Sample records for solid uranium oxide

  1. Oxygen potential of uranium--plutonium oxide as determined by controlled- atmosphere thermogravimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, Gerald C.

    1975-10-01

    The oxygen-to-metal atom ratio, or O/M, of solid solution uranium- plutonium oxide reactor fuel is a measure of the concentration of crystal defects in the oxide which affect many fuel properties, particularly, fuel oxygen potential. Fabrication of a high-temperature oxygen electrode, employing an electro-active tip of oxygen-deficient solid-state electrolyte, intended to confirm gaseous oxygen potentials is described. Uranium oxide and plutonium oxide O/M reference materials were prepared by in situ oxidation of high purity metals in the thermobalance. A solid solution uranium-plutonium oxide O/M reference material was prepared by alloying the uranium and plutonium metals in a yttrium oxide cruciblemore » at 1200°C and oxidizing with moist He at 250°C. The individual and solid solution oxides were isothermally equilibrated with controlled oxygen potentials between 800 and 1300°C and the equilibrated O/ M ratios calculated with corrections for impurities and buoyancy effects. Use of a reference oxygen potential of -100 kcal/mol to produce an O/M of 2.000 is confirmed by these results. However, because of the lengthy equilibration times required for all oxides, use of the O/M reference materials rather than a reference oxygen potential is recommended for O/M analysis methods calibrations.« less

  2. Separation of uranium from (Th,U)O.sub.2 solid solutions

    DOEpatents

    Chiotti, Premo; Jha, Mahesh Chandra

    1976-09-28

    Uranium is separated from mixed oxides of thorium and uranium by a pyrometallurgical process in which the oxides are mixed with a molten chloride salt containing thorium tetrachloride and thorium metal which reduces the uranium oxide to uranium metal which can then be recovered from the molten salt. The process is particularly useful for the recovery of uranium from generally insoluble high-density sol-gel thoria-urania nuclear reactor fuel pellets.

  3. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    DOEpatents

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  4. High Useful Yield and Isotopic Analysis of Uranium by Resonance Ionization Mass Spectrometry

    DOE PAGES

    Savina, Michael R.; Isselhardt, Brett H.; Kucher, Andrew; ...

    2017-05-09

    Useful yields from resonance ionization mass spectrometry can be extremely high compared to other mass spectrometry techniques, but uranium analysis shows strong matrix effects arising from the tendency of uranium to form strongly bound oxide molecules that do not dissociate appreciably on energetic ion bombardment. Here, we demonstrate a useful yield of 24% for metallic uranium. Modeling the laser ionization and ion transmission processes shows that the high useful yield is attributable to a high ion fraction achieved by resonance ionization. We quantify the reduction of uranium oxide surface layers by Ar + and Ga + sputtering. The useful yieldmore » for uranium atoms from a uranium dioxide matrix is 0.4% and rises to 2% when the surface is in sputter equilibrium with the ion beam. The lower useful yield from the oxide is almost entirely due to uranium oxide molecules reducing the neutral atom content of the sputtered flux. We also demonstrate rapid isotopic analysis of solid uranium oxide at a precision of <0.5% relative standard deviation using relatively broadband lasers to mitigate spectroscopic fractionation.« less

  5. High Useful Yield and Isotopic Analysis of Uranium by Resonance Ionization Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savina, Michael R.; Isselhardt, Brett H.; Kucher, Andrew

    Useful yields from resonance ionization mass spectrometry can be extremely high compared to other mass spectrometry techniques, but uranium analysis shows strong matrix effects arising from the tendency of uranium to form strongly bound oxide molecules that do not dissociate appreciably on energetic ion bombardment. Here, we demonstrate a useful yield of 24% for metallic uranium. Modeling the laser ionization and ion transmission processes shows that the high useful yield is attributable to a high ion fraction achieved by resonance ionization. We quantify the reduction of uranium oxide surface layers by Ar + and Ga + sputtering. The useful yieldmore » for uranium atoms from a uranium dioxide matrix is 0.4% and rises to 2% when the surface is in sputter equilibrium with the ion beam. The lower useful yield from the oxide is almost entirely due to uranium oxide molecules reducing the neutral atom content of the sputtered flux. We also demonstrate rapid isotopic analysis of solid uranium oxide at a precision of <0.5% relative standard deviation using relatively broadband lasers to mitigate spectroscopic fractionation.« less

  6. Direct electrochemical reduction of solid uranium oxide in molten fluoride salts

    NASA Astrophysics Data System (ADS)

    Gibilaro, Mathieu; Cassayre, Laurent; Lemoine, Olivier; Massot, Laurent; Dugne, Olivier; Malmbeck, Rikard; Chamelot, Pierre

    2011-07-01

    The direct electrochemical reduction of UO 2 solid pellets was carried out in LiF-CaF 2 (+2 mass.% Li 2O) at 850 °C. An inert gold anode was used instead of the usual reactive sacrificial carbon anode. In this case, oxidation of oxide ions present in the melt yields O 2 gas evolution on the anode. Electrochemical characterisations of UO 2 pellets were performed by linear sweep voltammetry at 10 mV/s and reduction waves associated to oxide direct reduction were observed at a potential 150 mV more positive in comparison to the solvent reduction. Subsequent, galvanostatic electrolyses runs were carried out and products were characterised by SEM-EDX, EPMA/WDS, XRD and microhardness measurements. In one of the runs, uranium oxide was partially reduced and three phases were observed: nonreduced UO 2 in the centre, pure metallic uranium on the external layer and an intermediate phase representing the initial stage of reduction taking place at the grain boundaries. In another run, the UO 2 sample was fully reduced. Due to oxygen removal, the U matrix had a typical coral-like structure which is characteristic of the pattern observed after the electroreduction of solid oxides.

  7. Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel

    DOEpatents

    Herrmann, Steven Douglas

    2014-05-27

    Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.

  8. Uranium Bio-accumulation and Cycling as revealed by Uranium Isotopes in Naturally Reduced Sediments from the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Lefebvre, Pierre; Noël, Vincent; Jemison, Noah; Weaver, Karrie; Bargar, John; Maher, Kate

    2016-04-01

    Uranium (U) groundwater contamination following oxidized U(VI) releases from weathering of mine tailings is a major concern at numerous sites across the Upper Colorado River Basin (CRB), USA. Uranium(IV)-bearing solids accumulated within naturally reduced zones (NRZs) characterized by elevated organic carbon and iron sulfide compounds. Subsequent re-oxidation of U(IV)solid to U(VI)aqueous then controls the release to groundwater and surface water, resulting in plume persistence and raising public health concerns. Thus, understanding the extent of uranium oxidation and reduction within NRZs is critical for assessing the persistence of the groundwater contamination. In this study, we measured solid-phase uranium isotope fractionation (δ238/235U) of sedimentary core samples from four study sites (Shiprock, NM, Grand Junction, Rifle and Naturita, CO) using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS). We observe a strong correlation between U accumulation and the extent of isotopic fractionation, with Δ238U up to +1.8 ‰ between uranium-enriched and low concentration zones. The enrichment in the heavy isotopes within the NRZs appears to be especially important in the vadose zone, which is subject to variations in water table depth. According to previous studies, this isotopic signature is consistent with biotic reduction processes associated with metal-reducing bacteria. Positive correlations between the amount of iron sulfides and the accumulation of reduced uranium underline the importance of sulfate-reducing conditions for U(IV) retention. Furthermore, the positive fractionation associated with U reduction observed across all sites despite some variations in magnitude due to site characteristics, shows a regional trend across the Colorado River Basin. The maximum extent of 238U enrichment observed in the NRZ proximal to the water table further suggests that the redox cycling of uranium, with net release of U(VI) to the groundwater by non-fractionating oxidation, is occurring within this zone. Thus, release of uranium from the NRZs may play a critical role in the persistence of groundwater contamination at these sites.

  9. Dissolution of uranium oxides from simulated environmental swipes using ammonium bifluoride

    DOE PAGES

    Meyers, Lisa A.; Yoshida, Thomas M.; Chamberlin, Rebecca M.; ...

    2016-11-01

    We developed an analytical chemistry method to quantitatively recover microgram quanties of solid uranium oxides from swipe media using ammonium bifluoride (ABF, NH 4HF 2) solution. Recovery of uranium from surrogate swipe media (filter paper) was demonstrated at initial uranium loading levels between 3 and 20 µg filter -1. Moreover, the optimal conditions for extracting U 3O 8 and UO 2 are using 1 % ABF solution and incubating at 80 °C for one hour. The average uranium recoveries are 100 % for U 3O 8, and 90 % for UO 2. Finally, with this method, uranium concentration as lowmore » as 3 µg filter -1 can be recovered for analysis.« less

  10. A review of the high temperature oxidation of uranium oxides in molten salts and in the solid state to form alkali metal uranates, and their composition and properties

    NASA Astrophysics Data System (ADS)

    Griffiths, Trevor R.; Volkovich, Vladimir A.

    An extensive review of the literature on the high temperature reactions (both in melts and in the solid state) of uranium oxides (UO 2, U 3O 8 and UO 3) resulting in the formation of insoluble alkali metal (Li to Cs) uranates is presented. Their uranate(VI) and uranate(V) compounds are examined, together with mixed and oxygen-deficient uranates. The reactions of uranium oxides with carbonates, oxides, per- and superoxides, chlorides, sulfates, nitrates and nitrites under both oxidising and non-oxidising conditions are critically examined and systematised, and the established compositions of a range of uranate(VI) and (V) compounds formed are discussed. Alkali metal uranates(VI) are examined in detail and their structural, physical, thermodynamic and spectroscopic properties considered. Chemical properties of alkali metal uranates(VI), including various methods for their reduction, are also reported. Errors in the current theoretical treatment of uranate(VI) spectra are identified and the need to develop routes for the preparation of single crystals is stressed.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombardo, N.J.; Marseille, T.J.; White, M.D.

    TRUMP-BD (Boil Down) is an extension of the TRUMP (Edwards 1972) computer program for the analysis of nuclear fuel assemblies under severe accident conditions. This extension allows prediction of the heat transfer rates, metal-water oxidation rates, fission product release rates, steam generation and consumption rates, and temperature distributions for nuclear fuel assemblies under core uncovery conditions. The heat transfer processes include conduction in solid structures, convection across fluid-solid boundaries, and radiation between interacting surfaces. Metal-water reaction kinetics are modeled with empirical relationships to predict the oxidation rates of steam-exposed Zircaloy and uranium metal. The metal-water oxidation models are parabolic inmore » form with an Arrhenius temperature dependence. Uranium oxidation begins when fuel cladding failure occurs; Zircaloy oxidation occurs continuously at temperatures above 13000{degree}F when metal and steam are available. From the metal-water reactions, the hydrogen generation rate, total hydrogen release, and temporal and spatial distribution of oxide formations are computed. Consumption of steam from the oxidation reactions and the effect of hydrogen on the coolant properties is modeled for independent coolant flow channels. Fission product release from exposed uranium metal Zircaloy-clad fuel is modeled using empirical time and temperature relationships that consider the release to be subject to oxidation and volitization/diffusion ( bake-out'') release mechanisms. Release of the volatile species of iodine (I), tellurium (Te), cesium (Ce), ruthenium (Ru), strontium (Sr), zirconium (Zr), cerium (Cr), and barium (Ba) from uranium metal fuel may be modeled.« less

  12. A physical model for evaluating uranium nitride specific heat

    NASA Astrophysics Data System (ADS)

    Baranov, V. G.; Devyatko, Yu. N.; Tenishev, A. V.; Khlunov, A. V.; Khomyakov, O. V.

    2013-03-01

    Nitride fuel is one of perspective materials for the nuclear industry. But unlike the oxide and carbide uranium and mixed uranium-plutonium fuel, the nitride fuel is less studied. The present article is devoted to the development of a model for calculating UN specific heat on the basis of phonon spectrum data within the solid state theory.

  13. Study the oxidation kinetics of uranium using XRD and Rietveld method

    NASA Astrophysics Data System (ADS)

    Zhang, Yanzhi; Guan, Weijun; Wang, Qinguo; Wang, Xiaolin; Lai, Xinchun; Shuai, Maobing

    2010-03-01

    The surface oxidation of uranium metal has been studied by X-ray diffraction (XRD) and Rietveld method in the range of 50~300°C in air. The oxidation processes are analyzed by XRD to determine the extent of surface oxidation and the oxide structure. The dynamics expression for the formation of UO2 was derived. At the beginning, the dynamic expression was nonlinear, but switched to linear subsequently for uranium in air and humid oxygen. That is, the growth kinetics of UO2 can be divided into two stages: nonlinear portion and linear portion. Using the kinetic data of linear portion, the activation energy of reaction between uranium and air was calculated about 46.0 kJ/mol. However the content of oxide as a function of time was linear in humid helium ambience. Contrast the dynamics results, it prove that the absence of oxygen would accelerate the corrosion rate of uranium in the humid gas. We can find that the XRD and Rietveld method are a useful convenient method to estimate the kinetics and thermodynamics of solid-gas reaction.

  14. Determining the release of radionuclides from tank waste residual solids. FY2015 report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, William D.; Hobbs, David T.

    Methodology development for pore water leaching studies has been continued to support Savannah River Site High Level Waste tank closure efforts. For FY2015, the primary goal of this testing was the achievement of target pH and Eh values for pore water solutions representative of local groundwater in the presence of grout or grout-representative (CaCO 3 or FeS) solids as well as waste surrogate solids representative of residual solids expected to be present in a closed tank. For oxidizing conditions representative of a closed tank after aging, a focus was placed on using solid phases believed to be controlling pH andmore » E h at equilibrium conditions. For three pore water conditions (shown below), the target pH values were achieved to within 0.5 pH units. Tank 18 residual surrogate solids leaching studies were conducted over an E h range of approximately 630 mV. Significantly higher Eh values were achieved for the oxidizing conditions (ORII and ORIII) than were previously observed. For the ORII condition, the target Eh value was nearly achieved (within 50 mV). However, E h values observed for the ORIII condition were approximately 160 mV less positive than the target. E h values observed for the RRII condition were approximately 370 mV less negative than the target. Achievement of more positive and more negative E h values is believed to require the addition of non-representative oxidants and reductants, respectively. Plutonium and uranium concentrations measured during Tank 18 residual surrogate solids leaching studies under these conditions (shown below) followed the general trends predicted for plutonium and uranium oxide phases, assuming equilibrium with dissolved oxygen. The highest plutonium and uranium concentrations were observed for the ORIII condition and the lowest concentrations were observed for the RRII condition. Based on these results, it is recommended that these test methodologies be used to conduct leaching studies with actual Tank 18 residual solids material. Actual waste testing will include leaching evaluations of technetium and neptunium, as well as plutonium and uranium.« less

  15. CHEMICAL DIFFERENCES BETWEEN SLUDGE SOLIDS AT THE F AND H AREA TANK FARMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reboul, S.

    2012-08-29

    The primary source of waste solids received into the F Area Tank Farm (FTF) was from PUREX processing performed to recover uranium and plutonium from irradiated depleted uranium targets. In contrast, two primary sources of waste solids were received into the H Area Tank Farm (HTF): a) waste from PUREX processing; and b) waste from H-modified (HM) processing performed to recover uranium and neptunium from burned enriched uranium fuel. Due to the differences between the irradiated depleted uranium targets and the burned enriched uranium fuel, the average compositions of the F and H Area wastes are markedly different from onemore » another. Both F and H Area wastes contain significant amounts of iron and aluminum compounds. However, because the iron content of PUREX waste is higher than that of HM waste, and the aluminum content of PUREX waste is lower than that of HM waste, the iron to aluminum ratios of typical FTF waste solids are appreciably higher than those of typical HTF waste solids. Other constituents present at significantly higher concentrations in the typical FTF waste solids include uranium, nickel, ruthenium, zinc, silver, cobalt and copper. In contrast, constituents present at significantly higher concentrations in the typical HTF waste solids include mercury, thorium, oxalate, and radionuclides U-233, U-234, U-235, U-236, Pu-238, Pu-242, Cm-244, and Cm-245. Because of the higher concentrations of Pu-238 in HTF, the long-term concentrations of Th-230 and Ra-226 (from Pu-238 decay) will also be higher in HTF. The uranium and plutonium distributions of the average FTF waste were found to be consistent with depleted uranium and weapons grade plutonium, respectively (U-235 comprised 0.3 wt% of the FTF uranium, and Pu-240 comprised 6 wt% of the FTF plutonium). In contrast, at HTF, U-235 comprised 5 wt% of the uranium, and Pu-240 comprised 17 wt% of the plutonium, consistent with enriched uranium and high burn-up plutonium. X-ray diffraction analyses of various FTF and HTF samples indicated that the primary crystalline compounds of iron in sludge solids are Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, and FeO(OH), and the primary crystalline compounds of aluminum are Al(OH){sub 3} and AlO(OH). Also identified were carbonate compounds of calcium, magnesium, and sodium; a nitrated sodium aluminosilicate; and various uranium compounds. Consistent with expectations, oxalate compounds were identified in solids associated with oxalic acid cleaning operations. The most likely oxidation states and chemical forms of technetium are assessed in the context of solubility, since technetium-99 is a key risk driver from an environmental fate and transport perspective. The primary oxidation state of technetium in SRS sludge solids is expected to be Tc(IV). In salt waste, the primary oxidation state is expected to be Tc(VII). The primary form of technetium in sludge is expected to be a hydrated technetium dioxide, TcO{sub 2} {center_dot} xH{sub 2}O, which is relatively insoluble and likely co-precipitated with iron. In salt waste solutions, the primary form of technetium is expected to be the very soluble pertechnetate anion, TcO{sub 4}{sup -}. The relative differences between the F and H Tank Farm waste provide a basis for anticipating differences that will occur as constituents of FTF and HTF waste residue enter the environment over the long-term future. If a constituent is significantly more dominant in one of the Tank Farms, its long-term environmental contribution will likely be commensurately higher, assuming the environmental transport conditions of the two Tank Farms share some commonality. It is in this vein that the information cited in this document is provided - for use during the generation, assessment, and validation of Performance Assessment modeling results.« less

  16. Spent nuclear fuel recycling with plasma reduction and etching

    DOEpatents

    Kim, Yong Ho

    2012-06-05

    A method of extracting uranium from spent nuclear fuel (SNF) particles is disclosed. Spent nuclear fuel (SNF) (containing oxides of uranium, oxides of fission products (FP) and oxides of transuranic (TRU) elements (including plutonium)) are subjected to a hydrogen plasma and a fluorine plasma. The hydrogen plasma reduces the uranium and plutonium oxides from their oxide state. The fluorine plasma etches the SNF metals to form UF6 and PuF4. During subjection of the SNF particles to the fluorine plasma, the temperature is maintained in the range of 1200-2000 deg K to: a) allow any PuF6 (gas) that is formed to decompose back to PuF4 (solid), and b) to maintain stability of the UF6. Uranium (in the form of gaseous UF6) is easily extracted and separated from the plutonium (in the form of solid PuF4). The use of plasmas instead of high temperature reactors or flames mitigates the high temperature corrosive atmosphere and the production of PuF6 (as a final product). Use of plasmas provide faster reaction rates, greater control over the individual electron and ion temperatures, and allow the use of CF4 or NF3 as the fluorine sources instead of F2 or HF.

  17. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    DOEpatents

    Willit, James L [Ratavia, IL

    2007-09-11

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  18. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    DOEpatents

    Willit, James L [Batavia, IL

    2010-09-21

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  19. Reactive transport modeling at uranium in situ recovery sites: uncertainties in uranium sorption on iron hydroxides

    USGS Publications Warehouse

    Johnson, Raymond H.; Tutu, Hlanganani; Brown, Adrian; Figueroa, Linda; Wolkersdorfer, Christian

    2013-01-01

    Geochemical changes that can occur down gradient from uranium in situ recovery (ISR) sites are important for various stakeholders to understand when evaluating potential effects on surrounding groundwater quality. If down gradient solid-phase material consists of sandstone with iron hydroxide coatings (no pyrite or organic carbon), sorption of uranium on iron hydroxides can control uranium mobility. Using one-dimensional reactive transport models with PHREEQC, two different geochemical databases, and various geochemical parameters, the uncertainties in uranium sorption on iron hydroxides are evaluated, because these oxidized zones create a greater risk for future uranium transport than fully reduced zones where uranium generally precipitates.

  20. Thermal properties of nonstoichiometry uranium dioxide

    NASA Astrophysics Data System (ADS)

    Kavazauri, R.; Pokrovskiy, S. A.; Baranov, V. G.; Tenishev, A. V.

    2016-04-01

    In this paper, was developed a method of oxidation pure uranium dioxide to a predetermined deviation from the stoichiometry. Oxidation was carried out using the thermogravimetric method on NETZSCH STA 409 CD with a solid electrolyte galvanic cell for controlling the oxygen potential of the environment. 4 samples uranium oxide were obtained with a different ratio of oxygen-to-metal: O / U = 2.002, O / U = 2.005, O / U = 2.015, O / U = 2.033. For the obtained samples were determined basic thermal characteristics of the heat capacity, thermal diffusivity, thermal conductivity. The error of heat capacity determination is equal to 5%. Thermal diffusivity and thermal conductivity of the samples decreased with increasing deviation from stoichiometry. For the sample with O / M = 2.033, difference of both values with those of stoichiometric uranium dioxide is close to 50%.

  1. Extraction of uranium from tailings by sulfuric acid leaching with oxidants

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Li, Mi; Zhang, Xiaowen; Huang, Chunmei; Wu, Xiaoyan

    2017-06-01

    Recovery of uranium have been performed by leaching uranium-containing tailings in sulfuric acid system with the assistance of HF, HClO4, H2O2 and MnO2. The effect of reagent dosage, sulfuric acid concentration, Liquid/solid ratio, reaction temperature and particle size on the leaching of uranium were investigated. The results show that addiction of HF, HClO4, H2O2 and MnO2 significantly increased the extraction of uranium under 1M sulphuric acid condition and under the optimum reaction conditions a dissolution fraction of 85% by HClO4, 90% by HF, 95% by H2O2 can be reached respectively. The variation of technological mineralogy properites of tailings during leaching process show that the assistants can break gangue effectively. These observations suggest that optimum oxidants could potentially influence the extraction of uranium from tailings even under dilute acid condition.

  2. Synchrotron X-ray characterization of mackinawite and uraninite relevant to bio-remediation of groundwater contaminated with uranium

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Hyun, S.; Hayes, K. F.

    2010-12-01

    Uranium (U) originating from mining operations for weapon manufacturing and nuclear energy production is a significant radionuclide contaminant in groundwater local to uranium mining, uranium milling, and uranium mill tailing (UMT) storage sites. In the USA, the Department of Energy (DOE) is currently overseeing approximately 24 Uranium Mill Tailing Remediation Action (UMTRA) sites which have collectively processed over 27 million tons of uranium ore1,2. In-Situ microbial bio-reduction of the highly mobile U6+ ion into the dramatically less mobile U4+ ion has been demonstrated as an effective remedial process to inhibit uranium migration in the aqueous phase3. The resistance of this process to oxidization and possible remobilization of U when bioremediation stops (and oxidants such as oxygen from the air or nitrate in water diffuse into the formation) in the long term is not known. UMTRA site studies3 have shown that iron sulfide solids are produced by sulfate reducing bacteria (SRB) during U bioremediation, and some forms of these iron sulfide solids are known to be effective oxidant scavengers, potentially protecting against re-oxidation and thus remobilization of U. This work is investigating the role of iron sulfide solids in the long-term immobilization of reduced U compounds after bioremediation is completed in groundwater local to UMTRA sites. Re-oxidation tests are being performed in packed media columns loaded with both FeS and U solids. High quality mackinawite (FeS), and uraninite (UO2) have been synthesized in our laboratory via a wet chemistry approach. These synthetic materials are expected to mimic the naturally occurring and biogenic materials present in biologically stimulated UMTRA sites. In order to establish the initial conditions of the prepared experimental columns and to compare synthetic and biogenic FeS and UO2, these synthesized materials have been characterized with synchrotron radiation at the Stanford Synchrotron Radiation Lightsource using synchrotron x-ray powder diffraction (SXRD) and extended x-ray absorption fine structure (EXAFS). SXRD data were collected and analyzed with profile fitting to determine lattice parameters and crystallite size for comparison with published values for both biogenic and synthetic materials. This is particularly of interest for UO2, as there is very little information on particle size and lattice parameters for synthetic UO2 in the literature. Profile fitting of the SXRD data for FeS gives lattice parameters of a = b = 3.668 and a mean crystallite size of 5 to 8 nm. Both of these values are in good agreement with published values. For fresh UO2, lattice parameters were determined as a = b = c = 5.4 nm for both freshly synthesized and aged (3 months) UO2 and particle size was determined to be 3.5 nm for fresh UO2 and 5.83 nm for aged UO2. This suggests a growth mechanism for crystallites over time, and an inferred decrease in reactivity.

  3. 4. VIEW OF ROOM 103 IN 1980. SIX OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF ROOM 103 IN 1980. SIX OF THE NINE URANIUM NITRATE STORAGE TANKS ARE SHOWN. HIGHLY ENRICHED URANIUM WAS INTRODUCED INTO THE BUILDING IN THE SUMMER OF 1965 AND THE FIRST EXPERIMENTS WERE PERFORMED IN SEPTEMBER OF 1965. EXPERIMENTS WERE PERFORMED ON ENRICHED URANIUM METAL AND SOLUTION, PLUTONIUM METAL, LOW ENRICHED URANIUM OXIDE, AND SEVERAL SPECIAL APPLICATIONS. AFTER 1983, EXPERIMENTS WERE CONDUCTED PRIMARILY WITH URANYL NITRATE SOLUTIONS, AND DID NOT INVOLVE SOLID MATERIALS. - Rocky Flats Plant, Critical Mass Laboratory, Intersection of Central Avenue & 86 Drive, Golden, Jefferson County, CO

  4. Recovery of fissile materials from nuclear wastes

    DOEpatents

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  5. An Ultrastable Heterobimetallic Uranium(IV)/Vanadium(III) Solid Compound Protected by a Redox-Active Phosphite Ligand: Crystal Structure, Oxidative Dissolution, and First-Principles Simulation.

    PubMed

    Gui, Daxiang; Dai, Xing; Zheng, Tao; Wang, Xiangxiang; Silver, Mark A; Chen, Lanhua; Zhang, Chao; Diwu, Juan; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao

    2018-02-05

    The first heterobimetallic uranium(IV)/vanadium(III) phosphite compound, Na 2 UV 2 (HPO 3 ) 6 (denoted as UVP), was synthesized via an in situ redox-active hydrothermal reaction. It exhibits superior hydrolytic and antioxidant stability compared to the majority of structures containing low-valent uranium or vanadium, further elucidated by first-principles simulations, and therefore shows potential applications in nuclear waste management.

  6. Uniform deposition of uranium hexafluoride (UF6): Standardized mass deposits and controlled isotopic ratios using a thermal fluorination method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNamara, Bruce K.; O’Hara, Matthew J.; Casella, Andrew M.

    2016-07-01

    Abstract: We report a convenient method for the generation of volatile uranium hexafluoride (UF6) from solid uranium oxides and other uranium compounds, followed by uniform deposition of low levels of UF6 onto sampling coupons. Under laminar flow conditions, UF6 is shown to interact with surfaces within the chamber to a highly predictable degree. We demonstrate the preparation of uranium deposits that range between ~0.01 and 470±34 ng∙cm-2. The data suggest the method can be extended to creating depositions at the sub-picogram∙cm-2 level. Additionally, the isotopic composition of the deposits can be customized by selection of the uranium source materials. Wemore » demonstrate a layering technique whereby two uranium solids, each with a different isotopic composition, are employed to form successive layers of UF6 on a surface. The result is an ultra-thin deposit of UF6 that bears an isotopic signature that is a composite of the two uranium sources. The reported deposition method has direct application to the development of unique analytical standards for nuclear safeguards and forensics.« less

  7. Apparatus and process for the electrolytic reduction of uranium and plutonium oxides

    DOEpatents

    Poa, David S.; Burris, Leslie; Steunenberg, Robert K.; Tomczuk, Zygmunt

    1991-01-01

    An apparatus and process for reducing uranium and/or plutonium oxides to produce a solid, high-purity metal. The apparatus is an electrolyte cell consisting of a first container, and a smaller second container within the first container. An electrolyte fills both containers, the level of the electrolyte in the first container being above the top of the second container so that the electrolyte can be circulated between the containers. The anode is positioned in the first container while the cathode is located in the second container. Means are provided for passing an inert gas into the electrolyte near the lower end of the anode to sparge the electrolyte and to remove gases which form on the anode during the reduction operation. Means are also provided for mixing and stirring the electrolyte in the first container to solubilize the metal oxide in the electrolyte and to transport the electrolyte containing dissolved oxide into contact with the cathode in the second container. The cell is operated at a temperature below the melting temperature of the metal product so that the metal forms as a solid on the cathode.

  8. METHOD OF COMBINING HYDROGEN AND OXYGEN

    DOEpatents

    McBride, J.P.

    1962-02-27

    A method is given for the catalytic recombination of radiolytic hydrogen and/or deulerium and oxygen resulting from the subjection or an aqueous thorium oxide or thorium oxide-uranium oxide slurry to ionizing radiation. An improved catalyst is prepared by providing paliadium nitrate in an aqueous thorium oxide sol at a concentration of at least 0.05 grams per gram of thorium oxide and contacting the sol with gaseous hydrogen to form flocculated solids. The solids are then recovered and added to the slurry to provide a palladium concentration of 100 to 1000 parts per million. Recombination is effected by the calalyst at a rate sufficient to support high nuclear reactor power densities. (AEC)

  9. Newly recognized hosts for uranium in the Hanford Site vadose zone

    USGS Publications Warehouse

    Stubbs, J.E.; Veblen, L.A.; Elbert, D.C.; Zachara, J.M.; Davis, J.A.; Veblen, D.R.

    2009-01-01

    Uranium contaminated sediments from the U.S. Department of Energy's Hanford Site have been investigated using electron microscopy. Six classes of solid hosts for uranium were identified. Preliminary sediment characterization was carried out using optical petrography, and electron microprobe analysis (EMPA) was used to locate materials that host uranium. All of the hosts are fine-grained and intergrown with other materials at spatial scales smaller than the analytical volume of the electron microprobe. A focused ion beam (FIB) was used to prepare electron-transparent specimens of each host for the transmission electron microscope (TEM). The hosts were identified as: (1) metatorbernite [Cu(UO2)2(PO4)2??8H2O]; (2) coatings on sediment clasts comprised mainly of phyllosilicates; (3) an amorphous zirconium (oxyhydr)oxide found in clast coatings; (4) amorphous and poorly crystalline materials that line voids within basalt lithic fragments; (5) amorphous palagonite surrounding fragments of basaltic glass; and (6) Fe- and Mn-oxides. These findings demonstrate the effectiveness of combining EMPA, FIB, and TEM to identify solid-phase contaminant hosts. Furthermore, they highlight the complexity of U geochemistry in the Hanford vadose zone, and illustrate the importance of microscopic transport in controlling the fate of contaminant metals in the environment. ?? 2008 Elsevier Ltd.

  10. In situ mobility of uranium in the presence of nitrate following sulfate-reducing conditions.

    PubMed

    Paradis, Charles J; Jagadamma, Sindhu; Watson, David B; McKay, Larry D; Hazen, Terry C; Park, Melora; Istok, Jonathan D

    2016-04-01

    Reoxidation and mobilization of previously reduced and immobilized uranium by dissolved-phase oxidants poses a significant challenge for remediating uranium-contaminated groundwater. Preferential oxidation of reduced sulfur-bearing species, as opposed to reduced uranium-bearing species, has been demonstrated to limit the mobility of uranium at the laboratory scale yet field-scale investigations are lacking. In this study, the mobility of uranium in the presence of nitrate oxidant was investigated in a shallow groundwater system after establishing conditions conducive to uranium reduction and the formation of reduced sulfur-bearing species. A series of three injections of groundwater (200 L) containing U(VI) (5 μM) and amended with ethanol (40 mM) and sulfate (20 mM) were conducted in ten test wells in order to stimulate microbial-mediated reduction of uranium and the formation of reduced sulfur-bearing species. Simultaneous push-pull tests were then conducted in triplicate well clusters to investigate the mobility of U(VI) under three conditions: 1) high nitrate (120 mM), 2) high nitrate (120 mM) with ethanol (30 mM), and 3) low nitrate (2 mM) with ethanol (30 mM). Dilution-adjusted breakthrough curves of ethanol, nitrate, nitrite, sulfate, and U(VI) suggested that nitrate reduction was predominantly coupled to the oxidation of reduced-sulfur bearing species, as opposed to the reoxidation of U(IV), under all three conditions for the duration of the 36-day tests. The amount of sulfate, but not U(VI), recovered during the push-pull tests was substantially more than injected, relative to bromide tracer, under all three conditions and further suggested that reduced sulfur-bearing species were preferentially oxidized under nitrate-reducing conditions. However, some reoxidation of U(IV) was observed under nitrate-reducing conditions and in the absence of detectable nitrate and/or nitrite. This suggested that reduced sulfur-bearing species may not be fully effective at limiting the mobility of uranium in the presence of dissolved and/or solid-phase oxidants. The results of this field study confirmed those of previous laboratory studies which suggested that reoxidation of uranium under nitrate-reducing conditions can be substantially limited by preferential oxidation of reduced sulfur-bearing species. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. In situ mobility of uranium in the presence of nitrate following sulfate-reducing conditions

    DOE PAGES

    Paradis, Charles J.; Jagadamma, Sindhu; Watson, David B.; ...

    2016-02-11

    Reoxidation and mobilization of previously reduced and immobilized uranium by dissolved phase oxidants poses a significant challenge for remediating uranium-contaminated groundwater. Preferential oxidation of reduced sulfur-bearing species, as opposed to reduced uranium bearing species, has been demonstrated to limit the mobility of uranium at the laboratory scale yet field-scale investigations are lacking. Here in this study, the mobility of uranium in the presence of nitrate oxidant was investigated in a shallow groundwater system after establishing conditions conducive to uranium reduction and the formation of reduced sulfur-bearing species. A series of three injections of groundwater (200 L) containing U(VI) (5 μM)more » and amended with ethanol (40 mM) and sulfate (20 mM) were conducted in ten test wells in order to stimulate microbial mediated reduction of uranium and the formation of reduced sulfur-bearing species. Simultaneous push-pull tests were then conducted in triplicate well clusters to investigate the mobility of U(VI) under three conditions: 1) high nitrate (120 mM), 2) high nitrate (120 mM) with ethanol (30 mM), and 3) low nitrate (2 mM) with ethanol (30 mM). Dilution-adjusted breakthrough curves of ethanol, nitrate, nitrite, sulfate, and U(VI) suggested that nitrate reduction was predominantly coupled to the oxidation of reduced-sulfur bearing species, as opposed to the reoxidation of U(IV), under all three conditions for the duration of the 36-day tests. The amount of sulfate, but not U(VI), recovered during the push-pull tests was substantially more than injected, relative to bromide tracer, under all three conditions and further suggested that reduced sulfur-bearing species were preferentially oxidized under nitrate-reducing conditions. However, some reoxidation of U(IV) was observed under nitrate-reducing conditions and in the absence of detectable nitrate and/or nitrite. This suggested that reduced sulfur-bearing species may not be fully effective at limiting the mobility of uranium in the presence of dissolved and/or solid-phase oxidants. Lastly, the results of this field study confirmed those of previous laboratory studies which suggested that reoxidation of uranium under nitrate-reducing conditions can be substantially limited by preferential oxidation of reduced sulfur-bearing species.« less

  12. Transportability Class of Americium in K Basin Sludge under Ambient and Hydrothermal Processing Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.; Schmitt, Bruce E.; Schmidt, Andrew J.

    2006-08-01

    This report establishes the technical bases for using a ''slow uptake'' instead of a ''moderate uptake'' transportability class for americium-241 (241Am) for the K Basin Sludge Treatment Project (STP) dose consequence analysis. Slow uptake classes are used for most uranium and plutonium oxides. A moderate uptake class has been used in prior STP analyses for 241Am based on the properties of separated 241Am and its associated oxide. However, when 241Am exists as an ingrown progeny (and as a small mass fraction) within plutonium mixtures, it is appropriate to assign transportability factors of the predominant plutonium mixtures (typically slow) to themore » Am241. It is argued that the transportability factor for 241Am in sludge likewise should be slow because it exists as a small mass fraction as the ingrown progeny within the uranium oxide in sludge. In this report, the transportability class assignment for 241Am is underpinned with radiochemical characterization data on K Basin sludge and with studies conducted with other irradiated fuel exposed to elevated temperatures and conditions similar to the STP. Key findings and conclusions from evaluation of the characterization data and published literature are summarized here. Plutonium and 241Am make up very small fractions of the uranium within the K Basin sludge matrix. Plutonium is present at about 1 atom per 500 atoms of uranium and 241Am at about 1 atom per 19000 of uranium. Plutonium and americium are found to remain with uranium in the solid phase in all of the {approx}60 samples taken and analyzed from various sources of K Basin sludge. The uranium-specific concentrations of plutonium and americium also remain approximately constant over a uranium concentration range (in the dry sludge solids) from 0.2 to 94 wt%, a factor of {approx}460. This invariability demonstrates that 241Am does not partition from the uranium or plutonium fraction for any characterized sludge matrix. Most of the K Basin sludge characterization data is derived spent nuclear fuel corroded within the K Basins at 10-15?C. The STP process will place water-laden sludges from the K Basin in process vessels at {approx}150-180 C. Therefore, published studies with other irradiated (uranium oxide) fuel were examined. From these studies, the affinity of plutonium and americium for uranium in irradiated UO2 also was demonstrated at hydrothermal conditions (150 C anoxic liquid water) approaching those proposed for the STP process and even for hydrothermal conditions outside of the STP operating envelope (e.g., 150 C oxic and 100 C oxic and anoxic liquid water). In summary, by demonstrating that the chemical and physical behavior of 241Am in the sludge matrix is similar to that of the predominant species (uranium and for the plutonium from which it originates), a technical basis is provided for using the slow uptake transportability factor for 241Am that is currently used for plutonium and uranium oxides. The change from moderate to slow uptake for 241Am could reduce the overall analyzed dose consequences for the STP by more than 30%.« less

  13. Long-term in situ oxidation of biogenic uraninite in an alluvial aquifer: impact of dissolved oxygen and calcium.

    PubMed

    Lezama-Pacheco, Juan S; Cerrato, José M; Veeramani, Harish; Alessi, Daniel S; Suvorova, Elena; Bernier-Latmani, Rizlan; Giammar, Daniel E; Long, Philip E; Williams, Kenneth H; Bargar, John R

    2015-06-16

    Oxidative dissolution controls uranium release to (sub)oxic pore waters from biogenic uraninite produced by natural or engineered processes, such as bioremediation. Laboratory studies show that uraninite dissolution is profoundly influenced by dissolved oxygen (DO), carbonate, and solutes such as Ca(2+). In complex and heterogeneous subsurface environments, the concentrations of these solutes vary in time and space. Knowledge of dissolution processes and kinetics occurring over the long-term under such conditions is needed to predict subsurface uranium behavior and optimize the selection and performance of uraninite-based remediation technologies over multiyear periods. We have assessed dissolution of biogenic uraninite deployed in wells at the Rifle, CO, DOE research site over a 22 month period. Uraninite loss rates were highly sensitive to DO, with near-complete loss at >0.6 mg/L over this period but no measurable loss at lower DO. We conclude that uraninite can be stable over decadal time scales in aquifers under low DO conditions. U(VI) solid products were absent over a wide range of DO values, suggesting that dissolution proceeded through complexation and removal of oxidized surface uranium atoms by carbonate. Moreover, under the groundwater conditions present, Ca(2+) binds strongly to uraninite surfaces at structural uranium sites, impacting uranium fate.

  14. Method for magnesium sulfate recovery

    DOEpatents

    Gay, Richard L.; Grantham, LeRoy F.

    1987-01-01

    A method of obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.

  15. Method for magnesium sulfate recovery

    DOEpatents

    Gay, R.L.; Grantham, L.F.

    1987-08-25

    A method is described for obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7,000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1,000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.

  16. In situ characterization of uranium and americium oxide solid solution formation for CRMP process: first combination of in situ XRD and XANES measurements.

    PubMed

    Caisso, Marie; Picart, Sébastien; Belin, Renaud C; Lebreton, Florent; Martin, Philippe M; Dardenne, Kathy; Rothe, Jörg; Neuville, Daniel R; Delahaye, Thibaud; Ayral, André

    2015-04-14

    Transmutation of americium in heterogeneous mode through the use of U1-xAmxO2±δ ceramic pellets, also known as Americium Bearing Blankets (AmBB), has become a major research axis. Nevertheless, in order to consider future large-scale deployment, the processes involved in AmBB fabrication have to minimize fine particle dissemination, due to the presence of americium, which considerably increases the risk of contamination. New synthesis routes avoiding the use of pulverulent precursors are thus currently under development, such as the Calcined Resin Microsphere Pelletization (CRMP) process. It is based on the use of weak-acid resin (WAR) microspheres as precursors, loaded with actinide cations. After two specific calcinations under controlled atmospheres, resin microspheres are converted into oxide microspheres composed of a monophasic U1-xAmxO2±δ phase. Understanding the different mechanisms during thermal conversion, that lead to the release of organic matter and the formation of a solid solution, appear essential. By combining in situ techniques such as XRD and XAS, it has become possible to identify the key temperatures for oxide formation, and the corresponding oxidation states taken by uranium and americium during mineralization. This paper thus presents the first results on the mineralization of (U,Am) loaded resin microspheres into a solid solution, through in situ XAS analysis correlated with HT-XRD.

  17. Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.

    2012-07-31

    Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed tomore » mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catalano, Jeffrey G.; Giammar, Daniel E.; Wang, Zheming

    Phosphate addition is an in situ remediation approach that may enhance the sequestration of uranium without requiring sustained reducing conditions. However, the geochemical factors that determine the dominant immobilization mechanisms upon phosphate addition are insufficiently understood to design efficient remediation strategies or accurately predict U(VI) transport. The overall objective of our project is to determine the dominant mechanisms of U(VI)-phosphate reactions in subsurface environments. Our research approach seeks to determine the U(VI)-phosphate solid that form in the presence of different groundwater cations, characterize the effects of phosphate on U(VI) adsorption and precipitation on smectite and iron oxide minerals, examples ofmore » two major reactive mineral phases in contaminated sediments, and investigate how phosphate affects U(VI) speciation and fate during water flow through sediments from contaminated sites. The research activities conducted for this project have generated a series of major findings. U(VI) phosphate solids from the autunite mineral family are the sole phases to form during precipitation, with uranyl orthophosphate not occurring despite its predicted greater stability. Calcium phosphates may take up substantial quantities of U(VI) through three different removal processes (adsorption, coprecipitation, and precipitation) but the dominance of each process varies with the pathway of reaction. Phosphate co-adsorbs with U(VI) onto smectite mineral surfaces, forming a mixed uranium-phosphate surface complex over a wide range of conditions. However, this molecular-scale association of uranium and phosphate has not effect on the overall extent of uptake. In contrast, phosphate enhanced U(VI) adsorption to iron oxide minerals at acidic pH conditions but suppresses such adsorption at neutral and alkaline pH, despite forming mixed uranium-phosphate surface complexes during adsorption. Nucleation barriers exist that inhibit U(VI) phosphate solids from precipitating in the presence of smectite and iron oxide minerals as well as sediments from contaminated sites. Phosphate addition enhances retention of U(VI) by sediments from the Rifle, CO and Hanford, WA field research sites, areas containing substantial uranium contamination of groundwater. This enhanced retention is through adsorption processes. Both fast and slow uptake and release behavior is observed, indicating that diffusion of uranium between sediment grains has a substantial effect of U(VI) fate in flowing groundwater systems. This project has revealed the complexity of U(VI)-phosphate reactions in subsurface systems. Distinct chemical processes occur in acidic and alkaline groundwater systems. For the latter, calcium phosphate formation, solution complexation, and competition between phosphate and uranium for adsorption sites may serve to either enhance or inhibit U(VI) removal from groundwater. Under the groundwater conditions present at many contaminated sites in the U.S., phosphate appears to general enhance U(VI) retention and limit transport. However, formation of low-solubility uranium phosphate solids does not occur under field-relevant conditions, despite this being the desired product of phosphate-based remediation approaches. In addition, simple equilibrium approaches fail to well-predict uranium fate in contaminated sediments amended with phosphate, with reactive transport models that include reaction rates and mass transport through occluded domains needed to properly describe the system. Phosphate addition faces challenges to being effective as a stand-alone groundwater treatment approach but would prove beneficial as an add-on to other treatment methods that will further limit uranium migration in the subsurface.« less

  19. Universal fuel basket for use with an improved oxide reduction vessel and electrorefiner vessel

    DOEpatents

    Herrmann, Steven D.; Mariani, Robert D.

    2002-01-01

    A basket, for use in the reduction of UO.sub.2 to uranium metal and in the electrorefining of uranium metal, having a continuous annulus between inner and outer perforated cylindrical walls, with a screen adjacent to each wall. A substantially solid bottom and top plate enclose the continuous annulus defining a fuel bed. A plurality of scrapers are mounted adjacent to the outer wall extending longitudinally thereof, and there is a mechanism enabling the basket to be transported remotely.

  20. 238U and 235U isotope fractionation upon oxidation of uranium-bearing rocks by fracture waters

    NASA Astrophysics Data System (ADS)

    Chernyshev, I. V.; Golubev, V. N.; Chugaev, A. V.; Mandzhieva, G. V.

    2016-10-01

    The variations in 238U/235U values accompanying mobilization of U by fracture waters from uranium-bearing rocks, in which U occurs as a fine impregnation of oxides and silicates, were studied by the high-precision (±0.07‰) MC-ICP-MS method. Transition of U into the aqueous phase in the oxidized state U(VI) is accompanied by its isotope fractionation with enrichment of dissolved U(VI) in the heavy isotope 238U up to 0.32‰ in relation to the composition of the solid phases. According to the sign, this effect is consistent with the tendency of the behavior of 238U and 235U upon interaction of river waters with rocks of the catchment areas [11] and with the effect observed during oxidation of uraninite by the oxygen-bearing NaHCO3 solution [12].

  1. Subsurface Conditions Controlling Uranium Incorporation in Iron Oxides: A Redox Stable Sink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fendorf, Scott

    2016-04-05

    Toxic metals and radionuclides throughout the U.S. Department of Energy Complex pose a serious threat to ecosystems and to human health. Of particular concern is the redox-sensitive radionuclide uranium, which is classified as a priority pollutant in soils and groundwaters at most DOE sites owing to its large inventory, its health risks, and its mobility with respect to primary waste sources. The goal of this research was to contribute to the long-term mission of the Subsurface Biogeochemistry Program by determining reactions of uranium with iron (hydr)oxides that lead to long-term stabilization of this pervasive contaminant. The research objectives of thismore » project were thus to (1) identify the (bio)geochemical conditions, including those of the solid-phase, promoting uranium incorporation in Fe (hydr)oxides, (2) determine the magnitude of uranium incorporation under a variety of relevant subsurface conditions in order to quantify the importance of this pathway when in competition with reduction or adsorption; (3) identify the mechanism(s) of U(VI/V) incorporation in Fe (hydr)oxides; and (4) determine the stability of these phases under different biogeochemical (inclusive of redox) conditions. Our research demonstrates that redox transformations are capable of achieving U incorporation into goethite at ambient temperatures, and that this transformation occurs within days at U and Fe(II) concentrations that are common in subsurface geochemical environments with natural ferrihydrites—inclusive of those with natural impurities. Increasing Fe(II) or U concentration, or initial pH, made U(VI) reduction to U(IV) a more competitive sequestration pathway in this system, presumably by increasing the relative rate of U reduction. Uranium concentrations commonly found in contaminated subsurface environments are often on the order of 1-10 μM, and groundwater Fe(II) concentrations can reach exceed 1 mM in reduced zones of the subsurface. The redox-driven U(V) incorporation mechanism may help to explain U retention in some geologic materials, improving our understanding of U-based geochronology and the redox status of ancient geochemical environments. Additionally, U(VI) may be incorporated within silicate minerals though encapsulation of U-bearing iron oxides, leading to a redox stable solid. Our research detailing previously unrecognized mechanism of U incorporation within sediment minerals may even lead to new approaches for in situ contamination remediation techniques, and will help refine models of U fate and transport in reduced subsurface zones.« less

  2. Magnesium fluoride recovery method

    DOEpatents

    Gay, Richard L.; McKenzie, Donald E.

    1989-01-01

    A method of obtaining magnesium fluoride substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is contacted with an acid under certain prescribed conditions to produce a liquid product and a particulate solid product. The particulate solid product is separated from the liquid and treated at least two more times with acid to produce a solid residue consisting essentially of magnesium fluoride substantially free of uranium and having a residual radioactivity level of less than about 1000 pCi/gm. In accordance with a particularly preferred embodiment of the invention a catalyst and an oxidizing agent are used during the acid treatment and preferably the acid is sulfuric acid having a strength of about 1.0 Normal.

  3. Conversion of depleted uranium hexafluoride to a solid uranium compound

    DOEpatents

    Rothman, Alan B.; Graczyk, Donald G.; Essling, Alice M.; Horwitz, E. Philip

    2001-01-01

    A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

  4. Using 238U/235U ratios to understand the formation and oxidation of reduced uranium solids in naturally reduced zones

    NASA Astrophysics Data System (ADS)

    Jemison, N.; Johnson, T. M.; Druhan, J. L.; Davis, J. A.

    2016-12-01

    Uranium occurs in groundwater primarily as soluble and mobile U(VI), which can be reduced to immobile U(IV), often observed in sediments as uraninite. Numerous U(VI)-contaminated sites, such as the DOE field site in Rifle, CO, contain naturally reduced zones (NRZ's) that have relatively high concentrations of organic matter. Reduction of heavy metals occurs within NRZ's, producing elevated concentrations of iron sulfides and U(IV). Slow, natural oxidation of U(IV) from NRZ's may prolong U(VI) contamination of groundwater. The reduction of U(VI) produces U(IV) with a higher 238U/235U ratio. Samples from two NRZ sediment cores recovered from the Rifle site revealed that the outer fringes of the NRZ contain U(IV) with a high 238U/235U ratio, while lower values are observed in the center . We suggest that as aqueous U(VI) was reduced in the NRZ, it was driven to lower 238U/235U values, such that U(IV) formed in the core of the NRZ reflects a lower 238U/235U. Two oxidation experiments were conducted by injecting groundwater containing between 14.9 and 21.2 mg/L dissolved O2 as an oxidant into the NRZ. The oxidation of U(IV) from this NRZ increased aqueous U(VI) concentrations and caused a shift to higher 238U/235U in groundwater as U(IV) was oxidized primarily on the outer fringes of the NRZ. In total these observations suggest that the stability of solid phase uranium is governed by coupled reaction and transport processes. To better understand various reactive transport scenarios we developed a model for the formation and oxidation of NRZ's utilizing the reactive transport software CrunchTope. These simulations suggest that the development of isotopically heterogeneous U(IV) within NRZ's is largely controlled by permeability of the NRZ and the U(VI) reduction rate. Oxidation of U(IV) from the NRZ's is constrained by the oxidation rate of U(IV) as well as iron sulfides, which can prevent oxidation of U(IV) by scavenging dissolved oxygen.

  5. Optimization of Uranium Molecular Deposition for Alpha-Counting Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monzo, Ellen; Parsons-Moss, Tashi; Genetti, Victoria

    2016-12-12

    Method development for molecular deposition of uranium onto aluminum 1100 plates was conducted with custom plating cells at Lawrence Livermore National Laboratory. The method development focused primarily on variation of electrode type, which was expected to directly influence plated sample homogeneity. Solid disc platinum and mesh platinum anodes were compared and data revealed that solid disc platinum anodes produced more homogenous uranium oxide films. However, the activity distribution also depended on the orientation of the platinum electrode relative to the aluminum cathode, starting current, and material composition of the plating cell. Experiments demonstrated these variables were difficult to control undermore » the conditions available. Variation of plating parameters among a series of ten deposited plates yielded variations up to 30% in deposition efficiency. Teflon particles were observed on samples plated in Teflon cells, which poses a problem for alpha activity measurements of the plates. Preliminary electropolishing and chemical polishing studies were also conducted on the aluminum 1100 cathode plates.« less

  6. Measurement of thermal diffusivity of depleted uranium metal microspheres

    NASA Astrophysics Data System (ADS)

    Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.

    2014-03-01

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time-temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.

  7. Elemental and Isotopic Analysis of Uranium Oxide an NIST Glass Standards by FEMTOSECOND-LA-ICP-MIC-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, Chris; Zamzow, Daniel S.; McBay, Eddie H.

    2009-06-01

    The objective of this work was to test and demonstrate the analytical figures of merit of a femtosecond-laser ablation (fs-LA) system coupled with an inductively coupled plasma-multi-ion collector-mass spectrometer (ICP-MIC-MS). The mobile fs-LA sampling system was designed and assembled at Ames Laboratory and shipped to Oak Ridge National Laboratory (ORNL), where it was integrated with an ICP-MIC-MS. The test period of the integrated systems was February 2-6, 2009. Spatially-resolved analysis of particulate samples is accomplished by 100-shot laser ablation using a fs-pulsewidth laser and monitoring selected isotopes in the resulting ICP-MS transient signal. The capability of performing high sensitivity, spatiallymore » resolved, isotopic analyses with high accuracy and precision and with virtually no sample preparation makes fs-LA-ICP-MIC-MS valuable for the measurement of actinide isotopes at low concentrations in very small samples for nonproliferation purposes. Femtosecond-LA has been shown to generate particles from the sample that are more representative of the bulk composition, thereby minimizing weaknesses encountered in previous work using nanosecond-LA (ns-LA). The improvement of fs- over ns-LA sampling arises from the different mechanisms for transfer of energy into the sample in these two laser pulse-length regimes. The shorter duration fs-LA pulses induce less heating and cause less damage to the sample than the longer ns pulses. This results in better stoichiometric sampling (i.e., a closer correlation between the composition of the ablated particles and that of the original solid sample), which improves accuracy for both intra- and inter-elemental analysis. The primary samples analyzed in this work are (a) solid uranium oxide powdered samples having different {sup 235}U to {sup 238}U concentration ratios, and (b) glass reference materials (NIST 610, 612, 614, and 616). Solid uranium oxide samples containing {sup 235}U in depleted, natural, and enriched abundances were analyzed as particle aggregates immobilized in a collodion substrate. The uranium oxide samples were nuclear reference materials (CRMs U0002, U005-A, 129-A, U015, U030-A, and U050) obtained from New Brunswick Laboratory-USDOE.« less

  8. Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Kate M.; Kukkadapu, Ravi K.; Qafoku, Nikolla

    2012-05-23

    Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology, and redox processes that occur in these zones, we examined several cores from a region of naturally occurring reducing conditions in a uranium-contaminated aquifer (Rifle, CO). Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for uranium and iron content, oxidation state, and mineralogy, reduced sulfur phases, and solid phase organic carbon content using a suite ofmore » analytical and spectroscopic techniques on bulk sediment and size fractions. Solid-phase uranium concentrations were higher in the naturally reduced zone, with a high proportion of the uranium present as reduced U(IV). The sediments were also elevated in reduced sulfur phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and sulfate reduction occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentration of solid phase organic carbon and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic carbon concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic carbon for maintaining reducing conditions and uranium immobilization.« less

  9. Experimental thermochemistry of neptunium oxides: Np2O5 and NpO2

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Dzik, Ewa A.; Sigmon, Ginger E.; Szymanowski, Jennifer E. S.; Navrotsky, Alexandra; Burns, Peter C.

    2018-04-01

    Neptunium (Np) compounds are important in the nuclear fuel cycle because of the buildup and long half-life (2.14 Ma) of Np-237 in nuclear waste, especially during long-term disposal in a geological repository. Neptunium in environmental conditions exists mainly in two oxidation states (+5 and + 4) and can substitute for uranium and/or rare earths in solid phases. Yet thermochemical data for solid neptunium compounds are scarce, despite being critical for evaluating the environmental transport of this radioactive and toxic element. Although high temperature oxide melt solution calorimetry has proven very useful in obtaining thermodynamic data for the formation of uranium and thorium oxide materials, it has not yet been applied to transuranium compounds. Continuing a program at Notre Dame to study the thermodynamics of transuranium compounds, we report the first determination of the enthalpies of drop solution of well-characterized neptunium oxides (Np2O5 and NpO2) using oxide melt solution calorimetry in molten sodium molybdate solvent at 973 K. The enthalpy of the decomposition reaction, Np2O5(cr) = 2NpO2(cr) + 1/2O2(g) at 298 K, is determined to be 7.70 ± 5.86 kJ/mol, and this direct measurement is consistent with existing thermodynamic data. The calorimetric methodology is straightforward and produces reliable data using milligram quantities of radioactive materials, and can be applied to many other transuranium compounds.

  10. A XAS study of the local environments of cations in (U, Ce)O 2

    NASA Astrophysics Data System (ADS)

    Martin, Philippe; Ripert, Michel; Petit, Thierry; Reich, Tobias; Hennig, Christoph; D'Acapito, Francesco; Hazemann, Jean Louis; Proux, Olivier

    2003-01-01

    Mixed oxide (MOX) fuel is usually considered as a solid solution formed by uranium and plutonium dioxides. Nevertheless, some physico-chemical properties of (U 1- y, Pu y)O 2 samples manufactured under industrial conditions showed anomalies in the domain of plutonium contents ranging between 3 and 15 at.%. Cerium is commonly used as an inactive analogue of plutonium in preliminary studies on MOX fuels. Extended X-ray Absorption Fine Structure (EXAFS) measurements performed at the European Synchrotron Radiation Facility (ESRF) at the cerium and uranium edges on (U 1- y, Ce y)O 2 samples are presented and discussed. They confirmed on an atomic scale the formation of an ideal solid solution for cerium concentrations ranging between 0 and 50 at.%.

  11. Method for converting uranium oxides to uranium metal

    DOEpatents

    Duerksen, Walter K.

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  12. Separation by solvent extraction

    DOEpatents

    Holt, Jr., Charles H.

    1976-04-06

    17. A process for separating fission product values from uranium and plutonium values contained in an aqueous solution, comprising adding an oxidizing agent to said solution to secure uranium and plutonium in their hexavalent state; contacting said aqueous solution with a substantially water-immiscible organic solvent while agitating and maintaining the temperature at from -1.degree. to -2.degree. C. until the major part of the water present is frozen; continuously separating a solid ice phase as it is formed; separating a remaining aqueous liquid phase containing fission product values and a solvent phase containing plutonium and uranium values from each other; melting at least the last obtained part of said ice phase and adding it to said separated liquid phase; and treating the resulting liquid with a new supply of solvent whereby it is practically depleted of uranium and plutonium.

  13. U(VI) adsorption on aquifer sediments at the Hanford Site.

    PubMed

    Um, Wooyong; Serne, R Jeffrey; Brown, Christopher F; Last, George V

    2007-08-15

    Aquifer sediments collected via split-spoon sampling in two new groundwater wells in the 200-UP-1 operable unit at the Hanford Site were characterized and showed typical Ringold Unit E Formation properties dominated by gravel and sand. High iron-oxide content in Fe oxide/clay coatings caused the highest U(VI) adsorption as quantified by batch K(d) values, indicating iron oxides are the key solid adsorbent in the 200-UP-1 sediments that affect U(VI) fate and mobility. Even though U(VI) adsorption on the gravel-sized fraction of the sediments is considered to be negligible, careful characterization should be conducted to determine U(VI) adsorption on gravel, because of presence of Fe oxides coatings and diffusion-controlled adsorption into the gravel particles' interior surfaces. A linear adsorption isotherm was observed up to 10(-6) M (238 microg/L) of total U(VI) concentration in batch U(VI) adsorption tests with varying total U(VI) concentrations in spiked groundwater. U(VI) adsorption decreased with increasing concentrations of dissolved carbonate, because strong anionic aqueous uranium-carbonate complexes formed at high pH and high alkalinity conditions. Noticeable uranium desorption hysteresis was observed in a flow-through column experiment, suggesting that desorption K(d) values for aged uranium-contaminated sediments at the Hanford Site can be larger than adsorption K(d) values determined in short-term laboratory experiments and slow uranium release from contaminated sediments into the groundwater is expected.

  14. PROCESS OF PRODUCING REFRACTORY URANIUM OXIDE ARTICLES

    DOEpatents

    Hamilton, N.E.

    1957-12-01

    A method is presented for fabricating uranium oxide into a shaped refractory article by introducing a uranium halide fluxing reagent into the uranium oxide, and then mixing and compressing the materials into a shaped composite mass. The shaped mass of uranium oxide and uranium halide is then fired at an elevated temperature so as to form a refractory sintered article. It was found in the present invention that the introduction of a uraninm halide fluxing agent afforded a fluxing action with the uranium oxide particles and that excellent cohesion between these oxide particles was obtained. Approximately 90% of uranium dioxide and 10% of uranium tetrafluoride represent a preferred composition.

  15. Electrochemical separation of uranium in the molten system LiF-NaF-KF-UF4

    NASA Astrophysics Data System (ADS)

    Korenko, M.; Straka, M.; Szatmáry, L.; Ambrová, M.; Uhlíř, J.

    2013-09-01

    This article is focused on the electrochemical investigation (cyclic voltammetry and related studies) of possible reduction of U4+ ions to metal uranium in the molten system LiF-NaF-KF(eut.)-UF4 that can provide basis for the electrochemical extraction of uranium from molten salts. Two-step reduction mechanism for U4+ ions involving one electron exchange in soluble/soluble U4+/U3+ system and three electrons exchange in the second step were found on the nickel working electrode. Both steps were found to be reversible and diffusion controlled. Based on cyclic voltammetry, the diffusion coefficients of uranium ions at 530 °C were found to be D(U4+) = 1.64 × 10-5 cm2 s-1 and D(U3+) 1.76 × 10-5 cm2 s-1. Usage of the nickel spiral electrode for electrorefining of uranium showed fairly good feasibility of its extraction. However some oxidant present during the process of electrorefining caused that the solid deposits contained different uranium species such as UF3, UO2 and K3UO2F5.

  16. Thermal reactions of uranium metal, UO 2, U 3O 8, UF 4, and UO 2F 2 with NF 3 to produce UF 6

    NASA Astrophysics Data System (ADS)

    McNamara, Bruce; Scheele, Randall; Kozelisky, Anne; Edwards, Matthew

    2009-11-01

    This paper demonstrates that NF 3 fluorinates uranium metal, UO 2, UF 4, UO 3, U 3O 8, and UO 2F 2·2H 2O to produce the volatile UF 6 at temperatures between 100 and 550 °C. Thermogravimetric and differential thermal analysis reaction profiles are described that reflect changes in the uranium fluorination/oxidation state, physiochemical effects, and instances of discrete chemical speciation. Large differences in the onset temperatures for each system investigated implicate changes in mode of the NF 3 gas-solid surface interaction. These studies also demonstrate that NF 3 is a potential replacement fluorinating agent in the existing nuclear fuel cycle and in actinide volatility reprocessing.

  17. Ground-water quality and geochemistry, Carson Desert, western Nevada

    USGS Publications Warehouse

    Lico, Michael S.; Seiler, R.L.

    1994-01-01

    Aquifers in the Carson Desert are the primary source of drinking water, which is highly variable in chemical composition. In the shallow basin-fill aquifers, water chemistyr varies from a dilute calcium bicarbonate-dominated water beneath the irrigated areas to a saline sodium chloride- dominated water beneath unirrigated areas. Water samples from the shallow aquifers commonly have dissolved solids, chloride, magnesium, sulfate, arsenic, and manganese concentrations that exceed State of Nevada drinking-water standards. Water in the intermediante basin-fill aquifers is a dilute sodium bicarbonate type in the Fallon area and a distinctly more saline sodium chloride type in the Soda Lake-Upsal Hogback area. Dissolved solids, chloride, arsenic, fluoride, and manganese concen- trations commonly exceed drinking-water standards. The basalt aquifer contains a dilute sodium bicarbonate chloride water. Arsenic concentrations exceed standards in all sampled wells. The concen- trations of major constituents in ground water beneath the southern Carson Desert are the result of evapotranspiration and natural geochemical reactions with minerals derived mostly from igneous rocks. Water with higher concentrations of iron and manganese is near thermodynamic equilibrium with siderite and rhodochrosite and indicates that these elements may be limited by the solubility of their respective carbonate minerals. Naturally occurring radionuclides (uranium and radon-222) are present in ground water from the Carson Desert in concen- tratons higher than proposed drinking-water standards. High uranium concentrations in the shallow aquifers may be caused by evaporative concentration and the release of uranium during dissolution of iron and manganese oxides or the oxidation of sedimentary organic matter that typically has elevated uranium concentrations. Ground water in the Carson Desert does not appear to have be contaminated by synthetic organic chemicals.

  18. Evaluating chemical extraction techniques for the determination of uranium oxidation state in reduced aquifer sediments.

    PubMed

    Stoliker, Deborah L; Campbell, Kate M; Fox, Patricia M; Singer, David M; Kaviani, Nazila; Carey, Minna; Peck, Nicole E; Bargar, John R; Kent, Douglas B; Davis, James A

    2013-08-20

    Extraction techniques utilizing high pH and (bi)carbonate concentrations were evaluated for their efficacy in determining the oxidation state of uranium (U) in reduced sediments collected from Rifle, CO. Differences in dissolved concentrations between oxic and anoxic extractions have been proposed as a means to quantify the U(VI) and U(IV) content of sediments. An additional step was added to anoxic extractions using a strong anion exchange resin to separate dissolved U(IV) and U(VI). X-ray spectroscopy showed that U(IV) in the sediments was present as polymerized precipitates similar to uraninite and/or less ordered U(IV), referred to as non-uraninite U(IV) species associated with biomass (NUSAB). Extractions of sediment containing both uraninite and NUSAB displayed higher dissolved uranium concentrations under oxic than anoxic conditions while extractions of sediment dominated by NUSAB resulted in identical dissolved U concentrations. Dissolved U(IV) was rapidly oxidized under anoxic conditions in all experiments. Uraninite reacted minimally under anoxic conditions but thermodynamic calculations show that its propensity to oxidize is sensitive to solution chemistry and sediment mineralogy. A universal method for quantification of U(IV) and U(VI) in sediments has not yet been developed but the chemical extractions, when combined with solid-phase characterization, have a narrow range of applicability for sediments without U(VI).

  19. Evaluating chemical extraction techniques for the determination of uranium oxidation state in reduced aquifer sediments

    USGS Publications Warehouse

    Stoliker, Deborah L.; Campbell, Kate M.; Fox, Patricia M.; Singer, David M.; Kaviani, Nazila; Carey, Minna; Peck, Nicole E.; Barger, John R.; Kent, Douglas B.; Davis, James A.

    2013-01-01

    Extraction techniques utilizing high pH and (bi)carbonate concentrations were evaluated for their efficacy in determining the oxidation state of uranium (U) in reduced sediments collected from Rifle, CO. Differences in dissolved concentrations between oxic and anoxic extractions have been proposed as a means to quantify the U(VI) and U(IV) content of sediments. An additional step was added to anoxic extractions using a strong anion exchange resin to separate dissolved U(IV) and U(VI). X-ray spectroscopy showed that U(IV) in the sediments was present as polymerized precipitates similar to uraninite and/or less ordered U(IV), referred to as non-uraninite U(IV) species associated with biomass (NUSAB). Extractions of sediment containing both uraninite and NUSAB displayed higher dissolved uranium concentrations under oxic than anoxic conditions while extractions of sediment dominated by NUSAB resulted in identical dissolved U concentrations. Dissolved U(IV) was rapidly oxidized under anoxic conditions in all experiments. Uraninite reacted minimally under anoxic conditions but thermodynamic calculations show that its propensity to oxidize is sensitive to solution chemistry and sediment mineralogy. A universal method for quantification of U(IV) and U(VI) in sediments has not yet been developed but the chemical extractions, when combined with solid-phase characterization, have a narrow range of applicability for sediments without U(VI).

  20. Oxidation of U-20 at% Zr alloy in air at 423 1063 K

    NASA Astrophysics Data System (ADS)

    Matsui, Tsuneo; Yamada, Takanobu; Ikai, Yasushi; Naito, Keiji

    1993-01-01

    The oxidation behavior of U 0.80Zr 0.20 alloy (two-phase mixture of U and UZr 2 below 878 K and single solid solution above 1008 K) was studied by thermogravimetry in the temperature range from 423 to 1063 K in air. During oxidation in the low temperature region (423-503 K), the sample kept its initial shape (a rectangular rod) and the surface of the sample was covered by a black thin adherent UO2 + x oxide layer. On the other hand, by oxidation in the middle temperature region, the sample broke to several pieces of thin plates and blocks, and fine powder at 643-723 K and entirely to fine powder at 775-878 K, all of which were analyzed to be a mixture of U 3O 8 and ZrO 2. By oxidation in the high temperature region (1008-1063 K) the sample broke to very fine powder, which consisted of U 3O 8 and ZrO 2. Based on the sample shape, the oxide phase identified after oxidation and the slope value of the bilogarithmic plots of the weight gain against time, the oxidation kinetics was analyzed with a paralinear equation in the low temperature region below 503 K and a linear equation in the middle and high temperature regions above 643 K. Oxidation rates of U 0.80Zr 0.20 (two-phase mixture) in the low and middle temperature regions were smaller than those of uranium metal. A discontinuity in the plot of the linear oxidation rate constant versus reciprocal temperature was found to be present between 723 and 838 K, similarly to the case of uranium metal previously reported. The linear rate constants of single-phase solid solution in the high temperature region above 1008 K seemed to be a little smaller than those estimated by the extrapolation of the values in the middle temperature region.

  1. DECONTAMINATION OF URANIUM

    DOEpatents

    Feder, H.M.; Chellew, N.R.

    1958-02-01

    This patent deals with the separation of rare earth and other fission products from neutron bombarded uranium. This is accomplished by melting the uranium in contact with either thorium oxide, maguesium oxide, alumnum oxide, beryllium oxide, or uranium dioxide. The melting is preferably carried out at from 1150 deg to 1400 deg C in an inert atmosphere, such as argon or helium. During this treatment a scale of uranium dioxide forms on the uranium whtch contains most of the fission products.

  2. Processing of solid solution, mixed uranium/refractory metal carbides for advanced space nuclear power and propulsion systems

    NASA Astrophysics Data System (ADS)

    Knight, Travis Warren

    Nuclear thermal propulsion (NTP) and space nuclear power are two enabling technologies for the manned exploration of space and the development of research outposts in space and on other planets such as Mars. Advanced carbide nuclear fuels have been proposed for application in space nuclear power and propulsion systems. This study examined the processing technologies and optimal parameters necessary to fabricate samples of single phase, solid solution, mixed uranium/refractory metal carbides. In particular, the pseudo-ternary carbide, UC-ZrC-NbC, system was examined with uranium metal mole fractions of 5% and 10% and corresponding uranium densities of 0.8 to 1.8 gU/cc. Efforts were directed to those methods that could produce simple geometry fuel elements or wafers such as those used to fabricate a Square Lattice Honeycomb (SLHC) fuel element and reactor core. Methods of cold uniaxial pressing, sintering by induction heating, and hot pressing by self-resistance heating were investigated. Solid solution, high density (low porosity) samples greater than 95% TD were processed by cold pressing at 150 MPa and sintering above 2600 K for times longer than 90 min. Some impurity oxide phases were noted in some samples attributed to residual gases in the furnace during processing. Also, some samples noted secondary phases of carbon and UC2 due to some hyperstoichiometric powder mixtures having carbon-to-metal ratios greater than one. In all, 33 mixed carbide samples were processed and analyzed with half bearing uranium as ternary carbides of UC-ZrC-NbC. Scanning electron microscopy, x-ray diffraction, and density measurements were used to characterize samples. Samples were processed from powders of the refractory mono-carbides and UC/UC 2 or from powders of uranium hydride (UH3), graphite, and refractory metal carbides to produce hypostoichiometric mixed carbides. Samples processed from the constituent carbide powders and sintered at temperatures above the melting point of UC showed signs of liquid phase sintering and were shown to be largely solid solutions. Pre-compaction of mixed carbide powders prior to sintering was shown to be necessary to achieve high densities. Hypostoichiometric, samples processed at 2500 K exhibited only the initial stage of sintering and solid solution formation. Based on these findings, a suggested processing methodology is proposed for producing high density, solid solution, mixed carbide fuels. Pseudo-binary, refractory carbide samples hot pressed at 3100 K and 6 MPa showed comparable densities (approximately 85% of the theoretical value) to samples processed by cold pressing and sintering at temperatures of 2800 K.

  3. Preparation of UO2, ThO2 and (Th,U)O2 pellets from photochemically-prepared nano-powders

    NASA Astrophysics Data System (ADS)

    Pavelková, Tereza; Čuba, Václav; de Visser-Týnová, Eva; Ekberg, Christian; Persson, Ingmar

    2016-02-01

    Photochemically-induced preparation of nano-powders of crystalline uranium and/or thorium oxides and their subsequent pelletizing has been investigated. The preparative method was based on the photochemically induced formation of amorphous solid precursors in aqueous solution containing uranyl and/or thorium nitrate and ammonium formate. The EXAFS analyses of the precursors shown that photon irradiation of thorium containing solutions yields a compound with little long-range order but likely "ThO2 like" and the irradiation of uranium containing solutions yields the mixture of U(IV) and U(VI) compounds. The U-containing precursors were carbon free, thus allowing direct heat treatment in reducing atmosphere without pre-treatment in the air. Subsequent heat treatment of amorphous solid precursors at 300-550 °C yielded nano-crystalline UO2, ThO2 or solid (Th,U)O2 solutions with high purity, well-developed crystals with linear crystallite size <15 nm. The prepared nano-powders of crystalline oxides were pelletized without any binder (pressure 500 MPa), the green pellets were subsequently sintered at 1300 °C under an Ar:H2 (20:1) mixture (UO2 and (Th,U)O2 pellets) or at 1600 °C in ambient air (ThO2 pellets). The theoretical density of the sintered pellets varied from 91 to 97%.

  4. Mechanistic approach for nitride fuel evolution and fission product release under irradiation

    NASA Astrophysics Data System (ADS)

    Dolgodvorov, A. P.; Ozrin, V. D.

    2017-01-01

    A model for describing uranium-plutonium mixed nitride fuel pellet burning was developed. Except fission products generating, the model includes impurities of oxygen and carbon. Nitrogen behaviour in nitride fuel was analysed and the nitrogen chemical potential in solid solution with uranium-plutonium nitride was constructed. The chemical program module was tested with the help of thermodynamic equilibrium phase distribution calculation. Results were compared with analogous data in literature, quite good agreement was achieved, especially for uranium sesquinitride, metallic species and some oxides. Calculation of a process of nitride fuel burning was also conducted. Used mechanistic approaches for fission product evolution give the opportunity to find fission gas release fractions and also volumes of intergranular secondary phases. Calculations present that the most massive secondary phases are the oxide and metallic phases. Oxide phase contain approximately 1 % wt of substance over all time of burning with slightly increasing of content. Metallic phase has considerable rising of mass and by the last stage of burning it contains about 0.6 % wt of substance. Intermetallic phase has less increasing rate than metallic phase and include from 0.1 to 0.2 % wt over all time of burning. The highest element fractions of released gaseous fission products correspond to caesium and iodide.

  5. Influence of uranyl speciation and iron oxides on uranium biogeochemical redox reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, B.D.; Amos, R.T.; Nico, P.S.

    2010-03-15

    Uranium is a pollutant of concern to both human and ecosystem health. Uranium's redox state often dictates its partitioning between the aqueous- and solid-phases, and thus controls its dissolved concentration and, coupled with groundwater flow, its migration within the environment. In anaerobic environments, the more oxidized and mobile form of uranium (UO{sub 2}{sup 2+} and associated species) may be reduced, directly or indirectly, by microorganisms to U(IV) with subsequent precipitation of UO{sub 2}. However, various factors within soils and sediments may limit biological reduction of U(VI), inclusive of alterations in U(VI) speciation and competitive electron acceptors. Here we elucidate themore » impact of U(VI) speciation on the extent and rate of reduction with specific emphasis on speciation changes induced by dissolved Ca, and we examine the impact of Fe(III) (hydr)oxides (ferrihydrite, goethite and hematite) varying in free energies of formation on U reduction. The amount of uranium removed from solution during 100 h of incubation with S. putrefaciens was 77% with no Ca or ferrihydrite present but only 24% (with ferrihydrite) and 14% (no ferrihydrite) were removed for systems with 0.8 mM Ca. Imparting an important criterion on uranium reduction, goethite and hematite decrease the dissolved concentration of calcium through adsorption and thus tend to diminish the effect of calcium on uranium reduction. Dissimilatory reduction of Fe(III) and U(VI) can proceed through different enzyme pathways, even within a single organism, thus providing a potential second means by which Fe(III) bearing minerals may impact U(VI) reduction. We quantify rate coefficients for simultaneous dissimilatory reduction of Fe(III) and U(VI) in systems varying in Ca concentration (0 to 0.8 mM), and using a mathematical construct implemented with the reactive transport code MIN3P, we reveal the predominant influence of uranyl speciation, specifically the formation of uranyl-calcium-carbonato complexes, and ferrihydrite on the rate and extent of uranium reduction in complex geochemical systems.« less

  6. Recovery of uranium from an irradiated solid target after removal of molybdenum-99 produced from the irradiated target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reilly, Sean Douglas; May, Iain; Copping, Roy

    A process for minimizing waste and maximizing utilization of uranium involves recovering uranium from an irradiated solid target after separating the medical isotope product, molybdenum-99, produced from the irradiated target. The process includes irradiating a solid target comprising uranium to produce fission products comprising molybdenum-99, and thereafter dissolving the target and conditioning the solution to prepare an aqueous nitric acid solution containing irradiated uranium. The acidic solution is then contacted with a solid sorbent whereby molybdenum-99 remains adsorbed to the sorbent for subsequent recovery. The uranium passes through the sorbent. The concentrations of acid and uranium are then adjusted tomore » concentrations suitable for crystallization of uranyl nitrate hydrates. After inducing the crystallization, the uranyl nitrate hydrates are separated from a supernatant. The process results in the purification of uranyl nitrate hydrates from fission products and other contaminants. The uranium is therefore available for reuse, storage, or disposal.« less

  7. Absorption of Thermal Neutrons in Uranium

    DOE R&D Accomplishments Database

    Creutz, E. C.; Wilson, R. R.; Wigner, E. P.

    1941-09-26

    A knowledge of the absorption processes for neutrons in uranium is important for planning a chain reaction experiment. The absorption of thermal neutrons in uranium and uranium oxide has been studied. Neutrons from the cyclotron were slowed down by passage through a graphite block. A uranium or uranium oxide sphere was placed at various positions in the block. The neutron intensity at different points in the sphere and in the graphite was measured by observing the activity induced in detectors or uranium oxide or manganese. It was found that both the fission activity in the uranium oxide and the activity induced in manganese was affected by non-thermal neutrons. An experimental correction for such effects was made by making measurements with the detectors surrounded by cadmium. After such corrections the results from three methods of procedure with the uranium oxide detectors and from the manganese detectors were consistent to within a few per cent.

  8. Effect of Reaction Pathway on the Extent and Mechanism of Uranium(VI) Immobilization with Calcium and Phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Vrajesh S.; Maillot, Fabien; Wang, Zheming

    Phosphate addition to subsurface environments contaminated with uranium can be used as an in situ remediation approach. Batch experiments were conducted to evaluate the dependence of the extent and mechanism of uranium uptake on the pathway for reaction with calcium phosphates. At pH 4.0 and 6.0 uranium uptake occurred via autunite (Ca(UO2)(PO4)3) precipitation irrespective of the starting forms of calcium and phosphate. At pH 7.5, the uptake mechanism depended on the nature of the calcium and phosphate. When dissolved uranium, calcium, and phosphate were added simultaneously, uranium was structurally incorporated into a newly formed amorphous calcium phosphate solid. Adsorption wasmore » the dominant removal mechanism for uranium contacted with pre-formed amorphous calcium phosphate solids,. When U(VI) was added to a suspension containing amorphous calcium phosphate solids as well as dissolved calcium and phosphate, then removal occurred through precipitation (57±4 %) of autunite and adsorption (43±4 %) onto calcium phosphate. The solid phase speciation of the uranium was determined using X-ray absorption spectroscopy and laser induced fluorescence spectroscopy. Dissolved uranium, calcium, and phosphate concentrations with saturation index calculations helped identify removal mechanisms and determine thermodynamically favorable solid phases.« less

  9. DISSOLUTION OF URANIUM FUELS BY MONOOR DIFLUOROPHOSPHORIC ACID

    DOEpatents

    Johnson, R.; Horn, F.L.; Strickland, G.

    1963-05-01

    A method of dissolving and separating uranium from a uranium matrix fuel element by dissolving the uraniumcontaining matrix in monofluorophosphoric acid and/or difluorophosphoric acid at temperatures ranging from 150 to 275 un. Concent 85% C, thereafter neutralizing the solution to precipitate uranium solids, and converting the solids to uranium hexafluoride by treatment with a halogen trifluoride is presented. (AEC)

  10. Plutonium recovery from spent reactor fuel by uranium displacement

    DOEpatents

    Ackerman, John P.

    1992-01-01

    A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  11. Kinetics of dissolution of thorium and uranium doped britholite ceramics

    NASA Astrophysics Data System (ADS)

    Dacheux, N.; Du Fou de Kerdaniel, E.; Clavier, N.; Podor, R.; Aupiais, J.; Szenknect, S.

    2010-09-01

    In the field of immobilization of actinides in phosphate-based ceramics, several thorium and uranium doped britholite samples were submitted to leaching tests. The normalized dissolution rates determined for several pH values, temperatures and acidic media from the calcium release range from 4.7 × 10 -2 g m -2 d -1 to 21.6 g m -2 d -1. Their comparison with that determined for phosphorus, thorium and uranium revealed that the dissolution is clearly incongruent for all the conditions examined. Whatever the leaching solution considered, calcium and phosphorus elements were always released with higher RL values than the other elements (Nd, Th, U). Simultaneously, thorium was found to quickly precipitate as alteration product, leading to diffusion phenomena for uranium. For all the media considered, the uranium release is higher than that of thorium, probably due to its oxidation from tetravalent oxidation state to uranyl. Moreover, the evaluation of the partial order related to proton concentration and the apparent energy of activation suggest that the reaction of dissolution is probably controlled by surface chemical reactions occurring at the solid/liquid interface. Finally, comparative leaching tests performed in sulphuric acid solutions revealed a significant influence of such media on the chemical durability of the leached pellets, leading to higher normalized dissolution rates for all the elements considered. On the basis of the results of chemical speciation, this difference was mainly explained in the light of higher complexion constants by sulfate ions compared to nitrate, chloride and phosphate.

  12. Adsorption of uranium composites onto saltrock oxides - experimental and theoretical study.

    PubMed

    Ivanova, Bojidarka; Spiteller, Michael

    2014-09-01

    The study encompassed experimental mass spectrometric and theoretical quantum chemical studies on adsorption of uranium species in different oxidation states of the metal ion, and oxides of UxOy(n+) type, where x = 1 or 3, y = 2 or 8, and n = 0, 1 or 2 onto nanosize-particles of saltrock oxides MO (M = Mg(II), Ca(II), Ni(II), Co(II), Sr(II) or Ba(II)), M2Oy (M = Au(III) or Ag(I), y = 3 or 1) silicates 3Al2O3.2SiO2, natural kaolinite (Al2O2·2SiO2·2H2O), illite (K0.78Ca0.02Na0.02(Mg0.34Al1.69Fe(III)0.02)[Si3.35Al0.65]O10(OH)2·nH2O), CaSiO3, 3MgO·4SiO2,H2O, and M(1)M(2)(SiO4)X2 (M(1) = M(2) = Al or M(1) = K, M(2) = Al, X = F or Cl), respectively. The UV-MALDI-Orbitrap mass spectrometry was utilized in solid-state and semi-liquid colloidal state, involving the laser ablation at λex = 337.2 nm. The theoretical modeling and experimental design was based on chemical-, physico-chemical, physical and biological processes involving uranium species under environmental conditions. Therefore, the results reported are crucial for quality control and monitoring programs for assessment of radionuclide migration. They impact significantly the methodology for evaluation of human health risk from radioactive contamination. The study has importance for understanding the coordination and red-ox chemistry of uranium compounds as well. Due to the double nature of uranium between rare element and superconductivity like materials as well as variety of oxidation states ∈ (+1)-(+6), the there remain challenging areas for theoretical and experimental research, which are of significant importance for management of nuclear fuel cycles and waste storage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Method of preparation of uranium nitride

    DOEpatents

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  14. Process for electrolytically preparing uranium metal

    DOEpatents

    Haas, Paul A.

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  15. Process for electrolytically preparing uranium metal

    DOEpatents

    Haas, Paul A.

    1989-08-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  16. Analysis of solid uranium samples using a small mass spectrometer

    NASA Astrophysics Data System (ADS)

    Kahr, Michael S.; Abney, Kent D.; Olivares, José A.

    2001-07-01

    A mass spectrometer for isotopic analysis of solid uranium samples has been constructed and evaluated. This system employs the fluorinating agent chlorine trifluoride (ClF 3) to convert solid uranium samples into their volatile uranium hexafluorides (UF 6). The majority of unwanted gaseous byproducts and remaining ClF 3 are removed from the sample vessel by condensing the UF 6 and then pumping away the unwanted gases. The UF 6 gas is then introduced into a quadrupole mass spectrometer and ionized by electron impact ionization. The doubly charged bare metal uranium ion (U 2+) is used to determine the U 235/U 238 isotopic ratio. Precision and accuracy for several isotopic standards were found to be better than 12%, without further calibration of the system. The analysis can be completed in 25 min from sample loading, to UF 6 reaction, to mass spectral analysis. The method is amenable to uranium solid matrices, and other actinides.

  17. Uranium speciation and stability after reductive immobilization in aquifer sediments

    NASA Astrophysics Data System (ADS)

    Sharp, Jonathan O.; Lezama-Pacheco, Juan S.; Schofield, Eleanor J.; Junier, Pilar; Ulrich, Kai-Uwe; Chinni, Satya; Veeramani, Harish; Margot-Roquier, Camille; Webb, Samuel M.; Tebo, Bradley M.; Giammar, Daniel E.; Bargar, John R.; Bernier-Latmani, Rizlan

    2011-11-01

    It has generally been assumed that the bioreduction of hexavalent uranium in groundwater systems will result in the precipitation of immobile uraninite (UO 2). In order to explore the form and stability of uranium immobilized under these conditions, we introduced lactate (15 mM for 3 months) into flow-through columns containing sediments derived from a former uranium-processing site at Old Rifle, CO. This resulted in metal-reducing conditions as evidenced by concurrent uranium uptake and iron release. Despite initial augmentation with Shewanella oneidensis, bacteria belonging to the phylum Firmicutes dominated the biostimulated columns. The immobilization of uranium (˜1 mmol U per kg sediment) enabled analysis by X-ray absorption spectroscopy (XAS). Tetravalent uranium associated with these sediments did not have spectroscopic signatures representative of U-U shells or crystalline UO 2. Analysis by microfocused XAS revealed concentrated micrometer regions of solid U(IV) that had spectroscopic signatures consistent with bulk analyses and a poor proximal correlation (μm scale resolution) between U and Fe. A plausible explanation, supported by biogeochemical conditions and spectral interpretations, is uranium association with phosphoryl moieties found in biomass; hence implicating direct enzymatic uranium reduction. After the immobilization phase, two months of in situ exposure to oxic influent did not result in substantial uranium remobilization. Ex situ flow-through experiments demonstrated more rapid uranium mobilization than observed in column oxidation studies and indicated that sediment-associated U(IV) is more mobile than biogenic UO 2. This work suggests that in situ uranium bioimmobilization studies and subsurface modeling parameters should be expanded to account for non-uraninite U(IV) species associated with biomass.

  18. Uranium oxidation: Characterization of oxides formed by reaction with water by infrared and sorption analyses

    NASA Astrophysics Data System (ADS)

    Fuller, E. L.; Smyrl, N. R.; Condon, J. B.; Eager, M. H.

    1984-04-01

    Three different uranium oxide samples have been characterized with respect to the different preparation techniques. The results show that the water reaction with uranium metal occurs cyclically forming laminar layers of oxide which spall off due to the strain at the oxide/metal interface. Single laminae are released if liquid water is present due to the prizing penetration at the reaction zone. The rate of reaction of water with uranium is directly proportional to the amount of adsorbed water on the oxide product. Rapid transport is effected through the open hydrous oxide product. Dehydration of the hydrous oxide irreversibly forms a more inert oxide which cannot be rehydrated to the degree that prevails in the original hydrous product of uranium oxidation with water. Inert gas sorption analyses and diffuse reflectance infrared studies combined with electron microscopy prove valuable in defining the chemistry and morphology of the oxidic products and hydrated intermediates.

  19. Plutonium recovery from spent reactor fuel by uranium displacement

    DOEpatents

    Ackerman, J.P.

    1992-03-17

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  20. Uranium oxide catalysts: environmental applications for treatment of chlorinated organic waste from nuclear industry.

    PubMed

    Lazareva, Svetlana; Ismagilov, Zinfer; Kuznetsov, Vadim; Shikina, Nadezhda; Kerzhentsev, Mikhail

    2018-02-05

    Huge amounts of nuclear waste, including depleted uranium, significantly contribute to the adverse environmental situation throughout the world. An approach to the effective use of uranium oxides in catalysts for the deep oxidation of chlorine-containing hydrocarbons is suggested. Investigation of the catalytic activity of the synthesized supported uranium oxide catalysts doped with Cr, Mn and Co transition metals in the chlorobenzene oxidation showed that these catalysts are comparable with conventional commercial ones. Physicochemical properties of the catalysts were studied by X-ray diffraction, temperature-programmed reduction with hydrogen (H 2 -TPR), and Fourier transform infrared spectroscopy. The higher activity of Mn- and Co-containing uranium oxide catalysts in the H 2 -TPR and oxidation of chlorobenzene in comparison with non-uranium catalysts may be related to the formation of a new disperse phase represented by uranates. The study of chlorobenzene adsorption revealed that the surface oxygen is involved in the catalytic process.

  1. Fission fragment assisted reactor concept for space propulsion: Foil reactor

    NASA Technical Reports Server (NTRS)

    Wright, Steven A.

    1991-01-01

    The concept is to fabricate a reactor using thin films or foils of uranium, uranium oxide and then to coat them on substrates. These coatings would be made so thin as to allow the escaping fission fragments to directly heat a hydrogen propellant. The idea was studied of direct gas heating and direct gas pumping in a nuclear pumped laser program. Fission fragments were used to pump lasers. In this concept two substrates are placed opposite each other. The internal faces are coated with thin foil of uranium oxide. A few of the advantages of this technology are listed. In general, however, it is felt that if one look at all solid core nuclear thermal rockets or nuclear thermal propulsion methods, one is going to find that they all pretty much look the same. It is felt that this reactor has higher potential reliability. It has low structural operating temperatures, very short burn times, with graceful failure modes, and it has reduced potential for energetic accidents. Going to a design like this would take the NTP community part way to some of the very advanced engine designs, such as the gas core reactor, but with reduced risk because of the much lower temperatures.

  2. Uranium dioxide electrolysis

    DOEpatents

    Willit, James L [Batavia, IL; Ackerman, John P [Prescott, AZ; Williamson, Mark A [Naperville, IL

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  3. SEPARATION OF PLUTONIUM VALUES FROM URANIUM AND FISSION PRODUCT VALUES

    DOEpatents

    Maddock, A.G.; Booth, A.H.

    1960-09-13

    Separation of plutonium present in small amounts from neutron irradiated uranium by making use of the phenomenon of chemisorption is described. Plutonium in the tetravalent state is chemically absorbed on a fluoride in solid form. The steps for the separation comprise dissolving the irradiated uranium in nitric acid, oxidizing the plutonium in the resulting solution to the hexavalent state, adding to the solution a soluble calcium salt which by the common ion effect inhibits dissolution of the fluoride by the solution, passing the solution through a bed or column of subdivided calcium fluoride which has been sintered to about 8OO deg C to remove the chemisorbable fission products, reducing the plutonium in the solution thus obtained to the tetravalent state, and again passing the solution through a similar bed or column of calcium fluoride to selectively absorb the plutonium, which may then be recovered by treating the calcium fluoride with a solution of ammonium oxalate.

  4. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour.

    PubMed

    Martin, T L; Coe, C; Bagot, P A J; Morrall, P; Smith, G D W; Scott, T; Moody, M P

    2016-07-12

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour.

  5. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour

    NASA Astrophysics Data System (ADS)

    Martin, T. L.; Coe, C.; Bagot, P. A. J.; Morrall, P.; Smith, G. D. W.; Scott, T.; Moody, M. P.

    2016-07-01

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour.

  6. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour

    PubMed Central

    Martin, T. L.; Coe, C.; Bagot, P. A. J.; Morrall, P.; Smith, G. D. W; Scott, T.; Moody, M. P.

    2016-01-01

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour. PMID:27403638

  7. Nanostructured Metal Oxide Sorbents for the Collection and Recovery of Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chouyyok, Wilaiwan; Warner, Cynthia L.; Mackie, Katherine E.

    2016-02-07

    The ability to collect uranium from seawater offers the potential for a long-term green fuel supply for nuclear energy. However, extraction of uranium, and other trace minerals, is challenging due to the high ionic strength and low mineral concentrations in seawater. Herein we evaluate the use of nanostructured metal oxide sorbents for the collection and recovery of uranium from seawater. Chemical affinity, chemical adsorption capacity and kinetics of preferred sorbent materials were evaluated. High surface area manganese and iron oxide nanomaterials showed excellent performance for uranium collection from seawater. Inexpensive nontoxic carbonate solutions were demonstrated to be an effective andmore » environmental benign method of stripping the uranium from the metal oxide sorbents. Various formats for the utilization of the nanostructured metals oxide sorbent materials are discussed including traditional and nontraditional methods such as magnetic separation. Keywords: Uranium, nano, manganese, iron, sorbent, seawater, magnetic, separations, nuclear energy« less

  8. Alternatives for Disposal of Depleted Uranium Waste.

    DTIC Science & Technology

    1985-11-01

    spontaneous increase in heat or pressure o No significant chemical or galvanic reaction o Closures to prevent inadvertent leakage 20 iL-i MI.....Nq...Ignition stops when the mass of the remaining metal can absorb the energy generated by the oxidation without reaching reaction temperatures. Thin sections...Compliance Worksheet i. Completion of Solid Waste Burial Record j. Structural Analysis of Special Containers k. Handling Procedures and Use of Forklifts 1

  9. FLUORIDE VOLATILITY PROCESS FOR THE RECOVERY OF URANIUM

    DOEpatents

    Katz, J.J.; Hyman, H.H.; Sheft, I.

    1958-04-15

    The separation and recovery of uraniunn from contaminants introduced by neutron irradiation by a halogenation and volatilization method are described. The irradiated uranium is dissolved in bromine trifluoride in the liquid phase. The uranium is converted to the BrF/sub 3/ soluble urmium hexafluoride compound whereas the fluorides of certain contaminating elements are insoluble in liquid BrF/sub 3/, and the reaction rate of the BrF/sub 3/ with certain other solid uranium contamirnnts is sufficiently slower than the reaction rate with uranium that substantial portions of these contaminating elements will remain as solids. These solids are then separated from the solution by a distillation, filtration, or centrifugation step. The uranium hexafluoride is then separated from the balance of the impurities and solvent by one or more distillations.

  10. Solid state speciation of uranium and its local structure in Sr2CeO4 using photoluminescence spectroscopy.

    PubMed

    Sahu, M; Gupta, Santosh K; Jain, D; Saxena, M K; Kadam, R M

    2018-04-15

    An effort was taken to carry our speciation study of uranium ion in technologically important cerate host Sr 2 CeO 4 using time resolved photoluminescence spectroscopy. Such studies are not relevant only to nuclear industry but can give rich insight into fundamentals of 5f electron chemistry in solid state systems. In this work both undoped and varied amount of uranium doped Sr 2 CeO 4 compound is synthesized using complex polymerization method and is characterized systematically using X-ray diffraction (XRD), Raman spectroscopy, impedance spectroscopy and scanning electron microscopy (SEM). Both XRD and Raman spectroscopy confirmed the formation of pure Sr 2 CeO 4 which has tendency to decompose peritectically to SrCeO 3 and SrO at higher temperature. Uranium doping is confirmed by XRD. Uranium exhibits a rich chemistry owing to its variable oxidation state from +3 to +6. Each of them exhibits distinct luminescence properties either due to f-f transitions or ligand to metal charge transfer (LMCT). We have taken Sr 2 CeO 4 as a model host lattice to understand the photophysical characteristics of uranium ion in it. Emission spectroscopy revealed the stabilization of uranium as U (VI) in the form of UO 6 6- (octahedral uranate) in Sr 2 CeO 4 . Emission kinetics study reflects that uranate ions are not homogeneously distributed in Sr 2 CeO 4 and it has two different environments due to its stabilization at both Sr 2+ as well as Ce 4+ site. The lifetime population analysis interestingly pinpointed that majority of uranate ion resided at Ce 4+ site. The critical energy-transfer distance between the uranate ion was determined based on which the concentration quenching mechanism was attributed to electric multipolar interaction. These studies are very important in designing Sr 2 CeO 4 based optoelectronic material as well exploring it for actinides studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Solid state speciation of uranium and its local structure in Sr2CeO4 using photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Sahu, M.; Gupta, Santosh K.; Jain, D.; Saxena, M. K.; Kadam, R. M.

    2018-04-01

    An effort was taken to carry our speciation study of uranium ion in technologically important cerate host Sr2CeO4 using time resolved photoluminescence spectroscopy. Such studies are not relevant only to nuclear industry but can give rich insight into fundamentals of 5f electron chemistry in solid state systems. In this work both undoped and varied amount of uranium doped Sr2CeO4 compound is synthesized using complex polymerization method and is characterized systematically using X-ray diffraction (XRD), Raman spectroscopy, photoluminescence spectroscopy and scanning electron microscopy (SEM). Both XRD and Raman spectroscopy confirmed the formation of pure Sr2CeO4 which has tendency to decompose peritectically to SrCeO3 and SrO at higher temperature. Uranium doping is confirmed by XRD. Uranium exhibits a rich chemistry owing to its variable oxidation state from +3 to +6. Each of them exhibits distinct luminescence properties either due to f-f transitions or ligand to metal charge transfer (LMCT). We have taken Sr2CeO4 as a model host lattice to understand the photophysical characteristics of uranium ion in it. Emission spectroscopy revealed the stabilization of uranium as U (VI) in the form of UO66- (octahedral uranate) in Sr2CeO4. Emission kinetics study reflects that uranate ions are not homogeneously distributed in Sr2CeO4 and it has two different environments due to its stabilization at both Sr2+ as well as Ce4+ site. The lifetime population analysis interestingly pinpointed that majority of uranate ion resided at Ce4+ site. The critical energy-transfer distance between the uranate ion was determined based on which the concentration quenching mechanism was attributed to electric multipolar interaction. These studies are very important in designing Sr2CeO4 based optoelectronic material as well exploring it for actinides studies.

  12. Uranium in granitic magmas: Part 1. Experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide-haplogranite-H 2O-Na 2CO 3 system at 720-770°C, 2 kbar

    NASA Astrophysics Data System (ADS)

    Peiffert, Chantal; Cuney, Michel; Nguyen-Trung, Chinh

    1994-06-01

    The solubility of uranium was investigated in both carbonated aqueous fluid and granitic melt in equilibrium in the system haplogranite-uranium oxide-H 2O-Na 2CO 3 (0.5-1 molal) at 720-770°C, 2 kbar, andƒo 2 fixed by Ni-NiO, Fe 3O 4-Fe 2O 3, and Cu 2O-CuO buffers. As complete solid solution exists between UO 2.00 and UO 2.25 (i.e., 75 mol% UO 2 + 25 mol% UO 3), three distinct uranium oxides: UO (2.01 ± 0.01), UO (2.1.0 ± 0.02), and UO (2.25 ± 0.02) were, respectively, obtained at equilibrium, under the three ƒo 2 conditions cited above. Thus, the percentage of U (VI) in uranium oxide increased with increasing log ƒo 2. The thermal decomposition of Na 2CO 3 to CO 2 and Na 2O led to the decrease of the sodium carbonate concentration from 0.5-1 molal to ~10 -2 molal in all aqueous fluids and to the dissolution of Na in the silicate melts. Crystal-free silicate glasses with four agpaitic coefficients, α = ( (Na+K)/Al) = 1.1, 1.3, 1.5, and 1.7 were obtained. The uranium solubility in 10 -2 m aqueous carbonated fluid ((8.1 ± 0.1) ≤ quench pH ≤ (8.9 ± 0.1)) was in the range 1-17 ppm and increased linearly with increasing ƒo 2 according to the expression: log (U) (ppm) = 0.09 ·log ƒo 2 (bar) + 1.47 . This equation is valid for the temperature range 720-770°C and 2 kbar. U(IV) carbonate possibly were major species in aqueous solutions under reducing conditions (Ni-NiO buffer) whereas U(VI) carbonate complexes dominated under higher oxidation conditions (Fe 3O 4-Fe 2O 3, Cu 2O-CuO buffers). The uranium content in silicate glasses varied in a large range (10 2-2 × 10 5 ppm) and log (U) (ppm) increases linearly with both ƒo 2, and α in the range 1.1-1.5 according to the equation log (U) (ppm) = 0.04 log ƒo 2 (bar) + 3.80α -1.34 . This equation is valid for (1)ƒ o 2 ranging from Ni-NiO to Cu 2O-CuO, and (2) the temperature range 720-770°C at 2 kbar. The effect of ƒo 2 on the uranium solubility in silicate melt slightly decreased with increasing α from 1.1 to 1.5. For α in the range 1.5-1.7, the effect of both ƒo 2 and agpaicity index on the uranium solubility was considerably reduced. The temperature variation in the range 720-770°C had no significant effect on the uranium solubility in either aqueous fluid or silicate melt. The partition coefficient (D fluid/melt) of uranium was in the range 10 -4.0-10 -1.5 and depended on both ƒo 2 and α according to the equation log D fluid/melt = 0.05 log ƒo 2 (bar) - 3.78α + 2.84 . The validity conditions of this equation are similar to those of the preceding one. Results obtained in the present study could be used to predict the geochemical behaviour of uranium during magma fractionation and to further understanding of the formation of uranium ore deposits related to partial melting or fractional crystallization of felsic magmas. The genesis of the Kvanefjeld (Ilimaussaq, Greenland) uranium deposit is discussed.

  13. Heat-induced redistribution of surface oxide in uranium

    NASA Astrophysics Data System (ADS)

    Swissa, Eli; Shamir, Noah; Mintz, Moshe H.; Bloch, Joseph

    1990-09-01

    The redistribution of oxygen and uranium metal at the vicinity of the metal-oxide interface of native and grown oxides due to vacuum thermal annealing was studied for uranium and uranium-chromium alloy using Auger depth profiling and metallographic techniques. It was found that uranium metal is segregating out through the uranium oxide layer for annealing temperatures above 450°C. At the same time the oxide is redistributed in the metal below the oxide-metal interface in a diffusion like process. By applying a diffusion equation of a finite source, the diffusion coefficients for the process were obtained from the oxygen depth profiles measured for different annealing times. An Arrhenius like behavior was found for the diffusion coefficient between 400 and 800°C. The activation energy obtained was Ea = 15.4 ± 1.9 kcal/mole and the pre-exponential factor, D0 = 1.1 × 10 -8cm2/ s. An internal oxidation mechanism is proposed to explain the results.

  14. Anodic behavior of uranium in AlCl3-1-ethyl-3-methyl-imidazolium chloride ionic liquid

    NASA Astrophysics Data System (ADS)

    Jiang, Yidong; Luo, Lizhu; Wang, Shaofei; Bin, Ren; Zhang, Guikai; Wang, Xiaolin

    2018-01-01

    The oxidation state of metals unambiguously affects its anodic behavior in ionic liquid. We systematically investigated the anodic behavior of uranium with different surface oxidation states by electrochemical measurements, spectroscopic methods and surface analysis techniques. In the anodic process, metal uranium can be oxidized to U3+. The corresponding products accumulated on the metal/ILs interface will form a viscous layer. The anodic behavior of uranium is also strongly dependent upon the surface oxide states including thickness and homogeneity of the oxide film. With an increase in the thickness of oxide film, it will be breached at potentials in excess of a critical value. A uniform oxide on uranium surface can be breached evenly, and then the underlying metal starts to dissolve forming a viscous layer which can facilitate uniformly stripping of oxide, thus giving an oxide-free surface. Otherwise, a nonuniform oxide can result in a severe pitted surface with residue oxygen.

  15. METHOD OF PREPARING URANIUM, THORIUM, OR PLUTONIUM OXIDES IN LIQUID BISMUTH

    DOEpatents

    Davidson, J.K.; Robb, W.L.; Salmon, O.N.

    1960-11-22

    A method is given for forming compositions, as well as the compositions themselves, employing uranium hydride in a liquid bismuth composition to increase the solubility of uranium, plutonium and thorium oxides in the liquid bismuth. The finely divided oxide of uranium, plutonium. or thorium is mixed with the liquid bismuth and uranium hydride, the hydride being present in an amount equal to about 3 at. %, heated to about 5OO deg C, agitated and thereafter cooled and excess resultant hydrogen removed therefrom.

  16. Modelling of the dissolution and reprecipitation of uranium under oxidising conditions in the zone of shallow groundwater circulation.

    PubMed

    Dutova, Ekaterina M; Nikitenkov, Aleksei N; Pokrovskiy, Vitaly D; Banks, David; Frengstad, Bjørn S; Parnachev, Valerii P

    2017-11-01

    Generic hydrochemical modelling of a grantoid-groundwater system, using the Russian software "HydroGeo", has been carried out with an emphasis on simulating the accumulation of uranium in the aqueous phase. The baseline model run simulates shallow granitoid aquifers (U content 5 ppm) under conditions broadly representative of southern Norway and southwestern Siberia: i.e. temperature 10 °C, equilibrated with a soil gas partial CO 2 pressure (P CO2 , open system) of 10 -2.5 atm. and a mildly oxidising redox environment (Eh = +50 mV). Modelling indicates that aqueous uranium accumulates in parallel with total dissolved solids (or groundwater mineralisation M - regarded as an indicator of degree of hydrochemical evolution), accumulating most rapidly when M = 550-1000 mg L -1 . Accumulation slows at the onset of saturation and precipitation of secondary uranium minerals at M = c. 1000 mg L -1 (which, under baseline modelling conditions, also corresponds approximately to calcite saturation and transition to Na-HCO 3 hydrofacies). The secondary minerals are typically "black" uranium oxides of mixed oxidation state (e.g. U 3 O 7 and U 4 O 9 ). For rock U content of 5-50 ppm, it is possible to generate a wide variety of aqueous uranium concentrations, up to a maximum of just over 1 mg L -1 , but with typical concentrations of up to 10 μg L -1 for modest degrees of hydrochemical maturity (as indicated by M). These observations correspond extremely well with real groundwater analyses from the Altai-Sayan region of Russia and Norwegian crystalline bedrock aquifers. The timing (with respect to M) and degree of aqueous uranium accumulation are also sensitive to Eh (greater mobilisation at higher Eh), uranium content of rocks (aqueous concentration increases as rock content increases) and P CO2 (low P CO2 favours higher pH, rapid accumulation of aqueous U and earlier saturation with respect to uranium minerals). Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Uniform deposition of uranium hexafluoride (UF6): Standardized mass deposits and controlled isotopic ratios using a thermal fluorination method.

    PubMed

    McNamara, Bruce K; O'Hara, Matthew J; Casella, Andrew M; Carter, Jennifer C; Addleman, R Shane; MacFarlan, Paul J

    2016-07-01

    We report a convenient method for the generation of volatile uranium hexafluoride (UF6) from solid uranium oxides and other U compounds, followed by uniform deposition of low levels of UF6 onto sampling coupons. Under laminar flow conditions, UF6 is shown to interact with surfaces within a fixed reactor geometry to a highly predictable degree. We demonstrate the preparation of U deposits that range between approximately 0.01 and 500ngcm(-2). The data suggest the method can be extended to creating depositions at the sub-picogramcm(-2) level. The isotopic composition of the deposits can be customized by selection of the U source materials and we demonstrate a layering technique whereby two U solids, each with a different isotopic composition, are employed to form successive layers of UF6 on a surface. The result is an ultra-thin deposit that bears an isotopic signature that is a composite of the two U sources. The reported deposition method has direct application to the development of unique analytical standards for nuclear safeguards and forensics. Further, the method allows access to very low atomic or molecular coverages of surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. URANIUM SEPARATION PROCESS

    DOEpatents

    Lyon, W.L.

    1962-04-17

    A method of separating uranium oxides from PuO/sub 2/, ThO/sub 2/, and other actinide oxides is described. The oxide mixture is suspended in a fused salt melt and a chlorinating agent such as chlorine gas or phosgene is sparged through the suspension. Uranium oxides are selectively chlorinated and dissolve in the melt, which may then be filtered to remove the unchlorinated oxides of the other actinides. (AEC)

  19. PROCESS FOR PRODUCING URANIUM HALIDES

    DOEpatents

    Murphree, E.V.

    1957-10-29

    A process amd associated apparatus for producing UF/sub 4/ from U/sub 3/ O/sub 8/ by a fluidized'' technique are reported. The U/sub 3/O/sub 8/ is first reduced to UO/sub 2/ by reaction with hydrogen, and the lower oxide of uranium is then reacted with gaseous HF to produce UF/sub 4/. In each case the reactant gas is used, alone or in combination with inert gases, to fluidize'' the finely divided reactant solid. The complete setup of the plant equipment including bins, reactor and the associated piping and valving, is described. An auxiliary fluorination reactor allows for the direct production of UF/sub 6/ from UF/sub 4/ and fluorine gas, or if desired, UF/sub 4/ may be collected as the product.

  20. Crystal Growth and Characterization of THO2 and UxTh1-xO2

    DTIC Science & Technology

    2013-03-01

    bulk actinide crystals would open up new possibilities for the detection of weapons of mass destruction, the study of the effect of aging on...way of growing bulk actinide materials of optical quality. These refractory oxide single crystals offer potential applications in thorium nuclear...fuel technology, wide-band-gap uranium-based direct-conversion solid state neutron detectors, and understanding how actinide fuels age with time. ThO2

  1. Uranium extremophily is an adaptive, rather than intrinsic, feature for extremely thermoacidophilic Metallosphaera species

    PubMed Central

    Mukherjee, Arpan; Wheaton, Garrett H.; Blum, Paul H.; Kelly, Robert M.

    2012-01-01

    Thermoacidophilic archaea are found in heavy metal-rich environments, and, in some cases, these microorganisms are causative agents of metal mobilization through cellular processes related to their bioenergetics. Given the nature of their habitats, these microorganisms must deal with the potentially toxic effect of heavy metals. Here, we show that two thermoacidophilic Metallosphaera species with nearly identical (99.99%) genomes differed significantly in their sensitivity and reactivity to uranium (U). Metallosphaera prunae, isolated from a smoldering heap on a uranium mine in Thüringen, Germany, could be viewed as a “spontaneous mutant” of Metallosphaera sedula, an isolate from Pisciarelli Solfatara near Naples. Metallosphaera prunae tolerated triuranium octaoxide (U3O8) and soluble uranium [U(VI)] to a much greater extent than M. sedula. Within 15 min following exposure to “U(VI) shock,” M. sedula, and not M. prunae, exhibited transcriptomic features associated with severe stress response. Furthermore, within 15 min post-U(VI) shock, M. prunae, and not M. sedula, showed evidence of substantial degradation of cellular RNA, suggesting that transcriptional and translational processes were aborted as a dynamic mechanism for resisting U toxicity; by 60 min post-U(VI) shock, RNA integrity in M. prunae recovered, and known modes for heavy metal resistance were activated. In addition, M. sedula rapidly oxidized solid U3O8 to soluble U(VI) for bioenergetic purposes, a chemolithoautotrophic feature not previously reported. M. prunae, however, did not solubilize solid U3O8 to any significant extent, thereby not exacerbating U(VI) toxicity. These results point to uranium extremophily as an adaptive, rather than intrinsic, feature for Metallosphaera species, driven by environmental factors. PMID:23010932

  2. METHOD OF PREPARING A FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOEpatents

    Handwerk, J.H.; BAch, R.A.

    1959-08-18

    A method is described for preparing a reactor fuel element by forming a mixture of thorium dioxide and an oxide of uranium, the uranium being present. In an oxidation state at least as high as it is in U/sub 3/O/sub 8/, into a desired shape and firing in air at a temperature siifficiently high to reduce the higher uranium oxide to uranium dioxide.

  3. REMOVAL OF URANIUM FROM ORGANIC LIQUIDS

    DOEpatents

    Vavalides, S.P.

    1959-08-25

    A process is described for recovering small quantities of uranium from organic liquids such as hydrocarbon oils. halogen-substituted hydrocarbons, and alcohols. The organic liquid is contacted with a comminuted alkaline earth hydroxide, calcium hydroxide particularly, and the resulting uranium-bearing solid is separated from the liquid by filtration. Uranium may then be recovered from the solid by means of dissolution in nitric acid and conventional extraction with an organic solvent such as tributyl phosphate.

  4. Microbial Reduction of Fe(III) and U(VI) in Aquifers: Simulations Exploring Coupled Effects of Heterogeneity and Fe(II) Sorption

    NASA Astrophysics Data System (ADS)

    Scheibe, T. D.; Fang, Y.; Roden, E. E.; Brooks, S. C.; Chien, Y.; Murray, C. J.

    2004-05-01

    Uranium is a significant groundwater contaminant at many former mining and processing sites. In its oxidized state, U(VI) is soluble and mobile, although strongly retarded by sorption to natural iron oxide surfaces. It has been demonstrated that commonly occurring subsurface microorganisms can reduce uranium and other metals when provided sufficient carbon as an electron donor. Reduced U(IV) precipitates as a solid phase; therefore biostimulation provides a potential strategy for in situ removal from contaminated groundwater. However, these biogeochemical reactions occur in the context of a complex heterogeneous environment in which flow and transport dynamics and abiotic reactions can have significant impacts. We have constructed a high-resolution numerical model of groundwater flow and multicomponent reactive transport that incorporates heterogeneity in hydraulic conductivity and initial Fe(III) distribution, microbial growth and transport dynamics, and effects of sorption or precipitation of biogenic Fe(II) on availability of Fe(III) as an electron acceptor. The biogeochemical reaction models and their parameters are based on laboratory experiments; the heterogeneous field-scale property distributions are based on interpretations of geophysical and other observations at a highly characterized field site. The model is being run in Monte Carlo mode to examine the controls that these factors exert on 1) the initial distribution of sorbed uranium in an oxic environment and 2) the reduction and immobilization of uranium upon introduction of a soluble electron donor.

  5. Uranium induces oxidative stress in lung epithelial cells

    PubMed Central

    Periyakaruppan, Adaikkappan; Kumar, Felix; Sarkar, Shubhashish; Sharma, Chidananda S.

    2009-01-01

    Uranium compounds are widely used in the nuclear fuel cycle, antitank weapons, tank armor, and also as a pigment to color ceramics and glass. Effective management of waste uranium compounds is necessary to prevent exposure to avoid adverse health effects on the population. Health risks associated with uranium exposure includes kidney disease and respiratory disorders. In addition, several published results have shown uranium or depleted uranium causes DNA damage, mutagenicity, cancer and neurological defects. In the current study, uranium toxicity was evaluated in rat lung epithelial cells. The study shows uranium induces significant oxidative stress in rat lung epithelial cells followed by concomitant decrease in the antioxidant potential of the cells. Treatment with uranium to rat lung epithelial cells also decreased cell proliferation after 72 h in culture. The decrease in cell proliferation was attributed to loss of total glutathione and superoxide dismutase in the presence of uranium. Thus the results indicate the ineffectiveness of antioxidant system’s response to the oxidative stress induced by uranium in the cells. PMID:17124605

  6. METHOD OF SEPARATING URANIUM VALUES, PLUTONIUM VALUES AND FISSION PRODUCTS BY CHLORINATION

    DOEpatents

    Brown, H.S.; Seaborg, G.T.

    1959-02-24

    The separation of plutonium and uranium from each other and from other substances is described. In general, the method comprises the steps of contacting the uranium with chlorine in the presence of a holdback material selected from the group consisting of lanthanum oxide and thorium oxide to form a uranium chloride higher than uranium tetrachloride, and thereafter heating the uranium chloride thus formed to a temperature at which the uranium chloride is volatilized off but below the volatilizalion temperature of plutonium chloride.

  7. URANIUM LEACHING AND RECOVERY PROCESS

    DOEpatents

    McClaine, L.A.

    1959-08-18

    A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.

  8. Phase discrimination of uranium oxides using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Campbell, Keri R.; Wozniak, Nicholas R.; Colgan, James P.; Judge, Elizabeth J.; Barefield, James E.; Kilcrease, David P.; Wilkerson, Marianne P.; Czerwinski, Ken R.; Clegg, Samuel M.

    2017-08-01

    Nuclear forensics goals for characterizing samples of interest include qualitative and quantitative analysis of major and trace elements, isotopic analysis, phase identification, and physical analysis. These samples may include uranium oxides UO2, U3O8, and UO3, which play an important role in the front end of the nuclear fuel cycle, from mining to fuel fabrication. The focus of this study is to compare the ratios of the intensities of uranium and oxygen emission lines which can be used to distinguish between different uranium oxide materials using Laser-Induced Breakdown Spectroscopy (LIBS). Measurements at varying laser powers were made under an argon atmosphere at 585 Torr to ensure the oxygen emission intensity was originating from the sample, and not from the atmosphere. Fifteen uranium emission lines were used to compare experimental results with theoretical calculations in order to determine the plasma conditions. Using a laser energy of 26 mJ, the uranium lines 591.539 and 682.692 nm provide the highest degree of discrimination between the uranium oxides. The study presented here suggests that LIBS is useful for discriminating uranium oxide phases, UO2, U3O8, and UO3.

  9. A preliminary report on the geology of the Dennison-Bunn uranium claim, Sandoval County, New Mexico

    USGS Publications Warehouse

    Ridgley, Jennie L.

    1978-01-01

    Uranium at the Dennison-Bunn claim, south of Cuba, N. Mex., along the east margin of the San Juan Basin, occurs in unoxidized gray, fluvial channel sandstone of the Westwater Canyon Member of the Upper Jurassic Morrison Formation. The uranium-bearing sandstone is bounded on the north and south by a variable zone of buff and orange sandstone. Within the mineralized zone, the uranium has been remobilized and reconcentrated along the margins of numerous smaller tongues of oxidized rock in a configuration similar to that found in roll-type uranium deposits. In cross section, these small-scale features are zoned; they have an inner, pale orange, oxidized core, a mineralized redox rim cemented with hematite(?), and an outer-shell of -gray, slightly to moderately mineralized rock. The uranium content in the mineralized rock ranges from 0.001 to 0.07 percent U3O8. The uranium, at this locality, is believed to have originated within the Westwater Canyon Member or to have been derived from the overlying Brushy Basin Member. Based on observed outcrop relations, two hypotheses are proposed for explaining the origin of the occurrence. Briefly these hypotheses are: (1) the mineralized zone represents the remnant of an original roll-type uranium deposit, formed during early Eocene time, which has undergone subsequent oxidation with remobilization and redeposition of uranium around the margins of smaller tongues of oxidized rock; and (2) the mineralized zone represents the remnant of an original tabular deposit which has undergone subsequent oxidation with remobilization and redeposition of uranium around the margins of smaller tongues of oxidized rock.

  10. The initial stage of uranium oxidation: mechanism of UO(2) scale formation in the presence of a native lateral stress field.

    PubMed

    Chernia, Z; Ben-Eliyahu, Y; Kimmel, G; Braun, G; Sariel, J

    2006-11-23

    In this work, an oxidation model for alpha-uranium is presented. It describes the internally lateral stress field built in the oxide scale during the reaction. The thickness of the elastic, stress-preserving oxide (UO(2+x)) scale is less than 0.5 microm. A lateral, 6.5 GPa stress field has been calculated from strains derived from line shifts (delta(2theta)) as measured by the X-ray diffraction of UO(2). It is shown that in the elastic growth domain, (110) is the main UO(2) growth plane for gas-solid oxidation. The diffusion-limited oxidation mechanism discussed here is based on the known "2:2:2" cluster theory which describes the mechanism of fluorite-based hyperstoichiometric oxides. In this study, it is adapted to describe oxygen-anion hopping. Anion hopping toward the oxide-metal interface proceeds at high rates in the [110] direction, hence making this pipeline route the principal growth direction in UO(2) formation. It is further argued that growth in the pure elastic domain of the oxide scale should be attributed entirely to anion hopping in 110. Anions, diffusing isotropically via grain boundaries and cracks, are shown to have a significant impact on the overall oxidation rate in relatively thick (>0.35 microm) oxide scales if followed by an avalanche break off in the postelastic regime. Stress affects oxidation in the elastic domain by controlling the hopping rate directly. In the postelastic regime, stress weakens hopping, indirectly, by enhancing isotropic diffusion. Surface roughness presents an additional hindering factor for the anion hopping. In comparison to anisotropic hopping, diffusion of isotropic hopping has a lower activation energy barrier. Therefore, a relatively stronger impact at lower temperatures due to isotropic diffusion is displayed.

  11. Visualizing different uranium oxidation states during the surface alteration of uraninite and uranium tetrachloride.

    PubMed

    Grossmann, Kay; Arnold, Thuro; Steudtner, Robin; Weiss, Stefan; Bernhard, Gert

    2009-08-01

    Low-temperature alteration reactions on uranium phases may lead to the mobilization of uranium and thereby poses a potential threat to humans living close to uranium-contaminated sites. In this study, the surface alteration of uraninite (UO(2)) and uranium tetrachloride (UCl(4)) in air atmosphere was studied by confocal laser scanning microscopy (CLSM) and laser-induced fluorescence spectroscopy using an excitation wavelength of 408 nm. It was found that within minutes the oxidation state on the surface of the uraninite and the uranium tetrachloride changed. During the surface alteration process U(IV) atoms on the uraninite and uranium tetrachloride surface became stepwise oxidized by a one-electron step at first to U(V) and then further to U(VI). These observed changes in the oxidation states of the uraninite surface were microscopically visualized and spectroscopically identified on the basis of their fluorescence emission signal. A fluorescence signal in the wavelength range of 415-475 nm was indicative for metastable uranium(V), and a fluorescence signal in the range of 480-560 nm was identified as uranium(VI). In addition, the oxidation process of tetravalent uranium in aqueous solution at pH 0.3 was visualized by CLSM and U(V) was fluorescence spectroscopically identified. The combination of microscopy and fluorescence spectroscopy provided a very convincing visualization of the brief presence of U(V) as a metastable reaction intermediate and of the simultaneous coexistence of the three states U(IV), U(V), and U(VI). These results have a significant importance for fundamental uranium redox chemistry and should contribute to a better understanding of the geochemical behavior of uranium in nature.

  12. Subsurface Nitrogen-Cycling Microbial Communities at Uranium Contaminated Sites in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Cardarelli, E.; Bargar, J.; Williams, K. H.; Dam, W. L.; Francis, C.

    2015-12-01

    Throughout the Colorado River Basin (CRB), uranium (U) persists as a relic contaminant of former ore processing activities. Elevated solid-phase U levels exist in fine-grained, naturally-reduced zone (NRZ) sediments intermittently found within the subsurface floodplain alluvium of the following Department of Energy-Legacy Management sites: Rifle, CO; Naturita, CO; and Grand Junction, CO. Coupled with groundwater fluctuations that alter the subsurface redox conditions, previous evidence from Rifle, CO suggests this resupply of U may be controlled by microbially-produced nitrite and nitrate. Nitrification, the two-step process of archaeal and bacterial ammonia-oxidation followed by bacterial nitrite oxidation, generates nitrate under oxic conditions. Our hypothesis is that when elevated groundwater levels recede and the subsurface system becomes anoxic, the nitrate diffuses into the reduced interiors of the NRZ and stimulates denitrification, the stepwise anaerobic reduction of nitrate/nitrite to dinitrogen gas. Denitrification may then be coupled to the oxidation of sediment-bound U(IV) forming mobile U(VI), allowing it to resupply U into local groundwater supplies. A key step in substantiating this hypothesis is to demonstrate the presence of nitrogen-cycling organisms in U-contaminated, NRZ sediments from the upper CRB. Here we investigate how the diversity and abundances of nitrifying and denitrifying microbial populations change throughout the NRZs of the subsurface by using functional gene markers for ammonia-oxidation (amoA, encoding the α-subunit of ammonia monooxygenase) and denitrification (nirK, nirS, encoding nitrite reductase). Microbial diversity has been assessed via clone libraries, while abundances have been determined through quantitative polymerase chain reaction (qPCR), elucidating how relative numbers of nitrifiers (amoA) and denitrifiers (nirK, nirS) vary with depth, vary with location, and relate to uranium release within NRZs in sediment cores spanning the upper CRB. Early findings from Rifle, CO indicate elevated abundances of ammonia-oxidizers seem to correlate with elevated uranium concentrations emphasizing the critical need to understand how nitrogen-cycling organisms influence subsurface U redox chemistry and mobility.

  13. Uranium(VI) interactions with mackinawite in the presence and absence of bicarbonate and oxygen.

    PubMed

    Gallegos, Tanya J; Fuller, Christopher C; Webb, Samuel M; Betterton, William

    2013-07-02

    Mackinawite, Fe(II)S, samples loaded with uranium (10(-5), 10(-4), and 10(-3) mol U/g FeS) at pH 5, 7, and 9, were characterized using X-ray absorption spectroscopy and X-ray diffraction to determine the effects of pH, bicarbonate, and oxidation on uptake. Under anoxic conditions, a 5 g/L suspension of mackinawite lowered 5 × 10(-5) M uranium(VI) to below 30 ppb (1.26 × 10(-7) M) U. Between 82 and 88% of the uranium removed from solution by mackinawite was U(IV) and was nearly completely reduced to U(IV) when 0.012 M bicarbonate was added. Near-neighbor coordination consisting of uranium-oxygen and uranium-uranium distances indicates the formation of uraninite in the presence and absence of bicarbonate, suggesting reductive precipitation as the dominant removal mechanism. Following equilibration in air, mackinawite was oxidized to mainly goethite and sulfur and about 76% of U(IV) was reoxidized to U(VI) with coordination of uranium to axial and equatorial oxygen, similar to uranyl. Additionally, uranium-iron distances, typical of coprecipitation of uranium with iron oxides, and uranium-sulfur distances indicating bidentate coordination of U(VI) to sulfate were evident. The affinity of mackinawite and its oxidation products for U(VI) provides impetus for further study of mackinawite as a potential reactive medium for remediation of uranium-contaminated water.

  14. Thermal radiative and thermodynamic properties of solid and liquid uranium and plutonium carbides in the visible-near-infrared range

    NASA Astrophysics Data System (ADS)

    Fisenko, Anatoliy I.; Lemberg, Vladimir F.

    2016-09-01

    The knowledge of thermal radiative and thermodynamic properties of uranium and plutonium carbides under extreme conditions is essential for designing a new metallic fuel materials for next generation of a nuclear reactor. The present work is devoted to the study of the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides at their melting/freezing temperatures. The Stefan-Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, pressure, and normal total emissivity are calculated using experimental data for the frequency dependence of the normal spectral emissivity of liquid and solid uranium and plutonium carbides in the visible-near infrared range. It is shown that the thermal radiative and thermodynamic functions of uranium carbide have a slight difference during liquid-to-solid transition. Unlike UC, such a difference between these functions have not been established for plutonium carbide. The calculated values for the normal total emissivity of uranium and plutonium carbides at their melting temperatures is in good agreement with experimental data. The obtained results allow to calculate the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides for any size of samples. Based on the model of Hagen-Rubens and the Wiedemann-Franz law, a new method to determine the thermal conductivity of metals and carbides at the melting points is proposed.

  15. Reconnaissance for uranium in the coal of Sao Paulo, Santa Catarina, and Rio Grande do Sul, Brazil

    USGS Publications Warehouse

    Haynes, Donald D.; Pierson, Charles T.; White, Max G.

    1958-01-01

    Uranium-bearing coal and carbonaceous shale of the Rio Bonito formation of Pennsylvanian age have been found in the States of Sao Paulo, Santa Catarlna and Rio Grande do Sul, Brazil. The uranium oxide content of the samples collected in the State of Sao Paulo ranges from 0.001 percent to 0.082 percent. The samples collected in Santa Catarina averaged about 0.002 percent uranium oxide; those collected in Rio Grande do Sul, about 0.003 percent uranium oxide. Since the field and laboratory investigations are still in their initial stages, only raw data on the radioactivity and uranium content of Brazilian coals are given in this report.

  16. PROCESS FOR PRODUCTION OF URANIUM HEXAFLUORIDE

    DOEpatents

    Fowler, R.D.

    1958-11-01

    A process is described for the manufacture of uranium bexafluoride which consists in contacting an oxide of uranium simultaneously with elemental carbon and elemental fluorine at an elevated temperature, using a proportion of the carbon to the oxide about 50% in excess of that theoretically required to combine with f the oxygen as C0/.sub 2/. The process has the advantage that the uranium oxide is reduced by tbe carbon aad converted to the hexafluoride in a single operation.

  17. CATALYZED OXIDATION OF URANIUM IN CARBONATE SOLUTIONS

    DOEpatents

    Clifford, W.E.

    1962-05-29

    A process is given wherein carbonate solutions are employed to leach uranium from ores and the like containing lower valent uranium species by utilizing catalytic amounts of copper in the presence of ammonia therein and simultaneously supplying an oxidizing agent thereto. The catalysis accelerates rate of dissolution and increases recovery of uranium from the ore. (AEC)

  18. Chemical aspects of uranium behavior in soils: A review

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.

    2011-08-01

    Uranium has varying degrees of oxidation (+4 and +6) and is responsive to changes in the redox potential of the environment. It is deposited at the reduction barrier with the participation of biota and at the sorption barrier under oxidative conditions. Iron (hydr)oxides are the strongest sorbents of uranium. Uranium, being an element of medium biological absorption, can accumulate (relative to thorium) in the humus horizons of some soils. The high content of uranium in uncontaminated soils is most frequently inherited from the parent rocks in the regions of positive U anomalies: in the soils developed on oil shales and in the marginal zone of bogs at the reduction barrier. The development of nuclear and coal-fired power engineering resulted in the environmental contamination with uranium. The immobilization of anthropogenic uranium at artificial geochemical barriers is based on two preconditions: the stimulation of on-site metal-reducing bacteria or the introduction of strong mineral reducers, e.g., Fe at low degrees of oxidation.

  19. PROCESSES OF CHLORINATION OF URANIUM OXIDES

    DOEpatents

    Rosenfeld, S.

    1958-09-16

    An improvement is described in the process fur making UCl/sub 4/ from uranium oxide and carbon tetrachloride. In that process, oxides of uranium are contacted with carbon tetrachloride vapor at an elevated temperature. It has been fuund that the reaction product and yield are improved if the uranlum oxide charge is disposed in flat trays in the reaction zone, to a depth of not more than 1/2 centimeter.

  20. SULPHUR DIOXIDE LEACHING OF URANIUM CONTAINING MATERIAL

    DOEpatents

    Thunaes, A.; Rabbits, F.T.; Hester, K.D.; Smith, H.W.

    1958-12-01

    A process is described for extracting uranlum from uranium containing material, such as a low grade pitchblende ore, or mill taillngs, where at least part of the uraniunn is in the +4 oxidation state. After comminuting and magnetically removing any entrained lron particles the general material is made up as an aqueous slurry containing added ferric and manganese salts and treated with sulfur dioxide and aeration to an extent sufficient to form a proportion of oxysulfur acids to give a pH of about 1 to 2 but insufficient to cause excessive removal of the sulfur dioxide gas. After separating from the solids, the leach solution is adjusted to a pH of about 1.25, then treated with metallic iron in the presence of a precipitant such as a soluble phosphate, arsonate, or fluoride.

  1. Effect of uranium(VI) speciation on simultaneous microbial reduction of uranium(VI) and iron(III).

    PubMed

    Stewart, Brandy D; Amos, Richard T; Fendorf, Scott

    2011-01-01

    Uranium is a pollutant of concern to both human and ecosystem health. Uranium's redox state often dictates whether it will reside in the aqueous or solid phase and thus plays an integral role in the mobility of uranium within the environment. In anaerobic environments, the more oxidized and mobile form of uranium (UO2(2+) and associated species) may be reduced, directly or indirectly, by microorganisms to U(IV) with subsequent precipitation of UO. However, various factors within soils and sediments, such as U(VI) speciation and the presence of competitive electron acceptors, may limit biological reduction of U(VI). Here we examine simultaneous dissimilatory reduction of Fe(III) and U(VI) in batch systems containing dissolved uranyl acetate and ferrihydrite-coated sand. Varying amounts of calcium were added to induce changes in aqueous U(VI) speciation. The amount of uranium removed from solution during 100 h of incubation with S. putrefaciens was 77% in absence of Ca or ferrihydrite, but only 24% (with ferrihydrite) and 14% (without ferrihydrite) were removed for systems with 0.8 mM Ca. Dissimilatory reduction of Fe(III) and U(VI) proceed through different enzyme pathways within one type of organism. We quantified the rate coefficients for simultaneous dissimilatory reduction of Fe(III) and U(VI) in systems varying in Ca concecentration (0-0.8 mM). The mathematical construct, implemented with the reactive transport code MIN3P, reveals predominant factors controlling rates and extent of uranium reduction in complex geochemical systems.

  2. SOLVENT EXTRACTION PROCESS FOR URANIUM FROM CHLORIDE SOLUTIONS

    DOEpatents

    Blake, C.A. Jr.; Brown, K.B.; Horner, D.E.

    1960-05-24

    An improvement was made in a uranium extraction process wherein the organic extractant is a phosphine oxide. An aqueous solution containing phosphate ions or sulfate ions together with uranium is provided with a source of chloride ions during the extraction step. The presence of the chloride ions enables a phosphine oxide to extract uranium in the presence of strong uranium- complexing ions such as phosphate or sulfate ions.

  3. Molybdenum isotope fractionation during acid leaching of a granitic uranium ore

    NASA Astrophysics Data System (ADS)

    Migeon, Valérie; Bourdon, Bernard; Pili, Eric; Fitoussi, Caroline

    2018-06-01

    As an attempt to prevent illicit trafficking of nuclear materials, it is critical to identify the origin and transformation of uranium materials from the nuclear fuel cycle based on chemical and isotope tracers. The potential of molybdenum (Mo) isotopes as tracers is considered in this study. We focused on leaching, the first industrial process used to release uranium from ores, which is also known to extract Mo depending on chemical conditions. Batch experiments were performed in the laboratory with pH ranging from 0.3 to 5.5 in sulfuric acid. In order to span a large range in uranium and molybdenum yields, oxidizers such as nitric acid, hydrogen peroxide and manganese dioxide were also added. An enrichment in heavy Mo isotopes is produced in the solution during leaching of a granitic uranium ore, when Mo recovery is not quantitative. At least two Mo reservoirs were identified in the ore: ∼40% as Mo oxides soluble in water or sulfuric acid, and ∼40% of Mo hosted in sulfides soluble in nitric acid or hydrogen peroxide. At pH > 1.8, adsorption and/or precipitation processes induce a decrease in Mo yields with time correlated with large Mo isotope fractionations. Quantitative models were used to evaluate the relative importance of the processes involved in Mo isotope fractionation: dissolution, adsorption, desorption, precipitation, polymerization and depolymerization. Model best fits are obtained when combining the effects of dissolution/precipitation, and adsorption/desorption onto secondary minerals. These processes are inferred to produce an equilibrium isotope fractionation, with an enrichment in heavy Mo isotopes in the liquid phase and in light isotopes in the solid phase. Quantification of Mo isotope fractionation resulting from uranium leaching is thus a promising tool to trace the origin and transformation of nuclear materials. Our observations of Mo leaching are also consistent with observations of natural Mo isotope fractionation taking place during chemical weathering in terrestrial environments where the role of secondary processes such as adsorption is significant.

  4. Uranium(VI) interactions with mackinawite in the presence and absence of bicarbonate and oxygen

    USGS Publications Warehouse

    Gallegos, Tanya J.; Fuller, Christopher C.; Webb, Samuel M.; Betterton, William J.

    2013-01-01

    Mackinawite, Fe(II)S, samples loaded with uranium (10-5, 10-4, and 10-3 mol U/g FeS) at pH 5, 7, and 9, were characterized using X-ray absorption spectroscopy and X-ray diffraction to determine the effects of pH, bicarbonate, and oxidation on uptake. Under anoxic conditions, a 5 g/L suspension of mackinawite lowered 5 × 10-5 M uranium(VI) to below 30 ppb (1.26 × 10-7 M) U. Between 82 and 88% of the uranium removed from solution by mackinawite was U(IV) and was nearly completely reduced to U(IV) when 0.012 M bicarbonate was added. Near-neighbor coordination consisting of uranium–oxygen and uranium-uranium distances indicates the formation of uraninite in the presence and absence of bicarbonate, suggesting reductive precipitation as the dominant removal mechanism. Following equilibration in air, mackinawite was oxidized to mainly goethite and sulfur and about 76% of U(IV) was reoxidized to U(VI) with coordination of uranium to axial and equatorial oxygen, similar to uranyl. Additionally, uranium-iron distances, typical of coprecipitation of uranium with iron oxides, and uranium-sulfur distances indicating bidentate coordination of U(VI) to sulfate were evident. The affinity of mackinawite and its oxidation products for U(VI) provides impetus for further study of mackinawite as a potential reactive medium for remediation of uranium-contaminated water.

  5. Assessment of nonpoint source chemical loading potential to watersheds containing uranium waste dumps and human health hazards associated with uranium exploration and mining, Red, White, and Fry Canyons, southeastern Utah, 2007

    USGS Publications Warehouse

    Beisner, Kimberly R.; Marston, Thomas M.; Naftz, David L.; Snyder, Terry; Freeman, Michael L.

    2010-01-01

    During May, June, and July 2007, 58 solid-phase samples were collected from abandoned uranium mine waste dumps, background sites, and adjacent streambeds in Red, White, and Fry Canyons in southeastern Utah. The objectives of this sampling program were to (1) assess the nonpoint-source chemical loading potential to ephemeral and perennial drainage basins from uranium waste dumps and (2) assess potential effects on human health due to recreational activities on and around uranium waste dumps on Bureau of Land Management property. Uranium waste-dump samples were collected using solid-phase sampling protocols. After collection, solid-phase samples were homogenized and extracted in the laboratory using a leaching procedure. Filtered (0.45 micron) water samples were obtained from the field leaching procedure and were analyzed for major and trace elements at the Inductively Coupled Plasma-Mass Spectrometry Metals Analysis Laboratory at the University of Utah. A subset of the solid-phase samples also were digested with strong acids and analyzed for major ions and trace elements at the U.S. Geological Survey Geologic Division Laboratory in Denver, Colorado. For the initial ranking of chemical loading potential for uranium waste dumps, results of leachate analyses were compared with existing aquatic-life and drinking-water-quality standards. To assess potential effects on human health, solid-phase digestion values for uranium were compared to soil screening levels (SSL) computed using the computer model RESRAD 6.5 for a probable concentration of radium. One or more chemical constituents exceeded aquatic life and drinking-water-quality standards in approximately 64 percent (29/45) of the leachate samples extracted from uranium waste dumps. Most of the uranium waste dump sites with elevated trace-element concentrations in leachates were located in Red Canyon. Approximately 69 percent (31/45) of the strong acid digestible soil concentration values were greater than a calculated SSL. Uranium waste dump sites with elevated leachate and total digestible concentrations may need to be further investigated to determine the most appropriate remediation method.

  6. Thermochemistry of rare earth doped uranium oxides LnxU1-xO2-0.5x+y (Ln = La, Y, Nd)

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Navrotsky, Alexandra

    2015-10-01

    Lanthanum, yttrium, and neodymium doped uranium dioxide samples in the fluorite structure have been synthesized, characterized in terms of metal ratio and oxygen content, and their enthalpies of formation measured by high temperature oxide melt solution calorimetry. For oxides doped with 10-50 mol % rare earth (Ln) cations, the formation enthalpies from constituent oxides (LnO1.5, UO2 and UO3 in a reaction not involving oxidation or reduction) become increasingly exothermic with increasing rare earth content, while showing no significant dependence on the varying uranium oxidation state. The oxidation enthalpy of LnxU1-xO2-0.5x+y is similar to that of UO2 to UO3 for all three rare earth doped systems. Though this may suggest that the oxidized uranium in these systems is energetically similar to that in the hexavalent state, thermochemical data alone can not constrain whether the uranium is present as U5+, U6+, or a mixture of oxidation states. The formation enthalpies from elements calculated from the calorimetric data are generally consistent with those from free energy measurements.

  7. The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent.

    PubMed

    Dickinson, Michelle; Scott, Thomas B

    2010-06-15

    Zero-valent iron nanoparticles (INP) were investigated as a remediation strategy for a uranium-contaminated waste effluent from AWE, Aldermaston. Nanoparticles were introduced to the effluent, under both oxic and anoxic conditions, and allowed to react for a 28-d period during which the liquid and nanoparticle solids were periodically sampled. Analysis of the solution indicated that under both conditions U was removed to <1.5% of its initial concentration within 1h of introduction and remained at similar concentrations until approximately 48 h. A rapid release of Fe into solution was also recorded during this initial period; attributed to the limited partial dissolution of the INP. XPS analyses of the reacted nanoparticulate solids between 1 and 48 h showed an increased Fe(III):Fe(II) ratio, consistent with the detection of iron oxidation products (akaganeite and magnetite) by XRD and FIB. XPS analysis also recorded uranium on the recovered particulates indicating the chemical reduction of U(VI) to U(IV) within 1h. Following the initial retention period U-dissolution of U was recorded from 48 h, and attributed to reoxidation. The efficient uptake and retention of U on the INP for periods up to 48 h provide proof that INP may be effectively used for the remediation of complex U-contaminated effluents. Copyright 2010 Elsevier B.V. All rights reserved.

  8. 16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM RECOVERY PROCESSED RELATIVELY PURE MATERIALS AND SOLUTIONS AND SOLID RESIDUES WITH RELATIVELY LOW URANIUM CONTENT. URANIUM RECOVERY INVOLVED BOTH SLOW AND FAST PROCESSES. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  9. RECONDITIONING FUEL ELEMENTS

    DOEpatents

    Brandt, H.L.

    1962-02-20

    A process is given for decanning fuel elements that consist of a uranium core, an intermediate section either of bronze, silicon, Al-Si, and uranium silicide layers or of lead, Al-Si, and uranium silicide layers around said core, and an aluminum can bonded to said intermediate section. The aluminum can is dissolved in a solution of sodium hydroxide (9 to 20 wt%) and sodium nitrate (35 to 12 wt %), and the layers of the intermediate section are dissolved in a boiling sodium hydroxide solution of a minimum concentration of 50 wt%. (AEC) A method of selectively reducing plutonium oxides and the rare earth oxides but not uranium oxides is described which comprises placing the oxides in a molten solvent of zinc or cadmium and then adding metallic uranium as a reducing agent. (AEC)

  10. Environmental and taxonomic bacterial diversity of anaerobic uranium(IV) bio-oxidation.

    PubMed

    Weber, Karrie A; Thrash, J Cameron; Van Trump, J Ian; Achenbach, Laurie A; Coates, John D

    2011-07-01

    Microorganisms in diverse terrestrial surface and subsurface environments can anaerobically catalyze the oxidative dissolution of uraninite. While a limited quantity (∼5 to 12 μmol liter(-1)) of uranium is oxidatively dissolved in pure culture studies, the metabolism is coupled to electron transport, providing the potential of uraninite to support indigenous microbial populations and to solubilize uranium.

  11. Pentavalent uranium trans-dihalides and -pseudohalides.

    PubMed

    Lewis, Andrew J; Nakamaru-Ogiso, Eiko; Kikkawa, James M; Carroll, Patrick J; Schelter, Eric J

    2012-05-21

    Pentavalent uranium complexes of the formula U(V)X(2)[N(SiMe(3))(2)](3) (X = F(-), Cl(-), Br(-), N(3)(-), NCS(-)) are accessible from the oxidation of U(III)[N(SiMe(3))(2)](3) through two sequential, one-electron oxidation reactions (halides) and substitution through salt metathesis (pseudohalides). Uranium(v) mixed-halides are also synthesized by successive one-electron oxidation reactions.

  12. PREPARATION OF REFRACTORY OXIDE CRYSTALS

    DOEpatents

    Grimes, W.R.; Shaffer, J.H.; Watson, G.M.

    1962-11-13

    A method is given for preparing uranium dioxide, thorium oxide, and beryllium oxide in the form of enlarged individual crystals. The surface of a fused alkali metal halide melt containing dissolved uranium, thorium, or beryllium values is contacted with a water-vapor-bearing inert gas stream at a rate of 5 to 10 cubic centimeters per minute per square centimeter of melt surface area. Growth of individual crystals is obtained by prolonged contact. Beryllium oxide-coated uranium dioxide crystals are prepared by disposing uranium dioxide crystals 5 to 20 microns in diameter in a beryllium-containing melt and contacting the melt with a water-vapor-bearing inert gas stream in the same manner. (AEC)

  13. Method for fluorination of uranium oxide

    DOEpatents

    Petit, George S.

    1987-01-01

    Highly pure uranium hexafluoride is made from uranium oxide and fluorine. The uranium oxide, which includes UO.sub.3, UO.sub.2, U.sub.3 O.sub.8 and mixtures thereof, is introduced together with a small amount of a fluorine-reactive substance, selected from alkali chlorides, silicon dioxide, silicic acid, ferric oxide, and bromine, into a constant volume reaction zone. Sufficient fluorine is charged into the zone at a temperature below approximately 0.degree. C. to provide an initial pressure of at least approximately 600 lbs/sq. in. at the ambient atmospheric temperature. The temperature is then allowed to rise in the reaction zone until reaction occurs.

  14. Origin of the Mariano Lake uranium deposit, McKinley County, New Mexico

    USGS Publications Warehouse

    Fishman, Neil S.; Reynolds, Richard L.

    1982-01-01

    The Mariano Lake uranium deposit, hosted by the Brushy Basin Member of the Jurassic Morrison Formation, occurs in the trough of an east-west trending syncline at the western end of the Smith Lake-Mariano Lake group of uranium deposits near Crownpoint, New Mexico. The orebody, which contains abundant amorphous organic material, is situated on the reduced side of a regional reduction-oxidation (redox) interface. The presence of amorphous organic material suggests the orebody may represent a tabular (primary) deposit, whereas the close proximity of the orebody to the redox interface is suggestive that uranium was secondarily redistributed by oxidative processes from pre-existing tabular orebodies. Uranium contents correlate positively with both organic carbon and vanadium contents. Petrographic evidence and scanning electron microscope-energy dispersive analyses point to uranium residence in the epigentically introduced amorphous organic material, which coats detrital grains and fills voids. Uranium mineralization was preceded by the following diagenetic alterations: precipitation of pyrite (d34S values ranging from-11.0 to-38.2 per mil); precipitation of mixed-layer smectite-illite clays; partial dissolution of some of the detrital feldspar population; and precipitation of quartz and adularia overgrowths. Alterations associated with uranium mineralization include emplacement of amorphous organic material (possibly uranium bearing); destruction of detrital iron-titanium oxide grains; coprecipitation of chlorite and microcrystalline quartz, and precipitation of pyrite and marcasite (d34S values for these sulfides ranging from -29.4 to -41.6 per mil). After mineralization, calcite, dolomite, barite, and kaolinite precipitated, and authigenic iron disulfides were replaced by ferric oxides and hydroxides. Geochemical data (primarily the positive correlation of uranium content to both organic carbon and vanadium contents) and petrographic observations (epigentically introduced amorphous organic matter and uranium residence in this organic matter) indicate that the Mariano Lake orebody is a tabular-type uranium deposit. Oxidative processes have not noticeably redistributed and reconcentrated primary uranium in the immediate vicinity of the deposit nor have they greatly modified geochemical characteristics in the ore. Preservation of the Mariano Lake deposit may not only be related to its position along the synclinal trough, where oxidative destruction of the orebody has been inhibited by stagnation of oxidizing ground waters by the structure, but also due to the deflection of ground waters (resulting from low orebody porosity) around the orebody.

  15. Influence of uranium hydride oxidation on uranium metal behaviour

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, N.; Hambley, D.; Clarke, S.A.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, ifmore » sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)« less

  16. Using proteomic data to assess a genome-scale "in silico" model of metal reducing bacteria in the simulation of field-scale uranium bioremediation

    NASA Astrophysics Data System (ADS)

    Yabusaki, S.; Fang, Y.; Wilkins, M. J.; Long, P.; Rifle IFRC Science Team

    2011-12-01

    A series of field experiments in a shallow alluvial aquifer at a former uranium mill tailings site have demonstrated that indigenous bacteria can be stimulated with acetate to catalyze the conversion of hexavalent uranium in a groundwater plume to immobile solid-associated uranium in the +4 oxidation state. While this bioreduction of uranium has been shown to lower groundwater concentrations below actionable standards, a viable remediation methodology will need a mechanistic, predictive and quantitative understanding of the microbially-mediated reactions that catalyze the reduction of uranium in the context of site-specific processes, properties, and conditions. At the Rifle IFRC site, we are investigating the impacts on uranium behavior of pulsed acetate amendment, acetate-oxidizing iron and sulfate reducing bacteria, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. The simulation of three-dimensional, variably saturated flow and biogeochemical reactive transport during a uranium bioremediation field experiment includes a genome-scale in silico model of Geobacter sp. to represent the Fe(III) terminal electron accepting process (TEAP). The Geobacter in silico model of cell-scale physiological metabolic pathways is comprised of hundreds of intra-cellular and environmental exchange reactions. One advantage of this approach is that the TEAP reaction stoichiometry and rate are now functions of the metabolic status of the microorganism. The linkage of in silico model reactions to specific Geobacter proteins has enabled the use of groundwater proteomic analyses to assess the accuracy of the model under evolving hydrologic and biogeochemical conditions. In this case, the largest predicted fluxes through in silico model reactions generally correspond to high abundances of proteins linked to those reactions (e.g. the condensation reaction catalyzed by the protein citrate synthase that generates citrate from acetyl-CoA and oxaloacetate). Model discrepancies with the proteomic data, such as the prediction of shifts associated with nitrogen limitation, revealed pathways in the in silico code that could be modified to more accurately predict metabolic processes that occur in the subsurface. The potential outcome of this approach is the engineering of electron donor (e.g., acetate), terminal electron acceptor [e.g., U(VI)], and biogeochemical conditions that enhance the desired metabolic pathways of the target microorganism(s) to effect cost-effective uranium bioreduction.

  17. High Temperature Reactions of Uranium Dioxide with Various Metal Oxides

    DTIC Science & Technology

    1956-02-20

    manganese, nickel , lead, and tin. Subtracting the total of these impurities from the oxygen remainder would give a more nearly 1:2 uranium -oxygen ratio. The...Astin, Dire~ctor High -Temperature Reactions of Uranium Dioxide With Various Metal Oxides Acceson For NTIS CRAWI DTfC TAB Unannounced D JustifiCation...1 2. The uranium -oxygen system ------------------------------------- 1 3. Binary systems containing

  18. Actinide metal processing

    DOEpatents

    Sauer, Nancy N.; Watkin, John G.

    1992-01-01

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  19. Actinide metal processing

    DOEpatents

    Sauer, N.N.; Watkin, J.G.

    1992-03-24

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  20. A combined calorimetric and computational study of the energetics of rare earth substituted UO 2 systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Solomon, Jonathan M.; Asta, Mark

    2015-09-01

    The energetics of rare earth substituted UO2 solid solutions (U1-xLnxO2-0.5x+y, where Ln = La, Y, and Nd) are investigated employing a combination of calorimetric measurements and density functional theory based computations. Calculated and measured formation enthalpies agree within 10 kJ/mol for stoichiometric oxygen/metal compositions. To better understand the factors governing the stability and defect binding in rare earth substituted urania solid solutions, systematic trends in the energetics are investigated based on the present results and previous computational and experimental thermochemical studies of rare earth substituted fluorite oxides (A1-xLnxO2-0.5x, where A = Hf, Zr, Ce, and Th). A consistent trend towardsmore » increased energetic stability with larger size mismatch between the smaller host tetravalent cation and the larger rare earth trivalent cation is found for both actinide and non-actinide fluorite oxide systems where aliovalent substitution of Ln cations is compensated by oxygen vacancies. However, the large exothermic oxidation enthalpy in the UO2 based systems favors oxygen rich compositions where charge compensation occurs through the formation of uranium cations with higher oxidation states.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bundy, R.D.; Alderfer, R.B.

    Bench-scale tests of the direct calcination process for Portsmouth were conducted using batch pot calcination of simulated and actual raffinate wastes. These studies included investigation of the evaporation step needed to concentrate the raffinate before calcination. Tests were conducted at calcination temperatures of 600, 700, 1000, and 1200/sup 0/F with two levels of evaporative concentration before calcination at 1000/sup 0/F. Evaporation only tests were also made. Performance of the bench-scale system was excellent. A calcination temperature of 715/sup 0/F indicated that 80 to 100% of the Tc was retained in the calcined solids, while all of the nitrates were decomposedmore » to oxides. With calcination temperatures of greater than or equal to 1000/sup 0/F, part of the Tc escaped from the calcination pot to the scrubber. Below 700/sup 0/F, not all of the nitrates were decomposed to oxides. Most of the U remained in the calcined solids for calcination temperatures of less than or equal to 1000/sup 0/F. The mass of solids remaining after calcination was 4 to 5% of the original raffinate for calcination temperatures from 700 to 1000/sup 0/F. Flow rate through the off-gas treatment system was variable. The water scrubber had a good removal efficiency for nitrate and most metals, but not for uranium. The trapping efficiency of the limestone trap for nitrate was low. Flowsheet studies indicate that enough U would pass through the scrubber and chemical traps to cause an unacceptably high release of radioactivity if the assay of the uranium exceeded 33%. A small HEPA filter after the limestone chemical traps is recommended to reduce U emissions. A flowsheet was developed for a full-scale process for the direct calcination of raffinate waste.« less

  2. Assessment of solid/liquid equilibria in the (U, Zr)O2+y system

    NASA Astrophysics Data System (ADS)

    Mastromarino, S.; Seibert, A.; Hashem, E.; Ciccioli, A.; Prieur, D.; Scheinost, A.; Stohr, S.; Lajarge, P.; Boshoven, J.; Robba, D.; Ernstberger, M.; Bottomley, D.; Manara, D.

    2017-10-01

    Solid/liquid equilibria in the system UO2sbnd ZrO2 are revisited in this work by laser heating coupled with fast optical thermometry. Phase transition points newly measured under inert gas are in fair agreement with the early measurements performed by Wisnyi et al., in 1957, the only study available in the literature on the whole pseudo-binary system. In addition, a minimum melting point is identified here for compositions near (U0.6Zr0.4)O2+y, around 2800 K. The solidus line is rather flat on a broad range of compositions around the minimum. It increases for compositions closer to the pure end members, up to the melting point of pure UO2 (3130 K) on one side and pure ZrO2 (2970 K) on the other. Solid state phase transitions (cubic-tetragonal-monoclinic) have also been observed in the ZrO2-rich compositions X-ray diffraction. Investigations under 0.3 MPa air (0.063 MPa O2) revealed a significant decrease in the melting points down to 2500 K-2600 K for increasing uranium content (x(UO2)> 0.2). This was found to be related to further oxidation of uranium dioxide, confirmed by X-ray absorption spectroscopy. For example, a typical oxidised corium composition U0.6Zr0.4O2.13 was observed to solidify at a temperature as low as 2493 K. The current results are important for assessing the thermal stability of the system fuel - cladding in an oxide based nuclear reactor, and for simulating the system behaviour during a hypothetical severe accident.

  3. A survey of uranium levels in urine and hair of people living in a coal mining area in Yili, Xinjiang, China.

    PubMed

    Wufuer, Rehemanjiang; Song, Wenjuan; Zhang, Daoyong; Pan, Xiangliang; Gadd, Geoffrey Michael

    2018-09-01

    Recent reports have drawn attention to the uranium contamination arising from coal mining activities in the Yili region of Xinjiang, China due to the mixed distribution of uranium and coal mines, and some of the coal mines being associated with a high uranium content. In this study, we have collected water samples, solid samples such as soil, mud, coal, and coal ash, and hair and urine samples from local populations in order to evaluate the uranium level in this environment and its implications for humans in this high uranium coal mining area. Our results showed that uranium concentrations were 8.71-10.91 μg L -1 in underground water, whereas lower levels of uranium occurred in river water. Among the solid samples, coal ash contained fairly high concentrations of uranium (33.1 μg g -1 ) due to enrichment from coal burning. In addition, uranium levels in the other solid samples were around 2.8 μg g -1 (the Earth's average background value). Uranium concentrations in hair and urine samples were 22.2-634.5 ng g -1 (mean: 156.2 ng g -1 ) and 8.44-761.6 ng L -1 (mean: 202.6 ng L -1 ), respectively, which are significantly higher than reference values reported for unexposed subjects in other areas. Therefore, these results indicate that people living in this coal mining area have been subjected to uranium exposure for long periods of time. Copyright © 2018. Published by Elsevier Ltd.

  4. Dissolution of Uranium(IV) Oxide in Solutions of Ammonium Carbonate and Hydrogen Peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Steven C.; Peper, Shane M.; Douglas, Matthew

    2009-09-12

    Understanding the dissolution characteristics of uranium oxides is of fundamental scientific interest. Bench scale experiments were conducted to determine the optimal dissolution parameters of uranium(IV) oxide (UO2) powder in solutions of ammonium carbonate [(NH4)2CO3] and hydrogen peroxide (H2O2). Experimental parameters included variable peroxide and carbonate concentrations, and temperature. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M (1:1 to 40:1 mol ratio H2O2:U), with no apparent maximum rate reached under the limited conditions used in our study. Temperature ranging studies show the dissolution rate of UO2 inmore » 1 M (NH4)2CO3 and 0.1 M H2O2 (2:1 mol ratio H2O2:U) increases linearly from 15 °C to 60 °C, again with no apparent maximum rate reached. Dissolution of UO2 in solutions with constant [H2O2] and [(NH4)2CO3] ranging from 0.5 to 2 M showed no difference in rate; however dissolution was significantly reduced in 0.05 M (NH4)2CO3 solution. The results of this study demonstrate the influence of [H2O2], [(NH4)2CO3], and temperature on the dissolution of UO2 in peroxide-containing (NH4)2CO3 solutions. Future studies are planned to elucidate the solution and solid state complexes in these systems.« less

  5. SEPARATION OF PLUTONIUM FROM URANIUM

    DOEpatents

    Feder, H.M.; Nuttall, R.L.

    1959-12-15

    A process is described for extracting plutonium from powdered neutron- irradiated urarium metal by contacting the latter, while maintaining it in the solid form, with molten magnesium which takes up the plutonium and separating the molten magnesium from the solid uranium.

  6. Process for continuous production of metallic uranium and uranium alloys

    DOEpatents

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  7. Process for continuous production of metallic uranium and uranium alloys

    DOEpatents

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  8. First-principles study on oxidation effects in uranium oxides and high-pressure high-temperature behavior of point defects in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Geng, Hua Y.; Song, Hong X.; Jin, K.; Xiang, S. K.; Wu, Q.

    2011-11-01

    Formation Gibbs free energy of point defects and oxygen clusters in uranium dioxide at high-pressure high-temperature conditions are calculated from first principles, using the LSDA+U approach for the electronic structure and the Debye model for the lattice vibrations. The phonon contribution on Frenkel pairs is found to be notable, whereas it is negligible for the Schottky defect. Hydrostatic compression changes the formation energies drastically, making defect concentrations depend more sensitively on pressure. Calculations show that, if no oxygen clusters are considered, uranium vacancy becomes predominant in overstoichiometric UO2 with the aid of the contribution from lattice vibrations, while compression favors oxygen defects and suppresses uranium vacancy greatly. At ambient pressure, however, the experimental observation of predominant oxygen defects in this regime can be reproduced only in a form of cuboctahedral clusters, underlining the importance of defect clustering in UO2+x. Making use of the point defect model, an equation of state for nonstoichiometric oxides is established, which is then applied to describe the shock Hugoniot of UO2+x. Furthermore, the oxidization and compression behavior of uranium monoxide, triuranium octoxide, uranium trioxide, and a series of defective UO2 at 0 K are investigated. The evolution of mechanical properties and electronic structures with an increase of the oxidation degree are analyzed, revealing the transition of the ground state of uranium oxides from metallic to Mott insulator and then to charge-transfer insulator due to the interplay of strongly correlated effects of 5f orbitals and the shift of electrons from uranium to oxygen atoms.

  9. Developing uranium dicarbide-graphite porous materials for the SPES project

    NASA Astrophysics Data System (ADS)

    Biasetto, L.; Zanonato, P.; Carturan, S.; Di Bernardo, P.; Colombo, P.; Andrighetto, A.; Prete, G.

    2010-09-01

    Uranium carbide dispersed in graphite was produced under vacuum by means of carbothermic reduction of different uranium oxides (UO 2, U 3O 8 and UO 3), using graphite as the source of carbon. The thermal process was monitored by mass spectrometry and the gas evolution confirmed the reduction of the U 3O 8 and UO 3 oxides to UO 2 before the carbothermic reaction, that started to occur at T > 1000 °C. XRD analysis confirmed the formation of α-UC 2 and of a minor amount of UC. The morphology of the produced uranium carbide was not affected by the oxides employed as the source of uranium.

  10. REFRACTORY ARTICLE AND PROCESS OF MANUFACTURING SAME

    DOEpatents

    Hamilton, N.E.

    1957-12-10

    A method is described for fabricating improved uranium oxide crucibles. In the past, such crucibles have lacked mechanical strength due to the poor cohesion of the uranium oxide particles. This difficulty has now been overcome by admixing with the uranium oxide a quantity of a refractory oxide binder, and dry pressing and sintering the resulting mixture into the desired shape. Suitable as binders are BeO, CaO, Al/sub 2/C/sub 3/, and ThO/sub 2/ among others.

  11. Sorption testing and generalized composite surface complexation models for determining uranium sorption parameters at a proposed in-situ recovery site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Raymond H.; Truax, Ryan A.; Lankford, David A.

    Solid-phase iron concentrations and generalized composite surface complexation models were used to evaluate procedures in determining uranium sorption on oxidized aquifer material at a proposed U in situ recovery (ISR) site. At the proposed Dewey Burdock ISR site in South Dakota, USA, oxidized aquifer material occurs downgradient of the U ore zones. Solid-phase Fe concentrations did not explain our batch sorption test results,though total extracted Fe appeared to be positively correlated with overall measured U sorption. Batch sorption test results were used to develop generalized composite surface complexation models that incorporated the full genericsorption potential of each sample, without detailedmore » mineralogiccharacterization. The resultant models provide U sorption parameters (site densities and equilibrium constants) for reactive transport modeling. The generalized composite surface complexation sorption models were calibrated to batch sorption data from three oxidized core samples using inverse modeling, and gave larger sorption parameters than just U sorption on the measured solidphase Fe. These larger sorption parameters can significantly influence reactive transport modeling, potentially increasing U attenuation. Because of the limited number of calibration points, inverse modeling required the reduction of estimated parameters by fixing two parameters. The best-fit models used fixed values for equilibrium constants, with the sorption site densities being estimated by the inversion process. While these inverse routines did provide best-fit sorption parameters, local minima and correlated parameters might require further evaluation. Despite our limited number of proxy samples, the procedures presented provide a valuable methodology to consider for sites where metal sorption parameters are required. Furthermore, these sorption parameters can be used in reactive transport modeling to assess downgradient metal attenuation, especially when no other calibration data are available, such as at proposed U ISR sites.« less

  12. Sorption testing and generalized composite surface complexation models for determining uranium sorption parameters at a proposed in-situ recovery site

    DOE PAGES

    Johnson, Raymond H.; Truax, Ryan A.; Lankford, David A.; ...

    2016-02-03

    Solid-phase iron concentrations and generalized composite surface complexation models were used to evaluate procedures in determining uranium sorption on oxidized aquifer material at a proposed U in situ recovery (ISR) site. At the proposed Dewey Burdock ISR site in South Dakota, USA, oxidized aquifer material occurs downgradient of the U ore zones. Solid-phase Fe concentrations did not explain our batch sorption test results,though total extracted Fe appeared to be positively correlated with overall measured U sorption. Batch sorption test results were used to develop generalized composite surface complexation models that incorporated the full genericsorption potential of each sample, without detailedmore » mineralogiccharacterization. The resultant models provide U sorption parameters (site densities and equilibrium constants) for reactive transport modeling. The generalized composite surface complexation sorption models were calibrated to batch sorption data from three oxidized core samples using inverse modeling, and gave larger sorption parameters than just U sorption on the measured solidphase Fe. These larger sorption parameters can significantly influence reactive transport modeling, potentially increasing U attenuation. Because of the limited number of calibration points, inverse modeling required the reduction of estimated parameters by fixing two parameters. The best-fit models used fixed values for equilibrium constants, with the sorption site densities being estimated by the inversion process. While these inverse routines did provide best-fit sorption parameters, local minima and correlated parameters might require further evaluation. Despite our limited number of proxy samples, the procedures presented provide a valuable methodology to consider for sites where metal sorption parameters are required. Furthermore, these sorption parameters can be used in reactive transport modeling to assess downgradient metal attenuation, especially when no other calibration data are available, such as at proposed U ISR sites.« less

  13. Oxidation and crystal field effects in uranium

    NASA Astrophysics Data System (ADS)

    Tobin, J. G.; Yu, S.-W.; Booth, C. H.; Tyliszczak, T.; Shuh, D. K.; van der Laan, G.; Sokaras, D.; Nordlund, D.; Weng, T.-C.; Bagus, P. S.

    2015-07-01

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (U O2) , uranium trioxide (U O3) , and uranium tetrafluoride (U F4) . A discussion of the role of nonspherical perturbations, i.e., crystal or ligand field effects, will be presented.

  14. The application of illite supported nanoscale zero valent iron for the treatment of uranium contaminated groundwater.

    PubMed

    Jing, C; Landsberger, S; Li, Y L

    2017-09-01

    In this study, nanoscale zero valent iron I-NZVI was investigated as a remediation strategy for uranium contaminated groundwater from the former Cimarron Fuel Fabrication Site in Oklahoma, USA. The 1 L batch-treatment system was applied in the study. The result shows that 99.9% of uranium in groundwater was removed by I-NZVI within 2 h. Uranium concentration in the groundwater stayed around 27 μg/L, and there was no sign of uranium release into groundwater after seven days of reaction time. Meanwhile the release of iron was significantly decreased compared to NZVI which can reduce the treatment impact on the water environment. To study the influence of background pH of the treatment system on removal efficiency of uranium, the groundwater was adjusted from pH 2-10 before the addition of I-NZVI. The pH of the groundwater was from 2.1 to 10.7 after treatment. The removal efficiency of uranium achieved a maximum in neutral pH of groundwater. The desorption of uranium on the residual solid phase after treatment was investigated in order to discuss the stability of uranium on residual solids. After 2 h of leaching, 0.07% of the total uranium on residual solid phase was leached out in a HNO 3 leaching solution with a pH of 4.03. The concentration of uranium in the acid leachate was under 3.2 μg/L which is below the EPA's maximum contaminant level of 30 μg/L. Otherwise, the concentration of uranium was negligible in distilled water leaching solution (pH = 6.44) and NaOH leaching solution (pH = 8.52). A desorption study shows that an acceptable amount of uranium on the residuals can be released into water system under strong acid conditions in short terms. For long term disposal management of the residual solids, the leachate needs to be monitored and treated before discharge into a hazardous landfill or the water system. For the first time, I-NZVI was applied for the treatment of uranium contaminated groundwater. These results provide proof that I-NZVI has improved performance compared to NZVI and is a promising technology for the restoration of complex uranium contaminated water resources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Covalency in oxidized uranium

    NASA Astrophysics Data System (ADS)

    Tobin, J. G.; Yu, S.-W.; Qiao, R.; Yang, W. L.; Booth, C. H.; Shuh, D. K.; Duffin, A. M.; Sokaras, D.; Nordlund, D.; Weng, T.-C.

    2015-07-01

    Using x-ray emission spectroscopy and absorption spectroscopy, it has been possible to directly access the states in the unoccupied conduction bands that are involved with 5 f and 6 d covalency in oxidized uranium. By varying the oxidizing agent, the degree of 5 f covalency can be manipulated and monitored, clearly and irrevocably establishing the importance of 5 f covalency in the electronic structure of the key nuclear fuel, uranium dioxide.

  16. Covalency in oxidized uranium

    DOE PAGES

    Tobin, J. G.; Yu, S. -W.; Qiao, R.; ...

    2015-07-01

    Here, using x-ray emission spectroscopy and absorption spectroscopy, it has been possible to directly access the states in the unoccupied conduction bands that are involved with 5f and 6d covalency in oxidized uranium. By varying the oxidizing agent, the degree of 5f covalency can be manipulated and monitored, clearly and irrevocably establishing the importance of 5f covalency in the electronic structure of the key nuclear fuel, uranium dioxide.

  17. Uranium(IV) Interaction with Aqueous/Solid Interfaces Studied by Nonlinear Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geiger, Franz

    2015-03-27

    This is the Final Technical Report for "Uranium(IV) Interaction with Aqueous/Solid Interfaces Studied by Nonlinear Optics", by Franz M. Geiger, PI, from Northwestern University, IL, USA, Grant Number SC0004101 and/or DE-PS02-ER09-07.

  18. PROCESS FOR THE RECOVERY OF URANIUM FROM PHOSPHATIC ORE

    DOEpatents

    Long, R.L.

    1959-04-14

    A proccss is described for the recovery of uranium from phosphatic products derived from phosphatic ores. It has been discovered that certain alkyl phosphatic, derivatives can be employed in a direct solvent extraction operation to recover uranium from solid products, such as superphosphates, without first dissolving such solids. The organic extractants found suitable include alkyl derivatives of phosphoric, pyrophosphoric, phosof the derivative contains from 4 to 7 carbon atoms. A diluent such as kerosene is also used.

  19. Release behavior of uranium in uranium mill tailings under environmental conditions.

    PubMed

    Liu, Bo; Peng, Tongjiang; Sun, Hongjuan; Yue, Huanjuan

    2017-05-01

    Uranium contamination is observed in sedimentary geochemical environments, but the geochemical and mineralogical processes that control uranium release from sediment are not fully appreciated. Identification of how sediments and water influence the release and migration of uranium is critical to improve the prevention of uranium contamination in soil and groundwater. To understand the process of uranium release and migration from uranium mill tailings under water chemistry conditions, uranium mill tailing samples from northwest China were investigated with batch leaching experiments. Results showed that water played an important role in uranium release from the tailing minerals. The uranium release was clearly influenced by contact time, liquid-solid ratio, particle size, and pH under water chemistry conditions. Longer contact time, higher liquid content, and extreme pH were all not conducive to the stabilization of uranium and accelerated the uranium release from the tailing mineral to the solution. The values of pH were found to significantly influence the extent and mechanisms of uranium release from minerals to water. Uranium release was monitored by a number of interactive processes, including dissolution of uranium-bearing minerals, uranium desorption from mineral surfaces, and formation of aqueous uranium complexes. Considering the impact of contact time, liquid-solid ratio, particle size, and pH on uranium release from uranium mill tailings, reducing the water content, decreasing the porosity of tailing dumps and controlling the pH of tailings were the key factors for prevention and management of environmental pollution in areas near uranium mines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Summary of the mineralogy of the Colorado Plateau uranium ores

    USGS Publications Warehouse

    Weeks, Alice D.; Coleman, Robert Griffin; Thompson, Mary E.

    1956-01-01

    In the Colorado Plateau uranium has been produced chiefly from very shallow mines in carnotite ores (oxidized vanadiferous uranium ores) until recent deeper mining penetrated black unoxidized ores in water-saturated rocks and extensive exploration has discovered many deposits of low to nonvanadiferous ores. The uranium ores include a wide range from highly vanadiferous and from as much as one percent to a trace of copper, and contain a small amount of iron and traces of lead, zinc, molybdenum, cobalt, nickel, silver, manganese, and other metals. Recent investigation indicates that the carnotite ores have been derived by progressive oxidation of primary (unoxidized) black ores that contain low-valent uranium and vanadium oxides and silicates. The uranium minerals, uraninite and coffinite, are associated with coalified wood or other carbonaceous material. The vanadium minerals, chiefly montroseite, roscoelite, and other vanadium silicates, occur in the interstices of the sandstone and in siltstone and clay pellets as well as associated with fossil wood. Calcite, dolomite, barite and minor amounts of sulfides, arsenides, and selenides occur in the unoxidized ore. Partially oxidized vanadiferous ore is blue black, purplish brown, or greenish black in contrast to the black or dark gray unoxidized ore. Vanadium combines with uranium to form rauvite. The excess vanadium is present in corvusite, fernandinite, melanovanadite and many other quadrivalent and quinquevalent vanadium minerals as well as in vanadium silicates. Pyrite and part or all of the calcite are replaced by iron oxides and gypsum. In oxidized vanadiferous uranium ores the uranium is fixed in the relatively insoluble minerals carnotite and tyuyamunite, and the excess vanadium commonly combines with one or more of the following: calcium, sodium, potassium, magnesium, aluminum, iron, copper, manganese, or barium, or rarely it forms the hydrated pentoxide. The relatively stable vanadium silicates are little affected by oxidation. The unoxidized nonvanadiferous ores contain uraninite and coffinite in close association with coalified wood and iron and copper sulfides, and traces of many other sulfides, arsenides and selenides. The oxidized nonvanadiferous ores differ from the vanadiferous ores because, in the absence of vanadium to complex the uranium, a great variety of secondary yellow and greenish-yellow uranyl minerals are formed. The uranyl sulfates and carbonates are more common than the oxides, phosphates, arsenates, and silicates. Because the sulfates and carbonates are much less stable that carnotite, the oxidized nonvanadiferous ores occure only as halos around cores of unoxidized ore and do not form large oxidized deposits close to the surface of the ground as carnotite ores. Oxidation has taken place since the lowering of the water table in the present erosion cycle. Because of local structures and the highly lenticular character of the fluviatile host rocks perched water tables and water-saturated lenses of sandstone are common high above the regional water table. Unoxidized ore has been preserved in these water-saturated rocks and the boundary between oxidized and unoxidized ore is very irregular.

  1. Carbothermic synthesis of 820 μm uranium nitride kernels: Literature review, thermodynamics, analysis, and related experiments

    NASA Astrophysics Data System (ADS)

    Lindemer, T. B.; Voit, S. L.; Silva, C. M.; Besmann, T. M.; Hunt, R. D.

    2014-05-01

    The US Department of Energy is developing a new nuclear fuel that would be less susceptible to ruptures during a loss-of-coolant accident. The fuel would consist of tristructural isotropic coated particles with uranium nitride (UN) kernels with diameters near 825 μm. This effort explores factors involved in the conversion of uranium oxide-carbon microspheres into UN kernels. An analysis of previous studies with sufficient experimental details is provided. Thermodynamic calculations were made to predict pressures of carbon monoxide and other relevant gases for several reactions that can be involved in the conversion of uranium oxides and carbides into UN. Uranium oxide-carbon microspheres were heated in a microbalance with an attached mass spectrometer to determine details of calcining and carbothermic conversion in argon, nitrogen, and vacuum. A model was derived from experiments on the vacuum conversion to uranium oxide-carbide kernels. UN-containing kernels were fabricated using this vacuum conversion as part of the overall process. Carbonitride kernels of ∼89% of theoretical density were produced along with several observations concerning the different stages of the process.

  2. Electrochemical and spectroscopic evidence on the one-electron reduction of U(VI) to U(V) on magnetite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Ke; Ilton, Eugene S.; Antonio, Mark R.

    2015-05-19

    Reduction of U(VI) to U(IV) on mineral surfaces has been considered as a one-step two electron process. However, stabilized U(V), with no evidence of U(IV), found in recent studies indicates U(VI) can undergo a one electron reduction to U(V) without further progression to U(IV). We investigated the mechanisms of uranium reduction by reducing U(VI) electrochemically on a magnetite electrode at pH 3.4 . The one electron reduction of U(VI) was first confirmed using the cyclic voltammetry method. Formation of nano-size uranium precipitates on the surface of magnetite at reducing potentials and dissolution of the solids at oxidizing potentials were observedmore » by in situ electrochemical AFM. XPS analysis of the magnetite electrodes polarized in uranium solutions at voltages from 0.1 ~ 0.9 V (vs. Ag/AgCl) showed the presence of only U(V) and U(VI). The highest amount of U(V) relative to U(VI) was prepared at 0.7 V, where the longest average U–Oaxial distance of 2.05 ± 0.01 Å was evident in the same sample revealed by EXAFS analysis. The results demonstrate that the electrochemical reduction of U(VI) on magnetite only yields U(V), even at a potential of 0.9 V, which favors the one-electron reduction mechanism. U(V) did not disproportionate but stabilized on magnetite through precipitation of mixed-valence state U(VI)/U(V) solids.« less

  3. Sensitivity Analysis and Parameter Estimation for a Reactive Transport Model of Uranium Bioremediation

    NASA Astrophysics Data System (ADS)

    Meyer, P. D.; Yabusaki, S.; Curtis, G. P.; Ye, M.; Fang, Y.

    2011-12-01

    A three-dimensional, variably-saturated flow and multicomponent biogeochemical reactive transport model of uranium bioremediation was used to generate synthetic data . The 3-D model was based on a field experiment at the U.S. Dept. of Energy Rifle Integrated Field Research Challenge site that used acetate biostimulation of indigenous metal reducing bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. A key assumption in past modeling studies at this site was that a comprehensive reaction network could be developed largely through one-dimensional modeling. Sensitivity analyses and parameter estimation were completed for a 1-D reactive transport model abstracted from the 3-D model to test this assumption, to identify parameters with the greatest potential to contribute to model predictive uncertainty, and to evaluate model structure and data limitations. Results showed that sensitivities of key biogeochemical concentrations varied in space and time, that model nonlinearities and/or parameter interactions have a significant impact on calculated sensitivities, and that the complexity of the model's representation of processes affecting Fe(II) in the system may make it difficult to correctly attribute observed Fe(II) behavior to modeled processes. Non-uniformity of the 3-D simulated groundwater flux and averaging of the 3-D synthetic data for use as calibration targets in the 1-D modeling resulted in systematic errors in the 1-D model parameter estimates and outputs. This occurred despite using the same reaction network for 1-D modeling as used in the data-generating 3-D model. Predictive uncertainty of the 1-D model appeared to be significantly underestimated by linear parameter uncertainty estimates.

  4. PROCESSES FOR SEPARATING AND RECOVERING CONSTITUENTS OF NEUTRON IRRADIATED URANIUM

    DOEpatents

    Connick, R.E.; Gofman, J.W.; Pimentel, G.C.

    1959-11-10

    Processes are described for preparing plutonium, particularly processes of separating plutonium from uranium and fission products in neutron-irradiated uraniumcontaining matter. Specifically, plutonium solutions containing uranium, fission products and other impurities are contacted with reducing agents such as sulfur dioxide, uranous ion, hydroxyl ammonium chloride, hydrogen peroxide, and ferrous ion whereby the plutoninm is reduced to its fluoride-insoluble state. The reduced plutonium is then carried out of solution by precipitating niobic oxide therein. Uranium and certain fission products remain behind in the solution. Certain other fission products precipitate along with the plutonium. Subsequently, the plutonium and fission product precipitates are redissolved, and the solution is oxidized with oxidizing agents such as chlorine, peroxydisulfate ion in the presence of silver ion, permanganate ion, dichromate ion, ceric ion, and a bromate ion, whereby plutonium is oxidized to the fluoride-soluble state. The oxidized solution is once again treated with niobic oxide, thus precipitating the contamirant fission products along with the niobic oxide while the oxidized plutonium remains in solution. Plutonium is then recovered from the decontaminated solution.

  5. The Sulfuric Acid Leaching of the Venta de Cardena (Cordoba) Mineral. I. Study on a Laboratory Scale; LA LIXIVIACION CON ACIDO SULFURICO DEL MINERAL DE VENTA DE CARDENA (CORDOBA). I. ESTUDIO EN ESCALA DE LABORATORIO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1957-01-01

    The conditions affecting the sulfuric acid leaching of uranium ores from Venta de Cardena were studied on a laboratory scale. The effects of grain size, acid concentration, liquid-solid ratio, temperature, presence of oxidizing agents, and agitation time were investigated. The results led to the establishments of the conditions for the selective leaching of the ores, and these conditions are tabulated. (J.S.R.)

  6. Simulation of uranium and plutonium oxides compounds obtained in plasma

    NASA Astrophysics Data System (ADS)

    Novoselov, Ivan Yu.; Karengin, Alexander G.; Babaev, Renat G.

    2018-03-01

    The aim of this paper is to carry out thermodynamic simulation of mixed plutonium and uranium oxides compounds obtained after plasma treatment of plutonium and uranium nitrates and to determine optimal water-salt-organic mixture composition as well as conditions for their plasma treatment (temperature, air mass fraction). Authors conclude that it needs to complete the treatment of nitric solutions in form of water-salt-organic mixtures to guarantee energy saving obtainment of oxide compounds for mixed-oxide fuel and explain the choice of chemical composition of water-salt-organic mixture. It has been confirmed that temperature of 1200 °C is optimal to practice the process. Authors have demonstrated that condensed products after plasma treatment of water-salt-organic mixture contains targeted products (uranium and plutonium oxides) and gaseous products are environmental friendly. In conclusion basic operational modes for practicing the process are showed.

  7. A Multireference Density Functional Approach to the Calculation of the Excited States of Uranium Ions

    DTIC Science & Technology

    2007-03-01

    approach. xiv A MULTIREFERENCE DENSITY FUNCTIONAL APPROACH TO THE CALCULATION OF THE EXCITED STATES OF URANIUM IONS I. Introduction Actinide chemistry, in...oxidation state of the uranium atom. Uranium, like most early actinides , can possess a wide range of oxidation states, ranging from +3 to +6, due in part...in predicting the electronic spectra for heavy element compounds. The first difficulty is that relativistic effects for actinides are significant

  8. Study of oxidative stress related responses induced in Arabidopsis thaliana following mixed exposure to uranium and cadmium.

    PubMed

    Vanhoudt, Nathalie; Vandenhove, Hildegarde; Horemans, Nele; Wannijn, Jean; Bujanic, Andelko; Vangronsveld, Jaco; Cuypers, Ann

    2010-01-01

    In this study, toxicity effects in plants of uranium in a binary pollution condition were investigated by studying biological responses and unraveling oxidative stress related mechanisms in Arabidopsis thaliana seedlings, grown on hydroponics and exposed for 3 days to 10 μM uranium in combination with 5 μM cadmium. While uranium mostly accumulated in the roots with very low root-to-shoot transport, cadmium was taken up less by the roots but showed higher translocation to the shoots. Under mixed exposure, cadmium influenced uranium uptake highly but not the other way round resulting in a doubled uranium concentration in the roots. Under our mixed exposure conditions, it is clear that micronutrient concentrations in the roots are strongly influenced by addition of cadmium as a second stressor, while leaf macronutrient concentrations are mostly influenced by uranium. Oxidative stress related responses are highly affected by cadmium while uranium influence is more limited. Hereby, an important role was attributed to the ascorbate redox balance together with glutathione as both metabolites, but more explicitly for ascorbate, increased their reduced form, indicating an important defense and regulatory function. While for roots, based on an increase in FSD1 gene expression, oxidative stress was suggested to be superoxide induced, in leaves on the other hand, hydrogen peroxide related genes were mostly altered. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  9. The roles of organic matter in the formation of uranium deposits in sedimentary rocks

    USGS Publications Warehouse

    Spirakis, C.S.

    1996-01-01

    Because reduced uranium species have a much smaller solubility than oxidized uranium species and because of the strong association of organic matter (a powerful reductant) with many uranium ores, reduction has long been considered to be the precipitation mechanism for many types of uranium deposits. Organic matter may also be involved in the alterations in and around tabular uranium deposits, including dolomite precipitation, formation of silicified layers, iron-titanium oxide destruction, dissolution of quartz grains, and precipitation of clay minerals. The diagenetic processes that produced these alterations also consumed organic matter. Consequently, those tabular deposits that underwent the more advanced stages of diagenesis, including methanogenesis and organic acid generation, display the greatest range of alterations and contain the smallest amount of organic matter. Because of certain similarities between tabular uranium deposits and Precambrian unconformity-related deposits, some of the same processes might have been involved in the genesis of Precambrian unconformity-related deposits. Hydrologic studies place important constraints on genetic models of various types of uranium deposits. In roll-front deposits, oxidized waters carried uranium to reductants (organic matter and pyrite derived from sulfate reduction by organic matter). After these reductants were oxidized at any point in the host sandstone, uranium minerals were reoxidized and transported further down the flow path to react with additional reductants. In this manner, the uranium ore migrated through the sandstone at a rate slower than the mineralizing ground water. In the case of tabular uranium deposits, the recharge of surface water into the ground water during flooding of lakes carried soluble humic material to the water table or to an interface where humate precipitated in tabular layers. These humate layers then established the chemical conditions for mineralization and related alterations. In the case of Precambrian unconformity-related deposits, free thermal convection in the thick sandstones overlying the basement rocks carried uranium to concentrations of organic matter in the basement rocks.

  10. Production of Low Enriched Uranium Nitride Kernels for TRISO Particle Irradiation Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMurray, J. W.; Silva, C. M.; Helmreich, G. W.

    2016-06-01

    A large batch of UN microspheres to be used as kernels for TRISO particle fuel was produced using carbothermic reduction and nitriding of a sol-gel feedstock bearing tailored amounts of low-enriched uranium (LEU) oxide and carbon. The process parameters, established in a previous study, produced phasepure NaCl structure UN with dissolved C on the N sublattice. The composition, calculated by refinement of the lattice parameter from X-ray diffraction, was determined to be UC 0.27N 0.73. The final accepted product weighed 197.4 g. The microspheres had an average diameter of 797±1.35 μm and a composite mean theoretical density of 89.9±0.5% formore » a solid solution of UC and UN with the same atomic ratio; both values are reported with their corresponding calculated standard error.« less

  11. An unusual temperature dependence in the oxidation of oxycarbide layers on uranium

    NASA Astrophysics Data System (ADS)

    Ellis, Walton P.

    1981-09-01

    An anomalous temperature dependence has been observed for the oxidation kinetics of outermost oxycarbide layers on polycrystalline uranium metal. Normally, oxidation or corrosion reactions are expected to proceed more rapidly as the temperature is elevated. Thus, it came as a surprise when we observed that the removal of the outermost atomic layers of carbon from uranium oxycarbide by O 2 reproducibly proceeds at a much faster rate at 25°C than at 280°C.

  12. An unusual temperature dependence in the oxidation of oxycarbide layers on uranium

    NASA Astrophysics Data System (ADS)

    Ellis, Walton P.

    An anomalous temperature dependence has been observed for the oxidation kinetics of outermost oxycarbide layers on polycrystalline uranium metal. Normally, oxidation or corrosion reactions are expected to proceed more rapidly as the temperature is elevated. Thus, it came as a surprise when we observed that the removal of the outermost atomic layers of carbon from uranium oxycarbide by O 2 reproducibly proceeds at a much faster rate at 25°C than at 280°C.

  13. Radium and uranium concentrations and associated hydrogeochemistry in ground water in southwestern Pueblo County, Colorado

    USGS Publications Warehouse

    Felmlee, J. Karen; Cadigan, Robert Allen

    1979-01-01

    Radium and uranium concentrations in water from 37 wells tapping the aquifer system of the Dakota Sandstone and Purgatoire Formation in southwestern Pueblo County, Colorado, have a wide range of values and define several areas of high radioactivity in the ground water. Radium ranges from 0.3 to 420 picocuries per liter and has a median value of 8.8, and uranium ranges from 0.02 to 180 micrograms per liter and has a median value of 2.4. Radon concentrations, measured in 32 of the 37 wells, range from less than 100 picocuries per liter to as much as 27,000 and have a median value of 580. Relationships among the radioactive elements and 28 other geochemical parameters were studied by using correlation coefficients and R-mode factor analysis. Five factor groups were determined to represent major influences on water chemistry: (1) short-term solution reactions, (2) oxidation reactions, (3) hydrolysis reactions, (4) uranium distribution, and (5) long-term solution reactions. Uranium concentrations are most strongly influenced by oxidation reactions but also are affected by solution reactions and distribution of uranium in the rocks of the aquifer system. Radon and radium concentrations are mostly controlled by uranium distribution; radium also shows a moderate negative relationship with oxidation. To explain the statistical and spatial relationships among the parameters, a model was developed involving the selective leaching of uranium-bearing phases and metal sulfides which occur in discontinuous zones in sandstone and shale. When reducing conditions prevail, uranium is immobile, but radium can be taken into solution. When faults and associated fractured rocks allow oxidizing conditions to dominate, uranium can be taken into solution; radium can also be taken into solution, or it may become immobilized by coprecipitation with iron and manganese oxides or with barite. Several areas within the study area are discussed in terms of the model.

  14. Pyrophoric behaviour of uranium hydride and uranium powders

    NASA Astrophysics Data System (ADS)

    Le Guyadec, F.; Génin, X.; Bayle, J. P.; Dugne, O.; Duhart-Barone, A.; Ablitzer, C.

    2010-01-01

    Thermal stability and spontaneous ignition conditions of uranium hydride and uranium metal fine powders have been studied and observed in an original and dedicated experimental device placed inside a glove box under flowing pure argon. Pure uranium hydride powder with low amount of oxide (<0.5 wt.%) was obtained by heat treatment at low temperature in flowing Ar/5%H2. Pure uranium powder was obtained by dehydration in flowing pure argon. Those fine powders showed spontaneous ignition at room temperature in air. An in situ CCD-camera displayed ignition associated with powder temperature measurement. Characterization of powders before and after ignition was performed by XRD measurements and SEM observations. Oxidation mechanisms are proposed.

  15. Preparation, certification and validation of a stable solid spike of uranium and plutonium coated with a cellulose derivative for the measurement of uranium and plutonium content in dissolved nuclear fuel by isotope dilution mass spectrometry.

    PubMed

    Surugaya, Naoki; Hiyama, Toshiaki; Verbruggen, André; Wellum, Roger

    2008-02-01

    A stable solid spike for the measurement of uranium and plutonium content in nitric acid solutions of spent nuclear fuel by isotope dilution mass spectrometry has been prepared at the European Commission Institute for Reference Materials and Measurements in Belgium. The spike contains about 50 mg of uranium with a 19.838% (235)U enrichment and 2 mg of plutonium with a 97.766% (239)Pu abundance in each individual ampoule. The dried materials were covered with a thin film of cellulose acetate butyrate as a protective organic stabilizer to resist shocks encountered during transportation and to eliminate flaking-off during long-term storage. It was found that the cellulose acetate butyrate has good characteristics, maintaining a thin film for a long time, but readily dissolving on heating with nitric acid solution. The solid spike containing cellulose acetate butyrate was certified as a reference material with certified quantities: (235)U and (239)Pu amounts and uranium and plutonium amount ratios, and was validated by analyzing spent fuel dissolver solutions of the Tokai reprocessing plant in Japan. This paper describes the preparation, certification and validation of the solid spike coated with a cellulose derivative.

  16. The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Wilbraham, Richard J.; Boxall, Colin; Goddard, David T.; Taylor, Robin J.; Woodbury, Simon E.

    2015-09-01

    For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H2O2-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H2O2] ⩽ 100 μmol dm-3 the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H2O2 concentrations between 1 mmol dm-3 and 0.1 mol dm-3, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H2O2] > 0.1 mol dm-3 the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO2 films has not hitherto been observed or explored, either in terms of corrosion processes or otherwise. Through consideration of thermodynamic solubility product and complex formation constant data, we attribute the transition to the formation of soluble uranyl-peroxide complexes under mildly alkaline, high [H2O2] conditions - a conclusion that has implications for the design of both acid minimal, metal ion oxidant-free decontamination strategies with low secondary waste arisings, and single step processes for spent nuclear fuel dissolution such as the Carbonate-based Oxidative Leaching (COL) process.

  17. PROCESS FOR SEPARATING URANIUM FISSION PRODUCTS

    DOEpatents

    Spedding, F.H.; Butler, T.A.; Johns, I.B.

    1959-03-10

    The removal of fission products such as strontium, barium, cesium, rubidium, or iodine from neutronirradiated uranium is described. Uranium halide or elemental halogen is added to melted irradiated uranium to convert the fission products to either more volatile compositions which vaporize from the melt or to higher melting point compositions which separate as solids.

  18. Evaluation of Non-Oxide Fuel for Fission-based Nuclear Reactors on Spacecraft

    DTIC Science & Technology

    smaller and potentially lighter core, whichis a significant advantage. The results of this study indicate that use of both UC and UN may result in significant weight savings due tohigher uranium loading density....The goal of this project was to study the performance of atypical uranium-based fuels in a nuclear reactor capable of producing 1 megawattof thermal...UN), or uranium carbide (UC) and compared their performance to uranium oxide (UO2) which is thefuel form used in the vast majority of commercial

  19. METHOD OF PRODUCING URANIUM METAL BY ELECTROLYSIS

    DOEpatents

    Piper, R.D.

    1962-09-01

    A process is given for making uranium metal from oxidic material by electrolytic deposition on the cathode. The oxidic material admixed with two moles of carbon per one mole of uranium dioxide forms the anode, and the electrolyte is a mixture of from 40 to 75% of calcium fluoride or barium fluoride, 15 to 45% of uranium tetrafluoride, and from 10 to 20% of lithium fluoride or magnesium fluoride; the temperature of the electrolyte is between 1150 and 1175 deg C. (AEC)

  20. Process for electroslag refining of uranium and uranium alloys

    DOEpatents

    Lewis, P.S. Jr.; Agee, W.A.; Bullock, J.S. IV; Condon, J.B.

    1975-07-22

    A process is described for electroslag refining of uranium and uranium alloys wherein molten uranium and uranium alloys are melted in a molten layer of a fluoride slag containing up to about 8 weight percent calcium metal. The calcium metal reduces oxides in the uranium and uranium alloys to provide them with an oxygen content of less than 100 parts per million. (auth)

  1. PREPARATION OF URANIUM HEXAFLUORIDE

    DOEpatents

    Lawroski, S.; Jonke, A.A.; Steunenberg, R.K.

    1959-10-01

    A process is described for preparing uranium hexafluoride from carbonate- leach uranium ore concentrate. The briquetted, crushed, and screened concentrate is reacted with hydrogen fluoride in a fluidized bed, and the uranium tetrafluoride formed is mixed with a solid diluent, such as calcium fluoride. This mixture is fluorinated with fluorine and an inert diluent gas, also in a fluidized bed, and the uranium hexafluoride obtained is finally purified by fractional distillation.

  2. Proteomic analysis reveals contrasting stress response to uranium in two nitrogen-fixing Anabaena strains, differentially tolerant to uranium.

    PubMed

    Panda, Bandita; Basu, Bhakti; Acharya, Celin; Rajaram, Hema; Apte, Shree Kumar

    2017-01-01

    Two strains of the nitrogen-fixing cyanobacterium Anabaena, native to Indian paddy fields, displayed differential sensitivity to exposure to uranyl carbonate at neutral pH. Anabaena sp. strain PCC 7120 and Anabaena sp. strain L-31 displayed 50% reduction in survival (LD 50 dose), following 3h exposure to 75μM and 200μM uranyl carbonate, respectively. Uranium responsive proteome alterations were visualized by 2D gel electrophoresis, followed by protein identification by MALDI-ToF mass spectrometry. The two strains displayed significant differences in levels of proteins associated with photosynthesis, carbon metabolism, and oxidative stress alleviation, commensurate with their uranium tolerance. Higher uranium tolerance of Anabaena sp. strain L-31 could be attributed to sustained photosynthesis and carbon metabolism and superior oxidative stress defense, as compared to the uranium sensitive Anabaena sp. strain PCC 7120. Uranium responsive proteome modulations in two nitrogen-fixing strains of Anabaena, native to Indian paddy fields, revealed that rapid adaptation to better oxidative stress management, and maintenance of metabolic and energy homeostasis underlies superior uranium tolerance of Anabaena sp. strain L-31 compared to Anabaena sp. strain PCC 7120. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. High temperature radiance spectroscopy measurements of solid and liquid uranium and plutonium carbides

    NASA Astrophysics Data System (ADS)

    Manara, D.; De Bruycker, F.; Boboridis, K.; Tougait, O.; Eloirdi, R.; Malki, M.

    2012-07-01

    In this work, an experimental study of the radiance of liquid and solid uranium and plutonium carbides at wavelengths 550 nm ⩽ λ ⩽ 920 nm is reported. A fast multi-channel spectro-pyrometer has been employed for the radiance measurements of samples heated up to and beyond their melting point by laser irradiation. The melting temperature of uranium monocarbide, soundly established at 2780 K, has been taken as a radiance reference. Based on it, a wavelength-dependence has been obtained for the high-temperature spectral emissivity of some uranium carbides (1 ⩽ C/U ⩽ 2). Similarly, the peritectic temperature of plutonium monocarbide (1900 K) has been used as a reference for plutonium monocarbide and sesquicarbide. The present spectral emissivities of solid uranium and plutonium carbides are close to 0.5 at 650 nm, in agreement with previous literature values. However, their high temperature behaviour, values in the liquid, and carbon-content and wavelength dependencies in the visible-near infrared range have been determined here for the first time. Liquid uranium carbide seems to interact with electromagnetic radiation in a more metallic way than does the solid, whereas a similar effect has not been observed for plutonium carbides. The current emissivity values have also been used to convert the measured radiance spectra into real temperature, and thus perform a thermal analysis of the laser heated samples. Some high-temperature phase boundaries in the systems U-C and Pu-C are shortly discussed on the basis of the current results.

  4. Synthesis and characterisation of the uranium pyrochlore betafite [(Ca,U)₂(Ti,Nb,Ta)₂O₇].

    PubMed

    McMaster, Scott A; Ram, Rahul; Charalambous, Fiona; Pownceby, Mark I; Tardio, James; Bhargava, Suresh K

    2014-09-15

    Betafite of composition [(Ca,U)2(Ti,Nb,Ta)2O7] was prepared via a solid state synthesis route. The synthesis was shown to be sensitive to initial reactant ratios, the atmosphere used (oxidising, neutral, reducing) and time. The optimum conditions for the synthesis of betafite were found to be heating the reactants required at 1150°C for 48 h under an inert gas atmosphere. XRD characterisation revealed that the synthesised betafite contained minor impurities. EPMA analysis of a sectioned surface showed very small regions of Ca-free betafite on grain boundaries as well as minor rutile impurities. Some heterogeneity between the Nb:Ta ratio was observed by quantitative EPMA but was generally within the nomenclature requirements stated for betafite. SEM analysis revealed the synthesised betafite was comprised mostly of hexaoctohedral crystals of ∼ 3 μm in diameter. XPS analysis of the sample showed that the uranium in the synthesised betafite was predominately present in the U(5+) oxidation state. A minor amount of U(6+) was also detected which was possibly due to surface oxidation. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. RECOVERY OF URANIUM FROM LOW GRADE URANIUM BEARING ORES

    DOEpatents

    Rhodes, H.B.; Pesold, W.F.; Hirshon, J.M.

    1959-06-01

    Recovery of U, Fe, and Al from Chattanooga shale is described. Ground shale (-4 to +325 mesh) is roasted to remove organic and volatile matter. The heated shale is then reacted with a chlorinating agent (CCl/sub 4/, COCl/sub 2/, Cl, and SCl) at 600 to 1000 C. The metal chloride vapor is separated from entrained solids and then contacted with a liquid alkali metal chloride which removes U. The U is reeovered by cooling and dissolving the bath followed by acidification and solvent extraction. A condensed phase of Al, Fe, and K chlorides is treated to separate Al as alumina by passing through a Fe/sub 2/O/ sub 3/ bed. The remaining FeCl/sub 3/ is oxidized by O/sub 2/ at 1000 C to form Fe/sub 2/O/sub 3/ and Cl/sub 2/. Alternatively, vapor from the U separation step may be passed to a liquid KCl bath at 500 to 650 C. The resulting mixture is oxidized to form Cl/sub 2/ and Fe/sub 2/O/sub 3/ + Al/sub 2/O/sub 3/. The Al and Fe are separated by reaction with NaOH at high temperatures and pressures. (T.R.H.)

  6. Numerical simulation of transient, incongruent vaporization induced by high power laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, C.H.

    1981-01-01

    A mathematical model and numerical calculations were developed to solve the heat and mass transfer problems specifically for uranum oxide subject to laser irradiation. It can easily be modified for other heat sources or/and other materials. In the uranium-oxygen system, oxygen is the preferentially vaporizing component, and as a result of the finite mobility of oxygen in the solid, an oxygen deficiency is set up near the surface. Because of the bivariant behavior of uranium oxide, the heat transfer problem and the oxygen diffusion problem are coupled and a numerical method of simultaneously solving the two boundary value problems ismore » studied. The temperature dependence of the thermal properties and oxygen diffusivity, as well as the highly ablative effect on the surface, leads to considerable non-linearities in both the governing differential equations and the boundary conditions. Based on the earlier work done in this laboratory by Olstad and Olander on Iron and on Zirconium hydride, the generality of the problem is expanded and the efficiency of the numerical scheme is improved. The finite difference method, along with some advanced numerical techniques, is found to be an efficient way to solve this problem.« less

  7. An Investigation on the Persistence of Uranium Hydride during Storage of Simulant Nuclear Waste Packages.

    PubMed

    Stitt, C A; Harker, N J; Hallam, K R; Paraskevoulakos, C; Banos, A; Rennie, S; Jowsey, J; Scott, T B

    2015-01-01

    Synchrotron X-rays have been used to study the oxidation of uranium and uranium hydride when encapsulated in grout and stored in de-ionised water for 10 months. Periodic synchrotron X-ray tomography and X-ray powder diffraction have allowed measurement and identification of the arising corrosion products and the rates of corrosion. The oxidation rates of the uranium metal and uranium hydride were slower than empirically derived rates previously reported for each reactant in an anoxic water system, but without encapsulation in grout. This was attributed to the grout acting as a physical barrier limiting the access of oxidising species to the uranium surface. Uranium hydride was observed to persist throughout the 10 month storage period and industrial consequences of this observed persistence are discussed.

  8. An Investigation on the Persistence of Uranium Hydride during Storage of Simulant Nuclear Waste Packages

    PubMed Central

    Harker, N. J.; Hallam, K. R.; Paraskevoulakos, C.; Banos, A.; Rennie, S.; Jowsey, J.

    2015-01-01

    Synchrotron X-rays have been used to study the oxidation of uranium and uranium hydride when encapsulated in grout and stored in de-ionised water for 10 months. Periodic synchrotron X-ray tomography and X-ray powder diffraction have allowed measurement and identification of the arising corrosion products and the rates of corrosion. The oxidation rates of the uranium metal and uranium hydride were slower than empirically derived rates previously reported for each reactant in an anoxic water system, but without encapsulation in grout. This was attributed to the grout acting as a physical barrier limiting the access of oxidising species to the uranium surface. Uranium hydride was observed to persist throughout the 10 month storage period and industrial consequences of this observed persistence are discussed. PMID:26176551

  9. Standoff Detection of Uranium and its Isotopes by Femtosecond Filament Laser Ablation Molecular Isotopic Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartig, Kyle C.; Ghebregziabher, Isaac; Jovanovic, Igor

    The ability to perform not only elementally but also isotopically sensitive detection and analysis at standoff distances is important for remote sensing applications in diverse ares, such as nuclear nonproliferation, environmental monitoring, geophysics, and planetary science. We demonstrate isotopically sensitive real-time standoff detection of uranium by the use of femtosecond filament-induced laser ablation molecular isotopic spectrometry. A uranium oxide molecular emission isotope shift of 0.05 ± 0.007 nm is reported at 593.6 nm. We implement both spectroscopic and acoustic diagnostics to characterize the properties of uranium plasma generated at different filament- uranium interaction points. The resulting uranium oxide emission exhibitsmore » a nearly constant signal-to-background ratio over the length of the filament, unlike the uranium atomic and ionic emission, for which the signal-to-background ratio varies significantly along the filament propagation. This is explained by the different rates of increase of plasma density and uranium oxide density along the filament length resulting from spectral and temporal evolution of the filament along its propagation. Lastly, the results provide a basis for the optimal use of filaments for standoff detection and analysis of uranium isotopes and indicate the potential of the technique for a wider range of remote sensing applications that require isotopic sensitivity.« less

  10. Standoff Detection of Uranium and its Isotopes by Femtosecond Filament Laser Ablation Molecular Isotopic Spectrometry

    PubMed Central

    Hartig, Kyle C.; Ghebregziabher, Isaac; Jovanovic, Igor

    2017-01-01

    The ability to perform not only elementally but also isotopically sensitive detection and analysis at standoff distances is impor-tant for remote sensing applications in diverse ares, such as nuclear nonproliferation, environmental monitoring, geophysics, and planetary science. We demonstrate isotopically sensitive real-time standoff detection of uranium by the use of femtosecond filament-induced laser ablation molecular isotopic spectrometry. A uranium oxide molecular emission isotope shift of 0.05 ± 0.007 nm is reported at 593.6 nm. We implement both spectroscopic and acoustic diagnostics to characterize the properties of uranium plasma generated at different filament-uranium interaction points. The resulting uranium oxide emis-sion exhibits a nearly constant signal-to-background ratio over the length of the filament, unlike the uranium atomic and ionic emission, for which the signal-to-background ratio varies significantly along the filament propagation. This is explained by the different rates of increase of plasma density and uranium oxide density along the filament length resulting from spectral and temporal evolution of the filament along its propagation. The results provide a basis for the optimal use of filaments for standoff detection and analysis of uranium isotopes and indicate the potential of the technique for a wider range of remote sensing applications that require isotopic sensitivity. PMID:28272450

  11. Standoff Detection of Uranium and its Isotopes by Femtosecond Filament Laser Ablation Molecular Isotopic Spectrometry

    DOE PAGES

    Hartig, Kyle C.; Ghebregziabher, Isaac; Jovanovic, Igor

    2017-03-08

    The ability to perform not only elementally but also isotopically sensitive detection and analysis at standoff distances is important for remote sensing applications in diverse ares, such as nuclear nonproliferation, environmental monitoring, geophysics, and planetary science. We demonstrate isotopically sensitive real-time standoff detection of uranium by the use of femtosecond filament-induced laser ablation molecular isotopic spectrometry. A uranium oxide molecular emission isotope shift of 0.05 ± 0.007 nm is reported at 593.6 nm. We implement both spectroscopic and acoustic diagnostics to characterize the properties of uranium plasma generated at different filament- uranium interaction points. The resulting uranium oxide emission exhibitsmore » a nearly constant signal-to-background ratio over the length of the filament, unlike the uranium atomic and ionic emission, for which the signal-to-background ratio varies significantly along the filament propagation. This is explained by the different rates of increase of plasma density and uranium oxide density along the filament length resulting from spectral and temporal evolution of the filament along its propagation. Lastly, the results provide a basis for the optimal use of filaments for standoff detection and analysis of uranium isotopes and indicate the potential of the technique for a wider range of remote sensing applications that require isotopic sensitivity.« less

  12. Standoff Detection of Uranium and its Isotopes by Femtosecond Filament Laser Ablation Molecular Isotopic Spectrometry

    NASA Astrophysics Data System (ADS)

    Hartig, Kyle C.; Ghebregziabher, Isaac; Jovanovic, Igor

    2017-03-01

    The ability to perform not only elementally but also isotopically sensitive detection and analysis at standoff distances is impor-tant for remote sensing applications in diverse ares, such as nuclear nonproliferation, environmental monitoring, geophysics, and planetary science. We demonstrate isotopically sensitive real-time standoff detection of uranium by the use of femtosecond filament-induced laser ablation molecular isotopic spectrometry. A uranium oxide molecular emission isotope shift of 0.05 ± 0.007 nm is reported at 593.6 nm. We implement both spectroscopic and acoustic diagnostics to characterize the properties of uranium plasma generated at different filament-uranium interaction points. The resulting uranium oxide emis-sion exhibits a nearly constant signal-to-background ratio over the length of the filament, unlike the uranium atomic and ionic emission, for which the signal-to-background ratio varies significantly along the filament propagation. This is explained by the different rates of increase of plasma density and uranium oxide density along the filament length resulting from spectral and temporal evolution of the filament along its propagation. The results provide a basis for the optimal use of filaments for standoff detection and analysis of uranium isotopes and indicate the potential of the technique for a wider range of remote sensing applications that require isotopic sensitivity.

  13. PROCESS FOR REMOVING NOBLE METALS FROM URANIUM

    DOEpatents

    Knighton, J.B.

    1961-01-31

    A pyrometallurgical method is given for purifying uranium containing ruthenium and palladium. The uranium is disintegrated and oxidized by exposure to air and then the ruthenium and palladium are extracted from the uranium with molten zinc.

  14. Direct observation of pure pentavalent uranium in U2O5 thin films by high resolution photoemission spectroscopy.

    PubMed

    Gouder, T; Eloirdi, R; Caciuffo, R

    2018-05-29

    Thin films of the elusive intermediate uranium oxide U 2 O 5 have been prepared by exposing UO 3 precursor multilayers to atomic hydrogen. Electron photoemission spectra measured about the uranium 4f core-level doublet contain sharp satellites separated by 7.9(1) eV from the 4f main lines, whilst satellites characteristics of the U(IV) and U(VI) oxidation states, expected respectively at 6.9(1) and 9.7(1) eV from the main 4f lines, are absent. This shows that uranium ions in the films are in a pure pentavalent oxidation state, in contrast to previous investigations of binary oxides claiming that U(V) occurs only as a metastable intermediate state coexisting with U(IV) and U(VI) species. The ratio between the 5f valence band and 4f core-level uranium photoemission intensities decreases by about 50% from UO 2 to U 2 O 5 , which is consistent with the 5f  2 (UO 2 ) and 5f  1 (U 2 O 5 ) electronic configurations of the initial state. Our studies conclusively establish the stability of uranium pentoxide.

  15. In situ bioremediation of uranium with emulsified vegetable oil as the electron donor.

    PubMed

    Watson, David B; Wu, Wei-Min; Mehlhorn, Tonia; Tang, Guoping; Earles, Jennifer; Lowe, Kenneth; Gihring, Thomas M; Zhang, Gengxin; Phillips, Jana; Boyanov, Maxim I; Spalding, Brian P; Schadt, Christopher; Kemner, Kenneth M; Criddle, Craig S; Jardine, Philip M; Brooks, Scott C

    2013-06-18

    A field test with a one-time emulsified vegetable oil (EVO) injection was conducted to assess the capacity of EVO to sustain uranium bioreduction in a high-permeability gravel layer with groundwater concentrations of (mM) U, 0.0055; Ca, 2.98; NO3(-), 0.11; HCO3(-), 5.07; and SO4(2-), 1.23. Comparison of bromide and EVO migration and distribution indicated that a majority of the injected EVO was retained in the subsurface from the injection wells to 50 m downgradient. Nitrate, uranium, and sulfate were sequentially removed from the groundwater within 1-2 weeks, accompanied by an increase in acetate, Mn, Fe, and methane concentrations. Due to the slow release and degradation of EVO with time, reducing conditions were sustained for approximately one year, and daily U discharge to a creek, located approximately 50 m from the injection wells, decreased by 80% within 100 days. Total U discharge was reduced by 50% over the one-year period. Reduction of U(VI) to U(IV) was confirmed by synchrotron analysis of recovered aquifer solids. Oxidants (e.g., dissolved oxygen, nitrate) flowing in from upgradient appeared to reoxidize and remobilize uranium after the EVO was exhausted as evidenced by a transient increase of U concentration above ambient values. Occasional (e.g., annual) EVO injection into a permeable Ca and bicarbonate-containing aquifer can sustain uranium bioreduction/immobilization and decrease U migration/discharge.

  16. Effects of nitrate on the stability of uranium in a bioreduced region of the subsurface.

    PubMed

    Wu, Wei-Min; Carley, Jack; Green, Stefan J; Luo, Jian; Kelly, Shelly D; Van Nostrand, Joy; Lowe, Kenneth; Mehlhorn, Tonia; Carroll, Sue; Boonchayanant, Benjaporn; Löfller, Frank E; Watson, David; Kemner, Kenneth M; Zhou, Jizhong; Kitanidis, Peter K; Kostka, Joel E; Jardine, Philip M; Criddle, Craig S

    2010-07-01

    The effects of nitrate on the stability of reduced, immobilized uranium were evaluated in field experiments at a U.S. Department of Energy site in Oak Ridge, TN. Nitrate (2.0 mM) was injected into a reduced region of the subsurface containing high levels of previously immobilized U(IV). The nitrate was reduced to nitrite, ammonium, and nitrogen gas; sulfide levels decreased; and Fe(II) levels increased then deceased. Uranium remobilization occurred concomitant with nitrite formation, suggesting nitrate-dependent, iron-accelerated oxidation of U(IV). Bromide tracer results indicated changes in subsurface flowpaths likely due to gas formation and/or precipitate. Desorption-adsorption of uranium by the iron-rich sediment impacted uranium mobilization and sequestration. After rereduction of the subsurface through ethanol additions, background groundwater containing high levels of nitrate was allowed to enter the reduced test zone. Aqueous uranium concentrations increased then decreased. Clone library analyses of sediment samples revealed the presence of denitrifying bacteria that can oxidize elemental sulfur, H(2)S, Fe(II), and U(IV) (e.g., Thiobacillus spp.), and a decrease in relative abundance of bacteria that can reduce Fe(III) and sulfate. XANES analyses of sediment samples confirmed changes in uranium oxidation state. Addition of ethanol restored reduced conditions and triggered a short-term increase in Fe(II) and aqueous uranium, likely due to reductive dissolution of Fe(III) oxides and release of sorbed U(VI). After two months of intermittent ethanol addition, sulfide levels increased, and aqueous uranium concentrations gradually decreased to <0.1 microM.

  17. Different pattern of brain pro-/anti-oxidant activity between depleted and enriched uranium in chronically exposed rats.

    PubMed

    Lestaevel, P; Romero, E; Dhieux, B; Ben Soussan, H; Berradi, H; Dublineau, I; Voisin, P; Gourmelon, P

    2009-04-05

    Uranium is not only a heavy metal but also an alpha particle emitter. The main toxicity of uranium is expected to be due to chemiotoxicity rather than to radiotoxicity. Some studies have demonstrated that uranium induced some neurological disturbances, but without clear explanations. A possible mechanism of this neurotoxicity could be the oxidative stress induced by reactive oxygen species imbalance. The aim of the present study was to determine whether a chronic ingestion of uranium induced anti-oxidative defence mechanisms in the brain of rats. Rats received depleted (DU) or 4% enriched (EU) uranyl nitrate in the drinking water at 2mg(-1)kg(-1)day(-1) for 9 months. Cerebral cortex analyses were made by measuring mRNA and protein levels and enzymatic activities. Lipid peroxidation, an oxidative stress marker, was significantly enhanced after EU exposure, but not after DU. The gene expression or activity of the main antioxidant enzymes, i.e. superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), increased significantly after chronic exposure to DU. On the contrary, oral EU administration induced a decrease of these antioxidant enzymes. The NO-ergic pathway was almost not perturbed by DU or EU exposure. Finally, DU exposure increased significantly the transporters (Divalent-Metal-Transporter1; DMT1), the storage molecule (ferritin) and the ferroxidase enzyme (ceruloplasmin), but not EU. These results illustrate that oxidative stress plays a key role in the mechanism of uranium neurotoxicity. They showed that chronic exposure to DU, but not EU, seems to induce an increase of several antioxidant agents in order to counteract the oxidative stress. Finally, these results demonstrate the importance of the double toxicity, chemical and radiological, of uranium.

  18. Oxidation and Hydration of U 3O 8 Materials Following Controlled Exposure to Temperature and Humidity

    DOE PAGES

    Tamasi, Alison L.; Boland, Kevin S.; Czerwinski, Kenneth; ...

    2015-03-18

    Chemical signatures correlated with uranium oxide processing are of interest to forensic science for inferring sample provenance. Identification of temporal changes in chemical structures of process uranium materials as a function of controlled temperatures and relative humidities may provide additional information regarding sample history. In our study, a high-purity α-U 3O 8 sample and three other uranium oxide samples synthesized from reaction routes used in nuclear conversion processes were stored under controlled conditions over 2–3.5 years, and powder X-ray diffraction analysis and X-ray absorption spectroscopy were employed to characterize chemical speciation. We measured signatures from the α-U 3O 8 samplemore » indicated that the material oxidized and hydrated after storage under high humidity conditions over time. Impurities, such as uranyl fluoride or schoepites, were initially detectable in the other uranium oxide samples. After storage under controlled conditions, the analyses of the samples revealed oxidation over time, although the signature of the uranyl fluoride impurity diminished. The presence of schoepite phases in older uranium oxide material is likely indicative of storage under high humidity and should be taken into account for assessing sample history. Finally, the absence of a signature from a chemical impurity, such as uranyl fluoride hydrate, in an older material may not preclude its presence at the initial time of production.« less

  19. Oxidation and Hydration of U 3 O 8 Materials Following Controlled Exposure to Temperature and Humidity

    DOE PAGES

    Tamasi, Alison L.; Boland, Kevin S.; Czerwinski, Kenneth; ...

    2015-03-18

    Chemical signatures correlated with uranium oxide processing are of interest to forensic science for inferring sample provenance. Identification of temporal changes in chemical structures of process uranium materials as a function of controlled temperatures and relative humidities may provide additional information regarding sample history. In our study, a high-purity α-U 3O 8 sample and three other uranium oxide samples synthesized from reaction routes used in nuclear conversion processes were stored under controlled conditions over 2–3.5 years, and powder X-ray diffraction analysis and X-ray absorption spectroscopy were employed to characterize chemical speciation. We measured signatures from the α-U 3O 8 samplemore » indicated that the material oxidized and hydrated after storage under high humidity conditions over time. Impurities, such as uranyl fluoride or schoepites, were initially detectable in the other uranium oxide samples. After storage under controlled conditions, the analyses of the samples revealed oxidation over time, although the signature of the uranyl fluoride impurity diminished. The presence of schoepite phases in older uranium oxide material is likely indicative of storage under high humidity and should be taken into account for assessing sample history. Finally, the absence of a signature from a chemical impurity, such as uranyl fluoride hydrate, in an older material may not preclude its presence at the initial time of production. LA-UR-15-21495.« less

  20. A graphene oxide/amidoxime hydrogel for enhanced uranium capture

    PubMed Central

    Wang, Feihong; Li, Hongpeng; Liu, Qi; Li, Zhanshuang; Li, Rumin; Zhang, Hongsen; Liu, Lianhe; Emelchenko, G. A.; Wang, Jun

    2016-01-01

    The efficient development of selective materials for the recovery of uranium from nuclear waste and seawater is necessary for their potential application in nuclear fuel and the mitigation of nuclear pollution. In this work, a graphene oxide/amidoxime hydrogel (AGH) exhibits a promising adsorption performance for uranium from various aqueous solutions, including simulated seawater. We show high adsorption capacities (Qm = 398.4 mg g−1) and high % removals at ppm or ppb levels in aqueous solutions for uranium species. In the presence of high concentrations of competitive ions such as Mg2+, Ca2+, Ba2+ and Sr2+, AGH displays an enhanced selectivity for uranium. For low uranium concentrations in simulated seawater, AGH binds uranium efficiently and selectively. The results presented here reveal that the AGH is a potential adsorbent for remediating nuclear industrial effluent and adsorbing uranium from seawater. PMID:26758649

  1. The coprecipitation of Pu and other radionuclides with CaCO[sub 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meece, D.E.; Benninger, L.K.

    1993-04-01

    The record of fallout plutonium concentrations in annual bands of corals is strikingly similar to the record of atmospheric deposition of [sup 90]Sr. This similarity implies that corals may incorporate Pu from seawater with a constant partition coefficient (constant discrimination). To investigate physicochemical aspects of Pu incorporation, the following have been coprecipitated with CaCO[sub 3] (calcite and aragonite): oxidized and reduced Pu; americium, thorium, and uranium as analogs to Pu oxidation states (III, IV, VI), respectively; and [sup 210]Pb as a particle-reactive nuclide which may be incorporated by corals with constant discrimination. Americium, thorium, and lead adsorb onto both calcitemore » and aragonite, with more than 99% of the recovered activity found associated with the solids. Uranium exhibits a behavior consistent with lattice substitution. Partition coefficients for U in aragonite range from 1.8 to 9.8 and vary inversely with pH and/or rate of precipitation. The partition coefficient for U in calcite is less than 0.2 and may be as low as 0.046. Reduced Pu sorbs with 3 to 4% remaining in solution. Oxidized Pu may both sorb and coprecipitate. The coral record for Pb and U results primarily from biological, rather than physicochemical, effects; it is likely that the PU coral record also reflects biological discrimination. 50 refs., 4 figs., 5 tabs.« less

  2. A two-dimensional, finite-difference model of the oxidation of a uranium carbide fuel pellet

    NASA Astrophysics Data System (ADS)

    Shepherd, James; Fairweather, Michael; Hanson, Bruce C.; Heggs, Peter J.

    2015-12-01

    The oxidation of spent uranium carbide fuel, a candidate fuel for Generation IV nuclear reactors, is an important process in its potential reprocessing cycle. However, the oxidation of uranium carbide in air is highly exothermic. A model has therefore been developed to predict the temperature rise, as well as other useful information such as reaction completion times, under different reaction conditions in order to help in deriving safe oxidation conditions. Finite difference-methods are used to model the heat and mass transfer processes occurring during the reaction in two dimensions and are coupled to kinetics found in the literature.

  3. NUCLEAR REACTOR FUEL ELEMENTS AND METHOD OF PREPARATION

    DOEpatents

    Kingston, W.E.; Kopelman, B.; Hausner, H.H.

    1963-07-01

    A fuel element consisting of uranium nitride and uranium carbide in the form of discrete particles in a solid coherent matrix of a metal such as steel, beryllium, uranium, or zirconium and clad with a metal such as steel, aluminum, zirconium, or beryllium is described. The element is made by mixing powdered uranium nitride and uranium carbide with powdered matrix metal, then compacting and sintering the mixture. (AEC)

  4. Method for fabricating laminated uranium composites

    DOEpatents

    Chapman, L.R.

    1983-08-03

    The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.

  5. METHOD FOR PREPARING URANIUM MONOCARBIDE-PLUTONIUM MONOCARBIDE SOLID SOLUTION

    DOEpatents

    Ogard, A.E.; Leary, J.A.; Maraman, W.J.

    1963-03-19

    A method is given for preparing solid solutions of uranium monocarbide- plutonium monocarbide. In this method, the powder form of uranium dioxide, plutonium dioxide, and graphite are mixed in a ratio determined by the equation: xUO/sub 2/ + yPuO/sub 2/ + (2+z)C yields UxPu/sub y/C/sub z/ +2CO, where x + y equ al 1.0 and z is greater than 0.9 but less than 1.0. The resulting mixture is compacted and heated in a vacuum at a temperature of 1850 deg C. (AEC)

  6. Incorporation of oxidized uranium into Fe (hydr)oxides during Fe(II) catalyzed remineralization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nico, Peter S.; Stewart, Brandy D.; Fendorf, Scott

    2009-07-01

    The form of solid phase U after Fe(II) induced anaerobic remineralization of ferrihydrite in the presence of aqueous and absorbed U(VI) was investigated under both abiotic batch and biotic flow conditions. Experiments were conducted with synthetic ground waters containing 0.168 mM U(VI), 3.8 mM carbonate, and 3.0 mM Ca{sup 2+}. In spite of the high solubility of U(VI) under these conditions, appreciable removal of U(VI) from solution was observed in both the abiotic and biotic systems. The majority of the removed U was determined to be substituted as oxidized U (U(VI) or U(V)) into the octahedral position of the goethitemore » and magnetite formed during ferrihydrite remineralization. It is estimated that between 3% and 6% of octahedral Fe(III) centers in the new Fe minerals were occupied by U(VI). This site specific substitution is distinct from the non-specific U co-precipitation processes in which uranyl compounds, e.g. uranyl hydroxide or carbonate, are entrapped with newly formed Fe oxides. The prevalence of site specific U incorporation under both abiotic and biotic conditions and the fact that the produced solids were shown to be resistant to both extraction (30 mM KHCO{sub 3}) and oxidation (air for 5 days) suggest the potential importance of sequestration in Fe oxides as a stable and immobile form of U in the environment.« less

  7. Actinide removal from spent salts

    DOEpatents

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  8. METHOD OF PURIFYING URANIUM METAL

    DOEpatents

    Blanco, R.E.; Morrison, B.H.

    1958-12-23

    The removal of lmpurities from uranlum metal can be done by a process conslstlng of contacting the metal with liquid mercury at 300 icient laborato C, separating the impunitycontalnlng slag formed, cooling the slag-free liquld substantlally below the point at which uranlum mercurlde sollds form, removlng the mercury from the solids, and recovering metallic uranium by heating the solids.

  9. FORMING TUBES AND RODS OF URANIUM METAL BY EXTRUSION

    DOEpatents

    Creutz, E.C.

    1959-01-27

    A method and apparatus are presented for the extrusion of uranium metal. Since uranium is very brittle if worked in the beta phase, it is desirable to extrude it in the gamma phase. However, in the gamma temperature range thc uranium will alloy with the metal of the extrusion dic, and is readily oxidized to a great degree. According to this patent, uranium extrusion in thc ganmma phase may be safely carried out by preheating a billet of uranium in an inert atmosphere to a trmperature between 780 C and 1100 C. The heated billet is then placed in an extrusion apparatus having dies which have been maintained at an elevated temperature for a sufficient length of time to produce an oxide film, and placing a copper disc between the uranium billet and the die.

  10. The measurement of U(VI) and Np(IV) mass transfer in a single stage centrifugal contactor

    NASA Astrophysics Data System (ADS)

    May, I.; Birkett, E. J.; Denniss, I. S.; Gaubert, E. T.; Jobson, M.

    2000-07-01

    BNFL currently operates two reprocessing plants for the conversion of spent nuclear fuel into uranium and plutonium products for fabrication into uranium oxide and mixed uranium and plutonium oxide (MOX) fuels. To safeguard the future commercial viability of this process, BNFL is developing novel single cycle flowsheets that can be operated in conjunction with intensified centrifugal contactors.

  11. Rapid Dissolution of Soluble Uranyl Phases in Arid, Mine-Impacted Catchments Near Church Rock, NM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    deLemos, J.L.; Bostick, B.C.; Quicksall, A.N.

    2009-05-14

    We tested the hypothesis that runoff of uranium-bearing particles from mining waste disposal areas was a significant mechanism for redistribution of uranium in the northeastern part of the Upper Puerco River watershed (New Mexico). However, our results were not consistent with this hypothesis. Analysis of >100 sediment and suspended sediment samples collected adjacent to and downstream from uranium source areas indicated that uranium levels in the majority of the samples were not elevated above background. Samples collected within 50 m of a known waste disposal site were subjected to detailed geochemical characterization. Uranium in these samples was found to bemore » highly soluble; treatment with synthetic pore water for 24 h caused dissolution of 10-50% of total uranium in the samples. Equilibrium uranium concentrations in pore water were >4.0 mg/L and were sustained in repeated wetting events, effectively depleting soluble uranium from the solid phase. The dissolution rate of uranium appeared to be controlled by solid-phase diffusion of uranium from within uranium-bearing mineral particles. X-ray adsorption spectroscopy indicated the presence of a soluble uranyl silicate, and possibly a uranyl phosphate. These phases were exhausted in transported sediment suggesting that uranium was readily mobilized from sediments in the Upper Puerco watershed and transported in the dissolved load. These results could have significance for uranium risk assessment as well as mining waste management and cleanup efforts.« less

  12. Rapid Dissolution of Soluble Uranyl Phases in Arid, Mine-Impacted Catchments near Church Rock, NM

    PubMed Central

    DELEMOS, JAMIE L.; BOSTICK, BENJAMIN C.; QUICKSALL, ANDREW N.; LANDIS, JOSHUA D.; GEORGE, CHRISTINE C.; SLAGOWSKI, NAOMI L.; ROCK, TOMMY; BRUGGE, DOUG; LEWIS, JOHNNYE; DURANT, JOHN L.

    2008-01-01

    We tested the hypothesis that runoff of uranium-bearing particles from mining waste disposal areas was a significant mechanism for redistribution of uranium in the northeastern part of the Upper Puerco River watershed (New Mexico). However, our results were not consistent with this hypothesis. Analysis of >100 sediment and suspended sediment samples collected adjacent to and downstream from uranium source areas indicated that uranium levels in the majority of the samples were not elevated above background. Samples collected within 50 m of a known waste disposal site were subjected to detailed geochemical characterization. Uranium in these samples was found to be highly soluble; treatment with synthetic pore water for 24 h caused dissolution of 10–50% of total uranium in the samples. Equilibrium uranium concentrations in pore water were >4.0 mg/L and were sustained in repeated wetting events, effectively depleting soluble uranium from the solid phase. The dissolution rate of uranium appeared to be controlled by solid-phase diffusion of uranium from within uranium-bearing mineral particles. X-ray adsorption spectroscopy indicated the presence of a soluble uranyl silicate, and possibly a uranyl phosphate. These phases were exhausted in transported sediment suggesting that uranium was readily mobilized from sediments in the Upper Puerco watershed and transported in the dissolved load. These results could have significance for uranium risk assessment as well as mining waste management and cleanup efforts. PMID:18589950

  13. Recovery of protactinium from molten fluoride nuclear fuel compositions

    DOEpatents

    Baes, C.F. Jr.; Bamberger, C.; Ross, R.G.

    1973-12-25

    A method is provided for separating protactinium from a molten fluonlde salt composition consisting essentially of at least one alkali and alkaline earth metal fluoride and at least one soluble fluoride of uranium or thorium which comprises oxidizing the protactinium in said composition to the + 5 oxidation state and contacting said composition with an oxide selected from the group consisting of an alkali metal oxide, an alkaline earth oxide, thorium oxide, and uranium oxide, and thereafter isolating the resultant insoluble protactinium oxide product from said composition. (Official Gazette)

  14. Crucible cast from beryllium oxide and refractory cement is impervious to flux and molten metal

    NASA Technical Reports Server (NTRS)

    Jastrzebski, Z. D.

    1966-01-01

    Crucible from a mixture of a beryllium oxide aggregate and hydraulic refractory cement, and coated with an impervious refractory oxide will not deteriorate in the presence of fused salt- molten metal mixtures such as uranium- magnesium-zinc-halide salt systems. Vessels cast by this process are used in the flux reduction of oxides of thorium and uranium.

  15. PROGRESS REPORT ON GEOLOGIC STUDIES OF THE RANGER OREBODIES, NORTHERN TERRITORY, AUSTRALIA.

    USGS Publications Warehouse

    Nash, J. Thomas; Frishman, David; ,

    1985-01-01

    The Ranger No. 1 and No. 3 orebodies contain about 124,000 tonnes U//3O//8 in highly chloritized metasediments of the lower Proterozoic Cahill Formation within about 500 m of the projected sub-Kombolgie Formation unconformity. In both orebodies, oxidized and reduced uranium minerals occur chiefly in quartzose schists that have highly variable amounts of muscovite, sericite, and chlorite. The effects of several periods of alteration are pervasive in the vicinity of orebodies where biotite and garnet are altered to chlorite, and feldspars to white mica or chlorite. Oxidized uranium minerals, associated with earthy iron oxides, occur from the surface to a depth of about 60 m. Below the oxidized zone, uranium occurs chiefly as uraninite and pitchblende disseminated through thick sections of quartz-chlorite-muscovite schist and has no apparent association with graphite or sulphides. The geologic age(s) of uranium emplacement are obscure because there are few age criteria. Reduced uranium minerals are younger than 1. 8-b. y. -old granite dykes, and some occur locally in 1. 65-b. y. -old Kombolgie Formation.

  16. Compact reaction cell for homogenizing and down-blending highly enriched uranium metal

    DOEpatents

    McLean, W. II; Miller, P.E.; Horton, J.A.

    1995-05-02

    The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gases into the reaction chamber, the upper port allowing for the exit of gases from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gases into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell. 4 figs.

  17. Compact reaction cell for homogenizing and down-blanding highly enriched uranium metal

    DOEpatents

    McLean, II, William; Miller, Philip E.; Horton, James A.

    1995-01-01

    The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gasses into the reaction chamber, the upper port allowing for the exit of gasses from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gasses into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell.

  18. Electrochemical and Spectroscopic Evidence on the One-Electron Reduction of U(VI) to U(V) on Magnetite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Ke; Ilton, Eugene S.; Antonio, Mark R.

    2015-05-19

    Reduction of U(VI) to U(VI) on mineral surfaces is often considered a one-step two-electron process. However, stabilized U(V), with no evidence of U(IV), found in recent studies Indicates U(VI) can undergo a one-electron reduction to U(V) without further progression to U(VI),. We investigated reduction pathways of uranium by reducing U(VI) electrochemically on a, magnetite electrode at,pH 3.4. Cyclic voltammetry confirms the one-electron reduction of U(VI) . Formation of nanosize uranium precipitates on the magnetite surface at reducing potentials and dissolution of the solids at oxidizing potentials are observed by in situ electrochemical atomic force microscopy. XPS, analysis Of the magnetitemore » electrodes polarized in uranium solutions at voltages - from -0.1 to -0.9 V (E-U(VI)/U(V)(0)= -0.135 V vs Ag/AgCl) show the presence of, only U(V) and U(VI). The sample with the highest U(V)/U(VI) ratio was prepared at -0.7 V, where the longest average U-O-axial distance of 2.05 + 0.01 A was evident in the same sample revealed by extended X-ray absorption fine structure analysis. The results demonstrate that the electrochemical reduction of U(VI) On magnetite only yields,U(V), even at a potential of -0.9 V, which favors the one-electron reduction mechanism, U(V) does not disproportionate but stabilizes on magnetite through precipitation Of mixed-valence state -U(V)/U(VI) solids.« less

  19. Mechanisms of uranium interactions with hydroxyapatite: Implications for groundwater remediation

    USGS Publications Warehouse

    Fuller, C.C.; Bargar, J.R.; Davis, J.A.; Piana, M.J.

    2002-01-01

    The speciation of U(VI) sorbed to synthetic hydroxyapatite was investigated using a combination of U LIII-edge XAS, synchrotron XRD, batch uptake measurements, and SEM-EDS. The mechanisms of U(VI) removal by apatite were determined in order to evaluate the feasibility of apatitebased in-situ permeable reactive barriers (PRBs). In batch U(VI) uptake experiments with synthetic hydroxyapatite (HA), near complete removal of dissolved uranium (>99.5%) to <0.05 ??M was observed over a range of total U(VI) concentrations up to equimolar of the total P in the suspension. XRD and XAS analyses of U(VI)-reacted HA at sorbed concentrations ???4700 ppm U(VI) suggested that uranium(VI) phosphate, hydroxide, and carbonate solids were not present at these concentrations. Fits to EXAFS spectra indicate the presence of Ca neighbors at 3.81 A??. U-Ca separation, suggesting that U(VI) adsorbs to the HA surfaces as an inner-sphere complex. Uranium(VI) phosphate solid phases were not detected in HA with 4700 ppm sorbed U(VI) by backscatter SEM or EDS, in agreement with the surface complexation process. In contrast, U(VI) speciation in samples that exceeded 7000 ppm sorbed U(VI) included a crystalline uranium(VI) phosphate solid phase, identified as chernikovite by XRD. At these higher concentrations, a secondary, uranium(VI) phosphate solid was detected by SEM-EDS, consistent with chernikovite precipitation. Autunite formation occurred at total U:P molar ratios ???0.2. Our findings provide a basis for evaluating U(VI) sorption mechanisms by commercially available natural apatites for use in development of PRBs for groundwater U(VI) remediation.

  20. Characterization of the Kinetics of NF3-Fluorination of NpO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casella, Andrew M.; Scheele, Randall D.; McNamara, Bruce K.

    2015-12-23

    The exploitation of selected actinide and fission product fluoride volatilities has long been considered as a potentially attractive compact method for recycling used nuclear fuels to avoid generating the large volumes of radioactive waste arising from aqueous reprocessing [1-7]. The most developed process uses the aggressive and hazardous fluorinating agents hydrogen fluoride (HF) and/or molecular fluorine (F2) at high temperatures to volatilize the greatest fraction of the used nuclear fuel into a single gas stream. The volatilized fluorides are subsequently separated using a series of fractionation and condensation columns to recover the valuable fuel constituents and fission products. In pursuitmore » of a safer and less complicated approach, we investigated an alternative fluoride volatility-based process using the less hazardous fluorinating agent nitrogen trifluoride (NF3) and leveraging its less aggressive nature to selectively evolve fission product and actinide fluorides from the solid phase based on their reaction temperatures into a single recycle stream [8-15]. In this approach, successive isothermal treatments using NF3 will first evolve the more thermally susceptible used nuclear fuel constituents leaving the other constituents in the residual solids until subsequent isothermal temperature treatments cause these others to volatilize. During investigation of this process, individual neat used fuel components were treated with isothermal NF3 in an attempt to characterize the kinetics of each fluorination reaction to provide input into the design of a new volatile fluoride separations approach. In these directed investigations, complex behavior was observed between NF3 and certain solid reactants such as the actinide oxides of uranium, plutonium, and neptunium. Given the similar thermal reaction susceptibilities of neptunium oxide (NpO2) and uranium dioxide (UO2) and the importance of Np and U, we initially focused our efforts on determining the reaction kinetic parameters for NpO2. Characterizing the NF3 fluorination of NpO2 using established models for gas-solid reactions [16] proved unsuccessful so we developed a series of successive fundamental reaction mechanisms to characterize the observed successive fluorination reactions leading to production of the volatile neptunium hexafluoride (NpF6).« less

  1. Dibutyl Phosphoric Acid Solubility in High-Acid, Uranium-Bearing Solutions at SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.A.

    1998-10-02

    The Savannah River Site has enriched uranium (EU) solution which has been stored for almost 10 years since being purified in the second uranium cycle of the H area solvent extraction process. The concentrations in solution are approximately 6 g/L U and about 0.1 M nitric acid. Residual tributylphosphate in the solutions has slowly hydrolyzed to form dibutyl phosphoric acid (HDBP) at concentrations averaging 50 mg/L. Uranium is known to form compounds with the dibutylphosphate ion (DBP) which have limited solubility. The potential to form uranium-DBP solids raises a nuclear criticality safety issue. Prior SRTC tests (WSRC-TR-98-00188) showed that U-DBPmore » solids precipitate at concentrations potentially attainable during the storage of enriched uranium solutions. Furthermore, evaporation of the existing EUS solution without additional acidification could result in the precipitation of U-DBP solids if the DBP concentration in the resulting solution exceeds 110 mg/L at ambient temperature. The same potential exists for evaporation of unwashed 1CU solutions. As a follow-up to the earlier studies, SRTC studied the solubility limits for solutions containing acid concentrations above 0.5M HNO3. The data obtained in these tests reveals a shift to higher levels of DBP solubility above 0.5M HNO3 for both 6 g/L and 12 g/L uranium solutions. Analysis of U-DBP solids from the tests identified a mixture of different molecular structures for the solids created. The analysis distinguished UO2(DBP)2 as the dominant compound present at low acid concentrations. As the acid concentration increases, the crystalline UO2(DBP)2 shows molecular substitutions and an increase in amorphous content. Further analysis by methods not available at SRS will be needed to better identify the specific compounds present. This data indicates that acidification prior to evaporation can be used to increase the margin of safety for the storage of the EUS solutions. Subsequent experimentation evaluated options for absorbing HDBP from solution using either activated carbon or anion exchange resin. The activated carbon outperformed the anion exchange resin. Activated carbon absorbs DBP rapidly and has demonstrated the capability of absorbing 15 mg of DBP per gram of activated carbon. Analytical results also show that activated carbon absorbs uranium up to 17 mg per gram of carbon. It is speculated that the uranium absorbed is part of a soluble U-DBP complex that has been absorbed. Additional testing must still be performed to 1) establish absorption limits for uranium for anion exchange resin, 2) evaluate desorption characteristics of uranium and DBP, and 3) study the possibility of re-using the absorbent.« less

  2. SURFACE TREATMENT OF METALLIC URANIUM

    DOEpatents

    Gray, A.G.; Schweikher, E.W.

    1958-05-27

    The treatment of metallic uranium to provide a surface to which adherent electroplates can be applied is described. Metallic uranium is subjected to an etchant treatment in aqueous concentrated hydrochloric acid, and the etched metal is then treated to dissolve the resulting black oxide and/or chloride film without destroying the etched metal surface. The oxide or chloride removal is effected by means of moderately concentrated nitric acid in 3 to 20 seconds.

  3. PROCESS FOR THE RECOVERY AND PURIFICATION OF URANIUM DEPOSITS

    DOEpatents

    Carter, J.M.; Kamen, M.D.

    1958-10-14

    A process is presented for recovering uranium values from UCl/sub 4/ deposits formed on calutrons. Such deposits are removed from the calutron parts by an aqueous wash solution which then contains the uranium values in addition to the following impurities: Ni, Cu, Fe, and Cr. This impurity bearing wash solution is treated with an oxidizing agent, and the oxidized solution is then treated with ammonia in order to precipitate the uranium as ammonium diuranate. The metal impurities of iron and chromium, which form insoluble hydroxides, are precipitated along with the uranium values. The precipitate is separated from the solution, dissolved in acid, and the solution again treated with ammonia and ammonium carbonate, which results in the precipitation of the metal impurities as hydroxides while the uranium values remain in solution.

  4. Dissolution of Uranium Oxides Under Alkaline Oxidizing Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Steven C.; Peper, Shane M.; Douglas, Matthew

    2009-11-01

    Bench scale experiments were conducted to determine the dissolution characteristics of uranium oxide powders (UO2, U3O8, and UO3) in aqueous peroxide-carbonate solutions. Experimental parameters included H2O2 concentration, carbonate counter cation (NH4+, Na+, K+, and Rb+), and pH. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M. The three uranium oxide powders exhibited different dissolution patterns however, UO3 exhibited prompt complete dissolution. Carbonate counter cation affected the dissolution kinetics. There is minimal impact of solution pH, over the range 8.8 to 10.6, on initial dissolution rate.

  5. Composition and method for brazing graphite to graphite

    DOEpatents

    Taylor, A.J.; Dykes, N.L.

    1982-08-10

    A brazing material is described for joining graphite structures that can be used up to 2800/sup 0/C. The brazing material is formed of a paste-like composition of hafnium carbide and uranium oxide with a thermosetting resin. The uranium oxide is converted to uranium dicarbide during the brazing operation and then the hafnium carbide and uranium dicarbide form a liquid phase at a temperature about 2600/sup 0/C with the uranium diffusing and vaporizing from the joint area as the temperature is increased to about 2800/sup 0/C so as to provide a brazed joint consisting essentially of hafnium carbide. The resulting brazed joint is chemically and thermally compatible with the graphite structures.

  6. URANIUM RECOVERY FROM COMPOSITE UF$sub 4$ REDUCTION BOMB WASTES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, E R; Doyle, R L; Coleman, J R

    1954-01-28

    A number of techniques have been investigated on a laboratory-scale for separating uranium from fluorides during the recovery of uranium from UF4 reduction bomb wastes (C-oxide) by an HCl leach - NH4OH precipitation process. Among these are included adsorption of fluorides from filtered leach liquors, fractional precipitation of fluorides and uranium, complexing of fluorides into forms soluble in slightly acid solutions, and fluoride volatilization from the uranium concentrate. Solubility studies of CaF2 and MgF2 in aqueous hydrochloric acid at various acidities and temperatures were also conducted. A description of the production-scale processing of C-oxide in the FMPC scrap plant hasmore » been included.« less

  7. Preliminary reconnaissance survey for thorium, uranium, and rare-earth oxides, Bear Lodge Mountains, Crook County, Wyoming

    USGS Publications Warehouse

    Wilmarth, V.R.; Johnson, D.H.

    1953-01-01

    An area about 6 miles north of Sundance, in the Bear Lodge Mountains, in Crook County, Wyo., was examined during August 1950 for thorium, uranium, and rare-earth oxides and samples were collected. Uranium is known to occur in fluorite veins and iron-manganese veins and in the igneous rocks of Tertiary age that compose the core of the Bear Lodge Mountains. The uranium content of the samples ranges from 0.001 to 0.015 percent in those from the fluorite veins, from 0.005 to 0.018 percent in those from the iron-manganese veins, and from 0.001 to 0.017 percent in those from the igneous rocks. The radioactivity of the samples is more than that expected from the uranium content. Thorium accounts for most of this discrepancy. The thorium oxide content of samples ranges from 0.07 to 0.25 percent in those from the iron-manganese veins and from 0.07 to 0.39 percent in those from the sedimentary rocks, and from0.04 to 0.30 in those from the igneous rocks. Rare-earth oxides occur in iron-manganese veins and in zones of altered igneous rocks. The veins contain from 0.16 to 12.99 percent rare-earth oxides, and the igneous rocks, except for two localities, contain from 0.01 to 0.42 percent rare-earth oxides. Inclusions of metamorphosed sedimentary rocks in the intrusive rocks contain from 0.07 to 2.01 percent rare-earth oxides.

  8. Attenuation and Transport Mechanisms of Depleted Uranium in Groundwater at Lawrence Livermore National Laboratory Site 300

    NASA Astrophysics Data System (ADS)

    Danny, K. R.; Taffet, M. J.; Brusseau, M. L. L.; Chorover, J.

    2015-12-01

    Lawrence Livermore National Laboratory (LLNL) Site 300 was established in 1955 to support weapons research and development. Depleted uranium was used as a proxy for fissile uranium-235 (235U) in open-air explosives tests conducted at Building 812. As a result, oxidized depleted uranium was deposited on the ground, eventually migrating to the underlying sandstone aquifer. Uranium (U) groundwater concentrations exceed the California and Federal Maximum Contaminant Level of 20 pCi L-1 (30 ug L-1). However, the groundwater plume appears to attenuate within 60 m of the source, beyond which no depleted U is detected. This study will determine the relative contribution of physical (e.g. dilution), chemical (e.g. surface adsorption, mineral precipitation), and biological (e.g. biotransformation) processes that contribute to the apparent attenuation of U, which exists as uranyl (UO22+) complexes, at the site. Methods of investigation include evaluating 15 yr of hydrogeologic and chemical data, creating a site conceptual model, and applying equilibrium (e.g. aqueous species complexation, mineral saturation indices) and reactive transport models using Geochemist's WorkbenchTM. Reactive transport results are constrained by direct field observations, including U major ion, and dissolved O2 concentrations, pH, and others, under varying chemical and hydraulic conditions. Aqueous speciation calculations indicate that U primarily exists as anionic CaUO2(CO3)32- or neutral Ca2UO2(CO3)30 species. Additionally, nucleation and growth of Ca/Mg uranyl carbonate solids are predicted to affect attenuation. Initial reactive transport results suggest surface adsorption (e.g. ion exchange, surface complexation) to layer silicate clays is limited under the aqueous geochemical conditions of the site. Current and future work includes XRD analysis of aquifer solids to constrain iron and aluminum (oxy)hydroxides, and coupling advective-dispersive transport with the chemical and physical processes. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675707.

  9. Separation of uranium from (U, Th)O 2 and (U, Pu)O 2 by solid state reactions route

    NASA Astrophysics Data System (ADS)

    Keskar, Meera; Mudher, K. D. Singh; Venugopal, V.

    2005-01-01

    Solid state reactions of UO 2, ThO 2, PuO 2 and their mixed oxides (U, Th)O 2 and (U, Pu)O 2 were carried out with sodium nitrate upto 900 °C, to study the formation of various phases at different temperatures, which are amenable for easy dissolution and separation of the actinide elements in dilute acid. Products formed by reacting unsintered as well as sintered UO 2 with NaNO 3 above 500 °C were readily soluble in 2 M HNO 3, whereas ThO 2 and PuO 2 did not react with NaNO 3 to form any soluble products. Thus reactions of mixed oxides (U, Th)O 2 and (U, Pu)O 2 with NaNO 3 were carried out to study the quantitative separation of U from (U, Th)O 2 and (U, Pu)O 2. X-ray diffraction, X-ray fluorescence, thermal analysis and chemical analysis techniques were used for the characterization of the products formed during the reactions.

  10. Effects of calcium and phosphate on uranium(IV) oxidation: Comparison between nanoparticulate uraninite and amorphous UIV-phosphate

    NASA Astrophysics Data System (ADS)

    Latta, Drew E.; Kemner, Kenneth M.; Mishra, Bhoopesh; Boyanov, Maxim I.

    2016-02-01

    The mobility of uranium in subsurface environments depends strongly on its redox state, with UIV phases being significantly less soluble than UVI minerals. This study compares the oxidation kinetics and mechanisms of two potential products of UVI reduction in natural systems, a nanoparticulate UO2 phase and an amorphous UIV-Ca-PO4 analog to ningyoite (CaUIV(PO4)2·1-2H2O). The valence of U was tracked by X-ray absorption near-edge spectroscopy (XANES), showing similar oxidation rate constants for UIVO2 and UIV-phosphate in solutions equilibrated with atmospheric O2 and CO2 at pH 7.0 (kobs,UO2 = 0.17 ± 0.075 h-1 vs. kobs,UIVPO4 = 0.30 ± 0.25 h-1). Addition of up to 400 μM Ca and PO4 decreased the oxidation rate constant by an order of magnitude for both UO2 and UIV-phosphate. The intermediates and products of oxidation were tracked by electron microscopy, powder X-ray diffraction (pXRD), and extended X-ray absorption fine-structure spectroscopy (EXAFS). In the absence of Ca or PO4, the product of UO2 oxidation is Na-uranyl oxyhydroxide (under environmentally relevant concentrations of sodium, 15 mM NaClO4 and low carbonate concentration), resulting in low concentrations of dissolved UVI (<2.5 × 10-7 M). Oxidation of UIV-phosphate produced a Na-autunite phase (Na2(UO2)PO4·xH2O), resulting in similarly low dissolved U concentrations (<7.3 × 10-8 M). When Ca and PO4 are present in the solution, the EXAFS data and the solubility of the UVI phase resulting from oxidation of UO2 and UIV-phosphate are consistent with the precipitation of Na-autunite. Bicarbonate extractions and Ca K-edge X-ray absorption spectroscopy of oxidized solids indicate the formation of a Ca-UVI-PO4 layer on the UO2 surface and suggest a passivation layer mechanism for the decreased rate of UO2 oxidation in the presence of Ca and PO4. Interestingly, the extractions were unable to remove all of the oxidized U from partially oxidized UO2 solids, suggesting that oxidized U is distributed between the interior of the UO2 nanoparticles and the labile surface layer. Accounting for the entire pool of oxidized U by XANES is the likely reason for the higher UO2 oxidation rate constants determined here relative to prior studies. Our results suggest that the natural presence or addition of Ca and PO4 in groundwater could slow the rates of UIV oxidation, but that the rates are still fast enough to cause complete oxidation of UIV within days under fully oxygenated conditions.

  11. Effects of calcium and phosphate on uranium(IV) oxidation: Comparison between nanoparticulate uraninite and amorphous U IV–phosphate

    DOE PAGES

    Latta, Drew E.; Kemner, Kenneth M.; Mishra, Bhoopesh; ...

    2015-11-17

    The mobility of uranium in subsurface environments depends strongly on its redox state, with U IV phases being significantly less soluble than U VI minerals. This study compares the oxidation kinetics and mechanisms of two potential products of U VI reduction in natural systems, a nanoparticulate UO 2 phase and an amorphous U IV–Ca–PO 4 analog to ningyoite (CaU IV(PO 4) 2·1–2H 2O). The valence of U was tracked by X-ray absorption near-edge spectroscopy (XANES), showing similar oxidation rate constants for U IVO 2 and U IV–phosphate in solutions equilibrated with atmospheric O 2 and CO 2 at pH 7.0more » (k obs,UO2 = 0.17 ± 0.075 h -1 vs. k obs,U IV PO4 = 0.30 ± 0.25 h -1). Addition of up to 400 μM Ca and PO 4 decreased the oxidation rate constant by an order of magnitude for both UO 2 and U IV–phosphate. The intermediates and products of oxidation were tracked by electron microscopy, powder X-ray diffraction (pXRD), and extended X-ray absorption fine-structure spectroscopy (EXAFS). In the absence of Ca or PO 4, the product of UO 2 oxidation is Na–uranyl oxyhydroxide (under environmentally relevant concentrations of sodium, 15 mM NaClO 4 and low carbonate concentration), resulting in low concentrations of dissolved U VI (<2.5 × 10 -7 M). Oxidation of U IV–phosphate produced a Na-autunite phase (Na 2(UO 2)PO 4·xH 2O), resulting in similarly low dissolved U concentrations (<7.3 × 10 -8 M). When Ca and PO 4 are present in the solution, the EXAFS data and the solubility of the UVI phase resulting from oxidation of UO 2 and UIV–phosphate are consistent with the precipitation of Na-autunite. Bicarbonate extractions and Ca K-edge X-ray absorption spectroscopy of oxidized solids indicate the formation of a Ca–UVI–PO 4 layer on the UO 2 surface and suggest a passivation layer mechanism for the decreased rate of UO 2 oxidation in the presence of Ca and PO 4. Interestingly, the extractions were unable to remove all of the oxidized U from partially oxidized UO 2 solids, suggesting that oxidized U is distributed between the interior of the UO 2 nanoparticles and the labile surface layer. Accounting for the entire pool of oxidized U by XANES is the likely reason for the higher UO 2 oxidation rate constants determined here relative to prior studies. In conclusion, our results suggest that the natural presence or addition of Ca and PO 4 in groundwater could slow the rates of U IV oxidation, but that the rates are still fast enough to cause complete oxidation of U IV within days under fully oxygenated conditions.« less

  12. Electronic structure and fine structural features of the air-grown UNxOy on nitrogen-rich uranium nitride

    NASA Astrophysics Data System (ADS)

    Long, Zhong; Zeng, Rongguang; Hu, Yin; Liu, Jing; Wang, Wenyuan; Zhao, Yawen; Luo, Zhipeng; Bai, Bin; Wang, Xiaofang; Liu, Kezhao

    2018-06-01

    Oxide formation on surface of nitrogen-rich uranium nitride film/particles was investigated using X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), aberration-corrected transmission electron microscopy (TEM), and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) coupled with electron energy-loss spectroscopy (EELS). XPS and AES studies indicated that the oxidized layer on UN2-x film is ternary compound uranium oxynitride (UNxOy) in 5-10 nm thickness. TEM/HAADF-STEM and EELS studies revealed the UNxOy crystallizes in the FCC CaF2-type structure with the lattice parameter close to the CaF2-type UN2-x matrix. The work can provide further information to the oxidation mechanism of uranium nitride.

  13. Assessment of nonpoint source chemical loading potential to watersheds containing uranium waste dumps associated with uranium exploration and mining, Browns Hole, Utah

    USGS Publications Warehouse

    Marston, Thomas M.; Beisner, Kimberly R.; Naftz, David L.; Snyder, Terry

    2012-01-01

    During August of 2008, 35 solid-phase samples were collected from abandoned uranium waste dumps, undisturbed geologic background sites, and adjacent streambeds in Browns Hole in southeastern Utah. The objectives of this sampling program were (1) to assess impacts on human health due to exposure to radium, uranium, and thorium during recreational activities on and around uranium waste dumps on Bureau of Land Management lands; (2) to compare concentrations of trace elements associated with mine waste dumps to natural background concentrations; (3) to assess the nonpoint source chemical loading potential to ephemeral and perennial watersheds from uranium waste dumps; and (4) to assess contamination from waste dumps to the local perennial stream water in Muleshoe Creek. Uranium waste dump samples were collected using solid-phase sampling protocols. Solid samples were digested and analyzed for major and trace elements. Analytical values for radium and uranium in digested samples were compared to multiple soil screening levels developed from annual dosage calculations in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act's minimum cleanup guidelines for uranium waste sites. Three occupancy durations for sites were considered: 4.6 days per year, 7.0 days per year, and 14.0 days per year. None of the sites exceeded the radium soil screening level of 96 picocuries per gram, corresponding to a 4.6 days per year exposure. Two sites exceeded the radium soil screening level of 66 picocuries per gram, corresponding to a 7.0 days per year exposure. Seven sites exceeded the radium soil screening level of 33 picocuries per gram, corresponding to a 14.0 days per year exposure. A perennial stream that flows next to the toe of a uranium waste dump was sampled, analyzed for major and trace elements, and compared with existing aquatic-life and drinking-water-quality standards. None of the water-quality standards were exceeded in the stream samples.

  14. PRODUCTION OF URANIUM TETRACHLORIDE

    DOEpatents

    Calkins, V.P.

    1958-12-16

    A process is descrlbed for the production of uranium tetrachloride by contacting uranlum values such as uranium hexafluoride, uranlum tetrafluoride, or uranium oxides with either aluminum chloride, boron chloride, or sodium alumlnum chloride under substantially anhydrous condltlons at such a temperature and pressure that the chlorldes are maintained in the molten form and until the uranium values are completely converted to uranlum tetrachloride.

  15. VOLATILE CHLORIDE PROCESS FOR THE RECOVERY OF METAL VALUES

    DOEpatents

    Hanley, W.R.

    1959-01-01

    A process is presented for recovering uranium, iron, and aluminum from centain shale type ores which contain uranium in minute quantities. The ore is heated wiih a chlorinating agent. such as chlorine, to form a volatilized stream of metal chlorides. The chloride stream is then passed through granular alumina which preferentially absorbs the volatile uranium chloride and from which the uranium may later be recovered. The remaining volatilized chlorides, chiefly those of iron and aluminum, are further treated to recover chlorine gas for recycle, and to recover ferric oxide and aluminum oxide as valuable by-products.

  16. Preliminary Numerical Simulation of IR Structure Development in a Hypothetical Uranium Release.

    DTIC Science & Technology

    1981-11-16

    art Identify by block nAsb.’) IR Structure Power spectrum Uranium release Parallax effects Numerical simulation PHARO code Isophots LWIR 20. _PSTRACT...release at 200 km altitude. Of interest is the LWIR emission from uranium oxide ions, induced by sunlight and earthshine. Assuming a one-level fluid...defense systems of long wave infrared ( LWIR ) emissions from metallic oxides in the debris from a high altitude nuclear explosion (HANE) is an

  17. Energy dependence of the trapping of uranium atoms by aluminum oxide surfaces

    NASA Technical Reports Server (NTRS)

    Librecht, K. G.

    1979-01-01

    The energy dependence of the trapping probability for sputtered U-235 atoms striking an oxidized aluminum collector surface at energies between 1 eV and 184 eV was measured. At the lowest energies, approximately 10% of the uranium atoms are not trapped, while above 10 eV essentially all of them stick. Trapping probabilities averaged over the sputtered energy distribution for uranium incident on gold and mica are also presented.

  18. MELTING AND PURIFICATION OF URANIUM

    DOEpatents

    Spedding, F.H.; Gray, C.F.

    1958-09-16

    A process is described for treating uranium ingots having inner metal portions and an outer oxide skin. The method consists in partially supporting such an ingot on the surface of a grid or pierced plate. A sufficient weight of uranium is provided so that when the mass becomes molten, the oxide skin bursts at the unsupported portions of its bottom surface, allowing molten urantum to flow through the burst skin and into a container provided below.

  19. METHOD OF MAKING UO$sub 2$-Bi SLURRIES

    DOEpatents

    Hahn, H.T.

    1960-05-24

    A process is given of preparing an easily dispersible slurry of uranium dioxide in bismuth. A mixture of bismuth oxide, uranium, and bismuth are heated in a capsule to a temperature over the melting point of bismuth oxide. The amount of bismuth oxide used is less than that stoichiometrically required because the oxygen in the capsule also enters into the reaction.

  20. METHOD FOR RECOVERING URANIUM FROM OILS

    DOEpatents

    Gooch, L.H.

    1959-07-14

    A method is presented for recovering uranium from hydrocarbon oils, wherein the uranium is principally present as UF/sub 4/. According to the invention, substantially complete removal of the uranium from the hydrocarbon oil may be effected by intimately mixing one part of acetone to about 2 to 12 parts of the hydrocarbon oil containing uranium and separating the resulting cake of uranium from the resulting mixture. The uranium in the cake may be readily recovered by burning to the oxide.

  1. Evidence for single metal two electron oxidative addition and reductive elimination at uranium.

    PubMed

    Gardner, Benedict M; Kefalidis, Christos E; Lu, Erli; Patel, Dipti; McInnes, Eric J L; Tuna, Floriana; Wooles, Ashley J; Maron, Laurent; Liddle, Stephen T

    2017-12-01

    Reversible single-metal two-electron oxidative addition and reductive elimination are common fundamental reactions for transition metals that underpin major catalytic transformations. However, these reactions have never been observed together in the f-block because these metals exhibit irreversible one- or multi-electron oxidation or reduction reactions. Here we report that azobenzene oxidises sterically and electronically unsaturated uranium(III) complexes to afford a uranium(V)-imido complex in a reaction that satisfies all criteria of a single-metal two-electron oxidative addition. Thermolysis of this complex promotes extrusion of azobenzene, where H-/D-isotopic labelling finds no isotopomer cross-over and the non-reactivity of a nitrene-trap suggests that nitrenes are not generated and thus a reductive elimination has occurred. Though not optimally balanced in this case, this work presents evidence that classical d-block redox chemistry can be performed reversibly by f-block metals, and that uranium can thus mimic elementary transition metal reactivity, which may lead to the discovery of new f-block catalysis.

  2. In situ spectroscopy and spectroelectrochemistry of uranium in high-temperature alkali chloride molten salts.

    PubMed

    Polovov, Ilya B; Volkovich, Vladimir A; Charnock, John M; Kralj, Brett; Lewin, Robert G; Kinoshita, Hajime; May, Iain; Sharrad, Clint A

    2008-09-01

    Soluble uranium chloride species, in the oxidation states of III+, IV+, V+, and VI+, have been chemically generated in high-temperature alkali chloride melts. These reactions were monitored by in situ electronic absorption spectroscopy. In situ X-ray absorption spectroscopy of uranium(VI) in a molten LiCl-KCl eutectic was used to determine the immediate coordination environment about the uranium. The dominant species in the melt was [UO 2Cl 4] (2-). Further analysis of the extended X-ray absorption fine structure data and Raman spectroscopy of the melts quenched back to room temperature indicated the possibility of ordering beyond the first coordination sphere of [UO 2Cl 4] (2-). The electrolytic generation of uranium(III) in a molten LiCl-KCl eutectic was also investigated. Anodic dissolution of uranium metal was found to be more efficient at producing uranium(III) in high-temperature melts than the cathodic reduction of uranium(IV). These high-temperature electrolytic processes were studied by in situ electronic absorption spectroelectrochemistry, and we have also developed in situ X-ray absorption spectroelectrochemistry techniques to probe both the uranium oxidation state and the uranium coordination environment in these melts.

  3. High-temperature electrically conductive ceramic composite and method for making same

    DOEpatents

    Beck, David E.; Gooch, Jack G.; Holcombe, Jr., Cressie E.; Masters, David R.

    1983-01-01

    The present invention relates to a metal-oxide ceramic composition useful in induction heating applications for treating uranium and uranium alloys. The ceramic composition is electrically conductive at room temperature and is nonreactive with molten uranium. The composition is prepared from a particulate admixture of 20 to 50 vol. % niobium and zirconium oxide which may be stabilized with an addition of a further oxide such as magnesium oxide, calcium oxide, or yttria. The composition is prepared by blending the powders, pressing or casting the blend into the desired product configuration, and then sintering the casting or compact in an inert atmosphere. In the casting operation, calcium aluminate is preferably added to the admixture in place of a like quantity of zirconia for providing a cement to help maintain the integrity of the sintered product.

  4. Uranium metallogenesis of the peraluminous leucogranite from the Pontivy-Rostrenen magmatic complex (French Armorican Variscan belt): the result of long-term oxidized hydrothermal alteration during strike-slip deformation

    NASA Astrophysics Data System (ADS)

    Ballouard, C.; Poujol, M.; Mercadier, J.; Deloule, E.; Boulvais, P.; Baele, J. M.; Cuney, M.; Cathelineau, M.

    2018-06-01

    In the French Armorican Variscan belt, most of the economically significant hydrothermal U deposits are spatially associated with peraluminous leucogranites emplaced along the south Armorican shear zone (SASZ), a dextral lithospheric scale wrench fault that recorded ductile deformation from ca. 315 to 300 Ma. In the Pontivy-Rostrenen complex, a composite intrusion, the U mineralization is spatially associated with brittle structures related to deformation along the SASZ. In contrast to monzogranite and quartz monzodiorite (3 < U < 9 ppm; Th/U > 3), the leucogranite samples are characterized by highly variable U contents ( 3 to 27 ppm) and Th/U ratios ( 0.1 to 5) suggesting that the crystallization of magmatic uranium oxide in the more evolved facies was followed by uranium oxide leaching during hydrothermal alteration and/or surface weathering. U-Pb dating of uranium oxides from the deposits reveals that they mostly formed between ca. 300 and 270 Ma. In monzogranite and quartz monzodiorite, apatite grains display magmatic textures and provide U-Pb ages of ca. 315 Ma reflecting the time of emplacement of the intrusions. In contrast, apatite grains from the leucogranite display textural, geochemical, and geochronological evidences for interaction with U-rich oxidized hydrothermal fluids contemporaneously with U mineralizing events. From 300 to 270 Ma, infiltration of surface-derived oxidized fluids leached magmatic uranium oxide from fertile leucogranite and formed U deposits. This phenomenon was sustained by brittle deformation and by the persistence of thermal anomalies associated with U-rich granitic bodies.

  5. Groundwater and surface-water interaction, water quality, and processes affecting loads of dissolved solids, selenium, and uranium in Fountain Creek near Pueblo, Colorado, 2012–2014

    USGS Publications Warehouse

    Arnold, L. Rick; Ortiz, Roderick F.; Brown, Christopher R.; Watts, Kenneth R.

    2016-11-28

    In 2012, the U.S. Geological Survey, in cooperation with the Arkansas River Basin Regional Resource Planning Group, initiated a study of groundwater and surface-water interaction, water quality, and loading of dissolved solids, selenium, and uranium to Fountain Creek near Pueblo, Colorado, to improve understanding of sources and processes affecting loading of these constituents to streams in the Arkansas River Basin. Fourteen monitoring wells were installed in a series of three transects across Fountain Creek near Pueblo, and temporary streamgages were established at each transect to facilitate data collection for the study. Groundwater and surface-water interaction was characterized by using hydrogeologic mapping, groundwater and stream-surface levels, groundwater and stream temperatures, vertical hydraulic-head gradients and ratios of oxygen and hydrogen isotopes in the hyporheic zone, and streamflow mass-balance measurements. Water quality was characterized by collecting periodic samples from groundwater, surface water, and the hyporheic zone for analysis of dissolved solids, selenium, uranium, and other selected constituents and by evaluating the oxidation-reduction condition for each groundwater sample under different hydrologic conditions throughout the study period. Groundwater loads to Fountain Creek and in-stream loads were computed for the study area, and processes affecting loads of dissolved solids, selenium, and uranium were evaluated on the basis of geology, geochemical conditions, land and water use, and evapoconcentration.During the study period, the groundwater-flow system generally contributed flow to Fountain Creek and its hyporheic zone (as a single system) except for the reach between the north and middle transects. However, the direction of flow between the stream, the hyporheic zone, and the near-stream aquifer was variable in response to streamflow and stage. During periods of low streamflow, Fountain Creek generally gained flow from groundwater. However, during periods of high streamflow, the hydraulic gradient between groundwater and the stream temporarily reversed, causing the stream to lose flow to groundwater.Concentrations of dissolved solids, selenium, and uranium in groundwater generally had greater spatial variability than surface water or hyporheic-zone samples, and constituent concentrations in groundwater generally were greater than in surface water. Constituent concentrations in the hyporheic zone typically were similar to or intermediate between concentrations in groundwater and surface water. Concentrations of dissolved solids, selenium, uranium, and other constituents in groundwater samples collected from wells located on the east side of the north monitoring well transect were substantially greater than for other groundwater, surface-water, and hyporheic-zone samples. With one exception, groundwater samples collected from wells on the east side of the north transect exhibited oxic to mixed (oxic-anoxic) conditions, whereas most other groundwater samples exhibited anoxic to suboxic conditions. Concentrations of dissolved solids, selenium, and uranium in surface water generally increased in a downstream direction along Fountain Creek from the north transect to the south transect and exhibited an inverse relation to streamflow with highest concentration occurring during periods of low streamflow and lowest concentrations occurring during periods of high streamflow.Groundwater loads of dissolved solids, selenium, and uranium to Fountain Creek were small because of the small amount of groundwater flowing to the stream under typical low-streamflow conditions. In-stream loads of dissolved solids, selenium, and uranium in Fountain Creek varied by date, primarily in relation to streamflow at each transect and were much larger than computed constituent loads from groundwater. In-stream loads generally decreased with decreases in streamflow and increased as streamflow increased. In-stream loads of dissolved solids and selenium increased between the north and middle transects but generally decreased between the middle and south transects. By contrast, uranium loads generally decreased between the north and middle transects but increased between the middle and south transects. In-stream load differences between transects appear primarily to be related to differences in streamflow. However, because groundwater typically flows to Fountain Creek under low-flow conditions, and groundwater has greater concentrations of dissolved solids, selenium, and uranium than surface water in Fountain Creek, increases in loads between transects likely are affected by inflow of groundwater to the stream, which can account for a substantial proportion of the in-stream load difference between transects. When loads decreased between transects, the primary cause likely was decreased streamflow as a result of losses to groundwater and flow through the hyporheic zone. However, localized groundwater inflow likely attenuated the magnitude by which the in-stream loads decreased.The combination of localized soluble geologic sources and oxic conditions likely is the primary reason for the occurrence of high concentrations of dissolved solids, selenium, and uranium in groundwater on the east side of the north monitoring well transect. To evaluate conditions potentially responsible for differences in water quality and redox conditions, physical characteristics such as depth to water, saturated thickness, screen depth below the water table, screen height above bedrock, and aquifer hydraulic conductivity were compared by using Wilcoxon rank-sum tests. Results indicated no significant difference between depth to water, screen height above bedrock, and hydraulic conductivity for groundwater samples collected from wells on the east side of the north transect and groundwater samples from all other wells. However, saturated thickness and screen depth below the water table both were significantly smaller for groundwater samples collected from wells on the east side of the north transect than for groundwater samples from other wells, indicating that these characteristics might be related to the elevated constituent concentrations found at that location. Similarly, saturated thickness and screen depth below the water table were significantly smaller for groundwater samples under oxic or mixed (oxic-anoxic) conditions than for those under anoxic to suboxic conditions.The greater constituent concentrations at wells on the east side of the north transect also could, in part, be related to groundwater discharge from an unnamed alluvial drainage located directly upgradient from that location. Although the quantity and quality of water discharging from the drainage is not known, the drainage appears to collect water from a residential area located upgradient to the east of the wells, and groundwater could become concentrated in nitrate and other dissolved constituents before flowing through the drainage. High levels of nitrate, whether from anthropogenic or natural geologic sources, could promote more soluble forms of selenium and other constituents by affecting the redox condition of groundwater. Whether oxic conditions at wells on the east side of the north transect are the result of physical characteristics or of groundwater inflow from the alluvial drainage, the oxic conditions appear to cause increased dissolution of minerals from the shallow shale bedrock at that location. Because ratios of hydrogen and oxygen isotopes indicate evaporation likely has not had a substantial effect on groundwater, constituent concentrations at that location likely are not the result of evapoconcentration. 

  6. ELECTROCHEMICAL DECONTAMINATION AND RECOVERY OF URANIUM VALUES

    DOEpatents

    McLaren, J.A.; Goode, J.H.

    1958-05-13

    An electrochemical process is described for separating uranium from fission products. The method comprises subjecting the mass of uranium to anodic dissolution in an electrolytic cell containing aqueous alkali bicarbonate solution as its electrolyte, thereby promoting a settling from the solution of a solid sludge from about the electrodes and separating the resulting electrolyte solution containing the anodically dissolved uranium from the sludge which contains the rare earth fission products.

  7. New Technique for Speciation of Uranium in Sediments Following Acetate-Stimulated Bioremediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-06-22

    Acetate-stimulated bioremediation is a promising new technique for sequestering toxic uranium contamination from groundwater. The speciation of uranium in sediments after such bioremediation attempts remains unknown as a result of low uranium concentration, and is important to analyzing the stability of sequestered uranium. A new technique was developed for investigating the oxidation state and local molecular structure of uranium from field site sediments using X-Ray Absorption Spectroscopy (XAS), and was implemented at the site of a former uranium mill in Rifle, CO. Glass columns filled with bioactive Rifle sediments were deployed in wells in the contaminated Rifle aquifer and amendedmore » with a hexavalent uranium (U(VI)) stock solution to increase uranium concentration while maintaining field conditions. This sediment was harvested and XAS was utilized to analyze the oxidation state and local molecular structure of the uranium in sediment samples. Extended X-Ray Absorption Fine Structure (EXAFS) data was collected and compared to known uranium spectra to determine the local molecular structure of the uranium in the sediment. Fitting was used to determine that the field site sediments did not contain uraninite (UO{sub 2}), indicating that models based on bioreduction using pure bacterial cultures are not accurate for bioremediation in the field. Stability tests on the monomeric tetravalent uranium (U(IV)) produced by bioremediation are needed in order to assess the efficacy of acetate-stimulation bioremediation.« less

  8. On the stability of sub-stoichiometric uranium oxides

    NASA Astrophysics Data System (ADS)

    Winer, K.; Colmenares, C. A.; Smith, R. L.; Wooten, F.

    1986-12-01

    The oxidation of clean, high-purity polycrystalline uranium metal surfaces for low exposures to dry oxygen was studied with AES and XPS in an attempt to substantiate claims for the formation of a stable UO surface phase at ambient temperatures. We found no evidence for such a surface phase and found instead that grossly sub-stoichiometric surface oxides were formed after sequential oxygen saturation and heating.

  9. Aqueous Electrochemical Mechanisms in Actinide Residue Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, David E.; Burns, Carol J.; Smith, Wayne H.

    2000-12-31

    Plutonium and uranium residues (e.g., incinerator ash, combustibles, and sand/slag/crucibles) resulting from the purification and processing of nuclear materials constitute an enormous volume of ''lean'' processing waste and represent a significant fraction of the U. S. Department of Energy's (DOE) legacy waste from fifty years of nuclear weapons production activities. Much of this material is presently in storage at sites throughout the DOE weapons production complex (most notably Rocky Flats, Savannah River and Hanford) awaiting further processing and/or final disposition. The chemical and physical stability of much of this material has been called into question recently by the Defense Nuclearmore » Facility Safety Board (DNFSB) and resulted in the issuance of a mandate by the DNFSB to undertake a program to stabilize these materials [1]. The ultimate disposition for much of these materials is anticipated to be geologic repositories such as the proposed Waste Isolation Pilot Plant in New Mexico. However, in light of the mandate to stabilize existing residues and the probable concomitant increase in the volume of material to be disposed as a result of stabilization (e.g., from repackaging at lower residue densities), the projected storage volume for these wastes within anticipated geologic repositories will likely be exceeded simply to handle existing wastes. Additional processing of some of these residue waste streams to reduce radionuclide activity levels, matrix volume, or both is a potentially important strategy to achieve both stabilization and volume reduction so that the anticipated geologic repositories will provide adequate storage volume. In general, the plutonium and uranium that remains in solid residue materials exists in a very stable chemical form (e.g., as binary oxides), and the options available to remove the actinides are limited. However, there have been some demonstrated successes in this vain using aqueous phase electrochemical methods such as the Catalyzed Electrochemical Plutonium Oxide Dissolution (CEPOD) process pioneered by workers at Pacific Northwest National Laboratory in the mid-1970s [2]. The basis for most of these mediated electrochemical oxidation/reduction (MEO/R) processes is the generation of a dissolved electrochemical catalyst, such as Ag2+, which is capable of oxidizing or reducing solid-phase actinide species or actinide sorbates via 7 heterogeneous electron transfer to oxidation states that have significantly greater solubilities (e.g., PuO2(s) to PuO2 2+ (dissolved)). The solubilized actinide can then be recovered by ion exchange or other mechanisms. These aqueous electrochemical methods for residue treatment have been considered in many of the ''trade studies'' to evaluate options for stabilization of the various categories of residue materials. While some concerns generally arise (e.g., large secondary waste volumes could results since the process stream normally goes th rough anion exchange or precipitation steps to remove the actinide), the real utility and versatility of these methods should not be overlooked. They are low temperature, ambient pressure processes that operate in a non-corrosive environment. In principle, they can be designed to be highly selective for the actinides (i.e., no substrate degradation occurs), they can be utilized for many categories of residue materials with little or no modification in hardware or operating conditions, and they can conceivably be engineered to minimize secondary waste stream volume. However, some fundamental questions remain concerning the mechanisms through which these processes act, and how the processes might be optimized to maximize efficiency while minimizing secondary waste. In addition, given the success achieved to date on the limited set of residues, further research is merited to extend the range of applicability of these electrochemical methods to other residue and waste streams. The principal goal of the work described here is to develop a fundamental understanding of the heterogeneous electron transfer thermodynamics and kinetics that lie at the heart of the MEO/R processes for actinide solids and actinide species entrained in or surface-bound to residue substrates. This has been accomplished as described in detail below through spectroscopic characterization of actinide-bearing substrates and electrochemical investigations of electron transfer reactions between uranium- and plutonium- (or surrogates) bearing solids (dispersed actinide solid phases and actinides sorbed to inorganic and organic colloids) and polarizable electrode materials. In general, the actinide solids or substrate-supported species were chosen to represent relevant residue materials (e.g., incinerator ash, sand/slag/crucible, and combustibles).« less

  10. Physicochemical characterization of Capstone depleted uranium aerosols III: morphologic and chemical oxide analyses.

    PubMed

    Krupka, Kenneth M; Parkhurst, Mary Ann; Gold, Kenneth; Arey, Bruce W; Jenson, Evan D; Guilmette, Raymond A

    2009-03-01

    The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using x-ray diffraction (XRD), and particle morphologies were examined using scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). The oxidation state of a DU aerosol is important as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles were spherical, occasionally with dendritic or lobed surface structures. Others appear to have fractures that perhaps resulted from abrasion and comminution, or shear bands that developed from plastic deformation of the DU material. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small bits of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of Health Physics to interpret the results of lung solubility studies and in selecting input parameters for dose assessments.

  11. Physicochemical Characterization of Capstone Depleted Uranium Aerosols III: Morphologic and Chemical Oxide Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupka, Kenneth M.; Parkhurst, MaryAnn; Gold, Kenneth

    2009-03-01

    The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using X-ray diffraction (XRD) and particle morphologies using scanning electron microscopy/energy dispersive spectrometry (SEM/EDS). The oxidation state of a DU aerosol is importantmore » as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles appear to have been fractured (perhaps as a result of abrasion and comminution); others were spherical, occasionally with dendritic or lobed surface structures. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small chunks of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of The Journal of Health Physics to interpret the results of lung solubility studies and in selecting input parameters for dose assessments.« less

  12. U.sup.+4 generation in HTER

    DOEpatents

    Miller, William E [Naperville, IL; Gay, Eddie C [Park Forest, IL; Tomczuk, Zygmunt [Homer Glen, IL

    2006-03-14

    A improved device and process for recycling spent nuclear fuels, in particular uranium metal, that facilitates the refinement and recovery of uranium metal from spent metallic nuclear fuels. The electrorefiner device comprises two anodes in predetermined spatial relation to a cathode. The anodese have separate current and voltage controls. A much higher voltage than normal for the electrorefining process is applied to the second anode, thereby facilitating oxidization of uranium (III), U.sup.+, to uranium (IV), U.sup.+4. The current path from the second anode to the cathode is physically shorter than the similar current path from the second anode to the spent nuclear fuel contained in a first anode shaped as a basket. The resulting U.sup.+4 oxidizes and solubilizes rough uranium deposited on the surface of the cathode. A softer uranium metal surface is left on the cathode and is more readily removed by a scraper.

  13. Isolation and characterization of a uranium(VI)-nitride triple bond

    NASA Astrophysics Data System (ADS)

    King, David M.; Tuna, Floriana; McInnes, Eric J. L.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Liddle, Stephen T.

    2013-06-01

    The nature and extent of covalency in uranium bonding is still unclear compared with that of transition metals, and there is great interest in studying uranium-ligand multiple bonds. Although U=O and U=NR double bonds (where R is an alkyl group) are well-known analogues to transition-metal oxo and imido complexes, the uranium(VI)-nitride triple bond has long remained a synthetic target in actinide chemistry. Here, we report the preparation of a uranium(VI)-nitride triple bond. We highlight the importance of (1) ancillary ligand design, (2) employing mild redox reactions instead of harsh photochemical methods that decompose transiently formed uranium(VI) nitrides, (3) an electrostatically stabilizing sodium ion during nitride installation, (4) selecting the right sodium sequestering reagent, (5) inner versus outer sphere oxidation and (6) stability with respect to the uranium oxidation state. Computational analyses suggest covalent contributions to U≡N triple bonds that are surprisingly comparable to those of their group 6 transition-metal nitride counterparts.

  14. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part II: responses in the leaves and general conclusions.

    PubMed

    Vanhoudt, Nathalie; Cuypers, Ann; Horemans, Nele; Remans, Tony; Opdenakker, Kelly; Smeets, Karen; Bello, Daniel Martinez; Havaux, Michel; Wannijn, Jean; Van Hees, May; Vangronsveld, Jaco; Vandenhove, Hildegarde

    2011-06-01

    The cellular redox balance seems an important modulator under heavy metal stress. While for other heavy metals these processes are well studied, oxidative stress related responses are also known to be triggered under uranium stress but information remains limited. This study aimed to further unravel the mechanisms by which plants respond to uranium stress. Seventeen-day-old Arabidopsis thaliana seedlings, grown on a modified Hoagland solution under controlled conditions, were exposed to 0, 0.1, 1, 10 and 100 μM uranium for 1, 3 and 7 days. While in Part I of this study oxidative stress related responses in the roots were discussed, this second Part II discusses oxidative stress related responses in the leaves and general conclusions drawn from the results of the roots and the leaves will be presented. As several responses were already visible following 1 day exposure, when uranium concentrations in the leaves were negligible, a root-to-shoot signaling system was suggested in which plastids could be important sensing sites. While lipid peroxidation, based on the amount of thiobarbituric acid reactive compounds, was observed after exposure to 100 μM uranium, affecting membrane structure and function, a transient concentration dependent response pattern was visible for lipoxygenase initiated lipid peroxidation. This transient character of uranium stress responses in leaves was emphasized by results of lipoxygenase (LOX2) and antioxidative enzyme transcript levels, enzyme capacities and glutathione concentrations both in time as with concentration. The ascorbate redox balance seemed an important modulator of uranium stress responses in the leaves as in addition to the previous transient responses, the total ascorbate concentration and ascorbate/dehydroascorbate redox balance increased in a concentration and time dependent manner. This could represent either a slow transient response or a stable increase with regard to plant acclimation to uranium stress. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry.

    PubMed

    Herlory, Olivier; Bonzom, Jean-Marc; Gilbin, Rodolphe

    2013-09-15

    Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F0/Fv. Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency ( [Formula: see text] , EC50=303 ± 64 μg UL(-1) after 5h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC50=142 ± 98 μg UL(-1) after 5h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown that parameters which stemmed from fluorescence induction kinetics are valuable indicators for evaluating the impact of uranium on PSII in green algae. PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response to uranium in microalgae. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. A model of early formation of uranium molecular oxides in laser-ablated plasmas

    NASA Astrophysics Data System (ADS)

    Finko, Mikhail S.; Curreli, Davide; Weisz, David G.; Crowhurst, Jonathan C.; Rose, Timothy P.; Koroglu, Batikan; Radousky, Harry B.; Armstrong, Michael R.

    2017-12-01

    In this work, we present a newly constructed U x O y reaction mechanism that consists of 30 reaction channels (21 of which are reversible channels) for 11 uranium molecular species (including ions). Both the selection of reaction channels and calculation of corresponding rate coefficients is accomplished via a comprehensive literature review and application of basic reaction rate theory. The reaction mechanism is supplemented by a detailed description of oxygen plasma chemistry (19 species and 142 reaction channels) and is used to model an atmospheric laser ablated uranium plume via a 0D (global) model. The global model is used to analyze the evolution of key uranium molecular species predicted by the reaction mechanism, and the initial stage of formation of uranium oxide species.

  17. U redox fronts and kaolinisation in basement-hosted unconformity-related U ores of the Athabasca Basin (Canada): late U remobilisation by meteoric fluids

    NASA Astrophysics Data System (ADS)

    Mercadier, Julien; Cuney, Michel; Cathelineau, Michel; Lacorde, Mathieu

    2011-02-01

    Proterozoic basement-hosted unconformity-related uranium deposits of the Athabasca Basin (Saskatchewan, Canada) were affected by significant uranium redistribution along oxidation-reduction redox fronts related to cold and late meteoric fluid infiltration. These redox fronts exhibit the same mineralogical and geochemical features as the well-studied uranium roll-front deposits in siliclastic rocks. The primary hydrothermal uranium mineralisation (1.6-1.3 Ga) of basement-hosted deposits is strongly reworked to new disseminated ores comprising three distinctly coloured zones: a white-green zone corresponding to the previous clay-rich alteration halo contemporaneous with hydrothermal ores, a uranium front corresponding to the uranium deposition zone of the redox front (brownish zone, rich in goethite) and a hematite-rich red zone marking the front progression. The three zones directly reflect the mineralogical zonation related to uranium oxides (pitchblende), sulphides, iron minerals (hematite and goethite) and alumino-phosphate-sulphate (APS) minerals. The zoning can be explained by processes of dissolution-precipitation along a redox interface and was produced by the infiltration of cold (<50°C) meteoric fluids to the hydrothermally altered areas. U, Fe, Ca, Pb, S, REE, V, Y, W, Mo and Se were the main mobile elements in this process, and their distribution within the three zones was, for most of them, directly dependent on their redox potential. The elements concentrated in the redox fronts were sourced by the alteration of previously crystallised hydrothermal minerals, such as uranium oxides and light rare earth element (LREE)-rich APS. The uranium oxides from the redox front are characterised by LREE-enriched patterns, which differ from those of unconformity-related ores and clearly demonstrate their distinct conditions of formation. Uranium redox front formation is thought to be linked to fluid circulation episodes initiated during the 400-300 Ma period during uplift and erosion of the Athabasca Basin when it was near the Equator and to have been still active during the last million years. A major kaolinisation event was caused by changes in the fluid circulation regime, reworking the primary uranium redox fronts and causing the redistribution of elements originally concentrated in the uranium-enriched meteoric-related redox fronts.

  18. Carbothermic Synthesis of 820 m UN Kernels: Literature Review, Thermodynamics, Analysis, and Related Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindemer, Terrence; Voit, Stewart L; Silva, Chinthaka M

    2014-01-01

    The U.S. Department of Energy is considering a new nuclear fuel that would be less susceptible to ruptures during a loss-of-coolant accident. The fuel would consist of tristructural isotropic coated particles with large, dense uranium nitride (UN) kernels. This effort explores many factors involved in using gel-derived uranium oxide-carbon microspheres to make large UN kernels. Analysis of recent studies with sufficient experimental details is provided. Extensive thermodynamic calculations are used to predict carbon monoxide and other pressures for several different reactions that may be involved in conversion of uranium oxides and carbides to UN. Experimentally, the method for making themore » gel-derived microspheres is described. These were used in a microbalance with an attached mass spectrometer to determine details of carbothermic conversion in argon, nitrogen, or vacuum. A quantitative model is derived from experiments for vacuum conversion to an uranium oxide-carbide kernel.« less

  19. Ultrasound enhanced process for extracting metal species in supercritical fluids

    DOEpatents

    Wai, Chien M.; Enokida, Youichi

    2006-10-31

    Improved methods for the extraction or dissolution of metals, metalloids or their oxides, especially lanthanides, actinides, uranium or their oxides, into supercritical solvents containing an extractant are disclosed. The disclosed embodiments specifically include enhancing the extraction or dissolution efficiency with ultrasound. The present methods allow the direct, efficient dissolution of UO2 or other uranium oxides without generating any waste stream or by-products.

  20. Exploratory Solid-State Synthesis of Uranium Chalcogenides and Mixed Anion Uranium Chalcogenides

    NASA Astrophysics Data System (ADS)

    Ward, Matthew David

    Several uranium chalcogenides and mixed anion uranium chalcogenides have been synthesized by solid-state synthetic methods. Structural determinations were carried out via single-crystal X-ray diffraction. Some of these compounds have been further characterized by magnetic measurements, optical properties measurements, Raman spectroscopy, resistivity measurements, XANES and XPS. Eight compounds of the composition MU8Q17 were synthesized and characterized by single-crystal X-ray diffraction. All of these compounds crystallize in the CrU8S17 structure type. XANES measurements indicate that ScU8S17 contains Sc3+ and must be charge balanced with some amount of U 3+. Two compounds of the composition ATiU3Te9 crystallize as black rectangular plates. From single-crystal magnetic measurements, CsTiU 3Te9 is consistent with antiferromagnetic coupling between magnetic U atoms. The uranium chalcogenide compounds NiUS3 and Cr4US 8 were synthesized from reaction of the elements in various fluxes. NiUS3 crystallizes in the GdFeO3 structure type. Cr 4US8 crystallizes in the orthorhombic space group D - Pnma and its structure is related to that of Li4UF 8. The compounds Rh2U6S15, Cs 2Ti2U6Se15, and Cs2Cr 2U6Se15 crystallize as black prisms in the cubic space group O-Im3m. Magnetic measurements on Cs 2Cr2U6Se15 give a value for the Weiss temperature, θWeiss, of 57.59 K, indicative of ferromagnetic coupling. Black plates of CsScU(Se2)Se3 were synthesized from the reaction of the elements in a CsCl flux. CsScU(Se2)Se 3 crystallizes in the orthorhombic space group D- Cmcm . Magnetic susceptibility measurements on CsScU(Se2)Se 3 indicate three regions of magnetic response. The uranium double salt Cs5[U2(μ-S 2)2Cl8]I crystallizes as red plates. Cs 5[U2(μ-S2)2Cl 8]I displays optical anisotropy with band gap energies of 1.99 eV and 2.08 eV along the [001] and [100] polarizations. The uranium oxychalcogenides U7O2Se12 and Na2Ba2(UO2)S4 were synthesized by intentional oxygen contamination. The structure of U7O 2Se12 is related to the previously reported U7Q 12. Na2Ba2(UO2)S4 contains isolated uranyl polyhedra in which each uranium atom may be assigned an oxidation state of +6. The four uranium(IV) chlorophosphates, UCl4(POCl3), [U2Cl9][PCl4], UCl3(PO2Cl 2), and U2Cl8(POCl3) were synthesized in an effort to synthesize new novel uranyl sulfides. All are unstable, but UCl4(POCl3) is the thermodynamically favorable phase.

  1. On the use of thermal NF3 as the fluorination and oxidation agent in treatment of used nuclear fuels

    NASA Astrophysics Data System (ADS)

    Scheele, Randall; McNamara, Bruce; Casella, Andrew M.; Kozelisky, Anne

    2012-05-01

    This paper presents results of our investigation on the use of nitrogen trifluoride as a fluorination or fluorination/oxidation agent for separating valuable constituents from used nuclear fuels by exploiting the different volatilities of the constituent fission product and actinide fluorides. Our thermodynamic calculations show that nitrogen trifluoride has the potential to produce volatile fission product and actinide fluorides from oxides and metals that can form volatile fluorides. Simultaneous thermogravimetric and differential thermal analyses show that the oxides of lanthanum, cerium, rhodium, and plutonium are fluorinated but do not form volatile fluorides when treated with nitrogen trifluoride at temperatures up to 550 °C. However, depending on temperature, volatile fluorides or oxyfluorides can form from nitrogen trifluoride treatment of the oxides of niobium, molybdenum, ruthenium, tellurium, uranium, and neptunium. Thermoanalytical studies demonstrate near-quantitative separation of uranium from plutonium in a mixed 80% uranium and 20% plutonium oxide. Our studies of neat oxides and metals suggest that the reactivity of nitrogen trifluoride may be adjusted by temperature to selectively separate the major volatile fuel constituent uranium from minor volatile constituents, such as Mo, Tc, Ru and from the non-volatile fuel constituents based on differences in their reaction temperatures and kinetic behaviors. This reactivity is novel with respect to that reported for other fluorinating reagents F2, BrF5, ClF3.

  2. Hydrogen sulfide (H2S) attenuates uranium-induced acute nephrotoxicity through oxidative stress and inflammatory response via Nrf2-NF-κB pathways.

    PubMed

    Zheng, Jifang; Zhao, Tingting; Yuan, Yan; Hu, Nan; Tang, Xiaoqing

    2015-12-05

    As an endogenous gaseous mediator, H2S exerts anti-oxidative, anti-inflammatory and cytoprotective effects in kidneys. This study was designed to investigate the protective effect of H2S against uranium-induced nephrotoxicity in adult SD male rats after in vivo effect of uranium on endogenous H2S formation was explored in kidneys. The levels of endogenous H2S and H2S-producing enzymes (CBS and CSE) were measured in renal homogenates from rats intoxicated by an intraperitoneally (i.p.) injection of uranyl acetate at a single dose of 2.5, 5 or 10 mg/kg. In rats injected i.p. with uranyl acetate (5 mg/kg) or NaHS (an H2S donor, 28 or 56 μmol/kg) alone or in combination, we determined biochemical parameters and histopathological alteration to assess kidney function, examined oxidative stress markers, and investigated Nrf2 and NF-κB pathways in kidney homogenates. The results suggest that uranium intoxication in rats decreased endogenous H2S generation as well as CBS and CSE protein expression. NaHS administration in uranium-intoxicated rats ameliorated the renal biochemical indices and histopathological effects, lowered MDA accumulation, and restored GSH level and anti-oxidative enzymes activities like SOD, CAT, GPx and GST. NaHS treatment in uranium-intoxicated rats activated uranium-inhibited protein expression and nuclear translocation of transcription factor Nrf2, which increased protein expression of downstream target-Nrf2 genes HO-1, NQO-1, GCLC, and TXNRD-1. NaHS administration in uranium-intoxicated rats inhibited uranium-induced nuclear translocation and phosphorylation of transcription factor κB/p65, which decreased protein expression of target-p65 inflammatory genes TNF-α, iNOS, and COX-2. Taken together, these data implicate that H2S can afford protection to rat kidneys against uranium-induced adverse effects through induction of antioxidant defense by activating Nrf2 pathway and reduction of inflammatory response by suppressing NF-κB pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. On the Nature of the Cherdyntsev-Chalov Effect

    NASA Astrophysics Data System (ADS)

    Timashev, S. F.

    2018-06-01

    It is shown that the Cherdyntsev-Chalov effect, usually presented as the separation of even isotopes of uranium upon their transition from the solid to the liquid phase, can include initiated acceleration of the radioactive decay of uranium-238 nuclei during the formation of cracks in geologically (seismic and volcanically) active zones of the Earth's crust. The fissuring of the solid-phase medium leads to an increase in mechanical tensile stress and the emergence of strong local electric fields, resulting in the injection of chemical-scale high-energy electrons into the aqueous phase of the cracks. Under these conditions, the e - catalytic decay of uranium-238 nucleus studied earlier can occur during the formation of metastable protactinium-238 nuclei with locally distorted nucleon structure, which subequently undergo β-decay with the formation of thorium-234 and helium-4 nuclei as products of the fission of the initial uranium-238 nucleus with a characteristic period of several years. The observed increased activity of uranium-234 nuclei that form during the subsequent β-decay of thorium and then protactinium is associated with the initiated fission of uranium-238. The possibility is discussed of developing thermal power by using existing wastes from uranium production that contain uranium-238 to activate this isotope through the mechanochemical processing of these wastes in aqueous media with the formation of 91 238 Pa isu , the half-life of which is several years.

  4. Oxidation of naturally reduced uranium in aquifer sediments by dissolved oxygen and its potential significance to uranium plume persistence

    NASA Astrophysics Data System (ADS)

    Davis, J. A.; Smith, R. L.; Bohlke, J. K.; Jemison, N.; Xiang, H.; Repert, D. A.; Yuan, X.; Williams, K. H.

    2015-12-01

    The occurrence of naturally reduced zones is common in alluvial aquifers in the western U.S.A. due to the burial of woody debris in flood plains. Such reduced zones are usually heterogeneously dispersed in these aquifers and characterized by high concentrations of organic carbon, reduced mineral phases, and reduced forms of metals, including uranium(IV). The persistence of high concentrations of dissolved uranium(VI) at uranium-contaminated aquifers on the Colorado Plateau has been attributed to slow oxidation of insoluble uranium(IV) mineral phases found in association with these reducing zones, although there is little understanding of the relative importance of various potential oxidants. Four field experiments were conducted within an alluvial aquifer adjacent to the Colorado River near Rifle, CO, wherein groundwater associated with the naturally reduced zones was pumped into a gas-impermeable tank, mixed with a conservative tracer (Br-), bubbled with a gas phase composed of 97% O2 and 3% CO2, and then returned to the subsurface in the same well from which it was withdrawn. Within minutes of re-injection of the oxygenated groundwater, dissolved uranium(VI) concentrations increased from less than 1 μM to greater than 2.5 μM, demonstrating that oxygen can be an important oxidant for uranium in such field systems if supplied to the naturally reduced zones. Dissolved Fe(II) concentrations decreased to the detection limit, but increases in sulfate could not be detected due to high background concentrations. Changes in nitrogen species concentrations were variable. The results contrast with other laboratory and field results in which oxygen was introduced to systems containing high concentrations of mackinawite (FeS), rather than the more crystalline iron sulfides found in aged, naturally reduced zones. The flux of oxygen to the naturally reduced zones in the alluvial aquifers occurs mainly through interactions between groundwater and gas phases at the water table. Seasonal variations of the water table at the Rifle, CO site may play an important role in introducing oxygen into the system. Although oxygen was introduced directly to the naturally reduced zones in these experiments, delivery of oxidants to the system may also be controlled by other oxidative pathways in which oxygen plays an indirect role.

  5. SEPARATION OF URANIUM, PLUTONIUM, AND FISSION PRODUCTS

    DOEpatents

    Spence, R.; Lister, M.W.

    1958-12-16

    Uranium and plutonium can be separated from neutron-lrradiated uranium by a process consisting of dissolvlng the lrradiated material in nitric acid, saturating the solution with a nitrate salt such as ammonium nitrate, rendering the solution substantially neutral with a base such as ammonia, adding a reducing agent such as hydroxylamine to change plutonium to the trivalent state, treating the solution with a substantially water immiscible organic solvent such as dibutoxy diethylether to selectively extract the uranium, maklng the residual aqueous solutlon acid with nitric acid, adding an oxidizing agent such as ammonlum bromate to oxidize the plutonium to the hexavalent state, and selectlvely extracting the plutonium by means of an immlscible solvent, such as dibutoxy dlethyletber.

  6. Solid-phase data from cores at the proposed Dewey Burdock uranium in-situ recovery mine, near Edgemont, South Dakota

    USGS Publications Warehouse

    Johnson, Raymond H.; Diehl, Sharon F.; Benzel, William M.

    2013-01-01

    This report releases solid-phase data from cores at the proposed Dewey Burdock uranium in-situ recovery site near Edgemont, South Dakota. These cores were collected by Powertech Uranium Corporation, and material not used for their analyses were given to the U.S. Geological Survey for additional sampling and analyses. These additional analyses included total carbon and sulfur, whole rock acid digestion for major and trace elements, 234U/238U activity ratios, X-ray diffraction, thin sections, scanning electron microscopy analyses, and cathodoluminescence. This report provides the methods and data results from these analyses along with a short summary of observations.

  7. A model of early formation of uranium molecular oxides in laser-ablated plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finko, Mikhail S.; Curreli, Davide; Weisz, David G.

    Here, in this work, we present a newly constructed U xO y reaction mechanism that consists of 30 reaction channels (21 of which are reversible channels) for 11 uranium molecular species (including ions). Both the selection of reaction channels and calculation of corresponding rate coefficients is accomplished via a comprehensive literature review and application of basic reaction rate theory. The reaction mechanism is supplemented by a detailed description of oxygen plasma chemistry (19 species and 142 reaction channels) and is used to model an atmospheric laser ablated uranium plume via a 0D (global) model. Finally, the global model is usedmore » to analyze the evolution of key uranium molecular species predicted by the reaction mechanism, and the initial stage of formation of uranium oxide species.« less

  8. A model of early formation of uranium molecular oxides in laser-ablated plasmas

    DOE PAGES

    Finko, Mikhail S.; Curreli, Davide; Weisz, David G.; ...

    2017-10-12

    Here, in this work, we present a newly constructed U xO y reaction mechanism that consists of 30 reaction channels (21 of which are reversible channels) for 11 uranium molecular species (including ions). Both the selection of reaction channels and calculation of corresponding rate coefficients is accomplished via a comprehensive literature review and application of basic reaction rate theory. The reaction mechanism is supplemented by a detailed description of oxygen plasma chemistry (19 species and 142 reaction channels) and is used to model an atmospheric laser ablated uranium plume via a 0D (global) model. Finally, the global model is usedmore » to analyze the evolution of key uranium molecular species predicted by the reaction mechanism, and the initial stage of formation of uranium oxide species.« less

  9. Quantum oscillations of nitrogen atoms in uranium nitride

    NASA Astrophysics Data System (ADS)

    Aczel, A. A.; Granroth, G. E.; MacDougall, G. J.; Buyers, W. J. L.; Abernathy, D. L.; Samolyuk, G. D.; Stocks, G. M.; Nagler, S. E.

    2012-10-01

    The vibrational excitations of crystalline solids corresponding to acoustic or optic one-phonon modes appear as sharp features in measurements such as neutron spectroscopy. In contrast, many-phonon excitations generally produce a complicated, weak and featureless response. Here we present time-of-flight neutron scattering measurements for the binary solid uranium nitride, showing well-defined, equally spaced, high-energy vibrational modes in addition to the usual phonons. The spectrum is that of a single atom, isotropic quantum harmonic oscillator and characterizes independent motions of light nitrogen atoms, each found in an octahedral cage of heavy uranium atoms. This is an unexpected and beautiful experimental realization of one of the fundamental, exactly solvable problems in quantum mechanics. There are also practical implications, as the oscillator modes must be accounted for in the design of generation IV nuclear reactors that plan to use uranium nitride as a fuel.

  10. Quantum oscillations of nitrogen atoms in uranium nitride.

    PubMed

    Aczel, A A; Granroth, G E; Macdougall, G J; Buyers, W J L; Abernathy, D L; Samolyuk, G D; Stocks, G M; Nagler, S E

    2012-01-01

    The vibrational excitations of crystalline solids corresponding to acoustic or optic one-phonon modes appear as sharp features in measurements such as neutron spectroscopy. In contrast, many-phonon excitations generally produce a complicated, weak and featureless response. Here we present time-of-flight neutron scattering measurements for the binary solid uranium nitride, showing well-defined, equally spaced, high-energy vibrational modes in addition to the usual phonons. The spectrum is that of a single atom, isotropic quantum harmonic oscillator and characterizes independent motions of light nitrogen atoms, each found in an octahedral cage of heavy uranium atoms. This is an unexpected and beautiful experimental realization of one of the fundamental, exactly solvable problems in quantum mechanics. There are also practical implications, as the oscillator modes must be accounted for in the design of generation IV nuclear reactors that plan to use uranium nitride as a fuel.

  11. METAL COATED ARTICLES AND METHOD OF MAKING

    DOEpatents

    Eubank, L.D.

    1958-08-26

    A method for manufacturing a solid metallic uranium body having an integral multiple layer protective coating, comprising an inner uranium-aluminum alloy firmly bonded to the metallic uranium is presented. A third layer of silver-zinc alloy is bonded to the zinc-aluiminum layer and finally a fourth layer of lead-silver alloy is firmly bonded to the silver-zinc layer.

  12. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part I: responses in the roots.

    PubMed

    Vanhoudt, Nathalie; Vandenhove, Hildegarde; Horemans, Nele; Remans, Tony; Opdenakker, Kelly; Smeets, Karen; Bello, Daniel Martinez; Wannijn, Jean; Van Hees, May; Vangronsveld, Jaco; Cuypers, Ann

    2011-06-01

    When aiming to evaluate the environmental impact of uranium contamination, it is important to unravel the mechanisms by which plants respond to uranium stress. As oxidative stress seems an important modulator under other heavy metal stress, this study aimed to investigate oxidative stress related responses in Arabidopsis thaliana exposed to uranium concentrations ranging from 0.1 to 100 μM for 1, 3 and 7 days. Besides analyzing relevant reactive oxygen species-producing and -scavenging enzymes at protein and transcriptional level, the importance of the ascorbate-glutathione cycle under uranium stress was investigated. These results are reported separately for roots and leaves in two papers: Part I dealing with responses in the roots and Part II unraveling responses in the leaves and presenting general conclusions. Results of Part I indicate that oxidative stress related responses in the roots were only triggered following exposure to the highest uranium concentration of 100 μM. A fast oxidative burst was suggested based on the observed enhancement of lipoxygenase (LOX1) and respiratory burst oxydase homolog (RBOHD) transcript levels already after 1 day. The first line of defense was attributed to superoxide dismutase (SOD), also triggered from the first day. The enhanced SOD-capacity observed at protein level corresponded with an enhanced expression of iron SOD (FSD1) located in the plastids. For the detoxification of H(2)O(2), an early increase in catalase (CAT1) transcript levels was observed while peroxidase capacities were enhanced at the later stage of 3 days. Although the ascorbate peroxidase capacity and gene expression (APX1) increased, the ascorbate/dehydroascorbate redox balance was completely disrupted and shifted toward the oxidized form. This disrupted balance could not be inverted by the glutathione part of the cycle although the glutathione redox balance could be maintained. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. PROCESS OF DISSOLVING ZIRCONIUM ALLOYS

    DOEpatents

    Shor, R.S.; Vogler, S.

    1958-01-21

    A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.

  14. Uranium(III)-carbon multiple bonding supported by arene δ-bonding in mixed-valence hexauranium nanometre-scale rings.

    PubMed

    Wooles, Ashley J; Mills, David P; Tuna, Floriana; McInnes, Eric J L; Law, Gareth T W; Fuller, Adam J; Kremer, Felipe; Ridgway, Mark; Lewis, William; Gagliardi, Laura; Vlaisavljevich, Bess; Liddle, Stephen T

    2018-05-29

    Despite the fact that non-aqueous uranium chemistry is over 60 years old, most polarised-covalent uranium-element multiple bonds involve formal uranium oxidation states IV, V, and VI. The paucity of uranium(III) congeners is because, in common with metal-ligand multiple bonding generally, such linkages involve strongly donating, charge-loaded ligands that bind best to electron-poor metals and inherently promote disproportionation of uranium(III). Here, we report the synthesis of hexauranium-methanediide nanometre-scale rings. Combined experimental and computational studies suggest overall the presence of formal uranium(III) and (IV) ions, though electron delocalisation in this Kramers system cannot be definitively ruled out, and the resulting polarised-covalent U = C bonds are supported by iodide and δ-bonded arene bridges. The arenes provide reservoirs that accommodate charge, thus avoiding inter-electronic repulsion that would destabilise these low oxidation state metal-ligand multiple bonds. Using arenes as electronic buffers could constitute a general synthetic strategy by which to stabilise otherwise inherently unstable metal-ligand linkages.

  15. Depleted uranium dioxide melting in cold crucible melter and production of granules from the melt for use in casks for spent nuclear fuel and radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotovchikov, V.T.; Seredenko, V.A.; Shatalov, V.V.

    2007-07-01

    This paper describes the results of a joint research program between the Russian Research Institute of Chemical Technology and Oak Ridge National Laboratory in the United States to develop new radiation shielding materials for use in the construction of casks for spent nuclear fuel (SNF) and radioactive wastes. Research and development is underway to develop SNF storage, transport, and disposal casks using shielding made with two new depleted uranium dioxide (DUO{sub 2}) materials: a DUO{sub 2}-steel cermet, and, DUCRETE with DUAGG (DUO{sub 2} aggregate). Melting the DUO{sub 2} and allowing it to freeze will produce a near 100% theoretical densitymore » product and assures that the product produces no volatile materials upon subsequent heating. Induction cold-crucible melters (ICCM) are being developed for this specific application. An ICCM is, potentially, a high throughput low-cost process. Schematics of a pilot facility were developed for the production of molten DUO{sub 2} from DU{sub 3}O{sub 8} to produce granules <1 mm in diameter in a continuous mode of operation. Thermodynamic analysis was conducted for uranium-oxygen system in the temperature range from 300 to 4000 K in various gas mediums. Temperature limits of stability for various uranium oxides were determined. Experiments on melting DUO{sub 2} were carried out in a high frequency ICCM in a cold crucible with a 120 mm in diameter. The microstructure of molten DUO{sub 2} was studied and lattice parameters were determined. It was experimentally proved, and validated by X-ray analysis, that an opportunity exists to produce molten DUO{sub 2} from mixed oxides (primarily DU{sub 3}O{sub 8}) by reduction melting in ICCM. This will allow using DU{sub 3}O{sub 8} directly to make DUO{sub 2}-a separate unit operation to produce UO{sub 2} feed material is not needed. Experiments were conducted concerning the addition of alloying components, gadolinium et al. oxides, into the DUO{sub 2} melt while in the crucible. These additives improve neutron and gamma radiation shielding and operation properties of the final solids. Cermet samples of 50 wt % DUO{sub 2} were produced. (authors)« less

  16. Thermodynamic calculations of oxygen self-diffusion in mixed-oxide nuclear fuels

    DOE PAGES

    Parfitt, David C.; Cooper, Michael William; Rushton, Michael J.D.; ...

    2016-07-29

    Mixed-oxide fuels containing uranium with thorium and/or plutonium may play an important part in future nuclear fuel cycles. There are, however, significantly less data available for these materials than conventional uranium dioxide fuel. In the present study, we employ molecular dynamics calculations to simulate the elastic properties and thermal expansivity of a range of mixed oxide compositions. These are then used to support equations of state and oxygen self-diffusion models to provide a self-consistent prediction of the behaviour of these mixed oxide fuels at arbitrary compositions.

  17. METHOD OF SEPARATING URANIUM FROM ALLOYS

    DOEpatents

    Chiotti, P.; Shoemaker, H.E.

    1960-06-28

    Uranium can be recovered from metallic uraniumthorium mixtures containing uranium in comparatively small amounts. The method of recovery comprises adding a quantity of magnesium to a mass to obtain a content of from 48 to 85% by weight; melting and forming a magnesium-thorium alloy at a temperature of between 585 and 800 deg C; agitating the mixture, allowing the mixture to settle whereby two phases, a thorium-containing magnesium-rich liquid phase and a solid uranium-rich phase, are formed; and separating the two phases.

  18. Assessment of nonpoint source chemical loading potential to watersheds containing uranium waste dumps associated with uranium exploration and mining, San Rafael Swell, Utah

    USGS Publications Warehouse

    Freeman, Michael L.; Naftz, David L.; Snyder, Terry; Johnson, Greg

    2008-01-01

    During July and August of 2006, 117 solid-phase samples were collected from abandoned uranium waste dumps, geologic background sites, and adjacent streambeds in the San Rafael Swell, in southeastern Utah. The objective of this sampling program was to assess the nonpoint source chemical loading potential to ephemeral and perennial watersheds from uranium waste dumps on Bureau of Land Management property. Uranium waste dump samples were collected using solid-phase sampling protocols. After collection, solid-phase samples were homogenized and extracted in the laboratory using a field leaching procedure. Filtered (0.45 micron) water samples were obtained from the field leaching procedure and were analyzed for Ag, As, Ba, Be, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, U, V, and Zn at the Inductively Coupled Plasma-Mass Spectrometry Metals Analysis Laboratory at the University of Utah, Salt Lake City, Utah and for Hg at the U.S. Geological Survey National Water Quality Laboratory, Denver, Colorado. For the initial ranking of chemical loading potential of suspect uranium waste dumps, leachate analyses were compared with existing aquatic life and drinking-water-quality standards and the ratio of samples that exceeded standards to the total number of samples was determined for each element having a water-quality standard for aquatic life and drinking-water. Approximately 56 percent (48/85) of the leachate samples extracted from uranium waste dumps had one or more chemical constituents that exceeded aquatic life and drinking-water-quality standards. Most of the uranium waste dump sites with elevated trace-element concentrations in leachates were along Reds Canyon Road between Tomsich Butte and Family Butte. Twelve of the uranium waste dump sites with elevated trace-element concentrations in leachates contained three or more constituents that exceeded drinking-water-quality standards. Eighteen of the uranium waste dump sites had three or more constituents that exceeded trace-element concentrations for aquatic life water-quality standards. The proximity of the uranium waste dumps in the Tomsich Butte area near Muddy Creek, coupled with the elevated concentration of trace elements, increases the offsite impact potential to water resources. Future assessment and remediation priority of these areas may be done by using GIS-based risk-mapping techniques, such as Sensitive Catchment Integrated Mapping and Analysis Project.

  19. Method for the recovery of uranium values from uranium tetrafluoride

    DOEpatents

    Kreuzmann, Alvin B.

    1983-01-01

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  20. Method for the recovery of uranium values from uranium tetrafluoride

    DOEpatents

    Kreuzmann, A.B.

    1982-10-27

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  1. Uranium mobility and accumulation along the Rio Paguate, Jackpile Mine in Laguna Pueblo, NM.

    PubMed

    Blake, Johanna M; De Vore, Cherie L; Avasarala, Sumant; Ali, Abdul-Mehdi; Roldan, Claudia; Bowers, Fenton; Spilde, Michael N; Artyushkova, Kateryna; Kirk, Matthew F; Peterson, Eric; Rodriguez-Freire, Lucia; Cerrato, José M

    2017-04-19

    The mobility and accumulation of uranium (U) along the Rio Paguate, adjacent to the Jackpile Mine, in Laguna Pueblo, New Mexico was investigated using aqueous chemistry, electron microprobe, X-ray diffraction and spectroscopy analyses. Given that it is not common to identify elevated concentrations of U in surface water sources, the Rio Paguate is a unique site that concerns the Laguna Pueblo community. This study aims to better understand the solid chemistry of abandoned mine waste sediments from the Jackpile Mine and identify key hydrogeological and geochemical processes that affect the fate of U along the Rio Paguate. Solid analyses using X-ray fluorescence determined that sediments located in the Jackpile Mine contain ranges of 320 to 9200 mg kg -1 U. The presence of coffinite, a U(iv)-bearing mineral, was identified by X-ray diffraction analyses in abandoned mine waste solids exposed to several decades of weathering and oxidation. The dissolution of these U-bearing minerals from abandoned mine wastes could contribute to U mobility during rain events. The U concentration in surface waters sampled closest to mine wastes are highest during the southwestern monsoon season. Samples collected from September 2014 to August 2016 showed higher U concentrations in surface water adjacent to the Jackpile Mine (35.3 to 772 μg L -1 ) compared with those at a wetland 4.5 kilometers downstream of the mine (5.77 to 110 μg L -1 ). Sediments co-located in the stream bed and bank along the reach between the mine and wetland had low U concentrations (range 1-5 mg kg -1 ) compared to concentrations in wetland sediments with higher organic matter (14-15%) and U concentrations (2-21 mg kg -1 ). Approximately 10% of the total U in wetland sediments was amenable to complexation with 1 mM sodium bicarbonate in batch experiments; a decrease of U concentration in solution was observed over time in these experiments likely due to re-association with sediments in the reactor. The findings from this study provide new insights about how hydrologic events may affect the reactivity of U present in mine waste solids exposed to surface oxidizing conditions, and the influence of organic-rich sediments on U accumulation in the Rio Paguate.

  2. Nuclear Forensics: Measurements of Uranium Oxides Using Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS)

    DTIC Science & Technology

    2010-03-01

    Isotope Ratio Analysis of Actinides , Fission Products, and Geolocators by High- efficiency Multi-collector Thermal Ionization Mass Spectrometry...Information, 1999. Hou, Xiaolin, and Per Roos. “ Critical Comparison of radiometric and Mass Spectrometric Methods for the Determination of...NUCLEAR FORENSICS: MEASUREMENTS OF URANIUM OXIDES USING TIME-OF-FLIGHT SECONDARY ION MASS

  3. Study of the oxidation of uranium by external and diffuse reflectance FTIR spectroscopy using remote-sensing and evacuable cell techniques

    NASA Astrophysics Data System (ADS)

    Powell, G. L.; Dobbins, A.; Cristy, S. S.; Cliff, T. L.; Meyer, H. M., III; Lucania, J.; Milosevic, Milan

    1994-01-01

    This report describes the application of reflectance FTIR spectroscopy to the measurement of the oxidation rate of uranium by environmental gases near room temperature. It also describes very efficient evacuable cells designed for 75 degree(s) external reflectance with polarized light and for diffuse reflectance using mid-infrared FTIR spectroscopy. These cells, along with functionally similar remote sensing accessories, have been applied to the study of the oxidation of uranium metal in air, oxygen, and water vapor by precisely measuring the 575 cm-1 band of UO2 and other properties of the corrosion film such as absorbed water and reflective losses caused by film degradation related to pitting or nucleation phenomena.

  4. Fluorination process using catalyst

    DOEpatents

    Hochel, Robert C.; Saturday, Kathy A.

    1985-01-01

    A process for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3, AgF.sub.2 and NiF.sub.2, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3 and AgF.sub.2, whereby the fluorination is significantly enhanced.

  5. Fluorination process using catalysts

    DOEpatents

    Hochel, R.C.; Saturday, K.A.

    1983-08-25

    A process is given for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/, AgF/sub 2/ and NiF/sub 2/, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/ and AgF/sub 2/, whereby the fluorination is significantly enhanced.

  6. COLUMBIC OXIDE ADSORPTION PROCESS FOR SEPARATING URANIUM AND PLUTONIUM IONS

    DOEpatents

    Beaton, R.H.

    1959-07-14

    A process is described for separating plutonium ions from a solution of neutron irradiated uranium in which columbic oxide is used as an adsorbert. According to the invention the plutonium ion is selectively adsorbed by Passing a solution containing the plutonium in a valence state not higher than 4 through a porous bed or column of granules of hydrated columbic oxide. The adsorbed plutonium is then desorbed by elution with 3 N nitric acid.

  7. Actinide Oxidation State and O/M Ratio in Hypostoichiometric Uranium-Plutonium-Americium U0.750Pu0.246Am0.004O2-x Mixed Oxides.

    PubMed

    Vauchy, Romain; Belin, Renaud C; Robisson, Anne-Charlotte; Lebreton, Florent; Aufore, Laurence; Scheinost, Andreas C; Martin, Philippe M

    2016-03-07

    Innovative americium-bearing uranium-plutonium mixed oxides U1-yPuyO2-x are envisioned as nuclear fuel for sodium-cooled fast neutron reactors (SFRs). The oxygen-to-metal (O/M) ratio, directly related to the oxidation state of cations, affects many of the fuel properties. Thus, a thorough knowledge of its variation with the sintering conditions is essential. The aim of this work is to follow the oxidation state of uranium, plutonium, and americium, and so the O/M ratio, in U0.750Pu0.246Am0.004O2-x samples sintered for 4 h at 2023 K in various Ar + 5% H2 + z vpm H2O (z = ∼ 15, ∼ 90, and ∼ 200) gas mixtures. The O/M ratios were determined by gravimetry, XAS, and XRD and evidenced a partial oxidation of the samples at room temperature. Finally, by comparing XANES and EXAFS results to that of a previous study, we demonstrate that the presence of uranium does not influence the interactions between americium and plutonium and that the differences in the O/M ratio between the investigated conditions is controlled by the reduction of plutonium. We also discuss the role of the homogeneity of cation distribution, as determined by EPMA, on the mechanisms involved in the reduction process.

  8. METHOD OF SEPARATING URANIUM SUSPENSIONS

    DOEpatents

    Wigner, E.P.; McAdams, W.A.

    1958-08-26

    A process is presented for separating colloidally dissed uranium oxides from the heavy water medium in upwhich they are contained. The method consists in treating such dispersions with hydrogen peroxide, thereby converting the uranium to non-colloidal UO/sub 4/, and separating the UO/sub 4/ sfter its rapid settling.

  9. Nominations for the 2017 NNSA Pollution Prevention Awards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salzman, Sonja L.; Ballesteros Rodriguez, Sonia; Lopez, Lorraine Bonds

    In the field of nuclear forensics, one of the biggest challenges is to dissolve postdetonation debris for analysis. Debris generated after a nuclear detonation is a glassy material that is difficult to dissolve with chemicals. Traditionally, concentrated nitric acid, hydrofluoric acid, or sulfuric acid are employed during the dissolution. These acids, due to their corrosive nature, are not suitable for in-field/on-site sample preparations. Uranium oxides are commonly present in nuclear fuel processing plants and nuclear research facilities. In uranium oxides, the level of uranium isotope enrichment is a sensitive indicator for nuclear nonproliferation and is monitored closely by the Internationalmore » Atomic Energy Agency (IAEA) to ensure there is no misuse of nuclear material or technology for nuclear weapons. During an IAEA on-site inspection at a facility, environmental surface swipe samples are collected and transported to the IAEA headquarters or network of analytical laboratories for further processing. Uranium oxide particles collected on the swipe medium are typically dissolved with inorganic acids and are then analyzed for uranium isotopic compositions. To improve the responsiveness of on-site inspections, in-field detection techniques have been recently explored. However, in-field analysis is bottlenecked by time-consuming and hazardous dissolution procedures, as corrosive inorganic acids must be used. Corrosive chemicals are difficult to use in the field due to personnel safety considerations, and the transportation of such chemicals is highly regulated. It was therefore necessary to develop fast uranium oxide dissolution methods using less hazardous chemicals in support of the rapid infield detection of anomalies in declared nuclear processes.« less

  10. Vaporization chemistry of hypo-stoichiometric (U,Pu)O 2

    NASA Astrophysics Data System (ADS)

    Viswanathan, R.; Krishnaiah, M. V.

    2001-04-01

    Calculations were performed on hypo-stoichiometric uranium plutonium di-oxide to examine its vaporization behavior as a function of O/ M ( M= U+ Pu) ratio and plutonium content. The phase U (1- y) Pu yO z was treated as an ideal solid solution of (1- y)UO 2+ yPuO (2- x) such that x=(2- z)/ y. Oxygen potentials for different desired values of y, z, and temperature were used as the primary input to calculate the corresponding partial pressures of various O-, U-, and Pu-bearing gaseous species. Relevant thermodynamic data for the solid phases UO 2 and PuO (2- x) , and the gaseous species were taken from the literature. Total vapor pressure varies with O/M and goes through a minimum. This minimum does not indicate a congruently vaporizing composition. Vaporization behavior of this system can at best be quasi-congruent. Two quasi-congruently vaporizing compositions (QCVCs) exist, representing the equalities (O/M) vapor=(O/M) mixed-oxide and (U/Pu) vapor=(U/Pu) mixed-oxide, respectively. The (O/M) corresponding to QCVC1 is lower than that corresponding to QCVC2, but very close to the value where vapor pressure minimum occurs. The O/M values of both QCVCs increase with decrease in plutonium content. The vaporization chemistry of this system, on continuous vaporization under dynamic condition, is discussed.

  11. Effect of cooling rate on achieving thermodynamic equilibrium in uranium-plutonium mixed oxides

    NASA Astrophysics Data System (ADS)

    Vauchy, Romain; Belin, Renaud C.; Robisson, Anne-Charlotte; Hodaj, Fiqiri

    2016-02-01

    In situ X-ray diffraction was used to study the structural changes occurring in uranium-plutonium mixed oxides U1-yPuyO2-x with y = 0.15; 0.28 and 0.45 during cooling from 1773 K to room-temperature under He + 5% H2 atmosphere. We compare the fastest and slowest cooling rates allowed by our apparatus i.e. 2 K s-1 and 0.005 K s-1, respectively. The promptly cooled samples evidenced a phase separation whereas samples cooled slowly did not due to their complete oxidation in contact with the atmosphere during cooling. Besides the composition of the annealing gas mixture, the cooling rate plays a major role on the control of the Oxygen/Metal ratio (O/M) and then on the crystallographic properties of the U1-yPuyO2-x uranium-plutonium mixed oxides.

  12. METHOD FOR SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS BY SOLVENT EXTRACTION

    DOEpatents

    Seaborg, G.T.; Blaedel, W.J.; Walling, M.T. Jr.

    1960-08-23

    A process is given for separating from each other uranium, plutonium, and fission products in an aqueous nitric acid solution by the so-called Redox process. The plutonium is first oxidized to the hexavalent state, e.g., with a water-soluble dichromate or sodium bismuthate, preferably together with a holding oxidant such as potassium bromate. potassium permanganate, or an excess of the oxidizing agent. The solution is then contacted with a water-immiscible organic solvent, preferably hexone. whereby uranium and plutonium are extracted while the fission products remain in the aqueous solution. The separated organic phase is then contacted with an aqueous solution of a reducing agent, with or without a holding reductant (e.g., with a ferrous salt plus hydrazine or with ferrous sulfamate), whereby plutonium is reduced to the trivalent state and back- extracted into the aqueous solution. The uranium may finally be back-extracted from the organic solvent (e.g., with a 0.1 N nitric acid).

  13. Metals other than uranium affected microbial community composition in a historical uranium-mining site.

    PubMed

    Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten

    2015-12-01

    To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.

  14. Effects of Uranium Oxides on Some of the Algae Native to Eglin Air Force Base, Florida.

    DTIC Science & Technology

    1982-06-01

    Chlorella , and Selenastrum were not identified from the collections after microscopic examination. 4. MOBILITY OF DEPLETED URANIUM BY DISSOLUTION IN NATURAL...processes. A similar finding nas been previously reported for Chlorella regularis (Sakaguchi, Horikoshi, and Nakajima, 1978). In addition, uranium

  15. Plutonium Decontamination of Uranium using CO2 Cleaning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, M

    A concern of the Department of Energy (DOE) Environmental Management (EM) and Defense Programs (DP), and of the Los Alamos National Laboratory (LANL) and the Lawrence Livermore National Laboratory (LLNL), is the disposition of thousands of legacy and recently generated plutonium (Pu)-contaminated, highly enriched uranium (HEU) parts. These parts take up needed vault space. This presents a serious problem for LLNL, as site limit could result in the stoppage of future weapons work. The Office of Fissile Materials Disposition (NN-60) will also face a similar problem as thousands of HEU parts will be created with the disassembly of site-return pitsmore » for plutonium recovery when the Pit Disassembly and Conversion Facility (PDCF) at the Savannah River Site (SRS) becomes operational. To send HEU to the Oak Ridge National Laboratory and the Y-12 Plant for disposition, the contamination for metal must be less than 20 disintegrations per minute (dpm) of swipable transuranic per 100 cm{sup 2} of surface area or the Pu bulk contamination for oxide must be less than 210 parts per billion (ppb). LANL has used the electrolytic process on Pu-contaminated HEU weapon parts with some success. However, this process requires that a different fixture be used for every configuration; each fixture cost approximately $10K. Moreover, electrolytic decontamination leaches the uranium metal substrate (no uranium or plutonium oxide) from the HEU part. The leaching rate at the uranium metal grain boundaries is higher than that of the grains and depends on the thickness of the uranium oxide layer. As the leaching liquid flows past the HEU part, it carries away plutonium oxide contamination and uranium oxide. The uneven uranium metal surface created by the leaching becomes a trap for plutonium oxide contamination. In addition, other DOE sites have used CO{sub 2} cleaning for Pu decontamination successfully. In the 1990's, the Idaho National Engineering Laboratory investigated this technology and showed that CO{sub 2} pellet blasting (or CO{sub 2} cleaning) reduced both fixed and smearable contamination on tools. In 1997, LLNL proved that even tritium contamination could be removed from a variety of different matrices using CO{sub 2}cleaning. CO{sub 2} cleaning is a non-toxic, nonconductive, nonabrasive decontamination process whose primary cleaning mechanisms are: (1) Impact of the CO{sub 2} pellets loosens the bond between the contaminant and the substrate. (2) CO{sub 2} pellets shatter and sublimate into a gaseous state with large expansion ({approx}800 times). The expanding CO{sub 2} gas forms a layer between the contaminant and the substrate that acts as a spatula and peels off the contaminant. (3) Cooling of the contaminant assists in breaking its bond with the substrate. Thus, LLNL conducted feasibility testing to determine if CO{sub 2} pellet blasting could remove Pu contamination (e.g., uranium oxide) from uranium metal without abrading the metal matrix. This report contains a summary of events and the results of this test.« less

  16. Selective removal of uranium ions from contaminated waters using modified-X nanozeolite.

    PubMed

    Shakur, H R; Rezaee Ebrahim Saraee, Kh; Abdi, M R; Azimi, G

    2016-12-01

    In order to efficiently remove of uranium anionic species (which are the most dominant species of uranium in natural water at neutral pH) from contaminated waters, nano-NaX zeolite was synthesized and then modified using various divalent cations (Mg 2+ , Ca 2+ , Mn 2+ ) and ZnO nanoparticles (from 1.7 to 10.3wt%). Different characterization techniques of XRF, XRD, FE-SEM, TEM, FT-IR, and AAS were used to characterize the final synthesized absorbents. Sorption experiments by batch technique were done to study the effect of solid-liquid ratio, initial uranium concentration, contact time and temperature under neutral condition of pH and presence of all anions and cations which are available in the waters. Results showed that although nano-NaX zeolite due to its negative framework charge had a low sorption capacity for adsorption of uranium anionic species, but modification of parent nano-NaX zeolite with ZnO nanoparticles and various cations effectively improved its uranium adsorption capacity. Also, results showed that under optimum condition of pH=7.56, contact time of 60min at 27°C with solid-liquid ratio of 20g/L a maximum uranium removal efficiency of 99.7% can be obtained in the presence of all anions and cations which are available in the drinking waters by NaX/ZnO nanocomposite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Purification of uranium alloys by differential solubility of oxides and production of purified fuel precursors

    DOEpatents

    McLean, II, William; Miller, Philip E.

    1997-01-01

    A method for purifying metallic alloys of uranium for use as nuclear reactor fuels in which the metal alloy is first converted to an oxide and then dissolved in nitric acid. Initial removal of metal oxide impurities not soluble in nitric acid is accomplished by filtration or other physical means. Further purification can be accomplished by carbonate leaching of uranyl ions from the partially purified solution or using traditional methods such as solvent extraction.

  18. Purification of uranium alloys by differential solubility of oxides and production of purified fuel precursors

    DOEpatents

    McLean, W. II; Miller, P.E.

    1997-12-16

    A method is described for purifying metallic alloys of uranium for use as nuclear reactor fuels in which the metal alloy is first converted to an oxide and then dissolved in nitric acid. Initial removal of metal oxide impurities not soluble in nitric acid is accomplished by filtration or other physical means. Further purification can be accomplished by carbonate leaching of uranyl ions from the partially purified solution or using traditional methods such as solvent extraction. 3 figs.

  19. THERMAL FISSION REACTOR COMPOSITIONS AND METHOD OF FABRICATING SAME

    DOEpatents

    Blainey, A.

    1959-10-01

    A body is presented for use in a thermal fission reactor comprising a sintered compressed mass of a substance of the group consisting of uranium, thorium, and oxides and carbides of uranium and thorium, enclosed in an envelope of a sintered, compacted, heat-conductive material of the group consisting of beryllium, zirconium, and oxides and carbides of beryllium and zirconium.

  20. Uranium isotope composition of a laterite profile during extreme weathering of basalt in Guangdong, South China

    NASA Astrophysics Data System (ADS)

    Huang, J.; Zhou, Z.; Gong, Y.; Lundstrom, C.; Huang, F.

    2015-12-01

    Rock weathering and soil formation in the critical zone are important for material cycle from the solid Earth to superficial system. Laterite is a major type of soil in South China forming at hot-humid climate, which has strong effect on the global uranium cycle. Uranium is closely related to the environmental redox condition because U is stable at U(Ⅳ) in anoxic condition and U(Ⅵ) as soluble uranyl ion (UO22+) under oxic circumstance. In order to understand the behavior of U isotopes during crust weathering, here we report uranium isotopic compositions of soil and base rock samples from a laterite profile originated from extreme weathering of basalt in Guangdong, South China. The uranium isotopic data were measured on a Nu Plasma MC-ICP-MS at the University of Illinois at Urbana-Champaign using the double spike method. The δ238U of BCR-1 is -0.29±0.03‰ (relative to the international standard CRM-112A), corresponding to a 238U/235U ratio of 137.911±0.004. Our result of BCR-1 agrees with previous analyses (e.g., -0.28‰ in Weyer et al. 2008) [1]. U contents of the laterite profile decrease from 1.9 ppm to 0.9 ppm with depth, and peak at 160 - 170 cm (2.3 ppm), much higher than the U content of base rocks (~0.5 ppm). In contrary, U/Th of laterites is lower than that of base rock (0.27) except the peak at the depth of 160-170 cm (0.38), indicating significant U loss during weathering. Notably, U isotope compositions of soils show a small variation from -0.38 to -0.28‰, consistent with the base rock within analytical error (0.05‰ to 0.08‰, 2sd). Such small variation can be explained by a "rind effect" (Wang et al., 2015) [2], by which U(Ⅳ) can be completely oxidized to U(VI) layer by layer during basalt weathering by dissolved oxygen. Therefore, our study indicates that U loss during basalt weathering at the hot-humid climate does not change U isotope composition of superficial water system. [1] Weyer S. et al. (2008) Natural fractionation of 238U/235U. GCA 72,345-359 [2] Wang X. et al. (2015) Isotope fractionation during oxidation of tetravalent uranium by dissolved oxygen. GCA 150, 160-170

  1. Fate of Uranium in Wetlands: Impact of Drought Followed by Re-flooding

    NASA Astrophysics Data System (ADS)

    Gilson, E.; Huang, S.; Koster van Groos, P. G.; Scheckel, K.; Peacock, A. D.; Kaplan, D. I.; Jaffe, P. R.

    2014-12-01

    Uranium contamination in groundwater can be mitigated in anoxic zones by iron-reducing bacteria that reduce soluble U(VI) to insoluble U(IV) and by uranium immobilization through complexation and sorption. Wetlands often link ground and surface-waters, making them strategic systems for potentially limiting migration of uranium contamination. Little is known about how drought periods that result in the drying of wetland soils, and consequent redox changes, affect uranium fate and transport in wetlands. In order to better understand the fate and stability of immobilized uranium in wetland soils, and how dry periods affect the uranium stability, we dosed saturated wetland mesocosms planted with Scirpus acutus with low levels of uranyl-acetate for 5 months before imposing a 9-day drying period followed by a 13-day rewetting period. Concentrations of uranium in mesocosm effluent increased after rewetting, but the cumulative amount of uranium released in the 13 days following the drying constituted less than 1% of the uranium immobilized in the soil during the 5 months prior to the drought. This low level of remobilization suggests that the uranium immobilized in these soils was not primarily bioreduced U(IV), which could have been oxidized to soluble U(VI) during the drought and released in the effluent during the subsequent flood. XANES analyses confirm that most of the uranium immobilized in the mesocosms was U(VI) sorbed to iron oxides. Compared to mesocosms that did not experience drying or rewetting, mesocosms that were sacrificed immediately after drying and after 13 days of rewetting had less uranium in soil near roots and more uranium on root surfaces. Metal-reducing bacteria only dominated the bacterial community after 13 days of rewetting and not immediately after drying, indicating that these bacteria are not responsible for this redistribution of uranium after the drying and rewetting. Results show that short periods of drought conditions in a wetland may impact uranium distribution, but these conditions may not cause large losses of immobilized uranium from the wetland.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.R. Westphal; J.C. Price; R.D. Mariani

    The pyroprocessing of used nuclear fuel via electrorefining requires the continued addition of uranium trichloride to sustain operations. Uranium trichloride is utilized as an oxidant in the system to allow separation of uranium metal from the minor actinides and fission products. The inventory of uranium trichloride had diminished to a point that production was necessary to continue electrorefiner operations. Following initial experimentation, cupric chloride was chosen as a reactant with uranium metal to synthesize uranium trichloride. Despite the variability in equipment and charge characteristics, uranium trichloride was produced in sufficient quantities to maintain operations in the electrorefiner. The results andmore » conclusions from several experiments are presented along with a set of optimized operating conditions for the synthesis of uranium trichloride.« less

  3. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOEpatents

    Ackerman, John P.; Miller, William E.

    1989-01-01

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuel using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuel, and two cathodes, the first cathode composed of either a solid alloy or molten cadmium and the second cathode composed of molten cadmium. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then substantially pure uranium is electrolytically transported and deposited on the first alloy or molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on the second molten cadmium cathode.

  4. SLURRY SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM SOLID MATERIALS

    DOEpatents

    Grinstead, R.R.

    1959-01-20

    A solvent extraction process is described for recovering uranium from low grade uranium bearing minerals such as carnotit or shale. The finely communited ore is made up as an aqueous slurry containing the necessary amount of acid to solubilize the uranium and simultaneously or subsequently contacted with an organic solvent extractant such as the alkyl ortho-, or pyro phosphoric acids, alkyl phosphites or alkyl phosphonates in combination with a diluent such as kerosene or carbon tetrachlorids. The extractant phase is separated from the slurry and treated by any suitable process to recover the uranium therefrom. One method for recovering the uranium comprises treating the extract with aqueous HF containing a reducing agent such as ferrous sulfate, which reduces the uranium and causes it to be precipitated as uranium tetrafluoride.

  5. Surface spectroscopy studies of the oxidation behavior of uranium

    NASA Astrophysics Data System (ADS)

    Bloch, J.; Atzmony, U.; Dariel, M. P.; Mintz, M. H.; Shamir, N.

    1982-02-01

    Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) techniques were utilized to study the oxidation behavior of clean uranium surfaces, at very low pressures of various atmospheres (UHV, H 2, O 2, and CO 2), at room temperature. Both for O 2 and CO 2, a precursor chemisorbed oxygen species has been identified at the very initial stage of the oxidation reaction. This chemisorbed oxygen transforms to the oxide form at a rate which depends on the pressure of the oxidizing atmosphere. Residual gaseous carbon compounds which are present even under UHV conditions result in the simultaneous formation of surface carbide which accompanies the initial stage of oxidation. This carbide however decomposes later as oxidation proceeds. Adventitious hydrocarbon adsorption occurs on the formed oxide layer.

  6. The combined effect of uranium and gamma radiation on biological responses and oxidative stress induced in Arabidopsis thaliana.

    PubMed

    Vanhoudt, Nathalie; Vandenhove, Hildegarde; Horemans, Nele; Wannijn, Jean; Van Hees, May; Vangronsveld, Jaco; Cuypers, Ann

    2010-11-01

    Uranium never occurs as a single pollutant in the environment, but always in combination with other stressors such as ionizing radiation. As effects induced by multiple contaminants can differ markedly from the effects induced by the individual stressors, this multiple pollution context should not be neglected. In this study, effects on growth, nutrient uptake and oxidative stress induced by the single stressors uranium and gamma radiation are compared with the effects induced by the combination of both stressors. By doing this, we aim to better understand the effects induced by the combined stressors but also to get more insight in stressor-specific response mechanisms. Eighteen-day-old Arabidopsis thaliana seedlings were exposed for 3 days to 10 muM uranium and 3.5 Gy gamma radiation. Gamma radiation interfered with uranium uptake, resulting in decreased uranium concentrations in the roots, but with higher transport to the leaves. This resulted in a better root growth but increased leaf lipid peroxidation. For the other endpoints studied, effects under combined exposure were mostly determined by uranium presence and only limited influenced by gamma presence. Furthermore, an important role is suggested for CAT1/2/3 gene expression under uranium and mixed stressor conditions in the leaves.

  7. Retardation of uranium and thorium by a cementitious backfill developed for radioactive waste disposal.

    PubMed

    Felipe-Sotelo, M; Hinchliff, J; Field, L P; Milodowski, A E; Preedy, O; Read, D

    2017-07-01

    The solubility of uranium and thorium has been measured under the conditions anticipated in a cementitious, geological disposal facility for low and intermediate level radioactive waste. Similar solubilities were obtained for thorium in all media, comprising NaOH, Ca(OH) 2 and water equilibrated with a cement designed as repository backfill (NRVB, Nirex Reference Vault Backfill). In contrast, the solubility of U(VI) was one order of magnitude higher in NaOH than in the remaining solutions. The presence of cellulose degradation products (CDP) results in a comparable solubility increase for both elements. Extended X-ray Absorption Fine Structure (EXAFS) data suggest that the solubility-limiting phase for uranium corresponds to a becquerelite-type solid whereas thermodynamic modelling predicts a poorly crystalline, hydrated calcium uranate phase. The solubility-limiting phase for thorium was ThO 2 of intermediate crystallinity. No breakthrough of either uranium or thorium was observed in diffusion experiments involving NRVB after three years. Nevertheless, backscattering electron microscopy and microfocus X-ray fluorescence confirmed that uranium had penetrated about 40 μm into the cement, implying active diffusion governed by slow dissolution-precipitation kinetics. Precise identification of the uranium solid proved difficult, displaying characteristics of both calcium uranate and becquerelite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Alternative Anodes for the Electrolytic Reduction of Uranium Dioxide

    NASA Astrophysics Data System (ADS)

    Merwin, Augustus

    Reprocessing of spent nuclear fuel is an essential step in closing the nuclear fuel cycle. In order to consume current stockpiles, ceramic uranium dioxide spent nuclear fuel will be subjected to an electrolytic reduction process. The current reduction process employs a platinum anode and a stainless steel alloy 316 cathode in a molten salt bath consisting of LiCl-2wt% Li 2O and occurs at 700°C. A major shortcoming of the existing process is the degradation of the platinum anode under the severely oxidizing conditions encountered during electrolytic reduction. This work investigates alternative anode materials for the electrolytic reduction of uranium oxide. The high temperature and extreme oxidizing conditions encountered in these studies necessitated a unique set of design constraints on the system. Thus, a customized experimental apparatus was designed and constructed. The electrochemical experiments were performed in an electrochemical reactor placed inside a furnace. This entire setup was housed inside a glove box, in order to maintain an inert atmosphere. This study investigates alternative anode materials through accelerated corrosion testing. Surface morphology was studied using scanning electron microscopy. Surface chemistry was characterized using energy dispersive spectroscopy and Raman spectroscopy. Electrochemical behavior of candidate materials was evaluated using potentiodynamic polarization characteristics. After narrowing the number of candidate electrode materials, ferrous stainless steel alloy 316, nickel based Inconel 718 and elemental tungsten were chosen for further investigation. Of these materials only tungsten was found to be sufficiently stable at the anodic potential required for electrolysis of uranium dioxide in molten salt. The tungsten anode and stainless steel alloy 316 cathode electrode system was studied at the required reduction potential for UO2 with varying lithium oxide concentrations. Electrochemical impedance spectroscopy showed mixed (kinetic and diffusion) control and an overall low impedance due to extreme corrosion. It was observed that tungsten is sufficiently stable in LiCl - 2wt% Li 2O at 700°C at the required anodic potential for the reduction of uranium oxide. This study identifies tungsten to be a superior anode material to platinum for the electrolytic reduction of uranium oxide, both in terms of superior corrosion behavior and reduced cost, and thus recommends that tungsten be further investigated as an alternative anode for the electrolytic reduction of uranium dioxide.

  9. PROCESS FOR PRODUCING URANIUM HEXAFLUORIDE

    DOEpatents

    Fowler, R.D.

    1957-10-22

    A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ convented to UF/sub 6/ by reaction with a fluorinating agent. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reaction chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. The oven is then swept clean of hydrogen and the water vapor formed by means of nitrogen and then while continuing to maintain the temperature between 400 and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion to uranium tetrafluoride, the temperature of the reaction chamber is lowered to ahout 400 deg C, and elemental fluorine is used as the fluorinating agent for the conversion of UF/sub 4/ into UF/sub 6/. The fluorine gas is passed into the chamber, and the UF/sub 6/ formed passes out and is delivered to a condenser.

  10. Electron transfer at the cell-uranium interface in Geobacter spp.

    PubMed

    Reguera, Gemma

    2012-12-01

    The in situ stimulation of Fe(III) oxide reduction in the subsurface stimulates the growth of Geobacter spp. and the precipitation of U(VI) from groundwater. As with Fe(III) oxide reduction, the reduction of uranium by Geobacter spp. requires the expression of their conductive pili. The pili bind the soluble uranium and catalyse its extracellular reductive precipitation along the pili filaments as a mononuclear U(IV) complexed by carbon-containing ligands. Although most of the uranium is immobilized by the pili, some uranium deposits are also observed in discreet regions of the outer membrane, consistent with the participation of redox-active foci, presumably c-type cytochromes, in the extracellular reduction of uranium. It is unlikely that cytochromes released from the outer membrane could associate with the pili and contribute to the catalysis, because scanning tunnelling microscopy spectroscopy did not reveal any haem-specific electronic features in the pili, but, rather, showed topographic and electronic features intrinsic to the pilus shaft. Pili not only enhance the rate and extent of uranium reduction per cell, but also prevent the uranium from traversing the outer membrane and mineralizing the cell envelope. As a result, pili expression preserves the essential respiratory activities of the cell envelope and the cell's viability. Hence the results support a model in which the conductive pili function as the primary mechanism for the reduction of uranium and cellular protection in Geobacter spp.

  11. Physico-Chemical Heterogeneity of Organic-Rich Sediments in the Rifle Aquifer, CO: Impact on Uranium Biogeochemistry.

    PubMed

    Janot, Noémie; Lezama Pacheco, Juan S; Pham, Don Q; O'Brien, Timothy M; Hausladen, Debra; Noël, Vincent; Lallier, Florent; Maher, Kate; Fendorf, Scott; Williams, Kenneth H; Long, Philip E; Bargar, John R

    2016-01-05

    The Rifle alluvial aquifer along the Colorado River in west central Colorado contains fine-grained, diffusion-limited sediment lenses that are substantially enriched in organic carbon and sulfides, as well as uranium, from previous milling operations. These naturally reduced zones (NRZs) coincide spatially with a persistent uranium groundwater plume. There is concern that uranium release from NRZs is contributing to plume persistence or will do so in the future. To better define the physical extent, heterogeneity and biogeochemistry of these NRZs, we investigated sediment cores from five neighboring wells. The main NRZ body exhibited uranium concentrations up to 100 mg/kg U as U(IV) and contains ca. 286 g of U in total. Uranium accumulated only in areas where organic carbon and reduced sulfur (as iron sulfides) were present, emphasizing the importance of sulfate-reducing conditions to uranium retention and the essential role of organic matter. NRZs further exhibited centimeter-scale variations in both redox status and particle size. Mackinawite, greigite, pyrite and sulfate coexist in the sediments, indicating that dynamic redox cycling occurs within NRZs and that their internal portions can be seasonally oxidized. We show that oxidative U(VI) release to the aquifer has the potential to sustain a groundwater contaminant plume for centuries. NRZs, known to exist in other uranium-contaminated aquifers, may be regionally important to uranium persistence.

  12. Identification of Uranium Minerals in Natural U-Bearing Rocks Using Infrared Reflectance Spectroscopy.

    PubMed

    Beiswenger, Toya N; Gallagher, Neal B; Myers, Tanya L; Szecsody, James E; Tonkyn, Russell G; Su, Yin-Fong; Sweet, Lucas E; Lewallen, Tricia A; Johnson, Timothy J

    2018-02-01

    The identification of minerals, including uranium-bearing species, is often a labor-intensive process using X-ray diffraction (XRD), fluorescence, or other solid-phase or wet chemical techniques. While handheld XRD and fluorescence instruments can aid in field applications, handheld infrared (IR) reflectance spectrometers can now also be used in industrial or field environments, with rapid, nondestructive identification possible via analysis of the solid's reflectance spectrum providing information not found in other techniques. In this paper, we report the use of laboratory methods that measure the IR hemispherical reflectance of solids using an integrating sphere and have applied it to the identification of mineral mixtures (i.e., rocks), with widely varying percentages of uranium mineral content. We then apply classical least squares (CLS) and multivariate curve resolution (MCR) methods to better discriminate the minerals (along with two pure uranium chemicals U 3 O 8 and UO 2 ) against many common natural and anthropogenic background materials (e.g., silica sand, asphalt, calcite, K-feldspar) with good success. Ground truth as to mineral content was attained primarily by XRD. Identification is facile and specific, both for samples that are pure or are partially composed of uranium (e.g., boltwoodite, tyuyamunite, etc.) or non-uranium minerals. The characteristic IR bands generate unique (or class-specific) bands, typically arising from similar chemical moieties or functional groups in the minerals: uranyls, phosphates, silicates, etc. In some cases, the chemical groups that provide spectral discrimination in the longwave IR reflectance by generating upward-going (reststrahlen) bands can provide discrimination in the midwave and shortwave IR via downward-going absorption features, i.e., weaker overtone or combination bands arising from the same chemical moieties.

  13. Webinar on the Removal of Uranium from Drinking Water by Small System Treatment Technology

    EPA Science Inventory

    Abstract: Radionuclides, such as uranium (U), occur naturally as trace elements in rocks and soils and thus can be found in dissolved forms in ground waters. Uranium has four oxidation states (+3, +4, +5, and +6) and is a very reactive element forming a variety of stable complexe...

  14. Nanoscale Zirconium-(oxyhydr)oxide in Contaminated Sediments From Hanford, WA - A New Host for Uranium

    NASA Astrophysics Data System (ADS)

    Stubbs, J. E.; Elbert, D. C.; Veblen, L. A.; Zachara, J. M.; Davis, J. A.; Veblen, D. R.

    2008-12-01

    Zirconium-, uranium-, and copper-bearing wastes have leached from former disposal ponds into vadose zone sediments in the 300 Area at the Department of Energy's Hanford Site. Zirconium is enriched in the shallow portion of the vadose zone, and we have discovered an amorphous Zr-(oxyhydr)oxide that contains 16% of the total uranium budget (84.24 ppm) in one of the shallow samples. We have characterized the oxide using electron microprobe analysis (EMPA), a focused ion beam (FIB) instrument, and transmission electron microscopy (TEM). It occurs in fine-grained coatings found on lithic and mineral fragments in these sediments. The oxide is intimately intergrown with the phyllosilicates and other minerals of the coatings, and in places can be seen coating individual, nano-sized phyllosilicate mineral grains. Electron energy-loss spectroscopy (EELS) shows that the Zr-(oxyhydr)oxide has a P:Zr atomic ratio around 0.2, suggesting it is either intergrown with minor amounts of a Zr-phosphate or has adsorbed a significant amount of phosphate. This material has adsorbed or incorporated a substantial amount of uranium. Thus, understanding its nature is critical to predicting the long-term fate of U in the Hanford vadose zone. While the low-temperature uptake of U by Zr-(oxhydr)oxides and phosphates has been studied for several decades in laboratory settings, to our knowledge ours is the first report of such uptake in the field.

  15. Processing and fabrication of mixed uranium/refractory metal carbide fuels with liquid-phase sintering

    NASA Astrophysics Data System (ADS)

    Knight, Travis W.; Anghaie, Samim

    2002-11-01

    Optimization of powder processing techniques were sought for the fabrication of single-phase, solid-solution mixed uranium/refractory metal carbide nuclear fuels - namely (U, Zr, Nb)C. These advanced, ultra-high temperature nuclear fuels have great potential for improved performance over graphite matrix, dispersed fuels tested in the Rover/NERVA program of the 1960s and early 1970s. Hypostoichiometric fuel samples with carbon-to-metal ratios of 0.98, uranium metal mole fractions of 5% and 10%, and porosities less than 5% were fabricated. These qualities should provide for the longest life and highest performance capability for these fuels. Study and optimization of processing methods were necessary to provide the quality assurance of samples for meaningful testing and assessment of performance for nuclear thermal propulsion applications. The processing parameters and benefits of enhanced sintering by uranium carbide liquid-phase sintering were established for the rapid and effective consolidation and formation of a solid-solution mixed carbide nuclear fuel.

  16. Applied technology for mine waste water decontamination in the uranium ores extraction from Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bejenaru, C.; Filip, G.; Vacariu, V.T.

    1996-12-31

    The exploitation of uranium ores in Romania is carried out in underground mines. In all exploited uranium deposits, mine waste waters results and will still result after the closure of uranium ore extraction activity. The mine waters are radioactively contaminated with uranium and its decay products being a hazard both for underground waters as for the environment. This paper present the results of research work carried out by authors for uranium elimination from waste waters as the problems involved during the exploitation process of the existent equipment as its maintenance in good experimental conditions. The main waste water characteristics aremore » discussed: solids as suspension, uranium, radium, mineral salts, pH, etc. The moist suitable way to eliminate uranium from mine waste waters is the ion exchange process based on ion exchangers in fluidized bed. A flowsheet is given with main advantages resulted.« less

  17. Nuclear fuel alloys or mixtures and method of making thereof

    DOEpatents

    Mariani, Robert Dominick; Porter, Douglas Lloyd

    2016-04-05

    Nuclear fuel alloys or mixtures and methods of making nuclear fuel mixtures are provided. Pseudo-binary actinide-M fuel mixtures form alloys and exhibit: body-centered cubic solid phases at low temperatures; high solidus temperatures; and/or minimal or no reaction or inter-diffusion with steel and other cladding materials. Methods described herein through metallurgical and thermodynamics advancements guide the selection of amounts of fuel mixture components by use of phase diagrams. Weight percentages for components of a metallic additive to an actinide fuel are selected in a solid phase region of an isothermal phase diagram taken at a temperature below an upper temperature limit for the resulting fuel mixture in reactor use. Fuel mixtures include uranium-molybdenum-tungsten, uranium-molybdenum-tantalum, molybdenum-titanium-zirconium, and uranium-molybdenum-titanium systems.

  18. Thermodynamic and experimental study of UC powders ignition

    NASA Astrophysics Data System (ADS)

    Le Guyadec, F.; Rado, C.; Joffre, S.; Coullomb, S.; Chatillon, C.; Blanquet, E.

    2009-09-01

    Mixed plutonium and uranium carbide (UPuC) is considered as a possible fuel material for future nuclear reactors. However, UPuC is pyrophoric and fine powders of UPuC are subject to temperature increase due to oxidation with air and possible ignition during conditioning and handling. In a first approach and to allow easier experimental conditions, this study was undertaken on uranium monocarbide (UC) with the aim to determine safe handling conditions for the production and reprocessing of uranium carbide fuels. The reactivity of uranium monocarbide in oxidizing atmosphere was studied in order to analyze the ignition process. Experimental thermogravimetric analysis (TGA) and differential thermal analysis (DTA) revealed that UC powder obtained by arc melting and milling is highly reactive in air at about 200 °C. The phases formed at the various observed stages of the oxidation process were analyzed by X-ray diffraction. At the same time, ignition was analyzed thermodynamically along isothermal sections of the U-C-O ternary diagram and the pressure of the gas produced by the UC + O 2 reaction was calculated. Two possible oxidation schemes were identified on the U-C-O phase diagram and assumptions are proposed concerning the overall oxidation and ignition paths. It is particularly important to understand the mechanisms involved since temperatures as high as 2500 °C could be reached, leading to CO(g) production and possibly to a blast effect.

  19. Feasibility study of a small, thorium-based fission power system for space and terrestrial applications

    NASA Astrophysics Data System (ADS)

    Worrall, Michael Jason

    One of the current challenges facing space exploration is the creation of a power source capable of providing useful energy for the entire duration of a mission. Historically, radioisotope batteries have been used to provide load power, but this conventional system may not be capable of sustaining continuous power for longer duration missions. To remedy this, many forays into nuclear powered spacecraft have been investigated, but no robust system for long-term power generation has been found. In this study, a novel spin on the traditional fission power system that represents a potential optimum solution is presented. By utilizing mature High Temperature Gas Reactor (HTGR) technology in conjunction with the capabilities of the thorium fuel cycle, we have created a light-weight, long-term power source capable of a continuous electric power output of up to 70kW for over 15 years. This system relies upon a combination of fissile, highly-enriched uranium dioxide and fertile thorium carbide Tri-Structural Isotropic (TRISO) fuel particles embedded in a hexagonal beryllium oxide matrix. As the primary fissile material is consumed, the fertile material breeds new fissile material leading to more steady fuel loading over the lifetime of the core. Reactor control is achieved through an innovative approach to the conventional boron carbide neutron absorber by utilizing sections of borated aluminum placed in rotating control drums within the reflector. Borated aluminum allows for much smaller boron concentrations, thus eliminating the potential for 10B(n,alpha)6Li heating issues that are common in boron carbide systems. A wide range of other reactivity control systems are also investigated, such as a radially-split rotating reflector. Lastly, an extension of the design to a terrestrial based system is investigated. In this system, uranium enrichment is dropped to 20 percent in order to meet current regulations, a solid uranium-zirconium hydride fissile driver replaces the uranium dioxide TRISO particles, and the moderating material is changed from beryllium oxide to graphite. These changes result in an increased core size, but the same long-term power generation potential is achieved. Additionally, small amounts of erbium are added to the hydride matrix to further extend core lifetime.

  20. Uranium oxidation kinetics monitored by in-situ X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Zalkind, S.; Rafailov, G.; Halevy, I.; Livneh, T.; Rubin, A.; Maimon, H.; Schweke, D.

    2017-03-01

    The oxidation kinetics of U-0.1 wt%Cr at oxygen pressures of 150 Torr and the temperature range of 90-150 °C was studied by means of in-situ X-ray diffraction (XRD). A "breakaway" in the oxidation kinetics is found at ∼0.25 μm, turning from a parabolic to a linear rate law. At the initial stage of oxidation the growth plane of UO2(111) is the prominent one. As the oxide thickens, the growth rate of UO2(220) plane increases and both planes grow concurrently. The activation energies obtained for the oxide growth are Qparabolic = 17.5 kcal/mol and Qlinear = 19 kcal/mol. Enhanced oxidation around uranium carbide (UC) inclusions is clearly observed by scanning electron microscopy (SEM).

  1. Inherently safe in situ uranium recovery

    DOEpatents

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  2. PROCESS OF TREATING URANIUM HEXAFLUORIDE AND PLUTONIUM HEXAFLUORIDE MIXTURES WITH SULFUR TETRAFLUORIDE TO SEPARATE SAME

    DOEpatents

    Steindler, M.J.

    1962-07-24

    A process was developed for separating uranium hexafluoride from plutonium hexafluoride by the selective reduction of the plutonium hexafluoride to the tetrafluoride with sulfur tetrafluoride at 50 to 120 deg C, cooling the mixture to --60 to -100 deg C, and volatilizing nonreacted sulfur tetrafluoride and sulfur hexafluoride formed at that temperature. The uranium hexafluoride is volatilized at room temperature away from the solid plutonium tetrafluoride. (AEC)

  3. Thermal diffusivity and conductivity of thorium- uranium mixed oxides

    NASA Astrophysics Data System (ADS)

    Saoudi, M.; Staicu, D.; Mouris, J.; Bergeron, A.; Hamilton, H.; Naji, M.; Freis, D.; Cologna, M.

    2018-03-01

    Thorium-uranium oxide pellets with high densities were prepared at the Canadian Nuclear Laboratories (CNL) by co-milling, pressing, and sintering at 2023 K, with UO2 mass contents of 0, 1.5, 3, 8, 13, 30, 60 and 100%. At the Joint Research Centre, Karlsruhe (JRC-Karlsruhe), thorium-uranium oxide pellets were prepared using the spark plasma sintering (SPS) technique with 79 and 93 wt. % UO2. The thermal diffusivity of (Th1-xUx)O2 (0 ≤ x ≤ 1) was measured at CNL and at JRC-Karlsruhe using the laser flash technique. ThO2 and (Th,U)O2 with 1.5, 3, 8 and 13 wt. % UO2 were found to be semi-transparent to the infrared wavelength of the laser and were coated with graphite for the thermal diffusivity measurements. This semi-transparency decreased with the addition of UO2 and was lost at about 30 wt. % of UO2 in ThO2. The thermal conductivity was deduced using the measured density and literature data for the specific heat capacity. The thermal conductivity for ThO2 is significantly higher than for UO2. The thermal conductivity of (Th,U)O2 decreases rapidly with increasing UO2 content, and for UO2 contents of 60% and higher, the conductivity of the thorium-uranium oxide fuel is close to UO2. As the mass difference between the Th and U atoms is small, the thermal conductivity decrease is attributed to the phonon scattering enhanced by lattice strain due to the introduction of uranium in ThO2 lattice. The new results were compared to the data available in the literature and were evaluated using the classical phonon transport model for oxide systems.

  4. Process and apparatus for recovery of fissionable materials from spent reactor fuel by anodic dissolution

    DOEpatents

    Tomczuk, Zygmunt; Miller, William E.; Wolson, Raymond D.; Gay, Eddie C.

    1991-01-01

    An electrochemical process and apparatus for the recovery of uranium and plutonium from spent metal clad fuel pins is disclosed. The process uses secondary reactions between U.sup.+4 cations and elemental uranium at the anode to increase reaction rates and improve anodic efficiency compared to prior art processes. In another embodiment of the process, secondary reactions between Cd.sup.+2 cations and elemental uranium to form uranium cations and elemental cadmium also assists in oxidizing the uranium at the anode.

  5. METHOD OF ROLLING URANIUM

    DOEpatents

    Smith, C.S.

    1959-08-01

    A method is described for rolling uranium metal at relatively low temperatures and under non-oxidizing conditions. The method involves the steps of heating the uranium to 200 deg C in an oil bath, withdrawing the uranium and permitting the oil to drain so that only a thin protective coating remains and rolling the oil coated uranium at a temperature of 200 deg C to give about a 15% reduction in thickness at each pass. The operation may be repeated to accomplish about a 90% reduction without edge cracking, checking or any appreciable increase in brittleness.

  6. Reductive stripping process for the recovery of uranium from wet-process phosphoric acid

    DOEpatents

    Hurst, Fred J.; Crouse, David J.

    1984-01-01

    A reductive stripping flow sheet for recovery of uranium from wet-process phosphoric acid is described. Uranium is stripped from a uranium-loaded organic phase by a redox reaction converting the uranyl to uranous ion. The uranous ion is reoxidized to the uranyl oxidation state to form an aqueous feed solution highly concentrated in uranium. Processing of this feed through a second solvent extraction cycle requires far less stripping reagent as compared to a flow sheet which does not include the reductive stripping reaction.

  7. PROCESS OF MAKING A NEUTRONIC REACTOR FUEL ELEMENT COMPOSITION

    DOEpatents

    Alter, H.W.; Davidson, J.K.; Miller, R.S.; Mewherter, J.L.

    1959-01-13

    A process is presented for making a ceramic-like material suitable for use as a nuclear fuel. The material consists of a solid solution of plutonium dioxide in uranium dioxide and is produced from a uranyl nitrate -plutonium nitrate solution containing uraniunm and plutonium in the desired ratio. The uranium and plutonium are first precipitated from the solution by addition of NH/ sub 4/OH and the dried precipitate is then calcined at 600 C in a hydrogen atmosphere to yield the desired solid solution of PuO/sub 2/ in UO/sub 2/.

  8. HEU Holdup Measurements on 321-M A-Lathe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewberry, R.A.

    The Analytical Development Section of SRTC was requested by the Facilities Disposition Division (FDD) of the Savannah River Site to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. The results of the holdup assays are essential for determining compliance with the solid waste Waste Acceptance Criteria, Material Control and Accountability, and to meet criticality safety controls. Three measurement systems were used to determine highly enrichedmore » uranium (HEU) holdup. This report covers holdup measurements on the A-Lathe that was used to machine uranium-aluminum-alloy (U-Al). Our results indicated that the lathe contained more than the limits stated in the Waste Acceptance Criteria (WAC) for the solid waste E-Area Vaults. Thus the lathe was decontaminated three times and assayed four times in order to bring the amounts of uranium to an acceptable content. This report will discuss the methodology, Non-Destructive Assay (NDA) measurements, and results of the U-235 holdup on the lathe.« less

  9. CASTING METHOD AND APPARATUS

    DOEpatents

    Gray, C.F.; Thompson, R.H.

    1958-10-01

    An improved apparatus for the melting and casting of uranium is described. A vacuum chamber is positioned over the casting mold and connected thereto, and a rod to pierce the oxide skin of the molten uranium is fitted into the bottom of the melting chamber. The entire apparatus is surrounded by a jacket, and operations are conducted under a vacuum. The improvement in this apparatus lies in the fact that the top of the melting chamber is fitted with a plunger which allows squeezing of the oxide skin to force out any molten uranium remaining after the skin has been broken and the molten charge has been cast.

  10. Optimization of Uranium-Doped Americium Oxide Synthesis for Space Application.

    PubMed

    Vigier, Jean-François; Freis, Daniel; Pöml, Philipp; Prieur, Damien; Lajarge, Patrick; Gardeur, Sébastien; Guiot, Antony; Bouëxière, Daniel; Konings, Rudy J M

    2018-04-16

    Americium 241 is a potential alternative to plutonium 238 as an energy source for missions into deep space or to the dark side of planetary bodies. In order to use the 241 Am isotope for radioisotope thermoelectric generator or radioisotope heating unit (RHU) production, americium materials need to be developed. This study focuses on the stabilization of a cubic americium oxide phase using uranium as the dopant. After optimization of the material preparation, (Am 0.80 U 0.12 Np 0.06 Pu 0.02 )O 1.8 has been successfully synthesized to prepare a 2.96 g pellet containing 2.13 g of 241 Am for fabrication of a small scale RHU prototype. Compared to the use of pure americium oxide, the use of uranium-doped americium oxide leads to a number of improvements from a material properties and safety point of view, such as good behavior under sintering conditions or under alpha self-irradiation. The mixed oxide is a good host for neptunium (i.e., the 241 Am daughter element), and it has improved safety against radioactive material dispersion in the case of accidental conditions.

  11. THE ANALYSIS OF URANIUM-ZIRCONIUM ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milner, G.W.C.; Skewies, A.F.

    1953-03-01

    A satisfactory procedure is described for the analysis of uranium-zirconium alloys containing up to 25% zirconium. It is based on the separation of the zirconium from the uranium by dissolving the cupferron complex of the former element into chloroform. After the evaporation of the solvent from the combined organic extracts, the residue is ignited to zirconium oxide. The latter is then re-dissolved and zirconium is separated from other elements co-extracted in the solvent extraction procedure by precipitation with mandelic acid. The zirconium mandelate is finally ignited to oxide at 960 deg C. The uranium is separated from the aqueous solutionmore » remaining from the cupferron extraction by precipitating with tannin at a pH of 8; the precipitate being removed by filtration and then ignited a t 800 deg C. The residue is dissolved in nitric acid and the uranium is finally determined by precipitating as ammonium diuranate and then igniting to U{sub 3}O{sub 8}. (auth)« less

  12. Uranium Isotope Fractionation during Oxidation of Dissolved U(iv) and Synthetic Solid UO2

    NASA Astrophysics Data System (ADS)

    Wang, X.; Johnson, T. M.; Lundstrom, C. C.

    2013-12-01

    U isotopes (238U/235U) show promise as a tool for environmental monitoring of U contamination as well as a proxy for paleo-redox conditions. However, the isotopic fractionation mechanisms of U are still poorly understood. In groundwater systems, U(VI), a mobile contaminant, can be reduced to immobile U(IV) and thus remediated. Previous work shows that 238U/235U of the remaining U(VI) changes with the extent of reduction. Therefore, U(VI) isotope composition in groundwater can potentially be used to detect and perhaps quantify the extent of reduction. However, knowing if isotopic fractionation occurs during U(IV) oxidation is equally important. First, the reduced U(IV) (either solid or as dissolved organic complexes) potentially can be reoxidized to U(VI). If isotope fractionation occurs during oxidation, it would complicate the use of U isotope composition as a monitoring technique. Further, in natural weathering processes, U(IV) minerals are oxidized to form dissolved U(VI), which is carried to rivers and eventually to the ocean and deposited in marine sediments. The weathering cycle is thus sensitive to redox conditions, meaning the sedimentary U isotope record may serve as a paleoredox indicator, provided U isotope fractionation during oxidation and reduction are well known. We conducted experiments oxidizing 2 different U(IV) species by O2 and measuring isotopic fractionation factors. In one experiment, dissolved U(IV) in 0.1 N HCl (pH 1) was oxidized by entrained air. As oxidation proceeds at pH 1, the remaining dissolved U(IV) becomes progressively enriched in 238U in a linear trend, while the product U(VI) paralleled, but was offset to 1.0‰ lighter in 238U/235U. This linear progression of both remaining reactant and product suggests equilibrium fractionation during oxidation of dissolved U(IV) by O2. A second experiment oxidized synthetic, solid UO2 (in 20 mM NaHCO3, pH 7) with entrained air. The oxidative fractionation is very weak in this case with product U(VI) ~0.1‰ heavier than the remaining UO2. We attribute the lack of strong fractionation during oxidation of solid UO2 to a 'rind effect', where the surface layer must be completely oxidized before the next layer is exposed to oxidant. Hence, nearly complete, congruent conversion of each layer of U(IV) to U(VI) results in minimal isotope fractionation. A small amount of transient fractionation probably occurs initially, but this is quickly negated as the surface becomes isotopically fractionated. Interestingly, our measured ~0.1‰ U isotope fractionation during oxidation of solid U(IV) agrees with the natural observation that 238U/235U ratios in river water (mainly U(VI)) are ~0.1‰ greater than those in fresh continental rocks (primarily U(IV) minerals). Application of these results to natural settings should be done with caution, however. Oxidation of natural uraninite in continental rocks is a much slower process. If the U(VI) product and the U(IV) reactant remain in contact for long periods of time (e.g., months), they may evolve toward isotopic equilibrium. Measurements of 238U/235U in various natural weathering environments should be undertaken to examine this idea.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepherd, James; Fairweather, Michael; Hanson, Bruce C.

    The oxidation of spent uranium carbide fuel, a candidate fuel for Generation IV nuclear reactors, is an important process in its potential reprocessing cycle. However, the oxidation of uranium carbide in air is highly exothermic. A model has therefore been developed to predict the temperature rise, as well as other useful information such as reaction completion times, under different reaction conditions in order to help in deriving safe oxidation conditions. Finite difference-methods are used to model the heat and mass transfer processes occurring during the reaction in two dimensions and are coupled to kinetics found in the literature.

  14. Electrochemical characterisation of CaCl2 deficient LiCl-KCl-CaCl2 eutectic melt and electro-deoxidation of solid UO2

    NASA Astrophysics Data System (ADS)

    Sri Maha Vishnu, D.; Sanil, N.; Mohandas, K. S.; Nagarajan, K.

    2016-03-01

    The CaCl2 deficient ternary eutectic melt LiCl-KCl-CaCl2 (50.5: 44.2: 5.3 mol %) was electrochemically characterised by cyclic voltammetry and polarization techniques in the context of its probable use as the electrolyte in the electrochemical reduction of solid UO2 to uranium metal. Tungsten (cathodic polarization) and graphite (anodic polarization) working electrodes were used in these studies carried out in the temperature range 623 K-923 K. The cathodic limit of the melt was observed to be set by the deposition of Ca2+ ions followed by Li+ ions on the tungsten electrode and the anodic limit by oxidation of chloride ions on the graphite electrode (chlorine evolution). The difference between the onset potential of deposition of Ca2+ and Li+ was found to be 0.241 V at a scan rate of 20 mV/s at 623 K and the difference decreased with increase in temperature and vanished at 923 K. Polarization measurements with stainless steel (SS) cathode and graphite anode at 673 K showed the possibility of low-energy reactions occurring on the UO2 electrode in the melt. UO2 pellets were cathodically polarized at 3.9 V for 25 h to test the feasibility of electro-reduction to uranium in the melt. The surface of the pellets was found reduced to U metal.

  15. XPS and SIMS study of the surface and interface of aged C + implanted uranium

    DOE PAGES

    Donald, Scott B.; Siekhaus, Wigbert J.; Nelson, Art J.

    2016-09-08

    X-ray photoelectron spectroscopy in combination with secondary ion mass spectrometry depth profiling were used to investigate the surface and interfacial chemistry of C + ion implanted polycrystalline uranium subsequently oxidized in air for over 10 years at ambient temperature. The original implantation of 33 keV C + ions into U 238 with a dose of 4.3 × 10 17 cm –3 produced a physically and chemically modified surface layer that was characterized and shown to initially prevent air oxidation and corrosion of the uranium after 1 year in air at ambient temperature. The aging of the surface and interfacial layersmore » were examined by using the chemical shift of the U 4f, C 1s, and O 1s photoelectron lines. In addition, valence band spectra were used to explore the electronic structure of the aged carbide surface and interface layer. Moreover, the time-of-flight secondary ion mass spectrometry depth profiling results for the aged sample confirmed an oxidized uranium carbide layer over the carbide layer/U metal interface.« less

  16. Oxidative dissolution of biogenic uraninite in groundwater at Old Rifle, CO

    USGS Publications Warehouse

    Campbell, Kate M.; Veeramani, Harish; Ulrich, Kai-Uwe; Blue, Lisa Y.; Giammar, Dianiel E.; Bernier-Latmani, Rizlan; Stubbs, Joanne E.; Suvorova, Elena; Yabusaki, Steve; Lezama-Pacheco, Juan S.; Mehta, Apurva; Long, Philip E.; Bargar, John R.

    2011-01-01

    Reductive bioremediation is currently being explored as a possible strategy for uranium-contaminated aquifers such as the Old Rifle site (Colorado). The stability of U(IV) phases under oxidizing conditions is key to the performance of this procedure. An in situ method was developed to study oxidative dissolution of biogenic uraninite (UO2), a desirable U(VI) bioreduction product, in the Old Rifle, CO, aquifer under different variable oxygen conditions. Overall uranium loss rates were 50–100 times slower than laboratory rates. After accounting for molecular diffusion through the sample holders, a reactive transport model using laboratory dissolution rates was able to predict overall uranium loss. The presence of biomass further retarded diffusion and oxidation rates. These results confirm the importance of diffusion in controlling in-aquifer U(IV) oxidation rates. Upon retrieval, uraninite was found to be free of U(VI), indicating dissolution occurred via oxidation and removal of surface atoms. Interaction of groundwater solutes such as Ca2+ or silicate with uraninite surfaces also may retard in-aquifer U loss rates. These results indicate that the prolonged stability of U(IV) species in aquifers is strongly influenced by permeability, the presence of bacterial cells and cell exudates, and groundwater geochemistry.

  17. TERNARY ALLOYS OF URANIUM, COLUMBIUM, AND ZIRCONIUM

    DOEpatents

    Foote, F.G.

    1960-08-01

    Ternary alloys of uranium are described which are useful as neutron- reflecting materials in a fast neutron reactor. They are especially resistant to corrosion caused by oxidative processes of gascous or aqueous origin and comprise uranium as the predominant metal with zirconiunn and niobium wherein the total content of the minor alloying elements is between 2 and 8% by weight.

  18. Assessment of undiscovered sandstone-hosted uranium resources in the Texas Coastal Plain, 2015

    USGS Publications Warehouse

    Mihalasky, Mark J.; Hall, Susan M.; Hammarstrom, Jane M.; Tureck, Kathleen R.; Hannon, Mark T.; Breit, George N.; Zielinski, Robert A.; Elliott, Brent

    2015-12-02

    The U.S. Geological Survey estimated a mean of 220 million pounds of recoverable uranium oxide (U3O8 ) remaining as potential undiscovered resources in southern Texas. This estimate used a geology-based assessment method for Tertiary sandstone-hosted uranium deposits in the Texas Coastal Plain sedimentary strata (fig.1).

  19. 49 CFR 173.417 - Authorized fissile materials packages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for export and import shipments. (2) A residual “heel” of enriched solid uranium hexafluoride may be... “Heel” in a Specification 7A Cylinder) Maximum cylinder diameter Centimeters Inches Cylinder volume Liters Cubic feet Maximum Uranium 235-enrichment (weight)percent Maximum “Heel” weight per cylinder UF6...

  20. 49 CFR 173.417 - Authorized fissile materials packages.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for export and import shipments. (2) A residual “heel” of enriched solid uranium hexafluoride may be... “Heel” in a Specification 7A Cylinder) Maximum cylinder diameter Centimeters Inches Cylinder volume Liters Cubic feet Maximum Uranium 235-enrichment (weight)percent Maximum “Heel” weight per cylinder UF6...

  1. Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism.

    PubMed

    Cologgi, Dena L; Lampa-Pastirk, Sanela; Speers, Allison M; Kelly, Shelly D; Reguera, Gemma

    2011-09-13

    The in situ stimulation of Fe(III) oxide reduction by Geobacter bacteria leads to the concomitant precipitation of hexavalent uranium [U(VI)] from groundwater. Despite its promise for the bioremediation of uranium contaminants, the biological mechanism behind this reaction remains elusive. Because Fe(III) oxide reduction requires the expression of Geobacter's conductive pili, we evaluated their contribution to uranium reduction in Geobacter sulfurreducens grown under pili-inducing or noninducing conditions. A pilin-deficient mutant and a genetically complemented strain with reduced outer membrane c-cytochrome content were used as controls. Pili expression significantly enhanced the rate and extent of uranium immobilization per cell and prevented periplasmic mineralization. As a result, pili expression also preserved the vital respiratory activities of the cell envelope and the cell's viability. Uranium preferentially precipitated along the pili and, to a lesser extent, on outer membrane redox-active foci. In contrast, the pilus-defective strains had different degrees of periplasmic mineralization matching well with their outer membrane c-cytochrome content. X-ray absorption spectroscopy analyses demonstrated the extracellular reduction of U(VI) by the pili to mononuclear tetravalent uranium U(IV) complexed by carbon-containing ligands, consistent with a biological reduction. In contrast, the U(IV) in the pilin-deficient mutant cells also required an additional phosphorous ligand, in agreement with the predominantly periplasmic mineralization of uranium observed in this strain. These findings demonstrate a previously unrecognized role for Geobacter conductive pili in the extracellular reduction of uranium, and highlight its essential function as a catalytic and protective cellular mechanism that is of interest for the bioremediation of uranium-contaminated groundwater.

  2. Variably Saturated Flow and Multicomponent Biogeochemical Reactive Transport Modeling of a Uranium Bioremediation Field Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yabusaki, Steven B.; Fang, Yilin; Williams, Kenneth H.

    2011-11-01

    Field experiments at a former uranium mill tailings site have identified the potential for stimulating indigenous bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. This effectively removes uranium from solution resulting in groundwater concentrations below actionable standards. Three-dimensional, coupled variably-saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport rates and biogeochemical reaction rates that determine the location and magnitude of key reaction products. A comprehensive reaction network, developed largely throughmore » previous 1-D modeling studies, was used to simulate the impacts on uranium behavior of pulsed acetate amendment, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. A principal challenge is the mechanistic representation of biologically-mediated terminal electron acceptor process (TEAP) reactions whose products significantly alter geochemical controls on uranium mobility through increases in pH, alkalinity, exchangeable cations, and highly reactive reduction products. In general, these simulations of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado confirmed previously identified behaviors including (1) initial dominance by iron reducing bacteria that concomitantly reduce aqueous U(VI), (2) sulfate reducing bacteria that become dominant after {approx}30 days and outcompete iron reducers for the acetate electron donor, (3) continuing iron-reducer activity and U(VI) bioreduction during dominantly sulfate reducing conditions, and (4) lower apparent U(VI) removal from groundwater during dominantly sulfate reducing conditions. New knowledge on simultaneously active metal and sulfate reducers has been incorporated into the modeling. In this case, an initially small population of slow growing sulfate reducers is active from the initiation of biostimulation. Three-dimensional, variably saturated flow modeling was used to address impacts of a falling water table during acetate injection. These impacts included a significant reduction in aquifer saturated thickness and isolation of residual reactants and products, as well as unmitigated uranium, in the newly unsaturated vadose zone. High permeability sandy gravel structures resulted in locally high flow rates in the vicinity of injection wells that increased acetate dilution. In downgradient locations, these structures created preferential flow paths for acetate delivery that enhanced local zones of TEAP reactivity and subsidiary reactions. Conversely, smaller transport rates associated with the lower permeability lithofacies (e.g., fine) and vadose zone were shown to limit acetate access and reaction. Once accessed by acetate, however, these same zones limited subsequent acetate dilution and provided longer residence times that resulted in higher concentrations of TEAP products when terminal electron donors and acceptors were not limiting. Finally, facies-based porosity and reactive surface area variations were shown to affect aqueous uranium concentration distributions; however, the ranges were sufficiently small to preserve general trends. Large computer memory and high computational performance were required to simulate the detailed coupled process models for multiple biogeochemical components in highly resolved heterogeneous materials for the 110-day field experiment and 50 days of post-biostimulation behavior. In this case, a highly-scalable subsurface simulator operating on 128 processor cores for 12 hours was used to simulate each realization. An equivalent simulation without parallel processing would have taken 60 days, assuming sufficient memory was available.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregoire, D.C.; Goltz, D.M.; Chakrabarti, C.L.

    Graphite furnace atomic absorption spectrometry (GFAAS) is an insensitive technique for determination of uranium. Experiments were conducted using electrothermal vaporization inductively coupled plasma mass spectrometry to investigate the atomization and vaporization of atomic and molecular uranium species in the graphite furnace. ETV-ICP-MS signals for uranium were observed at temperatures well below the appearance temperature of uranium atoms suggesting the vaporization of molecular uranium oxide at temperatures below 2000{degrees}C. Examination of individual uranium ETV-ICP-MS signals reveals the vaporization of uranium carbide at temperatures above 2600{degrees}C. Chemical modifiers such as 0.2% HF and 0.1% CHF{sub 3} in the argon carrier gas, weremore » ineffective in preventing the formation of uranium carbide at 2700{degrees}C. Vaporization of uranium from a tungsten surface using tungsten foil inserted into the graphite tube prevented the formation of uranium carbide and eliminated the ETV-ICP-MS signal suppression caused by a sodium chloride matrix.« less

  4. LIQUID METAL COMPOSITIONS CONTAINING URANIUM

    DOEpatents

    Teitel, R.J.

    1959-04-21

    Liquid metal compositions containing a solid uranium compound dispersed therein is described. Uranium combines with tin to form the intermetallic compound USn/sub 3/. It has been found that this compound may be incorporated into a liquid bath containing bismuth and lead-bismuth components, if a relatively small percentage of tin is also included in the bath. The composition has a low thermal neutron cross section which makes it suitable for use in a liquid metal fueled nuclear reactor.

  5. Solid phase extraction of uranium(VI) onto benzoylthiourea-anchored activated carbon.

    PubMed

    Zhao, Yongsheng; Liu, Chunxia; Feng, Miao; Chen, Zhen; Li, Shuqiong; Tian, Gan; Wang, Li; Huang, Jingbo; Li, Shoujian

    2010-04-15

    A new solid phase extractant selective for uranium(VI) based on benzoylthiourea anchored to activated carbon was developed via hydroxylation, amidation and reaction with benzoyl isothiocyanate in sequence. Fourier transform infrared spectroscopy and total element analysis proved that benzoylthiourea had been successfully grafted to the surface of the activated carbon, with a loading capacity of 1.2 mmol benzoylthiourea per gram of activated carbon. The parameters that affect the uranium(VI) sorption, such as contact time, solution pH, initial uranium(VI) concentration, adsorbent dose and temperature, have been investigated. Results have been analyzed by Langmuir and Freundlich isotherm; the former was more suitable to describe the sorption process. The maximum sorption capacity (82 mg/g) for uranium(VI) was obtained at experimental conditions. The rate constant for the uranium sorption by the as-synthesized extractant was 0.441 min(-1) from the first order rate equation. Thermodynamic parameters (DeltaH(0)=-46.2 kJ/mol; DeltaS(0)=-98.0 J/mol K; DeltaG(0)=-17.5 kJ/mol) showed the adsorption of an exothermic process and spontaneous nature, respectively. Additional studies indicated that the benzoylthiourea-anchored activated carbon (BT-AC) selectively sorbed uranyl ions in the presence of competing ions, Na(+), Co(2+), Sr(2+), Cs(+) and La(3+). 2009 Elsevier B.V. All rights reserved.

  6. Ground-Water Quality of the Northern High Plains Aquifer, 1997, 2002-04

    USGS Publications Warehouse

    Stanton, Jennifer S.; Qi, Sharon L.

    2007-01-01

    An assessment of ground-water quality in the northern High Plains aquifer was completed during 1997 and 2002-04. Ground-water samples were collected at 192 low-capacity, primarily domestic wells in four major hydrogeologic units of the northern High Plains aquifer-Ogallala Formation, Eastern Nebraska, Sand Hills, and Platte River Valley. Each well was sampled once, and water samples were analyzed for physical properties and concentrations of nitrogen and phosphorus compounds, pesticides and pesticide degradates, dissolved solids, major ions, trace elements, dissolved organic carbon (DOC), radon, and volatile organic compounds (VOCs). Tritium and microbiology were analyzed at selected sites. The results of this assessment were used to determine the current water-quality conditions in this subregion of the High Plains aquifer and to relate ground-water quality to natural and human factors affecting water quality. Water-quality analyses indicated that water samples rarely exceeded established U.S. Environmental Protection Agency public drinking-water standards for those constituents sampled; 13 of the constituents measured or analyzed exceeded their respective standards in at least one sample. The constituents that most often failed to meet drinking-water standards were dissolved solids (13 percent of samples exceeded the U.S. Environmental Protection Agency Secondary Drinking-Water Regulation) and arsenic (8 percent of samples exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level). Nitrate, uranium, iron, and manganese concentrations were larger than drinking-water standards in 6 percent of the samples. Ground-water chemistry varied among hydrogeologic units. Wells sampled in the Platte River Valley and Eastern Nebraska units exceeded water-quality standards more often than the Ogallala Formation and Sand Hills units. Thirty-one percent of the samples collected in the Platte River Valley unit had nitrate concentrations greater than the standard, 22 percent exceeded the manganese standard, 19 percent exceeded the sulfate standard, 26 percent exceeded the uranium standard, and 38 percent exceeded the dissolved-solids standard. In addition, 78 percent of samples had at least one detectable pesticide and 22 percent of samples had at least one detectable VOC. In the Eastern Nebraska unit, 30 percent of the samples collected had dissolved-solids concentrations larger than the standard, 23 percent exceeded the iron standard, 13 percent exceeded the manganese standard, 10 percent exceeded the arsenic standard, 7 percent exceeded the sulfate standard, 7 percent exceeded the uranium standard, and 7 percent exceeded the selenium standard. No samples exceeded the nitrate standard. Thirty percent of samples had at least one detectable pesticide compound and 10 percent of samples had at least one detectable VOC. In contrast, the Sand Hills and Ogallala Formation units had fewer detections of anthropogenic compounds and drinking-water exceedances. In the Sand Hills unit, 15 percent of the samples exceeded the arsenic standard, 4 percent exceeded the nitrate standard, 4 percent exceeded the uranium standard, 4 percent exceeded the iron standard, and 4 percent exceeded the dissolved-solids standard. Fifteen percent of samples had at least one pesticide compound detected and 4 percent had at least one VOC detected. In the Ogallala Formation unit, 6 percent of water samples exceeded the arsenic standard, 4 percent exceeded the dissolved-solids standard, 3 percent exceeded the nitrate standard, 2 percent exceeded the manganese standard, 1 percent exceeded the iron standard, 1 percent exceeded the sulfate standard, and 1 percent exceeded the uranium standard. Eight percent of samples collected in the Ogallala Formation unit had at least one pesticide detected and 6 percent had at least one VOC detected. Differences in ground-water chemistry among the hydrogeologic units were attributed to variable depth to water, depth of the well screen below the water table, reduction-oxidation conditions, ground-water residence time, interactions with surface water, composition of aquifer sediments, extent of cropland, extent of irrigated land, and fertilizer application rates.

  7. Column Testing and 1D Reactive Transport Modeling to Evaluate Uranium Plume Persistence Processes

    NASA Astrophysics Data System (ADS)

    Johnson, R. H.; Morrison, S.; Morris, S.; Tigar, A.; Dam, W. L.; Dayvault, J.

    2015-12-01

    At many U.S. Department of Energy Office of Legacy Management sites, 100 year natural flushing was selected as a remedial option for groundwater uranium plumes. However, current data indicate that natural flushing is not occurring as quickly as expected and solid-phase and aqueous uranium concentrations are persistent. At the Grand Junction, Colorado office site, column testing was completed on core collected below an area where uranium mill tailings have been removed. The total uranium concentration in this core was 13.2 mg/kg and the column was flushed with laboratory-created water with no uranium and chemistry similar to the nearby Gunnison River. The core was flushed for a total of 91 pore volumes producing a maximum effluent uranium concentration of 6,110 μg/L at 2.1 pore volumes and a minimum uranium concentration of 36.2 μg/L at the final pore volume. These results indicate complex geochemical reactions at small pore volumes and a long tailing affect at greater pore volumes. Stop flow data indicate the occurrence of non-equilibrium processes that create uranium concentration rebound. These data confirm the potential for plume persistence, which is occurring at the field scale. 1D reactive transport modeling was completed using PHREEQC (geochemical model) and calibrated to the column test data manually and using PEST (inverse modeling calibration routine). Processes of sorption, dual porosity with diffusion, mineral dissolution, dispersion, and cation exchange were evaluated separately and in combination. The calibration results indicate that sorption and dual porosity are major processes in explaining the column test data. These processes are also supported by fission track photographs that show solid-phase uranium residing in less mobile pore spaces. These procedures provide valuable information on plume persistence and secondary source processes that may be used to better inform and evaluate remedial strategies, including natural flushing.

  8. Assessment of undiscovered resources in calcrete uranium deposits, Southern High Plains region of Texas, New Mexico, and Oklahoma, 2017

    USGS Publications Warehouse

    Hall, Susan M.; Mihalasky, Mark J.; Van Gosen, Bradley S.

    2017-11-14

    The U.S. Geological Survey estimates a mean of 40 million pounds of in-place uranium oxide (U3O8) remaining as potential undiscovered resources in the Southern High Plains region of Texas, New Mexico, and Oklahoma. This estimate used a geology-based assessment method specific to calcrete uranium deposits.

  9. A procedure for quantitation of total oxidized uranium for bioremediation studies

    USGS Publications Warehouse

    Elias, Dwayne A.; Senko, John M.; Krumholz, Lee R.

    2003-01-01

    A procedure was developed for the quantitation of complexed U(VI) during studies on U(VI) bioremediation. These studies typically involve conversion of soluble or complexed U(VI) (oxidized) to U(IV) (the reduced form which is much less soluble). Since U(VI) freely exchanges between material adsorbed to the solid phase and the dissolved phase, uranium bioremediation experiments require a mass balance of U in both its soluble and adsorbed forms as well as in the reduced sediment bound phase. We set out to optimize a procedure for extraction and quantitation of sediment bound U(VI). Various extractant volumes to sediment ratios were tested and it was found that between 1:1 to 8:1 ratios (v/w) there was a steady increase in U(VI) recovered, but no change with further increases in v/w ratio.Various strengths of NaHCO3, Na-EDTA, and Na-citrate were used to evaluate complexed U(VI) recovery, while the efficiency of a single versus repeated extraction steps was compared with synthesized uranyl-phosphate and uranyl-hydroxide. Total recovery with 1 M NaHCO3 was 95.7% and 97.9% from uranyl-phosphate and uranyl-hydroxide, respectively, compared to 80.7% and 89.9% using 450 mM NaHCO3. Performing the procedure once yielded an efficiency of 81.1% and 92.3% for uranyl-phosphate and uranyl-hydroxide, respectively, as compared to three times. All other extractants yielded 7.9–82.0% in both experiments.

  10. Retention and chemical speciation of uranium in an oxidized wetland sediment from the Savannah River Site.

    PubMed

    Li, Dien; Seaman, John C; Chang, Hyun-Shik; Jaffe, Peter R; Koster van Groos, Paul; Jiang, De-Tong; Chen, Ning; Lin, Jinru; Arthur, Zachary; Pan, Yuanming; Scheckel, Kirk G; Newville, Matthew; Lanzirotti, Antonio; Kaplan, Daniel I

    2014-05-01

    Uranium speciation and retention mechanisms onto Savannah River Site (SRS) wetland sediments was studied using batch (ad)sorption experiments, sequential extraction, U L3-edge X-ray absorption near-edge structure (XANES) spectroscopy, fluorescence mapping and μ-XANES. Under oxidized conditions, U was highly retained by the SRS wetland sediments. In contrast to other similar but much lower natural organic matter (NOM) sediments, significant sorption of U onto the SRS sediments was observed at pH < 4 and pH > 8. Sequential extraction indicated that the U species were primarily associated with the acid soluble fraction (weak acetic acid extractable) and organic fraction (Na-pyrophosphate extractable). Uranium L3-edge XANES spectra of the U-bound sediments were nearly identical to that of uranyl acetate. Based on fluorescence mapping, U and Fe distributions in the sediment were poorly correlated, U was distributed throughout the sample and did not appear as isolated U mineral phases. The primary oxidation state of U in these oxidized sediments was U(VI), and there was little evidence that the high sorptive capacity of the sediments could be ascribed to abiotic or biotic reduction to the less soluble U(IV) species or to secondary mineral formation. Collectively, this study suggests that U may be strongly bound to wetland sediments, not only under reducing conditions by reductive precipitation, but also under oxidizing conditions through NOM-uranium bonding. Published by Elsevier Ltd.

  11. Uranium Hydride Nucleation and Growth Model FY'16 ESC Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Mary Ann; Richards, Andrew Walter; Holby, Edward F.

    2016-12-20

    Uranium hydride corrosion is of great interest to the nuclear industry. Uranium reacts with water and/or hydrogen to form uranium hydride which adversely affects material performance. Hydride nucleation is influenced by thermal history, mechanical defects, oxide thickness, and chemical defects. Information has been gathered from past hydride experiments to formulate a uranium hydride model to be used in a Canned Subassembly (CSA) lifetime prediction model. This multi-scale computer modeling effort started in FY’13, and the fourth generation model is now complete. Additional high-resolution experiments will be run to further test the model.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buck, E.C.; Dietz, N.L.; Bates, J.K.

    Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level.

  13. Uranium Sequestration During Biostimulated Reduction and In Response to the Return of Oxic Conditions In Shallow Aquifers

    USGS Publications Warehouse

    Fuller, Christopher C.; Johnson, Kelly J.; Akstin, Katherine; Singer, David M.; Yabusaki, Steven B.; Fang, Yilin; Fuhrmann, M.

    2015-01-01

    A proposed approach for groundwater remediation of uranium contamination is to generate reducing conditions by stimulating the growth of microbial populations through injection of electron donor compounds into the subsurface. Sufficiently reducing conditions will result in reduction of soluble hexavalent uranium, U(VI), and precipitation of the less soluble +4 oxidation state uranium, U(IV). This process is termed biostimulated reduction. A key issue in the remediation of uranium (U) contamination in aquifers by biostimulated reduction is the long term stability of the sequestered uranium. Three flow-through column experiments using aquifer sediment were used to evaluate the remobilization of bioreduced U sequestered under conditions in which biostimulation extended well into sulfate reduction to enhance precipitation of reduced sulfur phases such as iron sulfides. One column received added ferrous iron, Fe(II), increasing production of iron sulfides, to test their effect on remobilization of the sequestered uranium, either by serving as a redox buffer by competing for dissolved oxygen, or by armoring the reduced uranium. During biostimulation of the ambient microbial population with acetate, dissolved uranium was lowered by a factor of 2.5 or more with continued removal for over 110 days of biostimulation, well after the onset of sulfate reduction at ~30 days. Sequestered uranium was essentially all U(IV) resulting from the formation of nano-particulate uraninite that coated sediment grains to a thickness of a few 10’s of microns, sometimes in association with S and Fe. A multicomponent biogeochemical reactive transport model simulation of column effluents during biostimulation was generally able to describe the acetate oxidation, iron, sulfate, and uranium reduction for all three columns using parameters derived from simulations of field scale biostimulation experiments. Columns were eluted with artificial groundwater at equilibrium with atmospheric oxygen to simulate the upper limit of dissolved oxygen in recharge water. Overall about 9% of total uranium removed from solution during biostimulation was remobilized. Release of U during oxic elution was a continuous process over 140 days with dissolved uranium concentrations about 0.2 and 0.8 aM for columns with and without ferrous iron addition, respectively. Uranium remaining on the sediment was in the reduced form. The prolonged period of biostimulation and concomitant sulfate reduction appears to limit the rate of U(IV) oxidative remobilization in contrast to a large release observed for columns in previous studies that did not undergo sulfate reduction. Although continued sulfate reduction may cause decreased permeability from precipitation of iron sulfide, the greater apparent stability of the sequestered U(IV) provided by the sustained biostimulation should be considered in design of field scale remediation efforts. Remobilization of uranium following biostimulated reduction should be tested further at the field scale.

  14. The synthesis, characterization and application of iron oxide nanocrystals in magnetic separations for arsenic and uranium removal

    NASA Astrophysics Data System (ADS)

    Mayo, John Thomas

    Arsenic and uranium in the environment are hazardous to human health and require better methods for detection and remediation. Nanocrystalline iron oxides offer a number of advantages as sorbents for water purification and environmental remediation. First, highly uniform and crystalline iron oxide nanocrystals (nMAG) were prepared using thermal decomposition of iron salts in organic solutions; for the applications of interest in this thesis, a central challenge was the adaptation of these conventional synthetic methods to the needs of low infrastructure and economically disadvantaged settings. We show here that it is possible to form highly uniform and magnetically responsive nanomaterials using starting reagents and equipment that are readily available and economical. The products of this approach, termed the 'Kitchen Synthesis', are of comparable quality and effectiveness to laboratory materials. The narrow size distributions of the iron oxides produced in the laboratory synthesis made it possible to study the size-dependence of the magnetic separation efficiency of nanocrystals; generally as the diameter of particles increased they could be removed under lower applied magnetic fields. In this work we take advantage of this size-dependence to use magnetic separation as a tool to separate broadly distributed populations of magnetic materials. Such work makes it possible to use these materials in multiplexed separation and sensing schemes. With the synthesis and magnetic separation studies of these materials completed, it was possible to optimize their applications in water purification and environmental remediation. These materials removed both uranium and arsenic from contaminated samples, and had remarkably high sorption capacities --- up to 12 wt% for arsenic and 30 wt% for uranium. The contaminated nMAG is removed from the drinking water by either retention in a sand column, filter, or by magnetic separation. The uranium adsorption process was also utilized for the enhanced detection of uranium in environmental matrices. By relying on alpha-particle detection in well-formed and dense nMAG films, it was possible to improve soil detection of uranium by more than ten-thousand-fold. Central for this work was a detailed understanding of the chemistry at the iron oxide interface, and the role of the organic coatings in mediating the sorption process.

  15. METHOD OF MAKING WIRE FUEL ELEMENTS

    DOEpatents

    Zambrow, J.L.

    1960-08-01

    A method is given for making a nuclear reactor fuel element in the form of a uranium-bearing wire clad with zirconium. A uranium bar is enclosed in a zirconium sheath which is coated with an oxide of magnesium, beryllium, or zirconium. The sheathed bar is then placed in a steel tube and reduced to the desired diameter by swaging at 800 to 900 deg C, after which the steel and oxide are removed.

  16. Determination of irradiated reactor uranium in soil samples in Belarus using 236U as irradiated uranium tracer.

    PubMed

    Mironov, Vladislav P; Matusevich, Janna L; Kudrjashov, Vladimir P; Boulyga, Sergei F; Becker, J Sabine

    2002-12-01

    This work presents experimental results on the distribution of irradiated reactor uranium from fallout after the accident at Chernobyl Nuclear Power Plant (NPP) in comparison to natural uranium distribution in different soil types. Oxidation processes and vertical migration of irradiated uranium in soils typical of the 30 km relocation area around Chernobyl NPP were studied using 236U as the tracer for irradiated reactor uranium and inductively coupled plasma mass spectrometry as the analytical method for uranium isotope ratio measurements. Measurements of natural uranium yielded significant variations of its concentration in upper soil layers from 2 x 10(-7) g g(-1) to 3.4 x 10(-6) g g(-1). Concentrations of irradiated uranium in the upper 0-10 cm soil layers at the investigated sampling sites varied from 5 x 10(-12) g g(-1) to 2 x 10(-6) g g(-1) depending on the distance from Chernobyl NPP. In the majority of investigated soil profiles 78% to 97% of irradiated "Chernobyl" uranium is still contained in the upper 0-10 cm soil layers. The physical and chemical characteristics of the soil do not have any significant influence on processes of fuel particle destruction. Results obtained using carbonate leaching of 236U confirmed that more than 60% of irradiated "Chernobyl" uranium is still in a tetravalent form, ie. it is included in the fuel matrix (non-oxidized fuel UO2). The average value of the destruction rate of fuel particles determined for the Western radioactive trace (k = 0.030 +/- 0.005 yr(-1)) and for the Northern radioactive trace (k = 0.035 + 0.009 yr(-1)) coincide within experimental errors. Use of leaching of fission products in comparison to leaching of uranium for study of the destruction rate of fuel particles yielded poor coincidence due to the fact that use of fission products does not take into account differences in the chemical properties of fission products and fuel matrix (uranium).

  17. Synthesis of ion-exchange resin for selective thorium and uranyl ions sorption

    NASA Astrophysics Data System (ADS)

    Konovalov, Konstantin; Sachkov, Victor

    2017-11-01

    In this work, the method of ion-exchange resin synthesis selective to radionuclides (uranium and thorium) is presented. The method includes synthesis of polymeric styrene-divinylbenzene macroporous matrix with size of 0.1-0.2 mm, and its subsequent transformation by nitration and then reduction by tin (II) chloride. For passivation of active primary amines partially oxidation by oxygen from air is used. Obtained ion-exchange resin has ratio of sorption sum U+Th to sorption sum of other total rare-earth elements as 1:1.88 at ratio of solid to liquid phase 1:200. The proposed method of ion-exchange resin synthesis is scaled-up for laboratory reactors with volume of 5 and 50 liters.

  18. Evaluating the risk from depleted uranium after the Boeing 747-258F crash in Amsterdam, 1992.

    PubMed

    Uijt de Haag, P A; Smetsers, R C; Witlox, H W; Krüs, H W; Eisenga, A H

    2000-08-28

    On 4 October 1992, a large cargo plane crashed into an apartment building in the Bijlmermeer quarter of Amsterdam. In the years following the accident, an increasing number of people started reporting health complaints, which they attributed to exposure to dangerous substances after the crash. Since the aircraft had been carrying depleted uranium as counterbalance weights and about 150 kg uranium had been found missing after clearance of the crash site, exposure to uranium oxide particles was pointed out as the possible cause of their health complaints. Six years after the accident, a risk analysis was therefore carried out to investigate whether the health complaints could be attributed to exposure to uranium oxide set free during the accident. The scientific challenge was to come up with reliable results, knowing that - considering the late date - virtually no data were available to validate any calculated result. The source term of uranium was estimated using both generic and specific data. Various dispersion models were applied in combination with the local setting and the meteorological conditions at the time of the accident to estimate the exposure of bystanders during the fire caused by the crash. Emphasis was given to analysing the input parameters, inter-comparing the various models and comparing model results with the scarce information available. Uranium oxide formed in the fire has a low solubility, making the chemical toxicity to humans less important than the radiotoxicity. Best-estimate results indicated that bystanders may have been exposed to a radiation dose of less than 1 microSv, whereas a worst-case approach indicated an upper limit of less than 1 mSv. This value is considerably less than the radiation dose for which acute effects are to be expected. It is therefore considered to be improbable that the missing uranium had indeed led to the health complaints reported.

  19. Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1

    USGS Publications Warehouse

    Bohu, Tsing; Santelli, Cara M; Akob, Denise M.; Neu, Thomas R; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten

    2015-01-01

    Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling.

  20. Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1.

    PubMed

    Bohu, Tsing; Santelli, Cara M; Akob, Denise M; Neu, Thomas R; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten

    2015-01-01

    Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling.

  1. A method for phenomenological and chemical kinetics study of autocatalytic reactive dissolution by optical microscopy. The case of uranium dioxide dissolution in nitric acid media

    NASA Astrophysics Data System (ADS)

    Marc, Philippe; Magnaldo, Alastair; Godard, Jérémy; Schaer, Éric

    2018-03-01

    Dissolution is a milestone of the head-end of hydrometallurgical processes, as the stabilization rates of the chemical elements determine the process performance and hold-up. This study aims at better understanding the chemical and physico-chemical phenomena of uranium dioxide dissolution reactions in nitric acid media in the Purex process, which separates the reusable materials and the final wastes of the spent nuclear fuels. It has been documented that the attack of sintering-manufactured uranium dioxide solids occurs through preferential attack sites, which leads to the development of cracks in the solids. Optical microscopy observations show that in some cases, the development of these cracks leads to the solid cleavage. It is shown here that the dissolution of the detached fragments is much slower than the process of the complete cleavage of the solid, and occurs with no disturbing phenomena, like gas bubbling. This fact has motivated the measurement of dissolution kinetics using optical microscopy and image processing. By further discriminating between external resistance and chemical reaction, the "true" chemical kinetics of the reaction have been measured, and the highly autocatalytic nature of the reaction confirmed. Based on these results, the constants of the chemical reactions kinetic laws have also been evaluated.

  2. DEHYDRATION OF DEUTERIUM OXIDE SLURRIES

    DOEpatents

    Hiskey, C.F.

    1959-03-10

    A method is presented for recovering heavy water from uranium oxide-- heavy water slurries. The method consists in saturating such slurries with a potassium nitrate-sodium nitrate salt mixture and then allowing the self-heat of the slurry to raise its temperature to a point slightly in excess of 100 deg C, thus effecting complete evaporation of the free heavy water from the slurry. The temperature of the slurry is then allowed to reach 300 to 900 deg C causing fusion of the salt mixture and expulsion of the water of hydration. The uranium may be recovered from the fused salt mixture by treatment with water to leach the soluble salts away from the uranium-containing residue.

  3. Release of 226Ra from uranium mill tailings by microbial Fe(III) reduction

    USGS Publications Warehouse

    Landa, E.R.; Phillips, E.J.P.; Lovley, D.R.

    1991-01-01

    Uranium mill tailings were anaerobically incubated in the presence of H2 with Alteromonas putrefaciens, a bacterium known to couple the oxidation of H2 and organic compounds to the reduction of Fe(III) oxides. There was a direct correlation between the extent of Fe(III) reduction and the accumulation of dissolved 226Ra. In sterile tailings in which Fe(III) was not reduced, there was negligible leaching of 226Ra. The behavior of Ba was similar to that of Ra in inoculated and sterile systems. These results demonstrate that under anaerobic conditions, microbial reduction of Fe(III) may result in the release of dissolved 226Ra from uranium mill tailings. ?? 1991.

  4. Redox bias in loss of ignition moisture measurement for relatively pure plutonium-bearing oxide materials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eller, P. G.; Stakebake, J. L.; Cooper, T. D.

    2001-01-01

    This paper evaluates potential analytical bias in application of the Loss on Ignition (LOI) technique for moisture measurement to relatively pure (plutonium assay of 80 wt.% or higher) oxides containing uranium that have been stabilized according to stabilization and storage standard DOE-STD-3013-2000 (STD-3013). An immediate application is to Rocky Flats (RF) materials derived from highgrade metal hydriding separations subsequently treated by multiple calcination cycles. Specifically evaluated are weight changes due to oxidatiodreduction of multivalent impurity oxides that could mask true moisture equivalent content measurement. Process knowledge and characterization of materials representing complex-wide materials to be stabilized and packaged according tomore » STD-3013, and particularly for the immediate RF target stream, indicate that oxides of uranium, iron and gallium are the only potential multivalent constituents expected to be present above 0.5 wt.%. The evaluation shows that of these constituents, with few exceptions, only uranium oxides can be present at a sufficient level to produce weight gain biases significant with respect to the LO1 stability test. In general, these formerly high-value, high-actinide content materials are reliably identifiable by process knowledge and measurement. Si&icant bias also requires that UO1 components remain largely unoxidized after calcination and are largely converted to U30s clsning LO1 testing at only slightly higher temperatures. Based on wellestablished literature, it is judged unlikely that this set of conditions will be realized in practice. We conclude that it is very likely that LO1 weight gain bias will be small for the immediate target RF oxide materials containing greater than 80 wt.% plutonium plus a much smaller uranium content. Recommended tests are in progress to confum these expectations and to provide a more authoritative basis for bounding LO1 oxidatiodreduction biases. LO1 bias evaluation is more difficult for lower purity materials and for fuel-type uranium-plutonium oxides. However, even in these cases testing may show that bias effects are manageable.« less

  5. Dissolution of synthetic uranium dibutyl phosphate deposits in oxidizing and reducing chemical formulations.

    PubMed

    Rufus, A L; Sathyaseelan, V S; Narasimhan, S V; Velmurugan, S

    2013-06-15

    Permanganate and nitrilotriacetic acid (NTA) based dilute chemical formulations were evaluated for the dissolution of uranium dibutyl phosphate (U-DBP), a compound that deposits over the surfaces of nuclear reprocessing plants and waste storage tanks. A combination of an acidic, oxidizing treatment (nitric acid with permanganate) followed by reducing treatment (NTA based formulation) efficiently dissolved the U-DBP deposits. The dissolution isotherm of U-DBP in its as precipitated form followed a logarithmic fit. The same chemical treatment was also effective in dissolving U-DBP coated on the surface of 304-stainless steel, while resulting in minimal corrosion of the stainless steel substrate material. Investigation of uranium recovery from the resulting decontamination solutions by ion exchange with a bed of mixed anion and cation resins showed quantitative removal of uranium. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Efficient Removal of Uranium from Aqueous Solution by Reduced Graphene Oxide-Zn0.5Ni0.5Fe2O4 Ferrite-Polyaniline Nanocomposite

    NASA Astrophysics Data System (ADS)

    Tran, Dat Quang; Pham, Hung Thanh; Do, Hung Quoc

    2017-06-01

    Reduced graphene oxide-Zn0.5Ni0.5Fe2O4 ferrite-polyaniline nanocomposite (RGO-ZNF-PANI) was synthesized by a three-step method. The prepared samples were characterized by x-ray diffraction, Raman spectroscopy, scanning electron microscopy and vibrating sample magnetometer. In particular, we found that this material is capable of effectively removing uranium from an aquatic environment. This is confirmed by our experimental results using the method of inductively coupled plasma mass spectrometry. Adsorptive behaviour of uranium from an aqueous solution on the RGO-ZNF-PANI nanocomposite was examined as a function of pH, contact time, and equilibrium. Uranium concentration was carried out by batch techniques. The adsorption isotherm agrees well with the Langmuir model, having a maximum sorption capacity of 1885 mg/g, at pH 5 and 25°C.

  7. TRACE ELEMENT ANALYSES OF URANIUM MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beals, D; Charles Shick, C

    The Savannah River National Laboratory (SRNL) has developed an analytical method to measure many trace elements in a variety of uranium materials at the high part-per-billion (ppb) to low part-per-million (ppm) levels using matrix removal and analysis by quadrapole ICP-MS. Over 35 elements were measured in uranium oxides, acetate, ore and metal. Replicate analyses of samples did provide precise results however none of the materials was certified for trace element content thus no measure of the accuracy could be made. The DOE New Brunswick Laboratory (NBL) does provide a Certified Reference Material (CRM) that has provisional values for a seriesmore » of trace elements. The NBL CRM were purchased and analyzed to determine the accuracy of the method for the analysis of trace elements in uranium oxide. These results are presented and discussed in the following paper.« less

  8. PROCESS OF RECOVERING URANIUM

    DOEpatents

    Kilner, S.B.

    1959-12-29

    A method is presented for separating and recovering uranium from a complex mixure of impurities. The uranium is dissolved to produce an aqueous acidic solution including various impurities. In accordance with one method, with the uranium in the uranyl state, hydrogen cyanide is introduced into the solution to complex the impurities. Subsequently, ammonia is added to the solution to precipitate the uraniunn as ammonium diuranate away from the impurities in the solution. Alternatively, the uranium is precipitated by adding an alkaline metal hydroxide. In accordance with the second method, the uranium is reduced to the uranous state in the solution. The reduced solution is then treated with solid alkali metal cyanide sufficient to render the solution about 0.1 to 1.0 N in cyanide ions whereat cyanide complex ions of the metal impurities are produced and the uranium is simultaneously precipituted as uranous hydroxide. Alternatively, hydrogen cyanide may be added to the reduced solution and the uranium precipitated subsequently by adding ammonium hydroxide or an alkali metal hydroxide. Other refinements of the method are also disclosed.

  9. Interpretation of aircraft multispectral scanner images for mapping of alteration with uranium mineralization, Copper Mountain, Wyoming

    NASA Technical Reports Server (NTRS)

    Conel, J. E.

    1983-01-01

    NS-001 multispectral scanner data (0.45-2.35 micron) combined as principal components were utilized to map distributions of surface oxidation/weathering in Precambrian granitic rocks at Copper Mountain, Wyoming. Intense oxidation is found over granitic outcrops in partly exhumed pediments along the southern margin of the Owl Creek uplift, and along paleodrainages higher in the range. Supergene(?) uranium mineralization in the granites is localized beneath remnant Tertiary sediments covering portions of the pediments. The patterns of mineralization and oxidation are in agreement, but the genetic connections between the two remain in doubt.

  10. Procedure for Uranium-Molybdenum Density Measurements and Porosity Determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakaran, Ramprashad; Devaraj, Arun; Joshi, Vineet V.

    2016-08-13

    The purpose of this document is to provide guidelines for preparing uranium-molybdenum (U-Mo) specimens, performing density measurements, and computing sample porosity. Typical specimens (solids) will be sheared to small rectangular foils, disks, or pieces of metal. A mass balance, solid density determination kit, and a liquid of known density will be used to determine the density of U-Mo specimens using the Archimedes principle. A standard test weight of known density would be used to verify proper operation of the system. By measuring the density of a U-Mo sample, it is possible to determine its porosity.

  11. Chemical state of fission products in irradiated uranium carbide fuel

    NASA Astrophysics Data System (ADS)

    Arai, Yasuo; Iwai, Takashi; Ohmichi, Toshihiko

    1987-12-01

    The chemical state of fission products in irradiated uranium carbide fuel has been estimated by equilibrium calculation using the SOLGASMIX-PV program. Solid state fission products are distributed to the fuel matrix, ternary compounds, carbides of fission products and intermetallic compounds among the condensed phases appearing in the irradiated uranium carbide fuel. The chemical forms are influenced by burnup as well as stoichiometry of the fuel. The results of the present study almost agree with the experimental ones reported for burnup simulated carbides.

  12. Successful remediation of four uranium calibration pits at Technical Area II, Sandia National Laboratories, Albuquerque, New Mexico, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway, R.; Wade, M.; Tharp, T.

    1994-12-31

    The first remediation of an Environmental Restoration (ER) Project site at Sandia National Laboratories (SNL) was successfully conducted in May and June 1994 at Technical Area II. The removal action involved four Uranium Calibration Pits (UCPs) filled with radioactive or hazardous materials. The concrete culvert pits were used to test and calibrate borehole radiometric logging tools for uranium exploration. The removal action consisted of excavating and containerizing the pit contents and contaminated soil beneath the culverts, removing the four culverts, and backfilling the excavation. Each UCP removal had unique complexities. Sixty 208-L drums of solid radioactive waste and eight 208-Lmore » drums of liquid hazardous waste were generated during the VCM. Two of the concrete culverts will be disposed as radioactive waste and two as solid waste. Uranium-238 was detected in UCP-2 ore material at 746 pci/g, and at 59 pci/g in UCP-1 silica sand. UCP-4 was empty; sludge from UCP-3 contained 122 mg/L (ppm) chromium.« less

  13. Uranium Isotope Ratios in Modern and Precambrian Soils

    NASA Astrophysics Data System (ADS)

    DeCorte, B.; Planavsky, N.; Wang, X.; Auerbach, D. J.; Knudsen, A. C.

    2015-12-01

    Uranium isotopes (δ238U values) are an emerging paleoredox proxy that can help to better understand the redox evolution of Earth's surface environment. Recently, uranium isotopes have been used to reconstruct ocean and atmospheric redox conditions (Montoya-Pino et al., 2010; Brennecka et al., 2011; Kendall et al., 2013; Dahl et al., 2014). However, to date, there have not been studies on paleosols, despite that paleosols are, arguably better suited to directly tracking the redox conditions of the atmosphere. Sedimentary δ238U variability requires the formation of the soluble, oxidized form of U, U(VI). The formation of U(VI) is generally thought to require oxygen levels orders of magnitude higher than prebiotic levels. Without significant U mobility, it would have been impossible to develop isotopically distinct pools of uranium in ancient Earth environments. Conversely, an active U redox cycle leads to significant variability in δ238U values. Here we present a temporally and geographically expansive uranium isotope record from paleosols and modern soils to better constrain atmospheric oxygen levels during the Precambrian. Preliminary U isotope measurements of paleosols are unfractionated (relative to igneous rocks), possibly because of limited fractionation during oxidation (e.g., {Wang, 2015 #478}) or insufficient atmospheric oxygen levels to oxidize U(IV)-bearing minerals in the bedrock. Further U isotope measurements of paleosols with comparison to modern soils will resolve this issue.

  14. Fast Oxidation Processes in a Naturally Reduced Aquifer Zone Caused by Dissolved Oxygen

    NASA Astrophysics Data System (ADS)

    Davis, J. A.; Jemison, N. E.; Williams, K. H.; Hobson, C.; Bush, R. P.

    2014-12-01

    The occurrence of naturally reduced zones is quite common in alluvial aquifers in the western U.S.A. due to the burial of woody debris in flood plains. The naturally reduced zones are heterogeneously dispersed in such aquifers and are characterized by high concentrations of organic carbon and reduced phases, including iron sulfides and reduced forms of metals, including uranium(IV). The persistence of high concentrations of dissolved uranium(VI) at uranium-contaminated aquifers on the Colorado Plateau has been attributed to slow oxidation of insoluble uranium(IV) mineral phases that are found in association with these natural reducing zones, although there is little understanding of the relative importance of various potential oxidants. Three field experiments were conducted within an alluvial aquifer adjacent to the Colorado River near Rifle, CO wherein groundwater associated with naturally reduced zones was pumped into a gas-impermeable tank, mixed with a conservative tracer (Br-), bubbled with a gas phase composed of 97% O2 and 3% CO2, and then returned to the subsurface in the same well from which it was withdrawn. Within minutes of re-injection of the oxygenated groundwater, dissolved uranium(VI) concentrations increased from less than 1 μM to greater than 2.5 μM, demonstrating that oxygen can be an important oxidant for uranium in these field systems if supplied to the naturally reduced zones. Small concentrations of nitrate were also observed in the previously nitrate-free groundwater, and Fe(II) decreased to the detection limit. These results contrast with other laboratory and field results in which oxygen was introduced to systems containing high concentrations of mackinawite (FeS) rather than the more crystalline iron sulfides found in aged, naturally reduced zones. The flux of oxygen to the naturally reduced zones in the alluvial aquifers occurs mainly through interactions between groundwater and gas phases at the water table, and seasonal variations of the water table at the Rifle, CO site may play an important role in introducing oxygen into the system. Although oxygen was introduced directly to the naturally reduced zones in these experiments, delivery of oxidants to the system may normally be controlled by other oxidative pathways in which oxygen plays an indirect role.

  15. Investigation of molybdate melts as an alternative method of reprocessing used nuclear fuel

    DOE PAGES

    Hames, Amber L.; Tkac, Peter; Paulenova, Alena; ...

    2017-01-17

    Here, an investigation of molybdate melts containing sodium molybdate (Na 2MoO 4) and molybdenum trioxide (MoO 3) to achieve the separation of uranium from fission products by crystallization has been performed. The separation is based on the difference in solubility of the fission product metal oxides compared to the uranium oxide or molybdate in the molybdate melt. The molybdate melt dissolves uranium dioxide at high temperatures, and upon cooling, uranium precipitates as uranium dioxide or molybdate, whereas the fission product metals remain soluble in the melt. Small-scale experiments using gram quantities of uranium dioxide have been performed to investigate themore » feasibility of UO 2 purification from the fission products. The composition of the uranium precipitate as well as data for partitioning of several fission product surrogates between the uranium precipitate and molybdate melt for various melt compositions are presented and discussed. The fission products Cs, Sr, Ru and Rh all displayed very large distribution ratios. The fission products Zr, Pd, and the lanthanides also displayed good distribution ratios (D > 10). A melt consisting of 20 wt% MoO 3-50 wt% Na 2MoO 4-30 wt% UO 2 heated to 1313 K and cooled to 1123 K for the physical separation of the UO 2 product from the melt, and washed once with Na 2MoO 4 displays optimum conditions for separation of the UO 2 from the fission products.« less

  16. Ionic Liquids as templating agents in formation of uranium-containing nanomaterials

    DOEpatents

    Visser, Ann E; Bridges, Nicholas J

    2014-06-10

    A method for forming nanoparticles containing uranium oxide is described. The method includes combining a uranium-containing feedstock with an ionic liquid to form a mixture and holding the mixture at an elevated temperature for a period of time to form the product nanoparticles. The method can be carried out at low temperatures, for instance less than about 300.degree. C.

  17. On the Use of Thermal NF3 as the Fluorination and Oxidation Agent in Treatment of Used Nuclear Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheele, Randall D.; McNamara, Bruce K.; Casella, Andrew M.

    2012-05-01

    This paper presents results of our investigation on the use of nitrogen trifluoride as the fluorination or fluorination/oxidation agent for use in a process for separating valuable constituents from used nuclear fuels by employing the volatility of many transition metal and actinide fluorides. Nitrogen trifluoride is less chemically and reactively hazardous than the hazardous and aggressive fluorinating agents used to prepare uranium hexafluoride and considered for fluoride volatility based nuclear fuels reprocessing. In addition, nitrogen trifluoride’s less aggressive character may be used to separate the volatile fluorides from used fuel and from themselves based on the fluorination reaction’s temperature sensitivitymore » (thermal tunability) rather than relying on differences in sublimation/boiling temperature and sorbents. Our thermodynamic calculations found that nitrogen trifluoride has the potential to produce volatile fission product and actinide fluorides from candidate oxides and metals. Our simultaneous thermogravimetric and differential thermal analyses found that the oxides of lanthanum, cerium, rhodium, and plutonium fluorinated but did not form volatile fluorides and that depending on temperature volatile fluorides formed from the oxides of niobium, molybdenum, ruthenium, tellurium, uranium, and neptunium. We also demonstrated near-quantitative removal of uranium from plutonium in a mixed oxide.« less

  18. Tuning the Oxidation State, Nuclearity, and Chemistry of Uranium Hydrides with Phenylsilane and Temperature: The Case of the Classic Uranium(III) Hydride Complex [(C 5 Me 5) 2U(μ-H)] 2

    DOE PAGES

    Pagano, Justin K.; Dorhout, Jacquelyn M.; Czerwinski, Kenneth R.; ...

    2016-03-18

    Here, this work demonstrates that the oxidation state and chemistry of uranium hydrides can be tuned with temperature and the stoichiometry of phenylsilane. The trivalent uranium hydride [(C 5Me 5) 2U–H] x (5) was found to be comprised of an equilibrium mixture of U(III) hydrides in solution at ambient temperature. A single U(III) species can be selectively prepared by treating (C 5Me5)2UMe2 (4) with 2 equiv of phenylsilane at 50 °C. The U(III) system is a potent reducing agent and displayed chemistry distinct from the U(IV) system [(C 5Me 5) 2U(H)(μ-H)] 2 (2), which was harnessed to prepare a varietymore » of organometallic complexes, including (C 5Me 5) 2U(dmpe)(H) (6), and the novel uranium(IV) metallacyclopentadiene complex (C 5Me 5) 2U(C 4Me 4) (11).« less

  19. High-Quality Draft Genome Sequence of Desulfovibrio carbinoliphilus FW-101-2B, an Organic Acid-Oxidizing Sulfate-Reducing Bacterium Isolated from Uranium(VI)-Contaminated Groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsay, Bradley D.; Hwang, Chiachi; Woo, Hannah L.

    2015-03-12

    Desulfovibrio carbinoliphilus subsp. oakridgensis FW-101-2B is an anaerobic, organic acid/alcohol-oxidizing, sulfate-reducing δ-proteobacterium. FW-101-2B was isolated from contaminated groundwater at The Field Research Center at Oak Ridge National Lab after in situ stimulation for heavy metal-reducing conditions. The genome will help elucidate the metabolic potential of sulfate-reducing bacteria during uranium reduction.

  20. Preliminary report on the White Canyon area, San Juan county, Utah

    USGS Publications Warehouse

    Benson, William E.; Trites, Albert F.; Beroni, Ernest P.; Feeger, John A.

    1952-01-01

    The White Canyon area, in the central part of San Juan County, Utah, consists of approximately two 15-minute quadrangles. Approximately 75 square miles have been mapped by the Geological Survey on a scale of 1 inch equals 1 mile, using a combined aerial photography-plane table method. Structure contours were drawn on top of the Organ Rock member of the Cutler formation. Parts of the Gonway and North Point claims, 1/4 mile east of the Happy Jack mine, were mapped in detail. The principal objectives of the investigations were: (1) to establish ore guides; (2) to select areas favorable for exploration; and (3) to map the general geology and to determine the regional relationships of the uranium deposits. The White Canyon area is comprised of sedimentary rocks of Carboniferous to Jurassic age, more than 2,000 feet thick, having a regional dip of 1° to 2° SW. The nearest igneous rocks are in the Henry Mountains about 7 miles west of the northern part of the area; The Shinarump conglomerate of the late Triassic age, the principal ore horizon in the White Canyon area, consists of lenticular beds of sandstone, conglomeratic sandstone, conglomerate, clay, and siltstone. The Shinarump conglomerate, absent in places, is as much as 75 feet thick. The sandstones locally contain molds of logs and fragments of altered volcanic ash. Some of the logs have been replaced by copper and uranium minerals and iron oxides. The clay and siltstone underlie and are interbedded with the sandstone, and are most common in channels that cut into the underlying Moenkopi formation. The Shinarump conglomerate contains reworked Moenkopi siltstone fragments, clay balls, carbonized wood, and pebbles of quarts, quartzite, and chert. Jointing is prominent in the Western part of the mapped area. The three most prominent joint trends are due east, N. 65°-75° W., and N. 65°-75° E. All joints have vertical dips. The red beds are bleached along some joints, especially those that trend N. 65°-75° W. All uranium ore produced has been from the lower part of the Shinarump conglomerate, where it commonly occurs with copper as disseminations and fracture coatings in sandstone. Uranium and copper minerals also occur in low-grade disseminated deposits in the lower Chinle and in the Moenkopi formation and in veins cutting these formations. Although some uranium deposits occur in Chinarump channels and scours, copper and uranium minerals along fractures suggest that channel control may be secondary. Logs and clay balls apparently have exerted some chemical influences for deposition. The uranium occurs as the oxide in some deposits, and as secondary hydrous sulfates, phosphates, oxides, and silicates in these and several other deposits. Charcoal, iron and manganese oxides, and veinlets of hydrocarbon are abnormally radioactive in most of the deposits. Base-metal sulfides are commonly found inside the oxidized zone. Secondary copper minerals include the hydrous sulfates and carbonate. Gangue minerals include quarts, clay minerals, and manganese oxides, dickite (?), calcite, gypsum, pyrite, and chalcedony (?). Principal wall-rock alteration appears to have been silicification, clay alteration, and bleaching. Most of the shipped ore has contained more than 0.3 percent uranium. The ore also contains copper, commonly in grades lower than 1.0 percent. Criteria believed to be most useful for prospecting for concealed uranium deposits are (1) visible uranium minerals; (2) sulfide minerals; (3) secondary copper minerals; (4) dickite (?); (5) hydrocarbons; and (6) bleaching and alteration of the Moenkopi formation.

  1. Reconnaissance for radioactive materials in the southern part of Brazil

    USGS Publications Warehouse

    Pierson, Charles T.; Haynes, Donald D.; Filho, Evaristo Ribeiro

    1957-01-01

    During 1954-1956 a reconnaissance for radioactive minerals was made with carborne, airborne and handborne scintillation equipment in the southern Brazilian states of Rio de Janeiro, Sao Paulo, Parana, Santa Catarina and Rio Grande do Sul. During the traverse covering more than 5,000 kilometers the authors checked the radioactivity of Precambrian igneous and metamorphic rocks, Paleozoic, Mesozoic and Cenozoic sedimentary rocks, and Mesozoic alkalic intrusive and basaltic extrusive rocks. The 22 samples collected contained from 0.003 to 0.029 percent equivalent uranium oxide and from 0.10 to 0.91 percent equivalent thorimn; two samples were taken from radioactive pegmati tes for mineralogic studies. None of the localities is at present a commercial source of uranium or thorium; however, additional work should be done near the alkalic stock at Lages in the State of Santa Catarina and at the Passo das Tropas fossil plant locality near Santa Maria in the state of Rio Grande do Sul. Near Lages highly altered alkalic rock from a dike contained 0.026 percent uranium oxide. At Passo das Tropas highly altered, limonite-impregnated sandstone from the Rio do Rasto group of sedimentary rocks contained 0.029 percent uranium oxide.

  2. Processing of uranium oxide and silicon carbide based fuel using polymer infiltration and pyrolysis

    NASA Astrophysics Data System (ADS)

    Singh, Abhishek K.; Zunjarrao, Suraj C.; Singh, Raman P.

    2008-09-01

    Ceramic composite pellets consisting of uranium oxide, UO 2, contained within a silicon carbide matrix, were fabricated using a novel processing technique based on polymer infiltration and pyrolysis (PIP). In this process, particles of depleted uranium oxide, in the form of U 3O 8, were dispersed in liquid allylhydridopolycarbosilane (AHPCS), and subjected to pyrolysis up to 900 °C under a continuous flow of ultra high purity argon. The pyrolysis of AHPCS, at these temperatures, produced near-stoichiometric amorphous silicon carbide ( a-SiC). Multiple polymer infiltration and pyrolysis (PIP) cycles were performed to minimize open porosity and densify the silicon carbide matrix. Analytical characterization was conducted to investigate chemical interaction between U 3O 8 and SiC. It was observed that U 3O 8 reacted with AHPCS during the very first pyrolysis cycle, and was converted to UO 2. As a result, final composition of the material consisted of UO 2 particles contained in an a-SiC matrix. The physical and mechanical properties were also quantified. It is shown that this processing scheme promotes uniform distribution of uranium fuel source along with a high ceramic yield of the parent matrix.

  3. Exploiting the Reactivity of Actinide Fluoride Bonds for the Synthesis of a New Class of Bis(azide) Uranium Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Karla A.; Lichtscheidl, Alejandro G.; Monreal, Marisa Jennifer

    The terminal actinide fluoride bonds in (C 5Me 5) 2ThF 2(py) (py = pyridine) and (C 5Me 5) 2UF 2(O=PR 3) (R = Me, Ph) react with two equivalents of Me 3SiN 3 in toluene to form the polymeric thorium bis(azide), [(C 5Me 5) 2Th(N 3)2] ∞, and a new class of monometallic uranium bis(azide) complexes, (C 5Me 5) 2U(N 3)2(O=PR 3), respectively. Full characterization of the novel complexes (C 5Me 5) 2ThF 2(py) and (C 5Me 5) 2UF 2(O=PR 3) are reported, including the solid-state structures of (C 5Me 5) 2ThF 2(py) and (C 5Me 5) 2U(N 3) 2(O=PPhmore » 3). Lastly, electronic absorption spectral data are also reported for (C 5Me 5) 2AnF 2(py) (An = Th, U) and (C 5Me 5) 2U(N 3) 2(O=PR 3) to confirm metal oxidation state and enable elucidation of the fluoride and azide ligand bonding in these complexes.« less

  4. Exploiting the Reactivity of Actinide Fluoride Bonds for the Synthesis of a New Class of Bis(azide) Uranium Complexes

    DOE PAGES

    Erickson, Karla A.; Lichtscheidl, Alejandro G.; Monreal, Marisa Jennifer; ...

    2017-11-04

    The terminal actinide fluoride bonds in (C 5Me 5) 2ThF 2(py) (py = pyridine) and (C 5Me 5) 2UF 2(O=PR 3) (R = Me, Ph) react with two equivalents of Me 3SiN 3 in toluene to form the polymeric thorium bis(azide), [(C 5Me 5) 2Th(N 3)2] ∞, and a new class of monometallic uranium bis(azide) complexes, (C 5Me 5) 2U(N 3)2(O=PR 3), respectively. Full characterization of the novel complexes (C 5Me 5) 2ThF 2(py) and (C 5Me 5) 2UF 2(O=PR 3) are reported, including the solid-state structures of (C 5Me 5) 2ThF 2(py) and (C 5Me 5) 2U(N 3) 2(O=PPhmore » 3). Lastly, electronic absorption spectral data are also reported for (C 5Me 5) 2AnF 2(py) (An = Th, U) and (C 5Me 5) 2U(N 3) 2(O=PR 3) to confirm metal oxidation state and enable elucidation of the fluoride and azide ligand bonding in these complexes.« less

  5. What a difference a 5f element makes: trivalent and tetravalent uranium halide complexes supported by one and two bis[2-(diisopropylphosphino)-4-methylphenyl]amido (PNP) ligands.

    PubMed

    Cantat, Thibault; Scott, Brian L; Morris, David E; Kiplinger, Jaqueline L

    2009-03-02

    The coordination behavior of the bis[2-(diisopropylphosphino)-4-methylphenyl]amido ligand (PNP) toward UI3(THF)4 and UCl4 has been investigated to access new uranium(III) and uranium(IV) halide complexes supported by one and two PNP ligands. The reaction between (PNP)K (6) and 1 equiv of UI3(THF)4 afforded the trivalent halide complex (PNP)UI2(4-tBu-pyridine)2 (7) in the presence of 4-tert-butylpyridine. The same reaction carried out with UCl4 and no donor ligand gave [(PNP)UCl3]2 (8), in which the uranium coordination sphere in the (PNP)UCl3 unit is completed by a bridging chloride ligand. When UCl4 is reacted with 1 equiv (PNP)K (6) in the presence of THF, trimethylphosphine oxide (TMPO), or triphenylphosphineoxide (TPPO), the tetravalent halide complexes (PNP)UCl3(THF) (9), (PNP)UCl3(TMPO)2 (10), and (PNP)UCl3(TPPO) (11), respectively, are formed in excellent yields. The bis(PNP) complexes of uranium(III), (PNP)2UI (12), and uranium(IV), (PNP)2UCl2 (13), were easily isolated from the analogous reactions between 2 equiv of 6 and UI3(THF)4 or UCl4, respectively. Complexes 12 and 13 represent the first examples of complexes featuring two PNP ligands coordinated to a single metal center. Complexes 7-13 have been characterized by single-crystal X-ray diffraction and 1H and 31P NMR spectroscopy. The X-ray structures demonstrate the ability of the PNP ligand to adopt new coordination modes upon coordination to uranium. The PNP ligand can adopt both pseudo-meridional and pseudo-facial geometries when it is kappa3-(P,N,P) coordinated, depending on the steric demand at the uranium metal center. Additionally, its hemilabile character was demonstrated with an unusual kappa2-(P,N) coordination mode that is maintained in both the solid-state and in solution. Comparison of the structures of the mono(PNP) and bis(PNP) complexes 7, 9, 11-13 with their respective C5Me5 analogues 1-4 undoubtedly show that a more sterically congested environment is provided by the PNP ligand. The electronic influence of replacing the C5Me5 ligands with PNP was investigated using electronic absorption spectroscopy and electrochemistry. For 12 and 13, a chemically reversible wave corresponding to the UIV/UIII redox transformation comparable to that for 3 and 4 was observed. However, a 350 mV shift of this couple to more negative potentials was observed on substitution of the bis(C5Me5) by the bis(PNP) framework, therefore pointing to a greater electronic density at the metal center in the PNP complexes. The UV-visible region of the electronic spectra for the mono(PNP) and bis(PNP) complexes appear to be dominated by PNP ligand-based transitions that are shifted to higher energy in the uranium complexes than in the simple ligand anion (6) spectrum, for both the UVI and UIII oxidation states. The near IR region in complexes 1-4 and 7, 9, 11-13 is dominated by f-f transitions derived from the 5f3 and 5f2 valence electronic configuration of the metal center. Though complexes of both ligand sets exhibit similar intensities in their f-f bands, a somewhat larger ligand-field splitting was observed for the PNP system, consistent with its higher electron donating ability.

  6. Behavior of uranium under conditions of interaction of rocks and ores with subsurface water

    NASA Astrophysics Data System (ADS)

    Omel'Yanenko, B. I.; Petrov, V. A.; Poluektov, V. V.

    2007-10-01

    The behavior of uranium during interaction of subsurface water with crystalline rocks and uranium ores is considered in connection with the problem of safe underground insulation of spent nuclear fuel (SNF). Since subsurface water interacts with crystalline rocks formed at a high temperature, the mineral composition of these rocks and uranium species therein are thermodynamically unstable. Therefore, reactions directed toward the establishment of equilibrium proceed in the water-rock system. At great depths that are characterized by hindered water exchange, where subsurface water acquires near-neutral and reducing properties, the interaction is extremely sluggish and is expressed in the formation of micro- and nanoparticles of secondary minerals. Under such conditions, the slow diffusion redistribution of uranium with enrichment in absorbed forms relative to all other uranium species is realized as well. The products of secondary alteration of Fe- and Ti-bearing minerals serve as the main sorbents of uranium. The rate of alteration of minerals and conversion of uranium species into absorbed forms is slow, and the results of these processes are insignificant, so that the rocks and uranium species therein may be regarded as unaltered. Under reducing conditions, subsurface water is always saturated with uranium. Whether water interacts with rock or uranium ore, the equilibrium uranium concentration in water is only ≤10-8 mol/l. Uraninite ore under such conditions always remains stable irrespective of its age. The stability conditions of uranium ore are quite suitable for safe insulation of SNF, which consists of 95% uraninite (UO2) and is a confinement matrix for all other radionuclides. The disposal of SNF in massifs of crystalline rocks at depths below 500 m, where reducing conditions are predominant, is a reliable guarantee of high SNF stability. Under oxidizing conditions of the upper hydrodynamic zone, the rate of interaction of rocks with subsurface water increases by orders of magnitude and subsurface water is commonly undersaturated with uranium. Uranium absorbed by secondary minerals, particularly by iron hydroxides and leucoxene, is its single stable species under oxidizing conditions. The impact of oxygen-bearing water leads to destruction of uranium ore. This process is realized simultaneously at different hypsometric levels even if the permeability of the medium is variable in both the lateral and vertical directions. As a result, intervals containing uranyl minerals and relics of primary uranium ore are combined in ore-bearing zones with intervals of completely dissolved uranium minerals. A wide halo of elevated uranium contents caused by sorption is always retained at the location of uranium ore entirely destroyed by weathering. Uranium ore commonly finds itself in the aeration zone due to technogenic subsidence of the groundwater table caused by open-pit mining or pumping out of water from underground mines. The capillary and film waters that interact with rocks and ores in this zone are supplemented by free water filtering along fractures when rain falls or snow is thawing. The interaction of uranium ore with capillary water results in oxidation of uraninite, accompanied by loosening of the mineral surface, formation of microfractures, and an increase in solubility with enrichment of capillary water in uranium up to 10-4 mol/l. Secondary U(VI) minerals, first of all, uranyl hydroxides and silicates, replace uraninite, and uranium undergoes local diffusion redistribution with its sorption by secondary minerals of host rocks. The influx of free water facilitates the complete dissolution of primary and secondary uranium minerals, the removal of uranium at the sites of groundwater discharge, and its redeposition under reducing conditions at a greater depth. It is evident that the conditions of the upper hydrodynamic zone and the aeration zone are unfit for long-term insulation of SNF and high-level wastes because, after the failure of containers, the leakage of radionuclides into the environment becomes inevitable.

  7. PROCESS FOR SEPARATING PLUTONIUM FROM IMPURITIES

    DOEpatents

    Wahl, A.C.

    1957-11-12

    A method is described for separating plutonium from aqueous solutions containing uranium. It has been found that if the plutonium is reduced to its 3+ valence state, and the uranium present is left in its higher valence state, then the differences in solubility between certain salts (e.g., oxalates) of the trivalent plutonium and the hexavalent uranium can be used to separate the metals. This selective reduction of plutonium is accomplished by adding iodide ion to the solution, since iodide possesses an oxidation potential sufficient to reduce plutonium but not sufficient to reduce uranium.

  8. Method of Making Uranium Dioxide Bodies

    DOEpatents

    Wilhelm, H. A.; McClusky, J. K.

    1973-09-25

    Sintered uranium dioxide bodies having controlled density are produced from U.sub.3 O.sub.8 and carbon by varying the mole ratio of carbon to U.sub.3 O.sub.8 in the mixture, which is compressed and sintered in a neutral or slightly oxidizing atmosphere to form dense slightly hyperstoichiometric uranium dioxide bodies. If the bodies are to be used as nuclear reactor fuel, they are subsequently heated in a hydrogen atmosphere to achieve stoichiometry. This method can also be used to produce fuel elements of uranium dioxide -- plutonium dioxide having controlled density.

  9. RECOVERY OF URANIUM VALUES FROM URANIUM BEARING RAW MATERIALS

    DOEpatents

    Michal, E.J.; Porter, R.R.

    1959-06-16

    Uranium leaching from ground uranium-bearing raw materials using MnO/sub 2/ in H/sub 2/SO/sub 4/ is described. The MnO/sub 2/ oxidizes U to the leachable hexavalent state. The MnO/sub 2/ does not replace Fe normally added, because the Fe complexes P and catalyzes the MnO/sub 2/ reaction. Three examples of continuous processes are given, but batch operation is also possible. The use of MnO/sub 2/ makes possible recovery of very low U values. (T.R.H.)

  10. Electrolytic process for preparing uranium metal

    DOEpatents

    Haas, Paul A.

    1990-01-01

    An electrolytic process for making uranium from uranium oxide using Cl.sub.2 anode product from an electrolytic cell to react with UO.sub.2 to form uranium chlorides. The chlorides are used in low concentrations in a melt comprising fluorides and chlorides of potassium, sodium and barium in the electrolytic cell. The electrolysis produces Cl.sub.2 at the anode that reacts with UO.sub.2 in the feed reactor to form soluble UCl.sub.4, available for a continuous process in the electrolytic cell, rather than having insoluble UO.sub.2 fouling the cell.

  11. A study on recovery of uranium in the anode basket residues delivered from the pyrochemical process of used nuclear fuel

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Kim, T. J.; Jang, J. H.; Kim, G. Y.; Park, S. B.; Yoon, D. S.; Kim, S. H.; Paek, S. W.; Lee, S. J.

    2018-04-01

    In this study, the chlorination of uranium oxide (UO2) using ammonium chloride and zirconium as chemical agents was conducted to recover the uranium in the anode basket residues from the pyrochemical process of used nuclear fuel. The chlorination of UO2 was predicted using thermodynamic equilibrium calculations. The experimental conditions for the chlorination were determined using a chlorination test with cerium oxide (CeO2). In the chlorination test, it was confirmed that UO2 was chlorinated into UCl3 at 320 °C, some UO2 remained without changes in the chemical form, and ZrO2, Zr2O, and ZrCl2 were generated as byproducts.

  12. Continuous process electrorefiner

    DOEpatents

    Herceg, Joseph E [Naperville, IL; Saiveau, James G [Hickory Hills, IL; Krajtl, Lubomir [Woodridge, IL

    2006-08-29

    A new device is provided for the electrorefining of uranium in spent metallic nuclear fuels by the separation of unreacted zirconium, noble metal fission products, transuranic elements, and uranium from spent fuel rods. The process comprises an electrorefiner cell. The cell includes a drum-shaped cathode horizontally immersed about half-way into an electrolyte salt bath. A conveyor belt comprising segmented perforated metal plates transports spent fuel into the salt bath. The anode comprises the conveyor belt, the containment vessel, and the spent fuel. Uranium and transuranic elements such as plutonium (Pu) are oxidized at the anode, and, subsequently, the uranium is reduced to uranium metal at the cathode. A mechanical cutter above the surface of the salt bath removes the deposited uranium metal from the cathode.

  13. Microbially catalyzed nitrate-dependent metal/radionuclide oxidation in shallow subsurface sediments

    NASA Astrophysics Data System (ADS)

    Weber, K.; Healy, O.; Spanbauer, T. L.; Snow, D. D.

    2011-12-01

    Anaerobic, microbially catalyzed nitrate-dependent metal/radionuclide oxidation has been demonstrated in a variety of sediments, soils, and groundwater. To date, studies evaluating U bio-oxidation and mobilization have primarily focused on anthropogenically U contaminated sites. In the Platte River Basin U originating from weathering of uranium-rich igneous rocks in the Rocky Mountains was deposited in shallow alluvial sediments as insoluble reduced uranium minerals. These reduced U minerals are subject to reoxidation by available oxidants, such nitrate, in situ. Soluble uranium (U) from natural sources is a recognized contaminant in public water supplies throughout the state of Nebraska and Colorado. Here we evaluate the potential of anaerobic, nitrate-dependent microbially catalyzed metal/radionuclide oxidation in subsurface sediments near Alda, NE. Subsurface sediments and groundwater (20-64ft.) were collected from a shallow aquifer containing nitrate (from fertilizer) and natural iron and uranium. The reduction potential revealed a reduced environment and was confirmed by the presence of Fe(II) and U(IV) in sediments. Although sediments were reduced, nitrate persisted in the groundwater. Nitrate concentrations decreased, 38 mg/L to 30 mg/L, with increasing concentrations of Fe(II) and U(IV). Dissolved U, primarily as U(VI), increased with depth, 30.3 μg/L to 302 μg/L. Analysis of sequentially extracted U(VI) and U(IV) revealed that virtually all U in sediments existed as U(IV). The presence of U(IV) is consistent with reduced Fe (Fe(II)) and low reduction potential. The increase in aqueous U concentrations with depth suggests active U cycling may occur at this site. Tetravalent U (U(IV)) phases are stable in reduced environments, however the input of an oxidant such as oxygen or nitrate into these systems would result in oxidation. Thus co-occurrence of nitrate suggests that nitrate could be used by bacteria as a U(IV) oxidant. Most probable number enumeration of nitrate-dependent U(IV) oxidizing microorganisms demonstrated an abundant community ranging from 1.61x104 to 2.74x104 cells g-1 sediment. Enrichments initiated verified microbial U reduction and U oxidation coupled to nitrate reduction. Sediment slurries were serially diluted and incubated over a period of eight weeks and compared to uninoculated controls. Oxidation (0-4,554 μg/L) and reduction (0-55 μg/L) of U exceeded uninoculated controls further providing evidence of a U biogeochemical cycling in these subsurface sediments. The oxidation of U(IV) could contribute to U mobilization in the groundwater and result in decreased water quality. Not only could nitrate serve as an oxidant, but Fe(III) could also contribute to U mobilization. Nitrate-dependent Fe(II) oxidation is an environmentally ubiquitous process facilitated by a diversity of microorganisms. Additional research is necessary in order to establish a role of biogenic Fe(III) oxides in U geochemical cycling at this site. These microbially mediated processes could also have a confounding effect on uranium mobility in subsurface environments.

  14. URANIUM EXTRACTION PROCESS

    DOEpatents

    Baldwin, W.H.; Higgins, C.E.

    1958-12-16

    A process is described for recovering uranium values from acidic aqueous solutions containing hexavalent uranium by contacting the solution with an organic solution comprised of a substantially water-immiscible organlc diluent and an organic phosphate to extract the uranlum values into the organic phase. Carbon tetrachloride and a petroleum hydrocarbon fraction, such as kerosene, are sultable diluents to be used in combination with organlc phosphates such as dibutyl butylphosphonate, trlbutyl phosphine oxide, and tributyl phosphate.

  15. Tags to Track Illicit Uranium and Plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haire, M. Jonathan; Forsberg, Charles W.

    2007-07-01

    With the expansion of nuclear power, it is essential to avoid nuclear materials from falling into the hands of rogue nations, terrorists, and other opportunists. This paper examines the idea of detection and attribution tags for nuclear materials. For a detection tag, it is proposed to add small amounts [about one part per billion (ppb)] of {sup 232}U to enriched uranium to brighten its radioactive signature. Enriched uranium would then be as detectable as plutonium and thus increase the likelihood of intercepting illicit enriched uranium. The use of rare earth oxide elements is proposed as a new type of 'attribution'more » tag for uranium and thorium from mills, uranium and plutonium fuels, and other nuclear materials. Rare earth oxides are chosen because they are chemically compatible with the fuel cycle, can survive high-temperature processing operations in fuel fabrication, and can be chosen to have minimal neutronic impact within the nuclear reactor core. The mixture of rare earths and/or rare earth isotopes provides a unique 'bar code' for each tag. If illicit nuclear materials are recovered, the attribution tag can identify the source and lot of nuclear material, and thus help police reduce the possible number of suspects in the diversion of nuclear materials based on who had access. (authors)« less

  16. PRODUCTION OF URANIUM HEXAFLUORIDE

    DOEpatents

    Fowler, R.D.

    1957-08-27

    A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method, the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ converted to UF/sub 6/ by reaction with a fluorinating agent, such as CoF/sub 3/. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reac tion chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. After nitrogen gas is used to sweep out the hydrogen and the water vapor formed, and while continuing to inaintain the temperature between 400 deg C and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion of UO/sub 2/ to UF/sub 4/ the temperature of the reaction chamber is lowered to about 400 deg C or less, the UF/sub 4/ is mixed with the requisite quantity of CoF/sub 3/, and after evacuating the chamber, the mixture is heated to 300 to 400 deg C, and the resulting UF/sub 6/ is led off and delivered to a condenser.

  17. DOUBLE-BAKED, SELF-CHANNELLING ELECTRODE

    DOEpatents

    Piper, R.D.; Leifield, R.F.

    1963-03-12

    A method is given for making an electrode for use in the electrolytic reduction of uranium oxides to uranium metal in a fused salt electrolyte. Uranlum oxide such as UO/sub 2/ is mixed with somewhat less than the stoichiometric amount of carbon needed for the reduction, and the mixture is baked and crushed to make a nonspherical material. The latter is then mixed with a carbon binder sufficient to satisfy stoichiometry, pressed into a shape such as a cylinder, and baked. (AEC)

  18. Determination of the oxidation states of metals and metalloids: An analytical review

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.

    2013-12-01

    The hazard of many heavy metals/metalloids in the soil depends on their oxidation state. The problem of determining the oxidation state has been solved due to the use of synchrotron radiation methods with the analysis of the X-ray absorption near-edge structure (XANES). The determination of the oxidation state is of special importance for some hazardous heavy elements (arsenic, antimony, selenium, chromium, uranium, and vanadium). The mobility and hazard of each of these elements depend on its oxidation state. The mobilities are higher at lower oxidation states of As, Cr, V, and Se and at higher oxidation states of Sb and U. The determination of the oxidation state of arsenic has allowed revealing its fixation features in the rhizosphere of hydrophytes. The known oxidation states of chromium and uranium are used for the retention of these elements on geochemical barriers. Different oxidation states have been established for vanadium displacing iron in goethite. The determination of the oxidation state of manganese in the rhizosphere and the photosynthetic apparatus of plants is of special importance for agricultural chemists.

  19. Raman spectroscopic investigation of thorium dioxide-uranium dioxide (ThO₂-UO₂) fuel materials.

    PubMed

    Rao, Rekha; Bhagat, R K; Salke, Nilesh P; Kumar, Arun

    2014-01-01

    Raman spectroscopic investigations were carried out on proposed nuclear fuel thorium dioxide-uranium dioxide (ThO2-UO2) solid solutions and simulated fuels based on ThO2-UO2. Raman spectra of ThO2-UO2 solid solutions exhibited two-mode behavior in the entire composition range. Variations in mode frequencies and relative intensities of Raman modes enabled estimation of composition, defects, and oxygen stoichiometry in these compounds that are essential for their application. The present study shows that Raman spectroscopy is a simple, promising analytical tool for nondestructive characterization of this important class of nuclear fuel materials.

  20. The effect of Si and Al concentrations on the removal of U(VI) in the alkaline conditions created by NH3 gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsenovich, Yelena P.; Cardona, Claudia; Lapierre, Robert

    2016-10-01

    Remediation of uranium in the deep unsaturated zone is a challenging task, especially in the presence of oxygenated, high-carbonate alkalinity soil and pore water composition typical for arid and semi-arid environments of the western regions of the U.S. This study evaluates the effect of various pore water constituencies on changes of uranium concentrations in alkaline conditions, created in the presence of reactive gases such as NH3 to effectively mitigate uranium contamination in the vadose zone sediments. This contaminant is a potential source for groundwater pollution through slow infiltration of soluble and highly mobile uranium species towards the water table. Themore » objective of this research was to evaluate uranium sequestration efficiencies in the alkaline synthetic pore water solutions prepared in a broad range of Si, Al, and bicarbonate concentrations typically present in field systems of the western U.S. regions and identify solid uranium-bearing phases that result from ammonia gas treatment. In previous studies (Szecsody et al. 2012; Zhong et al. 2015), although uranium mobility was greatly decreased, solid phases could not be identified at the low uranium concentrations in field-contaminated sediments. The chemical composition of the synthetic pore water used in the experiments varied for silica (5–250 mM), Al3+ (2.8 or 5 mM), HCO3- (0–100 mM) and U(VI) (0.0021–0.0084 mM) in the solution mixture. Experiment results suggested that solutions with Si concentrations higher than 50 mM exhibited greater removal efficiencies of U(VI). Solutions with higher concentrations of bicarbonate also exhibited greater removal efficiencies for Si, Al, and U(VI). Overall, the silica polymerization reaction leading to the formation of Si gel correlated with the removal of U(VI), Si, and Al from the solution. If no Si polymerization was observed, there was no U removal from the supernatant solution. Speciation modeling indicated that the dominant uranium species in the presence of bicarbonate were anionic uranyl carbonate complexes (UO2(CO3)2-2 and UO2(CO3)3-4) and in the absence of bicarbonate in the solution, U(VI) major species appeared as uranyl-hydroxide (UO2(OH)3- and UO2(OH)4-2) species. The model also predicted the formation of uranium solid phases. Uranyl carbonates as rutherfordine [UO2CO3], cejkaite [Na4(UO2)(CO3)3] and hydrated uranyl silicate phases as Na-boltwoodite [Na(UO2)(SiO4)·1.5H2O] were anticipated for most of the synthetic pore water compositions amended from medium (2.9 mM) to high (100 mM) bicarbonate concentrations.« less

  1. In vitro dissolution of uranium oxide by baboon alveolar macrophages.

    PubMed Central

    Poncy, J L; Metivier, H; Dhilly, M; Verry, M; Masse, R

    1992-01-01

    In vitro cellular dissolution tests for insoluble forms of uranium oxide are technically difficult with conventional methodology using adherent alveolar macrophages. The limited number of cells per flask and the slow dissolution rate in a large volume of nutritive medium are obvious restricting factors. Macrophages in suspension cannot be substituted because they represent different and poorly reproducible functional subtypes with regard to activation and enzyme secretion. Preliminary results on the dissolution of uranium oxide using immobilized alveolar macrophages are promising because large numbers of highly functional macrophages can be cultured in a limited volume. Cells were obtained by bronchoalveolar lavages performed on baboons (Papio papio) and then immobilized after the phagocytosis of uranium octoxide (U3O8) particles in alginate beads linked with Ca2+. The dissolution rate expressed as percentage of initial uranium content in cells was 0.039 +/- 0.016%/day for particles with a count median geometric diameter of 3.84 microns(sigma g = 1.84). A 2-fold increase in the dissolution rate was observed when the same number of particles was immobilized without macrophages. These results, obtained in vitro, suggest that the U3O8 preparation investigated should be assigned to inhalation class Y as recommended by the International Commission on Radiological Protection. Future experiments are intended to clarify this preliminary work and to examine the dissolution characteristics of other particles such as uranium dioxide. It is recommended that the dissolution rate should be measured over an interval of 3 weeks, which is compatible with the survival time of immobilized cells in culture and may reveal transformation states occurring with aging of the particles. PMID:1396447

  2. CMB-8 material balance system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langner, D.; Canada, T.; Ensslin, N.

    1980-08-01

    We describe the automated nondestructive assay (NDA) system installed at the Los Alamos Scientific Laboratory (LASL) Group CMB-8 uranium recovery facility. A random driver (RD) is used to measure the /sup 235/U content of various solids while a uranium solution assay system (USAS) measures the /sup 235/U or total uranium content of solutions over a concentration range of a few ppM to 400 g/l. Both instruments are interfaced to and controlled by a single minicomputer. The measurement principles, mechanical specifications, system software description, and operational instructions are described.

  3. Organic geochemical analysis of sedimentary organic matter associated with uranium

    USGS Publications Warehouse

    Leventhal, J.S.; Daws, T.A.; Frye, J.S.

    1986-01-01

    Samples of sedimentary organic matter from several geologic environments and ages which are enriched in uranium (56 ppm to 12%) have been characterized. The three analytical techniqyes used to study the samples were Rock-Eval pyrolysis, pyrolysis-gas chromatography-mass spectrometry, and solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy. In samples with low uranium content, the pyrolysis-gas chromatography products contain oxygenated functional groups (as hydroxyl) and molecules with both aliphatic and aromatic carbon atoms. These samples with low uranium content give measurable Rock-Eval hydrocarbon and organic-CO2 yields, and C-13 NMR values of > 30% aliphatic carbon. In contrast, uranium-rich samples have few hydrocarbon pyrolysis products, increased Rock-Eval organic-CO2 contents and > 70% aromatic carbon contents from C-13 NMR. The increase in aromaticity and decrease in hydrocarbon pyrolysis yield are related to the amount of uranium and the age of the uranium minerals, which correspond to the degree of radiation damage. The three analytical techniques give complementary results. Increase in Rock-Eval organic-CO2 yield correlates with uranium content for samples from the Grants uranium region. Calculations show that the amount of organic-CO2 corresponds to the quantity of uranium chemically reduced by the organic matter for the Grants uranium region samples. ?? 1986.

  4. Top Ten Reasons for DEOX as a Front End to Pyroprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.R. Westphal; K.J. Bateman; S.D. Herrmann

    A front end step is being considered to augment chopping during the treatment of spent oxide fuel by pyroprocessing. The front end step, termed DEOX for its emphasis on decladding via oxidation, employs high temperatures to promote the oxidation of UO2 to U3O8 via an oxygen carrier gas. During oxidation, the spent fuel experiences a 30% increase in lattice structure volume resulting in the separation of fuel from cladding with a reduced particle size. A potential added benefit of DEOX is the removal of fission products, either via direct release from the broken fuel structure or via oxidation and volatilizationmore » by the high temperature process. Fuel element chopping is the baseline operation to prepare spent oxide fuel for an electrolytic reduction step. Typical chopping lengths range from 1 to 5 mm for both individual elements and entire assemblies. During electrolytic reduction, uranium oxide is reduced to metallic uranium via a lithium molten salt. An electrorefining step is then performed to separate a majority of the fission products from the recoverable uranium. Although DEOX is based on a low temperature oxidation cycle near 500oC, additional conditions have been tested to distinguish their effects on the process.[1] Both oxygen and air have been utilized during the oxidation portion followed by vacuum conditions to temperatures as high as 1200oC. In addition, the effects of cladding on fission product removal have also been investigated with released fuel to temperatures greater than 500oC.« less

  5. Materials. Section 1 of Symposium on the peaceful uses of atomic energy in Australia, 1958, held in Sydney, in June 1958

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The environments of the known uranium occurences in South Australia arc described, and the relation of uranium mineralization with sodic granitic rocks is emphasized. The problems in designing equipment for radiometric prospecting are reviewed. The fabrication and properties of BeO, UO/sub 2/, ThO/sub 2/, and mixed oxides are discussed. The use of pulsing in a uranium extraction pilot plant ion exchange column is described. The wetting of metals by liquid metals is reviewed with emphasis on liquid sodium. The geological nature, extent, and future prospects of minerals with atomic energy applications, occurring in New South Wales are outlined. The developmentmore » of a process for uranium recovery from Mary Kathleen ores is described. Techniques and processes involved in locating, mining, and concentrating davidite-type ores at Radium Hill, South Australia are described. The uranium deposits of the Northern Territory, Australia, are classified and described. The flotation behavior of the simple oxide minerals, uraninite and the colloform variety is discussed. The Port Pirie Treatment Plant for uranium recovery from refractory Radium Hill concentrates is described. The plant utilizes the sulfuric acid-ion exchange process. The uranium deposits of Queensland are described. the details of the production of uranium ore concentrates at Rum jungle near Darwin, Australia, are given. A brief account of the use of neutron diffraction analysis in crystallography is given, and the neutron spectrometers installed on the High Flux Australian Research Reactor are described. (T.R.H.)« less

  6. The nucleation and growth of uranium on the basal plane of graphite studied by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Tench, R. J.

    1992-11-01

    For the first time, nanometer scale uranium clusters were created on the basal plane of highly oriented pyrolytic graphite by laser ablation under ultra-high vacuum conditions. The physical and chemical properties of these clusters were investigated by scanning tunneling microscopy (STM) as well as standard surface science techniques. Auger electron and X-ray photoelectron spectroscopies found the uranium deposit to be free of contamination and showed that no carbide had formed with the underlying graphite. Clusters with sizes ranging from 42 to 630 sq A were observed upon initial room temperature deposition. Surface diffusion of uranium was observed after annealing the substrate above 800 K, as evidenced by the decreased number density and the increased size of the clusters. Preferential depletion of clusters on terraces near step edges as a result of annealing was observed. The activation energy for diffusion deduced from these measurements was found to be 15 Kcal/mole. Novel formation of ordered uranium thin films was observed for coverages greater than two monolayers after annealing above 900 K. These ordered films displayed islands with hexagonally faceted edges rising in uniform step heights characteristic of the unit cell of the P-phase of uranium. In addition, atomic resolution STM images of these ordered films indicated the formation of the (beta)-phase of uranium. The chemical properties of these surfaces were investigated and it was shown that these uranium films had a reduced oxidation rate in air as compared to bulk metal and that STM imaging in air induced a polarity-dependent enhancement of the oxidation rate.

  7. In-situ evidence for uranium immobilization and remobilization

    USGS Publications Warehouse

    Senko, John M.; Istok, Jonathan D.; Suflita, Joseph M.; Krumholz, Lee R.

    2002-01-01

    The in-situ microbial reduction and immobilization of uranium was assessed as a means of preventing the migration of this element in the terrestrial subsurface. Uranium immobilization (putatively identified as reduction) and microbial respiratory activities were evaluated in the presence of exogenous electron donors and acceptors with field push−pull tests using wells installed in an anoxic aquifer contaminated with landfill leachate. Uranium(VI) amended at 1.5 μM was reduced to less than 1 nM in groundwater in less than 8 d during all field experiments. Amendments of 0.5 mM sulfate or 5 mM nitrate slowed U(VI) immobilization and allowed for the recovery of 10% and 54% of the injected element, respectively, as compared to 4% in the unamended treatment. Laboratory incubations confirmed the field tests and showed that the majority of the U(VI) immobilized was due to microbial reduction. In these tests, nitrate treatment (7.5 mM) inhibited U(VI) reduction, and nitrite was transiently produced. Further push−pull tests were performed in which either 1 or 5 mM nitrate was added with 1.0 μM U(VI) to sediments that already contained immobilized uranium. After an initial loss of the amendments, the concentration of soluble U(VI) increased and eventually exceeded the injected concentration, indicating that previously immobilized uranium was remobilized as nitrate was reduced. Laboratory experiments using heat-inactivated sediment slurries suggested that the intermediates of dissimilatory nitrate reduction (denitrification or dissimilatory nitrate reduction to ammonia), nitrite, nitrous oxide, and nitric oxide were all capable of oxidizing and mobilizing U(IV). These findings indicate that in-situ subsurface U(VI) immobilization can be expected to take place under anaerobic conditions, but the permanence of the approach can be impaired by disimilatory nitrate reduction intermediates that can mobilize previously reduced uranium.

  8. Determining Changes in Groundwater Quality during Managed Aquifer Recharge

    NASA Astrophysics Data System (ADS)

    Gambhir, T.; Houlihan, M.; Fakhreddine, S.; Dadakis, J.; Fendorf, S. E.

    2016-12-01

    Managed aquifer recharge (MAR) is becoming an increasingly prevalent technology for improving the sustainability of freshwater supply. However, recharge water can alter the geochemical conditions of the aquifer, mobilizing contaminants native to the aquifer sediments. Geochemical alterations on deep (>300 m) injection of highly treated recycled wastewater for MAR has received limited attention. We aim to determine how residual disinfectants used in water treatment processes, specifically the strong oxidants chloramine and hydrogen peroxide, affect metal mobilization within deep injection wells of the Orange County Water District. Furthermore, as the treated recharge water has very low ionic strength (44.6 mg L-1 total dissolved solids), we tested how differing concentrations of magnesium chloride and calcium chloride affected metal mobilization within deep aquifers. Continuous flow experiments were conducted on columns dry packed with sediments from a deep injection MAR site in Orange County, CA. The effluent was analyzed for shifts in water quality, including aqueous concentrations of arsenic, uranium, and chromium. Interaction between the sediment and oxic recharge solution causes naturally-occurring arsenopyrite to repartition onto iron oxides. The stability of arsenic on the newly precipitated iron oxides is dependent on pH changes during recharge.

  9. Solid oxide fuel cells fueled with reducible oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Steven S.; Fan, Liang Shih

    A direct-electrochemical-oxidation fuel cell for generating electrical energy includes a cathode provided with an electrochemical-reduction catalyst that promotes formation of oxygen ions from an oxygen-containing source at the cathode, a solid-state reduced metal, a solid-state anode provided with an electrochemical-oxidation catalyst that promotes direct electrochemical oxidation of the solid-state reduced metal in the presence of the oxygen ions to produce electrical energy, and an electrolyte disposed to transmit the oxygen ions from the cathode to the solid-state anode. A method of operating a solid oxide fuel cell includes providing a direct-electrochemical-oxidation fuel cell comprising a solid-state reduced metal, oxidizing themore » solid-state reduced metal in the presence of oxygen ions through direct-electrochemical-oxidation to obtain a solid-state reducible metal oxide, and reducing the solid-state reducible metal oxide to obtain the solid-state reduced metal.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald, Scott B.; Siekhaus, Wigbert J.; Nelson, Art J.

    X-ray photoelectron spectroscopy in combination with secondary ion mass spectrometry depth profiling were used to investigate the surface and interfacial chemistry of C + ion implanted polycrystalline uranium subsequently oxidized in air for over 10 years at ambient temperature. The original implantation of 33 keV C + ions into U 238 with a dose of 4.3 × 10 17 cm –3 produced a physically and chemically modified surface layer that was characterized and shown to initially prevent air oxidation and corrosion of the uranium after 1 year in air at ambient temperature. The aging of the surface and interfacial layersmore » were examined by using the chemical shift of the U 4f, C 1s, and O 1s photoelectron lines. In addition, valence band spectra were used to explore the electronic structure of the aged carbide surface and interface layer. Moreover, the time-of-flight secondary ion mass spectrometry depth profiling results for the aged sample confirmed an oxidized uranium carbide layer over the carbide layer/U metal interface.« less

  11. Recovery and recycling of uranium from rejected coated particles for compact high temperature reactors

    NASA Astrophysics Data System (ADS)

    Pai, Rajesh V.; Mollick, P. K.; Kumar, Ashok; Banerjee, J.; Radhakrishna, J.; Chakravartty, J. K.

    2016-05-01

    UO2 microspheres prepared by internal gelation technique were coated with pyrolytic carbon and silicon carbide using CVD technique. The particles which were not meeting the specifications were rejected. The rejected/failed UO2 based coated particles prepared by CVD technique was used for oxidation and recovery and recycling. The oxidation behaviour of sintered UO2 microspheres coated with different layers of carbon and SiC was studied by thermal techniques to develop a method for recycling and recovery of uranium from the failed/rejected coated particles. It was observed that the complete removal of outer carbon from the spheres is difficult. The crushing of microspheres enabled easier accessibility of oxygen and oxidation of carbon and uranium at 800-1000 °C. With the optimized process of multiple crushing using die & plunger and sieving the broken coated layers, we could recycle around fifty percent of the UO2 microspheres which could be directly recoated. The rest of the particles were recycled using a wet recycling method.

  12. ADSORPTION-BISMUTH PHOSPHATE METHOD FOR SEPARATING PLUTONIUM

    DOEpatents

    Russell, E.R.; Adamson, A.W.; Boyd, G.E.

    1960-06-28

    A process is given for separating plutonium from uranium and fission products. Plutonium and uranium are adsorbed by a cation exchange resin, plutonium is eluted from the adsorbent, and then, after oxidation to the hexavalent state, the plutonium is contacted with a bismuth phosphate carrier precipitate.

  13. Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1

    PubMed Central

    Bohu, Tsing; Santelli, Cara M.; Akob, Denise M.; Neu, Thomas R.; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten

    2015-01-01

    Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling. PMID:26236307

  14. Redox behavior of uranium at the nanoporous aluminum oxide-water interface: implications for uranium remediation.

    PubMed

    Jung, Hun Bok; Boyanov, Maxim I; Konishi, Hiromi; Sun, Yubing; Mishra, Bhoopesh; Kemner, Kenneth M; Roden, Eric E; Xu, Huifang

    2012-07-03

    Sorption-desorption experiments show that the majority (ca. 80-90%) of U(VI) presorbed to mesoporous and nanoporous alumina could not be released by extended (2 week) extraction with 50 mM NaHCO(3) in contrast with non-nanoporous α alumina. The extent of reduction of U(VI) presorbed to aluminum oxides was semiquantitatively estimated by comparing the percentages of uranium desorbed by anoxic sodium bicarbonate between AH(2)DS-reacted and unreacted control samples. X-ray absorption spectroscopy confirmed that U(VI) presorbed to non-nanoporous alumina was rapidly and completely reduced to nanoparticulate uraninite by AH(2)DS, whereas reduction of U(VI) presorbed to nanoporous alumina was slow and incomplete (<5% reduction after 1 week). The observed nanopore size-dependent redox behavior of U has important implications in developing efficient remediation techniques for the subsurface uranium contamination because the efficiency of in situ bioremediation depends on how effectively and rapidly U(VI) bound to sediment or soil can be converted to an immobile phase.

  15. Anaerobic U(IV) Bio-oxidation and the Resultant Remobilization of Uranium in Contaminated Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coates, John D.

    2005-06-01

    A proposed strategy for the remediation of uranium (U) contaminated sites is based on immobilizing U by reducing the oxidized soluble U, U(VI), to form a reduced insoluble end product, U(IV). Due to the use of nitric acid in the processing of nuclear fuels, nitrate is often a co-contaminant found in many of the environments contaminated with uranium. Recent studies indicate that nitrate inhibits U(VI) reduction in sediment slurries. However, the mechanism responsible for the apparent inhibition of U(VI) reduction is unknown, i.e. preferential utilization of nitrate as an electron acceptor, direct biological oxidation of U(IV) coupled to nitrate reduction,more » and/or abiotic oxidation by intermediates of nitrate reduction. Recent studies indicates that direct biological oxidation of U(IV) coupled to nitrate reduction may exist in situ, however, to date no organisms have been identified that can grow by this metabolism. In an effort to evaluate the potential for nitrate-dependent bio-oxidation of U(IV) in anaerobic sedimentary environments, we have initiated the enumeration of nitrate-dependent U(IV) oxidizing bacteria. Sediments, soils, and groundwater from uranium (U) contaminated sites, including subsurface sediments from the NABIR Field Research Center (FRC), as well as uncontaminated sites, including subsurface sediments from the NABIR FRC and Longhorn Army Ammunition Plant, Texas, lake sediments, and agricultural field soil, sites served as the inoculum source. Enumeration of the nitrate-dependent U(IV) oxidizing microbial population in sedimentary environments by most probable number technique have revealed sedimentary microbial populations ranging from 9.3 x 101 - 2.4 x 103 cells (g sediment)-1 in both contaminated and uncontaminated sites. Interestingly uncontaminated subsurface sediments (NABIR FRC Background core FB618 and Longhorn Texas Core BH2-18) both harbored the most numerous nitrate-dependent U(IV) oxidizing population 2.4 x 103 cells (g sediment)-1. The nitrate-dependent U(IV) oxidizing microbial population in groundwaters is less numerous ranging from 0 cells mL-1 (Well FW300, Uncontaminated Background NABIR FRC) to 4.3 x 102 cells mL-1 (Well TPB16, Contaminated Area 2 NABIR FRC). The presence of nitrate-dependent U(IV) oxidizing bacteria supports our hypothesis that bacteria capable of anaerobic U(IV) oxidation are ubiquitous and indigenous to sedimentary and groundwater environments.« less

  16. SINTERING METAL OXIDES

    DOEpatents

    Roake, W.E.

    1960-09-13

    A process is given for producing uranium dioxide material of great density by preparing a compacted mixture of uranium dioxide and from 1 to 3 wt.% of calcium hydride, heating the mixture to at least 675 deg C for decomposition of the hydride and then for sintering, preferably in a vacuum, at from 1550 to 2000 deg C. Calcium metal is formed, some uranium is reduced by the calcium to the metal and a product of high density is obtained.

  17. Plutonium-uranium mixed oxide characterization by coupling micro-X-ray diffraction and absorption investigations

    NASA Astrophysics Data System (ADS)

    Degueldre, C.; Martin, M.; Kuri, G.; Grolimund, D.; Borca, C.

    2011-09-01

    Plutonium-uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The potential differences of metal redox state and microstructural developments of the matrix before and after irradiation are commonly analysed by electron probe microanalysis. In this work the structure and next-neighbor atomic environments of Pu and U oxide features within unirradiated homogeneous MOX and irradiated (60 MW d kg -1) MOX samples was analysed by micro-X-ray fluorescence (μ-XRF), micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption fine structure (μ-XAFS) spectroscopy. The grain properties, chemical bonding, valences and stoichiometry of Pu and U are determined from the experimental data gained for the unirradiated as well as for irradiated fuel material examined in the center of the fuel as well as in its peripheral zone (rim). The formation of sub-grains is observed as well as their development from the center to the rim (polygonization). In the irradiated sample Pu remains tetravalent (>95%) and no (<5%) Pu(V) or Pu(VI) can be detected while the fuel could undergo slight oxidation in the rim zone. Any slight potential plutonium oxidation is buffered by the uranium dioxide matrix while locally fuel cladding interaction could also affect the redox of the fuel.

  18. Oxidative Uranium Release from Anoxic Sediments under Diffusion-Limited Conditions.

    PubMed

    Bone, Sharon E; Cahill, Melanie R; Jones, Morris E; Fendorf, Scott; Davis, James; Williams, Kenneth H; Bargar, John R

    2017-10-03

    Uranium (U) contamination occurs as a result of mining and ore processing; often in alluvial aquifers that contain organic-rich, reduced sediments that accumulate tetravalent U, U(IV). Uranium(IV) is sparingly soluble, but may be mobilized upon exposure to nitrate (NO 3 - ) and oxygen (O 2 ), which become elevated in groundwater due to seasonal fluctuations in the water table. The extent to which oxidative U mobilization can occur depends upon the transport properties of the sediments, the rate of U(IV) oxidation, and the availability of inorganic reductants and organic electron donors that consume oxidants. We investigated the processes governing U release upon exposure of reduced sediments to artificial groundwater containing O 2 or NO 3 - under diffusion-limited conditions. Little U was mobilized during the 85-day reaction, despite rapid diffusion of groundwater within the sediments and the presence of nonuraninite U(IV) species. The production of ferrous iron and sulfide in conjunction with rapid oxidant consumption suggested that the sediments harbored large concentrations of bioavailable organic carbon that fueled anaerobic microbial respiration and stabilized U(IV). Our results suggest that seasonal influxes of O 2 and NO 3 - may cause only localized mobilization of U without leading to export of U from the reducing sediments when ample organic carbon is present.

  19. Thermodynamic properties of selected uranium compounds and aqueous species at 298.15 K and 1 bar and at higher temperatures; preliminary models for the origin of coffinite deposits

    USGS Publications Warehouse

    Hemingway, B.S.

    1982-01-01

    Thermodynamic values for 110 uranium-bearing phases and 28 aqueous uranium solution species (298.15 K and l bar) are tabulated based upon evaluated experimental data (largely from calorimetric experiments) and estimated values. Molar volume data are given for most of the solid phases. Thermodynamic values for 16 uranium-bearing phases are presented for higher temperatures in the form of and as a supplement to U.S. Geological Survey Bulletin 1452 (Robie et al., 1979). The internal consistency of the thermodynamic values reported herein is dependent upon the reliability of the experimental results for several uranium phases that have been used as secondary calorimetric reference phases. The data for the reference phases and for those phases evaluated with respect to the secondary reference phases are discussed. A preliminary model for coffinite formation has been proposed together with an estimate of the free energy of formation of coffinite. Free energy values are estimated for several other uranium-bearing silicate phases that have been reported as secondary uranium phases associated with uranium ore deposits and that could be expected to develop wherever uranium is leached by groundwaters.

  20. METHOD OF ELECTROPLATING ON URANIUM

    DOEpatents

    Rebol, E.W.; Wehrmann, R.F.

    1959-04-28

    This patent relates to a preparation of metallic uranium surfaces for receiving coatings, particularly in order to secure adherent electroplated coatings upon uranium metal. In accordance with the invention the uranium surface is pretreated by degreasing in trichloroethylene, followed by immersion in 25 to 50% nitric acid for several minutes, and then rinsed with running water, prior to pickling in trichloroacetic acid. The last treatment is best accomplished by making the uranium the anode in an aqueous solution of 50 per cent by weight trichloroacetic acid until work-distorted crystals or oxide present on the metal surface have been removed and the basic crystalline structure of the base metal has been exposed. Following these initial steps the metallic uranium is rinsed in dilute nitric acid and then electroplated with nickel. Adnerent firmly-bonded coatings of nickel are obtained.

  1. Distribution and mode of occurrence of uranium in bottom ash derived from high-germanium coals.

    PubMed

    Sun, Yinglong; Qi, Guangxia; Lei, Xuefei; Xu, Hui; Li, Lei; Yuan, Chao; Wang, Yi

    2016-05-01

    The radioactivity of uranium in radioactive coal bottom ash (CBA) may be a potential danger to the ambient environment and human health. Concerning the limited research on the distribution and mode of occurrence of uranium in CBA, we herein report our investigations into this topic using a number of techniques including a five-step Tessier sequential extraction, hydrogen fluoride (HF) leaching, Siroquant (Rietveld) quantification, magnetic separation, and electron probe microanalysis (EPMA). The Tessier sequential extraction showed that the uranium in the residual and Fe-Mn oxide fractions was dominant (59.1% and 34.9%, respectively). The former was mainly incorporated into aluminosilicates, retained with glass and cristobalite, whereas the latter was especially enriched in the magnetic fraction, of which about 50% was present with magnetite (Fe3O4) and the rest in other iron oxides. In addition, the uranium in the magnetic fraction was 2.6 times that in the non-magnetic fraction. The experimental findings in this work may be important for establishing an effective strategy to reduce radioactivity from CBA for the protection of our local environment. Copyright © 2015. Published by Elsevier B.V.

  2. Effect of metal sulfide pulp density on gene expression of electron transporters in Acidithiobacillus sp. FJ2.

    PubMed

    Fatemi, Faezeh; Miri, Saba; Jahani, Samaneh

    2017-05-01

    In Acidithiobacillus ferrooxidans, one of the most important bioleaching bacterial species, the proteins encoded by the rus operon are involved in the electron transfer from Fe 2+ to O 2 . To obtain further knowledge about the mechanism(s) involved in the adaptive responses of the bacteria to growth on the different uranium ore pulp densities, we analyzed the expression of the four genes from the rus operon by real-time PCR, when Acidithiobacillus sp. FJ2 was grown in the presence of different uranium concentrations. The uranium bioleaching results showed the inhibitory effects of the metal pulp densities on the oxidation activity of the bacteria which can affect Eh, pH, Fe oxidation and uranium extractions. Gene expression analysis indicated that Acidithiobacillus sp. FJ2 tries to survive in the stress with increasing in the expression levels of cyc2, cyc1, rus and coxB, but the metal toxicity has a negative effect on the gene expression in different pulp densities. These results indicated that Acidithiobacillus sp. FJ2 could leach the uranium even in high pulp density (50%) by modulation in rus operon gene responses.

  3. Studies of the kinetics and mechanism of the oxidation of uranium by dry and moist air A model for determining the oxidation rate over a wide range of temperatures and water vapour pressures

    NASA Astrophysics Data System (ADS)

    McGillivray, G. W.; Geeson, D. A.; Greenwood, R. C.

    1994-01-01

    The rate of oxidation of uranium metal by moist air has been measured at temperatures from 115 to 350°C and water vapour pressures from 0 to 47 kPa (350 Torr). From this and from previously reported data, a model has been developed which allows the rate of uranium oxidation to be calculated at any particular combination of temperature and water vapour pressure of interest, in the range 0-350°C and 0-101.3 kPa (760 Torr). The model is based on the assumption that the surface concentration of water determines the rate of reaction and that the adsorption of water onto the oxide follows a Langmuir type isotherm. Theoretical plots of rate as a function of water vapour pressure and Arrhenius plots derived from the model have been shown to be in good agreement with experimental data. The model assumes separate contributions to the overall observed rate from oxygen and water vapour. Surface studies have been carried out using SIMS (secondary ion mass spectrometry). Depth profiling of the oxide produced by isotopically labelled reagents ( 18O 2 and H 218O), has shown that oxygen from both reactants is incorporated into the oxide layer in the ratio predicted by the kinetic model. This supports a mechanism in which oxygen and water vapour produce separate diffusing species (possibly O 2- and OH -).

  4. The role of uranium-arene bonding in H2O reduction catalysis

    NASA Astrophysics Data System (ADS)

    Halter, Dominik P.; Heinemann, Frank W.; Maron, Laurent; Meyer, Karsten

    2018-03-01

    The reactivity of uranium compounds towards small molecules typically occurs through stoichiometric rather than catalytic processes. Examples of uranium catalysts reacting with water are particularly scarce, because stable uranyl groups form that preclude the recovery of the uranium compound. Recently, however, an arene-anchored, electron-rich uranium complex has been shown to facilitate the electrocatalytic formation of H2 from H2O. Here, we present the precise role of uranium-arene δ bonding in intermediates of the catalytic cycle, as well as details of the atypical two-electron oxidative addition of H2O to the trivalent uranium catalyst. Both aspects were explored by synthesizing mid- and high-valent uranium-oxo intermediates and by performing comparative studies with a structurally related complex that cannot engage in δ bonding. The redox activity of the arene anchor and a covalent δ-bonding interaction with the uranium ion during H2 formation were supported by density functional theory analysis. Detailed insight into this catalytic system may inspire the design of ligands for new uranium catalysts.

  5. Capstone Depleted Uranium Aerosols: Generation and Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray

    2004-10-19

    In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

  6. FUSED SALT PROCESS FOR RECOVERY OF VALUES FROM USED NUCLEAR REACTOR FUELS

    DOEpatents

    Moore, R.H.

    1960-08-01

    A process is given for recovering plutonium from a neutron-irradiated uranium mass (oxide or alloy) by dissolving the mass in an about equimolar alkali metalaluminum double chloride, adding aluminum metal to the mixture obtained at a temperature of between 260 and 860 deg C, and separating a uranium-containing metal phase and a plutonium-chloride- and fission-product chloridecontaining salt phase. Dissolution can be expedited by passing carbon tetrachloride vapors through the double salt. Separation without reduction of plutonium from neutron- bombarded uranium and that of cerium from uranium are also discussed.

  7. RECOVERY OF URANIUM VALUES FROM RESIDUES

    DOEpatents

    Schaap, W.B.

    1959-08-18

    A process is described for the recovery of uranium from insoluble oxide residues resistant to repeated leaching with mineral acids. The residue is treated with gaseous hydrogen fluoride, then with hydrogen and again with hydrogen fluoride, preferably at 500 to 700 deg C, prior to the mineral acid leaching.

  8. Uranium in the Mayoworth area, Johnson County, Wyoming - a preliminary report

    USGS Publications Warehouse

    Love, J.D.

    1954-01-01

    The uranium mineral, metatyuyamunite, occurs in the basal limestone of the Sundance formation of late Jurassic age along the east flank of the Bighorn Mountains, about 2 miles southwest of the abandoned Mayoworth post office. This occurrence is of particular interest because it is the first uranium mineralization reported from a marine limestone in Wyoming. The discovery uranium claims were filed in July 1953, by J.S. Masek, Dan Oglesby, and Jack Emery of Casper, Wyo. Subsequent reconnaissance investigations have been made by private individuals and geologists of the U.S. Geological Survey and Atomic Energy Commission. The metatyuyamunite is concentrated in a hard gray oolitic limestone that forms the basal bed of the Sundance formation. A selected sample of limestone from a fresh face in the northernmost deposit known at the time of the field examination contained 0.70 percent equivalent uranium and 0.71 percent uranium. Eight samples of the limestone taken at the sample place by the Atomic Energy Commission contained from 0.007 to 0.22 percent uranium. A chip sample from the weathered outcrop at the top of this limestone half a mile to the southeast contained 0.17 percent equivalent uranium and 0.030 percent uranium. A dinosaur bone from the middle part of the Morrison formation contained 0.044 percent equivalent uranium and 0.004 percent uranium. metatyuyamunite forms a conspicuous yellow coating along fracture planes cutting the oolitic limestone and has also replaced many of the oolites within the solid limestone and has also replaced many of the oolites within the solid limestone even where fractures are not present. Many radioactive spots in the basal limestone of the Sundance formation were examined in a reconnaissance fashion along the outcrop for a distance of half a mile south of the initial discovery. Samples were taken for analysis only at the northern and southern margins of this interval. Outcrops farther north and south were not studied. There are not sufficient data to make even rough estimates of tonnage and grade of the occurrences. The extent of the limestone, the approximate boundaries of the area of above-normal radioactivity, and the possibilities of other radioactive zones have not been thoroughly investigated. Although dinosaur bones in the Morrison formation were radioactive wherever they were tested, no significant amount of radioactivity was observed in rocks adjacent to the bones.

  9. U(v) in metal uranates: A combined experimental and theoretical study of MgUO 4, CrUO 4, and FeUO 4

    DOE PAGES

    Guo, Xiaofeng; Tiferet, Eitan; Qi, Liang; ...

    2016-01-01

    Although pentavalent uranium can exist in aqueous solution, its presence in the solid state is uncommon. Metal monouranates, MgUO 4, CrUO 4 and FeUO 4 were synthesized for detailed structural and energetic investigations. Structural characteristics of these uranates used powder X-ray diffraction, synchrotron X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and 57Fe-Mossbauer spectroscopy. Enthalpies of formation were measured by high temperature oxide melt solution calorimetry. Density functional theory (DFT) calculations provided both structural and energetic information. The measured structural and thermodynamic properties show good consistency with those predicted from DFT. The presence of U 5+ has been solidly confirmed in CrUOmore » 4 and FeUO 4, which are thermodynamically stable compounds, and the origin and stability of U 5+ in the system was elaborated by DFT. Lastly, the structural and thermodynamic behaviour of U 5+ elucidated in this work is relevant to fundamental actinide redox chemistry and to applications in the nuclear industry and radioactive waste disposal.« less

  10. Flammability Analysis For Actinide Oxides Packaged In 9975 Shipping Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurinat, James E.; Askew, Neal M.; Hensel, Steve J.

    2013-03-21

    Packaging options are evaluated for compliance with safety requirements for shipment of mixed actinide oxides packaged in a 9975 Primary Containment Vessel (PCV). Radiolytic gas generation rates, PCV internal gas pressures, and shipping windows (times to reach unacceptable gas compositions or pressures after closure of the PCV) are calculated for shipment of a 9975 PCV containing a plastic bottle filled with plutonium and uranium oxides with a selected isotopic composition. G-values for radiolytic hydrogen generation from adsorbed moisture are estimated from the results of gas generation tests for plutonium oxide and uranium oxide doped with curium-244. The radiolytic generation ofmore » hydrogen from the plastic bottle is calculated using a geometric model for alpha particle deposition in the bottle wall. The temperature of the PCV during shipment is estimated from the results of finite element heat transfer analyses.« less

  11. Nuclear waste viewed in a new light; a synchrotron study of uranium encapsulated in grout.

    PubMed

    Stitt, C A; Hart, M; Harker, N J; Hallam, K R; MacFarlane, J; Banos, A; Paraskevoulakos, C; Butcher, E; Padovani, C; Scott, T B

    2015-03-21

    How do you characterise the contents of a sealed nuclear waste package without breaking it open? This question is important when the contained corrosion products are potentially reactive with air and radioactive. Synchrotron X-rays have been used to perform micro-scale in-situ observation and characterisation of uranium encapsulated in grout; a simulation for a typical intermediate level waste storage packet. X-ray tomography and X-ray powder diffraction generated both qualitative and quantitative data from a grout-encapsulated uranium sample before, and after, deliberately constrained H2 corrosion. Tomographic reconstructions provided a means of assessing the extent, rates and character of the corrosion reactions by comparing the relative densities between the materials and the volume of reaction products. The oxidation of uranium in grout was found to follow the anoxic U+H2O oxidation regime, and the pore network within the grout was observed to influence the growth of uranium hydride sites across the metal surface. Powder diffraction analysis identified the corrosion products as UO2 and UH3, and permitted measurement of corrosion-induced strain. Together, X-ray tomography and diffraction provide means of accurately determining the types and extent of uranium corrosion occurring, thereby offering a future tool for isolating and studying the reactions occurring in real full-scale waste package systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Energetics and Defect Interactions of Complex Oxides for Energy Applications

    NASA Astrophysics Data System (ADS)

    Solomon, Jonathan Michael

    The goal of this dissertation is to employ computational methods to gain greater insights into the energetics and defect interactions of complex oxides that are relevant for today's energy challenges. To achieve this goal, the development of novel computational methodologies are required to handle complex systems, including systems containing nearly 650 ions and systems with tens of thousands of possible atomic configurations. The systems that are investigated in this dissertation are aliovalently doped lanthanum orthophosphate (LaPO4) due to its potential application as a proton conducting electrolyte for intermediate temperature fuel cells, and aliovalently doped uranium dioxide (UO2) due to its importance in nuclear fuel performance and disposal. First we undertake density-functional-theory (DFT) calculations on the relative energetics of pyrophosphate defects and protons in LaPO4, including their binding with divalent dopant cations. In particular, for supercell calculations with 1.85 mol% Sr doping, we investigate the dopant-binding energies for pyrophosphate defects to be 0.37 eV, which is comparable to the value of 0.34 eV calculated for proton-dopant binding energies in the same system. These results establish that dopant-defect interactions further stabilize proton incorporation, with the hydration enthalpies when the dopants are nearest and furthest from the protons and pyrophosphate defects being -1.66 eV and -1.37 eV, respectively. Even though our calculations show that dopant binding enhances the enthalpic favorability of proton incorporation, they also suggest that such binding is likely to substantially lower the kinetic rate of hydrolysis of pyrophosphate defects. We then shift our focus to solid solutions of fluorite-structured UO 2 with trivalent rare earth fission product cations (M3+=Y, La) using a combination of ionic pair potential and DFT based methods. Calculated enthalpies of formation with respect to constituent oxides show higher energetic stability for La solid solutions than for Y. Additionally, calculations performed for different atomic configurations show a preference for reduced (increased) oxygen vacancy coordination around La (Y) dopants. The current results are shown to be qualitatively consistent with related calculations and calorimetric measurements of heats of formation in other trivalent doped fluorite oxides, which show a tendency for increasing stability and increasing preference for higher oxygen coordination with increasing size of the trivalent impurity. We expand this investigation by considering a series of trivalent rare earth fission product cations, specifically, Y3+ (1.02 A, Shannon radius with eightfold coordination), Dy3+ (1.03 A), Gd 3+ (1.05 A), Eu3+ (1.07 A), Sm3+ (1.08 A), Pm3+ (1.09 A), Nd3+ (1.11 A), Pr3+ (1.13 A), Ce3+ (1.14 A) and La3+ (1.16 A). Compounds with ionic radius of the M3+ species smaller or larger than 1.09 A are found to have energetically preferred defect ordering arrangements. Systems with preferred defect ordering arrangements are suggestive of defect clustering in short range ordered solid solutions, which is expected to limit oxygen ion mobility and therefore the rate of oxidation of spent nuclear fuel. Finally, the energetics of rare earth substituted (M3+= La, Y, and Nd) UO2 solid solutions are investigated by employing a combination of calorimetric measurements and DFT based computations. The calorimetric studies are performed by Lei Zhang and Professor Alexandra Navrotsky at the University of Calfornia, Davis, as part of a joint computational/ experimental collaborative effort supported through the Materials Science of Actinides Energy Frontier Research Center. Calculated and measured formation enthalpies agree within 10 kJ/mol for stoichiometric oxygen/metal compositions. To better understand the factors governing the stability and defect binding in rare earth substituted urania solid solutions, systematic trends in the energetics are investigated based on the present results and previous computational and experimental thermochemical studies of rare earth substituted fluorite oxides. A consistent trend towards increased energetic stability with larger size mismatch between the smaller host tetravalent cation and the larger rare earth trivalent cation is found for both actinide and non-actinide fluorite oxide systems where aliovalent substitution of M cations is compensated by oxygen vacancies. However, the large exothermic oxidation enthalpy in the UO2 based systems favors compositions with higher oxygen-to-metal ratios where charge compensation occurs through the formation of uranium cations with higher oxidation states.

  13. FLUORINATION OF OXIDIC NUCLEAR FUEL

    DOEpatents

    Mecham, W.J.; Gabor, J.D.

    1963-07-23

    A process of volatilizing fissionable material away from fission products, present together in neutron-bombarded uranium oxide, by reaction with an oxygen-fluorine mixture at 350 to 500 deg C is described. (AEC)

  14. Epithermal uranium deposits in a volcanogenic context: the example of Nopal 1 deposit, Sierra de Pena Blanca, Mexico

    NASA Astrophysics Data System (ADS)

    Calas, G.; Angiboust, S.; Fayek, M.; Camacho, A.; Allard, T.; Agrinier, P.

    2009-12-01

    The Peña Blanca molybdenum-uranium field (Chihuahua, Mexico) exhibits over 100 airborne anomalies hosted in tertiary ignimbritic ash-flow tuffs (44 Ma) overlying the Pozos conglomerate and a sequence of Cretaceous carbonate rocks. Uranium occurrences are associated with breccia zones at the intersection of two or more fault systems. Periodic reactivation of these structures associated with Basin and Range and Rio Grande tectonic events resulted in the mobilization of U and other elements by meteoric fluids heated by geothermal activity. Trace element geochemistry (U, Th, REE) provides evidence for local mobilization of uranium under oxidizing conditions. In addition, O- and H-isotope geochemistry of kaolinite, smectite, opal and calcite suggests that argillic alteration proceeded at shallow depth with meteoric water at 25-75 °C. Focussed along breccia zones, fluids precipitated several generations of pyrite and uraninite together with kaolinite, as in the Nopal 1 mine, indicating that mineralization and hydrothermal alteration of volcanic tuffs are contemporaneous. Low δ34S values (~ -24.5 ‰) of pyrites intimately associated with uraninite suggest that the reducing conditions at the origin of the U-mineralization arise from biological activity. Later, the uplift of Sierra Pena Blanca resulted in oxidation and remobilization of uranium, as confirmed by the spatial distribution of radiation-induced defect centers in kaolinites. These data show that tectonism and biogenic reducing conditions can play a major role in the formation and remobilization of uranium in epithermal deposits. By comparison with the other uranium deposits at Sierra Pena Blanca and nearby Sierra de Gomez, Nopal 1 deposit is one of the few deposits having retained a reduced uranium mineralization.

  15. Geochemical investigations by the U.S. Geological Survey on uranium mining, milling, and environmental restoration

    USGS Publications Warehouse

    Landa, Edward R.; Cravotta, Charles A.; Naftz, David L.; Verplanck, Philip L.; Nordstrom, D. Kirk; Zielinski, Robert A.

    2000-01-01

    Recent research by the U.S. Geological Survey has characterized contaminant sources and identified important geochemical processes that influence transport of radionuclides from uranium mining and milling wastes. 1) Selective extraction studies indicated that alkaline earth sulfates and hydrous ferric oxides are important hosts of 226Ra in uranium mill tailings. The action of sulfate-reducing and ironreducing bacteria on these phases was shown to enhance release of radium, and this adverse result may temper decisions to dispose of uranium mill tailings in anaerobic environments. 2) Field studies have shown that although surface-applied sewage sludge/wood chip amendments aid in revegetating pyritic spoil, the nitrogen in sludge leachate can enhance pyrite oxidation, acidification of groundwater, and the consequent mobilization of metals and radionuclides. 3) In a U.S. Environmental Protection Agencyfunded study, three permeable reactive barriers consisting of phosphate-rich material, zero-valent iron, or amorphous ferric oxyhydroxide have been installed at an abandoned uranium upgrader facility near Fry Canyon, UT. Preliminary results indicate that each of the permeable reactive barriers is removing the majority of the uranium from the groundwater. 4) Studies on the geochemistry of rare earth elements as analogues for actinides such as uranium and thorium in acid mine drainage environments indicate high mobility under acid-weathering conditions but measurable attenuation associated with iron and aluminum colloid formation. Mass balances from field and laboratory studies are being used to quantify the amount of attenuation. 5) A field study in Colorado demonstrated the use of 234U/238U isotopic ratio measurements to evaluate contamination of shallow groundwater with uranium mill effluent.

  16. Uranium speciation in Fernald soils. Progress report, January 1--May 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, D.E.; Conradson, S.D.; Tait, C.D.

    1992-05-31

    This report details progress made from January 1 to May 31, 1992 in this analytical support task to determine the speciation of uranium in contaminated soil samples from the Fernald Environmental Management Project site under the auspices of the Uranium in Soils Integrated Demonstration funded through the US DOE`s Office of Technology Development. The authors` efforts have focused on characterization of soil samples collected by S.Y. Lee (Oak Ridge National Laboratory) from five locales at the Fernald site. These were chosen to sample a broad range of uranium source terms. On the basis of x-ray absorption spectroscopy data, they havemore » determined that the majority of uranium (> 80--90%) exists in the hexavalent oxidation state for all samples examined. This is a beneficial finding from the perspective of remediation, because U(VI) species are more soluble in general than uranium species in other oxidation states. Optical luminescence data from many of the samples show the characteristic structured yellow-green emission from the uranyl (UO{sub 2}{sup 2+}) moiety. The luminescence data also suggest that much of the uranium in these soils is present as well-crystallized UO{sub 2}{sup 2+} species. Some clear spectroscopic distinctions have been noted for several samples that illustrate significant differences in the speciation (1) from site to site, (2) within different horizons at the same site, and (3) within different size fractions of the soils in the same horizon at the same site. This marked heterogeneity in uranyl speciation suggests that several soil washing strategies may be necessary to reduce the total uranium concentrations within these soils to regulatory limits.« less

  17. Recovering and recycling uranium used for production of molybdenum-99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reilly, Sean Douglas; May, Iain; Copping, Roy

    A processes for recycling uranium that has been used for the production of molybdenum-99 involves irradiating a solution of uranium suitable for forming fission products including molybdenum-99, conditioning the irradiated solution to one suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina. Another process involves irradiation of a solid target comprising uranium, forming an acidic solution from the irradiated targetmore » suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina.« less

  18. PROCESSES OF RECOVERING URANIUM FROM A CALUTRON

    DOEpatents

    Baird, D.O.; Zumwalt, L.R.

    1958-07-15

    An improved process is described for recovering the residue of a uranium compound which has been subjected to treatment in a calutron, from the parts of the calutron disposed in the source region upon which the residue is deposited. The process may be utilized when the uranium compound adheres to a surface containing metals of the group consisting of copper, iron, chromium, and nickel. The steps comprise washing the surface with an aqueous acidic oxidizing solvent for the uranium whereby there is obtained an acidic aqueous Solution containing uranium as uranyl ions and metals of said group as impurities, treating the acidic solution with sodium acetate in the presenee of added sodium nitrate to precipitate the uranium as sodium uranyl acetate away from the impurities in the solution, and separating the sodium uranyl acetate from the solution.

  19. The origin of the Avram Iancu U-Ni-Co-Bi-As mineralization, Băiţa (Bihor) metallogenic district, Bihor Mts., Romania

    NASA Astrophysics Data System (ADS)

    Zajzon, Norbert; Szentpéteri, Krisztián; Szakáll, Sándor; Kristály, Ferenc

    2015-10-01

    The Băiţa metallogenic district in the Bihor Mountains is a historically important mining area in Romania. Uranium mining took place between 1952 and 1998 from various deposits, but very little is known about the geology and mineralogy of these deposits. In this paper, we describe geology and mineralogy of uranium mineralization of the Avram Iancu uranium mine from waste dump samples collected before complete remediation of the site. Texturally and mineralogically complex assemblages of nickeline, cobaltite-gersdorffite solid solution, native Bi, Bi-sulfosalts, molybdenite, and pyrite-chalcopyrite-sphalerite occur with uraninite, "pitchblende," and brannerite in most of the ore samples. The association of nickel, cobalt, and arsenic with uranium is reminiscent of five-element association of vein type U-Ni-Co-Bi-As deposits; however, the Avram Iancu ores appear to be more replacement-type stratiform/stratabound. Avram Iancu ore samples contain multistage complex, skarn, uranium sulfide, arsenide assemblages that can be interpreted to have been formed in the retrograde cooling stages of the skarn hydrothermal system. This mineralizing system may have built-up along Upper Cretaceous-Paleogene "Banatite" intrusions of diorite-to-granite composition. The intrusions crosscut the underlying uraniferous Permian formations in the stacked NW-verging Biharia Nappe System. The mineralization forms stacked, multilayer replacement horizons, along carbonate-rich lithologies within the metavolcanic (tuffaceous) Muncel Series. Mineral paragenesis and some mineral chemistry suggest moderate-to-high <450, i.e., 350-310 °C, formation temperatures for the uranium sulfide stage along stratigraphically controlled replacement zones and minor veins. Uranium minerals formed abundantly in this early stage and include botryoidal, sooty and euhedral uraninite, brannerite, and coffinite. Later and/or lower-temperature mineral assemblages include heterogeneous, complexly zoned arsenide-sulfarsenide solid solutions associated with minute but abundant uranium minerals. Within the later arsenide-sulfarsenide mineral assemblage, there is great variation in Ni, Co, and S content with generally increasing arsenic content. Uranium minerals in this late-stage assemblage include very fine euhedral uraninite and brannerite inclusions in arsenide-sulfarsenide minerals. Native bismuth and Bi-sulfosalt krupkaite are observed in this As-S-rich assemblage strongly associated with cobaltite.

  20. Modeling of point defects and rare gas incorporation in uranium mono-carbide

    NASA Astrophysics Data System (ADS)

    Chartier, A.; Van Brutzel, L.

    2007-02-01

    An embedded atom method (EAM) potential has been established for uranium mono-carbide. This EAM potential was fitted on structural properties of metallic uranium and uranium mono-carbide. The formation energies of point defects, as well as activation energies for self migration, have been evaluated in order to cross-check the suitability of the potential. Assuming that the carbon vacancies are the main defects in uranium mono-carbide compounds, the migration paths and energies are consistent with experimental data selected by Catlow[C.R.A. Catlow, J. Nucl. Mater. 60 (1976) 151]. The insertion and migration energies for He, Kr and Xe have also been evaluated with available inter-atomic potentials [H.H. Andersen, P. Sigmund, Nucl. Instr. and Meth. B 38 (1965) 238]. Results show that the most stable defect configuration for rare gases is within uranium vacancies. The migration energy of an interstitial Xe is 0.5 eV, in agreement with the experimental value of 0.5 eV [Hj. Matzke, Science of advanced LMFBR fuels, Solid State Physics, Chemistry and Technology of Carbides, Nitrides and Carbonitrides of Uranium and Plutonium, North-Holland, 1986].

  1. CATALYTIC RECOMBINATION OF RADIOLYTIC GASES IN THORIUM OXIDE SLURRIES

    DOEpatents

    Morse, L.E.

    1962-08-01

    A method for the coinbination of hydrogen and oxygen in aqueous thorium oxide-uranium oxide slurries is described. A small amount of molybdenum oxide catalyst is provided in the slurry. This catalyst is applicable to the recombination of hydrogen and/or deuterium and oxygen produced by irradiation of the slurries in nuclear reactors. (AEC)

  2. Effects of ammonium on uranium partitioning and kaolinite mineral dissolution.

    PubMed

    Emerson, Hilary P; Di Pietro, Silvina; Katsenovich, Yelena; Szecsody, Jim

    2017-02-01

    Ammonia gas injection is a promising technique for the remediation of uranium within the vadose zone. It can be used to manipulate the pH of a system and cause co-precipitation processes that are expected to remove uranium from the aqueous phase and decrease leaching from the solid phase. The work presented in this paper explores the effects of ammonium and sodium hydroxide on the partitioning of uranium and dissolution of the kaolinite mineral in simplified synthetic groundwaters using equilibrium batch sorption and sequential extraction experiments. It shows that there is a significant increase in uranium removal in systems with divalent cations present in the aqueous phase but not in sodium chloride synthetic groundwaters. Further, the initial conditions of the aqueous phase do not affect the dissolution of kaolinite. However, the type of base treatment does have an effect on mineral dissolution. Published by Elsevier Ltd.

  3. Reoxidation of uranium metal immersed in a Li2O-LiCl molten salt after electrolytic reduction of uranium oxide

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Young; Jeon, Min Ku; Lee, Jeong; Kim, Sung-Wook; Lee, Sang Kwon; Lee, Sung-Jai; Heo, Dong Hyun; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok

    2017-03-01

    We present our findings that uranium (U) metal prepared by using the electrolytic reduction process for U oxide (UO2) in a Li2O-LiCl salt can be reoxidized into UO2 through the reaction between the U metal and Li2O in LiCl. Two salt types were used for immersion of the U metal: one was the salt used for electrolytic reduction, and the other was applied to the unused LiCl salts with various concentrations of Li2O and Li metal. Our results revealed that the degree of reoxidation increases with the increasing Li2O concentration in LiCl and that the presence of the Li metal in LiCl suppresses the reoxidation of the U metal.

  4. Formation of Neogenic Ores on the Dump-Heaps of Old Uranium Mines and on the Mine-Head of Mines under Exploitation; FORMATION DE MINERAUX NEOGENES SUR LES HALDES D'ANCIENNES MINES D'URANIUM ET SUR LE CARREAU DES MINES EN EXPLOITATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chervet, J.

    1960-01-01

    The major degradations suffered by primary and secondary uranium ores under the weathering action of air and water are assessed. Pyritic ores were found to be the most vunerable. The interactions between pynite oxidation products and urantferous compounds often lead to the formation of neogentc ores. (C.J.G.)

  5. Preparation and benchmarking of ANSL-V cross sections for advanced neutron source reactor studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arwood, J.W.; Ford, W.E. III; Greene, N.M.

    1987-01-01

    Validity of selected data from the fine-group neutron library was satisfactorily tested in performance parameter calculations for the BAPL-1, TRX-1, and ZEEP-1 thermal lattice benchmarks. BAPL-2 is an H/sub 2/O moderated, uranium oxide lattice; TRX-1 is an H/sub 2/O moderated, 1.31 weight percent enriched uranium metal lattice; ZEEP-1 is a D/sub 2/O-moderated, natural uranium lattice. 26 refs., 1 tab.

  6. Investigation of uranium molecular species using laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curreli, Davide

    2017-07-12

    The goal of this project is to investigate the dynamic evolution of uranium oxide (UOx) molecular species in a rapidly cooling low-temperature plasma using a coupled experimental and modeling approach. Our purpose is to develop quantitative constraints on the UOx phase chemistry under physical conditions similar to that of a nuclear fireball at the time of debris condensation. This work is motivated by a need to better understand the factors controlling uranium chemical fractionation in post-detonation nuclear debris.

  7. Submersion criticality safety of tungsten-rhenium urania cermet fuel for space propulsion and power applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.E. Craft; R. C. O'Brien; S. D. Howe

    Nuclear thermal rockets are the preferred propulsion technology for a manned mission to Mars, and tungsten–uranium oxide cermet fuels could provide significant performance and cost advantages for nuclear thermal rockets. A nuclear reactor intended for use in space must remain subcritical before and during launch, and must remain subcritical in launch abort scenarios where the reactor falls back to Earth and becomes submerged in terrestrial materials (including seawater, wet sand, or dry sand). Submersion increases reflection of neutrons and also thermalizes the neutron spectrum, which typically increases the reactivity of the core. This effect is typically very significant for compact,more » fast-spectrum reactors. This paper provides a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor with a range of fuel compositions. Each submersion case considers both the rhenium content in the matrix alloy and the uranium oxide volume fraction in the cermet. The inclusion of rhenium significantly improves the submersion criticality safety of the reactor. While increased uranium oxide content increases the reactivity of the core, it does not significantly affect the submersion behavior of the reactor. There is no significant difference in submersion behavior between reactors with rhenium distributed within the cermet matrix and reactors with a rhenium clad in the coolant channels. The combination of the flooding of the coolant channels in submersion scenarios and the presence of a significant amount of spectral shift absorbers (i.e. high rhenium concentration) further decreases reactivity for short reactor cores compared to longer cores.« less

  8. Structure and thermodynamics of uranium-containing iron garnets

    NASA Astrophysics Data System (ADS)

    Guo, Xiaofeng; Navrotsky, Alexandra; Kukkadapu, Ravi K.; Engelhard, Mark H.; Lanzirotti, Antonio; Newville, Matthew; Ilton, Eugene S.; Sutton, Stephen R.; Xu, Hongwu

    2016-09-01

    Use of crystalline garnet as a waste form phase appears to be advantageous for accommodating actinides from nuclear waste. Previous studies show that large amounts of uranium (U) and its analogues such as cerium (Ce) and thorium (Th) can be incorporated into the garnet structure. In this study, we synthesized U loaded garnet phases, Ca3UxZr2-xFe3O12 (x = 0.5-0.7), along with the endmember phase, Ca3(Zr2)SiFe3+2O12, for comparison. The oxidation states of U were determined by X-ray photoelectron and absorption spectroscopies, revealing the presence of mixed pentavalent and hexavalent uranium in the phases with x = 0.6 and 0.7. The oxidation states and coordination environments of Fe were measured using transmission 57Fe-Mössbauer spectroscopy, which shows that all iron is tetrahedrally coordinated Fe3+. U substitution had a significant effect on local environments, the extent of U substitution within this range had a minimal effect on the structure, and unlike in the x = 0 sample, Fe exists in two different environments in the substituted garnets. The enthalpies of formation of garnet phases from constituent oxides and elements were first time determined by high temperature oxide melt solution calorimetry. The results indicate that these substituted garnets are thermodynamically stable under reducing conditions. Our structural and thermodynamic analysis further provides explanation for the formation of natural uranium garnet, elbrusite-(Zr), and supports the potential use of Ca3UxZr2-xFe3O12 as viable waste form phases for U and other actinides.

  9. Francis Perrin's 1939 Analysis of Uranium Criticality

    NASA Astrophysics Data System (ADS)

    Reed, Cameron

    2012-03-01

    In May 1939, French physicist Francis Perrin published the first numerical estimate of the fast-neutron critical mass of a uranium compound. While his estimate of about 40 metric tons (12 tons if tamped) pertained to uranium oxide of natural isotopic composition as opposed to the enriched uranium that would be required for a nuclear weapon, it is interesting to examine Perrin's physics and to explore the subsequent impact of his paper. In this presentation I will discuss Perrin's model, the likely provenance of his parameter values, and how his work compared to the approach taken by Robert Serber in his 1943 Los Alamos Primer.

  10. Target and method for the production of fission product molybdenum-99

    DOEpatents

    Vandegrift, George F.; Vissers, Donald R.; Marshall, Simon L.; Varma, Ravi

    1989-01-01

    A target for the reduction of fission product Mo-99 is prepared from uranium of low U-235 enrichment by coating a structural support member with a preparatory coating of a substantially oxide-free substrate metal. Uranium metal is electrodeposited from a molten halide electrolytic bath onto a substrate metal. The electrodeposition is performed at a predetermined direct current rate or by using pulsed plating techniques which permit relaxation of accumulated uranium ion concentrations within the melt. Layers of as much as to 600 mg/cm.sup.2 of uranium can be prepared to provide a sufficient density to produce acceptable concentrations of fission product Mo-99.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulich, M., E-mail: kulich@karlin.mff.cuni.cz; Rericha, V.; Rericha, R.

    Objectives: Uranium miners are chronically exposed to radon and its progeny, which are known to cause lung cancer and may be associated with leukemia. This study was undertaken to evaluate risk of non-lung solid cancers among uranium miners in Pribram region, Czech Republic. Methods: A retrospective stratified case-cohort study in a cohort of 22,816 underground miners who were employed between 1949 and 1975. All incident non-lung solid cancers were ascertained among miners who worked underground for at least 12 months (n=1020). A subcohort of 1707 subjects was randomly drawn from the same population by random sampling stratified on age. Themore » follow-up period lasted from 1977 to 1996. Results: Relative risks comparing 180 WLM (90th percentile) of cumulative lifetime radon exposure to 3 WLM (10th percentile) were 0.88 for all non-lung solid cancers combined (95% CI 0.73-1.04, n=1020), 0.87 for all digestive cancers (95% CI 0.69-1.09, n=561), 2.39 for gallbladder cancer (95% CI 0.52-10.98, n=13), 0.79 for larynx cancer (95% CI 0.38-1.64, n=62), 2.92 for malignant melanoma (95% CI 0.91-9.42, n=23), 0.84 for bladder cancer (95% CI 0.43-1.65, n=73), and 1.13 for kidney cancer (95% CI 0.62-2.04, n=66). No cancer type was significantly associated with radon exposure; only malignant melanoma and gallbladder cancer showed elevated but non-significant association with radon. Conclusions: Radon was not significantly associated with incidence of any cancer of interest, although a positive association of radon with malignant melanoma and gallbladder cancer cannot be entirely ruled out. - Research highlights: {yields} Uranium miners are chronically exposed to radon. {yields} We evaluate risk of non-lung solid cancers among uranium miners. {yields} No cancer type was significantly associated with radon exposure. {yields} Malignant melanoma and gallbladder cancer showed non-significant elevated risk.« less

  12. Kinetics of dissolution of UO2 in nitric acid solutions: A multiparametric study of the non-catalysed reaction

    NASA Astrophysics Data System (ADS)

    Cordara, T.; Szenknect, S.; Claparede, L.; Podor, R.; Mesbah, A.; Lavalette, C.; Dacheux, N.

    2017-12-01

    UO2 pellets were prepared by densification of oxides obtained from the conversion of the oxalate precursor. Then characterized in order to perform a multiparametric study of the dissolution in nitric acid medium. In this frame, for each sample, the densification rate, the grain size and the specific surface area of the prepared pellets were determined prior to the final dissolution experiments. By varying the concentration of the nitric acid solution and temperature, three different and successive steps were identified during the dissolution. Under the less aggressive conditions considered, a first transient step corresponding to the dissolution of the most reactive phases was observed at the solid/solution interface. Then, for all the tested conditions, a steady state step was established during which the normalised dissolution rate was found to be constant. It was followed by a third step characterized by a strong and continuous increase of the normalised dissolution rate. The duration of the steady state, also called "induction period", was found to vary drastically as a function of the HNO3 concentration and temperature. However, independently of the conditions, this steady state step stopped at almost similar dissolved material weight loss and dissolved uranium concentration. During the induction period, no important evolution of the topology of the solid/liquid interface was evidenced authorizing the use of the starting reactive specific surface area to evaluate the normalised dissolution rates thus the chemical durability of the sintered pellets. From the multiparametric study of UO2 dissolution proposed, oxidation of U(IV) to U(VI) by nitrate ions at the solid/liquid interface constitutes the limiting step in the overall dissolution mechanism associated to this induction period.

  13. Structure and Reactivity of X-ray Amorphous Uranyl Peroxide, U 2O 7

    DOE PAGES

    Odoh, Samuel O.; Shamblin, Jacob; Colla, Christopher A.; ...

    2016-03-14

    Recent accidents resulting in worker injury and radioactive contamination occurred due to pressurization of uranium yellowcake drums produced in the western USA. The drums contained an unexpected X-ray amorphous reactive form of uranium oxide, U 2O7. Heating hydrated uranyl peroxides produced during in situ mining unintentionally produced U 2O 7. It is a hygroscopic anhydrous uranyl peroxide that reacts rapidly with water to release O 2 gas and form metaschoepite, a uranyl-oxide hydrate. Quantum chemical calculations indicate that the most stable U 2O 7 conformer consists of two bent (UO 2) 2+ uranyl ions bridged by a peroxide group bidentatemore » and parallel to each uranyl ion, and a μ2-O atom, resulting in charge neutrality. A pair distribution function from neutron total scattering supports this structural model. The reactivity of U 2O 7 in water and with water in air is much higher than other uranium oxides, and this can be both hazardous and potentially advantageous in the nuclear fuel cycle.« less

  14. High temperature fuel/emitter system for advanced thermionic fuel elements

    NASA Astrophysics Data System (ADS)

    Moeller, Helen H.; Bremser, Albert H.; Gontar, Alexander; Fiviesky, Evgeny

    1997-01-01

    Specialists in space applications are currently focusing on bimodal power systems designed to provide both electric power and thermal propulsion (Kennedy, 1994 and Houts, 1995). Our work showed that thermionics is a viable technology for nuclear bimodal power systems. We demonstrated that materials for a thermionic fuel-emitter combination capable of performing at operating temperatures of 2473 K are not only possible but available. The objective of this work, funded by the US Department of Energy, Office of Space and Defense Power Systems, was to evaluate the compatibility of fuel material consisting of an uranium carbide/tantalum carbide solid solution with an emitter material consisting of a monocrystalline tungsten-niobium alloy. The uranium loading of the fuel material was 70 mole% uranium carbide. The program was successfully accomplished by a B&W/SIA LUTCH team. Its workscope was integrated with tasks being performed at both Babcock & Wilcox, Lynchburg Research Center, Lynchburg, Virginia, and SIA LUTCH, Podolsk, Russia. Samples were fabricated by LUTCH and seven thermal tests were performed in a hydrogen atmosphere. The first preliminary test was performed at 2273 K by LUTCH, and the remaining six tests were performed At B&W. Three tests were performed at 2273 K, two at 2373 K, and the final test at 2473 K. The results showed that the fuel and emitter materials were compatible in the presence of hydrogen. No evidence of liquid formation, dissolution of the uranium carbide from the uranium carbide/tantalum carbide solid solution, or diffusion of the uranium into the monocrystalline tungsten alloy was observed. Among the highlights of the program was the successful export of the fuel samples from Russia and their import into the US by commercial transport. This paper will discuss the technical aspects of this work.

  15. Geochemistry of vanadium in an epigenetic, sandstone-hosted vanadium- uranium deposit, Henry Basin, Utah

    USGS Publications Warehouse

    Wanty, R.B.; Goldhaber, M.B.; Northrop, H.R.

    1990-01-01

    The epigenetic Tony M vanadium-uranium orebody in south-central Utah is hosted in fluvial sandstones of the Morrison Formation (Upper Jurassic). Measurements of the relative amounts of V+3 and V +4 in ore minerals show that V+3 is more abundant. Thermodynamic calculations show that vanadium was more likely transported to the site of mineralization as V+4. The ore formed as V+4 was reduced by hydrogen sulfide, followed by hydrolysis and precipitation of V+3 in oxide minerals or chlorite. Uranium was transported as uranyl ion (U+6), or some complex thereof, and reduced by hydrogen sulfide, forming coffinite. Detrital organic matter in the rocks served as the carbon source for sulfate-reducing bacteria. Vanadium most likely was derived from the dissolution of iron-titanium oxides. Uranium probably was derived from the overlying Brushy Basin Member of the Morrison Formation. Previous studies have shown that the ore formed at the density-stratified interface between a basinal brine and dilute meteoric water. The mineralization processes described above occurred within the mixing zone between these two fluids. -from Authors

  16. Adsorption of uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling.

    PubMed

    Wang, Zimeng; Lee, Sung-Woo; Catalano, Jeffrey G; Lezama-Pacheco, Juan S; Bargar, John R; Tebo, Bradley M; Giammar, Daniel E

    2013-01-15

    The mobility of hexavalent uranium in soil and groundwater is strongly governed by adsorption to mineral surfaces. As strong naturally occurring adsorbents, manganese oxides may significantly influence the fate and transport of uranium. Models for U(VI) adsorption over a broad range of chemical conditions can improve predictive capabilities for uranium transport in the subsurface. This study integrated batch experiments of U(VI) adsorption to synthetic and biogenic MnO(2), surface complexation modeling, ζ-potential analysis, and molecular-scale characterization of adsorbed U(VI) with extended X-ray absorption fine structure (EXAFS) spectroscopy. The surface complexation model included inner-sphere monodentate and bidentate surface complexes and a ternary uranyl-carbonato surface complex, which was consistent with the EXAFS analysis. The model could successfully simulate adsorption results over a broad range of pH and dissolved inorganic carbon concentrations. U(VI) adsorption to synthetic δ-MnO(2) appears to be stronger than to biogenic MnO(2), and the differences in adsorption affinity and capacity are not associated with any substantial difference in U(VI) coordination.

  17. Composition and method for brazing graphite to graphite

    DOEpatents

    Taylor, Albert J.; Dykes, Norman L.

    1984-01-01

    The present invention is directed to a brazing material for joining graphite structures that can be used at temperatures up to about 2800.degree. C. The brazing material formed of a paste-like composition of hafnium carbide and uranium oxide with a thermosetting resin. The uranium oxide is converted to uranium dicarbide during the brazing operation and then the hafnium carbide and uranium dicarbide form a liquid phase at a temperature about 2600.degree. C. with the uranium diffusing and vaporizing from the joint area as the temperature is increased to about 2800.degree. C. so as to provide a brazed joint consisting essentially of hafnium carbide. This brazing temperature for hafnium carbide is considerably less than the eutectic temperature of hafnium carbide of about 3150.degree. C. The brazing composition also incorporates the thermosetting resin so that during the brazing operation the graphite structures may be temporarily bonded together by thermosetting the resin so that machining of the structures to final dimensions may be completed prior to the completion of the brazing operation. The resulting brazed joint is chemically and thermally compatible with the graphite structures joined thereby and also provides a joint of sufficient integrity so as to at least correspond with the strength and other properties of the graphite.

  18. Analysis of Rare Earth Elements in Uranium Using Handheld Laser-Induced Breakdown Spectroscopy (HH LIBS)

    DOE PAGES

    Manard, Benjamin T.; Wylie, E. Miller; Willson, Stephen P.

    2018-05-22

    In this paper, a portable handheld laser-induced breakdown spectroscopy (HH LIBS) instrument was evaluated as a rapid method to qualitatively analyze rare earth elements in a uranium oxide matrix. This research is motivated by the need for development of a method to perform rapid, at-line chemical analysis in a nuclear facility, particularly to provide a rapid first pass analysis to determine if additional actions or measurements are warranted. This will result in the minimization of handling and transport of radiological and nuclear material and subsequent exposure to their associated hazards. In this work, rare earth elements (Eu, Nd, and Yb)more » were quantitatively spiked into a uranium oxide powder and analyzed by the HH LIBS instrumentation. This method demonstrates the ability to rapidly identify elemental constituents in sub-percent levels in a uranium matrix. Preliminary limits of detection (LODs) were determined with values on the order of hundredths of a percent. Validity of this methodology was explored by employing a National Institute of Standards and Technology (NIST) standard reference materials (SRM) 610 and 612 (Trace Elements in Glass). Finally, it was determined that the HH LIBS method was able to clearly discern the rare earths elements of interest in the glass or uranium matrices.« less

  19. Analysis of Rare Earth Elements in Uranium Using Handheld Laser-Induced Breakdown Spectroscopy (HH LIBS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manard, Benjamin T.; Wylie, E. Miller; Willson, Stephen P.

    In this paper, a portable handheld laser-induced breakdown spectroscopy (HH LIBS) instrument was evaluated as a rapid method to qualitatively analyze rare earth elements in a uranium oxide matrix. This research is motivated by the need for development of a method to perform rapid, at-line chemical analysis in a nuclear facility, particularly to provide a rapid first pass analysis to determine if additional actions or measurements are warranted. This will result in the minimization of handling and transport of radiological and nuclear material and subsequent exposure to their associated hazards. In this work, rare earth elements (Eu, Nd, and Yb)more » were quantitatively spiked into a uranium oxide powder and analyzed by the HH LIBS instrumentation. This method demonstrates the ability to rapidly identify elemental constituents in sub-percent levels in a uranium matrix. Preliminary limits of detection (LODs) were determined with values on the order of hundredths of a percent. Validity of this methodology was explored by employing a National Institute of Standards and Technology (NIST) standard reference materials (SRM) 610 and 612 (Trace Elements in Glass). Finally, it was determined that the HH LIBS method was able to clearly discern the rare earths elements of interest in the glass or uranium matrices.« less

  20. Analysis of Rare Earth Elements in Uranium Using Handheld Laser-Induced Breakdown Spectroscopy (HH LIBS).

    PubMed

    Manard, Benjamin T; Wylie, E Miller; Willson, Stephen P

    2018-01-01

    A portable handheld laser-induced breakdown spectroscopy (HH LIBS) instrument was evaluated as a rapid method to qualitatively analyze rare earth elements in a uranium oxide matrix. This research is motivated by the need for development of a method to perform rapid, at-line chemical analysis in a nuclear facility, particularly to provide a rapid first pass analysis to determine if additional actions or measurements are warranted. This will result in the minimization of handling and transport of radiological and nuclear material and subsequent exposure to their associated hazards. In this work, rare earth elements (Eu, Nd, and Yb) were quantitatively spiked into a uranium oxide powder and analyzed by the HH LIBS instrumentation. This method demonstrates the ability to rapidly identify elemental constituents in sub-percent levels in a uranium matrix. Preliminary limits of detection (LODs) were determined with values on the order of hundredths of a percent. Validity of this methodology was explored by employing a National Institute of Standards and Technology (NIST) standard reference materials (SRM) 610 and 612 (Trace Elements in Glass). It was determined that the HH LIBS method was able to clearly discern the rare earths elements of interest in the glass or uranium matrices.

  1. Solid state electrochemical current source

    DOEpatents

    Potanin, Alexander Arkadyevich; Vedeneev, Nikolai Ivanovich

    2002-04-30

    A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.

  2. Impact of biostimulated redox processes on metal dynamics in an iron-rich creek soil of a former uranium mining area.

    PubMed

    Burkhardt, Eva-Maria; Akob, Denise M; Bischoff, Sebastian; Sitte, Jana; Kostka, Joel E; Banerjee, Dipanjan; Scheinost, Andreas C; Küsel, Kirsten

    2010-01-01

    Understanding the dynamics of metals and radionuclides in soil environments is necessary for evaluating risks to pristine sites. An iron-rich creek soil of a former uranium-mining district (Ronneburg, Germany) showed high porewater concentrations of heavy metals and radionuclides. Thus, this study aims to (i) evaluate metal dynamics during terminal electron accepting processes (TEAPs) and (ii) characterize active microbial populations in biostimulated soil microcosms using a stable isotope probing (SIP) approach. In biostimulated soil slurries, concentrations of soluble Co, Ni, Zn, As, and unexpectedly U increased during Fe(III)-reduction. This suggests that there was a release of sorbed metals and As during reductive dissolution of Fe(III)-oxides. Subsequent sulfate-reduction was concurrent with a decrease of U, Co, Ni, and Zn concentrations. The relative contribution of U(IV) in the solid phase changed from 18.5 to 88.7% after incubation. The active Fe(III)-reducing population was dominated by delta-Proteobacteria (Geobacter) in (13)C-ethanol amended microcosms. A more diverse community was present in (13)C-lactate amended microcosms including taxa related to Acidobacteria, Firmicutes, delta-Proteobacteria, and beta-Proteobacteria. Our results suggested that biostimulated Fe(III)-reducing communities facilitated the release of metals including U to groundwater which is in contrast to other studies.

  3. SLUDGE RETRIEVAL FROM HANFORD K WEST BASIN SETTLER TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ERPENBECK EG; LESHIKAR GA

    In 2010, an innovative, remotely operated retrieval system was deployed to successfully retrieve over 99.7% of the radioactive sludge from ten submerged tanks in Hanford's K-West Basin. As part of K-West Basin cleanup, the accumulated sludge needed to be removed from the 0.5 meter diameter by 5 meter long settler tanks and transferred approximately 45 meters to an underwater container for sampling and waste treatment. The abrasive, dense, non-homogeneous sludge was the product of the washing process of corroded nuclear fuel. It consists of small (less than 600 micron) particles of uranium metal, uranium oxide, and various other constituents, potentiallymore » agglomerated or cohesive after 10 years of storage. The Settler Tank Retrieval System (STRS) was developed to access, mobilize and pump out the sludge from each tank using a standardized process of retrieval head insertion, periodic high pressure water spray, retraction, and continuous pumping of the sludge. Blind operations were guided by monitoring flow rate, radiation levels in the sludge stream, and solids concentration. The technology developed and employed in the STRS can potentially be adapted to similar problematic waste tanks or pipes that must be remotely accessed to achieve mobilization and retrieval of the sludge within.« less

  4. Early breakthrough of molybdenum and uranium in a permeable reactive barrier.

    PubMed

    Morrison, Stan J; Mushovic, Paul S; Niesen, Preston L

    2006-03-15

    A permeable reactive barrier (PRB) using zerovalent iron (ZVI) was installed at a site near Cañon City, CO, to treat molybdenum (Mo) and uranium (U) in groundwater. The PRB initially decreased Mo concentrations from about 4.8 to less than 0.1 mg/L; however, Mo concentrations in the ZVI increased to 2.0 mg/L after about 250 days and continued to increase until concentrations in the ZVI were about 4 times higherthan in the influent groundwater. Concentrations of U were reduced from 1.0 to less than 0.02 mg/L during the same period. Investigations of solid-phase samples indicate that (1) calcium carbonate, iron oxide, and sulfide minerals had precipitated in pores of the ZVI; (2) U and Mo were concentrated in the upgradient 5.1 cm of the ZVI; and (3) calcium was present throughout the ZVI accounting for up to 20.5% of the initial porosity. Results of a column test indicated that the ZVI from the PRB was still reactive for removing Mo and that removal rates were dependenton residence time and pH. The chemical evolution of the PRB is explained in four stages that present a progression from porous media flow through preferential flow and, finally, complete bypass of the ZVI.

  5. URANIUM OXIDE-CONTAINING FUEL ELEMENT COMPOSITION AND METHOD OF MAKING SAME

    DOEpatents

    Handwerk, J.H.; Noland, R.A.; Walker, D.E.

    1957-09-10

    In the past, bodies formed of a mixture of uranium dioxide and aluminum powder have been used in fuel elements; however, these mixtures were found not to be suitable when exposed to temperatures of about 600 deg C, because at such high temperatures the fuel elements were distorted. If uranosic oxide, U/sub 3/O/sub 8/, is substituted for UO/sub 2/, the mechanical properties are not impaired when these materials are used at about 600 deg C and no distortion takes place. The uranosic oxide and aluminum, both in powder form, are first mixed, and after a homogeneous mixture has been obtained, are shaped into fuel elements by extrusion at elevated temperature. Magnesium powder may be used in place of the aluminum.

  6. RECOVERY OF URANIUM AND THORIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Calkins, G.D.

    1958-06-10

    >A process is described for the recovery of uranium and thorium from monazite sand, which is frequently processed by treating it with a hot sodium hydroxide solution whereby a precipitate forms consisting mainly of oxides or hydroxides of the rare earths, thorium and uranium. The precipitate is dissolved in mineral acid, and the acid solution is then neutralized to a pH value of between 5.2 and 6.2 whereby both the uranium and thorium precipitate as the hydroxides, while substantially all the rare earth metal values present remain in the solution. The uranium and thoriunn can then be separated by dissolving the precipitate in a solution containing a mixture of alkali carbonate and alkali bicarbonate: and contacting the carbonate solution with a strong-base anion exchange resin whereby the uranium values are adsorbed on the resin while the thorium remains in solution.

  7. THE QUESTIONS OF HEALTH HAZARDS FROM THE INHALATION OF INSOLUBLE URANIUM AND THORIUM OXIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, H.C.; Thomas, R.G.

    1958-10-31

    The insoluble compounds of uranium and thorium, particularly the oxides, are important in the development of atomic energy. Thc questions of health hazards from exposures to dusts of these insoluble compounds are strikily simlar in many but not all respects, Among the similarities may be listed the following facts: The insoluble compounds present no chemical hazard. Both uranium and thorium dioxides, for example, are remarkably inert physiologically. No radiation injuries have so far been described in the lungs of experimental animals inhaling dust concentrations many times the recommended MAC. The lungs of a few dogs studied seven years after excessivemore » inhalation exposures to ThO/sub 2/ gave negative histological findings although high concentrations of thorium were present. The MACs for insoluble uranium and for inxoluble thorium dusts are identical, specifically 3 x 10/sup -11/ c/1. Calculated on a radiation basis, a lower MAC is appropriate for thorium. Based on a considerable body of information from cted. For both uranium and thorium dioxides fecal excretion reflects the immediate exposure to dusty atmospheres. Urine analyses are a prime index of uranium exposure whereas the presence of the much less soluble thorium dioxide in the lung cannot be thus assessed. Breath thoron extimnations or possibly measurements using a whole body counter have been recommended as indices of thorium exposure. The fundamental question depends on the radiosensitivity of the lung and of the pulmonary lymph nodes; neither the production of radiation injury nor the production of cancer are evaluated at present with respect to dosage of radiation. The lung tissues of the dogs described above must have received several thousand rem during the 7 year period. The pulmonary lymph modes must have received considerably more radiation because the concentrations in these nodes e use of the insoluble oxides and the low MACs combine to raise recurring questions of health hazards. (auth)« less

  8. Solubility limits of dibutyl phosphoric acid in uranium-nitric acid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.A.

    2000-01-04

    The Savannah River Site has enriched uranium (EU) solution that has been stored since being purified in its solvent extraction processes. The concentrations in solution are approximately 6 g/L U and 0.1 M nitric acid. Residual tributylphosphate in solution has slowly hydrolyzed to form dibutyl phosphoric acid (HDBP) at concentrations averaging 30--50 mg/L. Dibutyl phosphoric acid, in turn, is in equilibrium with (HDBP){sub 2} and DBP{sup {minus}}. Uranium can form compounds with the dibutylphosphate ion (DBP{sup {minus}}) which have limited solubility, thereby creating a nuclear criticality safety issue. Literature reports and earlier SRTC tests have shown that it is feasiblemore » to precipitate U-DBP solid during the storage and processing of EU solutions. As a result, a series of solubility experiments were run at nitric acid concentrations from 0--4.0 M HNO{sub 3}, uranium at 0--90 g/L, and temperatures from 0--30 C. The data shows temperature and nitric acid concentration dependence consistent with what would be expected. With respect to uranium concentration, U-DBP solubility passes through a minimum between 6 and 12 g/L U at the acid concentrations and temperatures studied. However, the minimum shows a slight shift toward lower uranium concentrations at lower nitric acid concentrations. The shifts in solubility are strongly dependent upon the overall ionic strength of the solution. The data also reveal a shift to higher DBP solubility above 0.5 M HNO{sub 3} for both 6 g/L and 12 g/L uranium solutions. Analysis of U-DBP solids from the tests identified distinct differences between precipitates from less than 0.5 M solutions and those from greater than 4 M acid. Analyses identified UO{sub 2}(DBP){sub 2} as the dominant compound present at low acid concentrations in accordance with literature reports. As the acid concentration increases, the crystalline UO{sub 2}(DBP){sub 2} shows molecular substitutions and an increase in amorphous content.« less

  9. Efficacy of a solution-based approach for making sodalite waste forms for an oxide reduction salt utilized in the reprocessing of used uranium oxide fuel

    NASA Astrophysics Data System (ADS)

    Riley, Brian J.; Pierce, David A.; Frank, Steven M.; Matyáš, Josef; Burns, Carolyne A.

    2015-04-01

    This paper describes the various approaches evaluated for making solution-derived sodalite with a LiCl-Li2O oxide reduction salt selected to dissolve used uranium oxide fuel so the uranium can be recovered and recycled. The approaches include modified sol-gel and solution-based synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na2O-B2O3-SiO2 glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na+ and Cl- to form halite in solution and Li2O and SiO2 to form lithium silicates (e.g., Li2SiO3 or Li2Si2O5) in the calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions in the crystalline product (∼92 mass%) and low porosities using a solution-based approach and this LiCl-Li2O salt but that the incorporation of Li into the sodalite is low.

  10. Efficacy of a solution-based approach for making sodalite waste forms for an oxide reduction salt utilized in the reprocessing of used uranium oxide fuel

    DOE PAGES

    Riley, Brian J.; Pierce, David A.; Frank, Steven M.; ...

    2015-04-01

    This paper describes the various approaches attempted to make solution-derived sodalite with a LiCl-Li 2O oxide reduction salt used to dissolve used uranium oxide fuel so the uranium can be recovered and recycled. The approaches include modified sol-gel and solutionbased synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na 2O-B 2O 3- SiO 2 glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na+ and Cl- to formmore » halite in solution and Li 2O and SiO 2 to form lithium silicates (e.g., Li 2SiO 3 or Li 2Si 2O 5) in the calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions in the crystalline product (~92 mass%) and low porosities using a solution-based approach and this LiCl-Li 2O salt but that the incorporation of Li into the sodalite is low.« less

  11. Uranium (VI) solubility in carbonate-free ERDA-6 brine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucchini, Jean-francois; Khaing, Hnin; Reed, Donald T

    2010-01-01

    When present, uranium is usually an element of importance in a nuclear waste repository. In the Waste Isolation Pilot Plant (WIPP), uranium is the most prevalent actinide component by mass, with about 647 metric tons to be placed in the repository. Therefore, the chemistry of uranium, and especially its solubility in the WIPP conditions, needs to be well determined. Long-term experiments were performed to measure the solubility of uranium (VI) in carbonate-free ERDA-6 brine, a simulated WIPP brine, at pC{sub H+} values between 8 and 12.5. These data, obtained from the over-saturation approach, were the first repository-relevant data for themore » VI actinide oxidation state. The solubility trends observed pointed towards low uranium solubility in WIPP brines and a lack of amphotericity. At the expected pC{sub H+} in the WIPP ({approx} 9.5), measured uranium solubility approached 10{sup -7} M. The objective of these experiments was to establish a baseline solubility to further investigate the effects of carbonate complexation on uranium solubility in WIPP brines.« less

  12. STUDY OF URANIUM-ALUMINUM-IRON TERNARY CONSTITUTION DIAGRAM. Progress Report for the Period Ending March 31, 1963

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, R.B.

    The determination of the U--Al-- Fe constitution diagram up to about 1000 ppm each of aluminum and iron is now being implemented by a determination of the U--Al and U-- Fe binary systems. The techniques to be used for this study include optical, electron and x-ray metallography, microprobe analysis, electrical resistance, and hothardness measurements. It is expected that a combination of techniques will give evidence of the amount of solid solubility of aluminum and iron in alpha uranium from 300 to 660 deg C, and in beta uranium at selected higher temperatures. (N.W.R.)

  13. Uncertainty quantification in (α,n) neutron source calculations for an oxide matrix

    DOE PAGES

    Pigni, M. T.; Croft, S.; Gauld, I. C.

    2016-04-25

    Here we present a methodology to propagate nuclear data covariance information in neutron source calculations from (α,n) reactions. The approach is applied to estimate the uncertainty in the neutron generation rates for uranium oxide fuel types due to uncertainties on 1) 17,18O( α,n) reaction cross sections and 2) uranium and oxygen stopping power cross sections. The procedure to generate reaction cross section covariance information is based on the Bayesian fitting method implemented in the R-matrix SAMMY code. The evaluation methodology uses the Reich-Moore approximation to fit the 17,18O(α,n) reaction cross-sections in order to derive a set of resonance parameters andmore » a related covariance matrix that is then used to calculate the energydependent cross section covariance matrix. The stopping power cross sections and related covariance information for uranium and oxygen were obtained by the fit of stopping power data in the -energy range of 1 keV up to 12 MeV. Cross section perturbation factors based on the covariance information relative to the evaluated 17,18O( α,n) reaction cross sections, as well as uranium and oxygen stopping power cross sections, were used to generate a varied set of nuclear data libraries used in SOURCES4C and ORIGEN for inventory and source term calculations. The set of randomly perturbed output (α,n) source responses, provide the mean values and standard deviations of the calculated responses reflecting the uncertainties in nuclear data used in the calculations. Lastly, the results and related uncertainties are compared with experiment thick target (α,n) yields for uranium oxide.« less

  14. Why is weapons grade plutonium more hazardous to work with than highly enriched uranium?

    DOE PAGES

    Cournoyer, Michael E.; Costigan, Stephen A.; Schake, Bradley S.

    2015-08-01

    Highly Enriched Uranium and Weapons grade plutonium have assumed positions of dominant importance among the actinide elements because of their successful uses as explosive ingredients in nuclear weapons and the place they hold as key materials in the development of industrial use of nuclear power. While most chemists are familiar with the practical interest concerning HEU and WG Pu, fewer know the subtleties among their hazards. In this study, a primer is provided regarding the hazards associated with working with HEU and WG Pu metals and oxides. The care that must be taken to safely handle these materials is emphasizedmore » and the extent of the hazards is described. The controls needed to work with HEU and WG Pu metals and oxides are differentiated. Given the choice, one would rather work with HEU metal and oxides than WG Pu metal and oxides.« less

  15. Why is weapons grade plutonium more hazardous to work with than highly enriched uranium?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cournoyer, Michael E.; Costigan, Stephen A.; Schake, Bradley S.

    Highly Enriched Uranium and Weapons grade plutonium have assumed positions of dominant importance among the actinide elements because of their successful uses as explosive ingredients in nuclear weapons and the place they hold as key materials in the development of industrial use of nuclear power. While most chemists are familiar with the practical interest concerning HEU and WG Pu, fewer know the subtleties among their hazards. In this study, a primer is provided regarding the hazards associated with working with HEU and WG Pu metals and oxides. The care that must be taken to safely handle these materials is emphasizedmore » and the extent of the hazards is described. The controls needed to work with HEU and WG Pu metals and oxides are differentiated. Given the choice, one would rather work with HEU metal and oxides than WG Pu metal and oxides.« less

  16. Influence of uranium on bacterial communities: a comparison of natural uranium-rich soils with controls.

    PubMed

    Mondani, Laure; Benzerara, Karim; Carrière, Marie; Christen, Richard; Mamindy-Pajany, Yannick; Février, Laureline; Marmier, Nicolas; Achouak, Wafa; Nardoux, Pascal; Berthomieu, Catherine; Chapon, Virginie

    2011-01-01

    This study investigated the influence of uranium on the indigenous bacterial community structure in natural soils with high uranium content. Radioactive soil samples exhibiting 0.26% - 25.5% U in mass were analyzed and compared with nearby control soils containing trace uranium. EXAFS and XRD analyses of soils revealed the presence of U(VI) and uranium-phosphate mineral phases, identified as sabugalite and meta-autunite. A comparative analysis of bacterial community fingerprints using denaturing gradient gel electrophoresis (DGGE) revealed the presence of a complex population in both control and uranium-rich samples. However, bacterial communities inhabiting uraniferous soils exhibited specific fingerprints that were remarkably stable over time, in contrast to populations from nearby control samples. Representatives of Acidobacteria, Proteobacteria, and seven others phyla were detected in DGGE bands specific to uraniferous samples. In particular, sequences related to iron-reducing bacteria such as Geobacter and Geothrix were identified concomitantly with iron-oxidizing species such as Gallionella and Sideroxydans. All together, our results demonstrate that uranium exerts a permanent high pressure on soil bacterial communities and suggest the existence of a uranium redox cycle mediated by bacteria in the soil.

  17. Influence of Uranium on Bacterial Communities: A Comparison of Natural Uranium-Rich Soils with Controls

    PubMed Central

    Mondani, Laure; Benzerara, Karim; Carrière, Marie; Christen, Richard; Mamindy-Pajany, Yannick; Février, Laureline; Marmier, Nicolas; Achouak, Wafa; Nardoux, Pascal; Berthomieu, Catherine; Chapon, Virginie

    2011-01-01

    This study investigated the influence of uranium on the indigenous bacterial community structure in natural soils with high uranium content. Radioactive soil samples exhibiting 0.26% - 25.5% U in mass were analyzed and compared with nearby control soils containing trace uranium. EXAFS and XRD analyses of soils revealed the presence of U(VI) and uranium-phosphate mineral phases, identified as sabugalite and meta-autunite. A comparative analysis of bacterial community fingerprints using denaturing gradient gel electrophoresis (DGGE) revealed the presence of a complex population in both control and uranium-rich samples. However, bacterial communities inhabiting uraniferous soils exhibited specific fingerprints that were remarkably stable over time, in contrast to populations from nearby control samples. Representatives of Acidobacteria, Proteobacteria, and seven others phyla were detected in DGGE bands specific to uraniferous samples. In particular, sequences related to iron-reducing bacteria such as Geobacter and Geothrix were identified concomitantly with iron-oxidizing species such as Gallionella and Sideroxydans. All together, our results demonstrate that uranium exerts a permanent high pressure on soil bacterial communities and suggest the existence of a uranium redox cycle mediated by bacteria in the soil. PMID:21998695

  18. Highly Efficient Interception and Precipitation of Uranium(VI) from Aqueous Solution by Iron-Electrocoagulation Combined with Cooperative Chelation by Organic Ligands.

    PubMed

    Li, Peng; Zhun, Bao; Wang, Xuegang; Liao, PingPing; Wang, Guanghui; Wang, Lizhang; Guo, Yadan; Zhang, Weimin

    2017-12-19

    A new strategy combining iron-electrocoagulation and organic ligands (OGLs) cooperative chelation was proposed to screen and precipitate low concentrations (0-18.52 μmol/L) of uranium contaminant in aqueous solution. We hypothesized that OGLs with amino, hydroxyl, and carboxyl groups hydrophobically/hydrophilically would realize precuring of uranyl ion at pH < 3.0, and the following iron-electrocoagulation would achieve faster and more efficient uranium precipitation. Experimentally, the strategy demonstrated highly efficient uranium(VI) precipitation efficiency, especially with hydrophilic macromolecular OGLs. The uranium removal efficiency at optimized experimental condition reached 99.65%. The decrease of zeta potential and the lattice enwrapping between U-OGLs chelates and flocculation precursor were ascribed to the enhanced uranium precipitation activity. Uranium was precipitated as oxides of U(VI) or higher valences that were easily captured in aggregated micelles under low operation current potential. The actual uranium tailing wastewater was treated, and a satisfied uranium removal efficiency of 99.02% was discovered. After elution of the precipitated flocs, a concentrated uranium solution (up to 106.52 μmol/L) with very few other metallic impurities was obtained. Therefore, the proposed strategy could remove uranium and concentrate it concurrently. This work could provide new insights into the purification and recovery of uranium from aqueous solutions in a cost-effective and environmentally friendly process.

  19. Depleted UF6 Internet Resources

    Science.gov Websites

    been used to color glass for almost 2 millennia. A uranium-colored glass object was found near Naples , Italy, and dated to about 79 A.D. Uranium oxide added to glass produces a yellow to greenish hue. more Board Defense Nuclear Facilities Safety Board (DNFSB) The Defense Nuclear Facilities Safety Board

  20. URANIUM EXTRACTION PROCESS USING SYNERGISTIC REAGENTS

    DOEpatents

    Schmitt, J.M.; Blake, C.A. Jr.; Brown, K.B.; Coleman, C.F.

    1958-11-01

    Improved methods are presented for recovering uranium values from aqueous solutions by organic solvent extraction. The improvement lies in the use, in combination, of two classes of organic compounds so that their extracting properties are enhanced synergistically. The two classes of organic compounds are dialkylphosphoric acid and certain neutral organophosphorus compounds such as trialkylphosphates, trialkylphosphonates, trlalkylphosphinates and trialkylphosphine oxides.

  1. On the equilibrium isotopic composition of the thorium-uranium-plutonium fuel cycle

    NASA Astrophysics Data System (ADS)

    Marshalkin, V. Ye.; Povyshev, V. M.

    2016-12-01

    The equilibrium isotopic compositions and the times to equilibrium in the process of thorium-uranium-plutonium oxide fuel recycling in VVER-type reactors using heavy water mixed with light water are estimated. It is demonstrated thEhfat such reactors have a capacity to operate with self-reproduction of active isotopes in the equilibrium mode.

  2. EXTRACTION OF URANIUM

    DOEpatents

    Kesler, R.D.; Rabb, D.D.

    1959-07-28

    An improved process is presented for recovering uranium from a carnotite ore. In the improved process U/sub 2/O/sub 5/ is added to the comminuted ore along with the usual amount of NaCl prior to roasting. The amount of U/sub 2/O/ sub 5/ is dependent on the amount of free calcium oxide and the uranium in the ore. Specifically, the desirable amount of U/sub 2/O/sub 5/ is 3.2% for each 1% of CaO, and 5 to 6% for each 1% of uranium. The mixture is roasted at about 1560 deg C for about 30 min and then leached with a 3 to 9% aqueous solution of sodium carbonate.

  3. Target and method for the production of fission product molybdenum-99

    DOEpatents

    Vandegrift, G.F.; Vissers, D.R.; Marshall, S.L.; Varma, R.

    1987-10-26

    A target for the reduction of fission product Mo-99 is prepared from uranium of low U-235 enrichment by coating a structural support member with a preparatory coating of a substantially oxide-free substrate metal. Uranium metal is electrodeposited from a molten halide electrolytic bath onto a substrate metal. The electrodeposition is performed at a predetermined direct current rate or by using pulsed plating techniques which permit relaxation of accumulated uranium ion concentrations within the melt. Layers of as much as to 600 mg/cm/sup 2/ of uranium can be prepared to provide a sufficient density to produce acceptable concentrations of fission product Mo-99. 2 figs.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, S.A.; Lotts, A.L.; Hammond, J.P.

    Uranium --molybdenum alloy rods containing from 10 to 15 wt% Mo and 1/16- in. in diameter were successfully fabricated by hot rotary swaging, followed by machining to remove the protective sheathing (Inconel with molybdenum barrier). Structurally strong rods with densities greater than 95% of theoretical were produced from both calciumreduced uranium mixed with hydrogen-reduced molybdenum and acid-cleaned, prealloyed shot when reduced in area about 55% at 1050 or 1100 deg C. Alloy homogeneity was good with prealloyed powders; however, traces of molybdenum -rich, gamma phase persisted in the elemental uranium -molybdenum material after swaging at 1100 deg C. Swagings embodyingmore » hydride uranium or oxide- contaminated prealloyed shot were unsatisfactory because of insufficient consolidation or poor interparticle bonding. (auth)« less

  5. In-situ, time resolved monitoring of uranium in BFS:OPC grout. Part 2: Corrosion in water.

    PubMed

    Stitt, C A; Paraskevoulakos, C; Banos, A; Harker, N J; Hallam, K R; Pullin, H; Davenport, A; Street, S; Scott, T B

    2018-06-18

    To reflect potential conditions in a geological disposal facility, uranium was encapsulated in grout and submersed in de-ionised water for time periods between 2-47 weeks. Synchrotron X-ray Powder Diffraction and X-ray Tomography were used to identify the dominant corrosion products and measure their dimensions. Uranium dioxide was observed as the dominant corrosion product and time dependent thickness measurements were used to calculate oxidation rates. The effectiveness of physical and chemical grout properties to uranium corrosion and mobilisation is discussed and Inductively Coupled Plasma Mass Spectrometry was used to measure 238 U (aq) content in the residual water of several samples.

  6. Nanocrystalline cerium oxide materials for solid fuel cell systems

    DOEpatents

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  7. Can we predict uranium bioavailability based on soil parameters? Part 1: effect of soil parameters on soil solution uranium concentration.

    PubMed

    Vandenhove, H; Van Hees, M; Wouters, K; Wannijn, J

    2007-01-01

    Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for (238)U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K(d), L kg(-1)) and the organic matter content (R(2)=0.70) and amorphous Fe content (R(2)=0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH=6, log(K(d)) was linearly related with pH [log(K(d))=-1.18 pH+10.8, R(2)=0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex.

  8. Structure and thermodynamics of uranium-containing iron garnets

    DOE PAGES

    Guo, Xiaofeng; Navrotsky, Alexandra; Kukkadapu, Ravi K.; ...

    2016-09-15

    Use of crystalline garnet as a waste form phase appears to be advantageous for accommodating actinides from nuclear waste. Previous studies show that large amounts of uranium (U) and its analogues such as cerium (Ce) and thorium (Th) can be incorporated into the garnet structure. In this study, we synthesized U loaded garnet phases, Ca 3U xZr 2–xFe 3O 12 (x = 0.5–0.7), along with the endmember phase, Ca 3(Zr 2)SiFe 3+ 2O 12, for comparison. The oxidation states of U were determined by X-ray photoelectron and absorption spectroscopies, revealing the presence of mixed pentavalent and hexavalent uranium in themore » phases with x = 0.6 and 0.7. The oxidation states and coordination environments of Fe were measured using transmission 57Fe-Mössbauer spectroscopy, which shows that all iron is tetrahedrally coordinated Fe 3+. U substitution had a significant effect on local environments, the extent of U substitution within this range had a minimal effect on the structure, and unlike in the x = 0 sample, Fe exists in two different environments in the substituted garnets. The enthalpies of formation of garnet phases from constituent oxides and elements were first time determined by high temperature oxide melt solution calorimetry. The results indicate that these substituted garnets are thermodynamically stable under reducing conditions. Furthermore, our structural and thermodynamic analysis further provides explanation for the formation of natural uranium garnet, elbrusite-(Zr), and supports the potential use of Ca 3U xZr 2–xFe 3O 12 as viable waste form phases for U and other actinides.« less

  9. Helium interactions with alumina formed by atomic layer deposition show potential for mitigating problems with excess helium in spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Zhang, Shenli; Yu, Erick; Gates, Sean; Cassata, William S.; Makel, James; Thron, Andrew M.; Bartel, Christopher; Weimer, Alan W.; Faller, Roland; Stroeve, Pieter; Tringe, Joseph W.

    2018-02-01

    Helium gas accumulation from alpha decay during extended storage of spent fuel has potential to compromise the structural integrity the fuel. Here we report results obtained with surrogate nickel particles which suggest that alumina formed by atomic layer deposition can serve as a low volume-fraction, uniformly-distributed phase for retention of helium generated in fuel particles such as uranium oxide. Thin alumina layers may also form transport paths for helium in the fuel rod, which would otherwise be impermeable. Micron-scale nickel particles, representative of uranium oxide particles in their low helium solubility and compatibility with the alumina synthesis process, were homogeneously coated with alumina approximately 3-20 nm by particle atomic layer deposition (ALD) using a fluidized bed reactor. Particles were then loaded with helium at 800 °C in a tube furnace. Subsequent helium spectroscopy measurements showed that the alumina phase, or more likely a related nickel/alumina interface structure, retains helium at a density of at least 1017 atoms/cm3. High resolution transmission electron microscopy revealed that the thermal treatment increased the alumina thickness and generated additional porosity. Results from Monte Carlo simulations on amorphous alumina predict the helium retention concentration at room temperature could reach 1021 atoms/cm3 at 400 MPa, a pressure predicted by others to be developed in uranium oxide without an alumina secondary phase. This concentration is sufficient to eliminate bubble formation in the nuclear fuel for long-term storage scenarios, for example. Measurements by others of the diffusion coefficient in polycrystalline alumina indicate values several orders of magnitude higher than in uranium oxide, which then can also allow for helium transport out of the spent fuel.

  10. Late-occurring pulmonary pathologies following inhalation of mixed oxide (uranium + plutonium oxide) aerosol in the rat.

    PubMed

    Griffiths, N M; Van der Meeren, A; Fritsch, P; Abram, M-C; Bernaudin, J-F; Poncy, J L

    2010-09-01

    Accidental exposure by inhalation to alpha-emitting particles from mixed oxide (MOX: uranium and plutonium oxide) fuels is a potential long-term health risk to workers in nuclear fuel fabrication plants. For MOX fuels, the risk of lung cancer development may be different from that assigned to individual components (plutonium, uranium) given different physico-chemical characteristics. The objective of this study was to investigate late effects in rat lungs following inhalation of MOX aerosols of similar particle size containing 2.5 or 7.1% plutonium. Conscious rats were exposed to MOX aerosols and kept for their entire lifespan. Different initial lung burdens (ILBs) were obtained using different amounts of MOX. Lung total alpha activity was determined by external counting and at autopsy for total lung dose calculation. Fixed lung tissue was used for anatomopathological, autoradiographical, and immunohistochemical analyses. Inhalation of MOX at ILBs ranging from 1-20 kBq resulted in lung pathologies (90% of rats) including fibrosis (70%) and malignant lung tumors (45%). High ILBs (4-20 kBq) resulted in reduced survival time (N = 102; p < 0.05) frequently associated with lung fibrosis. Malignant tumor incidence increased linearly with dose (up to 60 Gy) with a risk of 1-1.6% Gy for MOX, similar to results for industrial plutonium oxide alone (1.9% Gy). Staining with antibodies against Surfactant Protein-C, Thyroid Transcription Factor-1, or Oct-4 showed differential labeling of tumor types. In conclusion, late effects following MOX inhalation result in similar risk for development of lung tumors as compared with industrial plutonium oxide.

  11. Comparison of solvent extraction and extraction chromatography resin techniques for uranium isotopic characterization in high-level radioactive waste and barrier materials.

    PubMed

    Hurtado-Bermúdez, Santiago; Villa-Alfageme, María; Mas, José Luis; Alba, María Dolores

    2018-07-01

    The development of Deep Geological Repositories (DGP) to the storage of high-level radioactive waste (HLRW) is mainly focused in systems of multiple barriers based on the use of clays, and particularly bentonites, as natural and engineered barriers in nuclear waste isolation due to their remarkable properties. Due to the fact that uranium is the major component of HLRW, it is required to go in depth in the analysis of the chemistry of the reaction of this element within bentonites. The determination of uranium under the conditions of HLRW, including the analysis of silicate matrices before and after the uranium-bentonite reaction, was investigated. The performances of a state-of-the-art and widespread radiochemical method based on chromatographic UTEVA resins, and a well-known and traditional method based on solvent extraction with tri-n-butyl phosphate (TBP), for the analysis of uranium and thorium isotopes in solid matrices with high concentrations of uranium were analysed in detail. In the development of this comparison, both radiochemical approaches have an overall excellent performance in order to analyse uranium concentration in HLRW samples. However, due to the high uranium concentration in the samples, the chromatographic resin is not able to avoid completely the uranium contamination in the thorium fraction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Identification of Mn(II)-oxidizing bacteria from a low-pH contaminated former uranium mine.

    PubMed

    Akob, Denise M; Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten

    2014-08-01

    Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Identification of Mn(II)-Oxidizing Bacteria from a Low-pH Contaminated Former Uranium Mine

    PubMed Central

    Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A.; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten

    2014-01-01

    Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments. PMID:24928873

  14. Identification of Mn(II)-oxidizing bacteria from a low-pH contaminated former uranium mine

    USGS Publications Warehouse

    Akob, Denise M.; Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A.; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten

    2014-01-01

    Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments.

  15. Sorption of uranium (VI) on homoionic sodium smectite experimental study and surface complexation modeling.

    PubMed

    Korichi, Smain; Bensmaili, Aicha

    2009-09-30

    This paper is an extension of a previous paper where the natural and purified clay in the homoionic Na form were physico-chemically characterized (doi:10.1016/j.clay.2008.04.014). In this study, the adsorption behavior of U (VI) on a purified Na-smectite suspension is studied using batch adsorption experiments and surface complexation modeling (double layer model). The sorption of uranium was investigated as a function of pH, uranium concentration, solid to liquid ratio, effect of natural organic matter (NOM) and NaNO(3) background electrolyte concentration. Using the MINTEQA2 program, the speciation of uranium was calculated as a function of pH and uranium concentration. Model predicted U (VI) aqueous speciation suggests that important aqueous species in the [U (VI)]=1mg/L and pH range 3-7 including UO(2)(2+), UO(2)OH(+), and (UO(2))(3)(OH)(5)(+). The concentration of UO(2)(2+) decreased and that of (UO(2))(3)(OH)(5)(+) increased with increasing pH. The potentiometric titration values and uptake of uranium in the sodium smectite suspension were simulated by FITEQL 4.0 program using a two sites model, which is composed of silicate and aluminum reaction sites. We compare the acidity constants values obtained by potentiometric titration from the purified sodium smectite with those obtained from single oxides (quartz and alpha-alumina), taking into account the surface heterogeneity and the complex nature of natural colloids. We investigate the uranium sorption onto purified Na-smectite assuming low, intermediate and high edge site surfaces which are estimated from specific surface area percentage. The sorption data is interpreted and modeled as a function of edge site surfaces. A relationship between uranium sorption and total site concentration was confirmed and explained through variation in estimated edge site surface value. The modeling study shows that, the convergence during DLM modeling is related to the best estimation of the edge site surface from the N(2)-BET specific surface area, SSA(BET) (thus, total edge site concentrations). The specific surface area should be at least 80-100m(2)/g for smectite clays in order to reach convergence during the modeling. The range of 10-20% SSA(BET) was used to estimate the values of edge site surfaces that led to the convergence during modeling. An agreement between the experimental data and model predictions is found reasonable when 15% SSA(BET) was used as edge site surface. However, the predicted U (VI) adsorption underestimated and overestimated the experimental observations at the 10 and 20% of the measured SSA(BET), respectively. The dependence of uranium sorption modeling results on specific surface area and edge site surface is useful to describe and predict U (VI) retardation as a function of chemical conditions in the field-scale reactive transport simulations. Therefore this approach can be used in the environmental quality assessment.

  16. Photocatalytic decomposition of Rhodamine B on uranium-doped mesoporous titanium dioxide

    DOE PAGES

    Liu, Yi; Becker, Blake; Burdine, Brandon; ...

    2017-04-13

    Mesoporous uranium-doped TiO 2 anatase materials were studied to determine the influence of U-doping on the photocatalytic properties for Rhodamine B (RhB) degradation. The physico-chemical properties of the samples were characterized and the results of X-ray diffraction, transmission electron microscopy, and Raman spectroscopy demonstrate homogeneous incorporation of uranium into the anatase lattice. X-ray photoelectron spectroscopy of the doped anatase confirmed the dominance of the U 4+ species and an increasing proportion of U 6+ species as the uranium doping was increased. The absorption thresholds of the uranium-doped anatase extended into the visible light region. A synergistic effect of the bandmore » gap energy and oxidation state of the dopant contribute to an enhanced photocatalytic capability for RhB degradation by U-doped TiO 2.« less

  17. Photocatalytic decomposition of Rhodamine B on uranium-doped mesoporous titanium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yi; Becker, Blake; Burdine, Brandon

    Mesoporous uranium-doped TiO 2 anatase materials were studied to determine the influence of U-doping on the photocatalytic properties for Rhodamine B (RhB) degradation. The physico-chemical properties of the samples were characterized and the results of X-ray diffraction, transmission electron microscopy, and Raman spectroscopy demonstrate homogeneous incorporation of uranium into the anatase lattice. X-ray photoelectron spectroscopy of the doped anatase confirmed the dominance of the U 4+ species and an increasing proportion of U 6+ species as the uranium doping was increased. The absorption thresholds of the uranium-doped anatase extended into the visible light region. A synergistic effect of the bandmore » gap energy and oxidation state of the dopant contribute to an enhanced photocatalytic capability for RhB degradation by U-doped TiO 2.« less

  18. Biological reduction of uranium coupled with oxidation of ammonium by Acidimicrobiaceae bacterium A6 under iron reducing conditions.

    PubMed

    Gilson, Emily R; Huang, Shan; Jaffé, Peter R

    2015-11-01

    This study investigated the possibility of links between the biological immobilization of uranium (U) and ammonium oxidation under iron (Fe) reducing conditions. The recently-identified Acidimicrobiaceae bacterium A6 (ATCC, PTA-122488) derives energy from ammonium oxidation coupled with Fe reduction. This bacterium has been found in various soil and wetland environments, including U-contaminated wetland sediments. Incubations of Acidimicrobiaceae bacteria A6 with nontronite, an Fe(III)-rich clay, and approximately 10 µM U indicate that these bacteria can use U(VI) in addition to Fe(III) as an electron acceptor in the presence of ammonium. Measurements of Fe(II) production and ammonium oxidation support this interpretation. Concentrations of approximately 100 µM U were found to entirely inhibit Acidimicrobiaceae bacteria A6 activity. These results suggest that natural sites of active ammonium oxidation under Fe reducing conditions by Acidimicrobiaceae bacteria A6 could be hotspots of U immobilization by bioreduction. This is the first report of biological U reduction that is not coupled to carbon oxidation.

  19. 234U/238U isotope data from groundwater and solid-phase leachate samples near Tuba City Open Dump, Tuba City, Arizona

    USGS Publications Warehouse

    Johnson, Raymond H.; Horton, Robert J.; Otton, James K.; Ketterer, Michael K.

    2012-01-01

    This report releases 234U/238U isotope data, expressed as activity ratios, and uranium concentration data from analyses completed at Northern Arizona University for groundwater and solid-phase leachate samples that were collected in and around Tuba City Open Dump, Tuba City, Arizona, in 2008.

  20. PROCESS OF RECOVERING URANIUM FROM ITS ORES

    DOEpatents

    Galvanek, P. Jr.

    1959-02-24

    A process is presented for recovering uranium from its ores. The crushed ore is mixed with 5 to 10% of sulfuric acid and added water to about 5 to 30% of the weight of the ore. This pugged material is cured for 2 to 3 hours at 100 to 110 deg C and then cooled. The cooled mass is nitrate-conditioned by mixing with a solution equivalent to 35 pounds of ammunium nitrate and 300 pounds of water per ton of ore. The resulting pulp containing 70% or more solids is treated by upflow percolation with a 5% solution of tributyl phosphate in kerosene at a rate equivalent to a residence time of about one hour to extract the solubilized uranium. The uranium is recovered from the pregnant organic liquid by counter-current washing with water. The organic extractant may be recycled. The uranium is removed from the water solution by treating with ammonia to precipitate ammonium diuranate. The filtrate from the last step may be recycled for the nitrate-conditioning treatment.

Top