with rotary cooling structures are described. An example solid state lighting device includes a solid state light source, a rotating heat transfer structure in thermal contact with the solid state light source, and a mounting assembly having a stationary portion. The mounting assembly may be rotatably coupled to the heat transfer structure such that at least a portion of the mounting assembly remains stationary while the heat transfer structure is rotating. Examples of methods for dissipating heat from electrical devices, such as solid state lighting sources are also described. Heat dissipationmore » methods may include providing electrical power to a solid state light source mounted to and in thermal contact with a heat transfer structure, and rotating the heat transfer structure through a surrounding medium.« less
2013-01-01
We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1H and 13C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1H and 13C chemical shifts for directly bonded 13C–1H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure. PMID:24386493
Dudenko, Dmytro V; Williams, P Andrew; Hughes, Colan E; Antzutkin, Oleg N; Velaga, Sitaram P; Brown, Steven P; Harris, Kenneth D M
2013-06-13
We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1 H and 13 C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1 H and 13 C chemical shifts for directly bonded 13 C- 1 H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure.
Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan
Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range 13 C- 13 C correlation MAS spectra obtained with selectivelymore » 13 CO- and 13 Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.« less
Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid
Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan; ...
2016-09-02
Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range 13 C- 13 C correlation MAS spectra obtained with selectivelymore » 13 CO- and 13 Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.« less
Solid-solution thermodynamics in Al-Li alloys
NASA Astrophysics Data System (ADS)
Alekseev, A. A.; Lukina, E. A.
2016-05-01
The relative equilibrium concentrations of lithium atoms distributed over different electron-structural states has been estimated. The possibility of the existence of various nonequilibrium electron-structural states of Li atoms in the solid solution in Al has been substantiated thermodynamically. Upon the decomposition of the supersaturated solid solution, the supersaturation on three electron-structural states of Li atoms that arises upon the quenching of the alloy can lead to the formation of lithium-containing phases in which the lithium atoms enter in one electron-structural state.
Widdifield, Cory M; Bryce, David L
2009-09-07
Solid-state NMR spectroscopy and GIPAW DFT calculations reveal the pronounced sensitivity of (79/81)Br and (25)Mg quadrupolar coupling constants to subtle aspects of solid state structure which were not previously detected by pXRD methods.
Solid state NMR: The essential technology for helical membrane protein structural characterization
Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna
2014-01-01
NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed – neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins. PMID:24412099
Solid state NMR: The essential technology for helical membrane protein structural characterization
NASA Astrophysics Data System (ADS)
Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna
2014-02-01
NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed - neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins.
Density functional theory in the solid state
Hasnip, Philip J.; Refson, Keith; Probert, Matt I. J.; Yates, Jonathan R.; Clark, Stewart J.; Pickard, Chris J.
2014-01-01
Density functional theory (DFT) has been used in many fields of the physical sciences, but none so successfully as in the solid state. From its origins in condensed matter physics, it has expanded into materials science, high-pressure physics and mineralogy, solid-state chemistry and more, powering entire computational subdisciplines. Modern DFT simulation codes can calculate a vast range of structural, chemical, optical, spectroscopic, elastic, vibrational and thermodynamic phenomena. The ability to predict structure–property relationships has revolutionized experimental fields, such as vibrational and solid-state NMR spectroscopy, where it is the primary method to analyse and interpret experimental spectra. In semiconductor physics, great progress has been made in the electronic structure of bulk and defect states despite the severe challenges presented by the description of excited states. Studies are no longer restricted to known crystallographic structures. DFT is increasingly used as an exploratory tool for materials discovery and computational experiments, culminating in ex nihilo crystal structure prediction, which addresses the long-standing difficult problem of how to predict crystal structure polymorphs from nothing but a specified chemical composition. We present an overview of the capabilities of solid-state DFT simulations in all of these topics, illustrated with recent examples using the CASTEP computer program. PMID:24516184
Solid-state modeling of the terahertz spectrum of the high explosive HMX.
Allis, Damian G; Prokhorova, Darya A; Korter, Timothy M
2006-02-09
The experimental solid-state terahertz (THz) spectrum (3-120 cm(-1)) of the beta-crystal form of the high explosive octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been analyzed using solid-state density functional theory calculations. Various density functionals (both generalized gradient approximation and local density approximation) are compared in terms of their abilities to reproduce the experimentally observed solid-state structure and low-frequency vibrational motions. Good-to-excellent agreement between solid-state theory and experiment can be achieved in the THz region where isolated-molecule calculations fail to reproduce the observed spectral features, demonstrating a clear limitation of using isolated-molecule calculations for the assignment of THz frequency motions in molecular solids. The deficiency of isolated-molecule calculations is traced to modification of the molecular structure in the solid state through crystal packing effects and the formation of weak C-H...O hydrogen bonds.
Sintered Cathodes for All-Solid-State Structural Lithium-Ion Batteries
NASA Technical Reports Server (NTRS)
Huddleston, William; Dynys, Frederick; Sehirlioglu, Alp
2017-01-01
All-solid-state structural lithium ion batteries serve as both structural load-bearing components and as electrical energy storage devices to achieve system level weight savings in aerospace and other transportation applications. This multifunctional design goal is critical for the realization of next generation hybrid or all-electric propulsion systems. Additionally, transitioning to solid state technology improves upon battery safety from previous volatile architectures. This research established baseline solid state processing conditions and performance benchmarks for intercalation-type layered oxide materials for multifunctional application. Under consideration were lithium cobalt oxide and lithium nickel manganese cobalt oxide. Pertinent characteristics such as electrical conductivity, strength, chemical stability, and microstructure were characterized for future application in all-solid-state structural battery cathodes. The study includes characterization by XRD, ICP, SEM, ring-on-ring mechanical testing, and electrical impedance spectroscopy to elucidate optimal processing parameters, material characteristics, and multifunctional performance benchmarks. These findings provide initial conditions for implementing existing cathode materials in load bearing applications.
NASICON-Structured Materials for Energy Storage.
Jian, Zelang; Hu, Yong-Sheng; Ji, Xiulei; Chen, Wen
2017-05-01
The demand for electrical energy storage (EES) is ever increasing, which calls for better batteries. NASICON-structured materials represent a family of important electrodes due to its superior ionic conductivity and stable structures. A wide range of materials have been considered, where both vanadium-based and titanium-based materials are recommended as being of great interest. NASICON-structured materials are suitable for both the cathode and the anode, where the operation potential can be easily tuned by the choice of transition metal and/or polyanion group in the structure. NASICON-structured materials also represent a class of solid electrolytes, which are widely employed in all-solid-state ion batteries, all-solid-state air batteries, and hybrid batteries. NASICON-structured materials are reviewed with a focus on both electrode materials and solid-state electrolytes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Intermediate couplings: NMR at the solids-liquids interface
NASA Astrophysics Data System (ADS)
Spence, Megan
2006-03-01
Anisotropic interactions like dipolar couplings and chemical shift anisotropy have long offered solid-state NMR spectroscopists valuable structural information. Recently, solution-state NMR structural studies have begun to exploit residual dipolar couplings of biological molecules in weakly anisotropic solutions. These residual couplings are about 0.1% of the coupling magnitudes observed in the solid state, allowing simple, high-resolution NMR spectra to be retained. In this work, we examine the membrane-associated opioid, leucine enkephalin (lenk), in which the ordering is ten times larger than that for residual dipolar coupling experiments, requiring a combination of solution-state and solid-state NMR techniques. We adapted conventional solid-state NMR techniques like adiabatic cross- polarization and REDOR for use with such a system, and measured small amide bond dipolar couplings in order to determine the orientation of the amide bonds (and therefore the peptide) with respect to the membrane surface. However, the couplings measured indicate large structural rearrangements on the surface and contradict the published structures obtained by NOESY constraints, a reminder that such methods are of limited use in the presence of large-scale dynamics.
The Golden Age of Radio: Solid State's Debt to the Rad Lab
NASA Astrophysics Data System (ADS)
Martin, Joseph D.
2011-03-01
While MIT's Radiation Laboratory is rightly celebrated for its contributions to World War II radar research, its legacy extended beyond the war. The Rad Lab provided a model for interdisciplinary collaboration that continued to influence research at MIT in the post-war decades. The Rad Lab's institutional legacy--MIT's interdepartmental laboratories--drove the Institute's postwar research agenda. This talk examines how solid state physics research at MIT was shaped by a laboratory structure that encouraged cross-disciplinary collaboration. As the sub-discipline of solid state physics emerged through the late-1940s and 1950s, MIT was unique among universities in its laboratory structure, made possible by a large degree of government and military funding. Nonetheless, the manner in which MIT research groups from physics, chemistry, engineering, and metallurgy interfaced through the medium of solid state physics exemplified how the discipline of solid state physics came to be structured in the rest of the country. Through examining the Rad Lab's institutional legacy, I argue that World War II radar research, by establishing precedent for a particular mode of interdisciplinary collaboration, shaped the future structure of solid state research in the United States. Research supported by a grant-in-aid from the Friends of the Center for the History of Physics, American Institute of Physics.
NASA Technical Reports Server (NTRS)
Murty, A. N.
1976-01-01
A straightforward self-consistent method was developed to estimate solid state electrostatic potentials, fields and field gradients in ionic solids. The method is a direct practical application of basic electrostatics to solid state and also helps in the understanding of the principles of crystal structure. The necessary mathematical equations, derived from first principles, were presented and the systematic computational procedure developed to arrive at the solid state electrostatic field gradients values was given.
Structures and fabrication techniques for solid state electrochemical devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2012-10-09
Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.
Structures and fabrication techniques for solid state electrochemical devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2008-04-01
Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.
NASA Technical Reports Server (NTRS)
Bailey, R. F.
1982-01-01
Glass film has low intrinsic compressive stress for isolating active layers of magnetic-bubble and other solid-state devices. Solid-state device structure incorporates low-stress glasses as barrier and spacer layers. Glass layers mechanically isolate substrate, conductor, and nickel/iron layers.
Lipid immiscibility and biophysical properties: Molecular order within and among unit cell volumes
USDA-ARS?s Scientific Manuscript database
Saturated and unsaturated fatty acids clearly have a discrete chemical structure in the solid state. In a saturated solution, the solid state and solution state are in chemical equilibrium. The lipid stearic acid packs in unit cell volumes in the liquid state as well as in the solid state. Normal...
Metal current collect protected by oxide film
Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.
2004-05-25
Provided are low-cost, mechanically strong, highly electronically conductive current collects and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical devices having as current interconnects a ferritic steel felt or screen coated with a protective oxide film.
Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise
ERIC Educational Resources Information Center
Bindel, Thomas H.
2008-01-01
A crystal model laboratory exercise is presented that allows students to examine relations among the microscopic-macroscopic-symbolic levels, using crystalline mineral samples and corresponding crystal models. Students explore the relationship between solid-state structure and crystal form. Other structure-property relationships are explored. The…
Solid-State Neutron Detector Device
NASA Technical Reports Server (NTRS)
Bensaoula, Abdelhak (Inventor); Starikov, David (Inventor); Pillai, Rajeev (Inventor)
2017-01-01
The structure and methods of fabricating a high efficiency compact solid state neutron detector based on III-Nitride semiconductor structures deposited on a substrate. The operation of the device is based on absorption of neutrons, which results in generation of free carriers.
Pham, Tran N; Day, Caroline J; Edwards, Andrew J; Wood, Helen R; Lynch, Ian R; Watson, Simon A; Bretonnet, Anne-Sophie Z; Vogt, Frederick G
2011-01-25
We report a novel use of solid-state ¹⁹F nuclear magnetic resonance to detect and quantify polytetrafluoroethylene contamination from laboratory equipment, which due to low quantity (up to 1% w/w) and insolubility remained undetected by standard analytical techniques. Solid-state ¹⁹F NMR is shown to be highly sensitive to such fluoropolymers (detection limit 0.02% w/w), and is demonstrated as a useful analytical tool for structure elucidation of unknown solid materials. Copyright © 2010 Elsevier B.V. All rights reserved.
Monolithic solid-state lasers for spaceflight
NASA Astrophysics Data System (ADS)
Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth
2015-02-01
A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.
Solid-state NMR studies of form I of atorvastatin calcium.
Wang, Wei David; Gao, Xudong; Strohmeier, Mark; Wang, Wei; Bai, Shi; Dybowski, Cecil
2012-03-22
Solid-state (13)C, (19)F, and (15)N magic angle spinning NMR studies of Form I of atorvastatin calcium are reported, including chemical shift tensors of all resolvable carbon sites and fluorine sites. The complete (13)C and (19)F chemical shift assignments are given based on an extensive analysis of (13)C-(1)H HETCOR and (13)C-(19)F HETCOR results. The solid-state NMR data indicate that the asymmetric unit of this material contains two atorvastatin molecules. A possible structure of Form I of atorvastatin calcium (ATC-I), derived from solid-state NMR data and density functional theory calculations of various structures, is proposed for this important active pharmaceutical ingredient (API).
NASA Technical Reports Server (NTRS)
Miller, F. R.
1972-01-01
Joining processes for aerospace systems combine fusion welding and solid state joining during production of metal structures. Detailed characteristics of electron beam welding, plasma arc welding, diffusion welding, inertia welding and weldbond processes are discussed.
NASA Astrophysics Data System (ADS)
Allis, Damian G.; Hakey, Patrick M.; Korter, Timothy M.
2008-10-01
The terahertz (THz, far-infrared) spectrum of 3,4-methylene-dioxymethamphetamine hydrochloride (Ecstasy) is simulated using solid-state density functional theory. While a previously reported isolated-molecule calculation is noteworthy for the precision of its solid-state THz reproduction, the solid-state calculation predicts that the isolated-molecule modes account for only half of the spectral features in the THz region, with the remaining structure arising from lattice vibrations that cannot be predicted without solid-state molecular modeling. The molecular origins of the internal mode contributions to the solid-state THz spectrum, as well as the proper consideration of the protonation state of the molecule, are also considered.
Sgourakis, Nikolaos G; Yau, Wai-Ming; Qiang, Wei
2015-01-06
Determining the structures of amyloid fibrils is an important first step toward understanding the molecular basis of neurodegenerative diseases. For β-amyloid (Aβ) fibrils, conventional solid-state NMR structure determination using uniform labeling is limited by extensive peak overlap. We describe the characterization of a distinct structural polymorph of Aβ using solid-state NMR, transmission electron microscopy (TEM), and Rosetta model building. First, the overall fibril arrangement is established using mass-per-length measurements from TEM. Then, the fibril backbone arrangement, stacking registry, and "steric zipper" core interactions are determined using a number of solid-state NMR techniques on sparsely (13)C-labeled samples. Finally, we perform Rosetta structure calculations with an explicitly symmetric representation of the system. We demonstrate the power of the hybrid Rosetta/NMR approach by modeling the in-register, parallel "Iowa" mutant (D23N) at high resolution (1.2Å backbone rmsd). The final models are validated using an independent set of NMR experiments that confirm key features. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma
Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less
Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma; ...
2018-02-15
Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less
Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan; ...
2016-03-21
Elucidation of structural changes involved in protein misfolding and amyloid formation is crucial for unraveling the molecular basis of amyloid formation. We report structural analyses of the amyloidogenic intermediate and amyloid aggregates of transthyretin using solution and solid-state nuclear magnetic resonance (NMR) spectroscopy. These NMR solution results show that one of the two main β-sheet structures (CBEF β-sheet) is maintained in the aggregation-competent intermediate, while the other DAGH β-sheet is more flexible on millisecond time scales. Magic-angle-spinning solid-state NMR revealed that AB loop regions interacting with strand A in the DAGH β-sheet undergo conformational changes, leading to the destabilized DAGHmore » β-sheet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermann, Raphael P
2017-01-01
This most comprehensive and unrivaled compendium in the field provides an up-to-date account of the chemistry of solids, nanoparticles and hybrid materials. Following a valuable introductory chapter reviewing important synthesis techniques, the handbook presents a series of contributions by about 150 international leading experts -- the "Who's Who" of solid state science. Clearly structured, in six volumes it collates the knowledge available on solid state chemistry, starting from the synthesis, and modern methods of structure determination. Understanding and measuring the physical properties of bulk solids and the theoretical basis of modern computational treatments of solids are given ample space, asmore » are such modern trends as nanoparticles, surface properties and heterogeneous catalysis. Emphasis is placed throughout not only on the design and structure of solids but also on practical applications of these novel materials in real chemical situations.« less
Atomistic Simulation of Interfaces in Materials of Solid State Ionics
NASA Astrophysics Data System (ADS)
Ivanov-Schitz, A. K.; Mazo, G. N.
2018-01-01
The possibilities of describing correctly interfaces of different types in solids within a computer experiment using molecular statics simulation, molecular dynamics simulation, and quantum chemical calculations are discussed. Heterophase boundaries of various types, including grain boundaries and solid electrolyte‒solid electrolyte and ionic conductor‒electrode material interfaces, are considered. Specific microstructural features and mechanisms of the ion transport in real heterophase structures (cationic conductor‒metal anode and anionic conductor‒cathode) existing in solid state ionics devices (such as solid-state batteries and fuel cells) are discussed.
Naito, Akira; Matsumori, Nobuaki; Ramamoorthy, Ayyalusamy
2018-02-01
A variety of biomolecules acting on the cell membrane folds into a biologically active structure in the membrane environment. It is, therefore, important to determine the structures and dynamics of such biomolecules in a membrane environment. While several biophysical techniques are used to obtain low-resolution information, solid-state NMR spectroscopy is one of the most powerful means for determining the structure and dynamics of membrane bound biomolecules such as antibacterial biomolecules and amyloidogenic proteins; unlike X-ray crystallography and solution NMR spectroscopy, applications of solid-state NMR spectroscopy are not limited by non-crystalline, non-soluble nature or molecular size of membrane-associated biomolecules. This review article focuses on the applications of solid-state NMR techniques to study a few selected antibacterial and amyloid peptides. Solid-state NMR studies revealing the membrane inserted bent α-helical structure associated with the hemolytic activity of bee venom melittin and the chemical shift oscillation analysis used to determine the transmembrane structure (with α-helix and 3 10 -helix in the N- and C-termini, respectively) of antibiotic peptide alamethicin are discussed in detail. Oligomerization of an amyloidogenic islet amyloid polypeptide (IAPP, or also known as amylin) resulting from its aggregation in a membrane environment, molecular interactions of the antifungal natural product amphotericin B with ergosterol in lipid bilayers, and the mechanism of lipid raft formation by sphingomyelin studied using solid state NMR methods are also discussed in this review article. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.
Iyer, Lavanya K.; Sacha, Gregory A.; Moorthy, Balakrishnan S.; Nail, Steven L.; Topp, Elizabeth M.
2016-01-01
Myoglobin (Mb) was lyophilized in the absence (Mb-A) and presence (Mb-B) of sucrose in a pilot-scale lyophilizer with or without controlled ice nucleation. Cake morphology was characterized using scanning electron microscopy (SEM) and changes in protein structure were monitored using solid-state Fourier-transform infrared spectroscopy (ssFTIR), solid-state hydrogen-deuterium exchange-mass spectrometry (ssHDX-MS) and solid-state photolytic labeling-mass spectrometry (ssPL-MS). The results showed greater variability in nucleation temperature and irregular cake structure for formulations lyophilized without controlled nucleation. Controlled nucleation resulted in nucleation at ~ −5 °C and uniform cake structure. Formulations containing sucrose showed better retention of protein structure by all measures than formulations without sucrose. Samples lyophilized with and without controlled nucleation were similar by most measures of protein structure. However, ssPL-MS showed the greatest pLeu incorporation and more labeled regions for Mb-B lyophilized with controlled nucleation. The data support the use of ssHDX-MS and ssPL-MS to study formulation and process-induced conformational changes in lyophilized proteins. PMID:27044943
Solid-state structure of a Li/F carbenoid: pentafluoroethyllithium.
Waerder, Benedikt; Steinhauer, Simon; Neumann, Beate; Stammler, Hans-Georg; Mix, Andreas; Vishnevskiy, Yury V; Hoge, Berthold; Mitzel, Norbert W
2014-10-20
Lithium carbenoids are versatile compounds for synthesis owing to their intriguing ambiphilic behavior. Although this class of compounds has been known for several years, few solid-state structures exist because of their high reactivity and often low thermal stability. Using cryo X-ray techniques, we were now able to elucidate the first solid-state structure of a Li/F alkyl carbenoid, pentafluoroethyllithium (LiC2F5), finally yielding a prototype for investigating structure-reactivity relationships for this class of molecules. The compound forms a diethyl ether-solvated dimer bridged by a rare C-F-Li link. Complementary NMR spectroscopy studies in solution show dynamic processes and indicate rapid exchange of starting material and product. Theoretical investigations help to understand the formation of the observed unusual structural motif. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Maeda, Chihiro; Nagahata, Keiji; Ema, Tadashi
2017-09-26
Carbazole-based BODIPYs 1-6 with several different substituents at the boron atom site were synthesized. These dyes fluoresced in the solid state, and 3a with phenylethynyl groups exhibited a red-shifted and broad fluorescence spectrum, which suggested an excimer emission. Its derivatives 3b-n were synthesized, and the relationship between the solid-state emission and crystal packing was investigated. The X-ray crystal structures revealed cofacial dimers that might form excimers. From the structural optimization results, we found that the introduction of mesityl groups hindered intermolecular access and led to reduced interactions between the dimers. In addition, the red-shifted excimer fluorescence suppressed self-absorption, and dyes with ethynyl groups showed solid-state fluorescence in the vis/NIR region.
Investigation of Rhodopsin Dynamics in its Signaling State by Solid-State Deuterium NMR Spectroscopy
Struts, Andrey V.; Chawla, Udeep; Perera, Suchithranga M.D.C.; Brown, Michael F.
2017-01-01
Site-directed deuterium NMR spectroscopy is a valuable tool to study the structural dynamics of biomolecules in cases where solution NMR is inapplicable. Solid-state 2H NMR spectral studies of aligned membrane samples of rhodopsin with selectively labeled retinal provide information on structural changes of the chromophore in different protein states. In addition, solid-state 2H NMR relaxation time measurements allow one to study the dynamics of the ligand during the transition from the inactive to the active state. Here we describe the methodological aspects of solid-state 2H NMR spectroscopy for functional studies of rhodopsin, with an emphasis on the dynamics of the retinal cofactor. We provide complete protocols for the preparation of NMR samples of rhodopsin with 11-cis-retinal selectively deuterated at the methyl groups in aligned membranes. In addition, we review optimized conditions for trapping the rhodopsin photointermediates; and lastly we address the challenging problem of trapping the signaling state of rhodopsin in aligned membrane films. PMID:25697522
Applications of solid-state NMR to membrane proteins.
Ladizhansky, Vladimir
2017-11-01
Membrane proteins mediate flow of molecules, signals, and energy between cells and intracellular compartments. Understanding membrane protein function requires a detailed understanding of the structural and dynamic properties involved. Lipid bilayers provide a native-like environment for structure-function investigations of membrane proteins. In this review we give a general discourse on the recent progress in the field of solid-state NMR of membrane proteins. Solid-state NMR is a variation of NMR spectroscopy that is applicable to molecular systems with restricted mobility, such as high molecular weight proteins and protein complexes, supramolecular assemblies, or membrane proteins in a phospholipid environment. We highlight recent advances in applications of solid-state NMR to membrane proteins, specifically focusing on the recent developments in the field of Dynamic Nuclear Polarization, proton detection, and solid-state NMR applications in situ (in cell membranes). This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.
Tian, Ye; Schwieters, Charles D.; Opella, Stanley J.; Marassi, Francesca M.
2011-01-01
AssignFit is a computer program developed within the XPLOR-NIH package for the assignment of dipolar coupling (DC) and chemical shift anisotropy (CSA) restraints derived from the solid-state NMR spectra of protein samples with uniaxial order. The method is based on minimizing the difference between experimentally observed solid-state NMR spectra and the frequencies back calculated from a structural model. Starting with a structural model and a set of DC and CSA restraints grouped only by amino acid type, as would be obtained by selective isotopic labeling, AssignFit generates all of the possible assignment permutations and calculates the corresponding atomic coordinates oriented in the alignment frame, together with the associated set of NMR frequencies, which are then compared with the experimental data for best fit. Incorporation of AssignFit in a simulated annealing refinement cycle provides an approach for simultaneous assignment and structure refinement (SASR) of proteins from solid-state NMR orientation restraints. The methods are demonstrated with data from two integral membrane proteins, one α-helical and one β-barrel, embedded in phospholipid bilayer membranes. PMID:22036904
NASA Astrophysics Data System (ADS)
Szeleszczuk, Łukasz; Gubica, Tomasz; Zimniak, Andrzej; Pisklak, Dariusz M.; Dąbrowska, Kinga; Cyrański, Michał K.; Kańska, Marianna
2017-10-01
A convenient method for the indirect crystal structure verification of methyl glycosides was demonstrated. Single-crystal X-ray diffraction structures for methyl glycoside acetates were deacetylated and subsequently subjected to DFT calculations under periodic boundary conditions. Solid-state NMR spectroscopy served as a guide for calculations. A high level of accuracy of the modelled crystal structures of methyl glycosides was confirmed by comparison with published results of neutron diffraction study using RMSD method.
Filip, Xenia; Borodi, Gheorghe; Filip, Claudiu
2011-10-28
A solid state structural investigation of ethoxzolamide is performed on microcrystalline powder by using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct space methods with information from (13)C((15)N) solid-state Nuclear Magnetic Resonance (SS-NMR) and molecular modeling. Quantum chemical computations of the crystal were employed for geometry optimization and chemical shift calculations based on the Gauge Including Projector Augmented-Wave (GIPAW) method, whereas a systematic search in the conformational space was performed on the isolated molecule using a molecular mechanics (MM) approach. The applied methodology proved useful for: (i) removing ambiguities in the XRPD crystal structure determination process and further refining the derived structure solutions, and (ii) getting important insights into the relationship between the complex network of non-covalent interactions and the induced supra-molecular architectures/crystal packing patterns. It was found that ethoxzolamide provides an ideal case study for testing the accuracy with which this methodology allows to distinguish between various structural features emerging from the analysis of the powder diffraction data. This journal is © the Owner Societies 2011
Molecular structures of amyloid and prion fibrils: consensus versus controversy.
Tycko, Robert; Wickner, Reed B
2013-07-16
Many peptides and proteins self-assemble into amyloid fibrils. Examples include mammalian and fungal prion proteins, polypeptides associated with human amyloid diseases, and proteins that may have biologically functional amyloid states. To understand the propensity for polypeptides to form amyloid fibrils and to facilitate rational design of amyloid inhibitors and imaging agents, it is necessary to elucidate the molecular structures of these fibrils. Although fibril structures were largely mysterious 15 years ago, a considerable body of reliable structural information about amyloid fibril structures now exists, with essential contributions from solid state nuclear magnetic resonance (NMR) measurements. This Account reviews results from our laboratories and discusses several structural issues that have been controversial. In many cases, the amino acid sequences of amyloid fibrils do not uniquely determine their molecular structures. Self-propagating, molecular-level polymorphism complicates the structure determination problem and can lead to apparent disagreements between results from different laboratories, particularly when different laboratories study different polymorphs. For 40-residue β-amyloid (Aβ₁₋₄₀) fibrils associated with Alzheimer's disease, we have developed detailed structural models from solid state NMR and electron microscopy data for two polymorphs. These polymorphs have similar peptide conformations, identical in-register parallel β-sheet organizations, but different overall symmetry. Other polymorphs have also been partially characterized by solid state NMR and appear to have similar structures. In contrast, cryo-electron microscopy studies that use significantly different fibril growth conditions have identified structures that appear (at low resolution) to be different from those examined by solid state NMR. Based on solid state NMR and electron paramagnetic resonance (EPR) measurements, the in-register parallel β-sheet organization found in β-amyloid fibrils also occurs in many other fibril-forming systems. We attribute this common structural motif to the stabilization of amyloid structures by intermolecular interactions among like amino acids, including hydrophobic interactions and polar zippers. Surprisingly, we have recently identified and characterized antiparallel β-sheets in certain fibrils that are formed by the D23N mutant of Aβ₁₋₄₀, a mutant that is associated with early-onset, familial neurodegenerative disease. Antiparallel D23N-Aβ₁₋₄₀ fibrils are metastable with respect to parallel structures and, therefore, represent an off-pathway intermediate in the amyloid fibril formation process. Other methods have recently produced additional evidence for antiparallel β-sheets in other amyloid-formation intermediates. As an alternative to simple parallel and antiparallel β-sheet structures, researchers have proposed β-helical structural models for some fibrils, especially those formed by mammalian and fungal prion proteins. Solid state NMR and EPR data show that fibrils formed in vitro by recombinant PrP have in-register parallel β-sheet structures. However, the structure of infectious PrP aggregates is not yet known. The fungal HET-s prion protein has been shown to contain a β-helical structure. However, all yeast prions studied by solid state NMR (Sup35p, Ure2p, and Rnq1p) have in-register parallel β-sheet structures, with their Gln- and Asn-rich N-terminal segments forming the fibril core.
Newman, Ann; Zografi, George
2014-09-01
Solid-state instabilities in crystalline solids arise during processing primarily because a certain level of structural disorder has been introduced into the crystal. Many physical instabilities appear to be associated with the recrystallization of molecules from these disordered regions, while chemical instabilities arise from sufficient molecular mobility to allow solid-state chemical reactivity. In this Commentary we discuss the various forms of structural disorder, processing which can produce disorder, the quantitative analysis of process-induced order, and strategies to limit disorder and its effects. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
ERIC Educational Resources Information Center
Pacilio, Julia E.; Tokarski, John T.; Quiñones, Rosalynn; Iuliucci, Robbie J.
2014-01-01
High-resolution solid-state NMR (SSNMR) spectroscopy has many advantages as a tool to characterize solid-phase material that finds applications in polymer chemistry, nanotechnology, materials science, biomolecular structure determination, and others, including the pharmaceutical industry. The technology associated with achieving high resolution…
Gu, Lei; Ngo, Sam; Guo, Zhefeng
2012-01-01
Alzheimer disease is associated with the pathological accumulation of amyloid-β peptide (Aβ) in the brain. Soluble Aβ oligomers formed during early aggregation process are believed to be neurotoxins and causative agents in Alzheimer disease. Aβ monomer is the building block for amyloid assemblies. A comprehensive understanding of the structural features of Aβ monomer is crucial for delineating the mechanism of Aβ oligomerization. Here we investigated the structures of Aβ40 monomer using a solid-support approach, in which Aβ40 monomers are tethered on the solid support via an N-terminal His tag to prevent further aggregation. EPR spectra of tethered Aβ40 with spin labels at 18 different positions show that Aβ40 monomers adopt a completely disordered structure under denaturing conditions. Under native conditions, however, EPR spectra suggest that Aβ40 monomers adopt both a disordered state and a structured state. The structured state of Aβ40 monomer has three more ordered segments at 14–18, 29–30, and 38–40. Interactions between these segments may stabilize the structured state, which likely plays an important role in Aβ aggregation. PMID:22277652
Structure, Chemistry and Property Correlations in FeSe and 122 Pnictides
NASA Astrophysics Data System (ADS)
Cava, Robert
2010-03-01
Determining how crystal structure and chemical bonding influence the properties of solids is at the heart of collaborative research programs between materials physicists and solid state chemists. In some materials, the high Tc copper oxides and colossal magnetoresistance manganates, for example, the subtleties of how structure, bonding and properties are coupled yields an almost baffling complexity, while in others, such as many classical intermetallic superconductors, the properties are more easily understood, with bonding and structure playing a less profound role. The new superconducting pnictides appear to fall somewhere between these two limits, and have so far been the subject of relatively little study by solid state chemists. Here I will describe some of our recent work on superconducting FeSe and superconductor-related ``122'' (ThCr2Si2-type) solid solution phases as examples of the kinds of insights that structural and chemical studies can contribute to understanding these important materials.
Schwartz, Michael; White, James H.; Sammells, Anthony F.
2005-09-27
This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.
Schwartz, Michael; White, James H.; Sammels, Anthony F.
2000-01-01
This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.
Unterlass, Miriam M; Emmerling, Franziska; Antonietti, Markus; Weber, Jens
2014-01-14
Fully aromatic polyimides are synthesized via solid-state polymerization of the corresponding monomer salts. The crystal structure of salts shows strong hydrogen bonding of the reactive groups and thereby paves the way for solid-state transformations. The polycondensation yields copies of the initial salt crystallite habits, accompanied by the development of a porosity especially suited for CO2.
NASA Astrophysics Data System (ADS)
Kołodziej, B.; Morawiak, M.; Kamieński, B.; Schilf, W.
2016-05-01
A new unexpected product of condensation reaction of 1,8-diaminonaphthalene (DAN) and carbonyl compound (here: dehydroacetic acid (dha)) was synthesized. Discussion about the molecular structure of possible products of this reaction was done on the base of NMR studies. The structure of the titled product in both DMSO solution and in the solid state was resolved by analysis of its spectral data (X-ray structure analysis, multinuclear NMR in solution and solid state spectra) and MS measurements. The presented studies provided clear evidence that the titled product exists in diluted DMSO solution as the mixture of two kinetic free ionic species whereas in concentrated DMSO solution as well as in the solid state this system forms associated ionic pairs bonded together by hydrogen bonds.
Structures and fabrication techniques for solid state electrochemical devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2006-10-10
Low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures provide solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one aspect the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another aspect, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe and Cu, or alloys thereof.
Investigation of Super Tube Structure and Performance (Postprint)
2010-04-01
thermosyphon is claimed as thermally superconductive and offers solid state mode of heat transport. A host of speculations about this claim was emerging...sealed structure and design of a conventional heat pipe or thermosyphon is claimed as thermally superconductive and offers solid state mode of heat...matrix. The tilt angle was varied to check for gravity dependence. Tests were run as step functions allowing the tube to reach steady state at a new
Solid State Division progress report for period ending March 31, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, P.H.; Hinton, L.W.
1992-09-01
During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, superconductivity, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. The High Flux Isotope Reactor was returned to full operation.
Rakhmatullin, Aydar; Polovov, Ilya B; Maltsev, Dmitry; Allix, Mathieu; Volkovich, Vladimir; Chukin, Andrey V; Boča, Miroslav; Bessada, Catherine
2018-02-05
The structures of several fluoroscandate compounds are presented here using a characterization approach combining powder X-ray diffraction and solid-state NMR. The structure of K 5 Sc 3 F 14 was fully determined from Rietveld refinement performed on powder X-ray diffraction data. Moreover, the local structures of NaScF 4 , Li 3 ScF 6 , KSc 2 F 7 , and Na 3 ScF 6 compounds were studied in detail from solid-state 19 F and 45 Sc NMR experiments. The 45 Sc chemical shift ranges for six- and seven-coordinated scandium environments were defined. The 19 F chemical shift ranges for bridging and terminal fluorine atoms were also determined. First-principles calculations of the 19 F and 45 Sc NMR parameters were carried out using plane-wave basis sets and periodic boundary conditions (CASTEP), and the results were compared with the experimental data. A good agreement between the calculated shielding constants and experimental chemical shifts was obtained. This demonstrates the good potential of computational methods in spectroscopic assignments of solid-state 45 Sc NMR spectroscopy.
NASA Astrophysics Data System (ADS)
Lee, Hosik; Ohno, Takahisa
2013-03-01
For better efficiency as photocatalysts, N-doping for visible light reactivity has been intensively studied in Lamellar niobic and titanic solid acids (HNb3O8, H2Ti4O9), and its microscopic structures have been debated in this decade. We calculate the layered solid acids' structures and bandgaps. Bandgap reduction by carbon nitride adsorption in interlayer space is observed computationally. It originates from localized nitrogen states which form delocalized top-valence states by hybridizing with the host oxygen states and can contribute to photo-current.
Verasdonck, Joeri; Shen, Da-Kang; Treadgold, Alexander; Arthur, Christopher; Böckmann, Anja; Meier, Beat H; Blocker, Ariel J
2015-12-01
T3SSs are essential virulence determinants of many Gram-negative bacteria, used to inject bacterial effectors of virulence into eukaryotic host cells. Their major extracellular portion, a ∼50 nm hollow, needle-like structure, is essential to host cell sensing and the conduit for effector secretion. It is formed of a small, conserved subunit arranged as a helical polymer. The structure of the subunit has been studied by electron cryomicroscopy within native polymers and by solid-state NMR in recombinant polymers, yielding two incompatible atomic models. To resolve this controversy, we re-examined the native polymer used for electron cryomicroscopy via surface labelling and solid-state NMR. Our data show the orientation and overall fold of the subunit within this polymer is as established by solid-state NMR for recombinant polymers. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Deformation-induced localized solid-state amorphization in nanocrystalline nickel.
Han, Shuang; Zhao, Lei; Jiang, Qing; Lian, Jianshe
2012-01-01
Although amorphous structures have been widely obtained in various multi-component metallic alloys, amorphization in pure metals has seldom been observed and remains a long-standing scientific curiosity and technological interest. Here we present experimental evidence of localized solid-state amorphization in bulk nanocrystalline nickel introduced by quasi-static compression at room temperature. High-resolution electron microscope observations illustrate that nano-scale amorphous structures present at the regions where severe deformation occurred, e.g. along crack paths or surrounding nano-voids. These findings have indicated that nanocrystalline structures are highly desirable for promoting solid-state amorphization, which may provide new insights for understanding the nature of the crystalline-to-amorphous transformation and suggested a potential method to produce elemental metallic glasses that have hardly been available hitherto through rapid solidification.
Deformation-induced localized solid-state amorphization in nanocrystalline nickel
Han, Shuang; Zhao, Lei; Jiang, Qing; Lian, Jianshe
2012-01-01
Although amorphous structures have been widely obtained in various multi-component metallic alloys, amorphization in pure metals has seldom been observed and remains a long-standing scientific curiosity and technological interest. Here we present experimental evidence of localized solid-state amorphization in bulk nanocrystalline nickel introduced by quasi-static compression at room temperature. High-resolution electron microscope observations illustrate that nano-scale amorphous structures present at the regions where severe deformation occurred, e.g. along crack paths or surrounding nano-voids. These findings have indicated that nanocrystalline structures are highly desirable for promoting solid-state amorphization, which may provide new insights for understanding the nature of the crystalline-to-amorphous transformation and suggested a potential method to produce elemental metallic glasses that have hardly been available hitherto through rapid solidification. PMID:22768383
NASA Astrophysics Data System (ADS)
Joers, James M.
The use of magic angle spinning to obtain high resolution solid state spectra has been well documented. This resolution occurs by coherently averaging the chemical shift anisotropy and dipolar interactions to zero over the period of a full rotation. While this allows for higher resolution, the structural information is seemingly lost to the spectrometer eye. Thus, high resolution spectra and structural information appear to be mutually exlusive. Recently, the push in solid state NMR is the development of recoupling techniques which afford both high resolution and structural information. The following dissertation demonstrates the feasibility of implementing such experiments in solving real world problems, and is centered on devising a method to recover homonuclear dipolar interactions in the high resolution regime.
NASA Astrophysics Data System (ADS)
Tian, Ye; Wang, Wei D.; Zou, Wen-Bo; Qian, Jian-Qin; Hu, Chang-Qin
2018-04-01
The solid form of an active pharmaceutical ingredient is important when developing a new chemical entity. A solid understanding of the crystal structure and morphology that affect the mechanical and physical characteristics of pharmaceutical powders determines the manufacturing process. Solid-state NMR, thermogravimetric analysis, X-ray diffraction, and Fourier-transform infrared spectroscopy were combined with theoretical calculation to investigate different crystal packings of α-cefazolin sodium from three different vendors and conformational polymorphism was identified to exist in the α-cefazolin sodium. Marginal differences observed among CEZ-Na pentahydrate 1, 2, and 3 were speculated as the proportion of conformation 2. Understanding the differences in the polymorphic structure of α-cefazolin sodium may help with making modifications to incorporate new knowledge with a product’s development.
Cheng, Chi-Yuan; Han, Songi
2013-01-01
Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.
Structures And Fabrication Techniques For Solid State Electrochemical Devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2005-12-27
Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.
Structures and fabrication techniques for solid state electrochemical devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2003-08-12
Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.
13C CP MAS NMR and GIAO-CHF calculations of coumarins.
Zolek, Teresa; Paradowska, Katarzyna; Wawer, Iwona
2003-01-01
13C cross-polarization magic-angle spinning NMR spectra were recorded for a series of solid coumarins. Ab initio calculations of shielding constants were performed with the use of GIAO-CHF method. The combined CPMAS NMR and theoretical approach was successful in characterizing solid-state conformations of coumarins; a relationship sigma (ppm) = -1.032 xdelta + 205.28 (R(2) = 0.9845) can be used to obtain structural information for coumarins, for which solid-state NMR or crystal structure data are not available. Copyright 2002 Elsevier Science (USA)
NASA Technical Reports Server (NTRS)
Wang, Yu (Inventor)
2006-01-01
A miniature, ultra-high resolution, and color scanning microscope using microchannel and solid-state technology that does not require focus adjustment. One embodiment includes a source of collimated radiant energy for illuminating a sample, a plurality of narrow angle filters comprising a microchannel structure to permit the passage of only unscattered radiant energy through the microchannels with some portion of the radiant energy entering the microchannels from the sample, a solid-state sensor array attached to the microchannel structure, the microchannels being aligned with an element of the solid-state sensor array, that portion of the radiant energy entering the microchannels parallel to the microchannel walls travels to the sensor element generating an electrical signal from which an image is reconstructed by an external device, and a moving element for movement of the microchannel structure relative to the sample. Discloses a method for scanning samples whereby the sensor array elements trace parallel paths that are arbitrarily close to the parallel paths traced by other elements of the array.
Structural study of the membrane protein MscL using cell-free expression and solid-state NMR
NASA Astrophysics Data System (ADS)
Abdine, Alaa; Verhoeven, Michiel A.; Park, Kyu-Ho; Ghazi, Alexandre; Guittet, Eric; Berrier, Catherine; Van Heijenoort, Carine; Warschawski, Dror E.
2010-05-01
High-resolution structures of membrane proteins have so far been obtained mostly by X-ray crystallography, on samples where the protein is surrounded by detergent. Recent developments of solid-state NMR have opened the way to a new approach for the study of integral membrane proteins inside a membrane. At the same time, the extension of cell-free expression to the production of membrane proteins allows for the production of proteins tailor made for NMR. We present here an in situ solid-state NMR study of a membrane protein selectively labeled through the use of cell-free expression. The sample consists of MscL (mechano-sensitive channel of large conductance), a 75 kDa pentameric α-helical ion channel from Escherichia coli, reconstituted in a hydrated lipid bilayer. Compared to a uniformly labeled protein sample, the spectral crowding is greatly reduced in the cell-free expressed protein sample. This approach may be a decisive step required for spectral assignment and structure determination of membrane proteins by solid-state NMR.
Detergent Optimized Membrane Protein Reconstitution in Liposomes for Solid State NMR
2015-01-01
For small helical membrane proteins, their structures are highly sensitive to their environment, and solid state NMR is a structural technique that can characterize these membrane proteins in native-like lipid bilayers and proteoliposomes. To date, a systematic method by which to evaluate the effect of the solubilizing detergent on proteoliposome preparations for solid state NMR of membrane proteins has not been presented in the literature. A set of experiments are presented aimed at determining the conditions most amenable to dialysis mediated reconstitution sample preparation. A membrane protein from M. tuberculosis is used to illustrate the method. The results show that a detergent that stabilizes the most protein is not always ideal and sometimes cannot be removed by dialysis. By focusing on the lipid and protein binding properties of the detergent, proteoliposome preparations can be readily produced, which provide double the signal-to-noise ratios for both the oriented sample and magic angle spinning solid state NMR. The method will allow more membrane protein drug targets to be structurally characterized in lipid bilayer environments. PMID:24665863
USDA-ARS?s Scientific Manuscript database
Two types of swine manure chars, hydrothermally-produced hydrochar and slow-pyrolysis pyrochar, and their raw swine manure solid were characterized using advanced 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. Compared with the parent raw swine manure, both hydrochars and pyrochar di...
Titration of a Solid Acid Monitored by X-Ray Diffraction
ERIC Educational Resources Information Center
Dungey, Keenan E.; Epstein, Paul
2007-01-01
An experiment is described to introduce students to an important class of solid-state reactions while reinforcing concepts of titration by using a pH meter and a powder X-ray diffractometer. The experiment was successful in teaching students the abstract concepts of solid-state structure and diffraction by applying the diffraction concepts learned…
Rosciano, Fabio; Pescarmona, Paolo P; Houthoofd, Kristof; Persoons, Andre; Bottke, Patrick; Wilkening, Martin
2013-04-28
Lithium ion batteries have conquered most of the portable electronics market and are now on the verge of deployment in large scale applications. To be competitive in the automotive and stationary sectors, however, they must be improved in the fields of safety and energy density (W h L(-1)). Solid-state batteries with a ceramic electrolyte offer the necessary advantages to significantly improve the current state-of-the-art technology. The major limit towards realizing a practical solid-state lithium-ion battery lies in the lack of viable ceramic ionic conductors. Only a few candidate materials are available, each carrying a difficult balance between advantages and drawbacks. Here we introduce a new class of possible solid-state lithium-ion conductors with the spinel structure. Such compounds could be coupled with spinel-type electrode materials to obtain a "lattice matching" solid device where low interfacial resistance could be achieved. Powders were prepared by wet chemistry, their structure was studied by means of diffraction techniques and magic angle spinning NMR, and Li(+) self-diffusion was estimated by static NMR line shape measurements. Profound differences in the Li(+) diffusion properties were observed depending on the composition, lithium content and cationic distribution. Local Li(+) hopping in the spinel materials is accompanied by a low activation energy of circa 0.35 eV being comparable with that of, e.g., LLZO-type garnets, which represent the current benchmark in this field. We propose these novel materials as a building block for a lattice-matching all-spinel solid-state battery with low interfacial resistance.
Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A
2016-10-24
The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yazawa, Koji; Suzuki, Furitsu; Nishiyama, Yusuke; Ohata, Takuya; Aoki, Akihiro; Nishimura, Katsuyuki; Kaji, Hironori; Shimizu, Tadashi; Asakura, Tetsuo
2012-11-25
The accurate (1)H positions of alanine tripeptide, A(3), with anti-parallel and parallel β-sheet structures could be determined by highly resolved (1)H DQMAS solid-state NMR spectra and (1)H chemical shift calculation with gauge-including projector augmented wave calculations.
Chen, Bingbing; Ju, Jiangwei; Ma, Jun; Zhang, Jianjun; Xiao, Ruijuan; Cui, Guanglei; Chen, Liquan
2017-11-29
Density functional theory simulations and experimental studies were performed to investigate the interfacial properties, including lithium ion migration kinetics, between lithium metal anode and solid electrolyte Li 10 GeP 2 S 12 (LGPS). The LGPS[001] plane was chosen as the studied surface because the easiest Li + migration pathway is along this direction. The electronic structure of the surface states indicated that the electrochemical stability was reduced at both the PS 4 - and GeS 4 -teminated surfaces. For the interface cases, the equilibrium interfacial structures of lithium metal against the PS 4 -terminated LGPS[001] surface (Li/PS 4 -LGPS) and the GeS 4 -terminated LGPS[001] surface (Li/GeS 4 -LGPS) were revealed based on the structural relaxation and adhesion energy analysis. Solid electrolyte interphases were expected to be formed at both Li/PS 4 -LGPS and Li/GeS 4 -LGPS interfaces, resulting in an unstable state of interface and large interfacial resistance, which was verified by the EIS results of the Li/LGPS/Li cell. In addition, the simulations of the migration kinetics show that the energy barriers for Li + crossing the Li/GeS 4 -LGPS interface were relatively low compared with the Li/PS 4 -LGPS interface. This may contribute to the formation of Ge-rich phases at the Li/LGPS interface, which can tune the interfacial structures to improve the ionic conductivity for future all-solid-state batteries. This work will offer a thorough understanding of the Li/LGPS interface, including local structures, electronic states and Li + diffusion behaviors in all-solid-state batteries.
A Solid-State NMR Experiment: Analysis of Local Structural Environments in Phosphate Glasses
ERIC Educational Resources Information Center
Anderson, Stanley E.; Saiki, David; Eckert, Hellmut; Meise-Gresch, Karin
2004-01-01
An experiment that can be used to directly study the local chemical environments of phosphorus in solid amorphous materials is demonstrated. The experiment aims at familiarizing the students of chemistry with the principles of solid-state NMR, by having them synthesize a simple phosphate glass, and making them observe the (super 31)P NMR spectrum,…
Iuzzolino, Luca; Reilly, Anthony M; McCabe, Patrick; Price, Sarah L
2017-10-10
Determining the range of conformations that a flexible pharmaceutical-like molecule could plausibly adopt in a crystal structure is a key to successful crystal structure prediction (CSP) studies. We aim to use conformational information from the crystal structures in the Cambridge Structural Database (CSD) to facilitate this task. The conformations produced by the CSD Conformer Generator are reduced in number by considering the underlying rotamer distributions, an analysis of changes in molecular shape, and a minimal number of molecular ab initio calculations. This method is tested for five pharmaceutical-like molecules where an extensive CSP study has already been performed. The CSD informatics-derived set of crystal structure searches generates almost all the low-energy crystal structures previously found, including all experimental structures. The workflow effectively combines information on individual torsion angles and then eliminates the combinations that are too high in energy to be found in the solid state, reducing the resources needed to cover the solid-state conformational space of a molecule. This provides insights into how the low-energy solid-state and isolated-molecule conformations are related to the properties of the individual flexible torsion angles.
Solid State Ionics: from Michael Faraday to green energy-the European dimension.
Funke, Klaus
2013-08-01
Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag 2 S and PbF 2 and coined terms such as cation and anion , electrode and electrolyte . In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic) transport in ionic crystals became easy to visualize. In an 'evolving scheme of materials science', point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals), by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987.
Solid State Ionics: from Michael Faraday to green energy—the European dimension
Funke, Klaus
2013-01-01
Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag2S and PbF2 and coined terms such as cation and anion, electrode and electrolyte. In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic) transport in ionic crystals became easy to visualize. In an ‘evolving scheme of materials science’, point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals), by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987. PMID:27877585
NASA Astrophysics Data System (ADS)
Wang, Biqiong; Liu, Jian; Sun, Qian; Li, Ruying; Sham, Tsun-Kong; Sun, Xueliang
2014-12-01
Atomic layer deposition (ALD) has been shown as a powerful technique to build three-dimensional (3D) all-solid-state microbattery, because of its unique advantages in fabricating uniform and pinhole-free thin films in 3D structures. The development of solid-state electrolyte by ALD is a crucial step to achieve the fabrication of 3D all-solid-state microbattery by ALD. In this work, lithium phosphate solid-state electrolytes were grown by ALD at four different temperatures (250, 275, 300, and 325 °C) using two precursors (lithium tert-butoxide and trimethylphosphate). A linear dependence of film thickness on ALD cycle number was observed and uniform growth was achieved at all four temperatures. The growth rate was 0.57, 0.66, 0.69, and 0.72 Å/cycle at deposition temperatures of 250, 275, 300, and 325 °C, respectively. Furthermore, x-ray photoelectron spectroscopy confirmed the compositions and chemical structures of lithium phosphates deposited by ALD. Moreover, the lithium phosphate thin films deposited at 300 °C presented the highest ionic conductivity of 1.73 × 10-8 S cm-1 at 323 K with ˜0.51 eV activation energy based on the electrochemical impedance spectroscopy. The ionic conductivity was calculated to be 3.3 × 10-8 S cm-1 at 26 °C (299 K).
The Pythagorean Theorem and the Solid State
ERIC Educational Resources Information Center
Kelly, Brenda S.; Splittgerber, Allan G.
2005-01-01
Packing efficiency and crystal density can be calculated from basic geometric principles employing the Pythagorean theorem, if the unit-cell structure is known. The procedures illustrated have applicability in courses such as general chemistry, intermediate and advanced inorganic, materials science, and solid-state physics.
Solid-State Division progress report for period ending March 31, 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, P.H.; Watson, D.M.
1983-09-01
Progress and activities are reported on: theoretical solid-state physics (surfaces; electronic, vibrational, and magnetic properties; particle-solid interactions; laser annealing), surface and near-surface properties of solids (surface, plasma-material interactions, ion implantation and ion-beam mixing, pulsed-laser and thermal processing), defects in solids (radiation effects, fracture, impurities and defects, semiconductor physics and photovoltaic conversion), transport properties of solids (fast-ion conductors, superconductivity, mass and charge transport in materials), neutron scattering (small-angle scattering, lattice dynamics, magnetic properties, structure and instrumentation), and preparation and characterization of research materials (growth and preparative methods, nuclear waste forms, special materials). (DLC)
Evaluation of lattice sums by the Poisson sum formula
NASA Technical Reports Server (NTRS)
Ray, R. D.
1975-01-01
The Poisson sum formula was applied to the problem of summing pairwise interactions between an observer molecule and a semi-infinite regular array of solid state molecules. The transformed sum is often much more rapidly convergent than the original sum, and forms a Fourier series in the solid surface coordinates. The method is applicable to a variety of solid state structures and functional forms of the pairwise potential. As an illustration of the method, the electric field above the (100) face of the CsCl structure is calculated and compared to earlier results obtained by direct summation.
Relationship between crystal structure and solid-state properties of pharmaceuticals
NASA Astrophysics Data System (ADS)
Sheth, Agam R.
This thesis strives to understand the structure-property relationships of some pharmaceutical crystals at the molecular level with emphasis on the effect of secondary processing on the solid phase. Using single crystal X-ray diffractometry (SCXRD), the structure of warfarin sodium 2-propanol adduct (W) was established to be a true solvate, contrary to previous reports. Using dynamic water vapor sorption, optical and environmental scanning electron microscopy, SCXRD, powder X-ray diffractometry (PXRD), volume computations and molecular modeling, the effect of relative humidity and temperature on the crystal structure of W was investigated. Ab initio calculations on piroxicam showed that the difference in energy between the two polymorphs, I and II, arises predominantly from the difference between their lattice energies. The detailed hydrogen bonding networks of the two polymorphs are described and compared using graph sets. Despite stabilization of the polymorphs by hydrogen bonds, pair-wise distribution function transforms show a loss of polymorphic memory upon cryogrinding the two polymorphs, leading to a difference in recrystallization behavior between amorphous piroxicam prepared from polymorphs I and II. Structural and solid-state changes of piroxicam polymorphs under mechanical stress were investigated using cryogenic grinding, PXRD, diffuse-reflectance solid-state ultraviolet-visible spectroscopy, 13C solid-state nuclear magnetic resonance spectroscopy, and diffuse-reflectance solid-state Fourier-transform infrared spectroscopy. Intermolecular proton transfer was found to accompany changes in phase and color observed upon cryogrinding the two polymorphs. Model-free and model-fitting studies of the dehydration kinetics of piroxicam monohydrate (PM) showed the dependence of activation energy ( Ea) on both isothermal and non-isothermal heating conditions, and on the fraction of conversion. In the constant-E a region, isothermal dehydration follows the two-dimensional phase boundary model, while non-isothermal dehydration follows a mechanism intermediate between two- and three-dimensional diffusion that cannot be described by any of the common models. Structural studies suggest that the complex hydrogen bond pattern in PM is responsible for the observed dehydration behavior. Ab initio calculations provide an explanation for the changes in the molecular and crystal structures accompanying the reversible change in hydration state between anhydrous piroxicam Form I and PM. The thesis further demonstrates the utility of model-free analysis in describing complex dehydration kinetics.
Zheng, Yu-Qing; Yao, Ze-Fan; Lei, Ting; Dou, Jin-Hu; Yang, Chi-Yuan; Zou, Lin; Meng, Xiangyi; Ma, Wei; Wang, Jie-Yu; Pei, Jian
2017-11-01
Polymer self-assembly in solution prior to film fabrication makes solution-state structures critical for their solid-state packing and optoelectronic properties. However, unraveling the solution-state supramolecular structures is challenging, not to mention establishing a clear relationship between the solution-state structure and the charge-transport properties in field-effect transistors. Here, for the first time, it is revealed that the thin-film morphology of a conjugated polymer inherits the features of its solution-state supramolecular structures. A "solution-state supramolecular structure control" strategy is proposed to increase the electron mobility of a benzodifurandione-based oligo(p-phenylene vinylene) (BDOPV)-based polymer. It is shown that the solution-state structures of the BDOPV-based conjugated polymer can be tuned such that it forms a 1D rod-like structure in good solvent and a 2D lamellar structure in poor solvent. By tuning the solution-state structure, films with high crystallinity and good interdomain connectivity are obtained. The electron mobility significantly increases from the original value of 1.8 to 3.2 cm 2 V -1 s -1 . This work demonstrates that "solution-state supramolecular structure" control is critical for understanding and optimization of the thin-film morphology and charge-transport properties of conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Obeidat, Amr M.
Clean and renewable energy systems have emerged as an important area of research having diverse and significant new applications. These systems utilize different energy storage methods such as the batteries and supercapacitors. Supercapacitors are electrochemical energy storage devices that are designed to bridge the gap between batteries and conventional capacitors. Supercapacitors which store electrical energy by electrical double layer capacitance are based on large surface area structured carbons. The materials systems in which the Faradaic reversible redox reactions store electrical energy are the transition metal oxides and electronically conducting polymers. Among the different types of conducting polymers, poly (3, 4- ethylenedioxythiophene) (PEDOT) is extensively investigated owing to its chemical and mechanical stability. Due to instability of aqueous electrolytes at high voltages and toxicity of organic electrolytes, potential of supercapacitors has not been fully exploited. A novel aspect of this work is in utilizing the ionic liquid gel polymer electrolyte to design solid-state supercapacitors for energy storage. Various electrochemical systems were investigated including graphene, PEDOT, PEDOT-carbon nanotubes, PEDOT-manganese oxide, and PEDOT-iron oxide nanocomposites. The electrochemical performance of solid-state supercapacitor devices was evaluated based on cyclic voltammetry (CV), charge-discharge (CD), prolonged cyclic tests, and electrochemical impedance spectroscopy (EIS) techniques. Raman spectroscopy technique was also utilized to analyze the bonding structure of the electrode materials. The graphene solid-state supercapacitor system displayed areal capacitance density of 141.83 mF cm-2 based on high potential window up to 4V. The PEDOT solid-state supercapacitor system was synthesized in acetonitrile and aqueous mediums achieving areal capacitance density of 219.17 mF cm-2. The hybrid structure of solid-state supercapacitors was also studied in solid-state design based on PEDOT and graphene electrodes that produced areal capacitance density of 198.26 mF cm-2. Symmetrical PEDOT-manganese oxide nanocomposites were synthesized by co-deposition and dip-coating techniques to fabricate solid-state supercapacitor systems achieving areal capacitance density of 122.08 mF cm-2 credited to the PEDOT-MnO2 supercapacitor that was synthesized by dipping the PEDOT electrode in pure KMnO4 solution. The electrochemical performance of PEDOT-carbon nanotube solid-state supercapacitors was also investigated in both acetonitrile and aqueous medium showing good dispersion characteristics with optimum CNT content of 1 mg. The PEDOT-CNT solid-state supercapacitor system synthesized in acetonitrile displayed areal capacitance density of 297.43 mF cm-2. PEDOT-Fe2O3 nanocomposites were synthesized by single-step co-deposition techniques, and these were used to fabricate solid-state supercapacitors achieving areal capacitance density of 96.89 mF cm-2. Furthermore, some of these thin flexible solid-state supercapacitors were integrated with solar cells for direct storage of solar electricity, which proved to be promising as autonomous power source for flexible and wearable electronics. This dissertation describes the electrode synthesis, design and properties of solid-state supercapacitors, and their electrochemical performance in the storage of electrical energy.
Asakura, Tetsuo; Yazawa, Koji; Horiguchi, Kumiko; Suzuki, Furitsu; Nishiyama, Yusuke; Nishimura, Katsuyuki; Kaji, Hironori
2014-01-01
Alanine oligomers provide a key structure for silk fibers from spider and wild silkworms.We report on structural analysis of L-alanyl-L-alanyl-L-alanyl-L-alanine (Ala)4 with anti-parallel (AP) β-structures using X-ray and solid-state NMR. All of the Ala residues in the (Ala)4 are in equivalent positions, whereas for alanine trimer (Ala)3 there are two alternative locations in a unit cell as reported previously (Fawcett and Camerman, Acta Cryst., 1975, 31, 658-665). (Ala)4 with AP β-structure is more stable than AP-(Ala)3 due to formation of the stronger hydrogen bonds. The intermolecular structure of (Ala)4 is also different from polyalanine fiber structure, indicating that the interchain arrangement of AP β-structure changes with increasing alanine sequencelength. Furthermore the precise (1)H positions, which are usually inaccesible by X-ray diffraction method, are determined by high resolution (1)H solid state NMR combined with the chemical shift calculations by the gauge-including projector augmented wave method. Copyright © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popa, Karin; Raison, Philippe E., E-mail: philippe.raison@ec.europa.eu; Martel, Laura
2015-10-15
PuPO{sub 4} was prepared by a solid state reaction method and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. High resolution XANES measurements confirm the +III valence state of plutonium, in agreement with valence bond derivation. The presence of the americium (as β{sup −} decay product of plutonium) in the +III oxidation state was determined based on XANES spectroscopy. High resolution solid state {sup 31}P NMR agrees with the XANES results and the presence of a solid-solution. - Graphical abstract: A full structural analysis of PuPO{sub 4} based on Rietveld analysis ofmore » room temperature X-ray diffraction data, XANES and MAS NMR measurements was performed. - Highlights: • The crystal structure of PuPO{sub 4} monazite is solved. • In PuPO{sub 4} plutonium is strictly trivalent. • The presence of a minute amount of Am{sup III} is highlighted. • We propose PuPO{sub 4} as a potential reference material for spectroscopic and microscopic studies.« less
Zilka, Miri; Dudenko, Dmytro V; Hughes, Colan E; Williams, P Andrew; Sturniolo, Simone; Franks, W Trent; Pickard, Chris J; Yates, Jonathan R; Harris, Kenneth D M; Brown, Steven P
2017-10-04
This paper explores the capability of using the DFT-D ab initio random structure searching (AIRSS) method to generate crystal structures of organic molecular materials, focusing on a system (m-aminobenzoic acid; m-ABA) that is known from experimental studies to exhibit abundant polymorphism. Within the structural constraints selected for the AIRSS calculations (specifically, centrosymmetric structures with Z = 4 for zwitterionic m-ABA molecules), the method is shown to successfully generate the two known polymorphs of m-ABA (form III and form IV) that have these structural features. We highlight various issues that are encountered in comparing crystal structures generated by AIRSS to experimental powder X-ray diffraction (XRD) data and solid-state magic-angle spinning (MAS) NMR data, demonstrating successful fitting for some of the lowest energy structures from the AIRSS calculations against experimental low-temperature powder XRD data for known polymorphs of m-ABA, and showing that comparison of computed and experimental solid-state NMR parameters allows different hydrogen-bonding motifs to be discriminated.
Microfluidic multiplexing of solid-state nanopores
NASA Astrophysics Data System (ADS)
Jain, Tarun; Rasera, Benjamin C.; Guerrero, Ricardo Jose S.; Lim, Jong-Min; Karnik, Rohit
2017-12-01
Although solid-state nanopores enable electronic analysis of many clinically and biologically relevant molecular structures, there are few existing device architectures that enable high-throughput measurement of solid-state nanopores. Herein, we report a method for microfluidic integration of multiple solid-state nanopores at a high density of one nanopore per (35 µm2). By configuring microfluidic devices with microfluidic valves, the nanopores can be rinsed from a single fluid input while retaining compatibility for multichannel electrical measurements. The microfluidic valves serve the dual purpose of fluidic switching and electric switching, enabling serial multiplexing of the eight nanopores with a single pair of electrodes. Furthermore, the device architecture exhibits low noise and is compatible with electroporation-based in situ nanopore fabrication, providing a scalable platform for automated electronic measurement of a large number of integrated solid-state nanopores.
Hakey, Patrick M; Allis, Damian G; Ouellette, Wayne; Korter, Timothy M
2009-04-30
The cryogenic terahertz spectrum of (+)-methamphetamine hydrochloride from 10.0 to 100.0 cm(-1) is presented, as is the complete structural analysis and vibrational assignment of the compound using solid-state density functional theory. This cryogenic investigation reveals multiple spectral features that were not previously reported in room-temperature terahertz studies of the title compound. Modeling of the compound employed eight density functionals utilizing both solid-state and isolated-molecule methods. The results clearly indicate the necessity of solid-state simulations for the accurate assignment of solid-state THz spectra. Assignment of the observed spectral features to specific atomic motions is based on the BP density functional, which provided the best-fit solid-state simulation of the experimental spectrum. The seven experimental spectral features are the result of thirteen infrared-active vibrational modes predicted at a BP/DNP level of theory with more than 90% of the total spectral intensity associated with external crystal vibrations.
NiTi shape memory via solid-state nudge-elastic band
NASA Astrophysics Data System (ADS)
Zarkevich, Nikolai A.; Johnson, Duane D.
2014-03-01
We determine atomic mechanisms of the shape memory effect in NiTi from a generalized solid-state nudge elastic band (SSNEB) method. We consider transformation between the austenite B2 and the ground-state base-centered orthorhombic (BCO) structures. In these pathways we obtain the R-phase and discuss its structure. We confirm that BCO is the ground state, and determine the pathways to BCO martensite, which dictate transition barriers. While ideal B2 is unstable, we find a B2-like NiTi high-temperature solid phase with significant local displacement disorder, which is B2 on average. This B2-like phase appears to be entropically stabilized. This work is supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering. Ames Laboratory is operated for the U.S. DOE by Iowa State University under contract DE-AC02-07CH11358.
Three-Dimensional, Solid-State Mixed Electron-Ion Conductive Framework for Lithium Metal Anode.
Xu, Shaomao; McOwen, Dennis W; Wang, Chengwei; Zhang, Lei; Luo, Wei; Chen, Chaoji; Li, Yiju; Gong, Yunhui; Dai, Jiaqi; Kuang, Yudi; Yang, Chunpeng; Hamann, Tanner R; Wachsman, Eric D; Hu, Liangbing
2018-06-13
Solid-state electrolytes (SSEs) have been widely considered as enabling materials for the practical application of lithium metal anodes. However, many problems inhibit the widespread application of solid state batteries, including the growth of lithium dendrites, high interfacial resistance, and the inability to operate at high current density. In this study, we report a three-dimensional (3D) mixed electron/ion conducting framework (3D-MCF) based on a porous-dense-porous trilayer garnet electrolyte structure created via tape casting to facilitate the use of a 3D solid state lithium metal anode. The 3D-MCF was achieved by a conformal coating of carbon nanotubes (CNTs) on the porous garnet structure, creating a composite mixed electron/ion conductor that acts as a 3D host for the lithium metal. The lithium metal was introduced into the 3D-MCF via slow electrochemical deposition, forming a 3D lithium metal anode. The slow lithiation leads to improved contact between the lithium metal anode and garnet electrolyte, resulting in a low resistance of 25 Ω cm 2 . Additionally, due to the continuous CNT coating and its seamless contact with the garnet we observed highly uniform lithium deposition behavior in the porous garnet structure. With the same local current density, the high surface area of the porous garnet framework leads to a higher overall areal current density for stable lithium deposition. An elevated current density of 1 mA/cm 2 based on the geometric area of the cell was demonstrated for continuous lithium cycling in symmetric lithium cells. For battery operation of the trilayer structure, the lithium can be cycled between the 3D-MCF on one side and the cathode infused into the porous structure on the opposite side. The 3D-MCF created by the porous garnet structure and conformal CNT coating provides a promising direction toward new designs in solid-state lithium metal batteries.
Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR
NASA Astrophysics Data System (ADS)
Lange, Adam; Giller, Karin; Hornig, Sönke; Martin-Eauclaire, Marie-France; Pongs, Olaf; Becker, Stefan; Baldus, Marc
2006-04-01
The active site of potassium (K+) channels catalyses the transport of K+ ions across the plasma membrane-similar to the catalytic function of the active site of an enzyme-and is inhibited by toxins from scorpion venom. On the basis of the conserved structures of K+ pore regions and scorpion toxins, detailed structures for the K+ channel-scorpion toxin binding interface have been proposed. In these models and in previous solution-state nuclear magnetic resonance (NMR) studies using detergent-solubilized membrane proteins, scorpion toxins were docked to the extracellular entrance of the K+ channel pore assuming rigid, preformed binding sites. Using high-resolution solid-state NMR spectroscopy, here we show that high-affinity binding of the scorpion toxin kaliotoxin to a chimaeric K+ channel (KcsA-Kv1.3) is associated with significant structural rearrangements in both molecules. Our approach involves a combined analysis of chemical shifts and proton-proton distances and demonstrates that solid-state NMR is a sensitive method for analysing the structure of a membrane protein-inhibitor complex. We propose that structural flexibility of the K+ channel and the toxin represents an important determinant for the high specificity of toxin-K+ channel interactions.
Solution and Solid State Nuclear Magnetic Resonance Spectroscopic Characterization of Efavirenz.
Sousa, Eduardo Gomes Rodrigues de; Carvalho, Erika Martins de; San Gil, Rosane Aguiar da Silva; Santos, Tereza Cristina Dos; Borré, Leandro Bandeira; Santos-Filho, Osvaldo Andrade; Ellena, Javier
2016-09-01
Samples of efavirenz (EFZ) were evaluated to investigate the influence of the micronization process on EFZ stability. A combination of X-ray diffraction, thermal analysis, FTIR, observations of isotropic chemical shifts of (1)H in distinct solvents, their temperature dependence and spin-lattice relaxation time constants (T1), solution (1D and 2D) (13)C nuclear magnetic resonance (NMR), and solid-state (13)C NMR (CPMAS NMR) provides valuable structural information and structural elucidation of micronized EFZ and heptane-recrystallized polymorphs (EFZ/HEPT). This study revealed that the micronization process did not affect the EFZ crystalline structure. It was observed that the structure of EFZ/HEPT is in the same form as that obtained from ethyl acetate/hexane, as shown in the literature. A comparison of the solid-state NMR spectra revealed discrepancies regarding the assignments of some carbons published in the literature that have been resolved. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Physical aspects of dexibuprofen and racemic ibuprofen.
Leising, G; Resel, R; Stelzer, F; Tasch, S; Lanziner, A; Hantich, G
1996-12-01
This article presents a comparative study of ibuprofen materials in their solid state. Ibuprofen crystallizes into two different structures for the S(+) enantiomer (dexibuprofen) and racemic ibuprofen. The crystal structure of ibuprofen, its optical absorption and photoluminescence, and the thermodynamic results (melting point and heat of fusion) are discussed. From these physicochemical properties, the authors conclude that dexibuprofen, which is the most active species pharmaceutically, and racemic ibuprofen are inherently different solid-state materials.
Tunable recognition of the steroid α-face by adjacent π-electron density
Friščić, T.; Lancaster, R. W.; Fábián, L.; Karamertzanis, P. G.
2010-01-01
We report a previously unknown recognition motif between the α-face of the steroid hydrocarbon backbone and π-electron-rich aromatic substrates. Our study is based on a systematic and comparative analysis of the solid-state complexation of four steroids with 24 aromatic molecules. By using the solid state as a medium for complexation, we circumvent solubility and solvent competition problems that are inherent to the liquid phase. Characterization is performed using powder and single crystal X-ray diffraction, infrared solid-state spectroscopy and is complemented by a comprehensive cocrystal structure prediction methodology that surpasses earlier computational approaches in terms of realism and complexity. Our combined experimental and theoretical approach reveals that the α⋯π stacking is of electrostatic origin and is highly dependent on the steroid backbone’s unsaturated and conjugated character. We demonstrate that the α⋯π stacking interaction can drive the assembly of molecules, in particular progesterone, into solid-state complexes without the need for additional strong interactions. It results in a marked difference in the solid-state complexation propensities of different steroids with aromatic molecules, suggesting a strong dependence of the steroid-binding affinity and even physicochemical properties on the steroid’s A-ring structure. Hence, the hydrocarbon part of the steroid is a potentially important variable in structure-activity relationships for establishing the binding and signaling properties of steroids, and in the manufacture of pharmaceutical cocrystals. PMID:20624985
Solid-state NMR and computational studies of 4-methyl-2-nitroacetanilide.
Harris, Robin K; Ghi, Phuong Y; Hammond, Robert B; Ma, Cai Yun; Roberts, Kevin J; Yates, Jonathan R; Pickard, Chris J
2006-03-01
Studies on the solid-state structure of two polymorphs of 4-methyl-2-nitroacetanilide (MNA) were conducted using magic-angle spinning (13)C, (15)N and (1)H NMR spectroscopy, together with first-principles computations of NMR shielding (including use of a program that takes explicit account of the translational symmetry inherent in crystalline structures). The effects on (13)C chemical shifts of side-chain rotations have been explored. Information derived from these studies was then incorporated within a systematic space-search methodology for elucidation of trial crystallographic structures from powder XRD.
STRUCTURAL DIVERSITY IN SOLID STATE CHEMISTRY:A Story of Squares and Triangles
NASA Astrophysics Data System (ADS)
Lee, Stephen
1996-10-01
A simple method for calculating the electronic energy of extended solids is discussed in this review. This method is based on the Huckel or tight-binding theory in which an explicit pairwise repulsion is added to the generally attractive forces of the partially filled valence electron bands. An expansion based on the power moments of the electronic density of states is discussed, and the structural energy difference theorem is reviewed. The repulsive energy is found to vary linearly with the second power moment of the electronic density of states. These results are then used to show why there is such a diversity of structure in the solid state. The elemental structures of the main group are rationalized by the above methods. It is the third and fourth power moments (which correspond in part to triangles and squares of bonded atoms) that account for much of the elemental structures of the main group elements of the periodic table. This serves as an introduction to further rationalizations of transition for noble metal alloy, binary and ternary telluride and selenide, and other intermetallic structures.Thus a cohesive picture of both covalent and metallic bonding is presented in this review, illustrating the importance of atomic orbitals and their overlap integrals.
Physical structure changes of solid medium by steam explosion sterilization.
Zhao, Zhi-Min; Wang, Lan; Chen, Hong-Zhang
2016-03-01
Physical structure changes of solid medium were investigated to reveal effects of steam explosion sterilization on solid-state fermentation (SSF). Results indicated that steam explosion changed the structure of solid medium at both molecular and three-dimensional structural levels, which exposed hydrophilic groups and enlarged pores and cavities. It was interesting to find that pores where capillary water located were the active sites for SSF, due to the close relationship among capillary water relaxation time, specific surface area and fermentation performance. Therefore, steam explosion sterilization increased the effective contact area for microbial cells on solid medium, which contributed to improving SSF performance. Combined with the previous research, mechanisms of SSF improvement by steam explosion sterilization contained both chemical and physical effects. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozawa, Takahiro, E-mail: t-kozawa@jwri.osaka-u.ac.jp; Yanagisawa, Kazumichi; Murakami, Takeshi
Morphology control of particles formed during conventional solid-state reactions without any additives is a challenging task. Here, we propose a new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles based on water vapor-induced growth of particles during solid-state reactions. We have investigated the synthesis and microstructural evolution of LiMn{sub 2}O{sub 4} particles in air and water vapor atmospheres as model reactions; LiMn{sub 2}O{sub 4} is used as a low-cost cathode material for lithium-ion batteries. By using spherical MnCO{sub 3} precursor impregnated with LiOH, LiMn{sub 2}O{sub 4} spheres with a hollow structure were obtained in air, while angulated particlesmore » with micrometer sizes were formed in water vapor. The pore structure of the particles synthesized in water vapor was found to be affected at temperatures below 700 °C. We also show that the solid-state reaction in water vapor is a simple and valuable method for the large-scale production of particles, where the shape, size, and microstructure can be controlled. - Graphical abstract: This study has demonstrated a new strategy towards achieving morphology control without the use of additives during conventional solid-state reactions by exploiting water vapor-induced particle growth. - Highlights: • A new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles is proposed. • Water vapor-induced particle growth is exploited in solid-state reactions. • The microstructural evolution of LiMn{sub 2}O{sub 4} particles is investigated. • The shape, size and microstructure can be controlled by solid-state reactions.« less
USDA-ARS?s Scientific Manuscript database
Albizia biomass is a forestry waste, and holds a great potential in biogas production by solid-state anaerobic digestion (SS-AD). However, low methane yields from albizia chips were observed due to their recalcitrant structure. In this study, albizia chips were pretreated by Ceriporiopsis subvermisp...
Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.
1994-01-01
A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.
Hu, Fang; Zhang, Guanxin; Zhan, Chi; Zhang, Wei; Yan, Yongli; Zhao, Yongsheng; Fu, Hongbing; Zhang, Deqing
2015-03-18
In this paper seven salts of pyridinium-substituted tetraphenylethylene with different anions are reported. They show typical aggregation-induced emission. Crystal structures of three of the salts with (CF(3)SO(2))(2) N(-), CF(3) SO(3)(-), and SbF(6)(-) as the respective counter anions, are determined. The emission behavior of their amorphous and crystalline solids is investigated. Both amorphous and crystalline solids, except for the one with I(-), are highly emissive. Certain amorphous solids are red-emissive with almost the same quantum yields and fluorescence life-times. However, some crystalline solids are found to show different emission colors varying from green to yellow. Thus, their emission colors can be tuned by the counter anions. Furthermore, certain crystalline solids are highly emissive compared to the respective amorphous solids. Such solid-state emission behavior of these pyridinium-substituted tetraphenylethylene salts is interpreted on the basis of their crystal structures. In addition, optical waveguiding behavior of fabricated microrods is presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solid-state diffusion in amorphous zirconolite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, C.; Dove, M. T.; Trachenko, K.
2014-11-14
We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also findmore » that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.« less
Impurity-induced photoconductivity of narrow-gap Cadmium–Mercury–Telluride structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlov, D. V., E-mail: dvkoz@impras.ru; Rumyantsev, V. V.; Morozov, S. V.
2015-12-15
The photoconductivity (PC) spectra of CdHgTe (MCT) solid solutions with a Cd fraction of 17 and 19% are measured. A simple model for calculating the states of doubly charged acceptors in MCT solid solutions, which makes it possible to describe satisfactorily the observed photoconductivity spectra, is proposed. The found lines in the photoconductivity spectra of narrow-gap MCT structures are associated with transitions between the states of both charged and neutral acceptor centers.
Lu, Jun-Xia; Bayro, Marvin J.; Tycko, Robert
2016-01-01
We present the results of solid state nuclear magnetic resonance (NMR) experiments on HIV-1 capsid protein (CA) assemblies with three different morphologies, namely wild-type CA (WT-CA) tubes with 35–60 nm diameters, planar sheets formed by the Arg18-Leu mutant (R18L-CA), and R18L-CA spheres with 20–100 nm diameters. The experiments are intended to elucidate molecular structural variations that underlie these variations in CA assembly morphology. We find that multidimensional solid state NMR spectra of 15N,13C-labeled CA assemblies are remarkably similar for the three morphologies, with only small differences in 15N and 13C chemical shifts, no significant differences in NMR line widths, and few differences in the number of detectable NMR cross-peaks. Thus, the pronounced differences in morphology do not involve major differences in the conformations and identities of structurally ordered protein segments. Instead, morphological variations are attributable to variations in conformational distributions within disordered segments, which do not contribute to the solid state NMR spectra. Variations in solid state NMR signals from certain amino acid side chains are also observed, suggesting differences in the intermolecular dimerization interface between curved and planar CA lattices, as well as possible differences in intramolecular helix-helix packing. PMID:27129282
NASA Astrophysics Data System (ADS)
Benković, T.; Kenđel, A.; Parlov-Vuković, J.; Kontrec, D.; Chiş, V.; Miljanić, S.; Galić, N.
2018-02-01
Structural analyses of aroylhydrazones were performed by computational and spectroscopic methods (solid state NMR, 1 and 2D NMR spectroscopy, FT-IR (ATR) spectroscopy, Raman spectroscopy, UV-Vis spectrometry and spectrofluorimetry) in solid state and in solution. The studied compounds were N‧-(2,3-dihydroxyphenylmethylidene)-3-pyridinecarbohydrazide (1), N‧-(2,5-dihydroxyphenylmethylidene)-3-pyridinecarbohydrazide (2), N‧-(3-chloro-2-hydroxy-phenylmethylidene)-3-pyridinecarbohydrazide (3), and N‧-(2-hydroxy-4-methoxyphenyl-methylidene)-3-pyridinecarbohydrazide (4). Both in solid state and in solution, all compounds were in ketoamine form (form I, sbnd COsbnd NHsbnd Ndbnd Csbnd), stabilized by intramolecular H-bond between hydroxyl proton and nitrogen atom of the Cdbnd N group. In solid state, the Cdbnd O group of 1-4 were involved in additional intermolecular H-bond between closely packed molecules. Among hydrazones studied, the chloro- and methoxy-derivatives have shown pH dependent and reversible fluorescence emission connected to deprotonation/protonation of salicylidene part of the molecules. All findings acquired by experimental methods (NMR, IR, Raman, and UV-Vis spectra) were in excellent agreement with those obtained by computational methods.
Moussa, Ehab M; Wilson, Nathan E; Zhou, Qi Tony; Singh, Satish K; Nema, Sandeep; Topp, Elizabeth M
2018-01-03
Lyophilization and spray drying are widely used to manufacture solid forms of therapeutic proteins. Lyophilization is used to stabilize proteins vulnerable to degradation in solution, whereas spray drying is mainly used to prepare inhalation powders or as an alternative to freezing for storing bulk drug substance. Both processes impose stresses that may adversely affect protein structure, stability and bioactivity. Here, we compared lyophilization with and without controlled ice nucleation, and spray drying for their effects on the solid-state conformation and matrix interactions of a model IgG1 monoclonal antibody (mAb). Solid-state conformation and matrix interactions of the mAb were probed using solid-state hydrogen-deuterium exchange with mass spectrometric analysis (ssHDX-MS), and solid-state Fourier transform infrared (ssFTIR) and solid-state fluorescence spectroscopies. mAb conformation and/or matrix interactions were most perturbed in mannitol-containing samples and the distribution of states was more heterogeneous in sucrose and trehalose samples that were spray dried. The findings demonstrate the sensitivity of ssHDX-MS to changes weakly indicated by spectroscopic methods, and support the broader use of ssHDX-MS to probe formulation and process effects on proteins in solid samples.
Advances in solid-state NMR of cellulose.
Foston, Marcus
2014-06-01
Nuclear magnetic resonance (NMR) spectroscopy is a well-established analytical and enabling technology in biofuel research. Over the past few decades, lignocellulosic biomass and its conversion to supplement or displace non-renewable feedstocks has attracted increasing interest. The application of solid-state NMR spectroscopy has long been seen as an important tool in the study of cellulose and lignocellulose structure, biosynthesis, and deconstruction, especially considering the limited number of effective solvent systems and the significance of plant cell wall three-dimensional microstructure and component interaction to conversion yield and rate profiles. This article reviews common and recent applications of solid-state NMR spectroscopy methods that provide insight into the structural and dynamic processes of cellulose that control bulk properties and biofuel conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Solid state amorphization kinetic of alpha lactose upon mechanical milling.
Caron, Vincent; Willart, Jean-François; Lefort, Ronan; Derollez, Patrick; Danède, Florence; Descamps, Marc
2011-11-29
It has been previously reported that α-lactose could be totally amorphized by ball milling. In this paper we report a detailed investigation of the structural and microstructural changes by which this solid state amorphization takes place. The investigations have been performed by Powder X-ray Diffraction, Solid State Nuclear Magnetic Resonance ((13)C CP-MAS) and Differential Scanning Calorimetry. The results reveal the structural complexity of the material in the course of its amorphization so that it cannot be considered as a simple mixture made of a decreasing crystalline fraction and an increasing amorphous fraction. Heating this complexity can give rise to a fully nano-crystalline material. The results also show that chemical degradations upon heating are strongly connected to the melting process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Tunable Porosities and Shapes of Fullerene-Like Spheres
Dielmann, Fabian; Fleischmann, Matthias; Heindl, Claudia; Peresypkina, Eugenia V; Virovets, Alexander V; Gschwind, Ruth M; Scheer, Manfred
2015-01-01
The formation of reversible switchable nanostructures monitored by solution and solid-state methods is still a challenge in supramolecular chemistry. By a comprehensive solid state and solution study we demonstrate the potential of the fivefold symmetrical building block of pentaphosphaferrocene in combination with CuI halides to switch between spheres of different porosity and shape. With increasing amount of CuX, the structures of the formed supramolecules change from incomplete to complete spherically shaped fullerene-like assemblies possessing an Ih-C80 topology at one side and to a tetrahedral-structured aggregate at the other. In the solid state, the formed nano-sized aggregates reach an outer diameter of 3.14 and 3.56 nm, respectively. This feature is used to reversibly encapsulate and release guest molecules in solution. PMID:25759976
NASA Astrophysics Data System (ADS)
Moriya, Makoto
2017-12-01
In the development of innovative molecule-based materials, the identification of the structural features in supramolecular solids and the understanding of the correlation between structure and function are important factors. The author investigated the development of supramolecular solid electrolytes by constructing ion conduction paths using a supramolecular hierarchical structure in molecular crystals because the ion conduction path is an attractive key structure due to its ability to generate solid-state ion diffusivity. The obtained molecular crystals exhibited selective lithium ion diffusion via conduction paths consisting of lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) and small molecules such as ether or amine compounds. In the present review, the correlation between the crystal structure and ion conductivity of the obtained molecular crystals is addressed based on the systematic structural control of the ionic conduction paths through the modification of the component molecules. The relationship between the crystal structure and ion conductivity of the molecular crystals provides a guideline for the development of solid electrolytes based on supramolecular solids exhibiting rapid and selective lithium ion conduction.
Solid state nuclear magnetic resonance studies of prion peptides and proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heller, Jonathan
1997-08-01
High-resolution structural studies using x-ray diffraction and solution nuclear magnetic resonance (NMR) are not feasible for proteins of low volubility and high tendency to aggregate. Solid state NMR (SSNMR) is in principle capable of providing structural information in such systems, however to do this efficiently and accurately, further SSNMR tools must be developed This dissertation describes the development of three new methods and their application to a biological system of interest, the priori protein (PrP).
Neutron detector and fabrication method thereof
Bhandari, Harish B.; Nagarkar, Vivek V.; Ovechkina, Olena E.
2016-08-16
A neutron detector and a method for fabricating a neutron detector. The neutron detector includes a photodetector, and a solid-state scintillator operatively coupled to the photodetector. In one aspect, the method for fabricating a neutron detector includes providing a photodetector, and depositing a solid-state scintillator on the photodetector to form a detector structure.
Chemical structure of soil organic matter in slickspots as investigated by advanced solid-state NMR
USDA-ARS?s Scientific Manuscript database
Slickspot soils are saline, and knowledge of their humic chemistry would contribute to our limited understanding how salinity affects soil C and N stocks. We characterized humic acids (HAs) from slickspot soils with solid-state 13C nuclear magnetic resonance (NMR). Expanding on previous use of cross...
Huang, Chun; Zhang, Jin; Young, Neil P; Snaith, Henry J; Grant, Patrick S
2016-05-10
Supercapacitors are in demand for short-term electrical charge and discharge applications. Unlike conventional supercapacitors, solid-state versions have no liquid electrolyte and do not require robust, rigid packaging for containment. Consequently they can be thinner, lighter and more flexible. However, solid-state supercapacitors suffer from lower power density and where new materials have been developed to improve performance, there remains a gap between promising laboratory results that usually require nano-structured materials and fine-scale processing approaches, and current manufacturing technology that operates at large scale. We demonstrate a new, scalable capability to produce discrete, multi-layered electrodes with a different material and/or morphology in each layer, and where each layer plays a different, critical role in enhancing the dynamics of charge/discharge. This layered structure allows efficient utilisation of each material and enables conservative use of hard-to-obtain materials. The layered electrode shows amongst the highest combinations of energy and power densities for solid-state supercapacitors. Our functional design and spray manufacturing approach to heterogeneous electrodes provide a new way forward for improved energy storage devices.
[Fundamentals of plasma chemistry and its application to drug engineering].
Kuzuya, M
1996-04-01
In this review, our novel research works in both low temperature plasma chemistry and solid state plasma chemistry were described. As for low temperature plasma, the ESR study on plasma-induced radicals of several selected conventional polymers was shown including the detailed analyses of the radical structure and the mechanism by which the radicals were formed on typical degradable methacrylic polymers and cross-linkable polystyrene. One of the pharmaceutical applications of the plasma processing for drug delivery system (DDS) was also described, which includes the preparations of double-compressed tablet consisting of drugs as a core material and various types of polymers as a wall material followed by plasma-irradiation on such a tablet. As for solid state plasma, the detailed reaction mechanism of solid state mechanochemical polymerization was shown including the solid state single electron transfer and the special feature of the resulting polymers. The structural criteria for polymerizable monomer derived from the quantum chemical considerations were also established. Based on the above findings, we synthesized various polymeric prodrugs by mechanochemical polymerization and studied the nature of hydrolyses (drug release).
Chierotti, Michele R; Gobetto, Roberto; Nervi, Carlo; Bacchi, Alessia; Pelagatti, Paolo; Colombo, Valentina; Sironi, Angelo
2014-01-06
The hydrogen bond network of three polymorphs (1α, 1β, and 1γ) and one solvate form (1·H2O) arising from the hydration-dehydration process of the Ru(II) complex [(p-cymene)Ru(κN-INA)Cl2] (where INA is isonicotinic acid), has been ascertained by means of one-dimensional (1D) and two-dimensional (2D) double quantum (1)H CRAMPS (Combined Rotation and Multiple Pulses Sequences) and (13)C CPMAS solid-state NMR experiments. The resolution improvement provided by homonuclear decoupling pulse sequences, with respect to fast MAS experiments, has been highlighted. The solid-state structure of 1γ has been fully characterized by combining X-ray powder diffraction (XRPD), solid-state NMR, and periodic plane-wave first-principles calculations. None of the forms show the expected supramolecular cyclic dimerization of the carboxylic functions of INA, because of the presence of Cl atoms as strong hydrogen bond (HB) acceptors. The hydration-dehydration process of the complex has been discussed in terms of structure and HB rearrangements.
ERIC Educational Resources Information Center
Eyring, LeRoy
1980-01-01
Describes methods for using the high-resolution electron microscope in conjunction with other tools to reveal the identity and environment of atoms. Problems discussed include the ultimate structure of real crystalline solids including defect structure and the mechanisms of chemical reactions. (CS)
A self-forming composite electrolyte for solid-state sodium battery with ultra-long cycle life
Zhang, Zhizhen; Yang, Xiao -Qing; Zhang, Qinghua; ...
2016-10-31
Replacing organic liquid electrolyte with inorganic solid electrolytes (SE) can potentially address the inherent safety problems in conventional rechargeable batteries. Furthermore, all-solid-state batteries have been plagues by the relatively low ionic conductivity of solid electrolytes and large charge-transfer resistance resulted from solid-solid interfaces between electrode materials and solid electrolytes. Here we report a new design strategy for improving the ionic conductivity of solid electrolyte by self-forming a composite material. An optimized Na + ion conducting composite electrolyte derived from the NASICON structure was successfully synthesized, yielding ultra-high ionic conductivity of 3.4 mS cm –1 at 25°C and 14 ms cmmore » –1 at 80°C.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Zueqian
2010-01-01
Solid-state nuclear magnetic resonance (NMR) has been used to explore the nanometer-scale structure of Nafion, the widely used fuel cell membrane, and its composites. We have shown that solid-state NMR can characterize chemical structure and composition, domain size and morphology, internuclear distances, molecular dynamics, etc. The newly-developed water channel model of Nafion has been confirmed, and important characteristic length-scales established. Nafion-based organic and inorganic composites with special properties have also been characterized and their structures elucidated. The morphology of Nafion varies with hydration level, and is reflected in the changes in surface-to-volume (S/V) ratio of the polymer obtained by small-anglemore » X-ray scattering (SAXS). The S/V ratios of different Nafion models have been evaluated numerically. It has been found that only the water channel model gives the measured S/V ratios in the normal hydration range of a working fuel cell, while dispersed water molecules and polymer ribbons account for the structures at low and high hydration levels, respectively.« less
Dunn, Michael F.
2013-01-01
Conspectus NMR crystallography – the synergistic combination of X-ray diffraction, solid-state NMR spectroscopy, and computational chemistry – offers unprecedented insight into three-dimensional, chemically-detailed structure. From its initial role in refining diffraction data of organic and inorganic solids, NMR crystallography is now being developed for application to active sites in biomolecules, where it reveals chemically-rich detail concerning the interactions between enzyme site residues and the reacting substrate that is not achievable when X-ray, NMR, or computational methodologies are applied in isolation. For example, typical X-ray crystal structures (1.5 to 2.5 Å resolution) of enzyme-bound intermediates identify possible hydrogen-bonding interactions between site residues and substrate, but do not directly identify the protonation state of either. Solid-state NMR can provide chemical shifts for selected atoms of enzyme-substrate complexes, but without a larger structural framework in which to interpret them, only empirical correlations with local chemical structure are possible. Ab initio calculations and molecular mechanics can build models for enzymatic processes, but rely on chemical details that must be specified. Together, however, X-ray diffraction, solid-state NMR spectroscopy, and computational chemistry can provide consistent and testable models for structure and function of enzyme active sites: X-ray crystallography provides a coarse framework upon which models of the active site can be developed using computational chemistry; these models can be distinguished by comparison of their calculated NMR chemical shifts with the results of solid-state NMR spectroscopy experiments. Conceptually, each technique is a puzzle piece offering a generous view of the big picture. Only when correctly pieced together, however, can they reveal the big picture at highest resolution. In this Account, we detail our first steps in the development of NMR crystallography for application to enzyme catalysis. We begin with a brief introduction to NMR crystallography and then define the process that we have employed to probe the active site in the β-subunit of tryptophan synthase with unprecedented atomic-level resolution. This approach has resulted in a novel structural hypothesis for the protonation state of the quinonoid intermediate in tryptophan synthase and its surprising role in directing the next step in the catalysis of L-Trp formation. PMID:23537227
Bryce, David L; Bultz, Elijah B; Aebi, Dominic
2008-07-23
Natural-abundance (43)Ca solid-state NMR spectroscopy at 21.1 T and gauge-including projector-augmented-wave (GIPAW) DFT calculations are developed as tools to provide insight into calcium binding environments, with special emphasis on the calcium chemical shift (CS) tensor. The first complete analysis of a (43)Ca solid-state NMR spectrum, including the relative orientation of the CS and electric field gradient (EFG) tensors, is reported for calcite. GIPAW calculations of the (43)Ca CS and EFG tensors for a series of small molecules are shown to reproduce experimental trends; for example, the trend in available solid-state chemical shifts is reproduced with a correlation coefficient of 0.983. The results strongly suggest the utility of the calcium CS tensor as a novel probe of calcium binding environments in a range of calcium-containing materials. For example, for three polymorphs of CaCO3 the CS tensor span ranges from 8 to 70 ppm and the symmetry around calcium is manifested differently in the CS tensor as compared with the EFG tensor. The advantages of characterizing the CS tensor are particularly evident in very high magnetic fields where the effect of calcium CS anisotropy is augmented in hertz while the effect of second-order quadrupolar broadening is often obscured for (43)Ca because of its small quadrupole moment. Finally, as an application of the combined experimental-theoretical approach, the solid-state structure of the vaterite polymorph of calcium carbonate is probed and we conclude that the hexagonal P6(3)/mmc space group provides a better representation of the structure than does the orthorhombic Pbnm space group, thereby demonstrating the utility of (43)Ca solid-state NMR as a complementary tool to X-ray crystallographic methods.
Near-Ideal Xylene Selectivity in Adaptive Molecular Pillar[ n]arene Crystals.
Jie, Kecheng; Liu, Ming; Zhou, Yujuan; Little, Marc A; Pulido, Angeles; Chong, Samantha Y; Stephenson, Andrew; Hughes, Ashlea R; Sakakibara, Fumiyasu; Ogoshi, Tomoki; Blanc, Frédéric; Day, Graeme M; Huang, Feihe; Cooper, Andrew I
2018-06-06
The energy-efficient separation of alkylaromatic compounds is a major industrial sustainability challenge. The use of selectively porous extended frameworks, such as zeolites or metal-organic frameworks, is one solution to this problem. Here, we studied a flexible molecular material, perethylated pillar[ n]arene crystals ( n = 5, 6), which can be used to separate C8 alkylaromatic compounds. Pillar[6]arene is shown to separate para-xylene from its structural isomers, meta-xylene and ortho-xylene, with 90% specificity in the solid state. Selectivity is an intrinsic property of the pillar[6]arene host, with the flexible pillar[6]arene cavities adapting during adsorption thus enabling preferential adsorption of para-xylene in the solid state. The flexibility of pillar[6]arene as a solid sorbent is rationalized using molecular conformer searches and crystal structure prediction (CSP) combined with comprehensive characterization by X-ray diffraction and 13 C solid-state NMR spectroscopy. The CSP study, which takes into account the structural variability of pillar[6]arene, breaks new ground in its own right and showcases the feasibility of applying CSP methods to understand and ultimately to predict the behavior of soft, adaptive molecular crystals.
Ab initio molecular crystal structures, spectra, and phase diagrams.
Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni
2014-09-16
Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling illustrations of their unprecedented power in addressing some of the outstanding problems of solid-state chemistry, high-pressure chemistry, or geochemistry. They are the structure and spectra of ice Ih, in particular, the origin of two peaks in the hydrogen-bond-stretching region of its inelastic neutron scattering spectra, a solid-solid phase transition from CO2-I to elusive, metastable CO2-III, pressure tuning of Fermi resonance in solid CO2, and the structure and spectra of solid formic acid, all at the level of second-order Møller-Plesset perturbation theory or higher.
Quartz and feldspar glasses produced by natural and experimental shock.
NASA Technical Reports Server (NTRS)
Stoeffler, D.; Hornemann, U.
1972-01-01
Refractive index, density, and infrared absorption studies of naturally and experimentally shocked-produced glasses formed from quartz, plagioclase, and alkali-feldspar confirm the existence of two main groups of amorphous forms of the framework silicates: solid-state and liquid-state glasses. These were apparently formed as metastable release products of high-pressure-phases above and below the glass transition temperatures. Solid-state glasses exhibit a series of structural states with increasing disorder caused by increasing shock pressures and temperatures. They gradually merge into the structural state of fused minerals similar to that of synthetic glasses quenched from a melt. Shock-fused alkali feldspars can, however, be distinguished from their laboratory-fused counterparts by infrared absorption and by higher density.
Mercouri G. Kanatzidis: Excellence and Innovations in Inorganic and Solid-State Chemistry.
Arachchige, Indika U; Armatas, Gerasimos S; Biswas, Kanishka; Subrahmanyam, Kota S; Latturner, Susan; Malliakas, Christos D; Manos, Manolis J; Oh, Youngtak; Polychronopoulou, Kyriaki; P Poudeu, Pierre F; Trikalitis, Pantelis N; Zhang, Qichun; Zhao, Li-Dong; Peter, Sebastian C
2017-07-17
Over the last 3-4 decades, solid-state chemistry has emerged as the forefront of materials design and development. The field has revolutionized into a multidisciplinary subject and matured with a scope of new synthetic strategies, new challenges, and opportunities. Understanding the structure is very crucial in the design of appropriate materials for desired applications. Professor Mercouri G. Kanatzidis has encountered both challenges and opportunities during the course of the discovery of many novel materials. Throughout his scientific career, Mercouri and his group discovered several inorganic compounds and pioneered structure-property relationships. We, a few Ph.D. and postdoctoral students, celebrate his 60th birthday by providing a Viewpoint summarizing his contributions to inorganic solid-state chemistry. The topics discussed here are of significant interest to various scientific communities ranging from condensed matter to green energy production.
3D-Printing Electrolytes for Solid-State Batteries.
McOwen, Dennis W; Xu, Shaomao; Gong, Yunhui; Wen, Yang; Godbey, Griffin L; Gritton, Jack E; Hamann, Tanner R; Dai, Jiaqi; Hitz, Gregory T; Hu, Liangbing; Wachsman, Eric D
2018-05-01
Solid-state batteries have many enticing advantages in terms of safety and stability, but the solid electrolytes upon which these batteries are based typically lead to high cell resistance. Both components of the resistance (interfacial, due to poor contact with electrolytes, and bulk, due to a thick electrolyte) are a result of the rudimentary manufacturing capabilities that exist for solid-state electrolytes. In general, solid electrolytes are studied as flat pellets with planar interfaces, which minimizes interfacial contact area. Here, multiple ink formulations are developed that enable 3D printing of unique solid electrolyte microstructures with varying properties. These inks are used to 3D-print a variety of patterns, which are then sintered to reveal thin, nonplanar, intricate architectures composed only of Li 7 La 3 Zr 2 O 12 solid electrolyte. Using these 3D-printing ink formulations to further study and optimize electrolyte structure could lead to solid-state batteries with dramatically lower full cell resistance and higher energy and power density. In addition, the reported ink compositions could be used as a model recipe for other solid electrolyte or ceramic inks, perhaps enabling 3D printing in related fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Imaging quasiperiodic electronic states in a synthetic Penrose tiling
NASA Astrophysics Data System (ADS)
Collins, Laura C.; Witte, Thomas G.; Silverman, Rochelle; Green, David B.; Gomes, Kenjiro K.
2017-06-01
Quasicrystals possess long-range order but lack the translational symmetry of crystalline solids. In solid state physics, periodicity is one of the fundamental properties that prescribes the electronic band structure in crystals. In the absence of periodicity and the presence of quasicrystalline order, the ways that electronic states change remain a mystery. Scanning tunnelling microscopy and atomic manipulation can be used to assemble a two-dimensional quasicrystalline structure mapped upon the Penrose tiling. Here, carbon monoxide molecules are arranged on the surface of Cu(111) one at a time to form the potential landscape that mimics the ionic potential of atoms in natural materials by constraining the electrons in the two-dimensional surface state of Cu(111). The real-space images reveal the presence of the quasiperiodic order in the electronic wave functions and the Fourier analysis of our results links the energy of the resonant states to the local vertex structure of the quasicrystal.
Imaging quasiperiodic electronic states in a synthetic Penrose tiling.
Collins, Laura C; Witte, Thomas G; Silverman, Rochelle; Green, David B; Gomes, Kenjiro K
2017-06-22
Quasicrystals possess long-range order but lack the translational symmetry of crystalline solids. In solid state physics, periodicity is one of the fundamental properties that prescribes the electronic band structure in crystals. In the absence of periodicity and the presence of quasicrystalline order, the ways that electronic states change remain a mystery. Scanning tunnelling microscopy and atomic manipulation can be used to assemble a two-dimensional quasicrystalline structure mapped upon the Penrose tiling. Here, carbon monoxide molecules are arranged on the surface of Cu(111) one at a time to form the potential landscape that mimics the ionic potential of atoms in natural materials by constraining the electrons in the two-dimensional surface state of Cu(111). The real-space images reveal the presence of the quasiperiodic order in the electronic wave functions and the Fourier analysis of our results links the energy of the resonant states to the local vertex structure of the quasicrystal.
Solid-state Distributed Temperature Control for International Space Station
NASA Technical Reports Server (NTRS)
Holladay, Jon B.; Reagan, Shawn E.; Day, Greg
2004-01-01
A newly developed solid-state temperature controller will offer greater flexibility in the thermal control of aerospace vehicle structures. A status of the hardware development along with its implementation on the Multi- Purpose Logistics Module will be provided. Numerous advantages of the device will also be discussed with regards to current and future flight vehicle implementations.
ERIC Educational Resources Information Center
Coles, S. J.; Mapp, L. K.
2016-01-01
An undergraduate practical exercise has been designed to provide hands-on, instrument-based experience of advanced characterization techniques. A research experience approach is taken, centered around the concept of solid-state polymorphism, which requires a detailed knowledge of molecular and crystal structure to be gained by advanced analytical…
Solid State Division progress report for period ending March 31, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, P.H.; Hinton, L.W.
1997-12-01
This report covers research progress in the Solid State Division from April 1, 1995, through March 31, 1997. During this period, the division conducted a broad, interdisciplinary materials research program in support of Department of Energy science and technology missions. The report includes brief summaries of research activities in condensed matter theory, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. An addendum includes listings of division publications and professional activities.
6-Aminopenicillanic acid revisited: A combined solid state NMR and in silico refinement
NASA Astrophysics Data System (ADS)
Aguiar, Daniel Lima Marques de; San Gil, Rosane Aguiar da Silva; Alencastro, Ricardo Bicca de; Souza, Eugenio Furtado de; Borré, Leandro Bandeira; Vaiss, Viviane da Silva; Leitão, Alexandre Amaral
2016-09-01
13C/15N (experimental and ab initio) solid-state NMR was used to achieve an affordable way to improve hydrogen refinement of 6-aminopenicillanic acid (6-APA) structure. The lattice effect on the isotropic chemical shifts was probed by using two different magnetic shielding calculations: isolated molecules and periodic crystal structure. The electron density difference maps of optimized and non-optimized structures were calculated in order to investigate the interactions inside the 6-APA unit cell. The 13C and 15N chemical shifts assignments were unambiguously stablished. In addition, some of the literature 13C resonances ambiguities could be properly solved.
NASA Astrophysics Data System (ADS)
Liang, Danyang; Ding, Yu; Wang, Nan; Cai, Xiaomeng; Li, Jia; Han, Linyu; Wang, Shiqi; Han, Yuanyuan; Jia, Guang; Wang, Liyong
2017-09-01
A method for mixed-phase bismuth molybdate doped with Eu3+ ions was developed by solid-state reaction assisting with polyvinyl alcohol (PVA). The results of powder X-ray diffraction showed a mixed-phase structure and the microscopical characterization technology revealed the formation process with the addition of PVA. As a structure inducer, the PVA molecules played a vital role in the formation of phase structure. The as-obtained Eu3+-doped bismuth molybdates were also characterized by using different spectroscopic techniques including FTIR and photoluminescence (PL). The results show that doping concentration, PVA addition and calcination temperature affect photoluminescence properties remarkably.
NASA Astrophysics Data System (ADS)
Ivanova, B. B.
2005-11-01
A stereo structural characterization of 2,5,6-thrimethylbenzimidazole (MBIZ) and 2-amino-benzimidaziole (2-NH 2-BI) and their N 1 protonation salts was carried out using a polarized solid state linear dichroic infrared spectral (IR-LD) analysis in nematic liquid crystal suspension. All experimental predicted structures were compared with the theoretical ones, obtained by ab initio calculations. The Cs to C2v* symmetry transformation as a result of protonation processes, with a view of its reflection on the infrared spectral characteristics was described.
Brunner, Henri; Tsuno, Takashi
2018-05-01
Invited for this month's cover picture are Prof. Dr. Henri Brunner from the University of Regensburg (Germany) and Prof. Dr. Takashi Tsuno from Nihon University (Japan). The cover picture shows the conformational reaction of JIDLUD→FIHTUL. The order of sample points of solid-state structures reveals information concerning low-energy, directed, and coupled movements in molecules. Read the full text of their Communication at https://doi.org/10.1002/open.201800007.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedotov, V. K., E-mail: fedotov@issp.ac.ru; Ponyatovsky, E. G.
2011-12-15
The spontaneous amorphization of high-pressure quenched phases of the GaSb-Ge system has been studied by neutron diffraction while slowly heating the phases at atmospheric pressure. The sequence of changes in the structural parameters of the initial crystalline phase and the final amorphous phase is established. The behavior of the phases and the correlation in the structural features of the phase transitions and anomalous thermal effects exhibit signs of the inhomogeneous model of solid-state amorphization.
Yamamoto, Kazuo; Iriyama, Yasutoshi; Hirayama, Tsukasa
2017-02-08
All-solid-state Li-ion batteries having incombustible solid electrolytes are promising energy storage devices because they have significant advantages in terms of safety, lifetime and energy density. Electrochemical reactions, namely, Li-ion insertion/extraction reactions, commonly occur around the nanometer-scale interfaces between the electrodes and solid electrolytes. Thus, transmission electron microscopy (TEM) is an appropriate technique to directly observe such reactions, providing important information for understanding the fundamental solid-state electrochemistry and improving battery performance. In this review, we introduce two types of TEM techniques for operando observations of battery reactions, spatially resolved electron energy-loss spectroscopy in a TEM mode for direct detection of the Li concentration profiles and electron holography for observing the electric potential changes due to Li-ion insertion/extraction reactions. We visually show how Li-ion insertion/extractions affect the crystal structures, electronic structures, and local electric potential during the charge-discharge processes in these batteries. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Pindelska, Edyta; Szeleszczuk, Lukasz; Pisklak, Dariusz Maciej; Mazurek, Andrzej; Kolodziejski, Waclaw
2015-01-01
Clopidogrel hydrogensulfate (HSCL) is an antiplatelet agent, one of top-selling drugs in the world. In this paper, we have described a rapid and convenient method of verification which polymorph of HSCL is present in its final solid dosage form. Our methodology based on solid-state NMR spectroscopy and ab initio gauge-including projector-augmented wave calculations of NMR shielding constants is appropriate for currently available commercial solid dosage forms of HSCL. Furthermore, such structural characterization can assist with the development of new pharmaceutical products containing HSCL and also be useful in the identification of counterfeit drugs. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Tycko, Robert
2015-04-01
Twenty years ago, applications of solid state nuclear magnetic resonance (NMR) methods to real problems involving biological systems or biological materials were few and far between. Starting in the 1980s, a small number of research groups had begun to explore the possibility of obtaining structural and dynamical information about peptides, proteins, and other biopolymers from solid state NMR spectra. Progress was initially slow due to the relatively primitive state of solid state NMR probes, spectrometers, sample preparation methods, and pulse sequence techniques, coupled with the small number of people contributing to this research area. By the early 1990s, with the advent of new ideas about pulse sequence techniques such as dipolar recoupling, improvements in techniques for orienting membrane proteins and in technology for magic-angle spinning (MAS), improvements in the capabilities of commercial NMR spectrometers, and general developments in multidimensional spectroscopy, it began to appear that biomolecular solid state NMR might have a viable future. It was not until 1993 that the annual number of publications in this area crept above twenty.
The role of solid state 13 C NMR spectroscopy in studies of the nature of native celluloses
R.H. Atalla; D.L. VanderHart
1999-01-01
Published spectroscopic observations pertaining to the crystal structure of native celluloses are reviewed for the purpose of defining our current level of understanding about crystalline polymorphism in these materials. Emphasis is placed on observations from solid state 13 C nuclear magnetic resonance (NMR), which first led to the postulate that most native,...
Ciezak, Jennifer A; Trevino, S F
2006-04-20
Solid-state geometry optimizations and corresponding normal-mode analysis of the widely used energetic material cyclotrimethylenetrinitramine (RDX) were performed using density functional theory with both the generalized gradient approximation (BLYP and BP functionals) and the local density approximation (PWC and VWN functionals). The structural results were found to be in good agreement with experimental neutron diffraction data and previously reported calculations based on the isolated-molecule approximation. The vibrational inelastic neutron scattering (INS) spectrum of polycrystalline RDX was measured and compared with simulated INS constructed from the solid-state calculations. The vibrational frequencies calculated from the solid-state methods had average deviations of 10 cm(-1) or less, whereas previously published frequencies based on an isolated-molecule approximation had deviations of 65 cm(-1) or less, illustrating the importance of including crystalline forces. On the basis of the calculations and analysis, it was possible to assign the normal modes and symmetries, which agree well with previous assignments. Four possible "doorway modes" were found in the energy range defined by the lattice modes, which were all found to contain fundamental contributions from rotation of the nitro groups.
NASA Astrophysics Data System (ADS)
Katase, Takayoshi; Endo, Kenji; Ohta, Hiromichi
2016-02-01
Compared to state-of-the-art modulation techniques, protonation is the most ideal to control the electrical and optical properties of transition metal oxides (TMOs) due to its intrinsic non-volatile operation. However, the protonation of TMOs is not typically utilized for solid-state devices because of imperative high-temperature annealing treatment in hydrogen source. Although one solution for room temperature (RT) protonation of TMOs is liquid-phase electrochemistry, it is unsuited for practical purposes due to liquid-leakage problem. Herein we demonstrate solid-state RT-protonation of vanadium dioxide (VO2), which is a well-known thermochromic TMO. We fabricated the three terminal thin-film-transistor structure on an insulating VO2 film using a water-infiltrated nanoporous glass, which serves as a solid electrolyte. For gate voltage application, water electrolysis and protonation/deprotonation of VO2 film surface occurred, leading to reversible metal-insulator phase conversion of ~11-nm-thick VO2 layer. The protonation was clearly accompanied by the structural change from an insulating monoclinic to a metallic tetragonal phase. Present results offer a new route for the development of electro-optically active solid-state devices with TMO materials by engineering RT protonation.
Huang, Chun; Zhang, Jin; Young, Neil P.; Snaith, Henry J.; Grant, Patrick S.
2016-01-01
Supercapacitors are in demand for short-term electrical charge and discharge applications. Unlike conventional supercapacitors, solid-state versions have no liquid electrolyte and do not require robust, rigid packaging for containment. Consequently they can be thinner, lighter and more flexible. However, solid-state supercapacitors suffer from lower power density and where new materials have been developed to improve performance, there remains a gap between promising laboratory results that usually require nano-structured materials and fine-scale processing approaches, and current manufacturing technology that operates at large scale. We demonstrate a new, scalable capability to produce discrete, multi-layered electrodes with a different material and/or morphology in each layer, and where each layer plays a different, critical role in enhancing the dynamics of charge/discharge. This layered structure allows efficient utilisation of each material and enables conservative use of hard-to-obtain materials. The layered electrode shows amongst the highest combinations of energy and power densities for solid-state supercapacitors. Our functional design and spray manufacturing approach to heterogeneous electrodes provide a new way forward for improved energy storage devices. PMID:27161379
Tautomeric and ionisation forms of dopamine and tyramine in the solid state
NASA Astrophysics Data System (ADS)
Cruickshank, Laura; Kennedy, Alan R.; Shankland, Norman
2013-11-01
Crystallisation of the phenylethylamine neurotransmitter dopamine from basic aqueous solution yielded the 3-phenoxide Zwitterionic tautomer, despite this being a minority form in the solution state. In the crystal structure, dopamine has a dimeric [OCCOH]2 hydrogen bonded catechol motif that expands through Nsbnd H⋯O interactions to give a 2-dimensional sheet of classical hydrogen bonds. These sheets are further interconnected by Nsbnd H⋯π interactions. The structurally related base tyramine crystallises under similar conditions as a hemihydrate with all four possible species of tyramine present (cationic, anionic, Zwitterionic and neutral) in the crystal structure. Single crystal X-ray diffraction studies at 121 and 293 K showed dynamic hydrogen atom disorder for the phenol/phenoxide group, suggesting that the tyramine speciation observed arises from a solid-state process.
Ne matrix spectra of the sym-C6Br3F3+ radical cation
Bondybey, V.E.; Sears, T.J.; Miller, T.A.; Vaughn, C.; English, J.H.; Shiley, R.S.
1981-01-01
The electronic absorption and laser excited, wavelength resolved fluorescence spectra of the title cation have been observed in solid Ne matrix and vibrationally analysed. The vibrational structure of the excited B2A2??? state shows close similarity to the parent compound. The X2E??? ground state structure is strongly perturbed and irregular owing to a large Jahn-Teller distortion. The data are analysed in terms of a recently developed, sophisticated multimode Jahn-Teller theoretical model. We have generated the sym-C6Br3F3+ cations in solid Ne matrix and obtained their wavelength resolved emission and absorption spectra. T ground electronic X2E??? state exhibits an irregular and strongly perturbed vibrational structure, which can be successfully modeled using sophisticated multimode Jahn-Teller theory. ?? 1981.
Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids
Tao, Z.; Chen, C.; Szilvasi, T.; ...
2016-06-01
Attosecond spectroscopic techniques have made it possible to measure differences in transport times for photoelectrons from localized core levels and delocalized valence bands in solids. Here, we report the application of attosecond pulse trains to directly and unambiguously measure the difference in lifetimes between photoelectrons born into free electron–like states and those excited into unoccupied excited states in the band structure of nickel (111). An enormous increase in lifetime of 212 ± 30 attoseconds occurs when the final state coincides with a short-lived excited state. Moreover, a strong dependence of this lifetime on emission angle is directly related to themore » final-state band dispersion as a function of electron transverse momentum. Our finding underscores the importance of the material band structure in determining photoelectron lifetimes and corresponding electron escape depths.« less
NASA Astrophysics Data System (ADS)
Piyadasa, Adimali; Wang, Sibo; Gao, Pu-Xian
2017-07-01
The electronic band structure of a solid state semiconductor determines many of its physical and chemical characteristics such as electrical, optical, physicochemical, and catalytic activity. Alteration or modification of the band structure could lead to significant changes in these physical and chemical characteristics, therefore we introduce new mechanisms of creating novel solid state materials with interesting properties. Over the past three decades, research on band structure engineering has allowed development of various methods to modify the band structure of engineered materials. Compared to bulk counterparts, nanostructures generally exhibit higher band structure modulation capabilities due to the quantum confinement effect, prominent surface effect, and higher strain limit. In this review we will discuss various band structure engineering strategies in semiconductor nanowires and other related nanostructures, mostly focusing on metal oxide systems. Several important strategies of band structure modulation are discussed in detail, such as doping, alloying, straining, interface and core-shell nanostructuring.
Fabrication, characterization and applications of iron selenide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, Raja Azadar, E-mail: hussainazadar@yahoo.com; Badshah, Amin; Lal, Bhajan
This review article presents fabrication of FeSe by solid state reactions, solution chemistry routes, chemical vapor deposition, spray pyrolysis and chemical vapor transport. Different properties and applications such as crystal structure and phase transition, band structure, spectroscopy, superconductivity, photocatalytic activity, electrochemical sensing, and fuel cell activity of FeSe have been discussed. - Graphical abstract: Iron selenide can be synthesized by solid state reactions, chemical vapor deposition, solution chemistry routes, chemical vapor transport and spray pyrolysis. - Highlights: • Different fabrication methods of iron selenide (FeSe) have been reviewed. • Crystal structure, band structure and spectroscopy of FeSe have been discussed.more » • Superconducting, catalytic and fuel cell application of FeSe have been presented.« less
NASA Astrophysics Data System (ADS)
Oh-ishi, Katsuyoshi; Nagumo, Kenta; Tateishi, Kazuya; Takafumi, Ohnishi; Yoshikane, Kenta; Sugiyama, Machiko; Oka, Kengo; Kobayashi, Ryota
2017-01-01
Mo-Re-C compounds containing Mo7Re13C with the β-Mn structure were synthesized with high-melting-temperature metals Mo, Re, and C powders using a conventional solid state method with a planetary ball milling machine instead of the arc melting method. Use of the ball milling machine was necessary to obtain Mo7Re13C with the β-Mn structure using the solid state method. Almost single-phase Mo7Re13C with a trace of impurity were obtained using the synthesis method. By XRF and lattice parameter measurements on the samples, Fe element existed in the compound synthesized using the planetary ball milling machine with a pot and balls made of steel, though Fe element was not detected in the compound synthesized using a pot and balls made of tungsten carbide. The former compound containg the Fe atom did not show superconductivity but the latter compound without the Fe atom showed superconductivity at 6.1 K.
Chemical degradation of proteins in the solid state with a focus on photochemical reactions.
Mozziconacci, Olivier; Schöneich, Christian
2015-10-01
Protein pharmaceuticals comprise an increasing fraction of marketed products but the limited solution stability of proteins requires considerable research effort to prepare stable formulations. An alternative is solid formulation, as proteins in the solid state are thermodynamically less susceptible to degradation. Nevertheless, within the time of storage a large panel of kinetically controlled degradation reactions can occur such as, e.g., hydrolysis reactions, the formation of diketopiperazine, condensation and aggregation reactions. These mechanisms of degradation in protein solids are relatively well covered by the literature. Considerably less is known about oxidative and photochemical reactions of solid proteins. This review will provide an overview over photolytic and non-photolytic degradation reactions, and specially emphasize mechanistic details on how solid structure may affect the interaction of protein solids with light. Copyright © 2014 Elsevier B.V. All rights reserved.
Multilevel perspective on high-order harmonic generation in solids
NASA Astrophysics Data System (ADS)
Wu, Mengxi; Browne, Dana A.; Schafer, Kenneth J.; Gaarde, Mette B.
2016-12-01
We investigate high-order harmonic generation in a solid, modeled as a multilevel system dressed by a strong infrared laser field. We show that the cutoff energies and the relative strengths of the multiple plateaus that emerge in the harmonic spectrum can be understood both qualitatively and quantitatively by considering a combination of adiabatic and diabatic processes driven by the strong field. Such a model was recently used to interpret the multiple plateaus exhibited in harmonic spectra generated by solid argon and krypton [G. Ndabashimiye et al., Nature 534, 520 (2016), 10.1038/nature17660]. We also show that when the multilevel system originates from the Bloch state at the Γ point of the band structure, the laser-dressed states are equivalent to the Houston states [J. B. Krieger and G. J. Iafrate, Phys. Rev. B 33, 5494 (1986), 10.1103/PhysRevB.33.5494] and will therefore map out the band structure away from the Γ point as the laser field increases. This leads to a semiclassical three-step picture in momentum space that describes the high-order harmonic generation process in a solid.
Garai, Mousumi; Biradha, Kumar
2015-09-01
The homologous series of phenyl and pyridyl substituted bis(acrylamido)alkanes have been synthesized with the aim of systematic analysis of their crystal structures and their solid-state [2 + 2] reactivities. The changes in the crystal structures with respect to a small change in the molecular structure, that is by varying alkyl spacers between acrylamides and/or by varying the end groups (phenyl, 2-pyridyl, 3-pyridyl, 4-pyridyl) on the C-terminal of the amide, were analyzed in terms of hydrogen-bonding interference (N-H⋯Npy versus N-H⋯O=C) and network geometries. In this series, a greater tendency towards the formation of N-H⋯O hydrogen bonds (β-sheets and two-dimensional networks) over N-H⋯N hydrogen bonds was observed. Among all the structures seven structures were found to have the required alignments of double bonds for the [2 + 2] reaction such that the formations of single dimer, double dimer and polymer are facilitated. However, only four structures were found to exhibit such a solid-state [2 + 2] reaction to form a single dimer and polymers. The two-dimensional hydrogen-bonding layer via N-H⋯O hydrogen bonds was found to promote solid-state [2 + 2] photo-polymerization in a single-crystal-to-single-crystal manner. Such two-dimensional layers were encountered only when the spacer between acryl amide moieties is butyl. Only four out of the 16 derivatives were found to form hydrates, two each from 2-pyridyl and 4-pyridyl derivatives. The water molecules in these structures govern the hydrogen-bonding networks by the formation of an octameric water cluster and one-dimensional zigzag water chains. The trends in the melting points and densities were also analyzed.
NASA Technical Reports Server (NTRS)
1990-01-01
The Titan-CW Ti:sapphire (titanium-doped sapphire) tunable laser is an innovation in solid-state laser technology jointly developed by the Research and Solid State Laser Divisions of Schwartz Electro-optics, Inc. (SEO). SEO is producing the laser for the commercial market, an outgrowth of a program sponsored by Langley Research Center to develop Ti:sapphire technology for space use. SEO's Titan-CW series of Ti:sapphire tunable lasers have applicability in analytical equipment designed for qualitative analysis of carbohydrates and proteins, structural analysis of water, starch/sugar analyses, and measurements of salt in meat. Further applications are expected in semiconductor manufacture, in medicine for diagnosis and therapy, and in biochemistry.
Luca, Sorin; Yau, Wai-Ming; Leapman, Richard; Tycko, Robert
2008-01-01
The 37-residue amylin peptide, also known as islet amyloid polypeptide, forms fibrils that are the main peptide or protein component of amyloid that develops in the pancreas of type 2 diabetes patients. Amylin also readily forms amyloid fibrils in vitro that are highly polymorphic under typical experimental conditions. We describe a protocol for the preparation of synthetic amylin fibrils that exhibit a single predominant morphology, which we call a striated ribbon, in electron microscope and atomic force microscope images. Solid state nuclear magnetic resonance (NMR) measurements on a series of isotopically labeled samples indicate a single molecular structure within the striated ribbons. We use scanning transmission electron microscopy and several types of one-dimensional and two-dimensional solid state NMR techniques to obtain constraints on the peptide conformation and supramolecular structure in these amylin fibrils, and derive molecular structural models that are consistent with the experimental data. The basic structural unit in amylin striated ribbons, which we call the protofilament, contains four-layers of parallel β-sheets, formed by two symmetric layers of amylin molecules. The molecular structure of amylin protofilaments in striated ribbons closely resembles the protofilament in amyloid fibrils with similar morphology formed by the 40-residue β-amyloid peptide that is associated with Alzheimer's disease. PMID:17979302
Laser waveform control of extreme ultraviolet high harmonics from solids.
You, Yong Sing; Wu, Mengxi; Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Gholam-Mirzaei, Shima; Browne, Dana A; Chini, Michael; Chang, Zenghu; Schafer, Kenneth J; Gaarde, Mette B; Ghimire, Shambhu
2017-05-01
Solid-state high-harmonic sources offer the possibility of compact, high-repetition-rate attosecond light emitters. However, the time structure of high harmonics must be characterized at the sub-cycle level. We use strong two-cycle laser pulses to directly control the time-dependent nonlinear current in single-crystal MgO, leading to the generation of extreme ultraviolet harmonics. We find that harmonics are delayed with respect to each other, yielding an atto-chirp, the value of which depends on the laser field strength. Our results provide the foundation for attosecond pulse metrology based on solid-state harmonics and a new approach to studying sub-cycle dynamics in solids.
Preparation of resveratrol-loaded nanoporous silica materials with different structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popova, Margarita, E-mail: mpopova@orgchem.bas.bg; Szegedi, Agnes; Mavrodinova, Vesselina
2014-11-15
Solid, nanoporous silica-based spherical mesoporous MCM-41 and KIL-2 with interparticle mesoporosity as well as nanosized zeolite BEA materials differing in morphology and pore size distribution, were used as carriers for the preparation of resveratrol-loaded delivery systems. Two preparation methods have been applied: (i) loading by mixing of resveratrol and mesoporous carrier in solid state and (ii) deposition in ethanol solution. The parent and the resveratrol loaded carriers were characterized by XRD, TEM, N2 physisorption, thermal analysis, and FT-IR spectroscopy. The influence of the support structure on the adsorption capacity and the release kinetics of this poorly soluble compound were investigated.more » Our results indicated that the chosen nanoporous silica supports are suitable for stabilization of trans-resveratrol and reveal controlled release and ability to protect the supported compound against degradation regardless of loading method. The solid-state dry mixing appears very effective for preparation of drug formulations composed of poorly soluble compound. - Graphical abstract: trans-Resveratrol was stabilized in the pores of BEA zeolite, MCM-41and KIL2 mesoporous silicas. - Highlights: • BEA, KIL-2 and MCM-41 materials were used as carriers for resveratrol loading. • Resveratrol encapsulation in ethanol solution and solid state procedure were applied. • The solid-state preparation appears very effective for stabilization of trans-resveratrol.« less
NASA Astrophysics Data System (ADS)
Pandey, Gaind P.; Klankowski, Steven A.; Liu, Tao; Wu, Judy; Li, Jun
2017-02-01
A novel solid-state battery-supercapacitor hybrid device is fabricated for high-performance electrical energy storage using a Si anode and a TiO2 cathode in conjunction with a flexible, solid-like gel polymer electrolyte film as the electrolyte and separator. The electrodes were fabricated as three-dimensional nanostructured vertical arrays by sputtering active materials as conformal shells on vertically aligned carbon nanofibers (VACNFs) which serve as the current collector and structural template. Such nanostructured vertical core-shell array-electrodes enable short Li-ion diffusion path and large pseudocapacitive contribution by fast surface reactions, leading to the hybrid features of batteries and supercapacitors that can provide high specific energy over a wide range of power rates. Due to the improved mechanical stability of the infiltrated composite structure, the hybrid cell shows excellent cycling stability and is able to retain more than 95% of the original capacity after 3500 cycles. More importantly, this solid-state device can stably operate in a temperature range from -20 to 60 °C with a very low self-discharge rate and an excellent shelf life. This solid-state architecture is promising for the development of highly stable thin-film hybrid energy storage devices for unconventional applications requiring largely varied power, wider operation temperature, long shelf-life and higher safety standards.
Joint experimental and computational 17O solid state NMR study of Brownmillerite Ba2In2O5.
Dervişoğlu, Rıza; Middlemiss, Derek S; Blanc, Frédéric; Holmes, Lesley A; Lee, Yueh-Lin; Morgan, Dane; Grey, Clare P
2014-02-14
Structural characterization of Brownmillerite Ba2In2O5 was achieved by an approach combining experimental solid-state NMR spectroscopy, density functional theory (DFT) energetics, and GIPAW NMR calculations. While in the previous study of Ba2In2O5 by Adler et al. (S. B. Adler, J. A. Reimer, J. Baltisberger and U. Werner, J. Am. Chem. Soc., 1994, 116, 675-681), three oxygen resonances were observed in the (17)O NMR spectra and assigned to the three crystallographically unique O sites, the present high resolution (17)O NMR measurements under magic angle spinning (MAS) find only two resonances. The resonances have been assigned using first principles (17)O GIPAW NMR calculations to the combination of the O ions connecting the InO4 tetrahedra and the O ions in equatorial sites in octahedral InO6 coordination, and to the axial O ions linking the four- and six-fold coordinated In(3+) ions. Possible structural disorder was investigated in two ways: firstly, by inclusion of the high-energy structure also previously studied by Mohn et al. (C. E. Mohn, N. L. Allan, C. L. Freeman, P. Ravindran and S. Stølen, J. Solid State Chem., 2005, 178, 346-355), where the structural O vacancies are stacked rather than staggered as in Brownmillerite and, secondly, by exploring structures derived from the ground-state structure but with randomly perturbed atomic positions. There is no noticeable NMR evidence for any substantial occupancy of the high-energy structure at room temperature.
NASA Astrophysics Data System (ADS)
Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan
The Table of Contents for the book is as follows: * Preface * Invited Papers * Recent Trends in Solid State Ionics * Theoretical Aspects of Fast Ion Conduction in Solids * Chemical Bonding and Intercalation Processes in Framework Structures * Extra-Large Near-Electrode Regions and Diffusion Length on the Solid Electrolyte-Electrode Interface as Studied by Photo-EMF Method * Frequency Response of Glasses * XPS Studies on Ion Conducting Glasses * Characterization of New Ambient Temperature Lithium Polymer-Electrolyte * Recent Development of Polymer Electrolytes: Solid State Voltammetry in Polymer Electrolytes * Secondary Solid State Batteries: From Material Properties to Commercial Development * Silver Vanadium Oxide Bronze and its Applications for Electrochemical Devices * Study on β''-Alumina Solid Electrolyte and β Battery in SIC * Materials for Solid Oxide Fuel Cells * Processing for Super Superionic Ceramics * Hydrogen Production Using Oxide Ionic or Protonic Conductor * Ionically Conductive Sulfide-Based Lithium Glasses * Relation of Conductivity to Structure and Structural Relaxation in Ion-Conducting Glasses * The Mechanism of Ionic Conductivity in Glass * The Role of Synthesis and Structure in Solid State Ionics - Electrodes to Superconductors * Electrochromism in Spin-Coated Thin Films from Peroxo-Poly tungstate Solutions * Electrochemical Studies on High Tc Superconductors * Multivalence Fast Ionic Conductors - Montmorillonites * Contributed Papers * Volt-Ampere Characteristics and Interface Charge Transport in Solid Electrolytes * Internal Friction of Silver Chalcogenides * Thermal Expansion of Ionic and Superionic Solids * Improvement of PEO-LiCF3SO3 Complex Electrolytes Using Additives * Ionic Conductivity of Modified Poly (Methoxy Polyethylene Glycol Methacrylate) s-Lithium Salt Complexes * Solid Polymer Electrolytes of Crosslinked Polyethylene Glycol and Lithium Salts * Single Ionic Conductors Prepared by in Situ Polymerization of Methacrylic Acid Alkali Metal Salts in Polyethylene Oxide * Redox Behavior of Alkyl Viologens in Ion Conductive Polymer Solid * Ionic Conductivity of Interpenetrating Polymer Networks Containing LiClO4 * Electrochemical Behaviors of Porphyrins Incorporated into Solid Polymer Electrolytes * Lithium Ion Conducting Polymer Electrolytes * Electrochemical Synthesis of Polyaniline Thin Film * Electrochemical Aspect of Polyaniline Electrode in Aqueous Electrolyte * Mixed Cation Effect in Epoxy Resin - PEO-IPN Containing Perchlorate Salts * Conductivity, Raman and IR Studies on the Doped PEO-PPG Polymer Blends * Proton Conducting Polymeric Electrolytes from Poly (Ethyleneoxide) System * Surface Structure of Polymer Solid Ionic Conductors Based on Segmented Polyether Polyurethaneureas * Study on Addition Products of LiI and Diethylene Glycol etc. * Solid State Rechargeable Battery Using Paper Form Copper Ion Conductive Solid Electrolyte * Characterization of Electrode/Electrolyte Interfaces in Battery Li/PVAC-Li-Mont./Li1+xV3O8 by AC Impedance Method * Investigation on Reversibility of Vanadium Oxide Cathode Materials in Solid-State Battery * Preparation and Characterization of Silver Boromolybdate Solid State Batteries * The Electric Properties of the Trinary Cathode Material and its Application in Magnisium Solid State Cell * Electrical Properties and Phase Relation of Na2Mo0.1S0.9O4 Doped with Rare Earth Sulfate * New Electrochemical Probe for Rapid Determination of Silicon Concentration in Hot Metals * A New Theoretical EMF Expression for SOx(x = 2, 3) Sensors Based on Na2SO4 Solid Electrolyte * Evaluation of the Electrochemical SOx(x = 2, 3) Sensor with a Tubular Nasicon Electrolyte * The Response Time of a Modified Oxygen Sensor Using Zirconia Electrolyte * Preparation, Characteristics and Sintering Behavior of MgO-PSZ Powder * Reaction between La0.9MnO3 and Yttria Doped Zirconia * Development of the Extended-Life Oxygen Sensor of Caβ''-Al2O3 * Caβ''-Al2O3 Ultra-Low Oxygen Sensor * Measurement of Sulfur Concentration with Zirconia-Based Electrolyte Cell in Molten Iron * Influence of SO2 on the Conductivity of Calcia Stabilized Zirconia * Reactions between YSZ and La1-xCaxMnO3 as a Cathode for SOFC * Preparation and Electrical Properties of Lithium β''-Alumina * Influence of Lithia Content on Properties of β''-Alumina Ceramics * Electrical Conductivity of Solid Solutions of Na2SO4 with Na2SeO4 * Effect of Antagonist XO42- = MoO42- and WO42- Ion Substitution on the Electrical Conductivity of Li2SO4 : Li2CO3 Eutectic System * Study on the Electrical Properties and Structure of Multicrystal Materials Li5+xGe1-xCrxV3O12 * Preliminary Study on Synthesis of Silver Zirconium Silicophosphates by Sol - Gel Process * Sodium Ion Conduction in Iron(III) Exchanged Y Zeolite * Electrical Properties of V5O9+x (x = 0, 1) and CuxV5O9.1 * Electrical Properties of the Tetragonal ZrO2 Stabilized with CeO2, CeO2 + Gd2O3 * Study of Preparation and Ionic Conduction of Doped Barium Cerate Perovskite * Preparing Fine Alumina Powder by Homogeneous Precipitation Method for Fabricating β''-Al2O3 * Amorphous Lithium Ion Conductors in Li2S-SiS2-LiBO2 System * Mixed Alkali Effect of Glass Super Ionic Conductors * Electrical Property and Phase Separation, Crystallization Behavior of A Cu+-Conducting Glass * Investigation of Phase Separation and Crystallization for 0.4CuI-0.3 Cu2O-0.3P2O5 Glass by SEM and XRD * Study on the Lithium Solid Electrolytes of Li3N-LiX(X = F, Cl, Br, I)-B2O3 Ternary Systems * Synthesis and Characterization of the Li2O : P2O5 : WO3 Glasses * The Electrochromic Properties of Electrodeposited Ni-O Films in Nonaqueous Electrolytes * All Solid-State WO3-MnO2 Based Electrochromic Window * Electrochromism in Nickel Oxide Films * E S R of X-Irradiated Melt Quenched Li2SO4 * Mixed-Alkali Effect in the Li2O-Na2O-TeO2 Glass System * Electrical and Thermal Studies on Silver Tellurite Glasses * Late Entries (Invited Papers) * Proton Conducting Polymers * Light Scattering Studies on Superionic Conductor YSZ * Development of Thin Film Surface Modified Solid State Electrochemical Gas Sensors * Author Index * List of Participants
'All-solid-state' electrochemistry of a protein-confined polymer electrolyte film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parthasarathy, Meera; Pillai, Vijayamohanan K.; Mulla, Imtiaz S.
2007-12-07
Interfacial redox behavior of a heme protein (hemoglobin) confined in a solid polymer electrolyte membrane, Nafion (a perfluoro sulfonic acid ionomer) is investigated using a unique 'all-solid-state' electrochemical methodology. The supple phase-separated structure of the polymer electrolyte membrane, with hydrophilic pools containing solvated protons and water molecules, is found to preserve the incorporated protein in its active form even in the solid-state, using UV-visible, Fluorescence (of Tryptophan and Tyrosine residues) and DRIFT (diffuse reflectance infrared Fourier transform) spectroscopy. More specifically, solid-state cyclic voltammetry and electrochemical impedance of the protein-incorporated polymer films reveal that the Fe{sup 2+}-form of the entrapped proteinmore » is found to bind molecular oxygen more strongly than the native protein. In the 'all-solid-state' methodology, as there is no need to dip the protein-modified electrode in a liquid electrolyte (like the conventional electrochemical methods), it offers an easier means to study a number of proteins in a variety of polymer matrices (even biomimetic assemblies). In addition, the results of the present investigation could find interesting application in a variety of research disciplines, in addition to its fundamental scientific interest, including protein biotechnology, pharmaceutical and biomimetic chemistry.« less
A Two-Tailed Phosphopeptide Crystallizes to Form a Lamellar Structure.
Pellach, Michal; Mondal, Sudipta; Harlos, Karl; Mance, Deni; Baldus, Marc; Gazit, Ehud; Shimon, Linda J W
2017-03-13
The crystal structure of a designed phospholipid-inspired amphiphilic phosphopeptide at 0.8 Å resolution is presented. The phosphorylated β-hairpin peptide crystallizes to form a lamellar structure that is stabilized by intra- and intermolecular hydrogen bonding, including an extended β-sheet structure, as well as aromatic interactions. This first reported crystal structure of a two-tailed peptidic bilayer reveals similarities in thickness to a typical phospholipid bilayer. However, water molecules interact with the phosphopeptide in the hydrophilic region of the lattice. Additionally, solid-state NMR was used to demonstrate correlation between the crystal structure and supramolecular nanostructures. The phosphopeptide was shown to self-assemble into semi-elliptical nanosheets, and solid-state NMR provides insight into the self-assembly mechanisms. This work brings a new dimension to the structural study of biomimetic amphiphilic peptides with determination of molecular organization at the atomic level. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
RNA Characterization by Solid-State NMR Spectroscopy.
Yang, Yufei; Wang, Shenlin
2018-06-21
The structures of RNAs, which play critical roles in various biological processes, provide important clues and insights into the biological functions of these molecules. However, RNA structure determination remains a challenging topic. In recent years, magic-angle-spinning solid-state NMR (MAS SSNMR) has emerged as an alternative technique for structural and dynamic characterization of RNA. MAS SSNMR has been successfully applied to provide atomic-level structural information about several RNA molecules and RNA-protein complexes. In this Minireview, we give an overview of recent progress in the field of MAS SSNMR based RNA structural characterization, and introduce sample preparation strategies and SSNMR spectroscopic techniques that have been incorporated to identify RNA structural elements. We also highlight a few impressive examples of RNAs that have been investigated extensively by SSNMR. Finally, we briefly discuss future technical trends in the use of MAS SSNMR to facilitate RNA structure determination. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A solid state source of photon triplets based on quantum dot molecules
Khoshnegar, Milad; Huber, Tobias; Predojević, Ana; Dalacu, Dan; Prilmüller, Maximilian; Lapointe, Jean; Wu, Xiaohua; Tamarat, Philippe; Lounis, Brahim; Poole, Philip; Weihs, Gregor; Majedi, Hamed
2017-01-01
Producing advanced quantum states of light is a priority in quantum information technologies. In this context, experimental realizations of multipartite photon states would enable improved tests of the foundations of quantum mechanics as well as implementations of complex quantum optical networks and protocols. It is favourable to directly generate these states using solid state systems, for simpler handling and the promise of reversible transfer of quantum information between stationary and flying qubits. Here we use the ground states of two optically active coupled quantum dots to directly produce photon triplets. The formation of a triexciton in these ground states leads to a triple cascade recombination and sequential emission of three photons with strong correlations. We record 65.62 photon triplets per minute under continuous-wave pumping, surpassing rates of earlier reported sources. Our structure and data pave the way towards implementing multipartite photon entanglement and multi-qubit readout schemes in solid state devices. PMID:28604705
Woody residues and solid waste wood available for recovery in the United States, 2002
David B. McKeever; Robert H. Falk
2004-01-01
Large amounts of woody residues and solid wood waste are generated annually in the United States from the extraction of timber from forests, from forestry cultural operations, in the conversion of forest land to nonforest uses, in the initial processing of roundwood timber into usable products, in the construction and demolition of buildings and structures, and in the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, Keith V.; Childs, Bradley C.; Mast, Daniel S.
The molecular and electronic structures for the Group 7b heptoxides were investigated by computational methods as both isolated molecules and in the solid-state. The metal-oxygen-metal bending angle of the single molecule increased with increasing atomic number, with Re 2O 7 preferring a linear structure. Natural bond orbital and localized orbital bonding analyses indicate that there is a three-center covalent bond between the metal atoms and the bridging oxygen, and the increasing ionic character of the bonds favors larger bond angles. The calculations accurately reproduce the experimental crystal structures within a few percent. Analysis of the band structures and density ofmore » states shows similar bonding for all of the solid-state heptoxides, including the presence of the three-center covalent bond. DFT+U simulations show that PBE-D3 underpredicts the band gap by ~0.2 eV due to an under-correlation of the metal d conducting states. As a result, homologue and compression studies show that Re 2O 7 adopts a polymeric structure because the Re-oxide tetrahedra are easily distorted by packing stresses to form additional three-center covalent bonds.« less
Three-Dimensional Solid-State Lithium-Ion Batteries Fabricated by Conformal Vapor-Phase Chemistry.
Pearse, Alexander; Schmitt, Thomas; Sahadeo, Emily; Stewart, David M; Kozen, Alexander; Gerasopoulos, Konstantinos; Talin, A Alec; Lee, Sang Bok; Rubloff, Gary W; Gregorczyk, Keith E
2018-05-22
Three-dimensional thin-film solid-state batteries (3D TSSB) were proposed by Long et al. in 2004 as a structure-based approach to simultaneously increase energy and power densities. Here, we report experimental realization of fully conformal 3D TSSBs, demonstrating the simultaneous power-and-energy benefits of 3D structuring. All active battery components-electrodes, solid electrolyte, and current collectors-were deposited by atomic layer deposition (ALD) onto standard CMOS processable silicon wafers microfabricated to form arrays of deep pores with aspect ratios up to approximately 10. The cells utilize an electrochemically prelithiated LiV 2 O 5 cathode, a very thin (40-100 nm) Li 2 PO 2 N solid electrolyte, and a SnN x anode. The fabrication process occurs entirely at or below 250 °C, promising compatibility with a variety of substrates as well as integrated circuits. The multilayer battery structure enabled all-ALD solid-state cells to deliver 37 μAh/cm 2 ·μm (normalized to cathode thickness) with only 0.02% per-cycle capacity loss. Conformal fabrication of full cells over 3D substrates increased the areal discharge capacity by an order of magnitude while simulteneously improving power performance, a trend consistent with a finite element model. This work shows that the exceptional conformality of ALD, combined with conventional semiconductor fabrication methods, provides an avenue for the successful realization of long-sought 3D TSSBs which provide power performance scaling in regimes inaccessible to planar form factor cells.
Gares, Katie L; Bykov, Sergei V; Godugu, Bhaskar; Asher, Sanford A
2014-01-01
We examined the 229 nm deep-ultraviolet resonance Raman (DUVRR) spectra of solution and solid-state trinitrotoluene (TNT) and its solution and solid-state photochemistry. Although TNT photodegrades with a solution quantum yield of ϕ ∼ 0.015, the initial photoproducts show DUVRR spectra extraordinarily similar to pure TNT, due to the similar photoproduct enhancement of the -NO2 stretching vibrations. This results in TNT-like DUVRR spectra even after complete TNT photolysis. These ultraviolet resonance Raman spectral bands enable DUVRR of trace as well as DUVRR standoff TNT detection. We determined the structure of various initial TNT photoproducts by using liquid chromatography-mass spectrometry and tandem mass spectrometry. Similar TNT DUVRR spectra and photoproducts are observed in the solution and solid states.
NASA Astrophysics Data System (ADS)
Duer, Melinda J.
2015-04-01
Solid-state NMR spectroscopy has had a major impact on our understanding of the structure of mineralized tissues, in particular bone. Bone exemplifies the organic-inorganic composite structure inherent in mineralized tissues. The organic component of the extracellular matrix in bone is primarily composed of ordered fibrils of collagen triple-helical molecules, in which the inorganic component, calcium phosphate particles, composed of stacks of mineral platelets, are arranged around the fibrils. This perspective argues that key factors in our current structural model of bone mineral have come about through NMR spectroscopy and have yielded the primary information on how the mineral particles interface and bind with the underlying organic matrix. The structure of collagen within the organic matrix of bone or any other structural tissue has yet to be determined, but here too, this perspective shows there has been real progress made through application of solid-state NMR spectroscopy in conjunction with other techniques. In particular, NMR spectroscopy has highlighted the fact that even within these structural proteins, there is considerable dynamics, which suggests that one should be cautious when using inherently static structural models, such as those arising from X-ray diffraction analyses, to gain insight into molecular roles. It is clear that the NMR approach is still in its infancy in this area, and that we can expect many more developments in the future, particularly in understanding the molecular mechanisms of bone diseases and ageing.
Ahmed, Mumdooh A M; Bamm, Vladimir V; Shi, Lichi; Steiner-Mosonyi, Marta; Dawson, John F; Brown, Leonid; Harauz, George; Ladizhansky, Vladimir
2009-01-01
The 18.5 kDa isoform of myelin basic protein (MBP) is a peripheral membrane protein that maintains the structural integrity of the myelin sheath of the central nervous system by conjoining the cytoplasmic leaflets of oligodendrocytes and by linking the myelin membrane to the underlying cytoskeleton whose assembly it strongly promotes. It is a multifunctional, intrinsically disordered protein that behaves primarily as a structural stabilizer, but with elements of a transient or induced secondary structure that represent binding sites for calmodulin or SH3-domain-containing proteins, inter alia. In this study we used solid-state NMR (SSNMR) and Fourier transform infrared (FTIR) spectroscopy to study the conformation of 18.5 kDa MBP in association with actin microfilaments and bundles. FTIR spectroscopy of fully (13)C,(15)N-labeled MBP complexed with unlabeled F-actin showed induced folding of both protein partners, viz., some increase in beta-sheet content in actin, and increases in both alpha-helix and beta-sheet content in MBP, albeit with considerable extended structure remaining. Solid-state NMR spectroscopy revealed that MBP in MBP-actin assemblies is structurally heterogeneous but gains ordered secondary structure elements (both alpha-helical and beta-sheet), particularly in the terminal fragments and in a central immunodominant epitope. The overall conformational polymorphism of MBP is consistent with its in vivo roles as both a linker (membranes and cytoskeleton) and a putative signaling hub.
Vassallo, A.M.; Wilson, M.A.; Collin, P.J.; Oades, J.M.; Waters, A.G.; Malcolm, R.L.
1987-01-01
An examination of coals, coal tars, a fulvic acid, and soil fractions by solid-state 13C NMR spectrometry has demonstrated widely differing behavior regarding quantitative representation in the spectrum. Spin counting experiments on coal tars and the fulvic acid show that almost all the sample carbon is observed in both solution and solid-state NMR spectra. Similar experiments on two coals (a lignite and a bituminous coal) show that most (70-97%) of the carbon is observed; however, when the lignite is ion exchanged with 3% (w/w) Fe3+, the fraction of carbon observed drops to below 10%. In additional experiments signal intensity from soil samples is enhanced by a simple dithionite treatment. This is illustrated by 13C, 27Al, and 29Si solid-state NMR experiments on soil fractions. ?? 1987 American Chemical Society.
Advances in Solid State Joining of High Temperature Alloys
NASA Technical Reports Server (NTRS)
Ding, Jeff; Schneider, Judy
2011-01-01
Many of the metals used in the oil and gas industry are difficult to fusion weld including Titanium and its alloys. Solid state joining processes are being pursued as an alternative process to produce robust structures more amenable to high pressure applications. Various solid state joining processes include friction stir welding (FSW) and a patented modification termed thermal stir welding (TSW). The configuration of TSWing utilizes an induction coil to preheat the material minimizing the burden on the weld tool extending its life. This provides the ability to precisely select and control the temperature to avoid detrimental changes to the microstructure. The work presented in this presentation investigates the feasibility of joining various titanium alloys using the solid state welding processes of FSW and TSW. Process descriptions and attributes of each weld process will be presented. Weld process set ]up and welding techniques will be discussed leading to the challenges experienced. Mechanical property data will also be presented.
Isotope Labeling for Solution and Solid-State NMR Spectroscopy of Membrane Proteins
Verardi, Raffaello; Traaseth, Nathaniel J.; Masterson, Larry R.; Vostrikov, Vitaly V.; Veglia, Gianluigi
2013-01-01
In this chapter, we summarize the isotopic labeling strategies used to obtain high-quality solution and solid-state NMR spectra of biological samples, with emphasis on integral membrane proteins (IMPs). While solution NMR is used to study IMPs under fast tumbling conditions, such as in the presence of detergent micelles or isotropic bicelles, solid-state NMR is used to study the structure and orientation of IMPs in lipid vesicles and bilayers. In spite of the tremendous progress in biomolecular NMR spectroscopy, the homogeneity and overall quality of the sample is still a substantial obstacle to overcome. Isotopic labeling is a major avenue to simplify overlapped spectra by either diluting the NMR active nuclei or allowing the resonances to be separated in multiple dimensions. In the following we will discuss isotopic labeling approaches that have been successfully used in the study of IMPs by solution and solid-state NMR spectroscopy. PMID:23076578
Schanda, Paul; Ernst, Matthias
2016-01-01
Magic-angle spinning solid-state NMR spectroscopy is an important technique to study molecular structure, dynamics and interactions, and is rapidly gaining importance in biomolecular sciences. Here we provide an overview of experimental approaches to study molecular dynamics by MAS solid-state NMR, with an emphasis on the underlying theoretical concepts and differences of MAS solid-state NMR compared to solution-state NMR. The theoretical foundations of nuclear spin relaxation are revisited, focusing on the particularities of spin relaxation in solid samples under magic-angle spinning. We discuss the range of validity of Redfield theory, as well as the inherent multi-exponential behavior of relaxation in solids. Experimental challenges for measuring relaxation parameters in MAS solid-state NMR and a few recently proposed relaxation approaches are discussed, which provide information about time scales and amplitudes of motions ranging from picoseconds to milliseconds. We also discuss the theoretical basis and experimental measurements of anisotropic interactions (chemical-shift anisotropies, dipolar and quadrupolar couplings), which give direct information about the amplitude of motions. The potential of combining relaxation data with such measurements of dynamically-averaged anisotropic interactions is discussed. Although the focus of this review is on the theoretical foundations of dynamics studies rather than their application, we close by discussing a small number of recent dynamics studies, where the dynamic properties of proteins in crystals are compared to those in solution. PMID:27110043
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammer, M.S.; Messerle, L.
1990-05-02
The method recently reported by Herberhold and co-workers for the high-yield preparation of (C{sub 5}Me{sub 5})VX{sub 3} (X = Cl, Br or I) by direct halogenation of (C{sub 5}Me{sub 5})V(OCO){sub 4} has been reproduced by the authors. Spectroscopic and spectrometric data for the (C{sub 5}Me{sub 5}) and C{sub 5}Me{sub 4}Et compounds and the solid-state molecular structure of ({eta}-C{sub 5}Me{sub 4}Et)VCI{sub 3} are reported. 21 refs., 1 fig., 4 tabs.
UV-induced solvent free synthesis of truxillic acid-bile acid conjugates
NASA Astrophysics Data System (ADS)
Koivukorpi, Juha; Kolehmainen, Erkki
2009-07-01
The solvent free UV-induced [2 + 2] intermolecular cycloaddition of two molecules of 3α-cinnamic acid ester of methyl lithocholate produced in 99% yield of α- and ɛ-truxillic acid-bis(methyl lithocholate) isomers, which possess two structurally different potential binding sites. A prerequisite for this effective solid state reaction is a proper self-assembled crystal structure of the starting conjugate crystallized from acetonitrile. The crystallization of cinnamic acid ester of methyl lithocholate from acetonitrile produces two different crystalline forms (polymorphs), which is the reason for the solid state formation of two isomers of truxillic acid-bis(methyl lithocholate).
On the structure of amorphous calcium carbonate--a detailed study by solid-state NMR spectroscopy.
Nebel, Holger; Neumann, Markus; Mayer, Christian; Epple, Matthias
2008-09-01
The calcium carbonate phases calcite, aragonite, vaterite, monohydrocalcite (calcium carbonate monohydrate), and ikaite (calcium carbonate hexahydrate) were studied by solid-state NMR spectroscopy ( (1)H and (13)C). Further model compounds were sodium hydrogencarbonate, potassium hydrogencarbonate, and calcium hydroxide. With the help of these data, the structure of synthetically prepared additive-free amorphous calcium carbonate (ACC) was analyzed. ACC contains molecular water (as H 2O), a small amount of mobile hydroxide, and no hydrogencarbonate. This supports the concept of ACC as a transient precursor in the formation of calcium carbonate biominerals.
Solid Rocket Booster Structural Test Article
NASA Technical Reports Server (NTRS)
1978-01-01
The structural test article to be used in the solid rocket booster (SRB) structural and load verification tests is being assembled in a high bay building of the Marshall Space Flight Center (MSFC). The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment.
NASA Astrophysics Data System (ADS)
Quotane, Ilyasse; El Boudouti, El Houssaine; Djafari-Rouhani, Bahram
2018-01-01
We investigate theoretically and numerically the possibility of existence of Fano and acoustic-induced transparency (AIT) resonances in a simple though realistic one-dimensional acoustic structure made of solid-fluid layers inserted between two fluids. These resonances are obtained by combining appropriately the zeros of transmission (antiresonance) induced by the solid layers and the local resonances induced by the solid or combined solid-fluid layers with surface free boundary conditions. In particular, we show the possibility of trapped modes, also called bound states in continuum, which have recently found a high renewal interest. These modes appear as resonances with zero width in the transmission spectra as well as in the density of states (DOS). We consider three different structures: (i) a single solid layer inserted between two fluids. This simple structure shows the possibility of existence of trapped modes, which are discrete modes of the solid layer that lie in the continuum modes of the surrounding fluids. We give explicit analytical expressions of the dispersion relation of these eigenmodes of the solid layer which are found independent of the nature of the surrounding fluids. By slightly detuning the angle of incidence from that associated to the trapped mode, we get a well-defined Fano resonance characterized by an asymmetric Fano profile in the transmission spectra. (ii) The second structure consists of a solid-fluid-solid triple layer embedded between two fluids. This structure is found more appropriate to show both Fano and acoustic-induced transparency resonances. We provide detailed analytical expressions for the transmission and reflection coefficients that enable us to deduce a closed-form expression of the dispersion relation giving the trapped modes. Two situations can be distinguished in the triple-layer system: in the case of a symmetric structure (i.e., the same solid layers) we show, by detuning the incidence angle θ , the possibility of existence of Fano resonances that can be fitted following a Fano-type expression. The variation of the Fano parameter that describes the asymmetry of such resonances as well as their width versus θ is studied in detail. In the case of an asymmetric structure (i.e., different solid layers), we show the existence of an incidence angle that enables to squeeze a resonance between two transmission zeros induced by the two solid layers. This resonance behaves like an AIT resonance, its position and width depend on the nature of the fluid and solid layers as well as on the difference between the thicknesses of the solid layers. (iii) In the case of a periodic structure (phononic crystal), we show that trapped modes and Fano resonances give rise, respectively, to dispersionless flat bands with zero group velocity and nearly flat bands with negative or positive group velocities. The analytical results presented here are obtained by means of the Green's function method which enables to deduce in closed form: dispersion curves, transmission and reflection coefficients, DOS, as well as the displacement fields. The proposed solid-fluid layered structures should have important applications for designing acoustic mirrors and acoustic filters as well as supersonic and subsonic materials.
Barochemistry: Predictive Solid State Chemistry
NASA Astrophysics Data System (ADS)
Yoo, Choong-Shik
The application of compression energy comparable to that of chemical bonds, but substantially greater than those of defects and grain boundaries in solids allows us to pursue novel concepts of high-pressure chemistry (or barochemistry) in materials development by design. At such extreme pressures, simple molecular solids covert into densely packed extended network structures that can be predicted from first principles. In recent years, a significant number of new materials and novel extended structures have been designed and discovered in highly compressed states of the first- and second- row elemental solids, including Li, C, H2,N2, O2, CO, CO2, and H2O. These extended solids are extremely hard, have high energy density, and exhibit novel electronic and nonlinear optical properties that are superior to other known materials at ambient conditions. However, these materials are often formed at formidable pressures and are highly metastable at ambient conditions; only a few systems have been recovered, limiting the materials within a realm of fundamental scientific discoveries. Therefore, an exciting new research area has emerged on the barochemistry to understand and, ultimately, control the stability, bonding, structure, and properties of low Z extended solids. In this paper, we will present our recent research to develop hybrid low Z extended solids amenable to scale up synthesis and ambient stabilization, utilizing kinetically controlled processes in dense solid mixtures and discuss the governing fundamental principles of barochemistry. This work was performed in support of the NSF (DMR-1203834), DTRA (HDTRA1-12-01-0020), and DARPA (W31P4Q-12-1-0009).
Matsuo, Takahiro; Gambe, Yoshiyuki; Sun, Yan; Honma, Itaru
2014-01-01
Designing a lithium ion battery (LIB) with a three-dimensional device structure is crucial for increasing the practical energy storage density by avoiding unnecessary supporting parts of the cell modules. Here, we describe the superior secondary battery performance of the bulk all-solid-state LIB cell and a multilayered stacked bipolar cell with doubled cell potential of 6.5 V, for the first time. The bipolar-type solid LIB cell runs its charge/discharge cycle over 200 times in a range of 0.1–1.0 C with negligible capacity decrease despite their doubled output cell potentials. This extremely high performance of the bipolar cell is a result of the superior battery performance of the single cell; the bulk all-solid-state cell has a charge/discharge cycle capability of over 1500 although metallic lithium and LiFePO4 are employed as anodes and cathodes, respectively. The use of a quasi-solid electrolyte consisting of ionic liquid and Al2O3 nanoparticles is considered to be responsible for the high ionic conductivity and electrochemical stability at the interface between the electrodes and the electrolyte. This paper presents the effective applications of SiO2, Al2O3, and CeO2 nanoparticles and various Li+ conducting ionic liquids for the quasi-solid electrolytes and reports the best ever known cycle performances. Moreover, the results of this study show that the bipolar stacked three-dimensional device structure would be a smart choice for future LIBs with higher cell energy density and output potential. In addition, our report presents the advantages of adopting a three-dimensional cell design based on the solid-state electrolytes, which is of particular interest in energy-device engineering for mobile applications. PMID:25124398
Solid-state flat panel imager with avalanche amorphous selenium
NASA Astrophysics Data System (ADS)
Scheuermann, James R.; Howansky, Adrian; Goldan, Amir H.; Tousignant, Olivier; Levéille, Sébastien; Tanioka, K.; Zhao, Wei
2016-03-01
Active matrix flat panel imagers (AMFPI) have become the dominant detector technology for digital radiography and fluoroscopy. For low dose imaging, electronic noise from the amorphous silicon thin film transistor (TFT) array degrades imaging performance. We have fabricated the first prototype solid-state AMFPI using a uniform layer of avalanche amorphous selenium (a-Se) photoconductor to amplify the signal to eliminate the effect of electronic noise. We have previously developed a large area solid-state avalanche a-Se sensor structure referred to as High Gain Avalanche Rushing Photoconductor (HARP) capable of achieving gains of 75. In this work we successfully deposited this HARP structure onto a 24 x 30 cm2 TFT array with a pixel pitch of 85 μm. An electric field (ESe) up to 105 Vμm-1 was applied across the a-Se layer without breakdown. Using the HARP layer as a direct detector, an X-ray avalanche gain of 15 +/- 3 was achieved at ESe = 105 Vμm-1. In indirect mode with a 150 μm thick structured CsI scintillator, an optical gain of 76 +/- 5 was measured at ESe = 105 Vμm-1. Image quality at low dose increases with the avalanche gain until the electronic noise is overcome at a constant exposure level of 0.76 mR. We demonstrate the success of a solid-state HARP X-ray imager as well as the largest active area HARP sensor to date.
1990-08-08
for their collaboration in synthetic study. We also thank Prof. N. Kasai and Dr. Y. Kai for their collaboration in X - ray crystallographic study. We...substantially with the increasing amount of doping as monitored by the powder x - ray diffraction. After doping the sample was kept for at least one day...physical properties at different oxidation states in solution and in the solid state of tEDTB complexed with TCNQF4. The X ray crystal structure of
Li, Z Jane; Abramov, Yuriy; Bordner, Jon; Leonard, Jason; Medek, Ales; Trask, Andrew V
2006-06-28
A cancer candidate, compound 1, is a weak base with two heterocyclic basic nitrogens and five hydrogen-bonding functional groups, and is sparingly soluble in water rendering it unsuitable for pharmaceutical development. The crystalline acid-base pairs of 1, collectively termed solid acid-base complexes, provide significant increases in the solubility and bioavailability compared to the free base, 1. Three dicarboxylic acid-base complexes, sesquisuccinate 2, dimalonate 3, and dimaleate 4, show the most favorable physicochemical profiles and are studied in greater detail. The structural analyses of the three complexes using crystal structure and solid-state NMR reveal that the proton-transfer behavior in these organic acid-base complexes vary successively correlating with Delta pKa. As a result, 2 is a neutral complex, 3 is a mixed ionic and zwitterionic complex and 4 is an ionic salt. The addition of the acidic components leads to maximized hydrogen bond interactions forming extended three-dimensional networks. Although structurally similar, the packing arrangements of the three complexes are considerably different due to the presence of multiple functional groups and the flexible backbone of 1. The findings in this study provide insight into the structural characteristics of complexes involving heterocyclic bases and carboxylic acids, and demonstrate that X-ray crystallography and 15N solid-state NMR are truly complementary in elucidating hydrogen bonding interactions and the degree of proton transfer of these complexes.
Domestic market activity in solid wood products in the United States, 1950-1998.
David B. McKeever
2002-01-01
Solid wood is important to the construction, manufacturing, and shipping segments of the U.S. economy. Nearly all new houses are built with wood, and wood building products are used in the construction of nonresidential buildings, and in the upkeep and improvement of existing structures. Solid wood is used extensively to produce and transport manufactured products. It...
Revisiting HgCl 2: A solution- and solid-state 199Hg NMR and ZORA-DFT computational study
NASA Astrophysics Data System (ADS)
Taylor, R. E.; Carver, Colin T.; Larsen, Ross E.; Dmitrenko, Olga; Bai, Shi; Dybowski, C.
2009-07-01
The 199Hg chemical-shift tensor of solid HgCl 2 was determined from spectra of polycrystalline materials, using static and magic-angle spinning (MAS) techniques at multiple spinning frequencies and field strengths. The chemical-shift tensor of solid HgCl 2 is axially symmetric ( η = 0) within experimental error. The 199Hg chemical-shift anisotropy (CSA) of HgCl 2 in a frozen solution in dimethylsulfoxide (DMSO) is significantly smaller than that of the solid, implying that the local electronic structure in the solid is different from that of the material in solution. The experimental chemical-shift results (solution and solid state) are compared with those predicted by density functional theory (DFT) calculations using the zeroth-order regular approximation (ZORA) to account for relativistic effects. 199Hg spin-lattice relaxation of HgCl 2 dissolved in DMSO is dominated by a CSA mechanism, but a second contribution to relaxation arises from ligand exchange. Relaxation in the solid state is independent of temperature, suggesting relaxation by paramagnetic impurities or defects.
Pindelska, Edyta; Szeleszczuk, Lukasz; Pisklak, Dariusz Maciej; Majka, Zbigniew; Kolodziejski, Waclaw
2015-07-01
Tiotropium bromide is an anticholinergic bronchodilator used in the management of chronic obstructive pulmonary disease. The crystal structures of this compound and its monohydrate have been previously solved and published. However, in this paper, we showed that those structures contain some major errors. Our methodology based on combination of the solid-state nuclear magnetic resonance (NMR) spectroscopy and quantum mechanical gauge-including projector-augmented wave (GIPAW) calculations of NMR shielding constants enabled us to correct those errors and obtain reliable structures of the studied compounds. It has been proved that such approach can be used not only to perform the structural analysis of a drug substance and to identify its polymorphs, but also to verify and optimize already existing crystal structures. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
The Functional Curli Amyloid Is Not Based on In-register Parallel β-Sheet Structure*
Shewmaker, Frank; McGlinchey, Ryan P.; Thurber, Kent R.; McPhie, Peter; Dyda, Fred; Tycko, Robert; Wickner, Reed B.
2009-01-01
The extracellular curli proteins of Enterobacteriaceae form fibrous structures that are involved in biofilm formation and adhesion to host cells. These curli fibrils are considered a functional amyloid because they are not a consequence of misfolding, but they have many of the properties of protein amyloid. We confirm that fibrils formed by CsgA and CsgB, the primary curli proteins of Escherichia coli, possess many of the hallmarks typical of amyloid. Moreover we demonstrate that curli fibrils possess the cross-β structure that distinguishes protein amyloid. However, solid state NMR experiments indicate that curli structure is not based on an in-register parallel β-sheet architecture, which is common to many human disease-associated amyloids and the yeast prion amyloids. Solid state NMR and electron microscopy data are consistent with a β-helix-like structure but are not sufficient to establish such a structure definitively. PMID:19574225
Single Protein Structural Analysis with a Solid-state Nanopore Sensor
NASA Astrophysics Data System (ADS)
Li, Jiali; Golovchenko, Jene; McNabb, David
2005-03-01
We report on the use of solid-state nanopore sensors to detect single polypeptides. These solid-state nanopores are fabricated in thin membranes of silicon nitride by ion beam sculpting...[1]. When an electrically biased nanopore is exposed to denatured proteins in ionic solution, discrete transient electronic signals: current blockages are observed. We demonstrate examples of such transient electronic signals for Bovine Serum Albumin (BSA) and human placental laminin M proteins in Guanidine hydrochloride solution, which suggest that these polypeptides are individually translocating through the nanopore during the detecting process. The amplitude of the current blockages is proportional to the bias voltage. No transient current blockages are observed when proteins are not present in the solution. To probe protein-folding state, pH and temperature dependence experiments are performed. The results demonstrate a solid-state nanopore sensor can be used to detect and analyze single polypeptide chains. Similarities and differences with signals obtained from double stranded DNA in a solid-state nanopore and single stranded DNA in a biological nanopore are discussed. [.1] Li, J., D. Stein, C. McMullan, D. Branton, M.J. Aziz, and J.A. Golovchenko, Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(12 July): p. 166-169.
Gong, Yue; Zhang, Jienan; Jiang, Liwei; Shi, Jin-An; Zhang, Qinghua; Yang, Zhenzhong; Zou, Dongli; Wang, Jiangyong; Yu, Xiqian; Xiao, Ruijuan; Hu, Yong-Sheng; Gu, Lin; Li, Hong; Chen, Liquan
2017-03-29
We report a method for in situ atomic-scale observation of electrochemical delithiation in a working all-solid-state battery using a state-of-the-art chip based in situ transmission electron microscopy (TEM) holder and focused ion beam milling to prepare an all-solid-state lithium-ion battery sample. A battery consisting of LiCoO 2 cathode, LLZO solid state electrolyte and gold anode was constructed, delithiated and observed in an aberration corrected scanning transmission electron microscope at atomic scale. We found that the pristine single crystal LiCoO 2 became nanosized polycrystal connected by coherent twin boundaries and antiphase domain boundaries after high voltage delithiation. This is different from liquid electrolyte batteries, where a series of phase transitions take place at LiCoO 2 cathode during delithiation. Both grain boundaries become more energy favorable along with extraction of lithium ions through theoretical calculation. We also proposed a lithium migration pathway before and after polycrystallization. This new methodology could stimulate atomic scale in situ scanning/TEM studies of battery materials and provide important mechanistic insight for designing better all-solid-state battery.
NASA Astrophysics Data System (ADS)
Huang, Mian; Shoji, Mao; Shen, Yang; Nan, Ce-Wen; Munakata, Hirokazu; Kanamura, Kiyoshi
2014-09-01
Li7La3Zr2O12 (LLZ) solid electrolytes with Zr site partially substituted by Ta and Nb elements were prepared via the conventional solid-state reaction. All the compositions could lead to the cubic garnet-type structure after sintering at 1150 °C. The use of γ-Al2O3 as a sintering aid in the preparation of doped LLZ was studied. It was shown that Al could help to improve the micro-structure for Nb doping, but not necessary for Ta doping. The Ta and Nb doping enhanced the ionic conductivity at 25 °C to 4.09 × 10-4 S cm-1 and 4.50 × 10-4 S cm-1, respectively. A conductivity as high as 1.23 × 10-3 S cm-1 was obtained when measured at 50 °C in air for the Nb-doped LLZ. All-solid-state batteries with LLZTa and LLZNb solid electrolytes were assembled and tested. The cyclic voltammetry (CV) measurement indicated the successful working of the batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharkov, B. B.; Chizhik, V. I.; Dvinskikh, S. V., E-mail: sergeid@kth.se
2016-01-21
Dipolar recoupling is an essential part of current solid-state NMR methodology for probing atomic-resolution structure and dynamics in solids and soft matter. Recently described magic-echo amplitude- and phase-modulated cross-polarization heteronuclear recoupling strategy aims at efficient and robust recoupling in the entire range of coupling constants both in rigid and highly dynamic molecules. In the present study, the properties of this recoupling technique are investigated by theoretical analysis, spin-dynamics simulation, and experimentally. The resonance conditions and the efficiency of suppressing the rf field errors are examined and compared to those for other recoupling sequences based on similar principles. The experimental datamore » obtained in a variety of rigid and soft solids illustrate the scope of the method and corroborate the results of analytical and numerical calculations. The technique benefits from the dipolar resolution over a wider range of coupling constants compared to that in other state-of-the-art methods and thus is advantageous in studies of complex solids with a broad range of dynamic processes and molecular mobility degrees.« less
Nonthermal effects in photostimulated solid state reaction of Mn doped SrTiO3
NASA Astrophysics Data System (ADS)
Daraselia, D.; Japaridze, D.; Jibuti, Z.; Shengelaya, A.; Müller, K. A.
2017-04-01
The effect of a photostimulated solid state reaction was investigated in Mn doped SrTiO3 samples. Light irradiation was performed by either halogen or UV lamps in order to study the effect of the spectral composition, and the results were compared with samples prepared at the same temperatures in a conventional furnace. The obtained samples were studied by X-ray diffraction for structural characterization and by Electron Paramagnetic Resonance, which provides microscopic information about the local environment as well as the valence state of Mn ions. It was found that light irradiation significantly enhances the solid state reaction rate compared to synthesis in the conventional furnace. Moreover, it was observed that UV lamp irradiation is much more effective compared to halogen lamps. This indicates that the absorption of light with energy larger than the materials band gap plays an important role and points towards the nonthermal mechanism of the photostimulated solid state reaction.
Molecular and electronic structures of M 2O 7 (M = Mn, Tc, Re)
Lawler, Keith V.; Childs, Bradley C.; Mast, Daniel S.; ...
2017-02-21
The molecular and electronic structures for the Group 7b heptoxides were investigated by computational methods as both isolated molecules and in the solid-state. The metal-oxygen-metal bending angle of the single molecule increased with increasing atomic number, with Re 2O 7 preferring a linear structure. Natural bond orbital and localized orbital bonding analyses indicate that there is a three-center covalent bond between the metal atoms and the bridging oxygen, and the increasing ionic character of the bonds favors larger bond angles. The calculations accurately reproduce the experimental crystal structures within a few percent. Analysis of the band structures and density ofmore » states shows similar bonding for all of the solid-state heptoxides, including the presence of the three-center covalent bond. DFT+U simulations show that PBE-D3 underpredicts the band gap by ~0.2 eV due to an under-correlation of the metal d conducting states. As a result, homologue and compression studies show that Re 2O 7 adopts a polymeric structure because the Re-oxide tetrahedra are easily distorted by packing stresses to form additional three-center covalent bonds.« less
Rapid Prototyping: State of the Art
2003-10-23
Rapid Prototyping SCS Solid Creation System SLM Selective Laser Melting SLP Solid Laser diode Plotter SLS Selective Laser Sintering SOAR State of the...121,000, respectively. SLP stands for Sold Laser Diode Plotter. The machines are relatively slow and parts are small, so, to date, the products have been...Gigerenzer, H., “Directed Laser Welding of Metal Matrix Composite Structures for Space Based Applications,“ Triton Systems Inc., Chelmsford, MA., 1
Pal, Provas; Saha, Sujoy; Banik, Ananya; Sarkar, Arka; Biswas, Kanishka
2018-02-06
All-inorganic and hybrid perovskite type halides are generally synthesized by solution-based methods, with the help of long chain organic capping ligands, complex organometallic precursors, and high boiling organic solvents. Herein, a room temperature, solvent-free, general, and scalable all-solid-state mechanochemical synthesis is demonstrated for different inorganic perovskite type halides, with versatile structural connectivity in three (3D), two (2D), and zero (0D) dimensions. 3D CsPbBr 3 , 2D CsPb 2 Br 5 , 0D Cs 4 PbBr 6 , 3D CsPbCl 3 , 2D CsPb 2 Cl 5 , 0D Cs 4 PbCl 6 , 3D CsPbI 3 , and 3D RbPbI 3 have all been synthesized by this method. The all-solid-state synthesis is materialized through an inorganic retrosynthetic approach, which directs the decision on the solid-state precursors (e.g., CsX and PbX 2 (X=Cl/Br/I) with desired stoichiometric ratios. Moreover, post-synthetic structural transformations from 3D to 2D and 0D perovskite halides were performed by the same mechanochemical synthetic approach at room temperature. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Qun; Chen, Liangqiang; Xu, Yan
2013-09-02
Yeasts are the most important group of microorganisms contributing to liquor quality in the solid-state fermentation process of Chinese Maotai-flavor liquor. There occurred a complex yeast community structure during this process, including stages of Daqu (the starter) making, stacking fermentation on the ground and liquor fermentation in the pits. In the Daqu making stage, few yeast strains accumulated. However, the stacking fermentation stage accumulated nine yeast species with different physio-biochemical characteristics. But only four species kept dominant until liquor fermentation, which were Zygosaccharomyces bailii, Saccharomyces cerevisiae, Pichia membranifaciens, and Schizosaccharomyces pombe, implying their important functions in liquor making. The four species tended to inhabit in different locations of the stack and pits during stacking and liquor fermentation, due to the condition heterogeneity of the solid-state fermentation, including the different fermentation temperature profiles and oxygen density in different locations. Moreover, yeast population was much larger in the upper layer than that in the middle and bottom layers in liquor fermentation, which was in accordance with the profile of reducing sugar consumption and ethanol production. This was a systematical investigation of yeast community structure dynamics in the Maotai-flavor liquor fermentation process. It would be of help to understand the fermentative mechanism in solid-state fermentation for Maotai-flavor liquor. © 2013.
Lubach, Joseph W; Hau, Jonathan
2018-02-20
To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems. Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (T g ). 13 C and 15 N solid-state NMR was utilized to investigate changes in local structure and protonation state, while 1 H T 1 and T 1ρ relaxation measurements were used to probe miscibility and phase behavior of the dispersions. T g values for IMC-EE solid dispersions showed significant positive deviations from predicted values in the drug loading range of 40-90%, indicating a relatively strong drug-excipient interaction. 15 N solid-state NMR exhibited a change in protonation state of the EE basic amine, with two distinct populations for the EE amine at -360.7 ppm (unprotonated) and -344.4 ppm (protonated). Additionally, 1 H relaxation measurements showed phase separation at high drug load, indicating an amorphous ionic complex and free IMC-rich phase. PXRD data showed all ASDs up to 90% drug load remained physically stable after 2 years. 15 N solid-state NMR experiments show a change in protonation state of EE, indicating that an ionic complex indeed forms between IMC and EE in amorphous solid dispersions. Phase behavior was determined to exhibit nanoscale phase separation at high drug load between the amorphous ionic complex and excess free IMC.
NASA Astrophysics Data System (ADS)
Anguita, J. V.; Sharma, P.; Henley, S. J.; Silva, S. R. P.
2009-11-01
The solid-liquid-solid method (also known as the solid-state method) is used to produce silicon nanowires at the core of silica nanowires with a support catalyst layer structure of nickel and titanium layers sputtered on oxide-coated silicon wafers. This silane-free process is low cost and large-area compatible. Using electron microscopy and Raman spectroscopy we deduce that the wires have crystalline silicon cores. The nanowires show photoluminescence in the visible range (orange), and we investigate the origin of this band. We further show that the nanowires form a random mesh that acts as an efficient optical trap, giving rise to an optically absorbing medium.
Electronic structures of superionic conductor Li3N
NASA Astrophysics Data System (ADS)
Aoki, Masaru; Ode, Yoshiyuki; Tsumuraya, Kazuo
2011-03-01
Lithium nitride is a superionic conductor with high Li conductivity. The compound has been studied extensively because of its potential utility as electrolyte in solid-state batteries. Though the mobility of the cations within the crystalline solid is high comparable to that of molten salts, the mechanism of the high mobility of the cations remains unsolved. To clarify the origin of the mobility we investigate the electronic states of the Li cations in the Li 3 N crystal with the first principles electronic structure analysis, focusing a correlation between the cations and the ionicities of the constituent atoms. We have found the existence of the covalent bonding between the Li atoms in the Li 3 N crystal in spite of the ionized states of the constituent atoms.
Experiment for validation of fluid-structure interaction models and algorithms.
Hessenthaler, A; Gaddum, N R; Holub, O; Sinkus, R; Röhrle, O; Nordsletten, D
2017-09-01
In this paper a fluid-structure interaction (FSI) experiment is presented. The aim of this experiment is to provide a challenging yet easy-to-setup FSI test case that addresses the need for rigorous testing of FSI algorithms and modeling frameworks. Steady-state and periodic steady-state test cases with constant and periodic inflow were established. Focus of the experiment is on biomedical engineering applications with flow being in the laminar regime with Reynolds numbers 1283 and 651. Flow and solid domains were defined using computer-aided design (CAD) tools. The experimental design aimed at providing a straightforward boundary condition definition. Material parameters and mechanical response of a moderately viscous Newtonian fluid and a nonlinear incompressible solid were experimentally determined. A comprehensive data set was acquired by using magnetic resonance imaging to record the interaction between the fluid and the solid, quantifying flow and solid motion. Copyright © 2016 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.
Gupta, Rupal; Stringer, John; Struppe, Jochem; Rehder, Dieter; Polenova, Tatyana
2018-07-01
Electronic and structural properties of short-lived metal-peroxido complexes, which are key intermediates in many enzymatic reactions, are not fully understood. While detected in various enzymes, their catalytic properties remain elusive because of their transient nature, making them difficult to study spectroscopically. We integrated 17 O solid-state NMR and density functional theory (DFT) to directly detect and characterize the peroxido ligand in a bioinorganic V(V) complex mimicking intermediates non-heme vanadium haloperoxidases. 17 O chemical shift and quadrupolar tensors, measured by solid-state NMR spectroscopy, probe the electronic structure of the peroxido ligand and its interaction with the metal. DFT analysis reveals the unusually large chemical shift anisotropy arising from the metal orbitals contributing towards the magnetic shielding of the ligand. The results illustrate the power of an integrated approach for studies of oxygen centers in enzyme reaction intermediates. Copyright © 2018 Elsevier Inc. All rights reserved.
Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR
Hong, Mei; Su, Yongchao
2011-01-01
Many membrane peptides and protein domains contain functionally important cationic Arg and Lys residues, whose insertion into the hydrophobic interior of the lipid bilayer encounters significant energy barriers. To understand how these cationic molecules overcome the free energy barrier to insert into the lipid membrane, we have used solid-state NMR spectroscopy to determine the membrane-bound topology of these peptides. A versatile array of solid-state NMR experiments now readily yields the conformation, dynamics, orientation, depth of insertion, and site-specific protein–lipid interactions of these molecules. We summarize key findings of several Arg-rich membrane peptides, including β-sheet antimicrobial peptides, unstructured cell-penetrating peptides, and the voltage-sensing helix of voltage-gated potassium channels. Our results indicate the central role of guanidinium-phosphate and guanidinium-water interactions in dictating the structural topology of these cationic molecules in the lipid membrane, which in turn account for the mechanisms of this functionally diverse class of membrane peptides. PMID:21344534
Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip.
Kim, Je-Hyung; Aghaeimeibodi, Shahriar; Richardson, Christopher J K; Leavitt, Richard P; Englund, Dirk; Waks, Edo
2017-12-13
Scalable quantum photonic systems require efficient single photon sources coupled to integrated photonic devices. Solid-state quantum emitters can generate single photons with high efficiency, while silicon photonic circuits can manipulate them in an integrated device structure. Combining these two material platforms could, therefore, significantly increase the complexity of integrated quantum photonic devices. Here, we demonstrate hybrid integration of solid-state quantum emitters to a silicon photonic device. We develop a pick-and-place technique that can position epitaxially grown InAs/InP quantum dots emitting at telecom wavelengths on a silicon photonic chip deterministically with nanoscale precision. We employ an adiabatic tapering approach to transfer the emission from the quantum dots to the waveguide with high efficiency. We also incorporate an on-chip silicon-photonic beamsplitter to perform a Hanbury-Brown and Twiss measurement. Our approach could enable integration of precharacterized III-V quantum photonic devices into large-scale photonic structures to enable complex devices composed of many emitters and photons.
NASA Technical Reports Server (NTRS)
Fusaro, Robert L. (Editor); Achenbach, J. D. (Editor)
1993-01-01
The present volume on tribological materials and NDE discusses liquid lubricants for advanced aircraft engines, a liquid lubricant for space applications, solid lubricants for aeronautics, and thin solid-lubricant films in space. Attention is given to the science and technology of NDE, tools for an NDE engineering base, experimental techniques in ultrasonics for NDE and material characterization, and laser ultrasonics. Topics addressed include thermal methods of NDE and quality control, digital radiography in the aerospace industry, materials characterization by ultrasonic methods, and NDE of ceramics and ceramic composites. Also discussed are smart materials and structures, intelligent processing of materials, implementation of NDE technology on flight structures, and solid-state weld evaluation.
NASA Astrophysics Data System (ADS)
Czernek, Jiří; Pawlak, Tomasz; Potrzebowski, Marek J.; Brus, Jiří
2013-01-01
The 13C and 15N CPMAS SSNMR measurements were accompanied by the proper theoretical description of the solid-phase environment, as provided by the density functional theory in the pseudopotential plane-wave scheme, and employed in refining the atomic coordinates of the crystal structures of thiamine chloride hydrochloride and of its monohydrate. Thus, using the DFT functionals PBE, PW91 and RPBE, the SSNMR-consistent solid-phase structures of these compounds are derived from the geometrical optimization, which is followed by an assessment of the fits of the GIPAW-predicted values of the chemical shielding parameters to their experimental counterparts.
Appalakondaiah, S; Vaitheeswaran, G; Lebègue, S
2015-06-18
We have performed ab initio calculations for a series of energetic solids to explore their structural and electronic properties. To evaluate the ground state volume of these molecular solids, different dispersion correction methods were accounted in DFT, namely the Tkatchenko-Scheffler method (with and without self-consistent screening), Grimme's methods (D2, D3(BJ)), and the vdW-DF method. Our results reveal that dispersion correction methods are essential in understanding these complex structures with van der Waals interactions and hydrogen bonding. The calculated ground state volumes and bulk moduli show that the performance of each method is not unique, and therefore a careful examination is mandatory for interpreting theoretical predictions. This work also emphasizes the importance of quasiparticle calculations in predicting the band gap, which is obtained here with the GW approximation. We find that the obtained band gaps are ranging from 4 to 7 eV for the different compounds, indicating their insulating nature. In addition, we show the essential role of quasiparticle band structure calculations to correlate the gap with the energetic properties.
Protein structure and interactions in the solid state studied by small-angle neutron scattering.
Curtis, Joseph E; McAuley, Arnold; Nanda, Hirsh; Krueger, Susan
2012-01-01
Small-angle neutron scattering (SANS) is uniquely qualified to study the structure of proteins in liquid and solid phases that are relevant to food science and biotechnological applications. We have used SANS to study a model protein, lysozyme, in both the liquid and water ice phases to determine its gross-structure, interparticle interactions and other properties. These properties have been examined under a variety of solution conditions before, during, and after freezing. Results for lysozyme at concentrations of 50 mg mL(-1) and 100 mg mL(-1), with NaCl concentrations of 0.4 M and 0 M, respectively, both in the liquid and frozen states, are presented and implications for food science are discussed.
NASA Astrophysics Data System (ADS)
Nishida, Takamasa; Eda, Kazuo
2018-02-01
Hydrothermal syntheses of alkali-metal blue molybdenum bronze nanoribbons, which are expected to exhibit unique properties induced by a combined effect of extrinsic and intrinsic low-dimensionalities, from hydrated-alkali-metal molybdenum bronzes were investigated. Nanoribbons grown along the quasi-one-dimensional (1D) conductive direction of Cs0.3MoO3, which is difficult to prepare by the conventional methods, were first synthesized. The nanomorphology formation is achieved by a solid-state conversion (or crystallite splitting) and subsequent crystallite growth, and the structural changes of the starting material related to the conversion were first observed by powder X-ray diffraction and scanning transmission electron microscopy as a result of finely tuned reaction system and preparation conditions. The structural changes were analyzed by model simulations and were attributed to the structural modulations that were concerned with the intralayer packing disorder and with two-dimensional long-range ordered structure, formed in MoO3 sheets of the hydrated molybdenum bronze. Moreover, the modulations were related to displacement defects of the Mo-O framework units generated along the [100] direction in the hydrated molybdenum bronze. Then, it was suggested that the solid-state conversion into blue molybdenum bronze and the crystallite splitting to nanomorphology were initiated by the breaking of the Mo-O-Mo bonds at the defects. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Coban, Mustafa Burak
2018-06-01
A new GdIII coordination complex, {[Gd(2-stp)2(H2O)6].2(4,4'-bipy).4(H2O)}, complex 1, (2-stp = 2-sulfoterephthalate anion and 4,4'-bipy = 4,4'-bipyridine), has been synthesized by hydrothermal method and characterized by elemental analysis, solid state UV-Vis and FT-IR spectroscopy, single-crystal X-ray diffraction, solid state photoluminescence and variable-temperature magnetic measurements. The crystal structure determination shows that GdIII ions are eight coordinated and adopt a distorted square-antiprismatic geometry. Molecules interacting through intra- and intermolecular (O-H⋯O, O-H⋯N) hydrogen bonds in complex 1, give rise to 3D hydrogen bonded structure and the discrete lattice 4,4'-bipy molecules occupy the channel of the 3D structure. π-π stacking interactions also exist 4,4'-bipy-4,4'-bipy and 4,4'-bipy-2-stp molecule rings in 3D structures. Additionally, solid state photoluminescence properties of complex 1 at room temperature have been investigated. Under the excitation of UV light (at 349 nm), the complex 1 exhibited green emissions (at 505 nm) of GdIII ion in the visible region. Furthermore, Variable-temperature magnetic susceptibility and isothermal magnetization as function of external magnetic field studies reveal that complex 1 displays possible antiferromagnetic interaction.
Karg, M; Scholz, G; König, R; Kemnitz, E
2012-02-28
The fluorolytic sol-gel reaction of magnesium methoxide with HF in methanol was studied by (19)F, (1)H and (13)C liquid and solid state NMR. In (19)F NMR five different species were identified, three of which belong to magnesium fluoride nanoparticles, i.e. NMR gave access to local structures of solid particles in suspensions. The long-term evolution of (19)F signals was followed and along with (19)F MAS NMR experiments of sols rotating at 13 kHz mechanistic insights into the ageing processes were obtained.
NASA Astrophysics Data System (ADS)
Ward, Meaghan E.; Brown, Leonid S.; Ladizhansky, Vladimir
2015-04-01
Studies of the structure, dynamics, and function of membrane proteins (MPs) have long been considered one of the main applications of solid-state NMR (SSNMR). Advances in instrumentation, and the plethora of new SSNMR methodologies developed over the past decade have resulted in a number of high-resolution structures and structural models of both bitopic and polytopic α-helical MPs. The necessity to retain lipids in the sample, the high proportion of one type of secondary structure, differential dynamics, and the possibility of local disorder in the loop regions all create challenges for structure determination. In this Perspective article we describe our recent efforts directed at determining the structure and functional dynamics of Anabaena Sensory Rhodopsin, a heptahelical transmembrane (7TM) protein. We review some of the established and emerging methods which can be utilized for SSNMR-based structure determination, with a particular focus on those used for ASR, a bacterial protein which shares its 7TM architecture with G-protein coupled receptors.
Frank R. Fronczek; Garret Gannuch; Wayne L. Mattice; Fred L. Tobiason; Jeff L. Broker; Richard W. Hemingway
1984-01-01
The structure of (-)-epicatechin has been determined in the crystalline state. Crystals are orthorhombic. P212121, a=670.8(1), b=1329.1 (3), c=1426.2(4) pm, Z=4. Dc=1.516 g cm-3, R=0.041 for 1624 observations. Intramolecular hydrogen bonds are absent. The...
High-field 95 Mo and 183 W static and MAS NMR study of polyoxometalates.
Haouas, Mohamed; Trébosc, Julien; Roch-Marchal, Catherine; Cadot, Emmanuel; Taulelle, Francis; Martineau-Corcos, Charlotte
2017-10-01
The potential of high-field NMR to measure solid-state 95 Mo and 183 W NMR in polyoxometalates (POMs) is explored using some archetypical structures like Lindqvist, Keggin and Dawson as model compounds that are well characterized in solution. NMR spectra in static and under magic angle spinning (MAS) were obtained, and their analysis allowed extraction of the NMR parameters, including chemical shift anisotropy and quadrupolar coupling parameters. Despite the inherent difficulties of measurement in solid state of these low-gamma NMR nuclei, due mainly to the low spectral resolution and poor signal-to-noise ratio, the observed global trends compare well with the solution-state NMR data. This would open an avenue for application of solid-state NMR to POMs, especially when liquid-state NMR is not possible, e.g., for poorly soluble or unstable compounds in solution, and for giant molecules with slow tumbling motion. This is the case of Keplerate where we provide here the first NMR characterization of this class of POMs in the solid state. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Paluch, Piotr; Pawlak, Tomasz; Oszajca, Marcin; Lasocha, Wieslaw; Potrzebowski, Marek J
2015-02-01
We present step by step facets important in NMR Crystallography strategy employing O-phospho-dl-tyrosine as model sample. The significance of three major techniques being components of this approach: solid state NMR (SS NMR), X-ray diffraction of powdered sample (PXRD) and theoretical calculations (Gauge Invariant Projector Augmented Wave; GIPAW) is discussed. Each experimental technique provides different set of structural constraints. From the PXRD measurement the size of the unit cell, space group and roughly refined molecular structure are established. SS NMR provides information about content of crystallographic asymmetric unit, local geometry, molecular motion in the crystal lattice and hydrogen bonding pattern. GIPAW calculations are employed for validation of quality of elucidation and fine refinement of structure. Crystal and molecular structure of O-phospho-dl-tyrosine solved by NMR Crystallography is deposited at Cambridge Crystallographic Data Center under number CCDC 1005924. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banks, J.W., E-mail: banksj3@rpi.edu; Henshaw, W.D., E-mail: henshw@rpi.edu; Kapila, A.K., E-mail: kapila@rpi.edu
We describe an added-mass partitioned (AMP) algorithm for solving fluid–structure interaction (FSI) problems involving inviscid compressible fluids interacting with nonlinear solids that undergo large rotations and displacements. The computational approach is a mixed Eulerian–Lagrangian scheme that makes use of deforming composite grids (DCG) to treat large changes in the geometry in an accurate, flexible, and robust manner. The current work extends the AMP algorithm developed in Banks et al. [1] for linearly elasticity to the case of nonlinear solids. To ensure stability for the case of light solids, the new AMP algorithm embeds an approximate solution of a nonlinear fluid–solidmore » Riemann (FSR) problem into the interface treatment. The solution to the FSR problem is derived and shown to be of a similar form to that derived for linear solids: the state on the interface being fundamentally an impedance-weighted average of the fluid and solid states. Numerical simulations demonstrate that the AMP algorithm is stable even for light solids when added-mass effects are large. The accuracy and stability of the AMP scheme is verified by comparison to an exact solution using the method of analytical solutions and to a semi-analytical solution that is obtained for a rotating solid disk immersed in a fluid. The scheme is applied to the simulation of a planar shock impacting a light elliptical-shaped solid, and comparisons are made between solutions of the FSI problem for a neo-Hookean solid, a linearly elastic solid, and a rigid solid. The ability of the approach to handle large deformations is demonstrated for a problem of a high-speed flow past a light, thin, and flexible solid beam.« less
Denmark, Scott E; Eklov, Brian M
2008-01-01
The solution and solid-state structures of hexamethylphosphoramide (HMPA) adducts of tetrachlorosilane (SiCl4) are discussed. In solution, the meridional and facial isomers of the hexa-coordinate cationic complex 3 HMPASiCl3 + Cl(-) (2) predominate at all HMPA concentrations, and are in equilibrium with the hexa-coordinate neutral trans- and cis-2 HMPASiCl4 complexes (1), as well as the penta-coordinate cationic cis-2 HMPASiCl3 + Cl(-) (3). Single crystal X-ray analyses are reported for the ionized mer-3 HMPASiCl3 + HCl2 (-) and the neutral trans-2 HMPASiCl4 complexes.
Kuck, Dietmar; Linke, Jens; Teichmann, Lisa Christin; Barth, Dieter; Tellenbröker, Jörg; Gestmann, Detlef; Neumann, Beate; Stammler, Hans-Georg; Bögge, Hartmut
2016-04-28
The solid-state molecular structure of centrohexaindane (), a unique hydrocarbon comprising six benzene rings clamped to each other in three dimensions around a neopentane core, and the molecular packing in crystals of ·CHCl3 are reported. The molecular Td-symmetry and the Cartesian orientation of the six indane wings of in the solid state have been confirmed. The course and limitation of electrophilic aromatic substitution of are demonstrated for the case of nitration. Based on nitration experiments of a lower congener of , tribenzotriquinacene , the six-fold nitrofunctionalisation of has been achieved in excellent yield, giving four constitutional isomers, two nonsymmetrical ( and ) and two C3-symmetrical ones ( and ), all of which contain one single nitro group in each of the six benzene rings. The relative yields of the four isomers (∼3 : 1 : 1 : 3) point to a random electrophilic attack of the electrophiles at the twelve formally equivalent outer positions of the aromatic periphery of , suggesting electronic independence of its six aromatic π-electron systems. In turn, the pronounced conformational rigidity of the centrohexacyclic framework of enables the unequivocal structural identification of the isomeric hexanitrocentrohexaindanes by (1)H NMR spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Bin; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063; Geng, Jiao
2014-07-01
A pair of new linear and V-shaped acceptor–donor–acceptor (A−D−A) thiophene-centered ditriazole structural isomers, i.e., 2,5-di(1H-1,2,4-triazol-1-yl)thiophene (L{sup 1}) and 3,4-di(1H-1,2,4-triazol-1-yl)thiophene (L{sup 2}), has been synthesized and characterized. They are used as μ{sub 2}-bridging ligands to prepare a pair of silver(I) coordination polymers formulated as [Ag(L{sup 1})(NO{sub 3})]{sub n} (1) and [Ag(L{sup 2})(NO{sub 3})]{sub n} (2), which are also structural isomers at the supramolecular level. X-ray single-crystal diffraction analyses for 1 and 2 reveal that they exhibit the same one-dimensional (1D) coordination polymers but different structural architectures because of the distinguishable shape and configuration of isomeric ligands (L{sup 1} and L{sup 2})more » and the alterations of the coordination numbers. More interestingly, compared with the free ligands, 1D silver(I) polymeric isomers 1 and 2 show significant enhancement of solid-state conductivity to different extents (1.42×10{sup 4} and 2.17×10{sup 3} times), where 6.96 times' enhancement of solid-state conductivity from 1 to 2 has been observed. The formation of Ag–N coordinative bonds and the configurational discrepancy of L{sup 1} and L{sup 2} are believed to play important roles in facilitating the electron transport between molecules, which can also be supported by Density Function Theory calculations of their band gaps. - Graphical abstract: A pair of linear and V-shaped isomeric thiophene-centered ditriazole ligands (L{sup 1}) and L{sup 2} are used to prepare a pair of silver(I) polymeric isomers (1 and 2), where significant enhancement of solid-state conductivity to different extents are observed originating from the distinguishable shape and configuration of isomeric ligands. - Highlights: • A pair of linear and V-shaped thiophene-centered ditriazole structural isomers is prepared. • They are used as µ{sub 2}-bridging ligands to prepare a pair of silver(I) polymeric isomers. • Significant enhancement of solid-state conductivity is observed for each polymeric isomer.« less
Advanced solid-state NMR spectroscopy of natural organic matter.
Mao, Jingdong; Cao, Xiaoyan; Olk, Dan C; Chu, Wenying; Schmidt-Rohr, Klaus
2017-05-01
Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially a systematic approach to NOM characterization, and their applications to the study of NOM. We discuss some basics of how to acquire high-quality and quantitative solid-state 13 C NMR spectra, and address some common technical mistakes that lead to unreliable spectra of NOM. The identification of specific functional groups in NOM, primarily based on 13 C spectral-editing techniques, is described and the theoretical background of some recently-developed spectral-editing techniques is provided. Applications of solid-state NMR to investigating nitrogen (N) in NOM are described, focusing on limitations of the widely used 15 N CP/MAS experiment and the potential of improved advanced NMR techniques for characterizing N forms in NOM. Then techniques used for identifying proximities, heterogeneities and domains are reviewed, and some examples provided. In addition, NMR techniques for studying segmental dynamics in NOM are reviewed. We also briefly discuss applications of solid-state NMR to NOM from various sources, including soil organic matter, aquatic organic matter, organic matter in atmospheric particulate matter, carbonaceous meteoritic organic matter, and fossil fuels. Finally, examples of NMR-based structural models and an outlook are provided. Copyright © 2016 Elsevier B.V. All rights reserved.
Application of the PM6 method to modeling the solid state
2008-01-01
The applicability of the recently developed PM6 method for modeling various properties of a wide range of organic and inorganic crystalline solids has been investigated. Although the geometries of most systems examined were reproduced with good accuracy, severe errors were found in the predicted structures of a small number of solids. The origin of these errors was investigated, and a strategy for improving the method proposed. Figure Detail of Structure of Dihydrogen Phosphate in KH2PO4 (upper pair) and in (CH3)4NH2PO4. (Footnote): X-ray structures on left, PM6 structure on right. Electronic supplementary material The online version of this article (doi:10.1007/s00894-008-0299-7) contains supplementary material, which is available to authorized users. PMID:18449579
Perras, Frederic A.; Luo, Hao; Zhang, Ximing; ...
2016-12-27
Here, lignocellulosic biomass is a promising sustainable feedstock for the production of biofuels, biomaterials, and biospecialty chemicals. However, efficient utilization of biomass has been limited by our poor understanding of its molecular structure. Here, we report a dynamic nuclear polarization (DNP)-enhanced solid-state (SS)NMR study of the molecular structure of biomass, both pre- and postcatalytic treatment. This technique enables the measurement of 2D homonuclear 13C– 13C correlation SSNMR spectra under natural abundance, yielding, for the first time, an atomic-level picture of the structure of raw and catalytically treated biomass samples. We foresee that further such experiments could be used to determinemore » structure–function relationships and facilitate the development of more efficient, and chemically targeted, biomass-conversion technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perras, Frederic A.; Luo, Hao; Zhang, Ximing
Here, lignocellulosic biomass is a promising sustainable feedstock for the production of biofuels, biomaterials, and biospecialty chemicals. However, efficient utilization of biomass has been limited by our poor understanding of its molecular structure. Here, we report a dynamic nuclear polarization (DNP)-enhanced solid-state (SS)NMR study of the molecular structure of biomass, both pre- and postcatalytic treatment. This technique enables the measurement of 2D homonuclear 13C– 13C correlation SSNMR spectra under natural abundance, yielding, for the first time, an atomic-level picture of the structure of raw and catalytically treated biomass samples. We foresee that further such experiments could be used to determinemore » structure–function relationships and facilitate the development of more efficient, and chemically targeted, biomass-conversion technologies.« less
Systematic Comparison of Crystal and NMR Protein Structures Deposited in the Protein Data Bank
Sikic, Kresimir; Tomic, Sanja; Carugo, Oliviero
2010-01-01
Nearly all the macromolecular three-dimensional structures deposited in Protein Data Bank were determined by either crystallographic (X-ray) or Nuclear Magnetic Resonance (NMR) spectroscopic methods. This paper reports a systematic comparison of the crystallographic and NMR results deposited in the files of the Protein Data Bank, in order to find out to which extent these information can be aggregated in bioinformatics. A non-redundant data set containing 109 NMR – X-ray structure pairs of nearly identical proteins was derived from the Protein Data Bank. A series of comparisons were performed by focusing the attention towards both global features and local details. It was observed that: (1) the RMDS values between NMR and crystal structures range from about 1.5 Å to about 2.5 Å; (2) the correlation between conformational deviations and residue type reveals that hydrophobic amino acids are more similar in crystal and NMR structures than hydrophilic amino acids; (3) the correlation between solvent accessibility of the residues and their conformational variability in solid state and in solution is relatively modest (correlation coefficient = 0.462); (4) beta strands on average match better between NMR and crystal structures than helices and loops; (5) conformational differences between loops are independent of crystal packing interactions in the solid state; (6) very seldom, side chains buried in the protein interior are observed to adopt different orientations in the solid state and in solution. PMID:21293729
Glavic, Artur; Summers, Brock; Dahal, Ashutosh; Kline, Joseph; Van Herck, Walter; Sukhov, Alexander; Ernst, Arthur
2018-01-01
Abstract The nature of magnetic correlation at low temperature in two‐dimensional artificial magnetic honeycomb lattice is a strongly debated issue. While theoretical researches suggest that the system will develop a novel zero entropy spin solid state as T → 0 K, a confirmation to this effect in artificial honeycomb lattice of connected elements is lacking. This study reports on the investigation of magnetic correlation in newly designed artificial permalloy honeycomb lattice of ultrasmall elements, with a typical length of ≈12 nm, using neutron scattering measurements and temperature‐dependent micromagnetic simulations. Numerical modeling of the polarized neutron reflectometry data elucidates the temperature‐dependent evolution of spin correlation in this system. As temperature reduces to ≈7 K, the system tends to develop novel spin solid state, manifested by the alternating distribution of magnetic vortex loops of opposite chiralities. Experimental results are complemented by temperature‐dependent micromagnetic simulations that confirm the dominance of spin solid state over local magnetic charge ordered state in the artificial honeycomb lattice with connected elements. These results enable a direct investigation of novel spin solid correlation in the connected honeycomb geometry of 2D artificial structure. PMID:29721429
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Guoqiang; Wu, Feng; Zhan, Chun
The development of safe, stable, and long-life Li-ion batteries is being intensively pursued to enable the electrification of transportation and intelligent grid applications. Here, we report a new solid-state Li-ion battery technology, using a solid nanocomposite electrolyte composed of porous silica matrices with in situ immobilizing Li+ conducting ionic liquid, anode material of MCMB, and cathode material of LiCoO 2, LiNi 1/3Co 1/3Mn 1/3O 2, or LiFePO 4. An injection printing method is used for the electrode/electrolyte preparation. Solid nanocomposite electrolytes exhibit superior performance to the conventional organic electrolytes with regard to safety and cycle-life. They also have a transparentmore » glassy structure with high ionic conductivity and good mechanical strength. Solid-state full cells tested with the various cathodes exhibited high specific capacities, long cycling stability, and excellent high temperature performance. This solid-state battery technology will provide new avenues for the rational engineering of advanced Li-ion batteries and other electrochemical devices.« less
Snapshots of a solid-state transformation: coexistence of three phases trapped in one crystal
Aromí, G.; Beavers, C. M.; Sánchez Costa, J.; ...
2016-01-05
Crystal-to-crystal transformations have been crucial in the understanding of solid-state processes, since these may be studied in detail by means of single crystal X-ray diffraction (SCXRD) techniques. The description of the mechanisms and potential intermediates of those processes remains very challenging. In fact, solid-state transient states have rarely been observed, at least to a sufficient level of detail. We have investigated the process of guest extrusion from the non-porous molecular material [Fe(bpp)(H 2L)](ClO 4) 2·1.5C 3H 6O (bpp = 2,6-bis(pyrazol-3-yl)pyridine; H 2L = 2,6-bis(5-(2-methoxyphenyl)-pyrazol-3-yl)pyridine; C 3H 6O = acetone), which occurs through ordered diffusion of acetone in a crystal-to-crystal manner,more » leading to dramatic structural changes. The slow kinetics of the transition allows thermal trapping of the system at various intermediate stages. The transiting single crystal can be then examined at these points through synchrotron SCXRD, offering a window upon the mechanism of the transformation at the molecular scale. These experiments have unveiled the development of an ordered intermediate phase, distinct from the initial and the final states, coexisting as the process advances with either of these two phases or, at a certain moment with both of them. The new intermediate phase has been structurally characterized in full detail by SCXRD, providing insights into the mechanism of this diffusion triggered solid-state phenomenon. Lastly, the process has been also followed by calorimetry, optical microscopy, local Raman spectroscopy and powder X-ray diffraction. The discovery and description of an intermediate ordered state in a molecular solid-state transformation is of great interest and will help to understand the mechanistic details and reaction pathways underlying these transformations.« less
Macrocyclic molecular rotors with bridged steroidal frameworks.
Czajkowska-Szczykowska, Dorota; Rodríguez-Molina, Braulio; Magaña-Vergara, Nancy E; Santillan, Rosa; Morzycki, Jacek W; Garcia-Garibay, Miguel A
2012-11-16
In this work, we describe the synthesis and solid-state dynamics of isomeric molecular rotors 7E and 7Z, consisting of two androstane steroidal frameworks linked by the D rings by triple bonds at their C17 positions to a 1,4-phenylene rotator. They are also linked by the A rings by an alkenyl diester bridge to restrict the conformational flexibility of the molecules and reduce the number of potential crystalline arrays. The analysis of the resulting molecular structures and packing motifs offered insights of the internal dynamics that were later elucidated by means of line shape analyses of the spectral features obtained through variable-temperature solid-state (13)C NMR; such analysis revealed rotations in the solid state occurring at kilohertz frequency at room temperature.
Treviňo, Lucia; Contreras-Esquivel, Juan C.; Rodríguez-Herrera, Raul; Aguilar, Cristóbal Noé
2007-01-01
The influence of the physical structure of polyurethane matrix as a support in a solid state culture in tannase production and gallic acid accumulation by Aspergillus niger Aa-20 was evaluated. Three different polyurethane matrices were used as the support: continuous, semi-discontinuous and discontinuous. The highest tannase production at 2479.59 U/L during the first 12 h of culture was obtained using the discontinuous matrix. The gallic acid was accumulated at 7.64 g/L at the discontinuous matrix. The results show that the discontinuous matrix of polyurethane is better for tannase production and gallic acid accumulation in a solid state culture bioprocess than the continuous and semi-discontinuous matrices. PMID:17910122
Gather, Malte C; Yun, Seok Hyun
2014-12-08
Bioluminescent organisms are likely to have an evolutionary drive towards high radiance. As such, bio-optimized materials derived from them hold great promise for photonic applications. Here, we show that biologically produced fluorescent proteins retain their high brightness even at the maximum density in solid state through a special molecular structure that provides optimal balance between high protein concentration and low resonance energy transfer self-quenching. Dried films of green fluorescent protein show low fluorescence quenching (-7 dB) and support strong optical amplification (gnet=22 cm(-1); 96 dB cm(-1)). Using these properties, we demonstrate vertical cavity surface emitting micro-lasers with low threshold (<100 pJ, outperforming organic semiconductor lasers) and self-assembled all-protein ring lasers. Moreover, solid-state blends of different proteins support efficient Förster resonance energy transfer, with sensitivity to intermolecular distance thus allowing all-optical sensing. The design of fluorescent proteins may be exploited for bio-inspired solid-state luminescent molecules or nanoparticles.
Gather, Malte C.; Yun, Seok Hyun
2015-01-01
Bioluminescent organisms are likely to have an evolutionary drive towards high radiance. As such, bio-optimized materials derived from them hold great promise for photonic applications. Here we show that biologically produced fluorescent proteins retain their high brightness even at the maximum density in solid state through a special molecular structure that provides optimal balance between high protein concentration and low resonance energy transfer self-quenching. Dried films of green fluorescent protein show low fluorescence quenching (−7 dB) and support strong optical amplification (gnet = 22 cm−1; 96 dB cm−1). Using these properties, we demonstrate vertical cavity surface emitting micro-lasers with low threshold (<100 pJ, outperforming organic semiconductor lasers) and self-assembled all-protein ring lasers. Moreover, solid-state blends of different proteins support efficient Förster resonance energy transfer, with sensitivity to intermolecular distance thus allowing all-optical sensing. The design of fluorescent proteins may be exploited for bio-inspired solid-state luminescent molecules or nanoparticles. PMID:25483850
De Sa Peixoto, Paulo; Laurent, Guillaume; Azaïs, Thierry; Mosser, Gervaise
2013-01-01
In vivo, collagen I, the major structural protein in human body, is found assembled into fibrils. In the present work, we study a high concentrated collagen sample in its soluble, fibrillar, and denatured states using one and two dimensional {1H}-13C solid-state NMR spectroscopy. We interpret 13C chemical shift variations in terms of dihedral angle conformation changes. Our data show that fibrillogenesis increases the side chain and backbone structural complexity. Nevertheless, only three to five rotameric equilibria are found for each amino acid residue, indicating a relatively low structural heterogeneity of collagen upon fibrillogenesis. Using side chain statistical data, we calculate equilibrium constants for a great number of amino acid residues. Moreover, based on a 13C quantitative spectrum, we estimate the percentage of residues implicated in each equilibrium. Our data indicate that fibril formation greatly affects hydroxyproline and proline prolyl pucker ring conformation. Finally, we discuss the implication of these structural data and propose a model in which the attractive force of fibrillogenesis comes from a structural reorganization of 10 to 15% of the amino acids. These results allow us to further understand the self-assembling process and fibrillar structure of collagen. PMID:23341452
Liao, Shu Y; Lee, Myungwoon; Hong, Mei
2018-03-01
Many membrane proteins sense and induce membrane curvature for function, but structural information about how proteins modulate their structures to cause membrane curvature is sparse. We review our recent solid-state NMR studies of two virus membrane proteins whose conformational equilibrium is tightly coupled to membrane curvature. The influenza M2 proton channel has a drug-binding site in the transmembrane (TM) pore. Previous chemical shift data indicated that this pore-binding site is lost in an M2 construct that contains the TM domain and a curvature-inducing amphipathic helix. We have now obtained chemical shift perturbation, protein-drug proximity, and drug orientation data that indicate that the pore-binding site is restored when the full cytoplasmic domain is present. This finding indicates that the curvature-inducing amphipathic helix distorts the TM structure to interfere with drug binding, while the cytoplasmic tail attenuates this effect. In the second example, we review our studies of a parainfluenza virus fusion protein that merges the cell membrane and the virus envelope during virus entry. Chemical shifts of two hydrophobic domains of the protein indicate that both domains have membrane-dependent backbone conformations, with the β-strand structure dominating in negative-curvature phosphatidylethanolamine (PE) membranes. 31 P NMR spectra and 1 H- 31 P correlation spectra indicate that the β-strand-rich conformation induces saddle-splay curvature to PE membranes and dehydrates them, thus stabilizing the hemifusion state. These results highlight the indispensable role of solid-state NMR to simultaneously determine membrane protein structures and characterize the membrane curvature in which these protein structures exist. Copyright © 2018 Elsevier Inc. All rights reserved.
UNIDENTIFIED INFRARED EMISSION BANDS: PAHs or MAONs?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Kwok; Yong Zhang, E-mail: sunkwok@hku.hk
2013-07-01
We suggest that the carrier of the unidentified infrared emission (UIE) bands is an amorphous carbonaceous solid with mixed aromatic/aliphatic structures, rather than free-flying polycyclic aromatic hydrocarbon molecules. Through spectral fittings of the astronomical spectra of the UIE bands, we show that a significant amount of the energy is emitted by the aliphatic component, implying that aliphatic groups are an essential part of the chemical structure. Arguments in favor of an amorphous, solid-state structure rather than a gas-phase molecule as a carrier of the UIE are also presented.
Process for making dense thin films
Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.
2005-07-26
Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for firing of device substrate to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.
Preparation of resveratrol-loaded nanoporous silica materials with different structures
NASA Astrophysics Data System (ADS)
Popova, Margarita; Szegedi, Agnes; Mavrodinova, Vesselina; Novak Tušar, Natasa; Mihály, Judith; Klébert, Szilvia; Benbassat, Niko; Yoncheva, Krassimira
2014-11-01
Solid, nanoporous silica-based spherical mesoporous MCM-41 and KIL-2 with interparticle mesoporosity as well as nanosized zeolite BEA materials differing in morphology and pore size distribution, were used as carriers for the preparation of resveratrol-loaded delivery systems. Two preparation methods have been applied: (i) loading by mixing of resveratrol and mesoporous carrier in solid state and (ii) deposition in ethanol solution. The parent and the resveratrol loaded carriers were characterized by XRD, TEM, N2 physisorption, thermal analysis, and FT-IR spectroscopy. The influence of the support structure on the adsorption capacity and the release kinetics of this poorly soluble compound were investigated. Our results indicated that the chosen nanoporous silica supports are suitable for stabilization of trans-resveratrol and reveal controlled release and ability to protect the supported compound against degradation regardless of loading method. The solid-state dry mixing appears very effective for preparation of drug formulations composed of poorly soluble compound.
Multilevel description of the DNA molecule translocation in solid-state synthetic nanopores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nosik, V. L., E-mail: v-nosik@yandex.ru; Rudakova, E. B.
2016-07-15
Interest of researchers in micro- and nanofluidics of polymer solutions and, in particular, DNA ionic solutions is constantly increasing. The use of DNA translocation with a controlled velocity through solid-state nanopores and pulsed X-ray beams in new sequencing schemes opens up new possibilities for studying the structure of DNA and other biopolymers. The problems related to the description of DNA molecular motion in a limited volume of nanopore are considered.
Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica
NASA Astrophysics Data System (ADS)
Cendrowski, Krzysztof; Sikora, Pawel; Zielinska, Beata; Horszczaruk, Elzbieta; Mijowska, Ewa
2017-06-01
Pristine nanoparticles of magnetite were coated by solid silica shell forming core/shell structure. 20 nm thick silica coating significantly enhanced the chemical and thermal stability of the iron oxide. Chemical and thermal stability of this structure has been compared to the magnetite coated by mesoporous shell and pristine magnetite nanoparticles. It is assumed that six-membered silica rings in a solid silica shell limit the rate of oxygen diffusion during thermal treatment in air and prevent the access of HCl molecules to the core during chemical etching. Therefore, the core/shell structure with a solid shell requires a longer time to induce the oxidation of iron oxide to a higher oxidation state and, basically, even strong concentrated acid such as HCl is not able to dissolve it totally in one month. This leads to the desired performance of the material in potential applications such as catalysis and environmental protection.
Han, Haoxue; Mérabia, Samy; Müller-Plathe, Florian
2017-05-04
The integration of three-dimensional microelectronics is hampered by overheating issues inherent to state-of-the-art integrated circuits. Fundamental understanding of heat transfer across soft-solid interfaces is important for developing efficient heat dissipation capabilities. At the microscopic scale, the formation of a dense liquid layer at the solid-liquid interface decreases the interfacial heat resistance. We show through molecular dynamics simulations of n-perfluorohexane on a generic wettable surface that enhancement of the liquid structure beyond a single adsorbed layer drastically enhances interfacial heat conductance. Pressure is used to control the extent of the liquid layer structure. The interfacial thermal conductance increases with pressure values up to 16.2 MPa at room temperature. Furthermore, it is shown that liquid structuring enhances the heat-transfer rate of high-energy lattice waves by broadening the transmission peaks in the heat flux spectrum. Our results show that pressure is an important external parameter that may be used to control interfacial heat conductance at solid-soft interfaces.
The Dynamic Microbiota Profile During Pepper (Piper nigrum L.) Peeling by Solid-State Fermentation.
Hu, Qisong; Zhang, Jiachao; Xu, Chuanbiao; Li, Congfa; Liu, Sixin
2017-06-01
White pepper (Piper nigrum L.), a well-known spice, is the main pepper processing product in Hainan province, China. The solid-state method of fermentation can peel pepper in a highly efficient manner and yield high-quality white pepper. In the present study, we used next-generation sequencing to reveal the dynamic changes in the microbiota during pepper peeling by solid-state fermentation. The results suggested that the inoculated Aspergillus niger was dominant throughout the fermentation stage, with its strains constituting more than 95% of the fungi present; thus, the fungal community structure was relatively stable. The bacterial community structure fluctuated across different fermentation periods; among the bacteria present, Pseudomonas, Tatumella, Pantoea, Acinetobacter, Lactococcus, and Enterobacter accounted for more than 95% of all bacteria. Based on the correlations among the microbial community, we found that Pseudomonas and Acinetobacter were significantly positively related with A. niger, which showed strong synergy with them. In view of the microbial functional gene analysis, we found that these three bacteria and fungi were closely related to the production of pectin esterase (COG4677) and acetyl xylan esterase (COG3458), the key enzymes for pepper peeling. The present research clarifies the solid-state fermentation method of pepper peeling and lays a theoretical foundation to promote the development of the pepper peeling process and the production of high-quality white pepper.
Even-odd alternation of near-infrared spectra of alkane-α,ω-diols in their solid states
NASA Astrophysics Data System (ADS)
Toyama, Yuta; Murakami, Kohei; Yoshimura, Norio; Takayanagi, Masao
2018-05-01
Even-odd alternation of the melting points of α,ω-disubstituted linear alkanes such as alkane-α,ω-diols, alkane-α,ω-dinitriles and α,ω-diaminoalkanes is well known. Melting points for compounds with an even number of carbons in their alkyl chains are systematically higher than those for compounds with an odd number of carbons. In order to clarify the origin of this alternation, near-infrared absorption spectra of linear alkane-α,ω-diols with 3 to 9 carbon atoms in their alkyl chains were measured in the liquid and solid states. The band due to the first overtone of the Osbnd H stretching mode was investigated. The temperature-dependent spectra of all alkane-α,ω-diols in their liquid states were found to be similar; no even-odd alternation was observed. In the solid state, however, spectra of alkane-α,ω-diols with even and odd numbers of carbon atoms differed greatly. Spectra of alkane-α,ω-diols with an odd number of carbon atoms in their solid states were similar to those in the liquid states, although the variation of spectra observed upon lowering the temperature of liquid seemed to continue when the liquids were frozen. In contrast, spectra of alkane-α,ω-diols with an even number of carbon atoms in their liquid and solid states were found to be quite different. New bands appeared upon freezing. The observed even-odd alternation of the spectra observed for alkane-α,ω-diols in their solid states is presumably caused by their even-odd alternation of crystal structures.
Wang, Yonggang; Wang, Qingfei; Liu, Zhenpu; ...
2015-06-10
High-performance solid electrolytes are critical for realizing all-solid-state batteries with enhance safety and cycling efficiency. However, currently available candidates (sulfides and the NASICON-typ ceramics) still suffer from drawbacks such as inflammability, high-cost and unfavorable machinability Here we present the structural manipulation approaches to improve the sodium ionic conductivity in series of affordable Na-rich antiperovskites. Experimentally, the whole solid solutions of Na 3OX (X ¼ Cl Br, I) are synthesized via a facile and timesaving route from the cheapest raw materials (Na, NaOH an NaX). The materials are nonflammable, suitable for thermoplastic processing due to low melting temperature (<300° C) withoutmore » decomposing. Notably, owing to the flexibility of perovskite-type structure it's feasible to control the local structure features by means of size-mismatch substitution an unequivalent-doping for a favorable sodium ionic diffusion pathway. Enhancement of sodium ioni conductivity by 2 magnitudes is demonstrated by these chemical tuning methods. The optimized sodiu ionic conductivity in Na 2.9Sr 0.05OBr 0.6I 0.4 bulk samples reaches 1.9 10 - 3 S/cm at 200° C and even highe at elevated temperature. Here, we believe further chemical tuning efforts on Na-rich antiperovskites wil promote their performance greatly for practical all-solid state battery applications.« less
Solid-State NMR Structure of a Pathogenic Fibril of Full-Length Human α-Synuclein
Tuttle, Marcus D.; Comellas, Gemma; Nieuwkoop, Andrew J.; Covell, Dustin J.; Berthold, Deborah A.; Kloepper, Kathryn D.; Courtney, Joseph M.; Kim, Jae K.; Barclay, Alexander M.; Kendall, Amy; Wan, William; Stubbs, Gerald; Schwieters, Charles D.; Lee, Virginia M. Y.; George, Julia M.; Rienstra, Chad M.
2016-01-01
Misfolded α-synuclein amyloid fibrils are the principal components of Lewy bodies and neurites, hallmarks of Parkinson’s disease (PD). Here we present a high-resolution structure of an α-synuclein fibril, in a form that induces robust pathology in primary neuronal culture, determined by solid-state NMR spectroscopy and validated by electron microscopy and X-ray fiber diffraction. Over 200 unique long-range distance restraints define a consensus structure with common amyloid features including parallel in-register β-sheets and hydrophobic core residues, but also substantial complexity, arising from diverse structural features: an intermolecular salt bridge, a glutamine ladder, close backbone interactions involving small residues, and several steric zippers stabilizing a novel, orthogonal Greek-key topology. These characteristics contribute to the robust propagation of this fibril form, as evidenced by structural similarity of early-onset PD mutants. The structure provides a framework for understanding the interactions of α-synuclein with other proteins and small molecules to diagnose and treat PD. PMID:27018801
Preliminary Analysis of a Fully Solid State Magnetocaloric Refrigeration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelaziz, Omar
Magnetocaloric refrigeration is an alternative refrigeration technology with significant potential energy savings compared to conventional vapor compression refrigeration technology. Most of the reported active magnetic regenerator (AMR) systems that operate based on the magnetocaloric effect use heat transfer fluid to exchange heat, which results in complicated mechanical subsystems and components such as rotating valves and hydraulic pumps. In this paper, we propose an alternative mechanism for heat transfer between the AMR and the heat source/sink. High-conductivity moving rods/sheets (e.g. copper, brass, iron, graphite, aluminum or composite structures from these) are utilized instead of heat transfer fluid significantly enhancing the heatmore » transfer rate hence cooling/heating capacity. A one-dimensional model is developed to study the solid state AMR. In this model, the heat exchange between the solid-solid interfaces is modeled via a contact conductance, which depends on the interface apparent pressure, material hardness, thermal conductivity, surface roughness, surface slope between the interfaces, and material filled in the gap between the interfaces. Due to the tremendous impact of the heat exchange on the AMR cycle performance, a sensitivity analysis is conducted employing a response surface method, in which the apparent pressure, effective surface roughness and grease thermal conductivity are the uncertainty factors. COP and refrigeration capacity are presented as the response in the sensitivity analysis to reveal the important factors influencing the fully solid state AMR and optimize the solid state AMR efficiency. The performances of fully solid state AMR and traditional AMR are also compared and discussed in present work. The results of this study will provide general guidelines for designing high performance solid state AMR systems.« less
On the predictions of the 11B solid state NMR parameters
NASA Astrophysics Data System (ADS)
Czernek, Jiří; Brus, Jiří
2016-07-01
The set of boron containing compounds has been subject to the prediction of the 11B solid state NMR spectral parameters using DFT-GIPAW methods properly treating the solid phase effects. The quantification of the differences between measured and theoretical values has been presented, which is directly applicable in structural studies involving 11B nuclei. In particular, a simple scheme has been proposed, which is expected to provide for an estimate of the 11B chemical shift within ±2.0 ppm from the experimental value. The computer program, INFOR, enabling the visualization of concomitant Euler rotations related to the tensorial transformations has been presented.
Facilitated ion transport in all-solid-state flexible supercapacitors.
Choi, Bong Gill; Hong, Jinkee; Hong, Won Hi; Hammond, Paula T; Park, HoSeok
2011-09-27
The realization of highly flexible and all-solid-state energy-storage devices strongly depends on both the electrical properties and mechanical integrity of the constitutive materials and the controlled assembly of electrode and solid electrolyte. Herein we report the preparation of all-solid-state flexible supercapacitors (SCs) through the easy assembly of functionalized reduced graphene oxide (f-RGO) thin films (as electrode) and solvent-cast Nafion electrolyte membranes (as electrolyte and separator). In particular, the f-RGO-based SCs (f-RGO-SCs) showed a 2-fold higher specific capacitance (118.5 F/g at 1 A/g) and rate capability (90% retention at 30 A/g) compared to those of all-solid-state graphene SCs (62.3 F/g at 1A/g and 48% retention at 30 A/g). As proven by the 4-fold faster relaxation of the f-RGO-SCs than that of the RGO-SCs and more capacitive behavior of the former at the low-frequency region, these results were attributed to the facilitated ionic transport at the electrical double layer by means of the interfacial engineering of RGO by Nafion. Moreover, the superiority of all-solid-state flexible f-RGO-SCs was demonstrated by the good performance durability under the 1000 cycles of charging and discharging due to the mechanical integrity as a consequence of the interconnected networking structures. Therefore, this research provides new insight into the rational design and fabrication of all-solid-state flexible energy-storage devices as well as the fundamental understanding of ion and charge transport at the interface. © 2011 American Chemical Society
Afonin, Sergii; Kubyshkin, Vladimir; Mykhailiuk, Pavel K; Komarov, Igor V; Ulrich, Anne S
2017-07-13
The cell-penetrating peptide SAP, which was designed as an amphipathic poly-l-proline helix II (PPII), was suggested to self-assemble into regular fibrils that are relevant for its internalization. Herein we have analyzed the structure of SAP in the membrane-bound state by solid-state 19 F-NMR, which revealed other structural states, in addition to the expected surface-aligned PPII. Trifluoromethyl-bicyclopentyl-glycine (CF 3 -Bpg) and two rigid isomers of trifluoromethyl-4,5-methanoprolines (CF 3 -MePro) were used as labels for 19 F-NMR analysis. The equilibria between different conformations of SAP were studied and were found to be shifted by the substituents at Pro-11. Synchrotron-CD results suggested that substituting Pro-11 by CF 3 -MePro governed the coil-to-PPII equilibrium in solution and in the presence of a lipid bilayer. Using CD and 19 F-NMR, we examined the slow kinetics of the association of SAP with membranes and the dependence of the SAP conformational dynamics on the lipid composition. The peptide did not bind to lipids in the solid ordered phase and aggregated only in the liquid ordered "raft"-like bilayers. Self-association could not be detected in solution or in the presence of liquid disordered membranes. Surface-bound amphipathic SAP in a nonaggregated state was structured as a mixture of nonideal extended conformations reflecting the equilibrium already present in solution, i.e., before binding to the membrane.
Masica, David L; Ash, Jason T; Ndao, Moise; Drobny, Gary P; Gray, Jeffrey J
2010-12-08
Protein-biomineral interactions are paramount to materials production in biology, including the mineral phase of hard tissue. Unfortunately, the structure of biomineral-associated proteins cannot be determined by X-ray crystallography or solution nuclear magnetic resonance (NMR). Here we report a method for determining the structure of biomineral-associated proteins. The method combines solid-state NMR (ssNMR) and ssNMR-biased computational structure prediction. In addition, the algorithm is able to identify lattice geometries most compatible with ssNMR constraints, representing a quantitative, novel method for investigating crystal-face binding specificity. We use this method to determine most of the structure of human salivary statherin interacting with the mineral phase of tooth enamel. Computation and experiment converge on an ensemble of related structures and identify preferential binding at three crystal surfaces. The work represents a significant advance toward determining structure of biomineral-adsorbed protein using experimentally biased structure prediction. This method is generally applicable to proteins that can be chemically synthesized. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten
2015-10-01
Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension.
Experimental evidence of beam-foil plasma creation during ion-solid interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Prashant, E-mail: prashant@iuac.res.in; Nandi, Tapan
2016-08-15
Charge state evolution of the energetic projectile ions during the passage through thin carbon foils has been revisited using the X-ray spectroscopy technique. Contributions from the bulk and the solid surface in the charge changing processes have been segregated by measuring the charge state distribution of the projectile ions in the bulk of the target during the ion–solid interaction. Interestingly, the charge state distribution measured in the bulk exhibits Lorentzian profile in contrast to the well-known Gaussian structure observed using the electromagnetic methods and the theoretical predictions. The occurrence of such behavior is a direct consequence of the imbalance betweenmore » charge changing processes, which has been seen in various cases of the laboratory plasma. It suggests that the ion-solid collisions constitute high-density, localized plasma in the bulk of the solid target, called the beam-foil plasma. This condensed beam-foil plasma is similar to the high-density solar and stellar plasma which may have practical implementations in various fields, in particular, plasma physics and nuclear astrophysics. The present work suggests further modification in the theoretical charge state distribution calculations by incorporating the plasma coupling effects during the ion–solid interactions. Moreover, the multi-electron capture from the target exit surface has been confirmed through comparison between experimentally measured and theoretically predicted values of the mean charge state of the projectile ions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Nannan; College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108; He, Zhangzhen, E-mail: hcz1988@hotmail.com
2015-08-15
Two vanadate compounds Ca{sub 5}M{sub 4}V{sub 6}O{sub 24} (M=Co, Ni) have been synthesized by a high-temperature solid-state reaction. The compounds are found to crystallize in the cubic system with a space group Ia-3d, which exhibit a typical garnet structural framework. Magnetic measurements show that Ca{sub 5}M{sub 4}V{sub 6}O{sub 24} (M=Co, Ni) exhibit similar magnetic behaviors, in which Ca{sub 5}Co{sub 4}V{sub 6}O{sub 24} possesses an antiferromagnetic ordering at T{sub N}=~6 K while Ca{sub 5}Ni{sub 4}V{sub 6}O{sub 24} shows an antiferromagnetic ordering at T{sub N}=~7 K. - Graphical abstract: Garnet vanadate compounds Ca{sub 5}M{sub 4}V{sub 6}O{sub 24} (M=Co, Ni) have been synthesizedmore » by a high-temperature solid-state reaction. Structural features and magnetic behaviors are also investigated. - Highlights: • New type of garnet vanadates Ca{sub 5}M{sub 4}V{sub 6}O{sub 24} (M=Co, Ni) are synthesized by a high-temperature solid-state reaction. • Structural features are confirmed by single crystal samples. • Magnetic behaviors are firstly investigated in the systems.« less
NASA Astrophysics Data System (ADS)
Muche, Simon; Hołyńska, Małgorzata
2017-08-01
Structure and properties of a rare metal complex of the chiral Schiff base ligand derived from ortho-vanillin and L-tyrosine are presented. This study is a continuation of research on ligands containing biologically compatible moieties. The ligand is also fully characterized in form of a sodium salt, in particular in solution, for the first time. The metal complex contains a unique bowl-shaped [Ni4] core. Its structure is investigated both in solution (ESI-MS, NMR) and in solid state (X-ray diffraction studies). Under certain conditions the complex can be isolated as crystalline DMF solvate which is studied in solid state.
Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure.
Yuan, Longyan; Lu, Xi-Hong; Xiao, Xu; Zhai, Teng; Dai, Junjie; Zhang, Fengchao; Hu, Bin; Wang, Xue; Gong, Li; Chen, Jian; Hu, Chenguo; Tong, Yexiang; Zhou, Jun; Wang, Zhong Lin
2012-01-24
A highly flexible solid-state supercapacitor was fabricated through a simple flame synthesis method and electrochemical deposition process based on a carbon nanoparticles/MnO(2) nanorods hybrid structure using polyvinyl alcohol/H(3)PO(4) electrolyte. Carbon fabric is used as a current collector and electrode (mechanical support), leading to a simplified, highly flexible, and lightweight architecture. The device exhibited good electrochemical performance with an energy density of 4.8 Wh/kg at a power density of 14 kW/kg, and a demonstration of a practical device is also presented, highlighting the path for its enormous potential in energy management. © 2011 American Chemical Society
Molecular Structure of Humin and Melanoidin via Solid State NMR
Herzfeld, Judith; Rand, Danielle; Matsuki, Yoh; Daviso, Eugenio; Mak-Jurkauskas, Melody; Mamajanov, Irena
2011-01-01
Sugar-derived humins and melanoidins figure significantly in food chemistry, agricultural chemistry, biochemistry and prebiotic chemistry. Despite wide interest and significant experimental attention, the amorphous and insoluble nature of the polymers has made them resistant to conventional structural characterization. Here we make use of solid-state NMR methods, including selective 13C substitution, 1H-dephasing, and double quantum filtration. The spectra, and their interpretation, are simplified by relying exclusively on hydronium for catalysis. The results for polymers derived from ribose, deoxyribose and fructose indicate diverse pathways to furans, suggest a simple route to pyrroles in the presence of amines, and reveal a heterogenous network-type polymer in which sugar molecules cross-link the heterocycles. PMID:21456563
2011-01-01
other mechanism ? What accelerates the solar wind? What are the near- Sun plasma properties (particle density, magnetic field)? Does the solar wind come...microstructure character iza tion, elec tronic ceramics, solid-state physics, fiber optics, electro-optics, microelectronics, fracture mechan ics...computational fluid mechanics , experi mental structural mechanics , solid me chan ics, elastic/plastic fracture mechanics , materials, finite-element
David B. McKeever; James L. Howard
2011-01-01
Solid wood timber products provide important raw materials to the construction, manufacturing, and shipping sectors of the U.S. economy. Nearly all new single-family houses and low-rise multifamily residential structures are wood framed and sheathed. Large amounts of solid wood timber products are also used in the construction of new nonresidential buildings, and in...
Dynamics and interactions of ibuprofen in cyclodextrin nanosponges by solid-state NMR spectroscopy
Ferro, Monica; Pastori, Nadia; Punta, Carlo; Melone, Lucio; Panzeri, Walter; Rossi, Barbara; Trotta, Francesco
2017-01-01
Two different formulations of cyclodextrin nanosponges (CDNS), obtained by polycondensation of β-cyclodextrin with ethylenediaminetetraacetic acid dianhydride (EDTAn), were treated with aqueous solutions of ibuprofen sodium salt (IbuNa) affording hydrogels that, after lyophilisation, gave two solid CDNS-drug formulations. 1H fast MAS NMR and 13C CP-MAS NMR spectra showed that IbuNa was converted in situ into its acidic and dimeric form (IbuH) after freeze-drying. 13C CP-MAS NMR spectra also indicated that the structure of the nanosponge did not undergo changes upon drug loading compared to the unloaded system. However, the 13C NMR spectra collected under variable contact time cross-polarization (VCT-CP) conditions showed that the polymeric scaffold CDNS changed significantly its dynamic regime on passing from the empty CDNS to the drug-loaded CDNS, thus showing that the drug encapsulation can be seen as the formation of a real supramolecular aggregate rather than a conglomerate of two solid components. Finally, the structural features obtained from the different solid-state NMR approaches reported matched the information from powder X-ray diffraction profiles. PMID:28228859
Dynamics and interactions of ibuprofen in cyclodextrin nanosponges by solid-state NMR spectroscopy.
Ferro, Monica; Castiglione, Franca; Pastori, Nadia; Punta, Carlo; Melone, Lucio; Panzeri, Walter; Rossi, Barbara; Trotta, Francesco; Mele, Andrea
2017-01-01
Two different formulations of cyclodextrin nanosponges (CDNS), obtained by polycondensation of β-cyclodextrin with ethylenediaminetetraacetic acid dianhydride (EDTAn), were treated with aqueous solutions of ibuprofen sodium salt (IbuNa) affording hydrogels that, after lyophilisation, gave two solid CDNS-drug formulations. 1 H fast MAS NMR and 13 C CP-MAS NMR spectra showed that IbuNa was converted in situ into its acidic and dimeric form (IbuH) after freeze-drying. 13 C CP-MAS NMR spectra also indicated that the structure of the nanosponge did not undergo changes upon drug loading compared to the unloaded system. However, the 13 C NMR spectra collected under variable contact time cross-polarization (VCT-CP) conditions showed that the polymeric scaffold CDNS changed significantly its dynamic regime on passing from the empty CDNS to the drug-loaded CDNS, thus showing that the drug encapsulation can be seen as the formation of a real supramolecular aggregate rather than a conglomerate of two solid components. Finally, the structural features obtained from the different solid-state NMR approaches reported matched the information from powder X-ray diffraction profiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aromí, G.; Beavers, C. M.; Sánchez Costa, J.
Crystal-to-crystal transformations have been crucial in the understanding of solid-state processes, since these may be studied in detail by means of single crystal X-ray diffraction (SCXRD) techniques. The description of the mechanisms and potential intermediates of those processes remains very challenging. In fact, solid-state transient states have rarely been observed, at least to a sufficient level of detail. We have investigated the process of guest extrusion from the non-porous molecular material [Fe(bpp)(H 2L)](ClO 4) 2·1.5C 3H 6O (bpp = 2,6-bis(pyrazol-3-yl)pyridine; H 2L = 2,6-bis(5-(2-methoxyphenyl)-pyrazol-3-yl)pyridine; C 3H 6O = acetone), which occurs through ordered diffusion of acetone in a crystal-to-crystal manner,more » leading to dramatic structural changes. The slow kinetics of the transition allows thermal trapping of the system at various intermediate stages. The transiting single crystal can be then examined at these points through synchrotron SCXRD, offering a window upon the mechanism of the transformation at the molecular scale. These experiments have unveiled the development of an ordered intermediate phase, distinct from the initial and the final states, coexisting as the process advances with either of these two phases or, at a certain moment with both of them. The new intermediate phase has been structurally characterized in full detail by SCXRD, providing insights into the mechanism of this diffusion triggered solid-state phenomenon. Lastly, the process has been also followed by calorimetry, optical microscopy, local Raman spectroscopy and powder X-ray diffraction. The discovery and description of an intermediate ordered state in a molecular solid-state transformation is of great interest and will help to understand the mechanistic details and reaction pathways underlying these transformations.« less
Electronic structures of anatase (TiO2)1-x(TaON)x solid solutions: a first-principles study.
Dang, Wenqiang; Chen, Hungru; Umezawa, Naoto; Zhang, Junying
2015-07-21
Sensitizing wide band gap photo-functional materials under visible-light irradiation is an important task for efficient solar energy conversion. Although nitrogen doping into anatase TiO2 has been extensively studied for this purpose, it is hard to increase the nitrogen content in anatase TiO2 because of the aliovalent nitrogen substituted for oxygen, leading to the formation of secondary phases or defects that hamper the migration of photoexcited charge carriers. In this paper, electronic structures of (TiO2)1-x(TaON)x (0 ≤ x ≤ 1) solid solutions, in which the stoichiometry is satisfied with the co-substitution of Ti for Ta along with O for N, are investigated within the anatase crystal structure using first-principles calculations. Our computational results show that the solid solutions have substantially narrower band gaps than TiO2, without introducing any localized energy states in the forbidden gap. In addition, in comparison with the pristine TiO2, the solid solution has a direct band gap when the content of TaON exceeds 0.25, which is advantageous to light absorption. The valence band maximum (VBM) of the solid solutions, which is mainly composed of N 2p states hybridized with O 2p, Ti 3d or Ta 5d orbitals, is higher in energy than that of pristine anatase TiO2 consisting of non-bonding O 2p states. On the other hand, incorporating TaON into TiO2 causes the formation of d-d bonding states through π interactions and substantially lowers the conduction band minimum (CBM) because of the shortened distance between some metal atoms. As a result, the anatase (TiO2)1-x(TaON)x is expected to become a promising visible-light absorber. In addition, some atomic configurations are found to possess exceptionally narrow band gaps.
2015-01-01
Microsupercapacitors (MSCs) are promising energy storage devices to power miniaturized portable electronics and microelectromechanical systems. With the increasing attention on all-solid-state flexible supercapacitors, new strategies for high-performance flexible MSCs are highly desired. Here, we demonstrate all-solid-state, flexible micropseudocapacitors via direct laser patterning on crack-free, flexible WO3/polyvinylidene fluoride (PVDF)/multiwalled carbon nanotubes (MWCNTs) composites containing high levels of porous hierarchically structured WO3 nanomaterials (up to 50 wt %) and limited binder (PVDF, <25 wt %). The work leads to an areal capacitance of 62.4 mF·cm–2 and a volumetric capacitance of 10.4 F·cm–3, exceeding that of graphene based flexible MSCs by a factor of 26 and 3, respectively. As a noncarbon based flexible MSC, hierarchically nanostructured WO3 in the narrow finger electrode is essential to such enhancement in energy density due to its pseudocapacitive property. The effects of WO3/PVDF/MWCNTs composite composition and the dimensions of interdigital structure on the performance of the flexible MSCs are investigated. PMID:26618406
Tunable porosities and shapes of fullerene-like spheres.
Dielmann, Fabian; Fleischmann, Matthias; Heindl, Claudia; Peresypkina, Eugenia V; Virovets, Alexander V; Gschwind, Ruth M; Scheer, Manfred
2015-04-13
The formation of reversible switchable nanostructures monitored by solution and solid-state methods is still a challenge in supramolecular chemistry. By a comprehensive solid state and solution study we demonstrate the potential of the fivefold symmetrical building block of pentaphosphaferrocene in combination with Cu(I) halides to switch between spheres of different porosity and shape. With increasing amount of CuX, the structures of the formed supramolecules change from incomplete to complete spherically shaped fullerene-like assemblies possessing an Ih -C80 topology at one side and to a tetrahedral-structured aggregate at the other. In the solid state, the formed nano-sized aggregates reach an outer diameter of 3.14 and 3.56 nm, respectively. This feature is used to reversibly encapsulate and release guest molecules in solution. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Huang, Xuezhen; Liu, Hewei; Zhang, Xi; Jiang, Hongrui
2015-12-23
Microsupercapacitors (MSCs) are promising energy storage devices to power miniaturized portable electronics and microelectromechanical systems. With the increasing attention on all-solid-state flexible supercapacitors, new strategies for high-performance flexible MSCs are highly desired. Here, we demonstrate all-solid-state, flexible micropseudocapacitors via direct laser patterning on crack-free, flexible WO3/polyvinylidene fluoride (PVDF)/multiwalled carbon nanotubes (MWCNTs) composites containing high levels of porous hierarchically structured WO3 nanomaterials (up to 50 wt %) and limited binder (PVDF, <25 wt %). The work leads to an areal capacitance of 62.4 mF·cm(-2) and a volumetric capacitance of 10.4 F·cm(-3), exceeding that of graphene based flexible MSCs by a factor of 26 and 3, respectively. As a noncarbon based flexible MSC, hierarchically nanostructured WO3 in the narrow finger electrode is essential to such enhancement in energy density due to its pseudocapacitive property. The effects of WO3/PVDF/MWCNTs composite composition and the dimensions of interdigital structure on the performance of the flexible MSCs are investigated.
Titanium α-ω phase transformation pathway and a predicted metastable structure
Zarkevich, Nickolai A.; Johnson, Duane D.
2016-01-15
A titanium is a highly utilized metal for structural lightweighting and its phases, transformation pathways (transition states), and structures have scientific and industrial importance. Using a proper solid-state nudged elastic band method employing two climbing images combined with density functional theory DFT + U methods for accurate energetics, we detail the pressure-induced α (ductile) to ω (brittle) transformation at the coexistence pressure. We also find two transition states along the minimal-enthalpy path and discover a metastable body-centered orthorhombic structure, with stable phonons, a lower density than the end-point phases, and decreasing stability with increasing pressure.
Goel, Alok; Zhao, Zhicheng; Sørensen, Dan; Zhou, Jay; Zhang, Fa
2016-09-10
Esterification of pseudoephedrine hydrochloride (PSE) by citric acid was observed in a solid dose pharmaceutical preparation at room temperature and accelerated stability condition (40°C/75% relative humidity). The esterification of PSE with citric acid was confirmed by a solid-state binary reaction in the presence of minor level of water at elevated temperature to generate three isomeric esters. The structures of the pseudoephedrine citric acid esters were elucidated using high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy (NMR). Occurrence of esterification in solid state, instead of amidation which is generally more favorable than esterification, is likely due to remaining HCl salt form of solid pseudoephedrine hydrochloride to protect its amino group from amidation with citric acid. In contrast, the esterification was not observed from solution reaction between PSE and citric acid. Copyright © 2016 Elsevier B.V. All rights reserved.
Compositional, Atomic and Molecular Analysis in Support of Materials Needs of the U.S. Air Force.
1982-09-01
internally hydrogen-bonded monomer in .which the keto group is involved in the hydrogen bond but the acid carbonyl is not. 3 ) 3 - Bromopyruvic Acid...The spectra and structure of 3 - bromopyruvic acid were investigated and compared to those of pyruvic acid. It has been found that the spectra of 3 ...phase, cyclic monomer in dilute solution). The solid state spectra are quite different, however. The solid states spectra of 3 - bromopyruvic acid show a
Gas storage materials, including hydrogen storage materials
Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji
2013-02-19
A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.
Gas storage materials, including hydrogen storage materials
Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji
2014-11-25
A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.
High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites.
Li, Zijiong; Zhou, Zhihua; Yun, Gaoqian; Shi, Kai; Lv, Xiaowei; Yang, Baocheng
2013-11-12
In this paper, we report a facile low-cost synthesis of the graphene-ZnO hybrid nanocomposites for solid-state supercapacitors. Structural analysis revealed a homogeneous distribution of ZnO nanorods that are inserted in graphene nanosheets, forming a sandwiched architecture. The material exhibited a high specific capacitance of 156 F g-1 at a scan rate of 5 mV.s-1. The fabricated solid-state supercapacitor device using these graphene-ZnO hybrid nanocomposites exhibits good supercapacitive performance and long-term cycle stability. The improved supercapacitance property of these materials could be ascribed to the increased conductivity of ZnO and better utilization of graphene. These results demonstrate the potential of the graphene-ZnO hybrid nanocomposites as an electrode in high-performance supercapacitors.
High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites
NASA Astrophysics Data System (ADS)
Li, Zijiong; Zhou, Zhihua; Yun, Gaoqian; Shi, Kai; Lv, Xiaowei; Yang, Baocheng
2013-11-01
In this paper, we report a facile low-cost synthesis of the graphene-ZnO hybrid nanocomposites for solid-state supercapacitors. Structural analysis revealed a homogeneous distribution of ZnO nanorods that are inserted in graphene nanosheets, forming a sandwiched architecture. The material exhibited a high specific capacitance of 156 F g-1 at a scan rate of 5 mV.s-1. The fabricated solid-state supercapacitor device using these graphene-ZnO hybrid nanocomposites exhibits good supercapacitive performance and long-term cycle stability. The improved supercapacitance property of these materials could be ascribed to the increased conductivity of ZnO and better utilization of graphene. These results demonstrate the potential of the graphene-ZnO hybrid nanocomposites as an electrode in high-performance supercapacitors.
The Fabrication of All-Solid-State Lithium-Ion Batteries via Spark Plasma Sintering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Xialu; Rechtin, Jack; Olevsky, Eugene
Spark plasma sintering (SPS) has been successfully used to produce all-solid-state lithium-ion batteries (ASSLibs). Both regular and functionally graded electrodes are implemented into novel three-layer and five-layer battery designs together with solid-state composite electrolyte. The electrical capacities and the conductivities of the SPS-processed ASSLibs are evaluated using the galvanostatic charge-discharge test. Experimental results have shown that, compared to the three-layer battery, the five-layer battery is able to improve energy and power densities. Scanning electron microscopy (SEM) is employed to examine the microstructures of the batteries especially at the electrode–electrolyte interfaces. It reveals that the functionally graded structure can eliminate themore » delamination effect at the electrode–electrolyte interface and, therefore, retains better performance.« less
The Fabrication of All-Solid-State Lithium-Ion Batteries via Spark Plasma Sintering
Wei, Xialu; Rechtin, Jack; Olevsky, Eugene
2017-09-14
Spark plasma sintering (SPS) has been successfully used to produce all-solid-state lithium-ion batteries (ASSLibs). Both regular and functionally graded electrodes are implemented into novel three-layer and five-layer battery designs together with solid-state composite electrolyte. The electrical capacities and the conductivities of the SPS-processed ASSLibs are evaluated using the galvanostatic charge-discharge test. Experimental results have shown that, compared to the three-layer battery, the five-layer battery is able to improve energy and power densities. Scanning electron microscopy (SEM) is employed to examine the microstructures of the batteries especially at the electrode–electrolyte interfaces. It reveals that the functionally graded structure can eliminate themore » delamination effect at the electrode–electrolyte interface and, therefore, retains better performance.« less
High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites
2013-01-01
In this paper, we report a facile low-cost synthesis of the graphene-ZnO hybrid nanocomposites for solid-state supercapacitors. Structural analysis revealed a homogeneous distribution of ZnO nanorods that are inserted in graphene nanosheets, forming a sandwiched architecture. The material exhibited a high specific capacitance of 156 F g−1 at a scan rate of 5 mV.s−1. The fabricated solid-state supercapacitor device using these graphene-ZnO hybrid nanocomposites exhibits good supercapacitive performance and long-term cycle stability. The improved supercapacitance property of these materials could be ascribed to the increased conductivity of ZnO and better utilization of graphene. These results demonstrate the potential of the graphene-ZnO hybrid nanocomposites as an electrode in high-performance supercapacitors. PMID:24215772
Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe.
Peña-Jiménez, Jesús-Alejandro; González, Federico; López-Juárez, Rigoberto; Hernández-Alcántara, José-Manuel; Camarillo, Enrique; Murrieta-Sánchez, Héctor; Pardo, Lorena; Villafuerte-Castrejón, María-Elena
2016-09-28
The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN) co-doped with the La 3+ -Mn 4+ and Eu 3+ -Fe 3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La 3+ -Mn 4+ and Eu 3+ -Fe 3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications.
Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe
Peña-Jiménez, Jesús-Alejandro; González, Federico; López-Juárez, Rigoberto; Hernández-Alcántara, José-Manuel; Camarillo, Enrique; Murrieta-Sánchez, Héctor; Pardo, Lorena; Villafuerte-Castrejón, María-Elena
2016-01-01
The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN) co-doped with the La3+–Mn4+ and Eu3+–Fe3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La3+–Mn4+ and Eu3+–Fe3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications. PMID:28773925
Thermal conductivity of solid monohydroxyl alcohols in polyamorphous states
NASA Astrophysics Data System (ADS)
Krivchikov, A. I.; Korolyuk, O. A.; Sharapova, I. V.
2012-01-01
New measurements of the thermal conductivity of solid ethyl alcohol C2H5OH in the interval from 2 K to the melting temperature are presented. An annealing effect in the thermal conductivity of the orientationally ordered phase of the alcohol has been observed over a wide range of temperatures. This phase was obtained as a result of an irreversible first-order phase transition from an orientationally disordered crystal with a cubic structure at T = 109 K. The thermal conductivity was observed to increase as the monoclinic lattice changed from a less stable phase to a more stable one. The growth may be due to the improved quality of the completely ordered crystal. A comparative analysis of the temperature dependences of the thermal conductivity κ(T) is made for the solid monohydroxyl alcohols CH3OH, C2H5OH, С2D5OD, C3H7OH, and C4H9OH in their disordered orientational and structural states. At low temperatures the thermal conductivity of the series of monohydroxyl structural glasses of the alcohols increases linearly with the mass of the alcohol molecule.
Zhitomirsky, David; Grossman, Jeffrey C
2016-10-05
There is tremendous growth in fields where small functional molecules and colloidal nanomaterials are integrated into thin films for solid-state device applications. Many of these materials are synthesized in solution and there often exists a significant barrier to transition them into the solid state in an efficient manner. Here, we develop a methodology employing an electrodepositable copolymer consisting of small functional molecules for applications in solar energy harvesting and storage. We employ azobenzene solar thermal fuel polymers and functionalize them to enable deposition from low concentration solutions in methanol, resulting in uniform and large-area thin films. This approach enables conformal deposition on a variety of conducting substrates that can be either flat or structured depending on the application. Our approach further enables control over film growth via electrodepsition conditions and results in highly uniform films of hundreds of nanometers to microns in thickness. We demonstrate that this method enables superior retention of solar thermal fuel properties, with energy densities of ∼90 J/g, chargeability in the solid state, and exceptional materials utilization compared to other solid-state processing approaches. This novel approach is applicable to systems such as photon upconversion, photovoltaics, photosensing, light emission, and beyond, where small functional molecules enable solid-state applications.
Li, Pan; Lin, Weifeng; Liu, Xiong; Wang, Xiaowen; Gan, Xing; Luo, Lixin; Lin, Wei-Tie
2017-02-01
Daqu, a traditional fermentation starter that is used for Chinese liquor and vinegar production, is still manufactured through a traditional spontaneous solid-state fermentation process with no selected microorganisms are intentionally inoculated. The aim of this work was to analyze the microbiota dynamics during the solid-state fermentation process of Daqu using a traditional and bioaugmented inoculation with autochthonous of Bacillus, Pediococcus, Saccharomycopsis and Wickerhamomyces at an industrial scale. Highly similar dynamics of physicochemical parameters, enzymatic activities and microbial communities were observed during the traditional and bioaugmented solid-state fermentation processes. Both in the two cases, groups of Streptophyta, Rickettsiales and Xanthomonadales only dominated the first two days, but Bacillales and Eurotiales became predominant members after 2 and 10 days fermentation, respectively. Phylotypes of Enterobacteriales, Lactobacillales, Saccharomycetales and Mucorales dominated the whole fermentation process. No significant difference (P > 0.05) in microbial structure was observed between the traditional and bioaugmented fermentation processes. However, slightly higher microbial richness was found during the bioaugmented fermentation process after 10 days fermentation. Our results reinforced the microbiota dynamic stability during the solid-state fermentation process of Daqu, and might aid in controlling the traditional Daqu manufacturing process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Crystallisation and crystal forms of carbohydrate derivatives
NASA Astrophysics Data System (ADS)
Lennon, Lorna
This thesis is focused on the synthesis and solid state analysis of carbohydrate derivatives, including many novel compounds. Although the synthetic chemistry surrounding carbohydrates is well established in the literature, the crystal chemistry of carbohydrates is less well studied. Therefore this research aims to improve understanding of the solid state properties of carbohydrate derivatives through gaining more information on their supramolecular bonding. Chapter One focuses on an introduction to the solid state of organic compounds, with a background to crystallisation, including issues that can arise during crystal growth. Chapter Two is based on glucopyranuronate derivatives which are understudied in terms of their solid state forms. This chapter reports on the formation of novel glucuronamides and utilising the functionality of the amide bond for crystallisation. TEMPO oxidation was completed to form glucopyranuronates by oxidation of the primary alcohol groups of glucosides to the carboxylic acid derivatives, to increase functionality for enhanced crystal growth. Chapter Three reports on the synthesis of glucopyranoside derivatives by O-glycosylation reactions and displays crystal structures, including a number of previously unsolved acetate protected and deprotected crystal structures. More complex glycoside derivatives were also researched in an aim to study the resultant supramolecular motifs. Chapter Four contains the synthesis of aryl cellobioside derivatives including the novel crystal structures that were solved for the acetate protected and deprotected compounds. Research was carried out to determine if 1-deoxycellodextrins could act as putative isostructures for cellulose. Our research displays the presence of isostructural references with 1-deoxycellotriose shown to be similar to cellulose III11, 1-deoxycellotetraose correlates with cellulose IV11 and 1-deoxycellopentose shows isostructurality similar to that of cellulose II. Chapter Five contains the full experimental details and spectral characterisation of all novel compounds synthesised in this project and relevant crystallographic information.
Xiao, Yiling; McElheny, Dan; Hoshi, Minako; Ishii, Yoshitaka
2018-01-01
Intense efforts have been made to understand the molecular structures of misfolded amyloid β (Aβ) in order to gain insight into the pathological mechanism of Alzheimer's disease. Solid-state NMR spectroscopy (SSNMR) is considered a primary tool for elucidating the structures of insoluble and noncrystalline amyloid fibrils and other amyloid assemblies. In this chapter, we describe a detailed protocol to obtain the first atomic model of the 42-residue human Aβ peptide Aβ(1-42) in structurally homogeneous amyloid fibrils from our recent SSNMR study (Nat Struct Mol Biol 22:499-505, 2015). Despite great biological and clinical interest in Aβ(1-42) fibrils, their structural details have been long-elusive until this study. The protocol is divided into four sections. First, the solid-phase peptide synthesis (SPPS) and purification of monomeric Aβ(1-42) is described. We illustrate a controlled incubation method to prompt misfolding of Aβ(1-42) into homogeneous amyloid fibrils in an aqueous solution with fragmented Aβ(1-42) fibrils as seeds. Next, we detail analysis of Aβ(1-42) fibrils by SSNMR to obtain structural restraints. Finally, we describe methods to construct atomic models of Aβ(1-42) fibrils based on SSNMR results through two-stage molecular dynamics calculations.
NASA Astrophysics Data System (ADS)
Yadav, Hare Ram; Choudhury, Angshuman Roy
2017-12-01
Intermolecular interactions involving organic fluorine have been the contemporary field of research in the area of organic solid state chemistry. While a group of researchers had refuted the importance of "organic fluorine" in guiding crystal structures, others have provided evidences for in favor of fluorine mediated interactions in the solid state. Many systematic studies have indicated that the "organic fluorine" is capable of offering weak hydrogen bonds through various supramolecular synthons, mostly in the absence of other stronger hydrogen bonds. Analysis of fluorine mediated interaction in the presence of strong hydrogen bonds has not been highlighted in detail. Hence a thorough structural investigation is needed to understand the role of "organic fluorine" in crystal engineering of small organic fluorinated molecules having the possibility of strong hydrogen bond formation in the solution and in the solid state. To fulfil this aim, we have synthesized a series of fluorinated amides using 3-methoxyphenylacetic acid and fluorinated anilines and studied their structural properties through single crystal and powder X-ray diffraction methods. Our results indicated that the "organic fluorine" plays a significant role in altering the packing characteristics of the molecule in building specific crystal lattices even in the presence of strong hydrogen bond.
Tunable Solid-State Quantum Memory Using Rare-Earth-Ion-Doped Crystal, Nd(3+):GaN
2017-04-01
by plasma-assisted molecular beam epitaxy in a modular Gen II reactor using liquid gallium, solid Nd, and a nitrogen plasma. The photoluminescence (PL...provide a tunable memory. To vary the applied field, we designed and grew a series of Nd-doped GaN p-i-n structures, strain- balanced superlattice...27 Fig. 23 Electric field vs. GaN well/ AlxGa(1-x)N barrier thickness for strain- balanced superlattice (SBSL) structures with
NMR Relaxometry to Characterize the Drug Structural Phase in a Porous Construct.
Thrane, Linn W; Berglund, Emily A; Wilking, James N; Vodak, David; Seymour, Joseph D
2018-06-14
Nuclear magnetic resonance (NMR) frequency spectra and T 2 relaxation time measurements, using a high-power radio frequency probe, are shown to characterize the presence of an amorphous drug in a porous silica construct. The results indicate the ability of non-solid-state NMR methods to characterize crystalline and amorphous solid structural phases in drugs. Two-dimensional T 1 - T 2 magnetic relaxation time correlation experiments are shown to monitor the impact of relative humidity on the drug in a porous silica tablet.
Digital Systems Validation Handbook. Volume 2
1989-02-01
power. 2. A grid of wires, solid sheet, or foil. 3. A wire from circuit to grounding block or case. 4. A wire from circuit to structure. 5. Shield...RETURN. (11) 1. Structure, for power, fault, and "discrete" circuits. 2. A grid of wires, solid sheet, or foil. 3. A wire from circuit load back to...TV (14) Television TWTD (13) Thin Wire Time Domain TX (5) Transmit U.K. (13,141 United Kingdom U.S. (14) United States UART (15) Universal Asynchronous
1977-12-01
The solid rocket booster (SRB) structural test article is being installed in the Solid Rocket Booster Test Facility for the structural and load verification test at the Marshall Space Flight Center (MSFC). The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment.
NASA Astrophysics Data System (ADS)
Zarkevich, Nikolai A.; Johnson, Duane D.
2015-03-01
Materials under pressure may exhibit critical electronic and structural transitions that affect equation of states, as known for superconductors and the magneto-structural transformations of iron with both geophysical and planetary implications. While experiments often use constant-pressure (diamond-anvil cell, DAC) measurements, many theoretical results address a constant-volume transitions, which avoid issues with magnetic collapse but cannot be directly compared to experiment. We establish a modified solid-state nudge elastic band (MSS-NEB) method to handle magnetic systems that may exhibit moment (and volume) collapse during transformation. We apply it to the pressure-induced transformation in iron between the low-pressure body-centered cubic (bcc) and the high-pressure hexagonal close-packed (hcp) phases, find the bcc-hcp equilibrium coexistence pressure and a transitional pathway, and compare to shock and DAC experiments. We use methods developed with support by the U.S. Department of Energy (DE-FG02-03ER46026 and DE-AC02-07CH11358). Ames Laboratory is operated for the DOE by Iowa State University under contract DE-AC02-07CH11358.
Solid-state NMR studies of metal-free SOD1 fibrillar structures.
Banci, Lucia; Blaževitš, Olga; Cantini, Francesca; Danielsson, Jens; Lang, Lisa; Luchinat, Claudio; Mao, Jiafei; Oliveberg, Mikael; Ravera, Enrico
2014-06-01
Copper-zinc superoxide dismutase 1 (SOD1) is present in the protein aggregates deposited in motor neurons of amyotrophic lateral sclerosis (ALS) patients. ALS is a neurodegenerative disease that can be either sporadic (ca. 90%) or familial (fALS). The most widely studied forms of fALS are caused by mutations in the sequence of SOD1. Ex mortuo SOD1 aggregates are usually found to be amorphous. In vitro SOD1, in its immature reduced and apo state, forms fibrillar aggregates. Previous literature data have suggested that a monomeric SOD1 construct, lacking loops IV and VII, (apoSODΔIV-VII), shares the same fibrillization properties of apoSOD1, both proteins having the common structural feature of the central β-barrel. In this work, we show that structural information can be obtained at a site-specific level from solid-state NMR. The residues that are sequentially assignable are found to be located at the putative nucleation site for fibrillar species formation in apoSOD, as detected by other experimental techniques.
Synthesis, structural and semiconducting properties of Ba(Cu1/3 Sb2/3)O3-PbTiO3 solid solutions
NASA Astrophysics Data System (ADS)
Singh, Chandra Bhal; Kumar, Dinesh; Prashant, Verma, Narendra Kumar; Singh, Akhilesh Kumar
2018-05-01
We report the synthesis and properties of a new solid solution 0.05Ba(Cu1/3Sb2/3)O3-0.95PbTiO3 (BCS-PT) which shows the semiconducting properties. In this study, we have designed new perovskite-type (ABO3) solid solution of BCS-PT that have tunable optical band gap. BCS-PT compounds were prepared by conventional solid-state reaction method and their structural, micro-structural and optical properties were analyzed. The calcination temperature for BCS-PT solid solutions has been optimized to obtain a phase pure system. The Reitveld analysis of X-ray data show that all samples crystallize in tetragonal crystal structure with space group P4mm. X-ray investigation revealed that increase in calcination temperature led to increase of lattice parameter `a' while `c' parameter value lowered. The band gap of PbTiO3 is reduced from 3.2 eV to 2.8 eV with BCS doping and with increasing calcination temperature it further reduces to 2.56 eV. The reduced band gap indicated that the compounds are semiconducting and can be used for photovoltaic device applications.
NASA Astrophysics Data System (ADS)
Sendek, Austin D.; Yang, Qian; Cubuk, Ekin D.; Duerloo, Karel-Alexander N.; Cui, Yi; Reed, Evan J.
We present a new type of large-scale computational screening approach for identifying promising candidate materials for solid state electrolytes for lithium ion batteries that is capable of screening all known lithium containing solids. To predict the likelihood of a candidate material exhibiting high lithium ion conductivity, we leverage machine learning techniques to train an ionic conductivity classification model using logistic regression based on experimental measurements reported in the literature. This model, which is built on easily calculable atomistic descriptors, provides new insight into the structure-property relationship for superionic behavior in solids and is approximately one million times faster to evaluate than DFT-based approaches to calculating diffusion coefficients or migration barriers. We couple this model with several other technologically motivated heuristics to reduce the list of candidate materials from the more than 12,000 known lithium containing solids to 21 structures that show promise as electrolytes, few of which have been examined experimentally. Our screening utilizes structures and electronic information contained in the Materials Project database. This work is supported by an Office of Technology Licensing Fellowship through the Stanford Graduate Fellowship Program and a seed Grant from the TomKat Center for Sustainable Energy at Stanford.
Wang, Zhuoran; Opembe, Naftali; Kobayashi, Takeshi; ...
2018-02-03
In this study, solid-state (SS)NMR techniques were applied to characterize the atomic-scale structures of ordered mesoporous carbon (OMC) materials prepared using Pluronic F127 as template with resorcinol and formaldehyde as polymerizing precursors. A rigorous quantitative analysis was developed using a combination of 13C SSNMR spectra acquired with direct polarization and cross polarization on natural abundant and selectively 13C-enriched series of samples pyrolyzed at various temperatures. These experiments identified and counted the key functional groups present in the OMCs at various stages of preparation and thermal treatment. Lastly, the chemical evolution of molecular networks, the average sizes of aromatic clusters andmore » the extended molecular structures of OMCs were then inferred by coupling this information with the elemental analysis results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhuoran; Opembe, Naftali; Kobayashi, Takeshi
In this study, solid-state (SS)NMR techniques were applied to characterize the atomic-scale structures of ordered mesoporous carbon (OMC) materials prepared using Pluronic F127 as template with resorcinol and formaldehyde as polymerizing precursors. A rigorous quantitative analysis was developed using a combination of 13C SSNMR spectra acquired with direct polarization and cross polarization on natural abundant and selectively 13C-enriched series of samples pyrolyzed at various temperatures. These experiments identified and counted the key functional groups present in the OMCs at various stages of preparation and thermal treatment. Lastly, the chemical evolution of molecular networks, the average sizes of aromatic clusters andmore » the extended molecular structures of OMCs were then inferred by coupling this information with the elemental analysis results.« less
Physics and Chemistry of Earth Materials
NASA Astrophysics Data System (ADS)
Navrotsky, Alexandra
1994-11-01
Stressing the fundamental solid state behavior of minerals, and emphasizing both theory and experiment, this text surveys the physics and chemistry of earth materials. The author begins with a systematic tour of crystal chemistry of both simple and complex structures (with completely new structural drawings) and discusses how to obtain structural and thermodynamic information experimentally. Dr. Navrotsky also reviews the quantitative concepts of chemical bonding--band theory, molecular orbit and ionic models. She then covers physical properties and relates microscopic features to macroscopic thermodynamic behavior and treats high pressure phase transitions, amorphous materials and solid state reactions. The author concludes with a look at the interface between mineral physics and materials science. Highly illustrated throughout, this book fills the gap between undergraduate texts and specialized review volumes and is appropriate for students and researchers in earth science and materials science.
Unfolding the band structure of disordered solids: From bound states to high-mobility Kane fermions
NASA Astrophysics Data System (ADS)
Rubel, O.; Bokhanchuk, A.; Ahmed, S. J.; Assmann, E.
2014-09-01
Supercells are often used in ab initio calculations to model compound alloys, surfaces, and defects. One of the main challenges of supercell electronic structure calculations is to recover the Bloch character of electronic eigenstates perturbed by disorder. Here we apply the spectral weight approach to unfolding the electronic structure of group III-V and II-VI semiconductor solid solutions. The illustrative examples include formation of donorlike states in dilute Ga(PN) and associated enhancement of its optical activity, direct observation of the valence band anticrossing in dilute GaAs:Bi, and a topological band crossover in ternary (HgCd)Te alloy accompanied by emergence of high-mobility Kane fermions. The analysis facilitates interpretation of optical and transport characteristics of alloys that are otherwise ambiguous in traditional first-principles supercell calculations.
Mastering the interface for advanced all-solid-state lithium rechargeable batteries
Li, Yutao; Zhou, Weidong; Chen, Xi; Lü, Xujie; Cui, Zhiming; Xin, Sen; Xue, Leigang; Jia, Quanxi; Goodenough, John B.
2016-01-01
A solid electrolyte with a high Li-ion conductivity and a small interfacial resistance against a Li metal anode is a key component in all-solid-state Li metal batteries, but there is no ceramic oxide electrolyte available for this application except the thin-film Li-P oxynitride electrolyte; ceramic electrolytes are either easily reduced by Li metal or penetrated by Li dendrites in a short time. Here, we introduce a solid electrolyte LiZr2(PO4)3 with rhombohedral structure at room temperature that has a bulk Li-ion conductivity σLi = 2 × 10−4 S⋅cm−1 at 25 °C, a high electrochemical stability up to 5.5 V versus Li+/Li, and a small interfacial resistance for Li+ transfer. It reacts with a metallic lithium anode to form a Li+-conducting passivation layer (solid-electrolyte interphase) containing Li3P and Li8ZrO6 that is wet by the lithium anode and also wets the LiZr2(PO4)3 electrolyte. An all-solid-state Li/LiFePO4 cell with a polymer catholyte shows good cyclability and a long cycle life. PMID:27821751
Burgess, Kevin M N; Korobkov, Ilia; Bryce, David L
2012-04-27
Multinuclear ((31)P and (79/81)Br), multifield (9.4, 11.75, and 21.1 T) solid-state nuclear magnetic resonance experiments are performed for seven phosphonium bromides bearing the triphenylphosphonium cation, a molecular scaffold found in many applications in chemistry. This is undertaken to fully characterise their bromine electric field gradient (EFG) tensors, as well as the chemical shift (CS) tensors of both the halogen and the phosphorus nuclei, providing a rare and novel insight into the local electronic environments surrounding them. New crystal structures, obtained from single-crystal X-ray diffraction, are reported for six compounds to aid in the interpretation of the NMR data. Among them is a new structure of BrPPh(4), because the previously reported one was inconsistent with our magnetic resonance data, thereby demonstrating how NMR data of non-standard nuclei can correct or improve X-ray diffraction data. Our results indicate that, despite sizable quadrupolar interactions, (79/81)Br magnetic resonance spectroscopy is a powerful characterisation tool that allows for the differentiation between chemically similar bromine sites, as shown through the range in the characteristic NMR parameters. (35/37)Cl solid-state NMR data, obtained for an analogous phosphonium chloride sample, provide insight into the relationship between unit cell volume, nuclear quadrupolar coupling constants, and Sternheimer antishielding factors. The experimental findings are complemented by gauge-including projector-augmented wave (GIPAW) DFT calculations, which substantiate our experimentally determined strong dependence of the largest component of the bromine CS tensor, δ(11), on the shortest Br-P distance in the crystal structure, a finding that has possible application in the field of NMR crystallography. This trend is explained in terms of Ramsey's theory on paramagnetic shielding. Overall, this work demonstrates how careful NMR studies of underexploited exotic nuclides, such as (79/81)Br, can afford insights into structure and bonding environments in the solid state. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sergeyev, Ivan; Moyna, Guillermo
2005-05-02
A novel method for the determination of the three-dimensional (3D) structure of oligosaccharides in the solid state using experimental 13C NMR data is presented. The approach employs this information, combined with 13C chemical shift surfaces (CSSs) for the glycosidic bond carbons in the generation of NMR pseudopotential energy functions suitable for use as constraints in molecular modeling simulations. Application of the method to trehalose, cellobiose, and cellotetraose produces 3D models that agree remarkably well with the reported X-ray structures, with phi and psi dihedral angles that are within 10 degrees from the ones observed in the crystals. The usefulness of the approach is further demonstrated in the determination of the 3D structure of the cellohexaose, an hexasaccharide for which no X-ray data has been reported, as well as in the generation of accurate structural models for cellulose II and amylose V6.
NASA Astrophysics Data System (ADS)
Qin, Shiying; Zhu, Xiaohong; Jiang, Yue; Ling, Ming'en; Hu, Zhiwei; Zhu, Jiliang
2018-03-01
A highly self-textured Ga2O3-substituted Li7La3Zr2O12 (LLZO-Ga) solid electrolyte with a nominal composition of Li6.55Ga0.15La3Zr2O12 is obtained by a simple and low-cost solid-state reaction technique, requiring no seed crystals to achieve grain orientation. The as-prepared self-textured LLZO-Ga shows a strong (420) preferred orientation with a high Lotgering factor of 0.91. Coherently, a terrace-shaped microstructure consisting of many parallel layers, indicating a two-dimensional-like growth mode, is clearly observed in the self-textured sample. As a result, the highly self-textured garnet-type lithium-ion conducting solid electrolyte of LLZO-Ga exhibits an extremely high ionic conductivity, reaching a state-of-the-art level of 2.06 × 10-3 S cm-1 at room temperature (25 °C) and thus shedding light on an important strategy for improving the structure and ionic conductivity of solid electrolytes.
Gupta, S.; Dura, J.A.; Freites, J.A.; Tobias, D.J.; Blasie, J. K.
2012-01-01
The voltage-sensor domain (VSD) is a modular 4-helix bundle component that confers voltage sensitivity to voltage-gated cation channels in biological membranes. Despite extensive biophysical studies and the recent availability of x-ray crystal structures for a few voltage-gated potassium (Kv-) channels and a voltage-gate sodium (Nav-) channel, a complete understanding of the cooperative mechanism of electromechanical coupling, interconverting the closed-to-open states (i.e. non-conducting to cation conducting) remains undetermined. Moreover, the function of these domains is highly dependent on the physical-chemical properties of the surrounding lipid membrane environment. The basis for this work was provided by a recent structural study of the VSD from a prokaryotic Kv-channel vectorially-oriented within a single phospholipid (POPC; 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane investigated by x-ray interferometry at the solid/moist He (or solid/vapor) and solid/liquid interfaces thus achieving partial to full hydration, respectively (Gupta et. al. Phys. Rev E. 2011, 84). Here, we utilize neutron interferometry to characterize this system in substantially greater structural detail at the sub-molecular level, due to its inherent advantages arising from solvent contrast variation coupled with the deuteration of selected sub-molecular membrane components, especially important for the membrane at the solid/liquid interface. We demonstrate the unique vectorial orientation of the VSD and the retention of its molecular conformation manifest in the asymmetric profile structure of the protein within the profile structure of this single bilayer membrane system. We definitively characterize the asymmetric phospholipid bilayer solvating the lateral surfaces of the VSD protein within the membrane. The profile structures of both the VSD protein and phospholipid bilayer depend upon the hydration state of the membrane. We also determine the distribution of water and exchangeable hydrogen throughout the profile structure of both the VSD itself and the VSD:POPC membrane. These two experimentally-determined water and exchangeable hydrogen distribution profiles are in good agreement with molecular dynamics simulations of the VSD protein vectorially-oriented within a fully hydrated POPC bilayer membrane, supporting the existence of the VSD’s water pore. This approach was extended to the full-length Kv-channel (KvAP) at solid/liquid interface, providing the separate profile structures of the KvAP protein and the POPC bilayer within the reconstituted KvAP:POPC membrane. PMID:22686684
Even-odd alternation of near-infrared spectra of alkane-α,ω-diols in their solid states.
Toyama, Yuta; Murakami, Kohei; Yoshimura, Norio; Takayanagi, Masao
2018-05-15
Even-odd alternation of the melting points of α,ω-disubstituted linear alkanes such as alkane-α,ω-diols, alkane-α,ω-dinitriles and α,ω-diaminoalkanes is well known. Melting points for compounds with an even number of carbons in their alkyl chains are systematically higher than those for compounds with an odd number of carbons. In order to clarify the origin of this alternation, near-infrared absorption spectra of linear alkane-α,ω-diols with 3 to 9 carbon atoms in their alkyl chains were measured in the liquid and solid states. The band due to the first overtone of the OH stretching mode was investigated. The temperature-dependent spectra of all alkane-α,ω-diols in their liquid states were found to be similar; no even-odd alternation was observed. In the solid state, however, spectra of alkane-α,ω-diols with even and odd numbers of carbon atoms differed greatly. Spectra of alkane-α,ω-diols with an odd number of carbon atoms in their solid states were similar to those in the liquid states, although the variation of spectra observed upon lowering the temperature of liquid seemed to continue when the liquids were frozen. In contrast, spectra of alkane-α,ω-diols with an even number of carbon atoms in their liquid and solid states were found to be quite different. New bands appeared upon freezing. The observed even-odd alternation of the spectra observed for alkane-α,ω-diols in their solid states is presumably caused by their even-odd alternation of crystal structures. Copyright © 2018 Elsevier B.V. All rights reserved.
Urbanova, Martina; Gajdosova, Marketa; Steinhart, Miloš; Vetchy, David; Brus, Jiri
2016-05-02
Mucoadhesive buccal films (MBFs) provide an innovative way to facilitate the efficient site-specific delivery of active compounds while simultaneously separating the lesions from the environment of the oral cavity. The structural diversity of these complex multicomponent and mostly multiphase systems as well as an experimental strategy for their structural characterization at molecular scale with atomic resolution were demonstrated using MBFs of ciclopirox olamine (CPX) in a poly(ethylene oxide) (PEO) matrix as a case study. A detailed description of each component of the CPX/PEO films was followed by an analysis of the relationships between each component and the physicochemical properties of the MBFs. Two distinct MBFs were identified by solid-state NMR spectroscopy: (i) at low API (active pharmaceutical ingredient) loading, a nanoheterogeneous solid solution of CPX molecularly dispersed in an amorphous PEO matrix was created; and (ii) at high API loading, a pseudoco-crystalline system containing CPX-2-aminoethanol nanocrystals incorporated into the interlamellar space of a crystalline PEO matrix was revealed. These structural differences were found to be closely related to the mechanical and physicochemical properties of the prepared MBFs. At low API loading, the polymer chains of PEO provided sufficient quantities of binding sites to stabilize the CPX that was molecularly dispersed in the highly amorphous semiflexible polymer matrix. Consequently, the resulting MBFs were soft, with low tensile strength, plasticity, and swelling index, supporting rapid drug release. At high CPX content, however, the active compounds and the polymer chains simultaneously cocrystallized, leaving the CPX to form nanocrystals grown directly inside the spherulites of PEO. Interfacial polymer-drug interactions were thus responsible not only for the considerably enhanced plasticity of the system but also for the exclusive crystallization of CPX in the thermodynamically most stable polymorphic form, Form I, which exhibited reduced dissolution kinetics. The bioavailability of CPX olamine formulated as PEO-based MBFs can thus be effectively controlled by inducing the complete dispersion and/or microsegregation and nanocrystallization of CPX olamine in the polymer matrix. Solid-state NMR spectroscopy is an efficient tool for exploring structure-property relationships in these complex pharmaceutical solids.
Atomic kinetic energy, momentum distribution, and structure of solid neon at zero temperature
NASA Astrophysics Data System (ADS)
Cazorla, C.; Boronat, J.
2008-01-01
We report on the calculation of the ground-state atomic kinetic energy Ek and momentum distribution of solid Ne by means of the diffusion Monte Carlo method and Aziz HFD-B pair potential. This approach is shown to perform notably for this crystal since we obtain very good agreement with respect to experimental thermodynamic data. Additionally, we study the structural properties of solid Ne at densities near the equilibrium by estimating the radial pair-distribution function, Lindemann’s ratio, and atomic density profile around the positions of the perfect crystalline lattice. Our value for Ek at the equilibrium density is 41.51(6)K , which agrees perfectly with the recent prediction made by Timms , 41(2)K , based on their deep-inelastic neutron scattering experiments carried out over the temperature range 4-20K , and also with previous path integral Monte Carlo results obtained with the Lennard-Jones and Aziz HFD-C2 atomic pairwise interactions. The one-body density function of solid Ne is calculated accurately and found to fit perfectly, within statistical uncertainty, to a Gaussian curve. Furthermore, we analyze the degree of anharmonicity of solid Ne by calculating some of its microscopic ground-state properties within traditional harmonic approaches. We provide insightful comparison to solid He4 in terms of the Debye model in order to assess the relevance of anharmonic effects in Ne.
NMR crystallography of zeolites: How far can we go without diffraction data?
Brouwer, Darren H; Van Huizen, Jared
2018-05-10
Nuclear magnetic resonance (NMR) crystallography-an approach to structure determination that seeks to integrate solid-state NMR spectroscopy, diffraction, and computation methods-has emerged as an effective strategy to determine structures of difficult-to-characterize materials, including zeolites and related network materials. This paper explores how far it is possible to go in determining the structure of a zeolite framework from a minimal amount of input information derived only from solid-state NMR spectroscopy. It is shown that the framework structure of the fluoride-containing and tetramethylammonium-templated octadecasil clathrasil material can be solved from the 1D 29 Si NMR spectrum and a single 2D 29 Si NMR correlation spectrum alone, without the space group and unit cell parameters normally obtained from diffraction data. The resulting NMR-solved structure is in excellent agreement with the structures determined previously by diffraction methods. It is anticipated that NMR crystallography strategies like this will be useful for structure determination of other materials, which cannot be solved from diffraction methods alone. Copyright © 2018 John Wiley & Sons, Ltd.
Brouwer, Darren H
2013-01-01
An algorithm is presented for solving the structures of silicate network materials such as zeolites or layered silicates from solid-state (29)Si double-quantum NMR data for situations in which the crystallographic space group is not known. The algorithm is explained and illustrated in detail using a hypothetical two-dimensional network structure as a working example. The algorithm involves an atom-by-atom structure building process in which candidate partial structures are evaluated according to their agreement with Si-O-Si connectivity information, symmetry restraints, and fits to (29)Si double quantum NMR curves followed by minimization of a cost function that incorporates connectivity, symmetry, and quality of fit to the double quantum curves. The two-dimensional network material is successfully reconstructed from hypothetical NMR data that can be reasonably expected to be obtained for real samples. This advance in "NMR crystallography" is expected to be important for structure determination of partially ordered silicate materials for which diffraction provides very limited structural information. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Demers, Jean-Philippe; Habenstein, Birgit; Loquet, Antoine; Kumar Vasa, Suresh; Giller, Karin; Becker, Stefan; Baker, David; Lange, Adam; Sgourakis, Nikolaos G.
2014-09-01
We introduce a general hybrid approach for determining the structures of supramolecular assemblies. Cryo-electron microscopy (cryo-EM) data define the overall envelope of the assembly and rigid-body orientation of the subunits while solid-state nuclear magnetic resonance (ssNMR) chemical shifts and distance constraints define the local secondary structure, protein fold and inter-subunit interactions. Finally, Rosetta structure calculations provide a general framework to integrate the different sources of structural information. Combining a 7.7-Å cryo-EM density map and 996 ssNMR distance constraints, the structure of the type-III secretion system needle of Shigella flexneri is determined to a precision of 0.4 Å. The calculated structures are cross-validated using an independent data set of 691 ssNMR constraints and scanning transmission electron microscopy measurements. The hybrid model resolves the conformation of the non-conserved N terminus, which occupies a protrusion in the cryo-EM density, and reveals conserved pore residues forming a continuous pattern of electrostatic interactions, thereby suggesting a mechanism for effector protein translocation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammann, Blake A.; Marsh, David A.; Ma, Zayd L.
Solid-state {sup 71}Ga NMR was used to characterize a series of [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15} “Ga{sub 13}” molecular clusters synthesized by multiple methods. These molecular clusters are precursors to thin film electronics and may be employed in energy applications. The synthetic routes provide varying levels of impurities in the solid phase, and these impurities often elude traditional characterization techniques such as powder X-ray diffraction and Raman spectroscopy. Solid-state NMR can provide a window into the gallium species even in amorphous phases. This information is vital in order to prevent the impurities from causing defect sitesmore » in the corresponding thin films upon gelation and condensation (polymerization) of the Ga{sub 13} clusters. This work demonstrates the resolving power of solid-state NMR to evaluate structure and synthetic quality in the solid state, and the application of high-field NMR to study quadrupolar species, such as {sup 71}Ga. - Graphical abstract: The various synthetic routes and {sup 71}Ga solid-state NMR spectra of the nanoscale inorganic cluster [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15}. - Highlights: • Solid-state {sup 71}Ga NMR of hydroxo-aquo metal clusters and the impurities present. • High-field NMR capability allows for quadrupolar species, such as {sup 71}Ga, to be routinely studied. • Efficient and environmentally friendly synthetic routes have been developed to prepare hydroxo-aquo metal clusters.« less
NASA Astrophysics Data System (ADS)
Seo, Hosung; Ma, He; Govoni, Marco; Galli, Giulia
2017-12-01
The development of novel quantum bits is key to extending the scope of solid-state quantum-information science and technology. Using first-principles calculations, we propose that large metal ion-vacancy pairs are promising qubit candidates in two binary crystals: 4 H -SiC and w -AlN. In particular, we found that the formation of neutral Hf- and Zr-vacancy pairs is energetically favorable in both solids; these defects have spin-triplet ground states, with electronic structures similar to those of the diamond nitrogen-vacancy center and the SiC divacancy. Interestingly, they exhibit different spin-strain coupling characteristics, and the nature of heavy metal ions may allow for easy defect implantation in desired lattice locations and ensure stability against defect diffusion. To support future experimental identification of the proposed defects, we report predictions of their optical zero-phonon line, zero-field splitting, and hyperfine parameters. The defect design concept identified here may be generalized to other binary semiconductors to facilitate the exploration of new solid-state qubits.
NASA Astrophysics Data System (ADS)
Zhi, Jian; Reiser, Oliver; Wang, Youfu; Hu, Aiguo
2016-06-01
A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating layer. By employing butyl-3-methylimidazolium chloride (BMIMCl) modified gels as the ionic conducting electrolyte, the utilization efficiency of MnO2 on the specific capacitance was enhanced up to 88% of the theoretical value, delivering a volumetric capacitance of 81 F cm-3, which is the highest value among MnO2 based solid state supercapacitors. Moreover, such a flexible device exhibits exceptional volumetric energy and power density (6.6 Wh L-1 and 549 W L-1, based on the whole device volume) combined with a small capacity loss of 8.5% after 6000 cycles under twisting. These encouraging findings unambiguously overcome the energy bottleneck of MnO2 in solid state supercapacitors, and open up a new application of macro/mesoporous materials in flexible devices.A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating layer. By employing butyl-3-methylimidazolium chloride (BMIMCl) modified gels as the ionic conducting electrolyte, the utilization efficiency of MnO2 on the specific capacitance was enhanced up to 88% of the theoretical value, delivering a volumetric capacitance of 81 F cm-3, which is the highest value among MnO2 based solid state supercapacitors. Moreover, such a flexible device exhibits exceptional volumetric energy and power density (6.6 Wh L-1 and 549 W L-1, based on the whole device volume) combined with a small capacity loss of 8.5% after 6000 cycles under twisting. These encouraging findings unambiguously overcome the energy bottleneck of MnO2 in solid state supercapacitors, and open up a new application of macro/mesoporous materials in flexible devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02215d
NASA Astrophysics Data System (ADS)
Xie, Dongjiu; Chen, Shaojie; Zhang, Zhihua; Ren, Jie; Yao, Lili; Wu, Linbin; Yao, Xiayin; Xu, Xiaoxiong
2018-06-01
The combination of high conductivity and good stability against Li is not easy to achieve for solid electrolytes, hindering the development of high energy solid-state batteries. In this study, doped electrolytes of Li3P1-xSbxS4-2.5xO2.5x are successfully prepared via the high energy ball milling and subsequent heat treatment. Plenty of techniques like XRD, Raman, SEM, EDS and TEM are utilized to characterize the crystal structures, particle sizes, and morphologies of the glass-ceramic electrolytes. Among them, the Li3P0.98Sb0.02S3.95O0.05 (x = 0.02) exhibits the highest ionic conductivity (∼1.08 mS cm-1) at room temperature with an excellent stability against lithium. In addition, all-solid-state lithium batteries are assembled with LiCoO2 as cathode, Li10GeP2S12/Li3P0.98Sb0.02S3.95O0.05 as the bi-layer electrolyte, and lithium as anode. The constructed solid-state batteries delivers a high initial discharge capacity of 133 mAh g-1 at 0.1C in the range of 3.0-4.3 V vs. Li/Li+ at room temperature, and shows a capacity retention of 78.6% after 50 cycles. Most importantly, the all-solid-state lithium batteries with the Li10GeP2S12/Li3P0.98Sb0.02S3.95O0.05 electrolyte can be workable even at -10 °C. This study provides a promising electrolyte with the improved conductivity and stability against Li for the application of all-solid-state lithium batteries.
Krishnaswamy, Shobhana; Shashidhar, Mysore S
2018-04-06
Intermolecular acyl transfer reactivity in several molecular crystals was studied, and the outcome of the reactivity was analyzed in the light of structural information obtained from the crystals of the reactants. Minor changes in the molecular structure resulted in significant variations in the noncovalent interactions and packing of molecules in the crystal lattice, which drastically affected the facility of the intermolecular acyl transfer reactivity in these crystals. Analysis of the reactivity vs crystal structure data revealed dependence of the reactivity on electrophile···nucleophile interactions and C-H···π interactions between the reacting molecules. The presence of these noncovalent interactions augmented the acyl transfer reactivity, while their absence hindered the reactivity of the molecules in the crystal. The validity of these correlations allows the prediction of intermolecular acyl transfer reactivity in crystals and co-crystals of unknown reactivity. This crystal structure-reactivity correlation parallels the molecular structure-reactivity correlation in solution-state reactions, widely accepted as organic functional group transformations, and sets the stage for the development of a similar approach for reactions in the solid state.
Cao, Wudi; Wang, Yanting; Saielli, Giacomo
2018-01-11
We simulate the heating process of ionic liquids [C n Mim][NO 3 ] (n = 4, 6, 8, 10, 12), abbreviated as C n , by means of molecular dynamics (MD) simulation starting from a manually constructed triclinic crystal structure composed of polar layers containing anions and cationic head groups and nonpolar regions in between containing cationic alkyl side chains. During the heating process starting from 200 K, each system undergoes first a solid-solid phase transition at a lower temperature, and then a melting phase transition at a higher temperature to an isotropic liquid state (C 4 , C 6 , and C 8 ) or to a liquid crystal state (C 10 and C 12 ). After the solid-solid phase transition, all systems keep the triclinic space symmetry, but have a different set of lattice constants. C 4 has a more significant structural change in the nonpolar regions which narrows the layer spacing, while the layer spacings of other systems change little, which can be qualitatively understood by considering that the contribution of the effective van der Waals interaction in the nonpolar regions (abbreviated as EF1) to free energy becomes stronger with increasing side-chain length, and at the same time the contribution of the effective electrostatic interaction in the polar layers (abbreviated as EF2) to free energy remains almost the same. The melting phase transitions of all systems except C 6 are found to be a two-step process with an intermediate metastable state appeared during the melting from the crystal state to the liquid or liquid crystal state. Because the contribution of EF2 to the free energy is larger than EF1, the metastable state of C 4 has the feature of having higher ordered polar layers and lower ordered side-chain orientation. By contrast, C 8 -C 12 have the feature of having lower ordered polar layers and higher ordered side-chain orientation, because for these systems, the contribution of EF2 to the free energy is smaller than EF1. No metastable state is found for C 6 because the free-energy contribution of EF1 is balanced with EF2.
Defects in electro-optically active polymer solids
NASA Technical Reports Server (NTRS)
Martin, David C.
1993-01-01
There is considerable current interest in the application of organic and polymeric materials for electronic and photonic devices. The rapid, non-linear optical (NLO) response of these materials makes them attractive candidates for waveguides, interferometers, and frequency doublers. In order to realize the full potential of these systems, it is necessary to develop processing schemes which can fabricate these molecules into ordered arrangements. There is enormous potential for introducing well-defined, local variations in microstructure to control the photonic properties of organic materials by rational 'defect engineering.' This effort may eventually become as technologically important as the manipulation of the electronic structure of solid-state silicon based devices is at present. The success of this endeavor will require complimentary efforts in the synthesis, processing, and characterization of new materials. Detailed information about local microstructure will be necessary to understand the influence of symmetry breaking of the solid phases near point, line, and planar defects. In metallic and inorganic polycrystalline materials, defects play an important role in modifying macroscopic properties. To understand the influence of particular defects on the properties of materials, it has proven useful to isolate the defect by creating bicrystals between two-component single crystals. In this way the geometry of a grain boundary defect and its effect on macroscopic properties can be determined unambiguously. In crystalline polymers it would be valuable to establish a similar depth of understanding about the relationship between defect structure and macroscopic properties. Conventionally processed crystalline polymers have small crystallites (10-20 nm), which implies a large defect density in the solid state. Although this means that defects may play an important or even dominant role in crystalline or liquid crystalline polymer systems, it also makes it difficult to isolate the effect of a particular boundary on a macroscopically observed property. However, the development of solid-state and thin-film polymerization mechanisms have facilitated the synthesis of highly organized and ordered polymers. These systems provide a unique opportunity to isolate and investigate in detail the structure of covalently bonded solids near defects and the effect of these defects on the properties of the material. The study of defects in solid polymers has been the subject of a recent review (Martin, 1993).
NASA Astrophysics Data System (ADS)
Freiman, Yu. A.; Jodl, H. J.; Crespo, Yanier
2018-05-01
The paper provides an up-to-date review of the experimental and theoretical works on solid oxygen published over the past decade. The most important results presented in this review are the following: Detection of magnetic collapse in neutron studies under the delta-epsilon transition. Identification of the lattice structure of the ɛ phase. In this structure the O2 molecules retain their individuality, but there is an additional link leading to the formation of clusters of molecular quartets with the structural formula (O2)4. Discovery of the unique magnetic properties of the delta phase, which hosts three different magnetic structures in the domain of the same crystallographic structure. The extension of the phase diagram to the high-pressure high-temperature region which was previously beyond the reach for experiment; the molecular η and η‧ phases were found and their structures were identified. Behavior of the melting line up to 60 GPa (1750 K). Discovery of a new molecular θ phase in ultrahigh magnetic fields up to over 190 T and the construction of the thermodynamical magnetic-field-temperature H- T phase diagram on the base of the ultrahigh-field magnetization, optical magneto-transmission, and adiabatic magnetocaloric effect measurements. Prediction of the persistence of the molecular state of solid oxygen up to the pressure of 1.9 TPa which is significantly higher than the corresponding limits in solid hydrogen and nitrogen, other generic molecular solids.
Monitoring a simple hydrolysis process in an organic solid by observing methyl group rotation.
Beckmann, Peter A; Bohen, Joseph M; Ford, Jamie; Malachowski, William P; Mallory, Clelia W; Mallory, Frank B; McGhie, Andrew R; Rheingold, Arnold L; Sloan, Gilbert J; Szewczyk, Steven T; Wang, Xianlong; Wheeler, Kraig A
2017-09-01
We report a variety of experiments and calculations and their interpretations regarding methyl group (CH 3 ) rotation in samples of pure 3-methylglutaric anhydride (1), pure 3-methylglutaric acid (2), and samples where the anhydride is slowly absorbing water from the air and converting to the acid [C 6 H 8 O 3 (1) + H 2 O → C 6 H 10 O 4 (2)]. The techniques are solid state 1 H nuclear magnetic resonance (NMR) spin-lattice relaxation, single-crystal X-ray diffraction, electronic structure calculations in both isolated molecules and in clusters of molecules that mimic the crystal structure, field emission scanning electron microscopy, differential scanning calorimetry, and high resolution 1 H NMR spectroscopy. The solid state 1 H spin-lattice relaxation experiments allow us to observe the temperature dependence of the parameters that characterize methyl group rotation in both compounds and in mixtures of the two compounds. In the mixtures, both types of methyl groups (that is, molecules of 1 and 2) can be observed independently and simultaneously at low temperatures because the solid state 1 H spin-lattice relaxation is appropriately described by a double exponential. We have followed the conversion 1 → 2 over periods of two years. The solid state 1 H spin-lattice relaxation experiments in pure samples of 1 and 2 indicate that there is a distribution of NMR activation energies for methyl group rotation in 1 but not in 2 and we are able to explain this in terms of the particle sizes seen in the field emission scanning electron microscopy images. Copyright © 2017 Elsevier Inc. All rights reserved.
Establishing a molecular relationship between chondritic and cometary organic solids
Cody, George D.; Heying, Emily; Alexander, Conel M. O.; Nittler, Larry R.; Kilcoyne, A. L. David; Sandford, Scott A.
2011-01-01
Multidimensional solid-state NMR spectroscopy is used to refine the identification and abundance determination of functional groups in insoluble organic matter (IOM) isolated from a carbonaceous chondrite (Murchison, CM2). It is shown that IOM is composed primarily of highly substituted single ring aromatics, substituted furan/pyran moieties, highly branched oxygenated aliphatics, and carbonyl groups. A pathway for producing an IOM-like molecular structure through formaldehyde polymerization is proposed and tested experimentally. Solid-state 13C NMR analysis of aqueously altered formaldehyde polymer reveals considerable similarity with chondritic IOM. Carbon X-ray absorption near edge structure spectroscopy of formaldehyde polymer reveals the presence of similar functional groups across certain Comet 81P/Wild 2 organic solids, interplanetary dust particles, and primitive IOM. Variation in functional group concentration amongst these extraterrestrial materials is understood to be a result of various degrees of processing in the parent bodies, in space, during atmospheric entry, etc. These results support the hypothesis that chondritic IOM and cometary refractory organic solids are related chemically and likely were derived from formaldehyde polymer. The fine-scale morphology of formaldehyde polymer produced in the experiment reveals abundant nanospherules that are similar in size and shape to organic nanoglobules that are ubiquitous in primitive chondrites. PMID:21464292
Lu, Y; Zheng, Q; Lu, D; Ma, P; Chen, Y
1995-06-01
Crystal structures of two compounds from Tripterygium wilfordii Hook f. have been determined by X-ray diffraction method. Structure factors influencing melting point of solid state have been analysed. Crystal class (or space group), recrystallization solvent, force between molecules and fine changes of molecular structures will all cause melting point changes of crystal substance.
NASA Astrophysics Data System (ADS)
Jewulski, J. R.; Osif, T. L.; Remick, R. J.
1990-12-01
The purpose of this program was to survey the field of solid-state proton conductors (SSPC), identify conductors that could be used to develop solid-state fuel cells suitable for use with coal derived fuel gases, and begin the experimental research required for the development of these fuel cells. This document covers the following topics: the history of developments and current status of the SSPC, including a review of proton conducting electrolyte structures, the current status of the medium temperature SSPC development, electrodes for moderate temperature (SSPC) fuel cell, basic material and measurement techniques applicable for SSPC development, modeling, and optimization studies. Correlation and optimization studies are described which include correlation studies on proton conduction and oxide cathode optimization for the SSPC fuel cell. Experiments with the SSPC fuel cells are presented which include the fabrication of the electrolyte disks, apparatus for conducting measurements, the strontium-cerium based electrolyte, the barium-cerium based electrolyte with solid foil electrodes, the barium-cerium based electrolyte with porous electrodes, and conduction mechanisms.
Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes.
Hsia, Ben; Marschewski, Julian; Wang, Shuang; In, Jung Bin; Carraro, Carlo; Poulikakos, Dimos; Grigoropoulos, Costas P; Maboudian, Roya
2014-02-07
We report a highly flexible planar micro-supercapacitor with interdigitated finger electrodes of vertically aligned carbon nanotubes (VACNTs). The planar electrode structures are patterned on a thin polycarbonate substrate with a facile, maskless laser-assisted dry transfer method. Sputtered Ni is used to reduce the in-plane resistance of the VACNT electrodes. An ionogel, an ionic liquid in a semi-solid matrix, is used as an electrolyte to form a fully solid-state device. We measure a specific capacitance of 430 μF cm(-2) for a scan rate of 0.1 V s(-1) and achieve rectangular cyclic voltammograms at high scan rates of up to 100 V s(-1). Minimal change in capacitance is observed under bending. Mechanical fatigue tests with more than 1000 cycles confirm the high flexibility and durability of the novel material combination chosen for this device. Our results indicate that this scalable and facile fabrication technique shows promise for application in integrated energy storage for all solid-state flexible microdevices.
Polymorphs of Theophylline Characterized by DNP Enhanced Solid-State NMR
2015-01-01
We show how dynamic nuclear polarization (DNP) enhanced solid-state NMR spectroscopy can be used to characterize polymorphs and solvates of organic solids. We applied DNP to three polymorphs and one hydrated form of the asthma drug molecule theophylline. For some forms of theophylline, sample grinding and impregnation with the radical-containing solution, which are necessary to prepare the samples for DNP, were found to induce polymorphic transitions or desolvation between some forms. We present protocols for sample preparation for solid-state magic-angle spinning (MAS) DNP experiments that avoid the polymorphic phase transitions in theophylline. These protocols include cryogrinding, grinding under inert atmosphere, and the appropriate choice of the impregnating liquid. By applying these procedures, we subsequently demonstrate that two-dimensional correlation experiments, such as 1H–13C and 1H–15N HETCOR or 13C–13C INADEQUATE, can be obtained at natural isotopic abundance in reasonable times, thus enabling more advanced structural characterization of polymorphs. PMID:26393368
Delaney, Sean P; Witko, Ewelina M; Smith, Tiffany M; Korter, Timothy M
2012-08-02
Terahertz spectroscopy is sensitive to the interactions between molecules in the solid-state and recently has emerged as a new analytical tool for investigating polymorphism. Here, this technique is applied for the first time to the phenomenon of tautomeric polymorphism where the crystal structures of anthranilic acid (2-aminobenzoic acid) have been investigated. Three polymorphs of anthranilic acid (denoted Forms I, II and III) were studied using terahertz spectroscopy and the vibrational modes and relative polymorph stabilities analyzed using solid-state density functional theory calculations augmented with London dispersion force corrections. Form I consists of both neutral and zwitterionic molecules and was found to be the most stable polymorph as compared to Forms II and III (both containing only neutral molecules). The simulations suggest that a balance between steric interactions and electrostatic forces is responsible for the favoring of the mixed neutral/zwitterion solid over the all neutral or all zwitterion crystalline arrangements.
Theory and Applications of Solid-State NMR Spectroscopy to Biomembrane Structure and Dynamics
NASA Astrophysics Data System (ADS)
Xu, Xiaolin
Solid-state Nuclear Magnetic Resonance (NMR) is one of the premiere biophysical methods that can be applied for addressing the structure and dynamics of biomolecules, including proteins, lipids, and nucleic acids. It illustrates the general problem of determining the average biomolecular structure, including the motional mean-square amplitudes and rates of the fluctuations. Lineshape and relaxtion studies give us a view into the molecular properties under different environments. To help the understanding of NMR theory, both lineshape and relaxation experiments are conducted with hexamethylbezene (HMB). This chemical compound with a simple structure serves as a perfect test molecule. Because of its highly symmetric structure, its motions are not very difficult to understand. The results for HMB set benchmarks for other more complicated systems like membrane proteins. After accumulating a large data set on HMB, we also proceed to develop a completely new method of data analysis, which yields the spectral densities in a body-fixed frame revealing internal motions of the system. Among the possible applications of solid-state NMR spectroscopy, we study the light activation mechanism of visual rhodopsin in lipid membranes. As a prototype of G-protein-coupled receptors, which are a large class of membrane proteins, the cofactor isomerization is triggered by photon absorption, and the local structural change is then propagated to a large-scale conformational change of the protein. Facilitation of the binding of transducin then passes along the visual signal to downstream effector proteins like transducin. To study this process, we introduce 2H labels into the rhodopsin chromophore retinal and the C-terminal peptide of transducin to probe the local structure and dynamics of these two hotspots of the rhodopsin activation process. In addition to the examination of local sites with solid-state 2H NMR spectroscopy, wide angle X-ray scattering (WAXS) provides us the chance of looking at the overall conformational changes through difference scattering profiles. Although the resolution of this method is not as high as NMR spectroscopy, which gives information on atomic scale, the early activation probing is possible because of the short duration of the optical pump and X-ray probe lasers. We can thus visualize the energy dissipation process by observing and comparing the difference scattering profiles at different times after the light activation moments.
Direct ink write fabrication of transparent ceramic gain media
NASA Astrophysics Data System (ADS)
Jones, Ivy Krystal; Seeley, Zachary M.; Cherepy, Nerine J.; Duoss, Eric B.; Payne, Stephen A.
2018-01-01
Solid-state laser gain media based on the garnet structure with two spatially distinct but optically contiguous regions have been fabricated. Transparent gain media comprised of a central core of Y2.97Nd0.03Al5.00O12.00 (Nd:YAG) and an undoped cladding region of Y3Al5O12 (YAG) were fabricated by direct ink write and transparent ceramic processing. Direct ink write (DIW) was employed to form the green body, offering a general route to preparing functionally structured solid-state laser gain media. Fully-dense transparent optical ceramics in a "top hat" geometry with YAG/Nd:YAG have been fabricated by DIW methods with optical scatter at 1064 nm of <3%/cm.
Two-dimensional periodic structures in solid state laser resonator
NASA Astrophysics Data System (ADS)
Okulov, Alexey Y.
1991-07-01
Transverse effects in nonlinear optical devices are being widely investigated. Recently, synchronization of a laser set by means of the Talbot effect has been demonstrated experimentally. This paper considers a Talbot cavity formed by a solid-state amplifying laser separated from the output mirror by a free space interval. This approach involves the approximation of the nonlinear medium as a thin layer, within which the diffraction is negligible. The other part of a resonator is empty, and the wave field is transformed by the Fresnel-Kirchoff integral. As a result, the dynamics of the transverse (and temporal) structure is computed by a successively iterated nonlinear local map (one- or two-dimensional) and a linear nonlocal map (generally speaking, infinitely dimensional).
Visible light photoreactivity from Carbon nitride bandgap states in Nb and Ti oxides
NASA Astrophysics Data System (ADS)
Lee, Hosik; Ohno, Takahisa; Icnsee Team
2011-03-01
Lamellar niobic and titanic solid acids (HNb3O8 , H2Ti4O9) are photocatalysts which can be used for environmental cleanup application and hydrogen production through water splitting. To increase their efficiency, bandgap adjustment which can induce visible light reactivity in addition to ultraviolet light has been one of hot issue in this kinds of photo-catalytic materials. Nitrogen-doping was one of the direction and its microscopic structures are disputed in this decade. In this work, we calculate the layered niobic and titanic solid acids structure and bandgap. Bandgap reduction by carbon nitride absorption are observed computationally. It is originated from localized nitrogen state which is consistent with previous experiments.
NASA Astrophysics Data System (ADS)
Wang, Peng; Zhang, Yu-Jie; Qin, Jie; Chen, Yong; Zhao, Ying
2015-03-01
Three unreported isomorphous Ln-containing metal-organic coordination polymeric complexes {LnL(HL)ṡ(H2O)2}n (Ln = Sm (1), Eu (2) and Tb (3), CCDC 971815-971817) were synthesized based on 5-(2-hydroxyethoxy) isophthalic acid (H2L) under hydrothermal conditions. The obtained coordination polymers were characterized by IR, elemental analysis, thermal analysis and X-ray diffraction In solid state, these polymers featured 3-D supramolecular structures constructed by 2-D sheets through H-bonds. Investigation of photoluminescence properties of H2L and 1-3 showed all of them exhibited intense fluorescent emissions in the solid state at room temperature.
Oh, Yong-Jun; Kim, Jung-Hwan; Thompson, Carl V; Ross, Caroline A
2013-01-07
Templated dewetting of a Co/Pt metal bilayer film on a topographic substrate was used to assemble arrays of Co-Pt alloy nanoparticles, with highly uniform particle size, shape and notably composition compared to nanoparticles formed on an untemplated substrate. Solid-state and liquid-state dewetting processes, using furnace annealing and laser irradiation respectively, were compared. Liquid state dewetting produced more uniform, conformal nanoparticles but they had a polycrystalline disordered fcc structure and relatively low magnetic coercivity. In contrast, solid state dewetting enabled formation of magnetically hard, ordered L1(0) Co-Pt single-crystal particles with coercivity >12 kOe. Furnace annealing converted the nanoparticles formed by liquid state dewetting into the L1(0) phase.
Haneef, Jamshed; Chadha, Renu
2017-08-01
The present study deals with the application of mechanochemical approach for the preparation of drug-drug multicomponent solid forms of three poorly soluble antihypertensive drugs (telmisartan, irbesartan and hydrochlorothiazide) using atenolol as a coformer. The resultant solid forms comprise of cocrystal (telmisartan-atenolol), coamorphous (irbesartan-atenolol) and eutectic (hydrochlorothiazide-atenolol). The study emphasizes that solid-state transformation of drug molecules into new forms is a result of the change in structural patterns, diminishing of dimers and creating new facile hydrogen bonding network based on structural resemblance. The propensity for heteromeric or homomeric interaction between two different drugs resulted into diverse solid forms (cocrystal/coamorphous/eutectics) and become one of the interesting aspects of this research work. Evaluation of these solid forms revealed an increase in solubility and dissolution leading to better antihypertensive activity in deoxycorticosterone acetate (DOCA) salt-induced animal model. Thus, development of these drug-drug multicomponent solid forms is a promising and viable approach to addressing the issue of poor solubility and could be of considerable interest in dual drug therapy for the treatment of hypertension.
Kelly, B. G.; Loether, A.; Unruh, K. M.; ...
2017-02-01
An in situ optical pump and x-ray probe technique has been utilized to study photoinitiated solid-state diffusion in a Ni-Pt multilayer system. Hard x-ray diffraction has been used to follow the systematic growth of the NiPt alloy as a function of laser intensity and total energy deposited. It is observed that new phase growth can be driven in as little as one laser pulse, and that repeated photoexcitation can completely convert the entire multilayer structure into a single metallic alloy. In conclusion, the data suggest that lattice strain relaxation takes place prior to atomic diffusion and the formation of amore » NiPt alloy.« less
Amplitude Control of Solid-State Modulators for Precision Fast Kicker Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, J A; Anaya, R M; Caporaso, G C
2002-11-15
A solid-state modulator with very fast rise and fall times, pulse width agility, and multi-pulse burst and intra-pulse amplitude adjustment capability for use with high speed electron beam kickers has been designed and tested at LLNL. The modulator uses multiple solid-state modules stacked in an inductive-adder configuration. Amplitude adjustment is provided by controlling individual modules in the adder, and is used to compensate for transverse e-beam motion as well as the dynamic response and beam-induced steering effects associated with the kicker structure. A control algorithm calculates a voltage based on measured e-beam displacement and adjusts the modulator to regulate beammore » centroid position. This paper presents design details of amplitude control along with measured performance data from kicker operation on the ETA-II accelerator at LLNL.« less
Solid-State Ultracapacitor for Improved Energy Storage
NASA Technical Reports Server (NTRS)
Nabors, Sammy
2015-01-01
NASA's Marshall Space Flight Center has developed a solid-state ultracapacitor using a novel nanocomposite, dielectric material. The material's design is based on the internal barrier layer capacitance (IBLC) concept, and it uses novel dielectric and metallic conductive ink formulations. Novel processing methods developed by NASA provide for unique dielectric properties at the grain level. Nanoscale raw material powders are tailored using a variety of techniques and then formulated into a special ink. This dielectric ink is used with novel metallic conductive ink to print a capacitor layer structure into any design necessary to meet a range of technical requirements. The innovation is intended to replace current range safety batteries that NASA uses to power the systems that destroy off-course space vehicles. A solid-state design provides the needed robustness and safety for this demanding application.
Some aspects of the thermodynamic behaviour of the lead-doped Bi-2223 system
NASA Astrophysics Data System (ADS)
Tetenbaum, M.; Maroni, V. A.
1996-02-01
A thermodynamic assessment of lead-doped Bi-2223 with emphasis on compositions and oxygen partial pressures within the homogeneity region prior to solid-state decomposition is presented. Equations for the variation of oxygen partial pressure with composition and temperature have been derived from our EMF measurements. Long-term metastability was indicated during cycling over a temperature range of ∼ 700-815°C of a lead-doped Bi-2223 sample having an oxygen-deficient stoichiometry of 9.64 prior to solid-state decomposition corresponding to the diphasic CuOCu 2O system. A trend of increasing negative values of the partial molar enthalpy Δ overlineH( O 2) and entropy Δ overlineS( O2 with increasing oxygen deficiency of the condensed phase indicated an increase in ordering of the cuprate structure prior to solid-state decomposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, B. G.; Loether, A.; Unruh, K. M.
An in situ optical pump and x-ray probe technique has been utilized to study photoinitiated solid-state diffusion in a Ni-Pt multilayer system. Hard x-ray diffraction has been used to follow the systematic growth of the NiPt alloy as a function of laser intensity and total energy deposited. It is observed that new phase growth can be driven in as little as one laser pulse, and that repeated photoexcitation can completely convert the entire multilayer structure into a single metallic alloy. In conclusion, the data suggest that lattice strain relaxation takes place prior to atomic diffusion and the formation of amore » NiPt alloy.« less
Solid-State Ionic Diodes Demonstrated in Conical Nanopores
Plett, Timothy S.; Cai, Wenjia; Le Thai, Mya; ...
2017-02-27
Ionic transport at the nanoscale features phenomena that are not observed in larger systems. Nonlinear current–voltage curves characteristic of ionic diodes as well as ion selectivity are examples of effects observed at the nanoscale. Many man-made nanopore systems are inspired by biological channels in a cell membrane, thus measurements are often performed in aqueous solutions. Consequently, much less is known about ionic transport in nonaqueous systems, especially in solid-state electrolytes. Here we show ionic transport through single pores filled with gel electrolyte of poly(methyl methacrylate) (PMMA) doped with LiClO 4 in propylene carbonate. The system has no liquid interface andmore » the ionic transport occurs through the porous gel structure. We demonstrate that a conically shaped nanopore filled with the gel rectifies the current and works as a solid-state ionic diode.« less
Kushida, Ikuo; Gotoda, Masaharu
2013-10-01
ER-34122, a poorly water-soluble dual 5-lipoxygenase/cyclooxygenase inhibitor, exists as a crystalline form. According to an Oak Ridge thermal ellipsoid plot drawing, carbonyl oxygen O (5) makes an intermolecular hydrogen bond with the hydrogen bonded to N (3) in the crystal structure. The FTIR and the solid-state ¹³C NMR spectra suggest that the network is spread out in the amorphous state and the hydrogen bonding gets weaker than that in the crystalline phase, because the carbonyl signals significantly shift in both spectra. When amorphous ER-34122 was heated, crystallization occurred at around 140°C. Similar crystallization happened in the solid dispersion; however, the degree of crystallization was much lower than that observed in the pure amorphous material. Also, the DSC thermogram of the solid dispersion did not show any exothermic peaks implying crystallization. The heat of fusion (ΔHf) determined in the pure amorphous material was nearly equal to that for the crystalline form, whereas the ΔHf value obtained in the solid dispersion was less than a third of them. These data prove that crystallization of the amorphous form is dramatically restrained in the solid dispersion system. The carbonyl wavenumber shifts in the FTIR spectra indicate that the average hydrogen bond in the solid dispersion is lower than that in the pure amorphous material. Therefore, HPMC will suppress formation of the intermolecular network observed in ER-34122 crystal and preserve the amorphous state, which is thermodynamically less stable, in the solid dispersed system.
Structure Evolution and Reactivity of the Sc(2- x)V xO3+δ (0 ≤ x ≤ 2.0) System.
Lussier, Joey A; Simon, Fabian J; Whitfield, Pamela S; Singh, Kalpana; Thangadurai, Venkataraman; Bieringer, Mario
2018-05-07
Solid oxide fuel cells (SOFCs) are solid-state electrochemical devices that directly convert chemical energy of fuels into electricity with high efficiency. Because of their fuel flexibility, low emissions, high conversion efficiency, no moving parts, and quiet operation, they are considered as a promising energy conversion technology for low carbon future needs. Solid-state oxide and proton conducting electrolytes play a crucial role in improving the performance and market acceptability of SOFCs. Defect fluorite phases are some of the most promising fast oxide ion conductors for use as electrolytes in SOFCs. We report the synthesis, structure, phase diagram, and high-temperature reactivity of the Sc (2- x) V x O 3+δ (0 ≤ x ≤ 2.00) oxide defect model system. For all Sc (2- x) V x O 3.0 phases with x ≤ 1.08 phase-pure bixbyite-type structures are found, whereas for x ≥ 1.68 phase-pure corundum structures are reported, with a miscibility gap found for 1.08 < x < 1.68. Structural details obtained from the simultaneous Rietveld refinements using powder neutron and X-ray diffraction data are reported for the bixbyite phases, demonstrating a slight V 3+ preference toward the 8b site. In situ X-ray diffraction experiments were used to explore the oxidation of the Sc (2- x) V x O 3.0 phases. In all cases ScVO 4 was found as a final product, accompanied by Sc 2 O 3 for x < 1.0 and V 2 O 5 when x > 1.0; however, the oxidative pathway varied greatly throughout the series. Comments are made on different synthesis strategies, including the effect on crystallinity, reaction times, rate-limiting steps, and reaction pathways. This work provides insight into the mechanisms of solid-state reactions and strategic guidelines for targeted materials synthesis.
Coupling between crystal structure and magnetism in transition-metal oxides
NASA Astrophysics Data System (ADS)
Barton, Phillip Thomas
Transition-metal oxides exhibit a fascinating array of phenomena ranging from superconductivity to negative thermal expansion to catalysis. This dissertation focuses on magnetism, which is integral to engineering applications such as data storage, electric motors/generators, and transformers. The investigative approach follows structure-property relationships from materials science and draws on intuition from solid-state chemistry. The interplay between crystal structure and magnetic properties is studied experimentally in order to enhance the understanding of magnetostructural coupling mechanisms and provide insight into avenues for tuning behavior. A combination of diffraction and physical property measurements were used to study structural and magnetic phase transitions as a function of chemical composition, temperature, and magnetic field. The systems examined are of importance in Li-ion battery electrochemistry, condensed-matter physics, solid-state chemistry, and p-type transparent conducting oxides. The materials were prepared by solid-state reaction of powder reagents at high temperatures for periods lasting tens of hours. The first project discussed is of a solid solution between NiO, a correlated insulator, and LiNiO2, a layered battery cathode. Despite the deceptive structural and compositional simplicity of this system, a complete understanding of its complex magnetic properties has remained elusive. This study shows that nanoscale domains of chemical order form at intermediate compositions, creating interfaces between antiferromagnetism and ferrimagnetism that give rise to magnetic exchange bias. A simple model of the magnetism is presented along with a comprehensive phase diagram. The second set of investigations focus on the Ge-Co-O system where the spin-orbit coupling of Co(II) plays a significant role. GeCo2O 4 is reported to exhibit unusual magnetic behavior that arises from Ising spin in its spinel crystal structure. Studies by variable-temperature synchrotron X-ray diffraction reveal a magnetostructural transition and capacitance measurements show evidence for magnetodielectric behavior. The above work uncovered a Co10Ge3O16 phase that had a known structure but whose physical properties were largely uncharacterized. This project examined its metamagnetic properties using detailed magnetometry experiments. Upon the application of a magnetic field, this material goes through a first-order phase transition from a noncollinear antiferromagnet to an unknown ferrimagnetic state. Lastly, this thesis explored the chemical dilution of magnetism in some perovskite and delafossite solid solutions. In the perovskite structure, compositions intermediate to the endmembers SrRuO3, a ferromagnetic metal, and LaRhO3, a diamagnetic semiconductor, were investigated. While the magnetism of this system is poised between localized and itinerant behavior, a compositionally-driven metal to insulator transition, revealed by electrical resistivity measurements, did not strongly impact the magnetic properties. Instead, both octahedral tilting and magnetic dilution had strong effects, and comparison of this characterization to Sr1-- x CaxRuO3 reinforces the important role of structural distortions in determining magnetic ground state. The final materials studied were of composition CuAl1-- xCrxO2 (0 < x < 1) in the delafossite structure. The primary interest was the geometric frustration of antiferromagnetism in CuCrO 2 and significant short-range correlations were observed above TN. The analysis found that reducing the number of degenerate states through Al substitution did not enhance magnetic ordering because of the weakening of magnetic exchange.
Compression selective solid-state chemistry
NASA Astrophysics Data System (ADS)
Hu, Anguang
Compression selective solid-state chemistry refers to mechanically induced selective reactions of solids under thermomechanical extreme conditions. Advanced quantum solid-state chemistry simulations, based on density functional theory with localized basis functions, were performed to provide a remarkable insight into bonding pathways of high-pressure chemical reactions in all agreement with experiments. These pathways clearly demonstrate reaction mechanisms in unprecedented structural details, showing not only the chemical identity of reactive intermediates but also how atoms move along the reaction coordinate associated with a specific vibrational mode, directed by induced chemical stress occurred during bond breaking and forming. It indicates that chemical bonds in solids can break and form precisely under compression as we wish. This can be realized through strongly coupling of mechanical work to an initiation vibrational mode when all other modes can be suppressed under compression, resulting in ultrafast reactions to take place isothermally in a few femtoseconds. Thermodynamically, such reactions correspond to an entropy minimum process on an isotherm where the compression can force thermal expansion coefficient equal to zero. Combining a significantly brief reaction process with specific mode selectivity, both statistical laws and quantum uncertainty principle can be bypassed to precisely break chemical bonds, establishing fundamental principles of compression selective solid-state chemistry. Naturally this leads to understand the ''alchemy'' to purify, grow, and perfect certain materials such as emerging novel disruptive energetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrokhzadeh, Abdolkarim; Modarresi-Alam, Ali Reza, E-mail: modaresi@chem.usb.ac.ir
Poly [(±)-2-(sec-butyl) aniline]/silica-supported perchloric acid composites were synthesized by combination of poly[(±)-2-sec-butylaniline] base (PSBA) and the silica-supported perchloric acid (SSPA) as dopant solid acid in solid-state. The X-ray photoelectron spectroscopy (XPS) and CHNS results confirm nigraniline oxidation state and complete doping for composites (about 75%) and non-complete for the PSBA·HCl salt (about 49%). The conductivity of samples was (≈0.07 S/cm) in agreement with the percent of doping obtained of the XPS analysis. Also, contact resistance was determined by circular-TLM measurement. The morphology of samples by the scanning electron microscopy (SEM) and their coating were investigated by XPS, SEM-map and energy-dispersivemore » X-ray spectroscopy (EDX). The key benefits of this work are the preparation of conductive chiral composite with the delocalized polaron structure under green chemistry and solid-state condition, the improvement of the processability by inclusion of the 2-sec-butyl group and the use of dopant solid acid (SSPA) as dopant. - Highlights: • The solid-state synthesis of the novel chiral composites of poly[(±)-2-(sec-butyl)aniline] (PSBA) and silica-supported perchloric acid (SSPA). • It takes 120 h for complete deprotonation of PSBA.HCl salt. • Use of SSPA as dopant solid acid for the first time to attain the complete doping of PSBA. • The coating of silica surface with PSBA.« less
NASA Astrophysics Data System (ADS)
Talite, M. J. A.; Lin, H. T.; Jiang, Z. C.; Lin, T. N.; Huang, H. Y.; Heredia, E.; Flores, A.; Chao, Y. C.; Shen, J. L.; Lin, C. A. J.; Yuan, C. T.
2016-08-01
Luminescent gold nanoclusters (AuNCs) with good biocompatibility have gained much attention in bio-photonics. In addition, they also exhibit a unique photo-physical property, namely thermally activated delayed fluorescence (TADF), by which both singlet and triplet excitons can be harvested. The combination of their non-toxic material property and unique TADF behavior makes AuNCs biocompatible nano-emitters for bio-related light-emitting devices. Unfortunately, the TADF emission is quenched when colloidal AuNCs are transferred to solid states under ambient environment. Here, a facile, low-cost and effective method was used to generate efficient and stable TADF emissions from solid AuNCs under ambient environment using polyvinyl alcohol as a solid matrix. To unravel the underlying mechanism, temperature-dependent static and transient photoluminescence measurements were performed and we found that two factors are crucial for solid TADF emission: small energy splitting between singlet and triplet states and the stabilization of the triplet states. Solid TADF films were also deposited on the flexible plastic substrate with patterned structures, thus mitigating the waveguide-mode losses. In addition, we also demonstrated that warm white light can be generated based on a co-doped single emissive layer, consisting of non-toxic, solution-processed TADF AuNCs and fluorescent carbon dots under UV excitation.
High pressure and synchrotron radiation studies of solid state electronic instabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pifer, J.H.; Croft, M.C.
This report discusses Eu and General Valence Instabilities; Ce Problem: L{sub 3} Spectroscopy Emphasis; Bulk Property Emphasis; Transition Metal Compound Electronic Structure; Electronic Structure-Phonon Coupling Studies; High Temperature Superconductivity and Oxide Materials; and Novel Materials Collaboration with Chemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh-ishi, Katsuyoshi, E-mail: oh-ishi@kc.chuo-u.ac.jp; Nagumo, Kenta; Tateishi, Kazuya
Mo-Re-C compounds containing Mo{sub 7}Re{sub 13}C with the β-Mn structure were synthesized with high-melting-temperature metals Mo, Re, and C powders using a conventional solid state method with a planetary ball milling machine instead of the arc melting method. Use of the ball milling machine was necessary to obtain Mo{sub 7}Re{sub 13}C with the β-Mn structure using the solid state method. Almost single-phase Mo{sub 7}Re{sub 13}C with a trace of impurity were obtained using the synthesis method. By XRF and lattice parameter measurements on the samples, Fe element existed in the compound synthesized using the planetary ball milling machine with amore » pot and balls made of steel, though Fe element was not detected in the compound synthesized using a pot and balls made of tungsten carbide. The former compound containg the Fe atom did not show superconductivity but the latter compound without the Fe atom showed superconductivity at 6.1 K. - Graphical abstract: Temperature dependence of the magnetic susceptibility measured under 10 Oe for the superconducting PBM-T samples without Fe element and non-superconducting PBM-S with Fe element. The inset is the enlarged view of the data for the PBM-S sample.« less
Giovine, Raynald; Volkringer, Christophe; Trébosc, Julien; Amoureux, Jean Paul; Loiseau, Thierry; Lafon, Olivier; Pourpoint, Frédérique
2017-03-01
The metal-organic framework MIL-53(Al) (aluminium terephthalate) exhibits a structural transition between two porous structures with large pore (lp) or narrow pore (np) configurations. This transition, called the breathing effect, is observed upon changes in temperature or external pressure, as well as with the adsorption of guest molecules, such as H 2 O, within the pores. We show here how these different pore openings can be detected by observing the dephasing of 13 C magnetization under 13 C- 27 Al dipolar couplings using Rotational-Echo Saturation-Pulse Double-Resonance (RESPDOR) solid-state NMR experiments with Simultaneous Frequency and Amplitude Modulation (SFAM) recoupling. These double-resonance NMR experiments between 13 C and 27 Al nuclei, which have close Larmor frequencies, are feasible thanks to the use of a frequency splitter. The experimental SFAM-RESPDOR signal fractions agree well with those simulated from the MIL-53(Al)-lp and -np crystal structures obtained from powder X-ray diffraction analysis. Hence, these 13 C- 27 Al solid-state NMR experiments validate these structures and confirm their rigidity. A similar agreement is reported for the framework ligands in the as-synthesized (as) MIL-53(Al), in which the pores contain free ligands. Furthermore, in this case, 13 C-{ 27 Al} SFAM-RESPDOR experiments allow an estimation of the average distance between the free ligands and the 27 Al nuclei of the framework.
Reduction in the Band Gap of Manganese-Doped Zinc Oxide: Role of the Oxidation State
NASA Astrophysics Data System (ADS)
Sharma, Sonia; Ramesh, Pranith; Swaminathan, P.
2015-12-01
Manganese-doped zinc oxide powders were synthesized by solid state reaction of the respective oxides. The high-temperature conditions were chosen such that multiple valence states of manganese were doped in the host zinc oxide lattice. Structural characterization was carried out to confirm the doping and to find the maximum amount of manganese that can be incorporated. Diffuse reflectance spectroscopy was used to measure the optical band gap of the doped sample and the lowering with respect to pure ZnO was attributed to the presence of higher oxidation states of manganese. The presence of these oxidation states was confirmed using x-ray photoelectron spectroscopy. The study shows that a solid state reaction is a viable route for synthesizing doped metal oxides with desired optical properties.
Jenkins, Janelle E.; Sampath, Sujatha; Butler, Emily; Kim, Jihyun; Henning, Robert W.; Holland, Gregory P.; Yarger, Jeffery L.
2013-01-01
This study provides a detailed secondary structural characterization of major ampullate dragline silk from Latrodectus hesperus (black widow) spiders. X-ray diffraction results show that the structure of black widow major ampullate silk fibers is comprised of stacked β-sheet nanocrystallites oriented parallel to the fiber axis and an amorphous region with oriented (anisotropic) and isotropic components. The combination of two-dimensional (2D) 13C-13C through-space and through-bond solid-state NMR experiments provide chemical shifts that are used to determine detailed information about amino acid motif secondary structure in black widow spider dragline silk. Individual amino acids are incorporated into different repetitive motifs that make up the majority of this protein-based biopolymer. From the solid-state NMR measurements, we assign distinct secondary conformations to each repetitive amino acid motif and hence to the amino acids that make up the motifs. Specifically, alanine is incorporated in β-sheet (poly(Alan) and poly(Gly-Ala)), 31-helix (poly(Gly-Gly-Xaa), and α-helix (poly(Gln-Gln-Ala-Tyr)) components. Glycine is determined to be in β-sheet (poly(Gly-Ala)) and 31-helical (poly(Gly-Gly-Xaa)) regions, while serine is present in β-sheet (poly(Gly-Ala-Ser)), 31-helix (poly(Gly-Gly-Ser)), and β-turn (poly(Gly-Pro-Ser)) structures. These various motif-specific secondary structural elements are quantitatively correlated to the primary amino acid sequence of major ampullate spidroin 1 and 2 (MaSp1 and MaSp2) and are shown to form a self-consistent model for black widow dragline silk. PMID:24024617
NASA Technical Reports Server (NTRS)
Lewis, J. S.
1974-01-01
The bulk composition and interior structure of Titan required to explain the presence of a substantial methane atmosphere are shown to imply the presence of solid CH4 - 7H2O in Titan's primitive material. Consideration of the possible composition and structure of the present atmosphere shows plausible grounds for considering models with total atmospheric pressures ranging from approximately 20 mb up to approximately 1 kb. Expectations regarding the physical state of the surface and its chemical composition are strongly conditioned by the mass of atmosphere believed to be present. A surface of solid CH4, liquid CH4 solid, CH4 hydrate, H2O ice, aqueous NH3 solution, or even a non-surface of supercritical H2O-NH3-CH4 fluid could be rationalized.
NASA Astrophysics Data System (ADS)
Tao, Jiayou; Liu, Nishuang; Ma, Wenzhen; Ding, Longwei; Li, Luying; Su, Jun; Gao, Yihua
2013-07-01
A solid-state flexible supercapacitor (SC) based on organic-inorganic composite structure was fabricated through an ``in situ growth for conductive wrapping'' and an electrode material of polypyrrole (PPy)-MnO2 nanoflakes-carbon fiber (CF) hybrid structure was obtained. The conductive organic material of PPy greatly improved the electrochemical performance of the device. With a high specific capacitance of 69.3 F cm-3 at a discharge current density of 0.1 A cm-3 and an energy density of 6.16 × 10-3 Wh cm-3 at a power density of 0.04 W cm-3, the device can drive a commercial liquid crystal display (LCD) after being charged. The organic-inorganic composite active materials have enormous potential in energy management and the ``in situ growth for conductive wrapping'' method might be generalized to open up new strategies for designing next-generation energy storage devices.
Extended Czjzek model applied to NMR parameter distributions in sodium metaphosphate glass
NASA Astrophysics Data System (ADS)
Vasconcelos, Filipe; Cristol, Sylvain; Paul, Jean-François; Delevoye, Laurent; Mauri, Francesco; Charpentier, Thibault; Le Caër, Gérard
2013-06-01
The extended Czjzek model (ECM) is applied to the distribution of NMR parameters of a simple glass model (sodium metaphosphate, NaPO3) obtained by molecular dynamics (MD) simulations. Accurate NMR tensors, electric field gradient (EFG) and chemical shift anisotropy (CSA) are calculated from density functional theory (DFT) within the well-established PAW/GIPAW framework. The theoretical results are compared to experimental high-resolution solid-state NMR data and are used to validate the considered structural model. The distributions of the calculated coupling constant CQ ∝ |Vzz| and the asymmetry parameter ηQ that characterize the quadrupolar interaction are discussed in terms of structural considerations with the help of a simple point charge model. Finally, the ECM analysis is shown to be relevant for studying the distribution of CSA tensor parameters and gives new insight into the structural characterization of disordered systems by solid-state NMR.
Extended Czjzek model applied to NMR parameter distributions in sodium metaphosphate glass.
Vasconcelos, Filipe; Cristol, Sylvain; Paul, Jean-François; Delevoye, Laurent; Mauri, Francesco; Charpentier, Thibault; Le Caër, Gérard
2013-06-26
The extended Czjzek model (ECM) is applied to the distribution of NMR parameters of a simple glass model (sodium metaphosphate, NaPO3) obtained by molecular dynamics (MD) simulations. Accurate NMR tensors, electric field gradient (EFG) and chemical shift anisotropy (CSA) are calculated from density functional theory (DFT) within the well-established PAW/GIPAW framework. The theoretical results are compared to experimental high-resolution solid-state NMR data and are used to validate the considered structural model. The distributions of the calculated coupling constant C(Q) is proportional to |V(zz)| and the asymmetry parameter η(Q) that characterize the quadrupolar interaction are discussed in terms of structural considerations with the help of a simple point charge model. Finally, the ECM analysis is shown to be relevant for studying the distribution of CSA tensor parameters and gives new insight into the structural characterization of disordered systems by solid-state NMR.
Computational study of Li2OHCl as a possible solid state battery material
NASA Astrophysics Data System (ADS)
Howard, Jason; Holzwarth, N. A. W.
Preparations of Li2OHCl have recently been experimentally studied as solid state Li ion electrolytes. A disordered cubic phase is known to be stable at temperatures T >35o C. Following previous ideas, first principles supercells are constructed with up to 320 atoms to model the cubic phase. First principles molecular dynamics simulations of the cubic phase show Li ion diffusion occuring on the t =10-12 s time scale, at temperatures as low as T = 400 K. The structure of the lower temperature phase (T <35o C) is not known in detail. A reasonable model of this structure is developed by using the tetragonal ideal structure found by first principles simulations and a model Hamiltonian to account for alternative orientations of the OH groups. Supported by NSF Grant DMR-1507942. Thanks to Zachary D. Hood of GaTech and ORNL for introducing these materials to us.
Nanocrystal waveguide (NOW) laser
Simpson, John T.; Simpson, Marcus L.; Withrow, Stephen P.; White, Clark W.; Jaiswal, Supriya L.
2005-02-08
A solid state laser includes an optical waveguide and a laser cavity including at least one subwavelength mirror disposed in or on the optical waveguide. A plurality of photoluminescent nanocrystals are disposed in the laser cavity. The reflective subwavelength mirror can be a pair of subwavelength resonant gratings (SWG), a pair of photonic crystal structures (PC), or a distributed feedback structure. In the case of a pair of mirrors, a PC which is substantially transmissive at an operating wavelength of the laser can be disposed in the laser cavity between the subwavelength mirrors to improve the mode structure, coherence and overall efficiency of the laser. A method for forming a solid state laser includes the steps of providing an optical waveguide, creating a laser cavity in the optical waveguide by disposing at least one subwavelength mirror on or in the waveguide, and positioning a plurality of photoluminescent nanocrystals in the laser cavity.
Cooper, Christine J; Jones, Matthew D; Brayshaw, Simon K; Sonnex, Benjamin; Russell, Mark L; Mahon, Mary F; Allan, David R
2011-04-14
In this paper we report the synthesis and solid-state structures for a series of pyridine based Cu(II) complexes and preliminary data for the asymmetric Henry reaction. Interestingly, the solid-state structures indicate the incorporation of an alcohol into one of the imine groups of the ligand, forming a rare α-amino ether group. The complexes have been studied via single crystal X-ray diffraction, EPR spectroscopy and mass spectrometry. Intriguingly, it has been observed that the alcohol only adds to one of the imine moieties. Density functional theory (DFT) calculations have also been employed to rationalise the observed structures. The Cu(II) complexes have been tested in the asymmetric Henry reaction (benzaldehyde + nitromethane or nitroethane) with ee's up to 84% being achieved as well as high conversions and modest diastereoselectivities. © The Royal Society of Chemistry 2011
Promises and challenges in solid-state lighting
NASA Astrophysics Data System (ADS)
Schubert, Fred
2010-03-01
Lighting technologies based on semiconductor light-emitting diodes (LEDs) offer unprecedented promises that include three major benefits: (i) Gigantic energy savings enabled by efficient conversion of electrical energy to optical energy; (ii) Substantial positive contributions to sustainability through reduced emissions of global-warming gases, acid-rain gases, and toxic substances such as mercury; and (iii) The creation of new paradigms in lighting driven by the unique controllability of solid-state lighting sources. Due to the powerful nature of these benefits, the transition from conventional lighting sources to solid-state lighting is virtually assured. This presentation will illustrate the new world of lighting and illustrate the pervasive changes to be expected in lighting, displays, communications, and biotechnology. The presentation will also address the formidable challenges that must be addressed to continue the further advancement of solid-state lighting technology. These challenges offer opportunities for research and innovation. Specific challenges include light management, carrier transport, and optical design. We will present some innovative approaches in order to solve known technical challenges faced by solid-state lighting. These approaches include the demonstration and use of new optical thin-film materials with a continuously tunable refractive index. These approaches also include the use of polarization-matched structures that reduce the polarization fields in GaInN LEDs and the hotly debated efficiency droop, that is, the decreasing LED efficiency at high currents.
Savateev, Aleksandr; Pronkin, Sergey; Willinger, Marc Georg; Antonietti, Markus; Dontsova, Dariya
2017-07-04
Highly crystalline potassium (heptazine imides) were prepared by the thermal condensation of substituted 1,2,4-triazoles in eutectic salt melts. These semiconducting salts are already known to be highly active photocatalysts, for example, for the visible-light-driven generation of hydrogen from water. Herein, we show that within the solid-state structure, potassium ions can be exchanged to other metal ions while the crystal habitus is essentially preserved. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Takada, Shunji; Ihama, Mikio; Inuiya, Masafumi
2006-02-01
Digital still cameras overtook film cameras in Japanese market in 2000 in terms of sales volume owing to their versatile functions. However, the image-capturing capabilities such as sensitivity and latitude of color films are still superior to those of digital image sensors. In this paper, we attribute the cause for the high performance of color films to their multi-layered structure, and propose the solid-state image sensors with stacked organic photoconductive layers having narrow absorption bands on CMOS read-out circuits.
Solid-State NMR Spectroscopy of Metal–Organic Framework Compounds (MOFs)
Hoffmann, Herbert C.; Debowski, Marta; Müller, Philipp; Paasch, Silvia; Senkovska, Irena; Kaskel, Stefan; Brunner, Eike
2012-01-01
Nuclear Magnetic Resonance (NMR) spectroscopy is a well-established method for the investigation of various types of porous materials. During the past decade, metal–organic frameworks have attracted increasing research interest. Solid-state NMR spectroscopy has rapidly evolved into an important tool for the study of the structure, dynamics and flexibility of these materials, as well as for the characterization of host–guest interactions with adsorbed species such as xenon, carbon dioxide, water, and many others. The present review introduces and highlights recent developments in this rapidly growing field.
Yuan, Hang; Wang, Yulei; Lu, Zhiwei; Zheng, Zhenxing
2018-02-01
A frequency matching Brillouin amplification in high-power solid-state laser systems is proposed. The energy extraction efficiency could be maintained at a high level in a non-collinear Brillouin amplification structure using an exact Stokes frequency shift. Laser pulses having a width of 200 ps and energy of 2.4 J were produced. This method can be used to transfer energy from a long pulse to a short pulse through a high-power solid-state laser system.
1H NMR spectra dataset and solid-state NMR data of cowpea (Vigna unguiculata).
Alves Filho, Elenilson G; Silva, Lorena M A; Teofilo, Elizita M; Larsen, Flemming H; de Brito, Edy S
2017-04-01
In this article the NMR data from chemical shifts, coupling constants, and structures of all the characterized compounds were provided, beyond a complementary PCA evaluation for the corresponding manuscript (E.G. Alves Filho, L.M.A. Silva, E.M. Teofilo, F.H. Larsen, E.S. de Brito, 2017) [3]. In addition, a complementary assessment from solid-state NMR data was provided. For further chemometric analysis, numerical matrices from the raw 1 H NMR data were made available in Microsoft Excel workbook format (.xls).
Ihlefeld, Jon F; Foley, Brian M; Scrymgeour, David A; Michael, Joseph R; McKenzie, Bonnie B; Medlin, Douglas L; Wallace, Margeaux; Trolier-McKinstry, Susan; Hopkins, Patrick E
2015-03-11
Dynamic control of thermal transport in solid-state systems is a transformative capability with the promise to propel technologies including phononic logic, thermal management, and energy harvesting. A solid-state solution to rapidly manipulate phonons has escaped the scientific community. We demonstrate active and reversible tuning of thermal conductivity by manipulating the nanoscale ferroelastic domain structure of a Pb(Zr0.3Ti0.7)O3 film with applied electric fields. With subsecond response times, the room-temperature thermal conductivity was modulated by 11%.
Variable-transparency wall regulates temperatures of structures
NASA Technical Reports Server (NTRS)
Osullivan, W. J., Jr.
1964-01-01
An effective temperature regulating wall consists of one layer /e.g., one of the paraffins/ relatively opaque to thermal radiation in the solid state and transparent to it in the molten state and placed between two transparent layers. A mirror coating is applied to back layer.
Development of techniques in magnetic resonance and structural studies of the prion protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bitter, Hans-Marcus L.
2000-07-01
Magnetic resonance is the most powerful analytical tool used by chemists today. Its applications range from determining structures of large biomolecules to imaging of human brains. Nevertheless, magnetic resonance remains a relatively young field, in which many techniques are currently being developed that have broad applications. In this dissertation, two new techniques are presented, one that enables the determination of torsion angles in solid-state peptides and proteins, and another that involves imaging of heterogenous materials at ultra-low magnetic fields. In addition, structural studies of the prion protein via solid-state NMR are described. More specifically, work is presented in which themore » dependence of chemical shifts on local molecular structure is used to predict chemical shift tensors in solid-state peptides with theoretical ab initio surfaces. These predictions are then used to determine the backbone dihedral angles in peptides. This method utilizes the theoretical chemicalshift tensors and experimentally determined chemical-shift anisotropies (CSAs) to predict the backbone and side chain torsion angles in alanine, leucine, and valine residues. Additionally, structural studies of prion protein fragments are described in which conformationally-dependent chemical-shift measurements were made to gain insight into the structural differences between the various conformational states of the prion protein. These studies are of biological and pathological interest since conformational changes in the prion protein are believed to cause prion diseases. Finally, an ultra-low field magnetic resonance imaging technique is described that enables imaging and characterization of heterogeneous and porous media. The notion of imaging gases at ultra-low fields would appear to be very difficult due to the prohibitively low polarization and spin densities as well as the low sensitivities of conventional Faraday coil detectors. However, Chapter 5 describes how gas imaging at ultra-low fields is realized by incorporating the high sensitivities of a dc superconducting quantum interference device (SQUID) with the high polarizations attainable through optica11y pumping 129Xe gas.« less
Exploiting periodic first-principles calculations in NMR spectroscopy of disordered solids.
Ashbrook, Sharon E; Dawson, Daniel M
2013-09-17
Much of the information contained within solid-state nuclear magnetic resonance (NMR) spectra remains unexploited because of the challenges in obtaining high-resolution spectra and the difficulty in assigning those spectra. Recent advances that enable researchers to accurately and efficiently determine NMR parameters in periodic systems have revolutionized the application of density functional theory (DFT) calculations in solid-state NMR spectroscopy. These advances are particularly useful for experimentalists. The use of first-principles calculations aids in both the interpretation and assignment of the complex spectral line shapes observed for solids. Furthermore, calculations provide a method for evaluating potential structural models against experimental data for materials with poorly characterized structures. Determining the structure of well-ordered, periodic crystalline solids can be straightforward using methods that exploit Bragg diffraction. However, the deviations from periodicity, such as compositional, positional, or temporal disorder, often produce the physical properties (such as ferroelectricity or ionic conductivity) that may be of commercial interest. With its sensitivity to the atomic-scale environment, NMR provides a potentially useful tool for studying disordered materials, and the combination of experiment with first-principles calculations offers a particularly attractive approach. In this Account, we discuss some of the issues associated with the practical implementation of first-principles calculations of NMR parameters in solids. We then use two key examples to illustrate the structural insights that researchers can obtain when applying such calculations to disordered inorganic materials. First, we describe an investigation of cation disorder in Y2Ti(2-x)Sn(x)O7 pyrochlore ceramics using (89)Y and (119)Sn NMR. Researchers have proposed that these materials could serve as host phases for the encapsulation of lanthanide- and actinide-bearing radioactive waste. In a second example, we discuss how (17)O NMR can be used to probe the dynamic disorder of H in hydroxyl-humite minerals (nMg2SiO4·Mg(OH)2), and how (19)F NMR can be used to understand F substitution in these systems. The combination of first-principles calculations and multinuclear NMR spectroscopy facilitates the investigation of local structure, disorder, and dynamics in solids. We expect that applications will undoubtedly become more widespread with further advances in computational and experimental methods. Insight into the atomic-scale environment is a crucial first step in understanding the structure-property relationships in solids, and it enables the efficient design of future materials for a range of end uses.
NASA Astrophysics Data System (ADS)
Rush, Larry E., Jr.
This thesis mainly focuses on characterizing and understanding the electronic properties of sodium-ion electrolytes using first-principles calculations. The core of these calculations is built upon a functional understanding of the relationship between quantum mechanics and the crystalline geometries that contribute to unique properties of materials such as diffusion mechanisms of ions within solid-state materials, conductivity, and ground state structures. The goal of this body of work is to understand how this relationship can give us insight into materials that might have use in an emerging field within battery technology. Sodium-ion solid-state batteries are an auspicious technology because nature has provided us with widely distributed precursor materials in such a way that removes geopolitical constraints in its construction and distribution. This is extremely important to individuals (and a collection of individuals) who want to expedite the wide use of clean and renewable energy from a societal perspective. An example is Morocco's initiative to generate 52% of its total energy consumption from clean and renewable energy sources to eliminate dependencies on foreign countries to supply energy resources. Sodium-ion solid-state batteries are an inexpensive option for large-scale grid storage, so this could play a role in providing a cost-effective option for Morocco. The challenging part is to sift through the large chemical space of sodium-ion solid-state electrolytes to find optimal materials for battery technology, and that is what motivates this body of work.
NASA Astrophysics Data System (ADS)
Yang, Xiangwen; Lin, Zhixing; Zheng, Jingxu; Huang, Yingjuan; Chen, Bin; Mai, Yiyong; Feng, Xinliang
2016-04-01
This paper reports a novel and remarkably facile approach towards vertically aligned nanosheets on three-dimensional (3D) Ni foams. Conducting polypyrrole (PPy) sheets were grown on Ni foam through the volatilization of the environmentally friendly solvent from an ethanol-water solution of pyrrole (Py), followed by the polymerization of the coated Py in ammonium persulfate (APS) solution. The PPy-decorated Ni foams and commercial activated carbon (AC) modified Ni foams were employed as the two electrodes for the assembly of flexible all-solid-state asymmetric supercapacitors. The sheet-like structure of PPy and the macroporous feature of the Ni foam, which render large electrode-electrolyte interfaces, resulted in good capacitive performance of the supercapacitors. Moreover, a high energy density of ca. 14 Wh kg-1 and a high power density of 6.2 kW kg-1 were achieved for the all-solid-state asymmetric supercapacitors due to the wide cell voltage window.This paper reports a novel and remarkably facile approach towards vertically aligned nanosheets on three-dimensional (3D) Ni foams. Conducting polypyrrole (PPy) sheets were grown on Ni foam through the volatilization of the environmentally friendly solvent from an ethanol-water solution of pyrrole (Py), followed by the polymerization of the coated Py in ammonium persulfate (APS) solution. The PPy-decorated Ni foams and commercial activated carbon (AC) modified Ni foams were employed as the two electrodes for the assembly of flexible all-solid-state asymmetric supercapacitors. The sheet-like structure of PPy and the macroporous feature of the Ni foam, which render large electrode-electrolyte interfaces, resulted in good capacitive performance of the supercapacitors. Moreover, a high energy density of ca. 14 Wh kg-1 and a high power density of 6.2 kW kg-1 were achieved for the all-solid-state asymmetric supercapacitors due to the wide cell voltage window. Electronic supplementary information (ESI) available: ESI figures. See DOI: 10.1039/c6nr00468g
Yu, Xi; Lovrincic, Robert; Sepunaru, Lior; Li, Wenjie; Vilan, Ayelet; Pecht, Israel; Sheves, Mordechai; Cahen, David
2015-10-27
Surprisingly efficient solid-state electron transport has recently been demonstrated through "dry" proteins (with only structural, tightly bound H2O left), suggesting proteins as promising candidates for molecular (bio)electronics. Using inelastic electron tunneling spectroscopy (IETS), we explored electron-phonon interaction in metal/protein/metal junctions, to help understand solid-state electronic transport across the redox protein azurin. To that end an oriented azurin monolayer on Au is contacted by soft Au electrodes. Characteristic vibrational modes of amide and amino acid side groups as well as of the azurin-electrode contact were observed, revealing the azurin native conformation in the junction and the critical role of side groups in the charge transport. The lack of abrupt changes in the conductance and the line shape of IETS point to far off-resonance tunneling as the dominant transport mechanism across azurin, in line with previously reported (and herein confirmed) azurin junctions. The inelastic current and hence electron-phonon interaction appear to be rather weak and comparable in magnitude with the inelastic fraction of tunneling current via alkyl chains, which may reflect the known structural rigidity of azurin.
NASA Astrophysics Data System (ADS)
Ośmiałowski, Borys; Kolehmainen, Erkki; Ejsmont, Krzysztof; Ikonen, Satu; Valkonen, Arto; Rissanen, Kari; Nonappa
2013-12-01
Eight single crystal X-ray structures, solid-state NMR spectroscopic, and theoretical studies utilizing QTAIM methodology were used to characterize the 2-acyl (alkyl in acyl = methyl, ethyl, t-butyl, and 1-adamantyl) amino-6-R-pyridine/4-R‧-benzoic acid (R,R‧ = H or Me) cocrystals. As expected among alkyl groups 1-adamantyl due to its bulkiness has the most significant effect on the relative positions of molecules in cocrystals. In addition, the subtle electronic and steric effects by the methyl substituents were observed. The theoretical calculations with full geometry optimizations are in agreement with the experimental findings (geometry, energy of hydrogen bonds). Based on the crystal structures and calculations it is concluded that p-methyl substituent in benzoic acid increase the hydrogen bond accepting ability of the CO oxygen and decreases the hydrogen bond donating ability of OH proton. The 15N solid-state (CP MAS) NMR chemical shifts prove that molecules in cocrystal are held together by hydrogen bonding. The biggest variation in the 15N chemical shift of acylamino nitrogen can be related with the size of the alkyl group in acyl moiety.
integrating Solid State NMR and Computations in Membrane Protein Science
NASA Astrophysics Data System (ADS)
Cross, Timothy
2015-03-01
Helical membrane protein structures are influenced by their native environment. Therefore the characterization of their structure in an environment that models as closely as possible their native environment is critical for achieving not only structural but functional understanding of these proteins. Solid state NMR spectroscopy in liquid crystalline lipid bilayers provides an excellent tool for such characterizations. Two classes of restraints can be obtained - absolute restraints that constrain the structure to a laboratory frame of reference when using uniformly oriented samples (approximately 1° of mosaic spread) and relative restraints that restrain one part of the structure with respect to another part such as torsional and distance restraints. Here, I will discuss unique restraints derived from uniformly oriented samples and the characterization of initial structures utilizing both restraint types, followed by restrained molecular dynamics refinement in the same lipid bilayer environment as that used for the experimental restraint collection. Protein examples will be taken from Influenza virus and Mycobacterium tuberculosis. When available comparisons of structures to those obtained using different membrane mimetic environments will be shown and the causes for structural distortions explained based on an understanding of membrane biophysics and its sophisticated influence on membrane proteins.
Nomiya, K; Noguchi, R; Ohsawa, K; Tsuda, K; Oda, M
2000-03-01
Two isomeric gold(I)-triphenylphosphine complexes with nitrogen-containing heterocycles, [Au(L)(PPh3) (HL = pyrazole (1), imidazole (2)) were isolated as colorless cubic crystals for 1 and colorless plate crystals for 2, respectively. The crystal structures of 1 and 2 were determined by single-crystal X-ray diffraction. These complexes were also fully characterized by complete elemental analyses, thermogravimetric/differential thermal analyses (TG/DTA) and FT-IR in the solid state and by solution NMR (31P, 1H and 13C) spectroscopy and molecular weight measurements in acetone solution. These complexes consisted of a monomeric 2-coordinate AuNP core both in the solid state and in solution. The molecular structures of 1 and 2 were compared with those of related gold(I) complexes, [Au(1,2,3-triz)(PPh3)] (3, Htriz = triazole), [Au(1,2,4-triz)(PPh3)]2 (4) as a dimer through a gold(I)-gold(I) bond in the solid state, and [Au(tetz)(PPh3)] (5, Htetz = tetrazole). Selective and effective antimicrobial activities against two gram-positive bacteria (B. subtilis, S. aureus) and modest activities against one yeast (C. albicans) found in these gold(I) complexes 1-4 are noteworthy, in contrast to poor activities observed in the corresponding silver(I) complexes.
Neiner, Doinita; Sevryugina, Yulia V; Schubert, David M
2016-09-06
The compound known since the 19th century as ammonium octaborate was structurally characterized revealing the ammonium salt of the ribbon isomer of the heptaborate anion, [B7O9(OH)5](2-), with boric acid and water molecules. Of composition (NH4)2B7.75O12.63·4.88H2O, it approximates the classical ammonium octaborate composition (NH4)2B8O13·6H2O and has the structural formula {(NH4)2[B7O9(OH)5]}4·3B(OH)3·5H2O. It spontaneously forms at room temperature in solid-state mixtures of ammonium tetraborate and ammonium pentaborate. It crystallizes in the monoclinic space group P21/c with a = 11.4137(2) Å, b = 11.8877(2) Å, c = 23.4459(3) Å, β = 90.092(1)°, V = 3181.19(8) Å(3), and Z = 2 and contains well-ordered ammonium cations and [B7O9(OH)5](2-) anions and disordered B(OH)3 and H2O molecules linked by extensive H bonding. Expeditious solid-state formation of the heptaborate anion under ambient conditions has important implications for development of practical syntheses of industrially useful borates.
Mondal, Rajarshi; Lozada, Issiah B; Davis, Rebecca L; Williams, J A Gareth; Herbert, David E
2018-05-07
Benzannulated bidentate pyridine/phosphine ( P^N) ligands bearing quinoline or phenanthridine (3,4-benzoquinoline) units have been prepared, along with their halide-bridged, dimeric Cu(I) complexes of the form [( P^N)Cu] 2 (μ-X) 2 . The copper complexes are phosphorescent in the orange-red region of the spectrum in the solid-state under ambient conditions. Structural characterization in solution and the solid-state reveals a flexible conformational landscape, with both diamond-like and butterfly motifs available to the Cu 2 X 2 cores. Comparing the photophysical properties of complexes of (quinolinyl)phosphine ligands with those of π-extended (phenanthridinyl)phosphines has revealed a counterintuitive impact of site-selective benzannulation. Contrary to conventional assumptions regarding π-extension and a bathochromic shift in the lowest energy absorption maxima, a blue shift of nearly 40 nm in the emission wavelength is observed for the complexes with larger ligand π-systems, which is assigned as phosphorescence on the basis of emission energies and lifetimes. Comparison of the ground-state and triplet excited state structures optimized from DFT and TD-DFT calculations allows attribution of this effect to a greater rigidity for the benzannulated complexes resulting in a higher energy emissive triplet state, rather than significant perturbation of orbital energies. This study reveals that ligand structure can impact photophysical properties for emissive molecules by influencing their structural rigidity, in addition to their electronic structure.
New thermoresistant polymorph from CO2 recrystallization of minocycline hydrochloride.
Rodrigues, Miguel A; Tiago, João M; Padrela, Luis; Matos, Henrique A; Nunes, Teresa G; Pinheiro, Lídia; Almeida, António J; de Azevedo, Edmundo Gomes
2014-11-01
To prepare and thoroughly characterize a new polymorph of the broad-spectrum antibiotic minocycline from its hydrochloride dehydrate salts. The new minocycline hydrochloride polymorph was prepared by means of the antisolvent effect caused by carbon dioxide. Minocycline recrystallized as a red crystalline hydrochloride salt, starting from solutions or suspensions containing CO2 and ethanol under defined conditions of temperature, pressure and composition. This novel polymorph (β-minocycline) revealed characteristic PXRD and FTIR patterns and a high melting point (of 247 ºC) compared to the initial minocycline hydrochloride hydrates (α-minocycline). Upon dissolution the new polymorph showed full anti-microbial activity. Solid-state NMR and DSC studies evidenced the higher chemical stability and crystalline homogeneity of β-minocycline compared to the commercial chlorohydrate powders. Molecular structures of both minocyclines present relevant differences as shown by multinuclear solid-state NMR. This work describes a new crystalline structure of minocycline and evidences the ability of ethanol-CO2 system in removing water molecules from the crystalline structure of this API, at modest pressure, temperature and relatively short time (2 h), while controlling the crystal habit. This process has therefore the potential to become a consistent alternative towards the control of the solid form of APIs.
Monolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility.
Yu, Shicheng; Mertens, Andreas; Tempel, Hermann; Schierholz, Roland; Kungl, Hans; Eichel, Rüdiger-A
2018-06-22
High interfacial resistance between solid electrolyte and electrode of ceramic all-solid-state batteries is a major reason for the reduced performance of these batteries. A solid-state battery using a monolithic all-phosphate concept based on screen printed thick LiTi 2 (PO 4 ) 3 anode and Li 3 V 2 (PO 4 ) 3 cathode composite layers on a densely sintered Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 solid electrolyte has been realized with competitive cycling performance. The choice of materials was primarily based on the (electro-)chemical and mechanical matching of the components instead of solely focusing on high-performance of individual components. Thus, the battery utilized a phosphate backbone in combination with tailored morphology of the electrode materials to ensure good interfacial matching for a durable mechanical stability. Moreover, the operating voltage range of the active materials matches with the intrinsic electrochemical window of the electrolyte which resulted in high electrochemical stability. A highly competitive discharge capacity of 63.5 mAh g -1 at 0.39 C after 500 cycles, corresponding to 84% of the initial discharge capacity, was achieved. The analysis of interfacial charge transfer kinetics confirmed the structural and electrical properties of the electrodes and their interfaces with the electrolyte, as evidenced by the excellent cycling performance of the all-phosphate solid-state battery. These interfaces have been studied via impedance analysis with subsequent distribution of relaxation times analysis. Moreover, the prepared solid-state battery could be processed and operated in air atmosphere owing to the low oxygen sensitivity of the phosphate materials. The analysis of electrolyte/electrode interfaces after cycling demonstrates that the interfaces remained stable during cycling.
Deep level transient spectroscopy (DLTS) on colloidal-synthesized nanocrystal solids.
Bozyigit, Deniz; Jakob, Michael; Yarema, Olesya; Wood, Vanessa
2013-04-24
We demonstrate current-based, deep level transient spectroscopy (DLTS) on semiconductor nanocrystal solids to obtain quantitative information on deep-lying trap states, which play an important role in the electronic transport properties of these novel solids and impact optoelectronic device performance. Here, we apply this purely electrical measurement to an ethanedithiol-treated, PbS nanocrystal solid and find a deep trap with an activation energy of 0.40 eV and a density of NT = 1.7 × 10(17) cm(-3). We use these findings to draw and interpret band structure models to gain insight into charge transport in PbS nanocrystal solids and the operation of PbS nanocrystal-based solar cells.
A Three-State System Based on Branched DNA Hybrids.
He, Shiliang; Richert, Clemens
2018-03-26
There is a need for materials that respond to chemical or physical stimuli through a change in their structure. While a transition between water-soluble form and solid is not uncommon for DNA-based structures, systems that transition between three different states at room temperature and ambient pressure are rare. Here we report the preparation of branched DNA hybrids with eight oligodeoxycytidylate arms via solution-phase, H-phosphonate-based synthesis. Some hybrids assemble into hydrogels upon lowering the pH, acting as efficient gelators at pH 4-6, but can also transition into a more condensed solid state form upon exposure to divalent cations. Together with the homogeneous solutions that the i-motif-forming compounds give at neutral pH, three-state systems result. Each state has its own color, if chromophores are included in the system. The assembly and gelation properties can be tuned by choosing the chain length of the arms. Their responsive properties make the dC-rich DNA hybrids candidates for smart material applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kimura, Toshio; Yi, Yuan; Sakurai, Fumito
2010-01-01
The mechanisms of texture development were examined for BaTiO3 and a (K,Na,Li)(Nb,Ta)O3 solid solution made by the templated grain growth method, and compared with the mechanism in Bi0.5(Na,K)0.5TiO3. The dominant mechanism was different in each material; grain boundary migration in BaTiO3, solid state spreading in Bi0.5(Na,K)0.5TiO3, and abnormal grain growth in the (K,Na,Li)(Nb,Ta)O3 solid solution. The factor determining the dominant mechanism is the degree of smoothness of surface structure at an atomic level. PMID:28883364
Influence of Sn doping in BaSnxTi1-xO3 ceramics on microstructural and dielectric properties
NASA Astrophysics Data System (ADS)
Ansari, Mohd. Azaj; Sreenivas, K.
2018-05-01
BaSnxTi1-x O3 solid solutions with varying Sn content (x = 0.00, 0.05, 0.15, 0.25) prepared by solid state reaction method have been studied for their structural and dielectric properties. X-ray diffraction and Raman spectroscopic analysis show composition induced modifications in the crystallographic structure, and with increasing Sn content the structure changes from tetragonal to cubic structure. The tetragonal distortion decreases with increasing Sn, and the structure becomes purely cubic for x =0.25. Changes in the structure are reflected in the temperature dependent dielectric properties. For increasing Sn content the peak dielectric constant is found to increase and the phase transition temperature (Tc) decreases to lower temperature. The purely cubic structure with x=0.25 shows a diffused phased transition.
Gibbs Energy Modeling of Digenite and Adjacent Solid-State Phases
NASA Astrophysics Data System (ADS)
Waldner, Peter
2017-08-01
All sulfur potential and phase diagram data available in the literature for solid-state equilibria related to digenite have been assessed. Thorough thermodynamic analysis at 1 bar total pressure has been performed. A three-sublattice approach has been developed to model the Gibbs energy of digenite as a function of composition and temperature using the compound energy formalism. The Gibbs energies of the adjacent solid-state phases covelitte and high-temperature chalcocite are also modeled treating both sulfides as stoichiometric compounds. The novel model for digenite offers new interpretation of experimental data, may contribute from a thermodynamic point of view to the elucidation of the role of copper species within the crystal structure and allows extrapolation to composition regimes richer in copper than stoichiometric digenite Cu2S. Preliminary predictions into the ternary Cu-Fe-S system at 1273 K (1000 °C) using the Gibbs energy model of digenite for calculating its iron solubility are promising.
NASA Astrophysics Data System (ADS)
Yuan, Li; Wang, Lejia; Garrigues, Alvar R.; Jiang, Li; Annadata, Harshini Venkata; Anguera Antonana, Marta; Barco, Enrique; Nijhuis, Christian A.
2018-04-01
Solid-state molecular tunnel junctions are often assumed to operate in the Landauer regime, which describes essentially activationless coherent tunnelling processes. In solution, on the other hand, charge transfer is described by Marcus theory, which accounts for thermally activated processes. In practice, however, thermally activated transport phenomena are frequently observed also in solid-state molecular junctions but remain poorly understood. Here, we show experimentally the transition from the Marcus to the inverted Marcus region in a solid-state molecular tunnel junction by means of intra-molecular orbital gating that can be tuned via the chemical structure of the molecule and applied bias. In the inverted Marcus region, charge transport is incoherent, yet virtually independent of temperature. Our experimental results fit well to a theoretical model that combines Landauer and Marcus theories and may have implications for the interpretation of temperature-dependent charge transport measurements in molecular junctions.
Structural analysis of pyridine-imino boronic esters involving secondary interactions on solid state
NASA Astrophysics Data System (ADS)
Sánchez-Portillo, Paola; Arenaza-Corona, Antonino; Hernández-Ahuactzi, Irán F.; Barba, Victor
2017-04-01
Twelve boronic esters (1a-1l) synthesized from 4-halo- substituted arylboronic acids (halo = F, Cl, Br, I and CF3) with 2-amino-2- alkyl (H, Me) -1,3-propanediol in presence of (3- or 4)-pyridine carboxaldehyde are described. A solvent mixture toluene/methanol 1:4 ratio was used. All compounds include both donor/acceptor functional groups, which are the necessary elements to self-assembly of the molecular species. Several secondary interactions as I⋯N, Br⋯Br, Br⋯B, F⋯B, Csbnd H⋯N, Csbnd H⋯O, Br⋯π and Csbnd H⋯π support the 1D and 2D polymeric frameworks in solid state. The coordination of the nitrogen atom from the pyridine moiety with the boron atom was not observed in either solution or solid state.
Enhancing Modulation of Thermal Conduction in Vanadium Dioxide Thin Film by Nanostructured Nanogaps
Choe, Hwan Sung; Suh, Joonki; Ko, Changhyun; ...
2017-08-02
Efficient thermal management at the nanoscale is important for reducing energy consumption and dissipation in electronic devices, lab-on-a-chip platforms and energy harvest/conversion systems. For many of these applications, it is much desired to have a solid-state structure that reversibly switches thermal conduction with high ON/OFF ratios and at high speed. We describe design and implementation of a novel, all-solid-state thermal switching device by nanostructured phase transformation, i.e., modulation of contact pressure an d area between two poly-silicon surfaces activated by microstructural change of a vanadium dioxide (VO 2 ) thin film. Our solid-state devices demonstrate large and reversible alteration ofmore » cross-plane thermal conductance as a function of temperature, achieving a conductance ratio of at least 2.5. This new approach using nanostructured phase transformation provides new opportunities for applications that require advanced temperature and heat regulations.« less
Jamrógiewicz, Marzena; Wielgomas, Bartosz
2013-03-25
Ranitidine (RAN) is on top of the list of prescribed drugs, due to its popularity as a selective H2-receptor antagonist, which efficiently decreases the amount of acid produced in the stomach. RAN is not stable both in a solid state and in a solution, which creates manufacturing problems, requires appropriate storage conditions, and results in a short drug shelf-life. The aim of this work was to study the emission of volatile degradation products generated during photoexposition of ranitidine hydrochloride in a solid state. Significant changes in volatile profile of irradiated RAN were detected using HS-SPME-GC-MS. Sixteen major peaks were noticed on the chromatograms of irradiated ranitidine and the structures of some compounds were elucidated, while the presence of acetaldoxime, thiazole, dimethylformamide, dimethylacetamide and 5-methylfurfural was confirmed by means of the analysis of the authentic standards. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1981-01-01
Modifications to the reference concept were studied and the best approaches defined. The impact of the high efficiency multibandgap solar array on the reference concept design is considered. System trade studies for several solid state concepts, including the sandwich concept and a separate antenna/solar concept, are described. Two solid state concepts were selected and a design definition is presented for each. Magnetrons as an alternative to the reference klystrons for dc/RF conversion are evaluated. System definitions are presented for the preferred klystron and solid state concepts. Supporting systems are analyzed, with major analysis in the microwave, structures, and power distribution areas. Results of studies for thermal control, attitude control, stationkeeping, and details of a multibandgap solar cell study are included. Advanced laser concepts and the meteorological effects of a laser beam power transmission concept are considered.
Enhancing Modulation of Thermal Conduction in Vanadium Dioxide Thin Film by Nanostructured Nanogaps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choe, Hwan Sung; Suh, Joonki; Ko, Changhyun
Efficient thermal management at the nanoscale is important for reducing energy consumption and dissipation in electronic devices, lab-on-a-chip platforms and energy harvest/conversion systems. For many of these applications, it is much desired to have a solid-state structure that reversibly switches thermal conduction with high ON/OFF ratios and at high speed. We describe design and implementation of a novel, all-solid-state thermal switching device by nanostructured phase transformation, i.e., modulation of contact pressure an d area between two poly-silicon surfaces activated by microstructural change of a vanadium dioxide (VO 2 ) thin film. Our solid-state devices demonstrate large and reversible alteration ofmore » cross-plane thermal conductance as a function of temperature, achieving a conductance ratio of at least 2.5. This new approach using nanostructured phase transformation provides new opportunities for applications that require advanced temperature and heat regulations.« less
Direct ink write fabrication of transparent ceramic gain media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Ivy Krystal; Seeley, Zachary M.; Cherepy, Nerine J.
Solid-state laser gain media based on the garnet structure with two spatially distinct but optically contiguous regions have been fabricated. Transparent gain media comprised of a central core of Y 2.97Nd 0.03Al 5.00O 12.00 (Nd:YAG) and an undoped cladding region of Y 3Al 5O 12 (YAG) were fabricated by direct ink write and transparent ceramic processing. Direct ink write (DIW) was employed to form the green body, offering a general route to preparing functionally structured solid-state laser gain media. Lastly, fully-dense transparent optical ceramics in a “top hat” geometry with YAG/Nd:YAG have been fabricated by DIW methods with optical scattermore » at 1064 nm of <3%/cm.« less
Hangan, Adriana; Borodi, Gheorghe; Filip, Xenia; Tripon, Carmen; Morari, Cristian; Oprean, Luminita; Filip, Claudiu
2010-12-01
The crystal structure solution of the title compound is determined from microcrystalline powder using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct-space methods with information from (13)C solid-state NMR (SSNMR), and molecular modelling using the GIPAW (gauge including projector augmented-wave) method. The space group is Pbca with one molecule in the asymmetric unit. The proposed methodology proves very useful for unambiguously characterizing the supramolecular arrangement adopted by the N-(5-ethyl-[1,3,4]-thiadiazole-2-yl)toluenesulfonamide molecules in the crystal, which consists of extended double strands held together by C-H···π non-covalent interactions.
NASA Astrophysics Data System (ADS)
Ośmiałowski, Borys; Kolehmainen, Erkki; Ikonen, Satu; Ahonen, Kari; Löfman, Miika
2011-12-01
2-Acylamino-6-[1 H]-pyridones [acyl = RCO, where R = methyl ( 1), ethyl ( 2), iso-propyl ( 3), tert-butyl ( 4), and 1-adamantyl ( 5)] have been synthesized and characterized by NMR spectroscopy. From three congeners, 2, 3 and 5, also single crystal X-ray structures have been solved. For these derivatives GIPAW calculations acts as a "bridge" between solid-state NMR data and calculated chemical shifts based on X-ray determined geometry. In crystals all three compounds exist as pyridone tautomers possessing similar six-membered ring structure stabilized by intramolecular C dbnd O⋯HN hydrogen bond. Theoretical GIPAW calculated and experimental 13C and 15N CPMAS NMR shifts are in excellent agreement with each other.
Mei, Xuefeng; August, Adam T.; Wolf, Christian
2008-01-01
A chemo- and regioselective copper-catalyzed cross-coupling reaction for effective amination of 2-chlorobenzoic acids with aniline derivatives has been developed. The method eliminates the need for acid protection and produces a wide range of N-aryl anthranilic acid derivatives in up to 99%. The amination was found to proceed with both electron-rich and electron-deficient aryl chlorides and anilines and also utilizes sterically hindered anilines such as 2,6-dimethylaniline and 2-tert-butylaniline. The conformational isomerism of appropriately substituted N-aryl anthranilic acids has been investigated in the solid state. Crystallographic analysis of seven anthranilic acid derivatives showed formation of two distinct supramolecular architectures exhibiting trans-anti- and unprecedented trans-syn-dimeric structures. PMID:16388629
Modification and intercalation of layered zirconium phosphates: a solid-state NMR monitoring.
Bakhmutov, Vladimir I; Kan, Yuwei; Sheikh, Javeed Ahmad; González-Villegas, Julissa; Colón, Jorge L; Clearfield, Abraham
2017-07-01
Several layered zirconium phosphates treated with Zr(IV) ions, modified by monomethoxy-polyethyleneglycol-monophosphate and intercalated with doxorubicin hydrochloride have been studied by solid-state MAS NMR techniques. The organic components of the phosphates have been characterized by the 13 C{ 1 H} CP MAS NMR spectra compared with those of initial compounds. The multinuclear NMR monitoring has provided to establish structure and covalent attachment of organic/inorganic moieties to the surface and interlayer spaces of the phosphates. The MAS NMR experiments including kinetics of proton-phosphorus cross polarization have resulted in an unusual structure of zirconium phosphate 6 combining decoration of the phosphate surface by polymer units and their partial intercalation into the interlayer space. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Direct ink write fabrication of transparent ceramic gain media
Jones, Ivy Krystal; Seeley, Zachary M.; Cherepy, Nerine J.; ...
2018-11-06
Solid-state laser gain media based on the garnet structure with two spatially distinct but optically contiguous regions have been fabricated. Transparent gain media comprised of a central core of Y 2.97Nd 0.03Al 5.00O 12.00 (Nd:YAG) and an undoped cladding region of Y 3Al 5O 12 (YAG) were fabricated by direct ink write and transparent ceramic processing. Direct ink write (DIW) was employed to form the green body, offering a general route to preparing functionally structured solid-state laser gain media. Lastly, fully-dense transparent optical ceramics in a “top hat” geometry with YAG/Nd:YAG have been fabricated by DIW methods with optical scattermore » at 1064 nm of <3%/cm.« less
NASA Astrophysics Data System (ADS)
Pan, Lu; Yang, Xiaozhan; Xiong, Chaoyue; Deng, Dashen; Qin, Chunlin; Feng, Wenlin
2018-01-01
A series of new red-orange emission phosphors Na2BaMg(PO4)2:Pr3+ were synthesised by a high-temperature solid-state reaction. The crystal structure and photoluminescence properties of these samples were characterised by X-ray diffraction and spectroscopic measurements. This compound holds P3̅m1 space group of the trigonal system with the lattice parameters of hexagonal cell a=0.5304(3) nm and c=0.6989(3) nm. The phosphor emits the strongest peak at 606 nm when excited by 449 nm. The average Commission Internationale de l'Eclairage chromaticity coordinates calculated for the phosphors are (0.52, 0.46). The results demonstrate the potential application of these phosphors in solid-state lighting and other fields.
Porous Organic Nanolayers for Coating of Solid-state Devices
2011-01-01
Background Highly hydrophobic surfaces can have very low surface energy and such low surface energy biological interfaces can be obtained using fluorinated coatings on surfaces. Deposition of biocompatible organic films on solid-state surfaces is attained with techniques like plasma polymerization, biomineralization and chemical vapor deposition. All these require special equipment or harsh chemicals. This paper presents a simple vapor-phase approach to directly coat solid-state surfaces with biocompatible films without any harsh chemical or plasma treatment. Hydrophilic and hydrophobic monomers were used for reaction and deposition of nanolayer films. The monomers were characterized and showed a very consistent coating of 3D micropore structures. Results The coating showed nano-textured surface morphology which can aid cell growth and provide rich molecular functionalization. The surface properties of the obtained film were regulated by varying monomer concentrations, reaction time and the vacuum pressure in a simple reaction chamber. Films were characterized by contact angle analysis for surface energy and with profilometer to measure the thickness. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the chemical composition of the coated films. Variations in the FTIR results with respect to different concentrations of monomers showed the chemical composition of the resulting films. Conclusion The presented approach of vapor-phase coating of solid-state structures is important and applicable in many areas of bio-nano interface development. The exposure of coatings to the solutions of different pH showed the stability of the coatings in chemical surroundings. The organic nanocoating of films can be used in bio-implants and many medical devices. PMID:21569579
NASA Astrophysics Data System (ADS)
Wałejko, P.; Paradowska, K.; Szeleszczuk, Ł.; Wojtulewski, S.; Baj, A.
2018-03-01
Trolox C (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) is a water-soluble vitamin E analogue that is available in enantiomeric forms R or S. Enantiomerically pure Trolox 1, its derivatives 2, 3 (R and S enantiomers) and racemic forms 1-3 were studied using solid-state 13C cross-polarisation (CP) magic angle spinning (MAS) NMR (13C CPMAS NMR). Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations of the shielding constants supported the assignment of 13C resonances in the solid-state NMR spectra. For the 13C CPMAS NMR spectra of 1, resonances of pure enantiomers were significantly broader than those of the racemic R/S form. In order to explain these effects, five of the available crystal structures were analysed (1R/S, 3R/S, 2S and the newly measured 2R/S and 3S). Cyclic dimers with one R and one S enantiomer linked by two OHsbnd Odbnd C2b hydrogen bonds were formed in 1R/S. Similar hydrogen-bonded dimers were present in 3S but not in 3R/S, in which interactions are water-mediated. A comparison of X-ray diffraction, CPMAS NMR data and the DFT GIPAW calculations of racemic forms and pure enantiomers was conducted for the first time. Our results, particularly the solid-state NMR data, were discussed in relation to Wallach's rule, that the racemic crystal appears as more ordered than its chiral counterpart.
Segmental isotopic labeling of HIV-1 capsid protein assemblies for solid state NMR.
Gupta, Sebanti; Tycko, Robert
2018-02-01
Recent studies of noncrystalline HIV-1 capsid protein (CA) assemblies by our laboratory and by Polenova and coworkers (Protein Sci 19:716-730, 2010; J Mol Biol 426:1109-1127, 2014; J Biol Chem 291:13098-13112, 2016; J Am Chem Soc 138:8538-8546, 2016; J Am Chem Soc 138:12029-12032, 2016; J Am Chem Soc 134:6455-6466, 2012; J Am Chem Soc 132:1976-1987, 2010; J Am Chem Soc 135:17793-17803, 2013; Proc Natl Acad Sci USA 112:14617-14622, 2015; J Am Chem Soc 138:14066-14075, 2016) have established the capability of solid state nuclear magnetic resonance (NMR) measurements to provide site-specific structural and dynamical information that is not available from other types of measurements. Nonetheless, the relatively high molecular weight of HIV-1 CA leads to congestion of solid state NMR spectra of fully isotopically labeled assemblies that has been an impediment to further progress. Here we describe an efficient protocol for production of segmentally labeled HIV-1 CA samples in which either the N-terminal domain (NTD) or the C-terminal domain (CTD) is uniformly 15 N, 13 C-labeled. Segmental labeling is achieved by trans-splicing, using the DnaE split intein. Comparisons of two-dimensional solid state NMR spectra of fully labeled and segmentally labeled tubular CA assemblies show substantial improvements in spectral resolution. The molecular structure of HIV-1 assemblies is not significantly perturbed by the single Ser-to-Cys substitution that we introduce between NTD and CTD segments, as required for trans-splicing.
NASA Astrophysics Data System (ADS)
Glimsdal, Eirik; Westlund, Robert; Lindgren, Mikael
2009-05-01
Because of their strong nonlinear optical properties, Platinum(II) acetylides are investigated as potential chromophores for optical power limiting (OPL) applications. The strong excited state absorption and efficient intersystem crossing to the triplet states in these materials are desired properties for good OPL performance. We recently reported on OPL and photo-physical properties of Pt(II)-acetylide chromophores in solution, modified with thiophenyl or triazole groups. [R. Westlund et al. J. Mater. Chem. 18, 166 (2008); E. Glimsdal et al. Proc. SPIE 6740, 67400M (2007)] The chromophores were later incorporated into poly(methyl-methacrylate) (PMMA) glasses. A variety of doped organic solids were prepared, reaching concentrations of up to 13 wt% of the guest molecule. Raman spectra of the doped solid devices proved that the chemical structure of the nonlinear dyes remains intact upon the polymerization of the solid matrix. Luminescence spectra confirm that the basic photo-physical properties (absorption, emission and inter-system crossing) observed for the solute molecules in THF are maintained also in the solid state. In particular, the phosphorescence lifetime stays in the order of μs to ms, just as in the oxygen evacuated liquid samples. Also, the wavelength dependence and time-dynamics of the triplet absorption spectra of the dyes, dissolved in THF solution and dispersed in solid PMMA matrices, were investigated and compared. Ground state UV absorption spectra between 300 and 420 nm have corresponding broad band visible triplet-triplet absorption between 400 and 800 nm. The triplet state extinction coefficients were determined to be in the order of 104 M-1cm-1.
Thermal Stir Welding Development at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Ding, Robert J.
2008-01-01
Solid state welding processes have become the focus of welding process development at NASA's Marshall Space Flight Center. Unlike fusion weld processes such as tungsten inert gas (TIG), variable polarity plasma arc (VPPA), electron beam (EB), etc., solid state welding processes do not melt the material during welding. The resultant microstructure can be characterized as a dynamically recrystallized morphology much different than the casted, dentritic structure typical of fusion weld processes. The primary benefits of solid state processes over fusion weld processes include superior mechanic properties and the elimination of thermal distortion and residual stresses. These solid state processes attributes have profoundly influenced the direction of advanced welding research and development within the NASA agency. Thermal Stir Welding (TSW) is a new solid state welding process being developed at the Marshall Space Flight Center. Unlike friction stir welding, the heating, stirring and forging elements of the weld process can be decoupled for independent control. An induction coil induces energy into a workpiece to attain a desired plastic temperature. An independently controlled stir rod, captured within non-rotating containment plates, then stirs the plasticized material followed by forging plates/rollers that work the stirred weld joint. The independent control (decoupling) of heating, stirring and forging allows, theoretically, for the precision control of microstructure morphology. The TSW process is being used to evaluate the solid state joining of Haynes 230 for ARES J-2X applications. It is also being developed for 500-in (12.5 mm) thick commercially pure grade 2 titanium for navy applications. Other interests include Inconel 718 and stainless steel. This presentation will provide metallurgical and mechanical property data for these high melting temperature alloys.
NASA Astrophysics Data System (ADS)
Vener, M. V.; Chernyshov, I. Yu.; Rykounov, A. A.; Filarowski, A.
2018-01-01
Crystalline HCl and CF3SO3H hydrates serve as excellent model systems for protonated water and perfluorosulphonic acid membranes, respectively. They contain characteristic H3O+, H5О+2, H7О+3 and H3O+(H2O)3 (the Eigen cation) structures. The properties of these cations in the crystalline hydrates of strong monobasic acids are studied by solid-state density function theory (DFT). Simultaneous consideration of the HCl and CF3SO3H hydrates reveals the impact of the size of a counter ion and the crystalline environment on the structure and infrared active bands of the simplest proton hydrates. The H7O+3 structure is very sensitive to the size of the counter ion and symmetry of the local environment. This makes it virtually impossible to identify the specific features of H7O+3 in molecular crystals. The H3O+ ion can be treated as the Eigen-like cation in the crystalline state. Structural, infrared and electron-density features of H5О+2 and the Eigen cation are virtually insensitive to the size of the counter ion and the symmetry of the local crystalline environment. These cations can be considered as the simplest stable proton hydrates in the condensed phase. Finally, the influence of the Grimme correction on the structure and harmonic frequencies of the molecular crystals with short (strong) intermolecular O-H···O bonds is discussed.
Roton Excitations and the Fluid-Solid Phase Transition in Superfluid 2D Yukawa Bosons
NASA Astrophysics Data System (ADS)
Molinelli, S.; Galli, D. E.; Reatto, L.; Motta, M.
2016-10-01
We compute several ground-state properties and the dynamical structure factor of a zero-temperature system of Bosons interacting with the 2D screened Coulomb (2D-SC) potential. We resort to the exact shadow path integral ground state (SPIGS) quantum Monte Carlo method to compute the imaginary-time correlation function of the model, and to the genetic algorithm via falsification of theories (GIFT) to retrieve the dynamical structure factor. We provide a detailed comparison of ground-state properties and collective excitations of 2D-SC and ^4He atoms. The roton energy of the 2D-SC system is an increasing function of density, and not a decreasing one as in ^4He. This result is in contrast with the view that the roton is the soft mode of the fluid-solid transition. We uncover a remarkable quasi-universality of backflow and of other properties when expressed in terms of the amount of short-range order as quantified by the height of the first peak of the static structure factor.
Electronic structure properties of deep defects in hBN
NASA Astrophysics Data System (ADS)
Dev, Pratibha; Prdm Collaboration
In recent years, the search for room-temperature solid-state qubit (quantum bit) candidates has revived interest in the study of deep-defect centers in semiconductors. The charged NV-center in diamond is the best known amongst these defects. However, as a host material, diamond poses several challenges and so, increasingly, there is an interest in exploring deep defects in alternative semiconductors such as hBN. The layered structure of hBN makes it a scalable platform for quantum applications, as there is a greater potential for controlling the location of the deep defect in the 2D-matrix through careful experiments. Using density functional theory-based methods, we have studied the electronic and structural properties of several deep defects in hBN. Native defects within hBN layers are shown to have high spin ground states that should survive even at room temperature, making them interesting solid-state qubit candidates in a 2D matrix. Partnership for Reduced Dimensional Material (PRDM) is part of the NSF sponsored Partnerships for Research and Education in Materials (PREM).
NASA Astrophysics Data System (ADS)
Shmurak, S. Z.; Kiselev, A. P.; Kurmasheva, D. M.; Red'Kin, B. S.; Sinitsyn, V. V.
2010-05-01
A method is proposed for detecting spectral characteristics of optically inactive molybdates of rare-earth elements by their doping with rare-earth ions whose luminescence lies in the transparency region of all structural modifications of the sample. Gadolinium molybdate is chosen as the object of investigations, while europium ions are used as an optically active and structurally sensitive admixture. It is shown that after the action of a high pressure under which gadolinium molybdate passes to the amorphous state, the spectral characteristics of Gd1.99Eu0.01(MoO4)3 (GMO:Eu) change radically; namely, considerable line broadening is observed in the luminescence spectra and the luminescence excitation spectra, while the long-wave threshold of optical absorption is shifted considerably (by approximately 1.1 eV) towards lower energies. It is found that by changing the structural state of GMO:Eu by solid-state amorphization followed by annealing, the spectral characteristics of the sample can be purposefully changed. This is extremely important for solving the urgent problem of designing high-efficiency light-emitting diodes producing “white” light.
Simple synthetic route to manganese-containing nanowires with the spinel crystal structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Lei; Zhang, Yan; Hudak, Bethany M.
This report describes a new route to synthesize single-crystalline manganese-containing spinel nanowires (NWs) by a two-step hydrothermal and solid-state synthesis. Interestingly, a nanowire or nanorod morphology is maintained during conversion from MnO{sub 2}/MnOOH to CuMn{sub 2}O{sub 4}/Mg{sub 2}MnO{sub 4}, despite the massive structural rearrangement this must involve. Linear sweep voltammetry (LSV) curves of the products give preliminary demonstration that CuMn{sub 2}O{sub 4} NWs are catalytically active towards the oxygen evolution reaction (OER) in alkaline solution, exhibiting five times the magnitude of current density found with pure carbon black. - Highlights: • Synthesis of single-crystalline manganese-containing spinel nanowires. • Binary oxidemore » nanowire converted to ternary oxide wire through solid state reaction. • Approach to structure conversion with shape retention could be generally applicable. • Copper and Manganese display multiple oxidation states with potential for catalysis. • CuMn{sub 2}O{sub 4} nanowires show promise as catalysts for the oxygen evolution reaction.« less
1978-11-01
The structural test article to be used in the solid rocket booster (SRB) structural and load verification tests is being assembled in a high bay building of the Marshall Space Flight Center (MSFC). The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment.
NASA Astrophysics Data System (ADS)
Friesen-Waldner, Lanette; Chen, Albert; Mander, Will; Scholl, Timothy J.; McKenzie, Charles A.
2012-10-01
Dynamic nuclear polarisation (DNP) of carbon-13 (13C) enriched endogenous compounds provides a novel means for magnetic resonance imaging and spectroscopy of biological processes. Adding small amounts of gadolinium-based contrast agents (GBCAs) to the 13C-enriched substrate matrix increases the amount of hyperpolarisation that can be achieved, but also may decrease the longitudinal relaxation time (T1) of the 13C nucleus in solution. This study examined the effects of five different GBCA at concentrations of 0.5, 1, 2, and 3 mM on [1-13C]-enriched pyruvic acid. It was found that contrast agents with an open chain structure (Gadobenate dimeglumine, Gadopentetate dimeglumine, Gadodiamide) caused the largest enhancement (up to 82%) in solid state polarisation relative to solutions without GBCA. In the liquid state, T1 of pyruvate decreased by as much as 62% and polarisation was much lower (70%) relative to solutions without GBCA added. Conversely, for GBCA with macrocyclic structures (Gadoterate meglumine, Gadoteridol), the solid state polarisation enhancement was only slightly less than the open chain GBCA, but enhanced polarisation was retained much better in the liquid state with minimal decrease in T1 (25% at the highest GBCA concentrations). Near maximum polarisation in the solid state was obtained at a GBCA concentration of 2 mM, with a higher concentration of 3 mM producing minimal improvement. These results indicate that the macrocyclic contrast agents provide the best combination of high solid state and liquid state polarisations with minimal loss of T1 in experiments with hyperpolarised 13C-enriched pyruvate. This suggests that macrocyclic contrast agents should be the GBCA of choice for maximising signal in experiments with hyperpolarised 13C-enriched pyruvate, particularly for in vivo measurements where shortened substrate T1 is especially problematic.
Ditechnetium heptoxide revisited: Solid-state, gas-phase, and theoretical studies
Childs, Bradley C.; Braband, Henrik; Lawler, Keith; ...
2016-10-04
Here, ditechnetium heptoxide was synthesized from the oxidation of TcO 2 with O 2 at 450 °C and characterized by single crystal X-ray diffraction (SCXRD), electron impact mass spectrometry (EI-MS) and theoretical methods. Refinement of the structure at 100 K indicates that Tc 2O 7 crystallizes as a molecular solid in the orthorhombic space group Pbca (a = 7.312(3) Å, b = 5.562(2) Å, c = 13.707(5) Å, V = 557.5(3) Å 3). The Tc 2O 7 molecule can be described as corner-sharing TcO4 tetrahedra (Tc---Tc = 3.698(1) Å and Tc-O Bri-Tc = 180.0°). The EI-MS spectrum of Tc 2Omore » 7 consists of both mononuclear and dinuclear species. The main dinuclear species in the gas-phase are Tc 2O 7 (100%) and Tc 2O 5 (56%), while the main mononuclear species are TcO 3 (33.9%) and TcO 2 (42.8%). The difference in the relative intensities of the M 2O 5 (M = Tc, Re) fragments (1.7% for Re) indicate that these Group 7 elements exhibit different gas phase chemistry. The solid-state structure of Tc 2O 7 was investigated by density functional theory (DFT) methods. The optimized structure of the Tc 2O 7 molecule is in good agreement with the experimental one. Simulations indicate that the more favorable geometry for the Tc 2O 7 molecule in the gas-phase is bent (Tc-O Bri-Tc = 156.5°), while linear (Tc-O Bri-Tc = 180.0°) is favored in the solid state.« less
Peverati, Roberto; Truhlar, Donald G
2014-03-13
Kohn-Sham density functional theory is in principle an exact formulation of quantum mechanical electronic structure theory, but in practice we have to rely on approximate exchange-correlation (xc) functionals. The objective of our work has been to design an xc functional with broad accuracy across as wide an expanse of chemistry and physics as possible, leading--as a long-range goal--to a functional with good accuracy for all problems, i.e. a universal functional. To guide our path towards that goal and to measure our progress, we have developed-building on earlier work of our group-a set of databases of reference data for a variety of energetic and structural properties in chemistry and physics. These databases include energies of molecular processes, such as atomization, complexation, proton addition and ionization; they also include molecular geometries and solid-state lattice constants, chemical reaction barrier heights, and cohesive energies and band gaps of solids. For this paper, we gather many of these databases into four comprehensive databases, two with 384 energetic data for chemistry and solid-state physics and another two with 68 structural data for chemistry and solid-state physics, and we test two wave function methods and 77 density functionals (12 Minnesota meta functionals and 65 others) in a consistent way across this same broad set of data. We especially highlight the Minnesota density functionals, but the results have broader implications in that one may see the successes and failures of many kinds of density functionals when they are all applied to the same data. Therefore, the results provide a status report on the quest for a universal functional.
Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
Liu, Mingjie; Zheng, Yongmei; Zhai, Jin; Jiang, Lei
2010-03-16
Super-antiwetting interfaces, such as superhydrophobic and superamphiphobic surfaces in air and superoleophobic interfaces in water, with special liquid-solid adhesion have recently attracted worldwide attention. Through tuning surface microstructures and compositions to achieve certain solid/liquid contact modes, we can effectively control the liquid-solid adhesion in a super-antiwetting state. In this Account, we review our recent progress in the design and fabrication of these bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Low-adhesion superhydrophobic surfaces are biologically inspired, typically by the lotus leaf. Wettability investigated at micro- and nanoscale reveals that the low adhesion of the lotus surface originates from the composite contact mode, a microdroplet bridging several contacts, within the hierarchical structures. Recently high-adhesion superhydrophobic surfaces have also attracted research attention. These surfaces are inspired by the surfaces of gecko feet and rose petals. Accordingly, we propose two biomimetic approaches for the fabrication of high-adhesion superhydrophobic surfaces. First, to mimic a sticky gecko's foot, we designed structures with nanoscale pores that could trap air isolated from the atmosphere. In this case, the negative pressure induced by the volume change of sealed air as the droplet is pulled away from surface can produce a normal adhesive force. Second, we constructed microstructures with size and topography similar to that of a rose petal. The resulting materials hold air gaps in their nanoscale folds, controlling the superhydrophobicity in a Wenzel state on the microscale. Furthermore, we can tune the liquid-solid adhesion on the same superhydrophobic surface by dynamically controlling the orientations of microstructures without altering the surface composition. The superhydrophobic wings of the butterfly (Morpho aega) show directional adhesion: a droplet easily rolls off the surface of wings along one direction but is pinned tightly against rolling in the opposite direction. Through coordinating the stimuli-responsive materials and appropriate surface-geometry structures, we developed materials with reversible transitions between a low-adhesive rolling state and a high-adhesive pinning state for water droplets on the superhydrophobic surfaces, which were controlled by temperature and magnetic and electric fields. In addition to the experiments done in air, we also demonstrated bioinspired superoleophobic water/solid interfaces with special adhesion to underwater oil droplets and platelets. In these experiments, the high content of water trapped in the micro- and nanostructures played a key role in reducing the adhesion of the oil droplets and platelets. These findings will offer innovative insights into the design of novel antibioadhesion materials.
Formation of organoclays by a one step synthesis
NASA Astrophysics Data System (ADS)
Jaber, Maguy; Miéhé-Brendlé, Jocelyne; Delmotte, Luc; Le Dred, Ronan
2005-05-01
Different lamellar hybrid inorganic-organic materials having as inorganic parent 2:1 (T.O.T.) phyllosilicates such as talc, saponite, pyrophyllite, beidellite and montmorillonite were prepared by a one step synthesis. The solids were characterized by X-ray diffraction, solid state 29Si, 27Al, and 19F nuclear magnetic resonance and transmission electron microscopy. XRD patterns show that solids with inorganic parents having octahedral sheet based on aluminium exhibit a lamellar structure similar to MCM-50, whereas those with magnesium have an organophyllosilicate structure. In the first case, the absence of hexacoordinated aluminium was confirmed by 27Al NMR and an ordered stacking of the layers is observed on TEM micrographs. In opposite, a disorder is observed on the TEM images of organophyllosilicates. The formation of the 2:1 structure was found to be controlled mainly by the insertion of silicic species in the interlamellar space of brucite like layers.
Toraya, Shuichi; Javkhlantugs, Namsrai; Mishima, Daisuke; Nishimura, Katsuyuki; Ueda, Kazuyoshi; Naito, Akira
2010-01-01
Bombolitin II (BLT2) is one of the hemolytic heptadecapeptides originally isolated from the venom of a bumblebee. Structure and orientation of BLT2 bound to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membranes were determined by solid-state 31P and 13C NMR spectroscopy. 31P NMR spectra showed that BLT2-DPPC membranes were disrupted into small particles below the gel-to-liquid crystalline phase transition temperature (Tc) and fused to form a magnetically oriented vesicle system where the membrane surface is parallel to the magnetic fields above the Tc. 13C NMR spectra of site-specifically 13C-labeled BLT2 at the carbonyl carbons were observed and the chemical shift anisotropies were analyzed to determine the dynamic structure of BLT2 bound to the magnetically oriented vesicle system. It was revealed that the membrane-bound BLT2 adopted an α-helical structure, rotating around the membrane normal with the tilt angle of the helical axis at 33°. Interatomic distances obtained from rotational-echo double-resonance experiments further showed that BLT2 adopted a straight α-helical structure. Molecular dynamics simulation performed in the BLT2-DPPC membrane system showed that the BLT2 formed a straight α-helix and that the C-terminus was inserted into the membrane. The α-helical axis is tilted 30° to the membrane normal, which is almost the same as the value obtained from solid-state NMR. These results suggest that the membrane disruption induced by BLT2 is attributed to insertion of BLT2 into the lipid bilayers. PMID:21081076
Sardo, Mariana; Santos, Sérgio M; Babaryk, Artem A; López, Concepción; Alkorta, Ibon; Elguero, José; Claramunt, Rosa M; Mafra, Luís
2015-02-01
We present the structure of a new equimolar 1:1 cocrystal formed by 3,5-dimethyl-1H-pyrazole (dmpz) and 4,5-dimethyl-1H-imidazole (dmim), determined by means of powder X-ray diffraction data combined with solid-state NMR that provided insight into topological details of hydrogen bonding connectivities and weak interactions such as CH···π contacts. The use of various 1D/2D (13)C, (15)N and (1)H high-resolution solid-state NMR techniques provided structural insight on local length scales revealing internuclear proximities and relative orientations between the dmim and dmpz molecular building blocks of the studied cocrystal. Molecular modeling and DFT calculations were also employed to generate meaningful structures. DFT refinement was able to decrease the figure of merit R(F(2)) from ~11% (PXRD only) to 5.4%. An attempt was made to rationalize the role of NH···N and CH···π contacts in stabilizing the reported cocrystal. For this purpose four imidazole derivatives with distinct placement of methyl substituents were reacted with dmpz to understand the effect of methylation in blocking or enabling certain intermolecular contacts. Only one imidazole derivative (dmim) was able to incorporate into the dmpz trimeric motif thus resulting in a cocrystal, which contains both hydrophobic (methyl groups) and hydrophilic components that self-assemble to form an atypical 1D network of helicoidal hydrogen bonded pattern, featuring structural similarities with alpha-helix arrangements in proteins. The 1:1 dmpz···dmim compound I is the first example of a cocrystal formed by two different azoles. Copyright © 2014 Elsevier Inc. All rights reserved.
Heteroepitaxial Growth of Single-Walled Carbon Nanotubes from Boron Nitride
Tang, Dai-Ming; Zhang, Li-Li; Liu, Chang; Yin, Li-Chang; Hou, Peng-Xiang; Jiang, Hua; Zhu, Zhen; Li, Feng; Liu, Bilu; Kauppinen, Esko I.; Cheng, Hui-Ming
2012-01-01
The growth of single-walled carbon nanotubes (SWCNTs) with predefined structure is of great importance for both fundamental research and their practical applications. Traditionally, SWCNTs are grown from a metal catalyst with a vapor-liquid-solid mechanism, where the catalyst is in liquid state with fluctuating structures, and it is intrinsically unfavorable for the structure control of SWCNTs. Here we report the heteroepitaxial growth of SWCNTs from a platelet boron nitride nanofiber (BNNF), which is composed of stacked (002) planes and is stable at high temperatures. SWCNTs are found to grow epitaxially from the open (002) edges of the BNNFs, and the diameters of the SWCNTs are multiples of the BN (002) interplanar distance. In situ transmission electron microscopy observations coupled with first principles calculations reveal that the growth of SWCNTs from the BNNFs follows a vapor-solid-solid mechanism. Our work opens opportunities for the control over the structure of SWCNTs by hetero-crystallographic epitaxy. PMID:23240076
USDA-ARS?s Scientific Manuscript database
Humin is the largest and also the least understood fraction of soil organic matter. The humin structure and its correlation with microbiological properties are particularly uncertain. We applied advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to investigate the structural chan...
ERIC Educational Resources Information Center
Michmerhuizen, Anna; Rose, Karine; Annankra, Wentiirim; Vander Griend, Douglas A.
2017-01-01
Making optimal pedagogical and predictive use of the radius ratio rule to distinguish between solid state structures that feature tetrahedral, octahedral and cubic holes requires several updated insights. A comparative analysis of the Born-Landé equation for lattice energy is developed to show that the rock salt structure is a suitable choice for…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pifer, J.H.; Croft, M.C.
This report discusses Eu and General Valence Instabilities; Ce Problem: L{sub 3} Spectroscopy Emphasis; Bulk Property Emphasis; Transition Metal Compound Electronic Structure; Electronic Structure-Phonon Coupling Studies; High Temperature Superconductivity and Oxide Materials; and Novel Materials Collaboration with Chemistry.
Accessing the dark exciton spin in deterministic quantum-dot microlenses
NASA Astrophysics Data System (ADS)
Heindel, Tobias; Thoma, Alexander; Schwartz, Ido; Schmidgall, Emma R.; Gantz, Liron; Cogan, Dan; Strauß, Max; Schnauber, Peter; Gschrey, Manuel; Schulze, Jan-Hindrik; Strittmatter, Andre; Rodt, Sven; Gershoni, David; Reitzenstein, Stephan
2017-12-01
The dark exciton state in semiconductor quantum dots (QDs) constitutes a long-lived solid-state qubit which has the potential to play an important role in implementations of solid-state-based quantum information architectures. In this work, we exploit deterministically fabricated QD microlenses which promise enhanced photon extraction, to optically prepare and read out the dark exciton spin and observe its coherent precession. The optical access to the dark exciton is provided via spin-blockaded metastable biexciton states acting as heralding states, which are identified by deploying polarization-sensitive spectroscopy as well as time-resolved photon cross-correlation experiments. Our experiments reveal a spin-precession period of the dark exciton of (0.82 ± 0.01) ns corresponding to a fine-structure splitting of (5.0 ± 0.7) μeV between its eigenstates |↑ ⇑ ±↓ ⇓ ⟩. By exploiting microlenses deterministically fabricated above pre-selected QDs, our work demonstrates the possibility to scale up implementations of quantum information processing schemes using the QD-confined dark exciton spin qubit, such as the generation of photonic cluster states or the realization of a solid-state-based quantum memory.
Liu, Yu; Fan, Zhi; Zhang, Heng-Yi; Yang, Ying-Wei; Ding, Fei; Liu, Shuang-Xi; Wu, Xue; Wada, Takehiko; Inoue, Yoshihisa
2003-10-31
A series of 6-O-(p-substituted phenyl)-modified beta-cyclodextrin derivatives, i.e., 6-O-(4-bromophenyl)-beta-CD (1), 6-O-(4-nitrophenyl)-beta-CD (2), 6-O-(4-formylphenyl)-beta-CD (3), 6-phenylselenyl-6-deoxy-beta-CD (4), and 6-O-(4-hydroxybenzoyl)-beta-CD (5), were synthesized, and their inclusion complexation behavior in aqueous solution and self-assembling behavior in the solid state were comparatively studied by NMR spectroscopy, microcalorimetry, crystallography, and scanning tunneling microscopy. Interestingly, (seleno)ethers 1-4 and ester 5 displayed distinctly different self-assembling behavior in the solid state, affording a successively threading head-to-tail polymeric helical structure for the (seleno)ethers or a mutually penetrating tail-to-tail dimeric columnar channel structure for the ester. Combining the present and previous structures reported for the relevant beta-CD derivatives, we further deduce that the pivot heteroatom, through which the aromatic substituent is tethered to beta-CD, plays a critical role in determining the helix structure, endowing the 2-fold and 4-fold axes to the N/O- and S/Se-pivoted beta-CD aggregates, respectively. This means that one can control the self-assembling orientation, alignment, and helicity in the solid state by finely tuning the pivot atom and the tether length. Further NMR and calorimetric studies on the self-assembling behavior in aqueous solution revealed that the dimerization step is the key to the formation of linear polymeric supramolecular architecture, which is driven by favorable entropic contributions.
Guillet, Jesse L; Bhowmick, Indrani; Shores, Matthew P; Daley, Christopher J A; Gembicky, Milan; Golen, James A; Rheingold, Arnold L; Doerrer, Linda H
2016-08-15
A series of heterobimetallic lantern complexes with the central unit {PtM(SAc)4(NCS)} have been prepared and thoroughly characterized. The {Na(15C5)}[PtM(SAc)4(NCS)] series, 1 (Co), 2 (Ni), 3 (Zn), are discrete compounds in the solid state, whereas the {Na(12C4)2)}[PtM(SAc)4(NCS)] series, 4 (Co), 5 (Ni), 6 (Zn), and 7 (Mn), are ion-separated species. Compound 7 is the first {PtMn} lantern of any bridging ligand (carboxylate, amide, etc.). Monomeric 1-7 have M(2+), necessitating counter cations that have been prepared as {(15C5)Na}(+) and {(12C4)2Na}(+) variants, none of which form extended structures. In contrast, neutral [PtCr(tba)4(NCS)]∞ 8 forms a coordination polymer of {PtCr}(+) units linked by (NCS)(-) in a zigzag chain. All eight compounds have been thoroughly characterized and analyzed in comparison to a previously reported family of compounds. Crystal structures are presented for compounds 1-6 and 8, and solution magnetic susceptibility measurements are presented for compounds 1, 2, 4, 5, and 7. Further structural analysis of dimerized {PtM} units reinforces the empirical observation that greater charge density along the Pt-M vector leads to more Pt···Pt interactions in the solid state. Four structural classes, one new, of {MPt}···{PtM} units are presented. Solid state magnetic characterization of 8 reveals a ferromagnetic interaction in the {PtCr(NCS)} chain between the Cr centers of J/kB = 1.7(4) K.
NASA Astrophysics Data System (ADS)
Kalfarisi, Rony G.
Solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy has proven to be a powerful method to probe the local structure and dynamics of a system. In powdered solids, the nuclear spins experience various anisotropic interactions which depend on the molecular orientation. These anisotropic interactions make ssNMR very useful as they give a specific appearance to the resonance lines of the spectra. The position and shape of these resonance lines can be related to local structure and dynamics of the system under study. My research interest has focused around studying local structures and dynamics of quadrupolar nuclei in materials using ssNMR spectroscopy. 7Li and 93Nb ssNMR magic angle spinning (MAS) spectra, acquired at 17.6 and 7.06 T, have been used to evaluate the structural and dynamical properties of cation-ordered microwave dielectric materials. Microwave dielectric materials are essential in the application of wireless telecommunication, biomedical engineering, and other scientific and industrial implementations that use radio and microwave signals. The study of the local environment with respect to average structure, such as X-ray diffraction study, is essential for the better understanding of the correlations between structures and properties of these materials. The investigation for short and medium range can be performed with the use of ssNMR techniques. Even though XRD results show cationic ordering at the B-site (third coordination sphere), NMR spectra show a presence of disorder materials. This was indicated by the observation of a distribution in NMR parameters derived from experimental . {93}Nb NMR spectraand supported by theoretical calculations.
Hou, Guangmei; Ma, Xiaoxin; Sun, Qidi; Ai, Qing; Xu, Xiaoyan; Chen, Lina; Li, Deping; Chen, Jinghua; Zhong, Hai; Li, Yang; Xu, Zhibin; Si, Pengchao; Feng, Jinkui; Zhang, Lin; Ding, Fei; Ci, Lijie
2018-06-06
The electrode-electrolyte interface stability is a critical factor influencing cycle performance of All-solid-state lithium batteries (ASSLBs). Here, we propose a LiF- and Li 3 N-enriched artificial solid state electrolyte interphase (SEI) protective layer on metallic lithium (Li). The SEI layer can stabilize metallic Li anode and improve the interface compatibility at the Li anode side in ASSLBs. We also developed a Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 -poly(ethylene oxide) (LAGP-PEO) concrete structured composite solid electrolyte. The symmetric Li/LAGP-PEO/Li cells with SEI-protected Li anodes have been stably cycled with small polarization at a current density of 0.05 mA cm -2 at 50 °C for nearly 400 h. ASSLB-based on SEI-protected Li anode, LAGP-PEO electrolyte, and LiFePO 4 (LFP) cathode exhibits excellent cyclic stability with an initial discharge capacity of 147.2 mA h g -1 and a retention of 96% after 200 cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ziyuan; Gong, Jiangfeng; Tang, Chunmei
We report that the arrangement of the electrode materials is a significant contributor for constructing high performance supercapacitor. Here, vertically-aligned Mn(OH) 2 nanosheet thin films were synthesized by cathodic electrodeposition technique on flexible Au coated polyethylene terephthalate substrates. Morphologies, microstructures, chemical compositions and valence state of the nanosheet films were characterized systematically. It shows that the nanosheets arranged vertically to the substrate, forming a porous nanowall structures and creating large open framework, which greatly facilitate the adsorption or diffusion of electrolyte ions for faradaic redox reaction. Electrochemical tests of the films show the specific capacitance as high as 240.2 Fmore » g -1 at 1.0 A g -1. The films were employed to assemble symmetric all-solid-state supercapacitors with LiCl/PVA gel severed as solid electrolyte. Finally, the solid devices exhibit high volumetric capacitance of 39.3 mF cm -3 at the current density 0.3 mA cm -3 with robust cycling stability. The superior performance is attributed to the vertically-aligned configuration.« less
Yang, Ziyuan; Gong, Jiangfeng; Tang, Chunmei; ...
2017-08-28
We report that the arrangement of the electrode materials is a significant contributor for constructing high performance supercapacitor. Here, vertically-aligned Mn(OH) 2 nanosheet thin films were synthesized by cathodic electrodeposition technique on flexible Au coated polyethylene terephthalate substrates. Morphologies, microstructures, chemical compositions and valence state of the nanosheet films were characterized systematically. It shows that the nanosheets arranged vertically to the substrate, forming a porous nanowall structures and creating large open framework, which greatly facilitate the adsorption or diffusion of electrolyte ions for faradaic redox reaction. Electrochemical tests of the films show the specific capacitance as high as 240.2 Fmore » g -1 at 1.0 A g -1. The films were employed to assemble symmetric all-solid-state supercapacitors with LiCl/PVA gel severed as solid electrolyte. Finally, the solid devices exhibit high volumetric capacitance of 39.3 mF cm -3 at the current density 0.3 mA cm -3 with robust cycling stability. The superior performance is attributed to the vertically-aligned configuration.« less
Ceramic microstructure and adhesion
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1984-01-01
When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.
Ceramic microstructure and adhesion
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1985-01-01
When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.
A novel solid state photocatalyst for living radical polymerization under UV irradiation
NASA Astrophysics Data System (ADS)
Fu, Qiang; McKenzie, Thomas G.; Ren, Jing M.; Tan, Shereen; Nam, Eunhyung; Qiao, Greg G.
2016-02-01
This study presents the development of a novel solid state photocatalyst for the photoinduced controlled radical polymerization of methacrylates under mild UV irradiation (λmax ≈ 365 nm) in the absence of conventional photoinitiators, metal-catalysts or dye sensitizers. The photocatalyst design was based on our previous finding that organic amines can act in a synergistic photochemical reaction with thiocarbonylthio compounds to afford well controlled polymethacrylates under UV irradiation. Therefore, in the current contribution an amine-rich polymer was covalently grafted onto a solid substrate, thus creating a heterogeneous catalyst that would allow for facile removal, recovery and recyclability when employed for such photopolymerization reactions. Importantly, the polymethacrylates synthesized using the solid state photocatalyst (ssPC) show similarly excellent chemical and structural integrity as those catalysed by free amines. Moreover, the ssPC could be readily recovered and re-used, with multiple cycles of polymerization showing minimal effect on the integrity of the catalyst. Finally, the ssPC was employed in various photo-“click” reactions, permitting high yielding conjugations under photochemical control.
Verly, Rodrigo M.; Moraes, Cléria Mendonça de; Resende, Jarbas M.; Aisenbrey, Christopher; Bemquerer, Marcelo Porto; Piló-Veloso, Dorila; Valente, Ana Paula; Almeida, Fábio C.L.; Bechinger, Burkhard
2009-01-01
DD K, a peptide first isolated from the skin secretion of the Phyllomedusa distincta frog, has been prepared by solid-phase chemical peptide synthesis and its conformation was studied in trifluoroethanol/water as well as in the presence of sodium dodecyl sulfate and dodecylphosphocholine micelles or small unilamellar vesicles. Multidimensional solution NMR spectroscopy indicates an α-helical conformation in membrane environments starting at residue 7 and extending to the C-terminal carboxyamide. Furthermore, DD K has been labeled with 15N at a single alanine position that is located within the helical core region of the sequence. When reconstituted into oriented phosphatidylcholine membranes the resulting 15N solid-state NMR spectrum shows a well-defined helix alignment parallel to the membrane surface in excellent agreement with the amphipathic character of DD K. Proton-decoupled 31P solid-state NMR spectroscopy indicates that the peptide creates a high level of disorder at the level of the phospholipid headgroup suggesting that DD K partitions into the bilayer where it severely disrupts membrane packing. PMID:19289046
NASA Astrophysics Data System (ADS)
Xing, Dongye; Hou, Yanjun; Niu, Haijun
2018-03-01
A series of difluoroboron β-diketonate complexes, containing the indon-β-diketonate ligand carrying methyl or methoxyl substituents was synthesized. The crystal structures of the complexes were confirmed by single crystal X-ray diffraction studies. The fluorescence properties of compounds were studied in solution state, solid state and on PMMA polymer matrix. The photophysical data of compounds 2a-2d exhibited strong fluorescence and photostability under the ultraviolet light (Hg lamp). The complex 2b showed higher fluorescence intensity in solution state as compared to other complexes of the series. The complexes 2c and 2d showed higher fluorescence intensity in the solid state, which are ascribed to the stronger π-π interactions between ligands in the solid state. The introduction of methoxyl or methyl groups on the benzene rings enhanced the absorption intensity, emission intensity, quantum yields and fluorescence lifetimes due to their electron-donating nature. Furthermore, the complex 2b was doped into the PMMA to produce hybrid materials, where the PMMA matrix acted as sensitizer for the central boron ion to enhance the fluorescence emission intensity and quantum yields.
How Water’s Properties Are Encoded in Its Molecular Structure and Energies
2017-01-01
How are water’s material properties encoded within the structure of the water molecule? This is pertinent to understanding Earth’s living systems, its materials, its geochemistry and geophysics, and a broad spectrum of its industrial chemistry. Water has distinctive liquid and solid properties: It is highly cohesive. It has volumetric anomalies—water’s solid (ice) floats on its liquid; pressure can melt the solid rather than freezing the liquid; heating can shrink the liquid. It has more solid phases than other materials. Its supercooled liquid has divergent thermodynamic response functions. Its glassy state is neither fragile nor strong. Its component ions—hydroxide and protons—diffuse much faster than other ions. Aqueous solvation of ions or oils entails large entropies and heat capacities. We review how these properties are encoded within water’s molecular structure and energies, as understood from theories, simulations, and experiments. Like simpler liquids, water molecules are nearly spherical and interact with each other through van der Waals forces. Unlike simpler liquids, water’s orientation-dependent hydrogen bonding leads to open tetrahedral cage-like structuring that contributes to its remarkable volumetric and thermal properties. PMID:28949513
Abu-Baker, Shadi; Lorigan, Gary A.
2008-01-01
Phospholamban (PLB) is a 52-amino acid integral membrane protein that helps to regulate the flow of Ca2+ ions in cardiac muscle cells. Recent structural studies on the PLB pentamer and the functionally active monomer (AFA-PLB) debate whether its cytoplasmic domain, in either the phosphorylated or dephosphorylated states, is α-helical in structure as well as whether it associates with the lipid head groups [Oxenoid, K. (2005) Proc Natl. Acad. Sci. USA 102, 10870–10875, Karim, C. B. (2004) Proc. Natl. Acad. Sci. USA 101, 14437–14442, Andronesi, C.A. (2005) J. Am. Chem. Soc. 127, 12965–12974, Li, J. (2003) Biochemistry 42, 10674–10682, Metcalfe, E. E. (2005) Biochemistry 44, 4386–4396, Clayton, J. C. (2005) Biochemistry 44, 17016–17026]. Comparing the secondary structure of the PLB pentamer and its phosphorylated form (P-PLB) as well as their interaction with the lipid bilayer is crucial in order to understand its regulatory function. Therefore, in this study, the full-length wild-type (WT)-PLB and P-PLB were incorporated into 1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine (POPC) phospholipid bilayers and studied utilizing solid-state NMR spectroscopy. The analysis of the 2H and 31P solid-state NMR data of PLB and P-PLB in POPC multilamellar vesicles (MLVs) indicates that a direct interaction takes place between both proteins and the phospholipid head groups. However, the interaction of P-PLB with POPC bilayers was less significant when compared to PLB. Moreover, the secondary structure using 13C=O site-specific isotopically labeled Ala15-PLB and Ala15-P-PLB in POPC bilayers suggests that this residue, located in the cytoplasmic domain, is a part of an α-helical structure for both PLB and P-PLB. PMID:17073452
Shimizu, Hideyuki; Cojal González, José D; Hasegawa, Masashi; Nishinaga, Tohru; Haque, Tahmina; Takase, Masayoshi; Otani, Hiroyuki; Rabe, Jürgen P; Iyoda, Masahiko
2015-03-25
Two isomers of a multifunctional π-expanded macrocyclic oligothiophene 8-mer, E,E-1 and Z,Z-1, were synthesized using a McMurry coupling of a dialdehyde composed of four 2,5-thienylene and three ethynylene units under high dilution conditions. On the other hand, cyclo[8](2,5-thienylene-ethynylene) 2 was synthesized by intramolecular Sonogashira cyclization of ethynyl bromide 5. From STM measurements, both E,E-1 and Z,Z-1 formed self-assembled monolayers at the solid-liquid interface to produce porous networks, and from X-ray analyses of E,E-1 and 2, both compounds had a round shape with a honeycomb stacked structure. E,E-1 formed various fibrous polymorphs due to nanophase separation of the macrorings. E,E-1 and Z,Z-1 in solution exhibited photochromism upon irradiation with visible and UV light, respectively, and this photoisomerization was confirmed by using STM. Furthermore, amorphous films of Z,Z-1 and E,E-1 showed photoisomerization, although single crystals, fibers, and square tubes of E,E-1 remained unchanged under similar conditions. E,E-1 with a 12.5-14.7 Å inner cavity incorporated fullerene C60 in the cavity in solution and the solid state to produce a Saturn-like complex, whose structure was determined by X-ray analysis. 2 also formed a Saturn-like complex with C60 in the solid state. These Saturn-like complexes are stabilized by van der Waals interactions between the sulfur atoms of 8-mer and C60. The complexes exhibited charge-transfer interactions in the solid state. Like E,E-1, Saturn-like complex E,E-1⊃C60 formed small cube and fiber structures depending on the solvent used, whereas those of Saturn-like complex 2⊃C60 were limited due to the rigidity of the macroring of 2.
Goswami, Mithun; Nayak, Pabitra K; Periasamy, N; Madhu, PK
2009-01-01
Background Organic light emitting devices (OLED) are becoming important and characterisation of them, in terms of structure, charge distribution, and intermolecular interactions, is important. Tris(8-hydroxyquinolinato)-aluminium(III), known as Alq3, an organomettalic complex has become a reference material of great importance in OLED. It is important to elucidate the structural details of Alq3 in its various isomeric and solvated forms. Solid-state nuclear magnetic resonance (NMR) is a useful tool for this which can also complement the information obtained with X-ray diffraction studies. Results We report here 27Al one-dimensional (1D) and two-dimensional (2D) multiple-quantum magic-angle spinning (MQMAS) NMR studies of the meridional (α-phase) and the facial (δ-phase) isomeric forms of Alq3. Quadrupolar parameters are estimated from the 1D spectra under MAS and anisotropic slices of the 2D spectra and also calculated using DFT (density functional theory) quantum-chemical calculations. We have also studied solvated phase of Alq3 containing ethanol in its lattice. We show that both the XRD patterns and the quadrupolar parameters of the solvated phase are different from both the α-phase and the δ-phase, although the fluorescence emission shows no substantial difference between the α-phase and the solvated phase. Moreover, we have shown that after the removal of ethanol from the matrix the solvated Alq3 has similar XRD patterns and quadrupolar parameters to that of the α-phase. Conclusion The 2D MQMAS experiments have shown that all the different modifications of Alq3 have 27Al in single unique crystallographic site. The quadrupolar parameters predicted using the DFT calculation under the isodensity polarisable continuum model resemble closely the experimentally obtained values. The solvated phase of Alq3 containing ethanol has structural difference from the α-phase of Alq3 (containing meridional isomer) from the solid-state NMR studies. Solid-state NMR can hence be used as an effective complementary tool to XRD for characterisation and structural elucidation. PMID:19900275
Goswami, Mithun; Nayak, Pabitra K; Periasamy, N; Madhu, P K
2009-11-09
Organic light emitting devices (OLED) are becoming important and characterisation of them, in terms of structure, charge distribution, and intermolecular interactions, is important. Tris(8-hydroxyquinolinato)-aluminium(III), known as Alq3, an organomettalic complex has become a reference material of great importance in OLED. It is important to elucidate the structural details of Alq3 in its various isomeric and solvated forms. Solid-state nuclear magnetic resonance (NMR) is a useful tool for this which can also complement the information obtained with X-ray diffraction studies. We report here 27Al one-dimensional (1D) and two-dimensional (2D) multiple-quantum magic-angle spinning (MQMAS) NMR studies of the meridional (alpha-phase) and the facial (delta-phase) isomeric forms of Alq3. Quadrupolar parameters are estimated from the 1D spectra under MAS and anisotropic slices of the 2D spectra and also calculated using DFT (density functional theory) quantum-chemical calculations. We have also studied solvated phase of Alq3 containing ethanol in its lattice. We show that both the XRD patterns and the quadrupolar parameters of the solvated phase are different from both the alpha-phase and the delta-phase, although the fluorescence emission shows no substantial difference between the alpha-phase and the solvated phase. Moreover, we have shown that after the removal of ethanol from the matrix the solvated Alq3 has similar XRD patterns and quadrupolar parameters to that of the alpha-phase. The 2D MQMAS experiments have shown that all the different modifications of Alq3 have 27Al in single unique crystallographic site. The quadrupolar parameters predicted using the DFT calculation under the isodensity polarisable continuum model resemble closely the experimentally obtained values. The solvated phase of Alq3 containing ethanol has structural difference from the alpha-phase of Alq3 (containing meridional isomer) from the solid-state NMR studies. Solid-state NMR can hence be used as an effective complementary tool to XRD for characterisation and structural elucidation.
Widdifield, Cory M; Cavallo, Gabriella; Facey, Glenn A; Pilati, Tullio; Lin, Jingxiang; Metrangolo, Pierangelo; Resnati, Giuseppe; Bryce, David L
2013-09-02
Although the understanding of intermolecular interactions, such as hydrogen bonding, is relatively well-developed, many additional weak interactions work both in tandem and competitively to stabilize a given crystal structure. Due to a wide array of potential applications, a substantial effort has been invested in understanding the halogen bond. Here, we explore the utility of multinuclear ((13)C, (14/15)N, (19)F, and (127)I) solid-state magnetic resonance experiments in characterizing the electronic and structural changes which take place upon the formation of five halogen-bonded co-crystalline product materials. Single-crystal X-ray diffraction (XRD) structures of three novel co-crystals which exhibit a 1:1 stoichiometry between decamethonium diiodide (i.e., [(CH3)3N(+)(CH2)10N(+)(CH3)3][2 I(-)]) and different para-dihalogen-substituted benzene moieties (i.e., p-C6X2Y4, X=Br, I; Y=H, F) are presented. (13)C and (15)N NMR experiments carried out on these and related systems validate sample purity, but also serve as indirect probes of the formation of a halogen bond in the co-crystal complexes in the solid state. Long-range changes in the electronic environment, which manifest through changes in the electric field gradient (EFG) tensor, are quantitatively measured using (14)N NMR spectroscopy, with a systematic decrease in the (14)N quadrupolar coupling constant (CQ) observed upon halogen bond formation. Attempts at (127)I solid-state NMR spectroscopy experiments are presented and variable-temperature (19)F NMR experiments are used to distinguish between dynamic and static disorder in selected product materials, which could not be conclusively established using solely XRD. Quantum chemical calculations using the gauge-including projector augmented-wave (GIPAW) or relativistic zeroth-order regular approximation (ZORA) density functional theory (DFT) approaches complement the experimental NMR measurements and provide theoretical corroboration for the changes in NMR parameters observed upon the formation of a halogen bond. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
YPdSn and YPd{sub 2}Sn: Structure, {sup 89}Y solid state NMR and {sup 119}Sn Moessbauer spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoeting, Christoph; Eckert, Hellmut; Langer, Thorsten
2012-06-15
The stannides YPdSn and YPd{sub 2}Sn were synthesized by high-frequency melting of the elements in sealed tantalum tubes. Both structures were refined on the basis of single crystal X-ray diffractometer data: TiNiSi type, Pnma, a=715.4(1), b=458.8(1), c=789.1(1) pm, wR2=0.0461, 510 F{sup 2} values, 20 variables for YPdSn and MnCu{sub 2}Al type, Fm3 Macron m, a=671.44(8), wR2=0.0740, 55 F{sup 2} values, 5 parameters for YPd{sub 2}Sn. The yttrium atoms in the new stannide YPdSn are coordinated by two tilted Pd{sub 3}Sn{sub 3} hexagons (ordered AlB{sub 2} superstructure). In the Heusler phase YPd{sub 2}Sn each yttrium atom has octahedral tin coordination andmore » additionally eight palladium neighbors. The cubic site symmetry of yttrium is reflected in the {sup 119}Sn Moessbauer spectrum which shows no quadrupole splitting. In contrast, YPdSn shows a single signal at {delta}=1.82(1) mm/s subjected to quadrupole splitting of {Delta}E{sub Q}=0.93(1) mm/s. Both compounds have been characterized by high-resolution {sup 89}Y solid state NMR spectroscopy, which indicates the presence of strong Knight shifts. The spectrum of YPd{sub 2}Sn is characterized by an unusually large linewidth, suggesting the presence of a Knight shift distribution reflecting local disordering effects. The range of {sup 89}Y Knight shifts of several binary and ternary intermetallic yttrium compounds is briefly discussed. - Graphical abstract: YPdSn and YPd{sub 2}Sn: Structure, {sup 89}Y solid state NMR and {sup 119}Sn Moessbauer spectroscopy. Highlights: Black-Right-Pointing-Pointer Synthesis and structure of ternary stannides YPdSn and YPd{sub 2}Sn. Black-Right-Pointing-Pointer {sup 119}Sn Moessbauer spectroscopic investigation of YPdSn and YPd{sub 2}Sn. Black-Right-Pointing-Pointer {sup 89}Y solid state NMR of intermetallics.« less
Structuring in fast-quenched ferrite compositions under plasma spraying
NASA Astrophysics Data System (ADS)
Lepeshev, A. A.; Karpov, I. V.; Ushakov, A. V.; Nagibin, G. E.; Dorozhkina, E. A.; Karpova, O. N.; Demin, V. G.; Shaikhadinov, A. A.
2017-06-01
The influence of the quench rate on structuring in spinel ferrites has been studied. It has been found that, when the quench rate is increased, the equilibrium spinel structure gradually becomes disordered. At the first stage, the statistically homogeneous (or almost homogeneous) redistribution of cations over crystal lattice sites has been observed. Then, the fcc lattice of the anion framework breaks down, the translational symmetry disappears, and topological chaos arises. The resulting cluster structural state is thermodynamically unstable, and heating of quenched ferrites causes stepwise energy liberation. As a result, the activity of ferrite powders in solid-state and catalytic reactions rises.
Zhi, Jian; Reiser, Oliver; Wang, Youfu; Hu, Aiguo
2016-06-09
A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating layer. By employing butyl-3-methylimidazolium chloride (BMIMCl) modified gels as the ionic conducting electrolyte, the utilization efficiency of MnO2 on the specific capacitance was enhanced up to 88% of the theoretical value, delivering a volumetric capacitance of 81 F cm(-3), which is the highest value among MnO2 based solid state supercapacitors. Moreover, such a flexible device exhibits exceptional volumetric energy and power density (6.6 Wh L(-1) and 549 W L(-1), based on the whole device volume) combined with a small capacity loss of 8.5% after 6000 cycles under twisting. These encouraging findings unambiguously overcome the energy bottleneck of MnO2 in solid state supercapacitors, and open up a new application of macro/mesoporous materials in flexible devices.
NASA Astrophysics Data System (ADS)
Farberovich, Oleg V.; Mazalova, Victoria L.; Soldatov, Alexander V.
2015-11-01
We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals Jij of the nanosystem Ni7-Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni7-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy pattern with the anisotropic exchange models conventionally used for the analysis of this system and, with the results of the experimental XANES spectra, shows that our complex investigations provide a good description of the pattern of the spin levels and the spin structures of the nanomagnetic Ni7 qubit. The results are discussed in the view of the general problem of the solid-state spin qubits and the spin structure of the Ni cluster.
Fiber-based all-solid-state flexible supercapacitors for self-powered systems.
Xiao, Xu; Li, Tianqi; Yang, Peihua; Gao, Yuan; Jin, Huanyu; Ni, Weijian; Zhan, Wenhui; Zhang, Xianghui; Cao, Yuanzhi; Zhong, Junwen; Gong, Li; Yen, Wen-Chun; Mai, Wenjie; Chen, Jian; Huo, Kaifu; Chueh, Yu-Lun; Wang, Zhong Lin; Zhou, Jun
2012-10-23
All-solid-state flexible supercapacitors based on a carbon/MnO(2) (C/M) core-shell fiber structure were fabricated with high electrochemical performance such as high rate capability with a scan rate up to 20 V s(-1), high volume capacitance of 2.5 F cm(-3), and an energy density of 2.2 × 10(-4) Wh cm(-3). By integrating with a triboelectric generator, supercapacitors could be charged and power commercial electronic devices, such as a liquid crystal display or a light-emitting-diode, demonstrating feasibility as an efficient storage component and self-powered micro/nanosystems.
Metal/Metal Oxide Differential Electrode pH Sensors
NASA Technical Reports Server (NTRS)
West, William; Buehler, Martin; Keymeulen, Didier
2007-01-01
Solid-state electrochemical sensors for measuring the degrees of acidity or alkalinity (in terms of pH values) of liquid solutions are being developed. These sensors are intended to supplant older electrochemical pH sensors that include glass electrode structures and reference solutions. The older sensors are fragile and subject to drift. The present developmental solid-state sensors are more rugged and are expected to be usable in harsh environments. The present sensors are based on a differential-electrode measurement principle. Each sensor includes two electrodes, made of different materials, in equilibrium with the solution of interest.
Quesada-Moreno, María Mar; Cruz-Cabeza, Aurora J; Avilés-Moreno, Juan Ramón; Cabildo, Pilar; Claramunt, Rosa M; Alkorta, Ibon; Elguero, José; Zúñiga, Francisco J; López-González, Juan Jesús
2017-08-03
2-Propyl-1H-benzimidazole (2PrBzIm) is a small molecule, commercially available, which displays a curious behavior in the solid state. 2PrBzIm, although devoid of chirality by fast rotation about a single bond of the propyl group in solution, crystallizes as a conglomerate showing chiroptical properties. An exhaustive analysis of its crystal structure and a wide range of experiments monitored by vibrational circular dichroism spectroscopy eliminated all possibilities of an artifact. What remains is a new example of the unexplained phenomenon of persistent supramolecular chirality.
Maskelynite formation via solid-state transformation: Evidence of infrared and x-ray anisotropy
Jaret, Steven J.; Ehm, Lars; Woerner, William R.; ...
2015-03-24
We present optical microscopy, micro-Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, high-energy X-ray total scattering experiments, and micro-Fourier transform infrared (micro-FTIR) spectroscopy on shocked labradorite from the Lonar Crater, India. We show that maskelynite of shock class 2 is structurally more similar to fused glass than to crystalline plagioclase. However, there are slight but significant differences – preservation of original pre-impact igneous zoning, anisotropy at Infrared wavelengths, X-ray anisotropy, and preservation of some intermediate range order – which are all consistent with a solid-state transformation formation of maskelynite.
Sinnige, Tessa; Daniëls, Mark; Baldus, Marc; Weingarth, Markus
2014-03-26
We show that selective labeling of proteins with protonated amino acids embedded in a perdeuterated matrix, dubbed 'proton clouds', provides general access to long-range contacts between nonexchangeable side chain protons in proton-detected solid-state NMR, which is important to study protein tertiary structure. Proton-cloud labeling significantly improves spectral resolution by simultaneously reducing proton line width and spectral crowding despite a high local proton density in clouds. The approach is amenable to almost all canonical amino acids. Our method is demonstrated on ubiquitin and the β-barrel membrane protein BamA.
NASA Astrophysics Data System (ADS)
Beckmann, Peter A.; Paty, Carol; Allocco, Elizabeth; Herd, Maria; Kuranz, Carolyn; Rheingold, Arnold L.
2004-03-01
We report x-ray diffractometry in a single crystal of 2-t-butyl-4-methylphenol (TMP) and low-frequency solid state nuclear magnetic resonance (NMR) proton relaxometry in a polycrystalline sample of TMP. The x-ray data show TMP to have a monoclinic, P21/c, structure with eight molecules per unit cell and two crystallographically inequivalent t-butyl group (C(CH3)3) sites. The proton spin-lattice relaxation rates were measured between 90 and 310 K at NMR frequencies of 8.50, 22.5, and 53.0 MHz. The relaxometry data is fitted with two models characterizing the dynamics of the t-butyl groups and their constituent methyl groups, both of which are consistent with the determined x-ray structure. In addition to presenting results for TMP, we review previously reported x-ray diffractometry and low-frequency NMR relaxometry in two other van der Waals solids which have a simpler structure. In both cases, a unique model for the reorientational dynamics was found. Finally, we review a similar previously reported analysis in a van der Waals solid with a very complex structure in which case fitting the NMR relaxometry requires very many parameters and serves mainly as a flag for a careful x-ray diffraction study.
Hu, Nantao; Zhang, Liling; Yang, Chao; Zhao, Jian; Yang, Zhi; Wei, Hao; Liao, Hanbin; Feng, Zhenxing; Fisher, Adrian; Zhang, Yafei; Xu, Zhichuan J.
2016-01-01
Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical three-dimensional structure, in which all of PANI nanofibers (NFs) are tightly wrapped inside reduced graphene oxide (rGO) nanosheet skeletons, for high-performance flexible SCs. The as-fabricated film electrodes with this unique structure showed a highest gravimetric specific capacitance of 921 F/g and volumetric capacitance of 391 F/cm3. The assembled solid-state SCs gave a high specific capacitance of 211 F/g (1 A/g), a high area capacitance of 0.9 F/cm2, and a competitive volumetric capacitance of 25.6 F/cm3. The SCs also exhibited outstanding rate capability (~75% retention at 20 A/g) as well as excellent cycling stability (100% retention at 10 A/g for 2000 cycles). Additionally, no structural failure and loss of performance were observed under the bending state. This structure design paves a new avenue for engineering rGO/PANI or other similar hybrids for high performance flexible energy storage devices. PMID:26795067
Hu, Nantao; Zhang, Liling; Yang, Chao; ...
2016-01-22
Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical three-dimensional structure, in which all of PANI nanofibers (NFs) are tightly wrapped inside reduced graphene oxide (rGO) nanosheet skeletons, for high-performance flexible SCs. The as-fabricated film electrodes with this unique structure showed a highest gravimetric specific capacitance of 921 F/g and volumetric capacitance ofmore » 391 F/cm 3. The assembled solid-state SCs gave a high specific capacitance of 211 F/g (1 A/g), a high area capacitance of 0.9 F/cm 2, and a competitive volumetric capacitance of 25.6 F/cm 3. The SCs also exhibited outstanding rate capability (~75% retention at 20 A/g) as well as excellent cycling stability (100% retention at 10 A/g for 2000 cycles). Additionally, no structural failure and loss of performance were observed under the bending state. Lastly, this structure design paves a new avenue for engineering rGO/PANI or other similar hybrids for high performance flexible energy storage devices.« less
Structural Integrity of Proteins under Applied Bias during Solid-State Nanopore Translocation
NASA Astrophysics Data System (ADS)
Hasan, Mohammad R.; Khanzada, Raja Raheel; Mahmood, Mohammed A. I.; Ashfaq, Adnan; Iqbal, Samir M.
2015-03-01
The translocation behavior of proteins through solid-state nanopores can be used as a new way to detect and identify proteins. The ionic current through a nanopore that flows under applied bias gets perturbed when a biomolecule traverses the Nanopore. It is important for a protein detection scheme to know of any changes in the three-dimensional structure of the molecule during the process. Here we report the data on structural integrity of protein during translocation through nanopore under different applied biases. Nanoscale Molecular Dynamic was used to establish a framework to study the changes in protein structures as these travelled across the nanopore. The analysis revealed the contributions of structural changes of protein to its ionic current signature. As a model, thrombin protein crystalline structure was imported and positioned inside a 6 nm diameter pore in a 6 nm thick silicon nitride membrane. The protein was solvated in 1 M KCl at 295 K and the system was equilibrated for 20 ns to attain its minimum energy state. The simulation was performed at different electric fields from 0 to 1 kCal/(mol.Å.e). RMSD, radial distribution function, movement of the center of mass and velocity of the protein were calculated. The results showed linear increments in the velocity and perturbations in ionic current profile with increasing electric potential. Support Acknowledged from NSF through ECCS-1201878.
Characterization and 2D structural model of corn straw and poplar leaf biochars.
Zhao, Nan; Lv, YiZhong; Yang, XiXiang; Huang, Feng; Yang, JianWen
2017-12-22
The integrated experimental methods were used to analyze the physicochemical properties and structural characteristics and to build the 2D structural model of two kinds of biochars. Corn straw and poplar leaf biochars were gained by pyrolysing the raw materials slowly in a furnace at 300, 500, and 700 °C under oxygen-deficient conditions. Scanning electron microscope was applied to observe the surface morphology of the biochars. High temperatures destroyed the pore structures of the biochars, forming a particle mixture of varying sizes. The ash content, yield, pH, and surface area were also observed to describe the biochars' properties. The yield decreases as the pyrolysis temperature increases. The biochars are neutral to alkaline. The biggest surface area is 251.11 m 2 /g for 700 °C corn straw biochar. Elemental analysis, infrared microspectroscopy, solid-state C-13 NMR spectroscopy, and pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) were also used to study the structural characteristics and build the 2D structural models of biochars. The C content in the corn straw and poplar leaf biochars increases with the increase of the pyrolysis temperature. A higher pyrolysis temperature makes the aryl carbon increase, and C=O, OH, and aliphatic hydrocarbon content decrease in the IR spectra. Solid-state C-13 NMR spectra show that a higher pyrolysis temperature makes the alkyl carbon and alkoxy carbon decrease and the aryl carbon increase. The results of IR microspectra and solid-state C-13 NMR spectra reveal that some noticeable differences exist in these two kinds of biochars and in the same type of biochar but under different pyrolysis temperatures. The conceptual elemental compositions of 500 °C corn straw and poplar leaf biochars are C 61 H 33 NO 13 and C 59 H 41 N 3 O 12 , respectively. Significant differences exist in the SEM images, physicochemical properties, and structural characteristics of corn straw and poplar leaf biochars.
Nartowski, K P; Tedder, J; Braun, D E; Fábián, L; Khimyak, Y Z
2015-10-14
The nanocrystallisation of complex molecules inside mesoporous hosts and control over the resulting structure is a significant challenge. To date the largest organic molecule crystallised inside the nano-pores is a known pharmaceutical intermediate - ROY (259.3 g mol(-1)). In this work we demonstrate smart manipulation of the phase of a larger confined pharmaceutical - indomethacin (IMC, 357.8 g mol(-1)), a substance with known conformational flexibility and complex polymorphic behaviour. We show the detailed structural analysis and the control of solid state transformations of encapsulated molecules inside the pores of mesoscopic cellular foam (MCF, pore size ca. 29 nm) and controlled pore glass (CPG, pore size ca. 55 nm). Starting from confined amorphous IMC we drive crystallisation into a confined methanol solvate, which upon vacuum drying leads to the stabilised rare form V of IMC inside the MCF host. In contrast to the pure form, encapsulated form V does not transform into a more stable polymorph upon heating. The size of the constraining pores and the drug concentration within the pores determine whether the amorphous state of the drug is stabilised or it recrystallises into confined nanocrystals. The work presents, in a critical manner, an application of complementary techniques (DSC, PXRD, solid-state NMR, N2 adsorption) to confirm unambiguously the phase transitions under confinement and offers a comprehensive strategy towards the formation and control of nano-crystalline encapsulated organic solids.
Energy Approach-Based Simulation of Structural Materials High-Cycle Fatigue
NASA Astrophysics Data System (ADS)
Balayev, A. F.; Korolev, A. V.; Kochetkov, A. V.; Sklyarova, A. I.; Zakharov, O. V.
2016-02-01
The paper describes the mechanism of micro-cracks development in solid structural materials based on the theory of brittle fracture. A probability function of material cracks energy distribution is obtained using a probabilistic approach. The paper states energy conditions for cracks growth at material high-cycle loading. A formula allowing to calculate the amount of energy absorbed during the cracks growth is given. The paper proposes a high- cycle fatigue evaluation criterion allowing to determine the maximum permissible number of solid body loading cycles, at which micro-cracks start growing rapidly up to destruction.
The role of zinc on the chemistry of complex intermetallic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Weiwei
2014-01-01
Combining experiments and electronic structure theory provides the framework to design and discover new families of complex intermetallic phases and to understand factors that stabilize both new and known phases. Using solid state synthesis and multiple structural determinations, ferromagnetic β-Mn type Co 8+xZn 12–x was analyzed for their crystal and electronic structures.
Applying the Coupled-Cluster Ansatz to Solids and Surfaces in the Thermodynamic Limit
NASA Astrophysics Data System (ADS)
Gruber, Thomas; Liao, Ke; Tsatsoulis, Theodoros; Hummel, Felix; Grüneis, Andreas
2018-04-01
Modern electronic structure theories can predict and simulate a wealth of phenomena in surface science and solid-state physics. In order to allow for a direct comparison with experiment, such ab initio predictions have to be made in the thermodynamic limit, substantially increasing the computational cost of many-electron wave-function theories. Here, we present a method that achieves thermodynamic limit results for solids and surfaces using the "gold standard" coupled cluster ansatz of quantum chemistry with unprecedented efficiency. We study the energy difference between carbon diamond and graphite crystals, adsorption energies of water on h -BN, as well as the cohesive energy of the Ne solid, demonstrating the increased efficiency and accuracy of coupled cluster theory for solids and surfaces.
Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR.
Knight, Michael J; Pell, Andrew J; Bertini, Ivano; Felli, Isabella C; Gonnelli, Leonardo; Pierattelli, Roberta; Herrmann, Torsten; Emsley, Lyndon; Pintacuda, Guido
2012-07-10
We introduce a new approach to improve structural and dynamical determination of large metalloproteins using solid-state nuclear magnetic resonance (NMR) with (1)H detection under ultrafast magic angle spinning (MAS). The approach is based on the rapid and sensitive acquisition of an extensive set of (15)N and (13)C nuclear relaxation rates. The system on which we demonstrate these methods is the enzyme Cu, Zn superoxide dismutase (SOD), which coordinates a Cu ion available either in Cu(+) (diamagnetic) or Cu(2+) (paramagnetic) form. Paramagnetic relaxation enhancements are obtained from the difference in rates measured in the two forms and are employed as structural constraints for the determination of the protein structure. When added to (1)H-(1)H distance restraints, they are shown to yield a twofold improvement of the precision of the structure. Site-specific order parameters and timescales of motion are obtained by a gaussian axial fluctuation (GAF) analysis of the relaxation rates of the diamagnetic molecule, and interpreted in relation to backbone structure and metal binding. Timescales for motion are found to be in the range of the overall correlation time in solution, where internal motions characterized here would not be observable.
Views of Prospective Science Teachers on Including the Concept of Plasma in Science Curricula
ERIC Educational Resources Information Center
Balbag, Mustafa Zafer
2018-01-01
States of matter are structures that we may easily encounter in the universe as well as our close environment. The plasma state is the fourth state of matter, and it has much different properties in comparison to the solid, liquid and gas states of matter. In order to understand the universe and the environment we live in better, one needs to have…
NASA Astrophysics Data System (ADS)
Sanz, Eduardo
2009-03-01
We study the kinetics of the liquid-to-crystal transformation and of gel formation in colloidal suspensions of oppositely charged particles. We analyse, by means of both computer simulations and experiments, the evolution of a fluid quenched to a state point of the phase diagram where the most stable state is either a homogeneous crystalline solid or a solid phase in contact with a dilute gas. On the one hand, at high temperatures and high packing fractions, close to an ordered-solid/disordered-solid coexistence line, we find that the fluid-to-crystal pathway does not follow the minimum free energy route. On the other hand, a quench to a state point far from the ordered-crystal/disordered-crystal coexistence border is followed by a fluid-to-solid transition through the minimum free energy pathway. At low temperatures and packing fractions we observe that the system undergoes a gas-liquid spinodal decomposition that, at some point, arrests giving rise to a gel-like structure. Both our simulations and experiments suggest that increasing the interaction range favors crystallization over vitrification in gel-like structures. [4pt] In collaboration with Chantal Valeriani, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands and SUPA, School of Physics, University of Edinburgh, JCMB King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK; Teun Vissers, Andrea Fortini, Mirjam E. Leunissen, and Alfons van Blaaderen, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University; Daan Frenke, FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands and Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK; and Marjolein Dijkstra, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University.
NASA Astrophysics Data System (ADS)
Boumaiza, Hella; Coustel, Romain; Despas, Christelle; Ruby, Christian; Bergaoui, Latifa
2018-02-01
The ammonium cation interaction with Na-birnessite in aqueous alkaline medium was studied. Solution and solid analysis give evidence that birnessite is not only acting as a cationic exchanger toward NH4+. The surface analysis performed by XPS showed that N1s spectra are characterized by the existence of two different environments: one assignable to an interlayer NH4+ and the second to a chemisorbed N-species. Structural and chemical transformations were observed on birnessite with nitrogen mass balance deficit. The monitoring of NH4+, Na+, Mn2+, NO3- and NO2- and solid changes (average oxidation state of Mn, cation exchange capacity, solid nitrogen content and symmetry evolution identified by XRD and FTIR) indicate unambiguously that NH4+ reacts chemically with the birnessite.
Mao, J.-D.; Schimmelmann, A.; Mastalerz, Maria; Hatcher, P.G.; Li, Y.
2010-01-01
Quantitative and advanced 13C solid-state NMR techniques were employed to investigate (i) the chemical structure of a high volatile bituminous coal, as well as (ii) chemical structural changes of this coal after evacuation of adsorbed gases, (iii) during oxidative air exposure at room temperature, and (iv) after oxidative heating in air at 75 ??C. The solid-state NMR techniques employed in this study included quantitative direct polarization/magic angle spinning (DP/MAS) at a high spinning speed of 14 kHz, cross polarization/total sideband suppression (CP/TOSS), dipolar dephasing, CH, CH2, and CHn selection, 13C chemical shift anisotropy (CSA) filtering, two-dimensional (2D) 1H-13C heteronuclear correlation NMR (HETCOR), and 2D HETCOR with 1H spin diffusion. With spectral editing techniques, we identified methyl CCH 3, rigid and mobile methylene CCH2C, methine CCH, quaternary Cq, aromatic CH, aromatic carbons bonded to alkyls, small-sized condensed aromatic moieties, and aromatic C-O groups. With direct polarization combined with spectral-editing techniques, we quantified 11 different types of functional groups. 1H-13C 2D HETCOR NMR experiments indicated spatial proximity of aromatic and alkyl moieties in cross-linked structures. The proton spin diffusion experiments indicated that the magnetization was not equilibrated at a 1H spin diffusion time of 5 ms. Therefore, the heterogeneity in spatial distribution of different functional groups should be above 2 nm. Recoupled C-H long-range dipolar dephasing showed that the fraction of large charcoal-like clusters of polycondensed aromatic rings was relatively small. The exposure of this coal to atmospheric oxygen at room temperature for 6 months did not result in obvious chemical structural changes of the coal, whereas heating at 75 ??C in air for 10 days led to oxidation of coal and generated some COO groups. Evacuation removed most volatiles and caused a significant reduction in aliphatic signals in its DP/MAS spectrum. DP/MAS, but not CP/MAS, allowed us to detect the changes during low-temperature oxidation and loss of volatiles. These results demonstrate the applicability of advanced solid-state NMR techniques in chemical characterization of coal. ?? 2010 American Chemical Society.
NASA Astrophysics Data System (ADS)
Narayanan, Sumaletha
The development of promising solid electrolytes having a garnet-like structure has been successfully achieved through solid state (ceramic) method. Various approaches to improve the Li ion conductivity were employed. The first approach involved creating oxide ion vacancies into the crystal structure of parent garnet-like oxide, Li5La3Nb2O 12 to create a novel family of compounds with nominal composition, Li 5La3Nb2-xYxO12-δ (0 ≤ x ≤ 1). The second approach was Li stuffing into the garnet-like oxides to develop a series of Li stuffed novel Li5+2xLa3Nb 2-xYxO12 (0.05 ≤ x ≤ 0.75) and Li6.5 La2.5Ba0.5ZrTaO12. Powder X-ray diffraction (PXRD), thermo gravimetric analysis (TGA), scanning electron microscopy (SEM), electron probe microanalysis (EPMA) coupled with a wavelength-dispersive spectrometer (WDS), 7Li nuclear magnetic resonance (Li-NMR), and AC impedance spectroscopy were employed to characterize the structure, morphology, elemental composition, Li ion sites, and Li ion conductivity. Studies have shown that Li5+2xLa 3Nb2-xYxO12 have turned out to be promising solid electrolytes with high Li ion conductivity (10-4 Scm -1 at ambient temperatures). In addition, all families of garnets are found to be chemically stable with Li cathode materials (Li2MMn 3O8, where M = Fe, Co) up to 400 °C in air. The developed electrolyte materials have the potential to be used in all-solid-state Li ion batteries.
NASA Astrophysics Data System (ADS)
Babu, B.; Rama Krishna, Ch.; Venkata Reddy, Ch.; Pushpa Manjari, V.; Ravikumar, R. V. S. S. N.
2013-05-01
Cobalt ions doped zinc oxide nanopowder was prepared at room temperature by a novel and simple one step solid-state reaction method through sonication in the presence of a suitable surfactant Sodium Lauryl Sulphate (SLS). The prepared powder was characterized by various spectroscopic techniques. Powder XRD data revealed that the crystal structure belongs to hexagonal and its average crystallite size was evaluated. From optical absorption data, crystal fields (Dq), inter-electronic repulsion parameters (B, C) were evaluated. By correlating optical and EPR spectral data, the site symmetry of Co2+ ion in the host lattice was determined as octahedral. Photoluminescence spectra exhibited the emission bands in ultraviolet and blue regions. The CIE chromaticity coordinates are also evaluated from the emission spectrum. FT-IR spectra showed the characteristic vibrational bands of Znsbnd O.
Design Through Manufacturing: The Solid Model-Finite Element Analysis Interface
NASA Technical Reports Server (NTRS)
Rubin, Carol
2002-01-01
State-of-the-art computer aided design (CAD) presently affords engineers the opportunity to create solid models of machine parts reflecting every detail of the finished product. Ideally, in the aerospace industry, these models should fulfill two very important functions: (1) provide numerical. control information for automated manufacturing of precision parts, and (2) enable analysts to easily evaluate the stress levels (using finite element analysis - FEA) for all structurally significant parts used in aircraft and space vehicles. Today's state-of-the-art CAD programs perform function (1) very well, providing an excellent model for precision manufacturing. But they do not provide a straightforward and simple means of automating the translation from CAD to FEA models, especially for aircraft-type structures. Presently, the process of preparing CAD models for FEA consumes a great deal of the analyst's time.
Pérez-Torralba, Marta; Ángeles García, M; López, Concepción; Torralba, M Carmen; Rosario Torres, M; Alkorta, Ibon; Elguero, José
2013-01-01
Summary Two novel tetrafluorinated 1,5-benzodiazepinones were synthesized and their X-ray structures determined. 6,7,8,9-Tetrafluoro-4-methyl-1,3-dihydro-2H-1,5-benzodiazepin-2-one crystallizes in the monoclinic P21/c space group and 6,7,8,9-tetrafluoro-1,4-dimethyl-1,3-dihydro-2H-1,5-benzodiazepin-2-one in the triclinic P−1 space group. Density functional theory studies at the B3LYP/6-311++G(d,p) level were carried out on these compounds and on four non-fluorinated derivatives, allowing to calculate geometries, tautomeric energies and ring-inversion barriers, that were compared with the experimental results obtained by static and dynamic NMR in solution and in solid state. PMID:24204428
The structure of poly(carbonsuboxide) on the atomic scale: a solid-state NMR study.
Schmedt auf der Günne, Jörn; Beck, Johannes; Hoffbauer, Wilfried; Krieger-Beck, Petra
2005-07-18
In this contribution we present a study of the structure of amorphous poly(carbonsuboxide) (C3O2)x by 13C solid-state NMR spectroscopy supported by infrared spectroscopy and chemical analysis. Poly(carbonsuboxide) was obtained by polymerization of carbonsuboxide C3O2, which in turn was synthesized from malonic acid bis(trimethylsilylester). Two different 13C labeling schemes were applied to probe inter- and intramonomeric bonds in the polymer by dipolar solid-state NMR methods and also to allow quantitative 13C MAS NMR spectra. Four types of carbon environments can be distinguished in the NMR spectra. Double-quantum and triple-quantum 2D correlation experiments were used to assign the observed peaks using the through-space and through-bond dipolar coupling. In order to obtain distance constraints for the intermonomeric bonds, double-quantum constant-time experiments were performed. In these experiments an additional filter step was applied to suppress contributions from not directly bonded 13C,13C spin pairs. The 13C NMR intensities, chemical shifts, connectivities and distances gave constraints for both the polymerization mechanism and the short-range order of the polymer. The experimental results were complemented by bond lengths predicted by density functional theory methods for several previously suggested models. Based on the presented evidence we can unambiguously exclude models based on gamma-pyronic units and support models based on alpha-pyronic units. The possibility of planar ladder- and bracelet-like alpha-pyronic structures is discussed.
Naito, Akira; Okushita, Keiko; Nishimura, Katsuyuki; Boutis, Gregory S; Aoki, Akihiro; Asakura, Tetsuo
2018-03-15
Poly-l-alanine (PLA) sequences are a key element in the structure of the crystalline domains of spider dragline silks, wild silkworm silks, antifreeze proteins, and amyloids. To date, no atomic-level structures of antiparallel (AP)-PLA longer than Ala 4 have been reported using the single-crystal X-ray diffraction analysis. In this work, dipolar-assisted rotational resonance solid-state NMR spectra were observed to determine the effective internuclear distances of 13 C uniformly labeled alanine tetramer with antiparallel (AP) β-sheet structure whose atomic coordinates are determined from the X-ray crystallographic analysis. Initial build-up rates, R j, k , were obtained from the build-up curves of the cross peaks by considering the internuclear distances arising in the master equation. Subsequently, experimentally obtained effective internuclear distances, r eff j, k (obs), were compared with the calculated r eff j, k (calc) values obtained from the X-ray crystallographic data. Fairly good correlation between r eff j, k (obs) and r eff j, k (calc) was obtained in the range of 1.0-6.0 Å, with the standard deviation of 0.244 Å, without considering the zero-quantum line-shape functions. It was further noted that the internuclear distances of intermolecular contributions provide details relating to the molecular packing in solid-state samples. Thus, the present data agree well with AP-β-sheet packing but do not agree with P-β-sheet packing.
Complete Reversible Refolding of a G-Protein Coupled Receptor on a Solid Support
Di Bartolo, Natalie; Compton, Emma L. R.; Warne, Tony; Edwards, Patricia C.; Tate, Christopher G.; Schertler, Gebhard F. X.; Booth, Paula J.
2016-01-01
The factors defining the correct folding and stability of integral membrane proteins are poorly understood. Folding of only a few select membrane proteins has been scrutinised, leaving considerable deficiencies in knowledge for large protein families, such as G protein coupled receptors (GPCRs). Complete reversible folding, which is problematic for any membrane protein, has eluded this dominant receptor family. Moreover, attempts to recover receptors from denatured states are inefficient, yielding at best 40–70% functional protein. We present a method for the reversible unfolding of an archetypal family member, the β1-adrenergic receptor, and attain 100% recovery of the folded, functional state, in terms of ligand binding, compared to receptor which has not been subject to any unfolding and retains its original, folded structure. We exploit refolding on a solid support, which could avoid unwanted interactions and aggregation that occur in bulk solution. We determine the changes in structure and function upon unfolding and refolding. Additionally, we employ a method that is relatively new to membrane protein folding; pulse proteolysis. Complete refolding of β1-adrenergic receptor occurs in n-decyl-β-D-maltoside (DM) micelles from a urea-denatured state, as shown by regain of its original helical structure, ligand binding and protein fluorescence. The successful refolding strategy on a solid support offers a defined method for the controlled refolding and recovery of functional GPCRs and other membrane proteins that suffer from instability and irreversible denaturation once isolated from their native membranes. PMID:26982879
NASA Astrophysics Data System (ADS)
Pandey, Manoj Kumar; Ramachandran, Ramesh
2010-03-01
The application of solid-state NMR methodology for bio-molecular structure determination requires the measurement of constraints in the form of 13C-13C and 13C-15N distances, torsion angles and, in some cases, correlation of the anisotropic interactions. Since the availability of structurally important constraints in the solid state is limited due to lack of sufficient spectral resolution, the accuracy of the measured constraints become vital in studies relating the three-dimensional structure of proteins to its biological functions. Consequently, the theoretical methods employed to quantify the experimental data become important. To accentuate this aspect, we re-examine analytical two-spin models currently employed in the estimation of 13C-13C distances based on the rotational resonance (R 2) phenomenon. Although the error bars for the estimated distances tend to be in the range 0.5-1.0 Å, R 2 experiments are routinely employed in a variety of systems ranging from simple peptides to more complex amyloidogenic proteins. In this article we address this aspect by highlighting the systematic errors introduced by analytical models employing phenomenological damping terms to describe multi-spin effects. Specifically, the spin dynamics in R 2 experiments is described using Floquet theory employing two different operator formalisms. The systematic errors introduced by the phenomenological damping terms and their limitations are elucidated in two analytical models and analysed by comparing the results with rigorous numerical simulations.
Healy, Peter C; Loughrey, Bradley T; Bowmaker, Graham A; Hanna, John V
2008-07-28
(197)Au Mössbauer spectra for the d(10) gold(i) phosphine complexes, [Au(dppey)(2)]X (X = PF(6), I; dppey = (cis-bis(diphenylphosphino)ethylene), and the single crystal X-ray structure and solid state (31)P CPMAS NMR spectrum of [Au(dppey)(2)]I are reported here. In [Au(dppey)(2)]I the AuP(4) coordination geometry is distorted from the approximately D(2) symmetry observed for the PF(6)(-) complex with Au-P bond lengths 2.380(2)-2.426(2) A and inter-ligand P-Au-P angles 110.63(5)-137.71(8) degrees . Quadrupole splitting parameters derived from the Mössbauer spectra are consistent with the increased distortion of the AuP(4) coordination sphere with values of 1.22 and 1.46 mm s(-1) for the PF(6)(-) and I(-) complexes respectively. In the solid state (31)P CP MAS NMR spectrum of [Au(dppey)(2)]I, signals for each of the four crystallographically independent phosphorus nuclei are observed, with the magnitude of the (197)Au quadrupole coupling being sufficiently large to produce a collapse of (1)J(Au-P) splitting from quartets to doublets. The results highlight the important role played by the counter anion in the determination of the structural and spectroscopic properties of these sterically crowded d(10) complexes.
How to tackle protein structural data from solution and solid state: An integrated approach.
Carlon, Azzurra; Ravera, Enrico; Andrałojć, Witold; Parigi, Giacomo; Murshudov, Garib N; Luchinat, Claudio
2016-02-01
Long-range NMR restraints, such as diamagnetic residual dipolar couplings and paramagnetic data, can be used to determine 3D structures of macromolecules. They are also used to monitor, and potentially to improve, the accuracy of a macromolecular structure in solution by validating or "correcting" a crystal model. Since crystal structures suffer from crystal packing forces they may not be accurate models for the macromolecular structures in solution. However, the presence of real differences should be tested for by simultaneous refinement of the structure using both crystal and solution NMR data. To achieve this, the program REFMAC5 from CCP4 was modified to allow the simultaneous use of X-ray crystallographic and paramagnetic NMR data and/or diamagnetic residual dipolar couplings. Inconsistencies between crystal structures and solution NMR data, if any, may be due either to structural rearrangements occurring on passing from the solution to solid state, or to a greater degree of conformational heterogeneity in solution with respect to the crystal. In the case of multidomain proteins, paramagnetic restraints can provide the correct mutual orientations and positions of domains in solution, as well as information on the conformational variability experienced by the macromolecule. Copyright © 2016 Elsevier B.V. All rights reserved.
Ionizing Shocks in Argon. Part 1: Collisional-Radiative Model and Steady-State Structure (Preprint)
2010-09-09
absorption oscillator strength is given by fabsij = gj gi Aji 3γ . (43) Contributions to the parameter γ have been assumed to result from a combination of...discretization, the Saha temperatures of the higher states (green, red and blue solid curves) overshoot Te and relaxes with Th, indicating over
The size effect to O2- -Ce4+ charge transfer emission and band gap structure of Sr2 CeO4.
Wang, Wenjun; Pan, Yu; Zhang, Wenying; Liu, Xiaoguang; Li, Ling
2018-04-24
Sr 2 CeO 4 phosphors with different crystalline sizes were synthesized by the sol-gel method or the solid-state reaction. Their crystalline size, luminescence intensity of O 2- -Ce 4+ charge transfer and energy gaps were obtained through the characterization by X-ray diffraction, photoluminescence spectra, as well as UV-visible diffuse reflectance measurements. An inverse relationship between photoluminescence (PL) spectra and crystalline size was observed when the heating temperature was from 1000°C to 1300°C. In addition, band energy calculated for all samples showed that a reaction temperature of 1200°C for the solid-state method and 1100°C for sol-gel method gave the largest values, which corresponded with the smallest crystalline size. Correlation between PL intensity and crystalline size showed an inverse relationship. Band structure, density of states and partial density of states of the crystal were calculated to analyze the mechanism using the cambrige sequential total energy package (CASTEP) module integrated with Materials Studio software. Copyright © 2018 John Wiley & Sons, Ltd.
229Thorium-doped calcium fluoride for nuclear laser spectroscopy.
Dessovic, P; Mohn, P; Jackson, R A; Winkler, G; Schreitl, M; Kazakov, G; Schumm, T
2014-03-12
The (229)thorium isotope presents an extremely low-energy isomer state of the nucleus which is expected around 7.8 eV, in the vacuum ultraviolet (VUV) regime. This unique system may bridge between atomic and nuclear physics, enabling coherent manipulation and precision spectroscopy of nuclear quantum states using laser light. It has been proposed to implant (229)thorium into VUV transparent crystal matrices to facilitate laser spectroscopy and possibly realize a solid-state nuclear clock. In this work, we validate the feasibility of this approach by computer modelling of thorium doping into calcium fluoride single crystals. Using atomistic modelling and full electronic structure calculations, we find a persistent large band gap and no additional electronic levels emerging in the middle of the gap due to the presence of the dopant, which should allow direct optical interrogation of the nuclear transition.Based on the electronic structure, we estimate the thorium nuclear quantum levels within the solid-state environment. Precision laser spectroscopy of these levels will allow the study of a broad range of crystal field effects, transferring Mössbauer spectroscopy into the optical regime.
Shi, Peipei; Li, Li; Hua, Li; Qian, Qianqian; Wang, Pengfei; Zhou, Jinyuan; Sun, Gengzhi; Huang, Wei
2017-01-24
Solid-state fiber-based supercapacitors have been considered promising energy storage devices for wearable electronics due to their lightweight and amenability to be woven into textiles. Efforts have been made to fabricate a high performance fiber electrode by depositing pseudocapacitive materials on the outer surface of carbonaceous fiber, for example, crystalline manganese oxide/multiwalled carbon nanotubes (MnO 2 /MWCNTs). However, a key challenge remaining is to achieve high specific capacitance and energy density without compromising the high rate capability and cycling stability. In addition, amorphous MnO 2 is actually preferred due to its disordered structure and has been proven to exhibit superior electrochemical performance over the crystalline one. Herein, by incorporating amorphous MnO 2 onto a well-aligned MWCNT sheet followed by twisting, we design an amorphous MnO 2 @MWCNT fiber, in which amorphous MnO 2 nanoparticles are distributed in MWCNT fiber uniformly. The proposed structure gives the amorphous MnO 2 @MWCNT fiber good mechanical reliability, high electrical conductivity, and fast ion-diffusion. Solid-state supercapacitor based on amorphous MnO 2 @MWCNT fibers exhibits improved energy density, superior rate capability, exceptional cycling stability, and excellent flexibility. This study provides a strategy to design a high performance fiber electrode with microstructure control for wearable energy storage devices.
Detection of urea-induced internal denaturation of dsDNA using solid-state nanopores.
Singer, Alon; Kuhn, Heiko; Frank-Kamenetskii, Maxim; Meller, Amit
2010-11-17
The ability to detect and measure dsDNA thermal fluctuations is of immense importance in understanding the underlying mechanisms responsible for transcription and replication regulation. We describe here the ability of solid-state nanopores to detect sub-nanometer changes in DNA structure as a result of chemically enhanced thermal fluctuations. In this study, we investigate the subtle changes in the mean effective diameter of a dsDNA molecule with 3-5 nm solid-state nanopores as a function of urea concentration and the DNA's AT content. Our studies reveal an increase in the mean effective diameter of a DNA molecule of approximately 0.6 nm at 8.7 M urea. In agreement with the mechanism of DNA local denaturation, we observe a sigmoid dependence of these effects on urea concentration. We find that the translocation times in urea are markedly slower than would be expected if the dynamics were governed primarily by viscous effects. Furthermore, we find that the sensitivity of the nanopore is sufficient to statistically differentiate between DNA molecules of nearly identical lengths differing only in sequence and AT content when placed in 3.5 M urea. Our results demonstrate that nanopores can detect subtle structural changes and are thus a valuable tool for detecting differences in biomolecules' environment.
Shimizu, Hideyuki; Park, Kyu Hyung; Otani, Hiroyuki; Aoyagi, Shinobu; Nishinaga, Tohru; Aso, Yoshio; Kim, Dongho; Iyoda, Masahiko
2018-03-12
A Saturn-like 1:1 complex composed of macrocyclic oligothiophene E-8T7A and C 60 fullerene (C 60 ) was synthesized to investigate the interaction between macrocyclic oligothiophenes and C 60 in solution and the solid state. Because the Saturn-like 1:1 complex E-8T7A⋅C 60 is mainly stabilized by van der Waals interactions between C 60 and the sulfur atoms of the E-8T7A macrocycle, C 60 is rather weakly incorporated inside the macro-ring in solution. However, in the solid state the Saturn-like 1:1 complex preferentially formed single crystals or nanostructured polymorphs. Interestingly, X-ray analysis and theoretical calculations exhibited hindered rotation of C 60 in the Saturn-like complex due to interactions between C 60 and the sulfur atoms. Furthermore, the photoinduced charge transfer (CT) interaction between E-8T7A and C 60 in solution was investigated by using femtosecond transient absorption (TA) spectroscopy. The ultrafast TA spectral changes in the photoinduced absorption bands were attributed to the CT process in the Saturn-like structure. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chénard, Etienne; Sutrisno, Andre; Zhu, Lingyang
2016-03-31
Following the discovery of the redox-active 1,4- bis-BF 3-quinoxaline complex, we undertook a structure- activity study with the objective to understand the active nature of the quinoxaline complex. Through systematic synthesis and characterization, we have compared complexes prepared from pyridine and pyrazine derivatives, as heterocyclic core analogues. This paper reports the structural requirements that give rise to the electrochemical features of the 1,4-bis-BF 3-quinoxaline adduct. Using solution and solidstate NMR spectroscopy, the role of aromatic ring fusion and nitrogen incorporation in bonding and electronics was elucidated. We establish the boron atom location and its interaction with its environment from 1Dmore » and 2D solution NMR, X-ray diffraction analysis, and 11B solid-state NMR experiments. Crystallographic analysis of single crystals helped to correlate the boron geometry with 11B quadrupolar coupling constant (CQ) and asymmetry parameter (ηQ), extracted from 11B solid-state NMR spectra. Additionally, computations based on density functional theory were performed to predict electrochemical behavior of the BF 3-heteroaromatic complexes. We then experimentally measured electrochemical potential using cyclic voltammetry and found that the redox potentials and CQ values are similarly affected by electronic changes in the complexes.« less
Romer, Frederik H; Underwood, Andrew P; Senekal, Nadine D; Bonnet, Susan L; Duer, Melinda J; Reid, David G; van der Westhuizen, Jan H
2011-01-28
Solid state ¹³C-NMR spectra of pure tannin powders from four different sources--mimosa, quebracho, chestnut and tara--are readily distinguishable from each other, both in pure commercial powder form, and in leather which they have been used to tan. Groups of signals indicative of the source, and type (condensed vs. hydrolyzable) of tannin used in the manufacture are well resolved in the spectra of the finished leathers. These fingerprints are compared with those arising from leathers tanned with other common tanning agents. Paramagnetic chromium (III) tanning causes widespread but selective disappearance of signals from the spectrum of leather collagen, including resonances from acidic aspartyl and glutamyl residues, likely bound to Cr (III) structures. Aluminium (III) and glutaraldehyde tanning both cause considerable leather collagen signal sharpening suggesting some increase in molecular structural ordering. The ²⁷Al-NMR signal from the former material is consistent with an octahedral coordination by oxygen ligands. Solid state NMR thus provides easily recognisable reagent specific spectral fingerprints of the products of vegetable and some other common tanning processes. Because spectra are related to molecular properties, NMR is potentially a powerful tool in leather process enhancement and quality or provenance assurance.
NASA Astrophysics Data System (ADS)
Purtas, Fatih; Sayin, Koray; Ceyhan, Gokhan; Kose, Muhammet; Kurtoglu, Mukerrem
2017-06-01
A new Schiff base containing azo chromophore group obtained by condensation of 2-hydroxy-4-[(E)-phenyldiazenyl]benzaldehyde with 3,4-dimethylaniline (HL) are used for the syntheses of new copper(II) and zinc(II) chelates, [Cu(L)2], and [Zn(L)2], and characterized by physico-chemical and spectroscopic methods such as 1H and 13C NMR, IR, UV.-Vis. and elemental analyses. The solid state structure of the ligand was characterized by single crystal X-ray diffraction study. X-ray diffraction data was then used to calculate the harmonic oscillator model of aromaticity (HOMA) indexes for the rings so as to investigate of enol-imine and keto-amine tautomeric forms in the solid state. The phenol ring C10-C15 shows a considerable deviation from the aromaticity with HOMA value of 0.837 suggesting the shift towards the keto-amine tautomeric form in the solid state. The analytical data show that the metal to ligand ratio in the chelates was found to be 1:2. Theoretical calculations of the possible isomers of the ligand and two metal complexes are performed by using B3LYP method. Electrochemical and photoluminescence properties of the synthesized azo-Schiff bases were also investigated.
Raman spectroscopy, "big data", and local heterogeneity of solid state synthesized lithium titanate
NASA Astrophysics Data System (ADS)
Pelegov, Dmitry V.; Slautin, Boris N.; Gorshkov, Vadim S.; Zelenovskiy, Pavel S.; Kiselev, Evgeny A.; Kholkin, Andrei L.; Shur, Vladimir Ya.
2017-04-01
Existence of defects is an inherent property of real materials. Due to an explicit correlation between defects concentration and conductivity, it is important to understand the level and origins of the structural heterogeneity for any particulate electrode material. Poor conductive lithium titanate Li4Ti5O12 (LTO), widely used in batteries for grids and electric buses, needs it like no one else. In this work, structural heterogeneity of compacted lithium titanate is measured locally in 100 different points by conventional micro-Raman technique, characterized in terms of variation of Raman spectra parameters and interpreted using our version of "big data" analysis. This very simple approach with automated measurement and treatment has allowed us to demonstrate inherent heterogeneity of solid-state synthesized LTO and attribute it to the existence of lithium and oxygen vacancies. The proposed approach can be used as a fast, convenient, and cost-effective defects-probing tool for a wide range of materials with defects-sensitive properties. In case of LTO, such an approach can be used to increase its charge/discharge rates by synthesis of materials with controlled nonstoichiometry. New approaches to solid state synthesis of LTO, suitable for high-power applications, will help to significantly reduce the costs of batteries for heavy-duty electric vehicles and smart-grids.
Four new polymorphic forms of suplatast tosilate.
Nagai, Keiko; Ushio, Takanori; Miura, Hidenori; Nakamura, Takashi; Moribe, Kunikazu; Yamamoto, Keiji
2014-01-02
We found four new polymorphic forms (γ-, ε-, ζ-, and η-forms) of suplatast tosilate (ST) by recrystallization and seeding with ST-analogous compounds; three polymorphic forms (α-, β-, and δ-forms) of ST have been previously reported. The physicochemical properties of these new forms were investigated using infrared (IR) spectroscopy, solid-state nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry, and powder X-ray diffractometry. The presence of hydrogen bonds in the new forms was assessed from the IR and solid-state NMR spectra. The crystal structures of the ε- and η-forms were determined from their powder X-ray diffraction data using the direct space approach and the Monte Carlo method, followed by Rietveld refinement. The structures determined for the ε- and η-forms supported the presence of hydrogen bonds between the ST molecules, as the IR and solid-state NMR spectra indicated. The thermodynamic characteristics of the seven polymorphic forms were evaluated by determining the solubility of each form. The α-form was the most insoluble in 2-propanol at 35°C, and was thus concluded to be the most stable form. The ε-form was the most soluble, and a polymorphic transition from the ε- to the α-form was observed during solubility testing. Copyright © 2013 Elsevier B.V. All rights reserved.
Tao, Jiayou; Liu, Nishuang; Ma, Wenzhen; Ding, Longwei; Li, Luying; Su, Jun; Gao, Yihua
2013-01-01
A solid-state flexible supercapacitor (SC) based on organic-inorganic composite structure was fabricated through an “in situ growth for conductive wrapping” and an electrode material of polypyrrole (PPy)-MnO2 nanoflakes-carbon fiber (CF) hybrid structure was obtained. The conductive organic material of PPy greatly improved the electrochemical performance of the device. With a high specific capacitance of 69.3 F cm−3 at a discharge current density of 0.1 A cm−3 and an energy density of 6.16 × 10−3 Wh cm−3 at a power density of 0.04 W cm−3, the device can drive a commercial liquid crystal display (LCD) after being charged. The organic-inorganic composite active materials have enormous potential in energy management and the “in situ growth for conductive wrapping” method might be generalized to open up new strategies for designing next-generation energy storage devices. PMID:23884478
NASA Astrophysics Data System (ADS)
Wang, Xiao-xiao; Li, Zuo-xi; Yu, Baoyi; Van Hecke, Kristof; Cui, Guang-hua
2015-10-01
Three metal-organic coordination polymers containing rigid bis(triazole) ligand, namely, [Zn1.5(btb)(nbta)(H2O)]n (1), {[Zn(btb)(3-nph)]·(H2O)}n (2) and [Zn(btb)(4-nph)]n (3) (btb = 4,4‧-bis(1,2,4-triazolyl-1-yl)-biphenyl, 3-H2nph = 3-nitrophthalic acid, H3nbta = 5-nitro-1,2,3-benzenetricarboxylic acid, and 4-H2nph = 4-nitrophthalic acid) were synthesized under hydrothermal conditions and structurally characterized by X-ray single-crystal diffraction. Complex 1 possesses an interesting 3D coordination framework with a rarely binodal (4,4)-connected frl topological structure. Complexes 2 and 3 exhibit similiar 2D (4,4) grid layers with different point symbol (44 · 64) in 2 and (44 · 62) in 3. Furthermore, thermal stability of these compounds has been discussed. Complexes 1-3 exhibit strong solid-state fluorescence at room temperature in solid state.
NASA Astrophysics Data System (ADS)
Warncke, Gisela; Fels, Sabine; Brendler, Erica; Böhme, Uwe
2016-08-01
N-(2-hydroxy-1-naphthylidene)-L-valine 1, N-(2-hydroxy-1-naphthylidene)-L-phenylalanine 2, and N-(2-hydroxy-1-naphthylidene)-L-threonine 3 were prepared and characterized with spectroscopic methods, elemental analyses, and values of optical rotation. Compound 1 undergoes a solid state order-disorder phase transition at 231 K. The X-ray structures of the high and low temperature phase of 1 have been determined. Single crystal X-ray structures of 2 and 3 have been determined as well. The tautomerism of N-(2-hydroxy-1-naphthylidene)amino acid derivatives is discussed controversial in the literature. A bond lengths statistical analysis shows that all three compounds exist uniformly in the keto-amine form in the solid state. Quantum chemical calculations, NMR, and UV-Vis spectroscopy were used to obtain further insight into the existence of phenol-imine and keto-amine structures in this class of compounds.
Microtraps for neutral atoms using superconducting structures in the critical state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emmert, A.; Brune, M.; Raimond, J.-M.
Recently demonstrated superconducting atom chips provide a platform for trapping atoms and coupling them to solid-state quantum systems. Controlling these devices requires a full understanding of the supercurrent distribution in the trapping structures. For type-II superconductors, this distribution is hysteretic in the critical state due to the partial penetration of the magnetic field in the thin superconducting film through pinned vortices. We report here an experimental observation of this memory effect. Our results are in good agreement with the predictions of the Bean model of the critical state without adjustable parameters. The memory effect allows to write and store permanentmore » currents in micron-sized superconducting structures and paves the way toward engineered trapping potentials.« less
Mechanisms of heterogeneous crystal growth in atomic systems: insights from computer simulations.
Gulam Razul, M S; Hendry, J G; Kusalik, P G
2005-11-22
In this paper we analyze the atomic-level structure of solid/liquid interfaces of Lennard-Jones fcc systems. The 001, 011, and 111 faces are examined during steady-state growth and melting of these crystals. The mechanisms of crystallization and melting are explored using averaged configurations generated during these steady-state runs, where subsequent tagging and labeling of particles at the interface provide many insights into the detailed atomic behavior at the freezing and melting interfaces. The interfaces are generally found to be rough and we observe the structure of freezing and melting interfaces to be very similar. Large structural fluctuations with solidlike and liquidlike characteristics are apparent in both the freezing and melting interfaces. The behavior at the interface observed under either growth or melting conditions reflects a competition between ordering and disordering processes. In addition, we observe atom hopping that imparts liquidlike characteristics to the solid side of the interfaces for all three crystal faces. Solid order is observed to extend as rough, three-dimensional protuberances through the interface, particularly for the 001 and 011 faces. We are also able to reconcile our different measures for the interfacial width and address the onset of asymmetry in the growth rates at high rates of crystal growth/melting.
Chekmenev, Eduard Y; Gor'kov, Peter L; Cross, Timothy A; Alaouie, Ali M; Smirnov, Alex I
2006-10-15
A novel method for studying membrane proteins in a native lipid bilayer environment by solid-state NMR spectroscopy is described and tested. Anodic aluminum oxide (AAO) substrates with flow-through 175 nm wide and 60-mum-long nanopores were employed to form macroscopically aligned peptide-containing lipid bilayers that are fluid and highly hydrated. We demonstrate that the surfaces of both leaflets of such bilayers are fully accessible to aqueous solutes. Thus, high hydration levels as well as pH and desirable ion and/or drug concentrations could be easily maintained and modified as desired in a series of experiments with the same sample. The method allows for membrane protein NMR experiments in a broad pH range that could be extended to as low as 1 and as high as 12 units for a period of up to a few hours and temperatures as high as 70 degrees C without losing the lipid alignment or bilayers from the nanopores. We demonstrate the utility of this method by a solid-state 19.6 T (17)O NMR study of reversible binding effects of mono- and divalent ions on the chemical shift properties of the Leu(10) carbonyl oxygen of transmembrane pore-forming peptide gramicidin A (gA). We further compare the (17)O shifts induced by binding metal ions to the binding of protons in the pH range from 1 to 12 and find a significant difference. This unexpected result points to a difference in mechanisms for ion and proton conduction by the gA pore. We believe that a large number of solid-state NMR-based studies, including structure-function, drug screening, proton exchange, pH, and other titration experiments, will benefit significantly from the method described here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grandjean, Didier; Morales, Fernando; Mens, Ad
2007-02-02
Combination of in situ X-ray absorption spectroscopy (XAFS) at the Co and Mn K-edges with electron microscopy (STEM-EELS) has allowed to unravel the complex structure of a series of unpromoted and Mn promoted TiO2-supported cobalt Fischer-Tropsch catalysts prepared by homogeneous deposition precipitation (HDP), both in their calcined and reduced states. After calcination the catalysts are generally composed of large Co3O4 aggregates (13-20 nm) and a MnO2-type phase that is either dispersed on the TiO2 surface or, for the major part, covering the Co3O4 particles. Additionally Mn is also forming a spinel-type Co3-xMnxO4 solid solution at the surface of the Co3O4more » particles. In pure Co or when small amount of this spinel-type phase are formed during calcination, reduction in H2 at 350 deg. C produces Co0 particles of variable sizes (3.5-15 nm) otherwise Co reduction is limited to the Co2+ state. Manganese that exists entirely in a Mn2+ state in the reduced catalysts is forming (1) a highly dispersed Ti2MnO4-type phase at the TiO2 surface, (2) a less dispersed MnO phase close to the cobalt particles that coexists with (3) a rock salt-type Mn1-xCoxO solid solution. Similarly, large amount of spinel solid solution in the calcined state favors the formation of Mn1-xCoxO-type solid solution during reduction showing that one of the main roles of the Mn promoter is to limit Co reducibility.« less
NASA Astrophysics Data System (ADS)
Carmona, P.; Molina, M.; Lasagabaster, A.
1995-05-01
The conformational structure of fragment 1-29 of human growth hormone releasing factor, hGHRF (1-29), in aqueous solution and in the solid state is investigated by infrared and Raman spectroscopy. The polypeptide backbone is found to be unordered in the solid state. However, the spectra of the peptide prepared as 5% (w/w) aqueous solutions show that approximately 28% of the peptide is involved in intermolecular β-sheet aggregation. The remainder of the peptide exists largely as disordered and β-sheet conformations with a small portion of α-helices. Tyrosine residues are found to be exposed to the solvent. The secondary structures are quantitatively examined through infrared spectroscopy, the conformational percentages being near those obtained by HONDAet al. [ Biopolymers31, 869 (1991)] using circular dichroism. The fast hydrogen/deuterium exchange in peptide groups and the absence of any NMR sign indicative of ordered structure [ G. M. CLOREet al., J. Molec. Biol.191, 553 (1986)] support that the solution conformations of the non-aggregated peptide interconvert in dynamic equilibrium. Some physiological advantages that may derive from this conformational flexibility are also discussed
Structure and Electronic Spectra of Purine-Methyl Viologen Charge Transfer Complexes
Jalilov, Almaz S.; Patwardhan, Sameer; Singh, Arunoday; Simeon, Tomekia; Sarjeant, Amy A.; Schatz, George C.; Lewis, Frederick D.
2014-01-01
The structure and properties of the electron donor-acceptor complexes formed between methyl viologen (MV) and purine nucleosides and nucleotides in water and the solid state have been investigated using a combination of experimental and theoretical methods. Solution studies were performed using UV-vis and 1H NMR spectroscopy. Theoretical calculations were performed within the framework of density functional theory (DFT). Energy decomposition analysis indicates that dispersion and induction (charge-transfer) interactions dominate the total binding energy, whereas electrostatic interactions are largely repulsive. The appearance of charge transfer bands in the absorption spectra of the complexes are well described by time-dependent (TD) DFT and are further explained in terms of the redox properties of purine monomers and solvation effects. Crystal structures are reported for complexes of methyl viologen with the purines 2′-deoxyguanosine 3′-monophosphate GMP (DAD′DAD′ type) and 7-deazaguanosine zG (DAD′ADAD′ type). Comparison of the structures determined in the solid state and by theoretical methods in solution provides valuable insights into the nature of charge-transfer interactions involving purine bases as electron donors. PMID:24294996
Structure and dynamics of the influenza A M2 channel: a comparison of three structures.
Leonov, Hadas; Arkin, Isaiah T
2009-11-01
The M2 protein is an essential component of the Influenza virus' infectivity cycle. It is a homo-tetrameric bundle forming a pH-gated H(+) channel. The structure of M2 was solved by three different groups, using different techniques, protein sequences and pH environment. For example, solid-state NMR spectroscopy was used on a protein in lipid bilayers, while X-ray crystallography and solution NMR spectroscopy were applied on a protein in detergent micelles. The resulting structures from the above efforts are rather distinct. Herein, we examine the different structures under uniform conditions such as a lipid bilayer and specified protonation state. We employ extensive molecular dynamics simulations, in several protonation states, representing both closed and open forms of the channel. Exploring the properties of each of these structures has shown that the X-ray structure is more stable than the other structures according to various criteria, although its water conductance and water-wire formation do not correlate to the protonation state of the channel.
A Na+ Superionic Conductor for Room-Temperature Sodium Batteries
NASA Astrophysics Data System (ADS)
Song, Shufeng; Duong, Hai M.; Korsunsky, Alexander M.; Hu, Ning; Lu, Li
2016-08-01
Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10-3 S cm-1. We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor.
A Na+ Superionic Conductor for Room-Temperature Sodium Batteries
Song, Shufeng; Duong, Hai M.; Korsunsky, Alexander M.; Hu, Ning; Lu, Li
2016-01-01
Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10−3 S cm−1. We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor. PMID:27572915
A Na(+) Superionic Conductor for Room-Temperature Sodium Batteries.
Song, Shufeng; Duong, Hai M; Korsunsky, Alexander M; Hu, Ning; Lu, Li
2016-08-30
Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10(-3) S cm(-1). We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor.
Ayitou, Anoklase J-L; Flynn, Kristen; Jockusch, Steffen; Khan, Saeed I; Garcia-Garibay, Miguel A
2016-03-02
Aqueous suspensions of nanocrystals in the 200-500 nm size range of isostructural α-(ortho-tolyl)-acetophenone (1a) and α-(ortho-tolyl)-para-methylacetophenone (1b) displayed good absorption characteristics for flash photolysis experiments in a flow system, with transient spectra and decay kinetics with a quality that is similar to that recorded in solution. In contrast to solution measurements, reactions in the solid state were characterized by a rate limiting hydrogen transfer reaction from the triplet excited state and a very short-lived biradical intermediate, which does not accumulate. Notably, the rate for δ-hydrogen atom transfer of 1a (2.7 × 10(7) s(-1)) in the crystalline phase is 18-fold larger than that of 1b (1.5 × 10(6) s(-1)). With nearly identical molecular and crystal structures, this decrease in the rate of δ-hydrogen abstraction can be assigned unambiguously to an electronic effect by the para-methyl group in 1b, which increases the contribution of the (3)π,π* configuration relative to the reactive (3)n,π* configuration in the lowest triplet excited state. These results highlight the potential of relating single crystal X-ray structural data with absolute kinetics from laser flash photolysis.
Zeeshan, Farrukh; Tabbassum, Misbah; Jorgensen, Lene; Medlicott, Natalie J
2018-02-01
Protein drugs may encounter conformational perturbations during the formulation processing of lipid-based solid dosage forms. In aqueous protein solutions, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can investigate these conformational changes following the subtraction of spectral interference of solvent with protein amide I bands. However, in solid dosage forms, the possible spectral contribution of lipid carriers to protein amide I band may be an obstacle to determine conformational alterations. The objective of this study was to develop an ATR FT-IR spectroscopic method for the analysis of protein secondary structure embedded in solid lipid matrices. Bovine serum albumin (BSA) was chosen as a model protein, while Precirol AT05 (glycerol palmitostearate, melting point 58 ℃) was employed as the model lipid matrix. Bovine serum albumin was incorporated into lipid using physical mixing, melting and mixing, or wet granulation mixing methods. Attenuated total reflection FT-IR spectroscopy and size exclusion chromatography (SEC) were performed for the analysis of BSA secondary structure and its dissolution in aqueous media, respectively. The results showed significant interference of Precirol ATO5 with BSA amide I band which was subtracted up to 90% w/w lipid content to analyze BSA secondary structure. In addition, ATR FT-IR spectroscopy also detected thermally denatured BSA solid alone and in the presence of lipid matrix indicating its suitability for the detection of denatured protein solids in lipid matrices. Despite being in the solid state, conformational changes occurred to BSA upon incorporation into solid lipid matrices. However, the extent of these conformational alterations was found to be dependent on the mixing method employed as indicated by area overlap calculations. For instance, the melting and mixing method imparted negligible effect on BSA secondary structure, whereas the wet granulation mixing method promoted more changes. Size exclusion chromatography analysis depicted the complete dissolution of BSA in the aqueous media employed in the wet granulation method. In conclusion, an ATR FT-IR spectroscopic method was successfully developed to investigate BSA secondary structure in solid lipid matrices following the subtraction of lipid spectral interference. The ATR FT-IR spectroscopy could further be applied to investigate the secondary structure perturbations of therapeutic proteins during their formulation development.
Emerging applications of spark plasma sintering in all solid-state lithium-ion batteries and beyond
NASA Astrophysics Data System (ADS)
Zhu, Hongzheng; Liu, Jian
2018-07-01
Solid-state batteries have received increasing attention due to their high safety aspect and high energy and power densities. However, the development of solid-state batteries is hindered by inferior solid-solid interfaces between the solid-state electrolyte and electrode, which cause high interfacial resistance, reduced Li-ion and electron transfer rate, and limited battery performance. Recently, spark plasma sintering (SPS) is emerging as a promising technique for fabricating solid-state electrolyte and electrode pellets with clean and intimate solid-solid interfaces. During the SPS process, the unique reaction mechanism through the combination of current, pressure and high heating rate allow the formation of desirable solid-solid interfaces between active material particles. Herein, this work focuses on the overview of the application of SPS for fabricating solid-state electrolyte and electrode in all solid-state Li-ion batteries, and beyond, such as solid-state Li-S and Na-ion batteries. The correlations among SPS parameters, interfacial resistance, and electrochemical properties of solid-state electrolytes and electrodes are discussed for different material systems. In the end, we point out future opportunities and challenges associated with SPS application in the hot area of solid-state batteries. It is expected that this timely review will stimulate more fundamental and applied research in the development of solid-state batteries by SPS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemus-Santana, A.A.; Rodriguez-Hernandez, J.; Institute of Materials Science and Technology, University of Havana
2011-08-15
The formation of T-pyz-Ni bridges (pyz=pyrazine) in the T[Ni(CN){sub 4}].2pyz series is known for T=Mn, Zn, Cd and Co but not with T=Fe, Ni. In this contribution the existence of such bridges also for T=Fe, Ni is discussed. The obtained pillared solids, T[Ni(CN){sub 4}].2pyz, were characterized from XRD, TG, UV-Vis, IR, Raman, Moessbauer and magnetic data. Their crystal structures were refined in the orthorhombic Pmna space group from XRD powder patterns. The structural behavior of these solids on cooling down to 77 K was also studied. In the 180-200 K temperature range the occurrence of a structural transition to amore » monoclinic structure (P2{sub 1}/c space group) was observed. No temperature induced spin transition was observed for Fe[Ni(CN){sub 4}].2pyz. The iron (II) was found to be in high spin electronic state and this configuration is preserved on cooling down to 2 K. The magnetic data indicate the occurrence of a low temperature weak anti-ferromagnetic interaction between T metal centers within the T[Ni(CN){sub 4}] layer. In the paramagnetic region for Ni[Ni(CN){sub 4}].2pyz, a reversible temperature induced spin transition for the inner Ni atom was detected. - Graphical abstract: Rippled sheets structure for the pillared solids T[Ni(CN){sub 4}].2pyz. The pyrazine molecule is found forming T-pyz-Ni bridges between neighboring layers. Highlights: > Pillared 2D solids. > Inorganic-organic solids. > Assembling of molecular blocks. > From 1D and 2D building blocks to 3D solids.« less
The investigation of solid slag obtained by neutralization of sewage sludge.
Kavaliauskas, Zydrunas; Valincius, Vitas; Stravinskas, Giedrius; Milieska, Mindaugas; Striugas, Nerijus
2015-11-01
The purpose of this research is to investigate the feasibility of utilizing the slag collected after gasification of organic fuel combined with sewage sludge. The residue left after gasification process is likely usable as raw material for production of supercondensers. The sewage sludge neutralization system consists of a dosing system (fuel tank), gasifier, plasma reactor, electrostatic filter, and heat exchangers. For the gasification process, dried solid sewage is supplied in proportion of 70% to biomass 30% by weight. The slag is collected in a specially designed chamber beneath the gasifier. A scanning electron microscope (SEM) was used to evaluate surface morphology of the samples. Elemental analysis of the sewage sludge slag was performed using the energy-dispersive spectroscopy (EDS) method, which showed different solid-state elements contained in the porous structure of the solid phase: carbon 29%, aluminum 26%, potassium 20%, chlorine 1%, and others. The specific surface area of the sewage sludge slag is 6.15 m(2)/g as the BET analysis shows. In order to use the slag as a secondary raw material, detailed analysis of the structure and properties is necessary for a decision on whether the slag left after gasification of sewage sludge is suitable for any further usages. Initial results indicate that the slag may be used for production of electrodes for supercapacitors. Every year thousands of tons of sewage sludge are formed in Lithuania. Sewage sludge consists of organic and inorganic compounds. Partial combustion, plasma decomposition, and other methods are used to neutralize the sewage sludge. The incineration of sewage sludge results in generation of solid-phase slag. In this paper the material structure and composition of a solid slag (formed during neutralization of sewage sludge) is considered. Also, the impact the ambient temperature on structure and composition of solid slag is analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.
Progress and prospect on failure mechanisms of solid-state lithium batteries
NASA Astrophysics Data System (ADS)
Ma, Jun; Chen, Bingbing; Wang, Longlong; Cui, Guanglei
2018-07-01
By replacing traditional liquid organic electrolyte with solid-state electrolyte, the solid-state lithium batteries powerfully come back to the energy storage field due to their eminent safety and energy density. In recent years, a variety of solid-state lithium batteries based on excellent solid-state electrolytes are developed. However, the performance degradation of solid-state lithium batteries during cycling and storing is still a serious challenge for practical application. Therefore, this review summarizes the research progress of solid-state lithium batteries from the perspectives of failure phenomena and failure mechanisms. Additionally, the development of methodologies on studying the failure mechanisms of solid-state lithium batteries is also reviewed. Moreover, some perspectives on the remaining questions for understanding the failure behaviors and achieving long cycle life, high safety and high energy density solid-state lithium batteries are presented. This review will help researchers to recognize the status of solid-state lithium batteries objectively and attract much more research interest in conquering the failure issues of solid-state lithium batteries.
Gowda, Vasantha; Laitinen, Risto S; Telkki, Ville-Veikko; Larsson, Anna-Carin; Antzutkin, Oleg N; Lantto, Perttu
2016-12-06
The molecular, crystal, and electronic structures as well as spectroscopic properties of a mononuclear heteroleptic lanthanum(iii) complex with diethyldithiocarbamate and 1,10-phenanthroline ligands (3 : 1) were studied by solid-state 13 C and 15 N cross-polarisation (CP) magic-angle-spinning (MAS) NMR, X-ray diffraction (XRD), and first principles density functional theory (DFT) calculations. A substantially different powder XRD pattern and 13 C and 15 N CP-MAS NMR spectra indicated that the title compound is not isostructural to the previously reported analogous rare earth complexes with the space group P2 1 /n. Both 13 C and 15 N CP-MAS NMR revealed the presence of six structurally different dithiocarbamate groups in the asymmetric unit cell, implying a non-centrosymmetric packing arrangement of molecules. This was supported by single-crystal X-ray crystallography showing that the title compound crystallised in the triclinic space group P1[combining macron]. In addition, the crystal structure also revealed that one of the dithiocarbamate ligands has a conformational disorder. NMR chemical shift calculations employing the periodic gauge including projector augmented wave (GIPAW) approach supported the assignment of the experimental 13 C and 15 N NMR spectra. However, the best correspondences were obtained with the structure where the atomic positions in the X-ray unit cell were optimised at the DFT level. The roles of the scalar and spin-orbit relativistic effects on NMR shielding were investigated using the zeroth-order regular approximation (ZORA) method with the outcome that already the scalar relativistic level qualitatively reproduces the experimental chemical shifts. The electronic properties of the complex were evaluated based on the results of the natural bond orbital (NBO) and topology of the electron density analyses. Overall, we apply a multidisciplinary approach acquiring comprehensive information about the solid-state structure and the metal-ligand bonding of the heteroleptic lanthanum complex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaozhou; Bond, Andrew D.; Johansson, Kristoffer E.
2014-08-01
The crystal structure of (Z)-N-(5-ethyl-2,3-di-hydro-1,3,4-thiadiazol-2-ylidene) -4-methylbenzenesulfonamide contains an imine tautomer, rather than the previously reported amine tautomer. The tautomers can be distinguished using dispersion-corrected density functional theory calculations and by comparison of calculated and measured {sup 13}C solid-state NMR spectra. The crystal structure of the title compound, C{sub 11}H{sub 13}N{sub 3}O{sub 2}S{sub 2}, has been determined previously on the basis of refinement against laboratory powder X-ray diffraction (PXRD) data, supported by comparison of measured and calculated {sup 13}C solid-state NMR spectra [Hangan et al. (2010 ▶). Acta Cryst. B66, 615–621]. The mol@@ecule is tautomeric, and was reported as an aminemore » tautomer [systematic name: N-(5-ethyl-1,3,4-thia@@diazol-2-yl)-p-toluene@@sulfonamide], rather than the correct imine tautomer. The protonation site on the mol@@ecule’s 1,3,4-thia@@diazole ring is indicated by the inter@@molecular contacts in the crystal structure: N—H⋯O hydrogen bonds are established at the correct site, while the alternative protonation site does not establish any notable inter molecular inter@@actions. The two tautomers provide essentially identical Rietveld fits to laboratory PXRD data, and therefore they cannot be directly distinguished in this way. However, the correct tautomer can be distinguished from the incorrect one by previously reported qu@@anti@@tative criteria based on the extent of structural distortion on optimization of the crystal structure using dispersion-corrected density functional theory (DFT-D) calculations. Calculation of the {sup 13}C SS-NMR spectrum based on the correct imine tautomer also provides considerably better agreement with the measured {sup 13}C SS-NMR spectrum.« less
Wan, Hongli; Mwizerwa, Jean Pierre; Qi, Xingguo; Liu, Xin; Xu, Xiaoxiong; Li, Hong; Hu, Yong-Sheng; Yao, Xiayin
2018-03-27
High ionic conductivity electrolyte and intimate interfacial contact are crucial factors to realize high-performance all-solid-state sodium batteries. Na 2.9 PS 3.95 Se 0.05 electrolyte with reduced particle size of 500 nm is first synthesized by a simple liquid-phase method and exhibits a high ionic conductivity of 1.21 × 10 -4 S cm -1 , which is comparable with that synthesized with a solid-state reaction. Meanwhile, a general interfacial architecture, that is, Na 2.9 PS 3.95 Se 0.05 electrolyte uniformly anchored on Fe 1- x S nanorods, is designed and successfully prepared by an in situ liquid-phase coating approach, forming core-shell structured Fe 1- x S@Na 2.9 PS 3.95 Se 0.05 nanorods and thus realizing an intimate contact interface. The Fe 1- x S@Na 2.9 PS 3.95 Se 0.05 /Na 2.9 PS 3.95 Se 0.05 /Na all-solid-state sodium battery demonstrates high specific capacity and excellent rate capability at room temperature, showing reversible discharge capacities of 899.2, 795.5, 655.1, 437.9, and 300.4 mAh g -1 at current densities of 20, 50, 100, 150, and 200 mA g -1 , respectively. The obtained all-solid-state sodium batteries show very high energy and power densities up to 910.6 Wh kg -1 and 201.6 W kg -1 based on the mass of Fe 1- x S at current densities of 20 and 200 mA g -1 , respectively. Moreover, the reaction mechanism of Fe 1- x S is confirmed by means of ex situ X-ray diffraction techniques, showing that partially reversible reaction occurs in the Fe 1- x S electrode after the second cycle, which gives the obtained all-solid-state sodium battery an exceptional cycling stability, exhibiting a high capacity of 494.3 mAh g -1 after cycling at 100 mA g -1 for 100 cycles. This contribution provides a strategy for designing high-performance room temperature all-solid-state sodium battery.
Yin, Xuezhi; Daintree, Linda Sharon; Ding, Sheng; Ledger, Daniel Mark; Wang, Bing; Zhao, Wenwen; Qi, Jianping; Wu, Wei; Han, Jiansheng
2015-01-01
This research aimed to develop a supercritical fluid (SCF) technique for preparing a particulate form of itraconazole (ITZ) with good dissolution and bioavailability characteristics. The ITZ particulate solid dispersion was formulated with hydroxypropyl methylcellulose, Pluronic F-127, and L-ascorbic acid. Aggregated particles showed porous structure when examined by scanning electron microscopy. Powder X-ray diffraction and Fourier transform infrared spectra indicated an interaction between ITZ and excipients and showed that ITZ existed in an amorphous state in the composite solid dispersion particles. The solid dispersion obtained by the SCF process improved the dissolution of ITZ in media of pH 1.0, pH 4.5, and pH 6.8, compared with a commercial product (Sporanox(®)), which could be ascribed to the porous aggregated particle shape and amorphous solid state of ITZ. While the solid dispersion did not show a statistical improvement (P=0.50) in terms of oral bioavailability of ITZ compared with Sporanox(®), the C max (the maximum plasma concentration of ITZ in a pharmacokinetic curve) of ITZ was raised significantly (P=0.03) after oral administration. Thus, the SCF process has been shown to be an efficient, single step process to form ITZ-containing solid dispersion particles with good dissolution and oral bioavailability characteristics.
Solid oxide fuel cells fueled with reducible oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, Steven S.; Fan, Liang Shih
A direct-electrochemical-oxidation fuel cell for generating electrical energy includes a cathode provided with an electrochemical-reduction catalyst that promotes formation of oxygen ions from an oxygen-containing source at the cathode, a solid-state reduced metal, a solid-state anode provided with an electrochemical-oxidation catalyst that promotes direct electrochemical oxidation of the solid-state reduced metal in the presence of the oxygen ions to produce electrical energy, and an electrolyte disposed to transmit the oxygen ions from the cathode to the solid-state anode. A method of operating a solid oxide fuel cell includes providing a direct-electrochemical-oxidation fuel cell comprising a solid-state reduced metal, oxidizing themore » solid-state reduced metal in the presence of oxygen ions through direct-electrochemical-oxidation to obtain a solid-state reducible metal oxide, and reducing the solid-state reducible metal oxide to obtain the solid-state reduced metal.« less
Protection of Advanced Electrical Power Systems from Atmospheric Electromagnetic Hazards.
1981-12-01
WORDS (Continue on reverse aide if neceeary and Identify by block number) Aircraft Induced Voltages Filters Composite Structures Lightning Transients...transients on the electrical systems of aircraft with metal or composite structures. These transients will be higher than the equipment inherent hardness... composite material in skin and structure. In addition, the advanced electrical power systems used in these aircraft will contain solid state components