Gidarakos, E; Havas, G; Ntzamilis, P
2006-01-01
A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.
NASA Astrophysics Data System (ADS)
Khair, H.; Putri, C. N.; Dalimunthe, R. A.; Matsumoto, T.
2018-02-01
Municipal solid waste (MSW) management is still an issue in many cities in Indonesia including Medan. Understanding the waste generation, its characteristic and communities involvement could provide effective solid waste management. This research compares waste generation from people who live in the city center and suburban area. The research also examines the willingness and participation of community about environmental aspect, especially solid waste management. The method of waste generation used Indonesian Nasional Standard 19-3964-1994. The city center generates 0.295 kg/person/day of solid waste and 0.180 kg/person/day for suburbs. The result showed that there are the common amount of waste compositions between the city center and suburban area. The majority waste composition was an organic fraction. Questionnaires were distributed to examine the community awareness. The descriptive statistic used to analyze the data. The result showed that people living in the city center are slightly higher in community awareness than in the suburb. This paper highlights that area of living could give some effect to solid waste generation, waste composition and rate of awareness.
Solid Waste Composition and Quantification at Taman Melewar, Parit Raja, Batu Pahat
NASA Astrophysics Data System (ADS)
Kadir, A. A.; Abidin, S. S. S. Z.
2016-07-01
The poor management of solid waste is noticeable through the increasing of the solid waste each year and the difficulties in disposing the waste in the current available landfill. This study was undertaken to analyze the quantity and composition of waste generation in Taman melewar. Taman Melewar is a student residential area and this study is focusing on student's daily waste composition. The objective of this study was to identify the amount of solid waste generation, analyze and classify the composition of solid waste in Taman Melewar. The waste collection was conducted for 50 houses on a daily basis for two weeks. The average household waste generation rate was 0.082 kg/person/day. Organic waste was the major constituent of waste production. The average of organic waste represents about 72.4% followed by paper (9%), plastics film (5.5%), plastics rigid (4.7%), napkins (3.8%), tetrapek (1.3%), glass (1.1%), household hazardous waste (0.85%), textiles (0.52%), metal (0.51%) and rubber (0.34%). The moisture content was ranging from 27.67% to 28.68%. An evaluation was made based on student's behavior towards waste production and recycling. In conclusion, the results revealed that organic waste is the highest waste generated and recycling habits is also poor in Taman Melewar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gidarakos, E.; Havas, G.; Ntzamilis, P.
A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes,more » non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.« less
Urban Environmental Education Project, Curriculum Module VI: Solid Waste - Trash or Treasure?
ERIC Educational Resources Information Center
Biglan, Barbara
Included in this module are four activities dealing with issues of solid waste disposal relative to urban concerns. Included activities are: (1) sources and composition of solid waste; (2) a "garbage game"; (3) disposal options for solid waste; and (4) an example county plan for solid waste disposal. Also included are an overview, teacher…
NASA Astrophysics Data System (ADS)
Indrawati, D.; Lindu, M.; Denita, P.
2018-01-01
This study aims to measure the volume of solid waste generated as well asits density, composition, and characteristics, to analyze the potential of waste in TPS to become RDF materials and to analyze the best composition mixture of RDF materials. The results show that the average of solid waste generation in TPS reaches 40.80 m3/day, with the largest percentage of its share is the organic waste component of 77.9%, while the smallest amount of its share is metal and rubber of 0.1%. The average water content and ash content of solid waste at the TPS is 27.7% and 6.4% respectively, while the average calorific potential value is 728.71 kcal/kg. The results of solid waste characteristics comparison at three TPS indicate thatTPS Tanjung Duren has the greatest waste potential to be processed into RDF materials with a calorific value of 893.73 kcal/kg, water content level of 24.6%, andlow ash content of 6.11%. This research has also shown that the best composition for RDF composite materials is rubber, wood, and textile mixtureexposed to outdoor drying conditions because it produced low water content and low ash content of 10.8% and 9.6%, thus optimizedthe calorific value of 4,372.896 kcal/kg.
Surface treated carbon catalysts produced from waste tires for fatty acids to biofuel conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hood, Zachary D.; Adhikari, Shiba P.; Wright, Marcus W.
A method of making solid acid catalysts includes the step of sulfonating waste tire pieces in a first sulfonation step. The sulfonated waste tire pieces are pyrolyzed to produce carbon composite pieces having a pore size less than 10 nm. The carbon composite pieces are then ground to produce carbon composite powders having a size less than 50 .mu.m. The carbon composite particles are sulfonated in a second sulfonation step to produce sulfonated solid acid catalysts. A method of making biofuels and solid acid catalysts are also disclosed.
NASA Astrophysics Data System (ADS)
Khuriati, Ainie; Setiabudi, Wahyu; Nur, Muhammad; Istadi, Istadi
2015-12-01
Backpropgation neural network was trained to predict of combustible fraction heating value of MSW from the physical composition. Waste-to-Energy (WtE) is a viable option for municipal solid waste (MSW) management. The influence of the heating value of municipal solid waste (MSW) is very important on the implementation of WtE systems. As MSW is heterogeneous material, direct heating value measurements are often not feasible. In this study an empirical model was developed to describe the heating value of the combustible fraction of municipal solid waste as a function of its physical composition of MSW using backpropagation neural network. Sampling process was carried out at Jatibarang landfill. The weight of each sorting sample taken from each discharged MSW vehicle load is 100 kg. The MSW physical components were grouped into paper wastes, absorbent hygiene product waste, styrofoam waste, HD plastic waste, plastic waste, rubber waste, textile waste, wood waste, yard wastes, kitchen waste, coco waste, and miscellaneous combustible waste. Network was trained by 24 datasets with 1200, 769, and 210 epochs. The results of this analysis showed that the correlation from the physical composition is better than multiple regression method .
Sethurajan, Manivannan; van Hullebusch, Eric D; Nancharaiah, Yarlagadda V
2018-04-01
Solid metalliferous wastes (sludges, dusts, residues, slags, red mud and tailing wastes) originating from ferrous and non-ferrous metallurgical industries are a serious environmental threat, when waste management practices are not properly followed. Metalliferous wastes generated by metallurgical industries are promising resources for biotechnological extraction of metals. These wastes still contain significant amounts of valuable non-ferrous metals, sometimes precious metals and also rare earth elements. Elemental composition and mineralogy of the metallurgical wastes is dependent on the nature of mining site and composition of primary ores mined. Most of the metalliferous wastes are oxidized in nature and contain less/no reduced sulfidic minerals (which can be quite well processed by biohydrometallurgy). However, application of biohydrometallurgy is more challenging while extracting metals from metallurgical wastes that contain oxide minerals. In this review, origin, elemental composition and mineralogy of the metallurgical solid wastes are presented. Various bio-hydrometallurgical processes that can be considered for the extraction of non-ferrous metals from metal bearing solid wastes are reviewed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Municipal Solid Waste Composition Study of Selected Area in Gambang, Pahang
NASA Astrophysics Data System (ADS)
Mokhtar, Nadiah; Ishak, Wan Faizal Wan; Suraya Romali, Noor; Fatimah Che Osmi, Siti; Armi Abu Samah, Mohd
2013-06-01
The amount of municipal solid waste (MSW) generated continue to increase in response to rapid growth in population, change in life style and accelerated urbanization and industrialization process. The study on MSW is important in order to determine the composition further seeks an immediate remedy to minimize the waste generated at the early stage. As most of the MSW goes to the landfill or dumping sites, particularly in Malaysia, closure of filled-up landfill may become an alarm clock for an immediate action of proper solid waste management. This research aims to determine the waste composition generated from selected residential area at Gambang, Kuantan, Pahang which represent Old residential area (ORA), Intermediate residential area (IRA) and New residential area (NRA). The study was conducted by segregating and weighing solid waste in the residential area into 6 main components ie., food waste, paper, plastic, glass, metal and others. In a period of four weeks, samples from the residential unit were taken and analyzed. The MSW generation rates were recorded vary from 0.217 to 0.388 kg person-1day-1. Food waste has become the major solid waste component generated daily which mounted up to 50%. From this research, the result revealed that the recyclable composition of waste generated by residents have a potential to be reuse, recycle and reduce at the point sources.
Yu, Yongqiang; Zhang, Wen
2016-04-01
Disposal of solid waste poses great challenges to city managements. Changes in solid waste composition and disposal methods, along with urbanisation, can certainly affect greenhouse gas emissions from municipal solid waste. In this study, we analysed the changes in the generation, composition and management of municipal solid waste in Beijing. The changes of greenhouse gas emissions from municipal solid waste management were thereafter calculated. The impacts of municipal solid waste management improvements on greenhouse gas emissions and the mitigation effects of treatment techniques of greenhouse gas were also analysed. Municipal solid waste generation in Beijing has increased, and food waste has constituted the most substantial component of municipal solid waste over the past decade. Since the first half of 1950s, greenhouse gas emission has increased from 6 CO2-eq Gg y(-1)to approximately 200 CO2-eq Gg y(-1)in the early 1990s and 2145 CO2-eq Gg y(-1)in 2013. Landfill gas flaring, landfill gas utilisation and energy recovery in incineration are three techniques of the after-emission treatments in municipal solid waste management. The scenario analysis showed that three techniques might reduce greenhouse gas emissions by 22.7%, 4.5% and 9.8%, respectively. In the future, if waste disposal can achieve a ratio of 4:3:3 by landfill, composting and incineration with the proposed after-emission treatments, as stipulated by the Beijing Municipal Waste Management Act, greenhouse gas emissions from municipal solid waste will decrease by 41%. © The Author(s) 2016.
Identification and analysis the illegal dumping spot of solid waste at Ciliwung segment 5 riverbanks
NASA Astrophysics Data System (ADS)
Indrawati, D.; Purwaningrum, P.
2018-01-01
Ciliwung River is the main river in the area of Jakarta that is divided into six segments across West Java and Jakarta. The study focuses on the fifth segment which is 30 km long, covering from Kelapa Dua Depok to Manggarai, South Jakarta. The survey of the river consists of 3 sub-segments: Lenteng Agung, Pejaten Timur and Manggarai. Objectives of the study are to describe the characteristics and typology of the residential surrounding the Ciliwung Segment 5 Riverbank, to identification the illegal dumping spot of solid waste, to measure the volume and composition of solid waste in the riverbank, to decide solid waste management for residential area surrounding river banks to control the river pollution. The study shows that there are 11 illegal dumping spot of solid waste consisting of 4.37 m3 solid waste volume. The average composition of solid waste consists of 44% organic, 14% woods, 12% papers, 11% plastics, 3% rubbers, 1% metals and 2% others. To control the river pollution efforts are restoring the function of riverbanks to become green open space area, installing the trash rack into the river, to manage domestic solid waste based on 3R (Reduce, Reuse, Recycle) concept.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edjabou, Maklawe Essonanawe, E-mail: vine@env.dtu.dk; Jensen, Morten Bang; Götze, Ramona
Highlights: • Tiered approach to waste sorting ensures flexibility and facilitates comparison of solid waste composition data. • Food and miscellaneous wastes are the main fractions contributing to the residual household waste. • Separation of food packaging from food leftovers during sorting is not critical for determination of the solid waste composition. - Abstract: Sound waste management and optimisation of resource recovery require reliable data on solid waste generation and composition. In the absence of standardised and commonly accepted waste characterisation methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. In thismore » study, a waste sampling and sorting methodology for efficient and statistically robust characterisation of solid waste was introduced. The methodology was applied to residual waste collected from 1442 households distributed among 10 individual sub-areas in three Danish municipalities (both single and multi-family house areas). In total 17 tonnes of waste were sorted into 10–50 waste fractions, organised according to a three-level (tiered approach) facilitating comparison of the waste data between individual sub-areas with different fractionation (waste from one municipality was sorted at “Level III”, e.g. detailed, while the two others were sorted only at “Level I”). The results showed that residual household waste mainly contained food waste (42 ± 5%, mass per wet basis) and miscellaneous combustibles (18 ± 3%, mass per wet basis). The residual household waste generation rate in the study areas was 3–4 kg per person per week. Statistical analyses revealed that the waste composition was independent of variations in the waste generation rate. Both, waste composition and waste generation rates were statistically similar for each of the three municipalities. While the waste generation rates were similar for each of the two housing types (single-family and multi-family house areas), the individual percentage composition of food waste, paper, and glass was significantly different between the housing types. This indicates that housing type is a critical stratification parameter. Separating food leftovers from food packaging during manual sorting of the sampled waste did not have significant influence on the proportions of food waste and packaging materials, indicating that this step may not be required.« less
Modules for estimating solid waste from fossil-fuel technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.
1980-10-01
Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solidmore » wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.« less
Municipal solid waste management in Tehran: Changes during the last 5 years.
Malmir, Tahereh; Tojo, Yasumasa
2016-05-01
The situation of waste management in Tehran was a typical example of it in developing countries. The amount of municipal solid waste has been increasing and the city has depended on landfill for municipal solid waste management. However, in recent years, various measures have been taken by the city, such as collecting recyclables at the source and increasing the capacity of waste-processing facilities. As a result, significant changes in the waste stream are starting to occur. This study investigated the nature of, and reasons for, the marked changes in the waste stream from 2008 to 2012 by analysing the municipal solid waste statistics published by the Tehran Waste Management Organization in 2013 and survey data on the physical composition of the municipal solid waste. The following trends were identified: Although the generation of municipal solid waste increased by 10% during the 5-year period, the amount of waste directly disposed of to landfill halved and resource recovery almost doubled. An increase in the capacity of a waste-processing facility contributed significantly to these changes. The biodegradable fraction going to landfill was estimated by using the quantity and the composition of each input to the landfill. The estimated result in 2012 decreased to 49% of its value in 2008. © The Author(s) 2016.
Thanh, Nguyen Phuc; Matsui, Yasuhiro; Fujiwara, Takeshi
2011-04-01
Plastic solid waste has become a serious problem when considering the disposal alternatives following the sequential hierarchy of sound solid waste management. This study was undertaken to assess the quantity and composition of household solid waste, especially plastic waste to identify opportunities for waste recycling. A 1-month survey of 130 households was carried out in Can Tho City, the capital city of the Mekong Delta region in southern Vietnam. Household solid waste was collected from each household and classified into ten physical categories; especially plastic waste was sorted into 22 subcategories. The average household solid waste generation rate was 281.27 g/cap/day. The compostable and recyclable shares respectively accounted for high percentage as 80.74% and 11%. Regarding plastic waste, the average plastic waste generation rate was 17.24 g/cap/day; plastic packaging and plastic containers dominated with the high percentage, 95.64% of plastic waste. Plastic shopping bags were especially identified as the major component, accounting for 45.72% of total plastic waste. Relevant factors such as household income and household size were found to have an existing correlation to plastic waste generation in detailed composition. The household habits and behaviors of plastic waste discharge and the aspects of environmental impacts and resource consumption for plastic waste disposal alternatives were also evaluated.
Modeling of urban solid waste management system: The case of Dhaka city
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sufian, M.A.; Bala, B.K.
2007-07-01
This paper presents a system dynamics computer model to predict solid waste generation, collection capacity and electricity generation from solid waste and to assess the needs for waste management of the urban city of Dhaka, Bangladesh. Simulated results show that solid waste generation, collection capacity and electricity generation potential from solid waste increase with time. Population, uncleared waste, untreated waste, composite index and public concern are projected to increase with time for Dhaka city. Simulated results also show that increasing the budget for collection capacity alone does not improve environmental quality; rather an increased budget is required for both collectionmore » and treatment of solid wastes of Dhaka city. Finally, this model can be used as a computer laboratory for urban solid waste management (USWM) policy analysis.« less
Preparation of nonwoven and green composites from tannery solid wastes
USDA-ARS?s Scientific Manuscript database
The disposal of solid wastes, such as trimmings and splits generated in various manufacturing processes in a tannery, is a serious challenge to the hides and leather industries. Our effort to address this challenge is to develop new uses and novel biobased products from solid wastes to improve prosp...
Urban solid waste generation and disposal in Mexico: a case study.
Buenrostro, O; Bocco, G; Bernache, G
2001-04-01
The adequate management of municipal solid waste in developing countries is difficult because of the scarcity of studies about their composition. This paper analyses the composition of urban solid waste (USW) in the city of Morelia, Michoacán, Mexico. Residential and non-residential waste sources were sampled, and a structured interview was made to evaluate the socioeconomic characteristics of the studied area. Also, to determine the seasonal patterns of solid waste generation and the efficiency level of the collection service, quantification of solid waste deposited in the dumping ground was measured. Our results show that the recorded amount of SW deposited in the municipal dumping-ground is less than the estimated amount of SW generated; for this reason, the former amount is not recommended as an unbiased indicator for planning public waste collection services. It is essential that dumping-grounds are permanently monitored and that the incoming waste be weighed in order to have a more efficient record of USW deposited in the dumping-ground per day; these data are fundamental for developing adequate managing strategies.
Removal of batteries from solid waste using trommel separation.
Lau, S T; Cheung, W H; Kwong, C K; Wan, C P; Choy, K K H; Leung, C C; Porter, J F; Hui, C W; Mc Kay, G
2005-01-01
This paper describes the design and testing of a trommel for separation of batteries from solid waste. A trommel is a cylindrical separation device that rotates and performs size separation. It has also been used in areas such as municipal solid waste (MSW) processing, classifying construction and demolition debris, screening mass-burn incinerator ash and compost processing. A trommel has been designed based on size separation to separate household batteries from solid waste, which can then be used as feedstock for alternative applications of solid waste combustion, particularly where the metal content of the product is also a critical parameter, such as the Co-Co process for integrated cement and power production. This trommel has been tested with batches of university office and restaurant wastes against various factors. The recovery efficiency of batteries increases with decreasing inclination angle of the trommel and decreasing rotational speed. A physical characterization of the university solid waste has been performed with a 20-kg sample of the tested waste. It was found that there is a trend of decreasing recovery of batteries with increasing paper composition, and a trend of increasing recovery of batteries with increasing organic materials composition.
Integrated models for solid waste management in tourism regions: Langkawi Island, Malaysia.
Shamshiry, Elmira; Nadi, Behzad; Mokhtar, Mazlin Bin; Komoo, Ibrahim; Hashim, Halimaton Saadiah; Yahaya, Nadzri
2011-01-01
The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island.
Integrated Models for Solid Waste Management in Tourism Regions: Langkawi Island, Malaysia
Shamshiry, Elmira; Nadi, Behzad; Bin Mokhtar, Mazlin; Komoo, Ibrahim; Saadiah Hashim, Halimaton; Yahaya, Nadzri
2011-01-01
The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island. PMID:21904559
NEW APPROACHES TO ESTIMATION OF SOLID-WASTE QUANTITY AND COMPOSITION
Efficient and statistically sound sampling protocols for estimating the quantity and composition of solid waste over a stated period of time in a given location, such as a landfill site or at a specific point in an industrial or commercial process, are essential to the design ...
PROTOCOL - A COMPUTERIZED SOLID WASTE QUANTITY AND COMPOSITION ESTIMATION SYSTEM: OPERATIONAL MANUAL
The assumptions of traditional sampling theory often do not fit the circumstances when estimating the quantity and composition of solid waste arriving at a given location, such as a landfill site, or at a specific point in an industrial or commercial process. The investigator oft...
Inorganic, Radioisotopic, and Organic Analysis of 241-AP-101 Tank Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiskum, S.K.; Bredt, P.R.; Campbell, J.A.
2000-10-17
Battelle received five samples from Hanford waste tank 241-AP-101, taken at five different depths within the tank. No visible solids or organic layer were observed in the individual samples. Individual sample densities were measured, then the five samples were mixed together to provide a single composite. The composite was homogenized and representative sub-samples taken for inorganic, radioisotopic, and organic analysis. All analyses were performed on triplicate sub-samples of the composite material. The sample composite did not contain visible solids or an organic layer. A subsample held at 10 C for seven days formed no visible solids.
Edjabou, Maklawe Essonanawe; Martín-Fernández, Josep Antoni; Scheutz, Charlotte; Astrup, Thomas Fruergaard
2017-11-01
Data for fractional solid waste composition provide relative magnitudes of individual waste fractions, the percentages of which always sum to 100, thereby connecting them intrinsically. Due to this sum constraint, waste composition data represent closed data, and their interpretation and analysis require statistical methods, other than classical statistics that are suitable only for non-constrained data such as absolute values. However, the closed characteristics of waste composition data are often ignored when analysed. The results of this study showed, for example, that unavoidable animal-derived food waste amounted to 2.21±3.12% with a confidence interval of (-4.03; 8.45), which highlights the problem of the biased negative proportions. A Pearson's correlation test, applied to waste fraction generation (kg mass), indicated a positive correlation between avoidable vegetable food waste and plastic packaging. However, correlation tests applied to waste fraction compositions (percentage values) showed a negative association in this regard, thus demonstrating that statistical analyses applied to compositional waste fraction data, without addressing the closed characteristics of these data, have the potential to generate spurious or misleading results. Therefore, ¨compositional data should be transformed adequately prior to any statistical analysis, such as computing mean, standard deviation and correlation coefficients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Forecasting municipal solid waste generation using prognostic tools and regression analysis.
Ghinea, Cristina; Drăgoi, Elena Niculina; Comăniţă, Elena-Diana; Gavrilescu, Marius; Câmpean, Teofil; Curteanu, Silvia; Gavrilescu, Maria
2016-11-01
For an adequate planning of waste management systems the accurate forecast of waste generation is an essential step, since various factors can affect waste trends. The application of predictive and prognosis models are useful tools, as reliable support for decision making processes. In this paper some indicators such as: number of residents, population age, urban life expectancy, total municipal solid waste were used as input variables in prognostic models in order to predict the amount of solid waste fractions. We applied Waste Prognostic Tool, regression analysis and time series analysis to forecast municipal solid waste generation and composition by considering the Iasi Romania case study. Regression equations were determined for six solid waste fractions (paper, plastic, metal, glass, biodegradable and other waste). Accuracy Measures were calculated and the results showed that S-curve trend model is the most suitable for municipal solid waste (MSW) prediction. Copyright © 2016 Elsevier Ltd. All rights reserved.
The assumptions of traditional sampling theory often do not fit the circumstances when estimating the quantity and composition of solid waste arriving at a given location, such as a landfill site, or at a specific point in an industrial or commercial process. The investigator oft...
Possibilities of municipal solid waste incinerator fly ash utilisation.
Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon
2015-08-01
Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Pandia, S.; Tanata, S.; Rachel, M.; Octiva, C.; Sialagan, N.
2018-02-01
The waste from tapioca industry is as an organic waste that contains many important compounds such as carbohydrate, protein, and glucose. This research as aimed to know the effect of fermentation time from solid waste combined with waste-water from the tapioca industry to percentage reduction of TSS. The study was started by mixing the solid and liquid wastes from tapioca industry at a ratio of 70:30, 60:40, 50:50, 40:60, and 30:70 (w/w) with a starter from solid waste of cattle in a batch anaerobic digester. The percentage reduction of TSS was 72.2289 at a ratio by weight of the composition of solid and liquid wastes from tapioca industry was 70:30 after 30 days of fermentation time.
Komilis, Dimitrios; Evangelou, Alexandros; Giannakis, Georgios; Lymperis, Constantinos
2012-03-01
In this work, the elemental content (C, N, H, S, O), the organic matter content and the calorific value of various organic components that are commonly found in the municipal solid waste stream were measured. The objective of this work was to develop an empirical equation to describe the calorific value of the organic fraction of municipal solid waste as a function of its elemental composition. The MSW components were grouped into paper wastes, food wastes, yard wastes and plastics. Sample sizes ranged from 0.2 to 0.5 kg. In addition to the above individual components, commingled municipal solid wastes were sampled from a bio-drying facility located in Crete (sample sizes ranged from 8 to 15 kg) and were analyzed for the same parameters. Based on the results of this work, an improved empirical model was developed that revealed that carbon, hydrogen and oxygen were the only statistically significant predictors of calorific value. Total organic carbon was statistically similar to total carbon for most materials in this work. The carbon to organic matter ratio of 26 municipal solid waste substrates and of 18 organic composts varied from 0.40 to 0.99. An approximate chemical empirical formula calculated for the organic fraction of commingled municipal solid wastes was C(32)NH(55)O(16). Copyright © 2011 Elsevier Ltd. All rights reserved.
Bazrafshan, Edris; Mohammadi, Leili; Mostafapour, Ferdos Kord; Moghaddam, Alireza Ansari
2014-02-01
The management of dental solid waste continues to be a major challenge, particularly in most healthcare facilities of the developing world. In Iran, few studies on management of dental solid waste and its composition are available. An effort has been made through this study to evaluate the hazardous and infectious status of dental solid waste, keeping in mind its possible role in cross-infection chain. For this study, 123 private dental centres and 36 public dental centres were selected and the composition and generation rate of dental solid waste produced were measured. Dental solid waste was classified to four main categories: (i) domestic-type; (ii) potentially infectious; (iii) chemical and pharmaceutical; and (iv) toxic, which constituted 11.7, 80.3, 6.3, and 1.7%, respectively, of the total. Also, the results indicated that the dental solid waste per patient per day generation rate for total, domestic-type, potentially infectious, chemical and pharmaceutical, and toxic wastes were 169.9, 8.6, 153.3, 11.2, and 3.3 g/patient/d, respectively. Furthermore, the per day generation rates for total, domestic-type, potentially infectious, chemical and pharmaceutical, and toxic wastes were 194.5, 22.6, 156.1, 12.3, and 3.4 kg/d, respectively. According to findings of this study, for best management of dental waste it is suggested that source reduction, separation, reuse, and recycling programmes be implemented and each section of dental waste be collected and disposed of separately and in accordance with related criteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisbrod, Kirk Ryan; Veirs, Douglas Kirk; Funk, David John
This report describes the derivation of the salt composition from the Veazey salt stream analysis. It also provides an estimate of the proportions of the kitty litter, nitrate salt and neutralizer that was contained in drum 68660. While the actinide content of waste streams was judiciously followed in the 1980s in TA-55, no record of the salt composition could be found. Consequently, a salt waste stream produced from 1992 to 1994 and reported by Gerry Veazey provided the basis for this study. While chemical analysis of the waste stream was highly variable, an average analysis provided input to the Streammore » Analyzer software to calculate a composition for a concentrated solid nitrate salt and liquid waste stream. The calculation predicted the gas / condensed phase compositions as well as solid salt / saturated liquid compositions. The derived composition provides an estimate of the nitrate feedstream to WIPP for which kinetic measurements can be made. The ratio of salt to Swheat in drum 68660 contents was estimated through an overall mass balance on the parent and sibling drums. The RTR video provided independent confirmation concerning the volume of the mixture. The solid salt layer contains the majority of the salt at a ratio with Swheat that potentially could become exothermic.« less
Municipal solid waste generation in Kathmandu, Nepal.
Dangi, Mohan B; Pretz, Christopher R; Urynowicz, Michael A; Gerow, Kenneth G; Reddy, J M
2011-01-01
Waste stream characteristics must be understood to tackle waste management problems in Kathmandu Metropolitan City (KMC), Nepal. Three-stage stratified cluster sampling was used to evaluate solid waste data collected from 336 households in KMC. This information was combined with data collected regarding waste from restaurants, hotels, schools and streets. The study found that 497.3 g capita(-1) day(-1) of solid waste was generated from households and 48.5, 113.3 and 26.1 kg facility(-1) day(-1) of waste was generated from restaurants, hotels and schools, respectively. Street litter measured 69.3 metric tons day(-1). The average municipal solid waste generation rate was 523.8 metric tons day(-1) or 0.66 kg capita(-1) day(-1) as compared to the 320 metric tons day(-1) reported by the city. The coefficient of correlation between the number of people and the amount of waste produced was 0.94. Key household waste constituents included 71% organic wastes, 12% plastics, 7.5% paper and paper products, 5% dirt and construction debris and 1% hazardous wastes. Although the waste composition varied depending on the source, the composition analysis of waste from restaurants, hotels, schools and streets showed a high percentage of organic wastes. These numbers suggest a greater potential for recovery of organic wastes via composting and there is an opportunity for recycling. Because there is no previous inquiry of this scale in reporting comprehensive municipal solid waste generation in Nepal, this study can be treated as a baseline for other Nepalese municipalities. Copyright © 2010 Elsevier Ltd. All rights reserved.
Factors determining waste generation in Spanish towns and cities.
Prades, Miriam; Gallardo, Antonio; Ibàñez, Maria Victoria
2015-01-01
This paper analyzes the generation and composition of municipal solid waste in Spanish towns and cities with more than 5000 inhabitants, which altogether account for 87% of the Spanish population. To do so, the total composition and generation of municipal solid waste fractions were obtained from 135 towns and cities. Homogeneity tests revealed heterogeneity in the proportions of municipal solid waste fractions from one city to another. Statistical analyses identified significant differences in the generation of glass in cities of different sizes and in the generation of all fractions depending on the hydrographic area. Finally, linear regression models and residuals analysis were applied to analyze the effect of different demographic, geographic, and socioeconomic variables on the generation of waste fractions. The conclusions show that more densely populated towns, a hydrographic area, and cities with over 50,000 inhabitants have higher waste generation rates, while certain socioeconomic variables (people/car) decrease that generation. Other socioeconomic variables (foreigners and unemployment) show a positive and null influence on that waste generation, respectively.
Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Younes, Mohammed Y
2016-09-01
Solid waste prediction is crucial for sustainable solid waste management. The collection of accurate waste data records is challenging in developing countries. Solid waste generation is usually correlated with economic, demographic and social factors. However, these factors are not constant due to population and economic growth. The objective of this research is to minimize the land requirements for solid waste disposal for implementation of the Malaysian vision of waste disposal options. This goal has been previously achieved by integrating the solid waste forecasting model, waste composition and the Malaysian vision. The modified adaptive neural fuzzy inference system (MANFIS) was employed to develop a solid waste prediction model and search for the optimum input factors. The performance of the model was evaluated using the root mean square error (RMSE) and the coefficient of determination (R(2)). The model validation results are as follows: RMSE for training=0.2678, RMSE for testing=3.9860 and R(2)=0.99. Implementation of the Malaysian vision for waste disposal options can minimize the land requirements for waste disposal by up to 43%. Copyright © 2015 Elsevier Ltd. All rights reserved.
A procedure to estimate proximate analysis of mixed organic wastes.
Zaher, U; Buffiere, P; Steyer, J P; Chen, S
2009-04-01
In waste materials, proximate analysis measuring the total concentration of carbohydrate, protein, and lipid contents from solid wastes is challenging, as a result of the heterogeneous and solid nature of wastes. This paper presents a new procedure that was developed to estimate such complex chemical composition of the waste using conventional practical measurements, such as chemical oxygen demand (COD) and total organic carbon. The procedure is based on mass balance of macronutrient elements (carbon, hydrogen, nitrogen, oxygen, and phosphorus [CHNOP]) (i.e., elemental continuity), in addition to the balance of COD and charge intensity that are applied in mathematical modeling of biological processes. Knowing the composition of such a complex substrate is crucial to study solid waste anaerobic degradation. The procedure was formulated to generate the detailed input required for the International Water Association (London, United Kingdom) Anaerobic Digestion Model number 1 (IWA-ADM1). The complex particulate composition estimated by the procedure was validated with several types of food wastes and animal manures. To make proximate analysis feasible for validation, the wastes were classified into 19 types to allow accurate extraction and proximate analysis. The estimated carbohydrates, proteins, lipids, and inerts concentrations were highly correlated to the proximate analysis; correlation coefficients were 0.94, 0.88, 0.99, and 0.96, respectively. For most of the wastes, carbohydrate was the highest fraction and was estimated accurately by the procedure over an extended range with high linearity. For wastes that are rich in protein and fiber, the procedure was even more consistent compared with the proximate analysis. The new procedure can be used for waste characterization in solid waste treatment design and optimization.
The potential of household solid waste reduction in Sukomanunggal District, Surabaya
NASA Astrophysics Data System (ADS)
Warmadewanthi, I. D. A. A.; Kurniawati, S.
2018-01-01
The rapid population growth affects the amount of waste generated. Sukomanunggal Subdistrict is the densest area in West Surabaya which has a population of 100,602 inhabitants with a total area of 11.2 km2. The population growth significantly affects the problem of limited land for landfill facilities (final processing sites). According to the prevailing regulations, solid waste management solutions include the solid waste reduction and management. This study aims to determine the potential reduction of household solid waste at the sources. Household solid waste samplings were performed for eight consecutive days. The samples were then analyzed to obtain the generation rate, density, and composition so that the household solid waste reduction potential for the next 20 years could be devised. Results of the analysis showed that the value of waste is 0.27 kg/person/day, while the total household solid waste generation amounted to 27,162.58 kg/day or 187.70 m3/day. Concerning the technical aspects, the current solid waste reduction in Sukomanunggal Subdistrict has reached 2.1% through the application of waste bank, composting, and scavenging activities at the dumping sites by the garbage collectors. In the year of 2036, the potential reduction of household solid waste in Sukomanunggal Subdistrict has been estimated to reach 28.0%.
Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Rui, Lo Ming; Isa, Awatif Md; Zawawi, Mohd Hafiz; Alrozi, Rasyidah
2017-12-01
Currently, generation of solid waste per capita in Malaysia is about 1.1 kg/day. Over 26,500 t of solid waste is disposed almost solely through 166 operating landfills in the country every day. Despite the availability of other disposal methods, landfill is the most widely accepted and prevalent method for municipal solid waste (MSW) disposal in developing countries, including Malaysia. This is mainly ascribed to its inherent forte in terms cost saving and simpler operational mechanism. However, there is a downside. Environmental pollution caused by the landfill leachate has been one of the typical dilemmas of landfilling method. Leachate is the liquid produced when water percolates through solid waste and contains dissolved or suspended materials from various disposed materials and biodecomposition processes. It is often a high-strength wastewater with extreme pH, chemical oxygen demand (COD), biochemical oxygen demand (BOD), inorganic salts and toxicity. Its composition differs over the time and space within a particular landfill, influenced by a broad spectrum of factors, namely waste composition, landfilling practice (solid waste contouring and compacting), local climatic conditions, landfill's physico-chemical conditions, biogeochemistry and landfill age. This paper summarises an overview of landfill operation and leachate treatment availability reported in literature: a broad spectrum of landfill management opportunity, leachate parameter discussions and the way forward of landfill leachate treatment applicability.
Kawai, Kosuke; Osako, Masahiro; Matsui, Saburo; Dong, Nguyen The
2012-07-01
Even in developing countries, the amount of containers and packaging waste are increasing in line with population concentration and lifestyle changes in urban areas. This can cause serious problems for the disposal of municipal solid waste. Through a physical composition analysis of household waste in Hanoi, the capital of Vietnam, this study aimed to identify the contribution made by junk buyers to recycling. Interviews on the handling of recyclable waste by households were conducted. About 232 kg of recyclable waste was sampled from a total of 115 households, and about 230 kg of municipal solid waste was sampled from a total of 101 households and sorted into 69 categories for measurement by volume and weight. The interview survey revealed that a high proportion of households tended to routinely store recyclable waste for sale or donation to junk buyers. Junk buyers accounted for 8.8% of recycling by weight or 26.0% by volume according to the results of the physical composition analysis. In addition, the results suggested that containers and packaging waste accounted for the largest proportion of household waste by volume. Junk buyers recycled 25.5% by weight of containers and packaging waste. In the formulation of new plans for municipal solid waste management to improve the current situation and handle future challenges, the role of the informal sector should be monitored carefully and reliable data on recyclable waste should be collected continuously.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metin, E.; Eroeztuerk, A.; Neyim, C
This paper provides a general overview of solid waste data and management practices employed in Turkey during the last decade. Municipal solid waste statistics and management practices including waste recovery and recycling initiatives have been evaluated. Detailed data on solid waste management practices including collection, recovery and disposal, together with the results of cost analyses, have been presented. Based on these evaluations basic cost estimations on collection and sorting of recyclable solid waste in Turkey have been provided. The results indicate that the household solid waste generation in Turkey, per capita, is around 0.6 kg/year, whereas municipal solid waste generationmore » is close to 1 kg/year. The major constituents of municipal solid waste are organic in nature and approximately 1/4 of municipal solid waste is recyclable. Separate collection programmes for recyclable household waste by more than 60 municipalities, continuing in excess of 3 years, demonstrate solid evidence for public acceptance and continuing support from the citizens. Opinion polls indicate that more than 80% of the population in the project regions is ready and willing to participate in separate collection programmes. The analysis of output data of the Material Recovery Facilities shows that, although paper, including cardboard, is the main constituent, the composition of recyclable waste varies strongly by the source or the type of collection point.« less
Alvarado-Lassman, A; Méndez-Contreras, J M; Martínez-Sibaja, A; Rosas-Mendoza, E S; Vallejo-Cantú, N A
2017-06-01
The high liquid content in fruit and vegetable wastes makes it convenient to mechanically separate these wastes into mostly liquid and solid fractions by means of pretreatment. Then, the liquid fraction can be treated using a high-rate anaerobic biofilm reactor to produce biogas, simultaneously reducing the amount of solids that must be landfilled. In this work, the specific composition of municipal solid waste (MSW) in a public market was determined; then, the sorted organic fraction of municipal solid waste was treated mechanically to separate and characterize the mostly liquid and solid fractions. Then, the mesophilic anaerobic digestion for biogas production of the first fraction was evaluated. The anaerobic digestion resulted in a reduced hydraulic retention time of two days with high removal of chemical oxygen demand, that is, 88% on average, with the additional benefit of reducing the mass of the solids that had to be landfilled by about 80%.
Impact of socioeconomic status on municipal solid waste generation rate.
Khan, D; Kumar, A; Samadder, S R
2016-03-01
The solid waste generation rate was expected to vary in different socioeconomic groups due to many environmental and social factors. This paper reports the assessment of solid waste generation based on different socioeconomic parameters like education, occupation, income of the family, number of family members etc. A questionnaire survey was conducted in the study area to identify the different socioeconomic groups that may affect the solid waste generation rate and composition. The average waste generated in the municipality is 0.41 kg/capita/day in which the maximum waste was found to be generated by lower middle socioeconomic group (LMSEG) with average waste generation of 0.46 kg/capita/day. Waste characterization indicated that there was no much difference in the composition of wastes among different socioeconomic groups except ash residue and plastic. Ash residue is found to increase as we move lower down the socioeconomic groups with maximum (31%) in lower socioeconomic group (LSEG). The study area is a coal based city hence application of coal and wood as fuel for cooking in the lower socioeconomic group is the reason for high amount of ash content. Plastic waste is maximum (15%) in higher socioeconomic group (HSEG) and minimum (1%) in LSEG. Food waste is a major component of generated waste in almost every socioeconomic group with maximum (38%) in case of HSEG and minimum (28%) in LSEG. This study provides new insights on the role of various socioeconomic parameters on generation of household wastes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Levis, James W; Barlaz, Morton A; Decarolis, Joseph F; Ranjithan, S Ranji
2014-04-01
Solid waste management (SWM) systems must proactively adapt to changing policy requirements, waste composition, and an evolving energy system to sustainably manage future solid waste. This study represents the first application of an optimizable dynamic life-cycle assessment framework capable of considering these future changes. The framework was used to draw insights by analyzing the SWM system of a hypothetical suburban U.S. city of 100 000 people over 30 years while considering changes to population, waste generation, and energy mix and costs. The SWM system included 3 waste generation sectors, 30 types of waste materials, and 9 processes for waste separation, treatment, and disposal. A business-as-usual scenario (BAU) was compared to three optimization scenarios that (1) minimized cost (Min Cost), (2) maximized diversion (Max Diversion), and (3) minimized greenhouse gas (GHG) emissions (Min GHG) from the system. The Min Cost scenario saved $7.2 million (12%) and reduced GHG emissions (3%) relative to the BAU scenario. Compared to the Max Diversion scenario, the Min GHG scenario cost approximately 27% less and more than doubled the net reduction in GHG emissions. The results illustrate how the timed-deployment of technologies in response to changes in waste composition and the energy system results in more efficient SWM system performance compared to what is possible from static analyses.
Immobilization of organic radioactive and non-radioactive liquid waste in a composite matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galkin, Anatoliy; Gelis, Artem V.; Castiglioni, Andrew J.
A method for immobilizing liquid radioactive waste is provided, the method having the steps of mixing waste with polymer to form a non-liquid waste; contacting the non-liquid waste with a solidifying agent to create a mixture, heating the mixture to cause the polymer, waste, and filler to irreversibly bind in a solid phase, and compressing the solid phase into a monolith. The invention also provides a method for immobilizing liquid radioactive waste containing tritium, the method having the steps of mixing liquid waste with polymer to convert the liquid waste to a non-liquid waste, contacting the non-liquid waste with amore » solidifying agent to create a mixture, heating the mixture to form homogeneous, chemically stable solid phase, and compressing the chemically stable solid phase into a final waste form, wherein the polymer comprises approximately a 9:1 weight ratio mixture of styrene block co-polymers and cross linked co-polymers of acrylamides.« less
Factors affecting the shear strength behavior of municipal solid wastes.
Pulat, Hasan Firat; Yukselen-Aksoy, Yeliz
2017-11-01
In this study, the shear strength behavior of European (E-1), Turkey (T-1), and United States of America (U-1) average synthetic municipal solid waste (MSW) compositions were investigated. The large-scale direct shear tests were conducted using fresh and aged MSW samples collected from the Manisa Landfill. The natural samples' test results were compared with synthetic samples. The affecting factors such as ageing, waste composition, and waste type (synthetic and natural) on the shear strength of MSWs were investigated. The effect of composition was evaluated using three main and six modified synthetic MSW compositions. In addition to the synthetic fresh MSW samples, synthetic aged samples were also used. Angle of shearing resistance decreased with increasing organic content whereas cohesion intercept increased with increasing organic content. The fresh and aged wastes with higher coarse fraction lead to a higher angle of shearing resistance. The synthetic aged samples had higher internal friction angles but lower cohesion values than the synthetic fresh samples. Waste with average European composition had the highest internal friction angle as it has the highest fibrous content. On the other hand, the highest cohesion belonged to the Turkey composition, which had the highest organic matter ratio. The main differences between E-1, T-1 and U-1 samples in terms of compositions were observed. The results of this study indicated that shear strength of waste significantly depends on composition and hence a site specific evaluation is recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.
Investigation of solid organic waste processing by oxidative pyrolysis
NASA Astrophysics Data System (ADS)
Kolibaba, O. B.; Sokolsky, A. I.; Gabitov, R. N.
2017-11-01
A thermal analysis of a mixture of municipal solid waste (MSW) of the average morphological composition and its individual components was carried out in order to develop ways to improve the efficiency of its utilization for energy production in thermal reactors. Experimental studies were performed on a synchronous thermal analyzer NETZSCH STA 449 F3 Jupiter combined with a quadrupole mass spectrometer QMC 403. Based on the results of the experiments, the temperature ranges of the pyrolysis process were determined as well as the rate of decrease of the mass of the sample of solid waste during the drying and oxidative pyrolysis processes, the thermal effects accompanying these processes, as well as the composition and volumes of gases produced during oxidative pyrolysis of solid waste and its components in an atmosphere with oxygen content of 1%, 5%, and 10%. On the basis of experimental data the dependences of the yield of gas on the moisture content of MSW were obtained under different pyrolysis conditions under which a gas of various calorific values was produced.
Methods of vitrifying waste with low melting high lithia glass compositions
Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.
2001-01-01
The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.
Updating and testing of a Finnish method for mixed municipal solid waste composition studies.
Liikanen, M; Sahimaa, O; Hupponen, M; Havukainen, J; Sorvari, J; Horttanainen, M
2016-06-01
More efficient recycling of municipal solid waste (MSW) is an essential precondition for turning Europe into a circular economy. Thus, the recycling of MSW must increase significantly in several member states, including Finland. This has increased the interest in the composition of mixed MSW. Due to increased information needs, a method for mixed MSW composition studies was introduced in Finland in order to improve the national comparability of composition study results. The aim of this study was to further develop the method so that it corresponds to the information needed about the composition of mixed MSW and still works in practice. A survey and two mixed MSW composition studies were carried out in the study. According to the responses of the survey, the intensification of recycling, the landfill ban on organic waste and the producer responsibility for packaging waste have particularly influenced the need for information about the composition of mixed MSW. The share of biowaste in mixed MSW interested the respondents most. Additionally, biowaste proved to be the largest waste fraction in mixed MSW in the composition studies. It constituted over 40% of mixed MSW in both composition studies. For these reasons, the classification system of the method was updated by further defining the classifications of biowaste. The classifications of paper as well as paperboard and cardboard were also updated. The updated classification system provides more information on the share of avoidable food waste and waste materials suitable for recycling in mixed MSW. The updated method and the information gained from the composition studies are important in ensuring that the method will be adopted by municipal waste management companies and thus used widely in Finland. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hazardous waste treatment for spent pot liner
NASA Astrophysics Data System (ADS)
Zhao, Xia; Ma, Lei
2018-01-01
The spent pot liner is the largest solid waste produced by the electrolytic aluminum industry, composed of a series of substances that accumulate in the containers with reduced aluminum during the process of bauxite purification and refining. More and more spent pot liner is accumulated and needs to be dealt with. This paper discusses the composition and harm of solid waste. This paper expounds the comprehensive utilization value and disposition of the waste pot liner.
LOW ACTIVITY WASTE FEED SOLIDS CARACTERIZATION AND FILTERABILITY TESTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCabe, D.; Crawford, C.; Duignan, M.
The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for the WTP Pretreatment facility is to treat the waste, splitting it into High Level Waste (HLW) feed and Low Activity Waste (LAW) feed. Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium in the WTP Pretreatment facility, so itsmore » disposition path is the LAW glass. Options are being explored to immobilize the LAW portion of the tank waste, i.e., the LAW feed from the WTP Pretreatment facility. Removal of {sup 99}Tc from the LAW Feed, followed by off-site disposal of the {sup 99}Tc, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing {sup 99}Tc from the LAW feed stream to supplemental immobilization. The conceptual flow sheet of the {sup 99}Tc removal process includes a filter to remove insoluble solids prior to processing the stream in an ion exchange column, but the characteristics and behavior of the liquid and solid phases has not previously been investigated. This report contains results of testing of a simulant that represents the projected composition of the feed to the Supplemental LAW process. This feed composition is not identical to the aqueous tank waste fed to the Waste Treatment Plant because it has been processed through WTP Pretreatment facility and therefore contains internal changes and recycle streams that will be generated within the WTP process. Although a Supplemental LAW feed simulant has previously been prepared, this feed composition differs from that simulant because those tests examined only the fully soluble aqueous solution at room temperature, not the composition formed after evaporation, including the insoluble solids that precipitate after it cools. The conceptual flow sheet for Supplemental LAW immobilization has an option for removal of {sup 99}Tc from the feed stream, if needed. Elutable ion exchange has been selected for that process. If implemented, the stream would need filtration to remove the insoluble solids prior to processing in an ion exchange column. The characteristics, chemical speciation, physical properties, and filterability of the solids are important to judge the feasibility of the concept, and to estimate the size and cost of a facility. The insoluble solids formed during these tests were primarily natrophosphate, natroxalate, and a sodium aluminosilicate compound. At the elevated temperature and 8 M [Na+], appreciable insoluble solids (1.39 wt%) were present. Cooling to room temperature and dilution of the slurry from 8 M to 5 M [Na+] resulted in a slurry containing 0.8 wt% insoluble solids. The solids (natrophosphate, natroxalate, sodium aluminum silicate, and a hydrated sodium phosphate) were relatively stable and settled quickly. Filtration rates were in the range of those observed with iron-based simulated Hanford tank sludge simulants, e.g., 6 M [Na+] Hanford tank 241-AN-102, even though their chemical speciation is considerably different. Chemical cleaning of the crossflow filter was readily accomplished with acid. As this simulant formulation was based on an average composition of a wide range of feeds using an integrated computer model, this exact composition may never be observed. But the test conditions were selected to enable comparison to the model to enable improving its chemical prediction capability.« less
Characterization of urban solid waste in Chihuahua, Mexico.
Gomez, Guadalupe; Meneses, Montserrat; Ballinas, Lourdes; Castells, Francesc
2008-12-01
The characterization of urban solid waste generation is fundamental for adequate decision making in the management strategy of urban solid waste in a city. The objective of this study is to characterize the waste generated in the households of Chihuahua city, and to compare the results obtained in areas of the city with three different socioeconomic levels. In order to identify the different socioeconomic trends in waste generation and characterization, 560 samples of solid waste were collected during 1 week from 80 households in Chihuahua and were hand sorted and classified into 15 weighted fractions. The average waste generation in Chihuahua calculated in this study was 0.676 kg per capita per day in April 2006. The main fractions were: organic (48%), paper (16%) and plastic (12%). Results show an increased waste generation associated with the socioeconomic level. The characterization in amount and composition of urban waste is the first step needed for the successful implementation of an integral waste management system.
Preliminary analysis of the bio-mechanical characteristics for High-kitchen Municipal Solid Waste
NASA Astrophysics Data System (ADS)
Li, He; Zhang, Jian Guo; Lan, Ji Wu; He, Haijie
2017-11-01
Degradation of Municipal Solid Wastes (MSW) results in a change in solid skeleton, particle size and pore structure, inducing an alteration of compressibility and liquid/gas conductivity of the wastes. To investigate the complicated biological, hydraulic and mechanical coupled processes of the MSWs, a pilot-scale experimental device which is consist of waste column container, environment regulation system, vertical loading system and measuring system for liquid/gas conductivity is built. With the experimental systems, long-term tests were set up to investigate the biological, hydraulic and mechanical behaviour of the High-kitchen Municipal solid waste with high organic content and high water content. Different values of vertical stress and different degradation conditions (micro-aerobic and anaerobic) were simulated. Throughout the experiments, the changes in total volume, degree of saturation, leachate quantity and chemistry, LFG generation and composition, liquid and gas conductivity were measured. The experimental results will provide solid data for a development of the Bio-Hydro-Mechanical coupled characteristics for High-kitchen Municipal solid waste.
Al-Khatib, Issam A; Abu Fkhidah, Ismail; Khatib, Jumana I; Kontogianni, Stamatia
2016-03-01
Forecasting of hospital solid waste generation is a critical challenge for future planning. The composition and generation rate of hospital solid waste in hospital units was the field where the proposed methodology of the present article was applied in order to validate the results and secure the outcomes of the management plan in national hospitals. A set of three multiple-variable regression models has been derived for estimating the daily total hospital waste, general hospital waste, and total hazardous waste as a function of number of inpatients, number of total patients, and number of beds. The application of several key indicators and validation procedures indicates the high significance and reliability of the developed models in predicting the hospital solid waste of any hospital. Methodology data were drawn from existent scientific literature. Also, useful raw data were retrieved from international organisations and the investigated hospitals' personnel. The primal generation outcomes are compared with other local hospitals and also with hospitals from other countries. The main outcome, which is the developed model results, are presented and analysed thoroughly. The goal is this model to act as leverage in the discussions among governmental authorities on the implementation of a national plan for safe hospital waste management in Palestine. © The Author(s) 2016.
Goh, C K; Valavan, S E; Low, T K; Tang, L H
2016-12-01
Incineration fly ash, a waste from municipal solid waste incineration plant can be used to replace conventional filler as reinforcing filler to enhance the mechanical strength of a composite. Surface modification was performed on the incineration fly ash before mixing into the soft polymer matrix so as to improve interfacial bond of the filler and epoxy resin. In this study, detailed characterisation of mechanical, morphological and leaching behaviours of municipal solid waste incineration (MSWI) fly ash infused composite has been carried out. Flexural and tensile test was conducted to determine the effect on mechanical properties of the composite by varying the concentration of incineration fly ash filler added into polymer matrix and surface modification of incineration fly ash filler using silane coupling agent and colloidal mesoporous silica (CMS). The results indicated that composite infused with incineration fly ash filler surface treated with CMS shown improvement on the tensile and flexural strengths. In addition, SEM images showed that surface modification of incineration fly ash with colloidal mesoporous silica enhanced the interfacial bonding with polymer resin which explained the improvement of mechanical strength. Leaching test showed result of toxic metals such as Pb, Zn, Fe, Cu, Cr, Cd and Rb immobilised in the polymer matrix of the composite. Hence, the use of MSWI fly ash as reinforcing filler in the composite appears green and sustainable because this approach is a promising opportunity to substitute valuable raw material with MSWI fly ash. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkun, Mehmet; Aras, Egemen; Nemlioglu, Semih
The increasing amount of solid waste arising from municipalities and other sources and its consequent disposal has been one of the major environmental problems in Turkey. Istanbul is a metropolitan city with a current population of around 14 million, and produces about 9000 ton of solid waste every day. The waste composition for Istanbul has changed markedly from 1981 to 1996 with large decreases in waste density, much of which is related to decreased amounts of ash collected in winter. In recent years, the Istanbul region has implemented a new solid waste management system with transfer stations, sanitary landfills, andmore » methane recovery, which has led to major improvements. In the Black Sea region of Turkey, most of the municipal and industrial solid wastes, mixed with hospital and hazardous wastes, are dumped on the nearest lowlands and river valleys or into the sea. The impact of riverside and seashore dumping of solid wastes adds significantly to problems arising from sewage and industry on the Black Sea coast. Appropriate integrated solid waste management systems are needed here as well; however, they have been more difficult to implement than in Istanbul because of more difficult topography, weaker administrative structures, and the lower incomes of the inhabitants.« less
Low melting high lithia glass compositions and methods
Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.
2004-11-02
The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.
Low melting high lithia glass compositions and methods
Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.
2003-10-07
The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.
Low melting high lithia glass compositions and methods
Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.
2000-01-01
The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.
Electricity production from municipal solid waste in Brazil.
Nordi, Guilherme Henrique; Palacios-Bereche, Reynaldo; Gallego, Antonio Garrido; Nebra, Silvia Azucena
2017-07-01
Brazil has an increasing production of municipal solid waste that, allied to the current waste management system, makes the search for alternatives of energy recovery essential. Thus, this work aims to study the incineration of municipal solid waste and the electricity production through steam cycles evaluating the influence of municipal solid waste composition. Several scenarios were studied, in which it was assumed that some fractions of municipal solid waste were removed previously. The municipal solid waste generated in Santo André city, São Paulo State, Brazil, was adopted for this study. Simulation results showed that the removal of organic matter and inert components impacts advantageously on the cycle performance, improving their parameters in some cases; in addition, there is the possibility of reusing the separated fractions. The separation of some recyclables, as plastic material, showed disadvantages by the reduction in the electricity generation potential owing to the high calorific value of plastics. Despite the high energy content of them, there are other possible considerations on this subject, because some plastics have a better recovery potential by recycling.
Greenhouse gases emissions from waste management practices using Life Cycle Inventory model.
Chen, Tsao-Chou; Lin, Cheng-Fang
2008-06-30
When exploring the correlation between municipal solid waste management and green house gas emission, the volume and physical composition of the waste matter must be taken into account. Due to differences in local environments and lifestyles the quantity and composition of waste often vary. This leads to differences in waste treatment methods and causes different volumes of greenhouse gases (GHGs), highlighting the need for local research. In this study the Life Cycle Inventory method was used with global warming indicator GHGs as the variables. By quantifying the data and adopting a region-based approach, this created a model of household MSWM in Taipei City, a metropolitan region in Taiwan. To allow analysis and comparison a compensatory system was then added to expand the system boundary. The results of the analysis indicated that out of all the solid waste management sub-models for a function unit, recycling was the most effective method for reducing GHG emissions while using kitchen food waste as swine feeding resulted in the most GHG emissions. As for the impact of waste collection vehicles on emissions, if the efficiency of transportation could be improved and energy consumption reduced, this will help solid waste management to achieve its goal of reducing GHG emissions.
Seasonal analysis of the generation and composition of solid waste: potential use--a case study.
Aguilar-Virgen, Quetzalli; Taboada-González, Paul; Ojeda-Benítez, Sara
2013-06-01
Ensenada health officials lack pertinent information on the sustainable management of solid waste, as do health officials from other developing countries. The aims of this research are: (a) to quantify and analyze the household solid wastes generated in the city of Ensenada, Mexico, and (b) to project biogas production and estimate generation of electrical energy. The characterization study was conducted by socioeconomic stratification in two seasonal periods, and the biogas and electrical energy projections were performed using the version 2.0 Mexico Biogas Model. Per capita solid waste generation was 0.779 ± 0.019 kg per person per day within a 98 % confidence interval. Waste composition is composed mainly of food scraps at 36.25 %, followed by paper and cardboard at 21.85 %, plastic at 12.30 %, disposable diapers at 6.26 %, and textiles at 6.28 %. The maximum capacity for power generation is projected to be 1.90 MW in 2019. Waste generated could be used as an intermediate in different processes such as recycling (41.04 %) and energy recovery (46.63 %). The electrical energy that could be obtained using the biogas generated at the Ensenada sanitary landfill would provide roughly 60 % of the energy needed for street lighting.
Alibardi, Luca; Cossu, Raffaello
2015-02-01
The composition of the Organic Fraction of Municipal Solid Waste (OFMSW) strongly depends on the place and time of collection for a specific municipality or area. Moreover synthetic food waste or organic waste from cafeterias and restaurants may not be representative of the overall OFMSW received at treatment facilities for source-separated waste. This work is aimed at evaluating the composition variability of OFMSW, the potential productions of hydrogen and methane from specific organic waste fractions typically present in MSW and the effects of waste composition on overall hydrogen and methane yields. The organic waste fractions considered in the study were: bread-pasta, vegetables, fruits, meat-fish-cheese and undersieve 20mm. Composition analyses were conducted on samples of OFMSW that were source segregated at household level. Batch tests for hydrogen and methane productions were carried out under mesophilic conditions on selected fractions and OFMSW samples. Results indicated that the highest production of hydrogen was achieved by the bread-pasta fraction while the lowest productions were measured for the meat-fish-cheese fraction. The results indicated that the content of these two fractions in organic waste had a direct influence on the hydrogen production potentials of OFMSW. The higher the content of bread-pasta fraction, the higher the hydrogen yields were while the contrary was observed for the meat-fish-cheese fraction. The definition of waste composition therefore represents fundamental information to be reported in scientific literature to allow data comparison. The variability of OFMSW and its effects on hydrogen potentials might also represents a problematic issue in the management of pilot or full-scale plants for the production of hydrogen by dark fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sel, İlker; Çakmakcı, Mehmet; Özkaya, Bestamin; Suphi Altan, H
2016-10-01
Main objective of this study was to develop a statistical model for easier and faster Biochemical Methane Potential (BMP) prediction of landfilled municipal solid waste by analyzing waste composition of excavated samples from 12 sampling points and three waste depths representing different landfilling ages of closed and active sections of a sanitary landfill site located in İstanbul, Turkey. Results of Principal Component Analysis (PCA) were used as a decision support tool to evaluation and describe the waste composition variables. Four principal component were extracted describing 76% of data set variance. The most effective components were determined as PCB, PO, T, D, W, FM, moisture and BMP for the data set. Multiple Linear Regression (MLR) models were built by original compositional data and transformed data to determine differences. It was observed that even residual plots were better for transformed data the R(2) and Adjusted R(2) values were not improved significantly. The best preliminary BMP prediction models consisted of D, W, T and FM waste fractions for both versions of regressions. Adjusted R(2) values of the raw and transformed models were determined as 0.69 and 0.57, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mohan, S Venkata; Chandrasekhar, K
2011-07-01
Solid phase microbial fuel cells (SMFC; graphite electrodes; open-air cathode) were designed to evaluate the potential of bioelectricity production by stabilizing composite canteen based food waste. The performance was evaluated with three variable electrode-membrane assemblies. Experimental data depicted feasibility of bioelectricity generation from solid state fermentation of food waste. Distance between the electrodes and presence of proton exchange membrane (PEM) showed significant influence on the power yields. SMFC-B (anode placed 5 cm from cathode-PEM) depicted good power output (463 mV; 170.81 mW/m(2)) followed by SMFC-C (anode placed 5 cm from cathode; without PEM; 398 mV; 53.41 mW/m(2)). SMFC-A (PEM sandwiched between electrodes) recorded lowest performance (258 mV; 41.8 mW/m(2)). Sodium carbonate amendment documented marked improvement in power yields due to improvement in the system buffering capacity. SMFCs operation also documented good substrate degradation (COD, 76%) along with bio-ethanol production. The operation of SMFC mimicked solid-sate fermentation which might lead to sustainable solid waste management practices. Copyright © 2011 Elsevier Ltd. All rights reserved.
Eldridge, S M; Chen, C R; Xu, Z H; Nelson, P N; Boyd, S E; Meszaros, I; Chan, K Y
2013-11-01
Using solid state (13)C NMR data and elemental composition in a molecular mixing model, we estimated the molecular components of the organic matter in 16 recycled organic (RO) wastes representative of the major materials generated in the Sydney basin area. Close correspondence was found between the measured NMR signal intensities and those predicted by the model for all RO wastes except for poultry manure char. Molecular nature of the organic matter differed widely between the RO wastes. As a proportion of organic C, carbohydrate C ranged from 0.07 to 0.63, protein C from <0.01 to 0.66, lignin C from <0.01 to 0.31, aliphatic C from 0.09 to 0.73, carbonyl C from 0.02 to 0.23, and char C from 0 to 0.45. This method is considered preferable to techniques involving imprecise extraction methods for RO wastes. Molecular composition data has great potential as a predictor of RO waste soil carbon and nutrient outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yan, Dahai; Peng, Zheng; Liu, Yuqiang; Li, Li; Huang, Qifei; Xie, Minghui; Wang, Qi
2015-01-01
The consumption of milk in China is increasing as living standards rapidly improve, and huge amounts of aseptic composite milk packaging waste are being generated. Aseptic composite packaging is composed of paper, polyethylene, and aluminum. It is difficult to separate the polyethylene and aluminum, so most of the waste is currently sent to landfill or incinerated with other municipal solid waste, meaning that enormous amounts of resources are wasted. A wet process technique for separating the aluminum and polyethylene from the composite materials after the paper had been removed from the original packaging waste was studied. The separation efficiency achieved using different separation reagents was compared, different separation mechanisms were explored, and the impacts of a range of parameters, such as the reagent concentration, temperature, and liquid-solid ratio, on the separation time and aluminum loss ratio were studied. Methanoic acid was found to be the optimal separation reagent, and the suitable conditions were a reagent concentration of 2-4 mol/L, a temperature of 60-80°C, and a liquid-solid ratio of 30 L/kg. These conditions allowed aluminum and polyethylene to be separated in less than 30 min, with an aluminum loss ratio of less than 3%. A mass balance was produced for the aluminum-polyethylene separation system, and control technique was developed to keep the ion concentrations in the reaction system stable. This allowed a continuous industrial-scale process for separating aluminum and polyethylene to be developed, and a demonstration facility with a capacity of 50t/d was built. The demonstration facility gave polyethylene and aluminum recovery rates of more than 98% and more than 72%, respectively. Separating 1t of aluminum-polyethylene composite packaging material gave a profit of 1769 Yuan, meaning that an effective method for recycling aseptic composite packaging waste was achieved. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bioaerosols, Noise, and Ultraviolet Radiation Exposures for Municipal Solid Waste Handlers
Ncube, Esper Jacobeth; Voyi, Kuku
2017-01-01
Few studies have investigated the occupational hazards of municipal solid waste workers, particularly in developing countries. Resultantly these workers are currently exposed to unknown and unabated occupational hazards that may endanger their health. We determined municipal solid waste workers' work related hazards and associated adverse health endpoints. A multifaceted approach was utilised comprising bioaerosols sampling, occupational noise, thermal conditions measurement, and field based waste compositional analysis. Results from our current study showed highest exposure concentrations for Gram-negative bacteria (6.8 × 103 cfu/m3) and fungi (12.8 × 103 cfu/m3), in the truck cabins. Significant proportions of toxic, infectious, and surgical waste were observed. Conclusively, municipal solid waste workers are exposed to diverse work related risks requiring urgent sound interventions. A framework for assessing occupational risks of these workers must prioritize performance of exposure assessment with regard to the physical, biological, and chemical hazards of the job. PMID:28167969
Bioaerosols, Noise, and Ultraviolet Radiation Exposures for Municipal Solid Waste Handlers.
Ncube, France; Ncube, Esper Jacobeth; Voyi, Kuku
2017-01-01
Few studies have investigated the occupational hazards of municipal solid waste workers, particularly in developing countries. Resultantly these workers are currently exposed to unknown and unabated occupational hazards that may endanger their health. We determined municipal solid waste workers' work related hazards and associated adverse health endpoints. A multifaceted approach was utilised comprising bioaerosols sampling, occupational noise, thermal conditions measurement, and field based waste compositional analysis. Results from our current study showed highest exposure concentrations for Gram-negative bacteria (6.8 × 10 3 cfu/m 3 ) and fungi (12.8 × 10 3 cfu/m 3 ), in the truck cabins. Significant proportions of toxic, infectious, and surgical waste were observed. Conclusively, municipal solid waste workers are exposed to diverse work related risks requiring urgent sound interventions. A framework for assessing occupational risks of these workers must prioritize performance of exposure assessment with regard to the physical, biological, and chemical hazards of the job.
Forecasting generation of urban solid waste in developing countries--a case study in Mexico.
Buenrostro, O; Bocco, G; Vence, J
2001-01-01
Based on a study of the composition of urban solid waste (USW) and of socioeconomic variables in Morelia, Mexico, generation rates were estimated. In addition, the generation of residential solid waste (RSW) and nonresidential solid waste (NRSW) was forecasted by means of a multiple linear regression (MLR) analysis. For residential sources, the independent variables analyzed were monthly wages, persons per dwelling, age, and educational level of the heads of the household. For nonresidential sources, variables analyzed were number of employees, area of facilities, number of working days, and working hours per day. The forecasted values for residential waste were similar to those observed. This approach may be applied to areas in which available data are scarce, and in which there is an urgent need for the planning of adequate management of USW.
Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site
NASA Astrophysics Data System (ADS)
Kanmani, S.; Gandhimathi, R.
2013-03-01
The concentration of heavy metals was studied in the soil samples collected around the municipal solid waste (MSW) open dumpsite, Ariyamangalam, Tiruchirappalli, Tamilnadu to understand the heavy metal contamination due to leachate migration from an open dumping site. The dump site receives approximately 400-470 tonnes of municipal solid waste. Solid waste characterization was carried out for the fresh and old municipal solid waste to know the basic composition of solid waste which is dumped in the dumping site. The heavy metal concentration in the municipal solid waste fine fraction and soil samples were analyzed. The heavy metal concentration in the collected soil sample was found in the following order: Mn > Pb > Cu > Cd. The presence of heavy metals in soil sample indicates that there is appreciable contamination of the soil by leachate migration from an open dumping site. However, these pollutants species will continuously migrated and attenuated through the soil strata and after certain period of time they might contaminate the groundwater system if there is no action to be taken to prevent this phenomenon.
NASA Technical Reports Server (NTRS)
Rogers, Tom D.
1990-01-01
Viewgraphs on alternative processes for water reclamation and solid waste processing in a physical/chemical-bioregenerative life support system are presented. The main objective is to focus attention on emerging influences of secondary factors (i.e., waste composition, type and level of chemical contaminants, and effects of microorganisms, primarily bacteria) and to constructively address these issues by discussing approaches which attack them in a direct manner.
Quantification and classification of ship scraping waste at Alang-Sosiya, India.
Srinivasa Reddy, M; Basha, Shaik; Sravan Kumar, V G; Joshi, H V; Ghosh, P K
2003-12-01
Alang-Sosiya located on the Western Coast of Gulf of Cambay, is the largest ship recycling yard in the world. Every year on average 365 ships having a mean weight (2.10x10(6)+/-7.82x10(5) LDT) are scrapped. This industry generates a huge quantity of solid waste in the form of broken wood, rubber, insulation materials, paper, metals, glass and ceramics, plastics, leather, textiles, food waste, chemicals, paints, thermocol, sponge, ash, oil mixed sponges, miscellaneous combustible and non-combustible. The quantity and composition of solid waste was collected for a period of three months and the average values are presented in this work. Sosiya had the most waste 15.63 kg/m(2) compared to Alang 10.19 kg/m(2). The combustible solid waste quantity was around 83.0% of the total solid waste available at the yard, which represents an average weight of 9.807 kg/m(2); whereas, non-combustible waste is 1.933 kg/m(2). There is not much difference between the average of total solid waste calculated from the sampling data (96.71 MT/day) and the data provided by the port authorities (96.8 MT/day).
Comparative analysis of hazardous household waste in two Mexican regions.
Delgado, Otoniel Buenrostro; Ojeda-Benítez, Sara; Márquez-Benavides, Liliana
2007-01-01
Household hazardous waste (HHW) generation in two Mexican regions was examined, a northern region (bordering with the USA) and a central region. The aim of this work was to determine the dynamics of solid waste generation and to be able to compare the results of both regions, regarding consumption patterns and solid waste generation rates. In the northern region, household solid waste was analysed quantitatively. In order to perform this analysis, the population was categorized into three socioeconomic strata (lower, middle, upper). Waste characterization revealed the presence of products that give origin to household hazardous waste. In the northern region (Mexicali city), household hazardous waste comprised 3.7% of municipal solid waste, the largest categories in this fraction were home care products (29.2%), cleaning products (19.5%) and batteries and electronic equipment (15.7%). In the central region, HHW comprised 1.03% of municipal solid waste; the main categories in this fraction were represented by cleaning products (39%), self care products (27.3%), and insecticides (14.4%). In Mexicali, the socioeconomic study demonstrated that the production of HHW is independent of the income level. Furthermore, the composition of the solid waste stream in both regions suggested the influence of another set of variables such as local climate, migration patterns and marketing coverage. Further research is needed in order to establish the effect of low quantities of HHW upon the environment and public health.
Methods of Predicting Solid Waste Characteristics.
ERIC Educational Resources Information Center
Boyd, Gail B.; Hawkins, Myron B.
The project summarized by this report involved a preliminary design of a model for estimating and predicting the quantity and composition of solid waste and a determination of its feasibility. The novelty of the prediction model is that it estimates and predicts on the basis of knowledge of materials and quantities before they become a part of the…
Solid Waste Composition Study at Taman Universiti, Parit Raja, Batu Pahat
NASA Astrophysics Data System (ADS)
Kadir, A. A.; Sani, M. S. A. M.
2016-07-01
Solid waste management is recognised as one of the most challenging issues confronted by both the developed and developing countries. The problems rise due to growing population in current years which results in increased generation of waste with various compositions. The aim of this study was to determine the waste compositions at Taman Universiti. Taman Universiti is a mix residential and commercial area which a preferred residential location amongst students and lecturers due to its proximate location to UTHM main campus. The waste collection was carried out for 50 houses on a daily basis. The collection and sorting out method was conducted according to Malaysian Standard MS 2505:2012 and the data was collected and recorded The result showed that the average generation rate of household waste at Taman Universiti was 0.16kg/person/day and the moisture content was approximately ranging from 61%-68%. Household wastes collected were categorized and it consisted of food and organic, paper, rigid plastics, plastics film, baby diapers, glass, tetra pak, household hazardous waste, metal, rubber, textiles, garden waste and leather. The proportion of each wastes were approximately 64.67%, 9.36%, 9.22%, 5.33%, 3.51%, 2.53%, 1.37%, 1.05%, 0.84%, 0.85%, 0.80%, 0.27%, and 0.23%, respectively. Results from the analyses indicated that the food and organic waste are the major composition of household waste at Taman Universiti followed by the paper, rigid plastics, and plastic film. Meanwhile, the proportion of baby diapers, glass, tetra pak, household hazardous waste, metal, rubber, textiles, and garden decreasing accordingly. In addition, leather was recognized as the least category that contributed to the household waste.
Composition and parameters of household bio-waste in four seasons.
Hanc, Ales; Novak, Pavel; Dvorak, Milan; Habart, Jan; Svehla, Pavel
2011-07-01
Bio-waste makes up almost half portion of municipal solid waste. The characterization of household bio-waste is important in determining the most appropriate treatment method. The differences in composition and parameters of bio-waste derived from urban settlement (U-bio-waste) and family houses (F-bio-waste) during the four climate seasons are described in this paper. Twelve components and 20 parameters for bio-waste were evaluated. The composition of U-bio-waste was almost steady over those seasons, unlike F-bio-waste. U-bio-waste was comprised mainly (58.2%) of fruit and vegetable debris. F-bio-waste was primarily made up of seasonal garden components. The amount of variation among seasons in both type of bio-waste increased in sequence: basic parameters
Solid waste composition analysis and recycling evaluation: Zaatari Syrian Refugees Camp, Jordan.
Saidan, Motasem N; Drais, Ammar Abu; Al-Manaseer, Ehab
2017-03-01
There is a need for Municipal Solid Waste (MSW) stream characterization and composition analysis to allow for an accurate estimation of its recycling potential and for effective management of the entire system. Recycling provides employment and a livelihood for vulnerable social groups such as refugees. The aim of this paper is to determine the composition of MSW in Zaatari Syrian Refugee Camp, where approximately 430,000 Syrian refugees have passed through the camp. The representative waste samples and analysis included household waste and commercial waste produced by the refugees in the selected districts in Zaatari. The waste sampling was performed in 2015 over two seasons to ensure that the seasonal fluctuations in the composition of the waste stream are taken into consideration. Hand sorting was used for classifying the collected wastes into the categories and subcategories. The organic waste represents the main waste category with 53% of the total MSW, while plastics, textile, and paper and cardboard are 12.85%, 10.22% and 9%, respectively. Moreover, the MSW composition percentage in Zaatari Camp is similar to that in municipalities in Jordan with slight disparity. The potential recyclable materials market has been investigated in this study. Plastics and paper and cardboard have significant potential to be separated and collected for recycling purposes. Financial revenues of potential recyclables have been analyzed based on local prices. Recycling model in the camp is also proposed based on the present study findings. Consequently, these results should be taken as a baseline for all Syrian refugees camps in the Middle East, as well as, in Europe. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vermi composting--organic waste management and disposal.
Kumar, J Sudhir; Subbaiah, K Venkata; Rao, P V V Prasada
2012-01-01
Solid waste is an unwanted byproduct of modern civilization. Landfills are the most common means of solid waste disposal. But the increasing amount of solid waste is rapidly filling existing landfills, and new sites are difficult to establish. Alternatives to landfills include the use of source reduction, recycling, composting and incineration, as well as use of landfills. Incineration is most economical if it includes energy recovery from the waste. Energy can be recovered directly from waste by incineration or the waste can be processed to produce storable refuse derived fuel (RDF). Information on the composition of solid wastes is important in evaluating alternative equipment needs, systems, management programs and plans. Pulverization of municipal solid waste is done and the pulverized solid waste is dressed to form a bed and the bed is fed by earthworms which convert the bed into vermi compost. The obtained vermi compost is sent to Ministry of Environment & Forests (MoEF) recognized lab for estimating the major nutrients, i.e. Potassium (K), Phosphorous (P), Nitrogen (N) and Micro-nutrient values. It is estimated that 59 - 65 tons of wet waste can be collected in a town per day and if this wet waste is converted to quality compost, around 12.30 tons of vermi compost can be generated. If a Municipal Corporation manages this wet waste an income of over (see text symbol) for 0.8 9 crore per anum can be earned which is a considerable amount for providing of better services to public.
Zhu, Li; Ji, Jiayou; Wang, Shulin; Xu, Chenxi; Yang, Kun; Xu, Man
2018-09-01
Al 2 O 3 -NaA zeolite composite hollow fiber membranes were successfully fabricated via hydrothermal synthesis by using industrial solid waste coal fly ash and porous Al 2 O 3 hollow fiber supports. The as-synthesized Al 2 O 3 -NaA zeolite composite hollow fiber membranes were then characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The hollow fiber membranes were used to remove lead ions (Pb(II), 50 mg L -1 ) from synthetic wastewater with a removal efficiency of 99.9% at 0.1 MPa after 12 h of filtration. This study showed that the Al 2 O 3 -NaA zeolite composite hollow fiber membranes (the pore size of the membrane was about 0.41 nm in diameter) synthesized from coal fly ash could be efficiently used for treating low concentration Pb(II) wastewater. It recycled solid waste coal fly ash not only to solve its environment problems, but also can produce high-value Al 2 O 3 -NaA zeolite composite hollow fiber membranes for separation application in treating wastewater containing Pb(II). Copyright © 2018 Elsevier Ltd. All rights reserved.
Reddy, M Srinivasa; Basha, Shaik; Joshi, H V; Sravan Kumar, V G; Jha, B; Ghosh, P K
2005-01-01
Alang-Sosiya is the largest ship-scrapping yard in the world, established in 1982. Every year an average of 171 ships having a mean weight of 2.10 x 10(6)(+/-7.82 x 10(5)) of light dead weight tonnage (LDT) being scrapped. Apart from scrapped metals, this yard generates a massive amount of combustible solid waste in the form of waste wood, plastic, insulation material, paper, glass wool, thermocol pieces (polyurethane foam material), sponge, oiled rope, cotton waste, rubber, etc. In this study multiple regression analysis was used to develop predictive models for energy content of combustible ship-scrapping solid wastes. The scope of work comprised qualitative and quantitative estimation of solid waste samples and performing a sequential selection procedure for isolating variables. Three regression models were developed to correlate the energy content (net calorific values (LHV)) with variables derived from material composition, proximate and ultimate analyses. The performance of these models for this particular waste complies well with the equations developed by other researchers (Dulong, Steuer, Scheurer-Kestner and Bento's) for estimating energy content of municipal solid waste.
THE FEASIBILITY OF UTILIZING SOLID WASTES FOR BUILDING MATERIALS. EXECUTIVE SUMMARY
This report focuses on two phases of a suggested four phase study to evaluate the technological and commercial possibilities of waste - derived composites. The first phase involved a joint and comprehensive literature search to identify wastes with potential as building materials...
SOURCE ASSESSMENT: RECLAIMING OF WASTE SOLVENTS, STATE OF THE ART
This document reviews the state of the art of air emissions from the reclaiming of waste solvents. The composition, quantity, and rate of emissions are described. Waste solvents are organic dissolving agents which are contaminated with suspended and dissolved solids, organics, wa...
Municipal Solid Waste - Sustainable Materials Management
The MSW DST was initially developed in the 1990s and has evolved over the years to better account for changes in waste management practices, waste composition, and improvements in decision support tool design and functionality. The most recent version of the tool is publicly ava...
Chemical looping combustion: A new low-dioxin energy conversion technology.
Hua, Xiuning; Wang, Wei
2015-06-01
Dioxin production is a worldwide concern because of its persistence and carcinogenic, teratogenic, and mutagenic effects. The pyrolysis-chemical looping combustion process of disposing solid waste is an alternative to traditional solid waste incineration developed to reduce the dioxin production. Based on the equilibrium composition of the Deacon reaction, pyrolysis gas oxidized by seven common oxygen carriers, namely, CuO, NiO, CaSO4, CoO, Fe2O3, Mn3O4, and FeTiO3, is studied and compared with the pyrolysis gas directly combusted by air. The result shows that the activity of the Deacon reaction for oxygen carriers is lower than that for air. For four typical oxygen carriers (CuO, NiO, Fe2O3, and FeTiO3), the influences of temperature, pressure, gas composition, and tar on the Deacon reaction are discussed in detail. According to these simulation results, the dioxin production in China, Europe, the United States, and Japan is predicted for solid waste disposal by the pyrolysis-chemical looping combustion process. Thermodynamic analysis results in this paper show that chemical looping combustion can reduce dioxin production in the disposal of solid waste. Copyright © 2015. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Muller, Matthew S.
1996-01-01
Controlled ecological life support systems (CELSS) may one day play an essential role in extraterrestrial colonies. Key to the success of any CELSS will be the system's ability to approach a self-supporting status through recovery and reuse of basic resources. Primary CELSS solid wastes with potential to support secondary biomass production will be inedible plant biomass and metabolic human wastes. Solid waste production is summarized and reported as 765 g N per day per person, including 300 g C and 37 g N per day per person. One Resource Recovery configuration using the bioprocessing of solid wastes into a Tilapia feed stream is examined. Based on estimated conversion efficiencies, 12 g of protein per day per person is produced as a nutrition supplement. The unique tissue composition of crops produced at the Kennedy Space Center CELSS Program highlights the need to evaluate Resource Recovery components with data generated in the CELSS environment.
Hla, San Shwe; Roberts, Daniel
2015-07-01
The development and deployment of thermochemical waste-to-energy systems requires an understanding of the fundamental characteristics of waste streams. Despite Australia's growing interest in gasification of waste streams, no data are available on their thermochemical properties. This work presents, for the first time, a characterisation of green waste and municipal solid waste in terms of chemistry and energy content. The study took place in Brisbane, the capital city of Queensland. The municipal solid waste was hand-sorted and classified into ten groups, including non-combustibles. The chemical properties of the combustible portion of municipal solid waste were measured directly and compared with calculations made based on their weight ratios in the overall municipal solid waste. The results obtained from both methods were in good agreement. The moisture content of green waste ranged from 29% to 46%. This variability - and the tendency for soil material to contaminate the samples - was the main contributor to the variation of samples' energy content, which ranged between 7.8 and 10.7MJ/kg. The total moisture content of food wastes and garden wastes was as high as 70% and 60%, respectively, while the total moisture content of non-packaging plastics was as low as 2.2%. The overall energy content (lower heating value on a wet basis, LHVwb) of the municipal solid waste was 7.9MJ/kg, which is well above the World Bank-recommended value for utilisation in thermochemical conversion processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Analysis of the effect of waste's particle size variations on biodrying method
NASA Astrophysics Data System (ADS)
Kristanto, Gabriel Andari; Zikrina, Masayu Nadiya
2017-11-01
The use of municipal solid waste as energy source can be a solution for Indonesia's increasing energy demand. However, its high moisture content limits the use of solid waste as energy. Biodrying is a method of lowering wastes' moisture content using biological process. This study investigated the effect of wastes' particle size variations on biodrying method. The experiment was performed on 3 lab-scale reactors with the same specifications. Organic wastes with the composition of 50% vegetable wastes and 50% garden wastes were used as substrates. The feedstock was manually shredded into 3 size variations, which were 10 - 40 mm, 50 - 80 mm, and 100 - 300 mm. The experiment lasted for 21 days. After 21 days, it was shown that the waste with the size of 100 - 300 mm has the lowest moisture content, which is 50.99%, and the volatile solids content is still 74.3% TS. This may be caused by the higher free air space of the reactor with the bigger sized substrate.
SUSTAINABILITY AND ITS IMPACT ON SOLID WASTE MANAGEMENT
The MSW DST was initially developed in the 1990s and has evolved over the years to better account for changes in waste management practices, waste composition, and improvements in decision support tool design and functionality. The most recent version of the tool is publicly ava...
Improved method and composition for immobilization of waste in cement-based material
Tallent, O.K.; Dodson, K.E.; McDaniel, E.W.
1987-10-01
A composition and method for fixation or immobilization of aqueous hazardous waste material in cement-based materials (grout) is disclosed. The amount of drainable water in the cured grout is reduced by the addition of an ionic aluminum compound to either the waste material or the mixture of waste material and dry-solid cement- based material. This reduction in drainable water in the cured grout obviates the need for large, expensive amounts of gelling clays in grout materials and also results in improved consistency and properties of these cement-based waste disposal materials.
Horttanainen, M; Teirasvuo, N; Kapustina, V; Hupponen, M; Luoranen, M
2013-12-01
For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energy share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (50-60%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose. Copyright © 2013 Elsevier Ltd. All rights reserved.
Glass former composition and method for immobilizing nuclear waste using the same
Cadoff, Laurence H.; Smith-Magowan, David B.
1988-01-01
An alkoxide glass former composition has silica-containing constituents present as solid particulates of a particle size of 0.1 to 0.7 micrometers in diameter in a liquid carrier phase substantially free of dissolved silica. The glass former slurry is resistant to coagulation and may contain other glass former metal constituents. The immobilization of nuclear waste employs the described glass former by heating the same to reduce the volume, mixing the same with the waste, and melting the resultant mixture to encapsulate the waste in the resultant glass.
Maalouf, Amani; El-Fadel, Mutasem
2017-11-01
In this study, the carbon footprint of introducing a food waste disposer (FWD) policy was examined in the context of its implications on solid waste and wastewater management with economic assessment of environmental externalities emphasizing potential carbon credit and increased sludge generation. For this purpose, a model adopting a life cycle inventory approach was developed to integrate solid waste and wastewater management processes under a single framework and test scenarios for a waste with high organic food content typical of developing economies. For such a waste composition, the results show that a FWD policy can reduce emissions by nearly ∼42% depending on market penetration, fraction of food waste ground, as well as solid waste and wastewater management schemes, including potential energy recovery. In comparison to baseline, equivalent economic gains can reach ∼28% when environmental externalities including sludge management and emissions variations are considered. The sensitivity analyses on processes with a wide range in costs showed an equivalent economic impact thus emphasizing the viability of a FWD policy although the variation in the cost of sludge management exhibited a significant impact on savings. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ali, N. E.; Sion, H. C.
2014-02-01
The amount of solid-waste generated in Asian countries has increased tremendously, mainly due to the improvement in living standards, rapid developments in technology, growth in economy and population in the cities. Solid waste management is a global issue and major challenge facing Asian countries and neglecting its management may have negative consequences on the environment. Waste composition data proves the developed countries to have generated more recyclable materials while developing countries produce more organic and less recyclable waste such as paper, plastic and aluminium. In this regard, increase in number of landfills and disposal sites, will have an impact on GHG (greenhouse gas) emissions and pollutants to air and water. Alternative methods should therefore be taken to reduce the volume of waste. Most Asian countries have adopted the 3R (reduce, reuse, recycle) concept in order to reduce solid waste and their governments have implemented laws and regulations in order to support this. Implementation of 3R is the major contributor to the solid waste minimization and it can improve the quality of environmental sustainability and reduction of carbon dioxide emission in to the atmosphere. Based on our review, most of the countries practicing the 3R concept in tandem with laws and regulations perform better than those that just practice the 3R concept without any laws and regulations. The paper suggests that every country must focus on the laws and regulations relating to solid waste minimization so that it could be easily implemented as outlined.
Bio-processing of solid wastes and secondary resources for metal extraction - A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jae-chun; Pandey, Banshi Dhar, E-mail: bd_pandey@yahoo.co.uk; CSIR - National Metallurgical Laboratory, Jamshedpur 831007
2012-01-15
Highlights: Black-Right-Pointing-Pointer Review focuses on bio-extraction of metals from solid wastes of industries and consumer goods. Black-Right-Pointing-Pointer Bio-processing of certain effluents/wastewaters with metals is also included in brief. Black-Right-Pointing-Pointer Quantity/composition of wastes are assessed, and microbes used and leaching conditions included. Black-Right-Pointing-Pointer Bio-recovery using bacteria, fungi and archaea is highlighted for resource recycling. Black-Right-Pointing-Pointer Process methodology/mechanism, R and D direction and scope of large scale use are briefly included. - Abstract: Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed inmore » eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted.« less
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne
2015-02-01
This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saqib, Naeem, E-mail: naeem.saqib@oru.se; Bäckström, Mattias, E-mail: mattias.backstrom@oru.se
Highlights: • Different solids waste incineration is discussed in grate fired and fluidized bed boilers. • We explained waste composition, temperature and chlorine effects on metal partitioning. • Excessive chlorine content can change oxide to chloride equilibrium partitioning the trace elements in fly ash. • Volatility increases with temperature due to increase in vapor pressure of metals and compounds. • In Fluidized bed boiler, most metals find themselves in fly ash, especially for wood incineration. - Abstract: Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of flymore » ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature.« less
Solid-shape energy fuels from recyclable municipal solid waste and plastics
NASA Astrophysics Data System (ADS)
Gug, Jeongin
Diversion of waste streams, such as plastics, wood and paper, from municipal landfills and extraction of useful materials from landfills is an area of increasing interest across the country, especially in densely populated areas. One promising technology for recycling MSW (municipal solid waste) is to burn the high energy content components in standard coal boilers. This research seeks to reform wastes into briquette that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, moisture resistance, and retain high fuel value. Household waste with high paper and fibers content was used as the base material for this study. It was combined with recyclable plastics such as PE, PP, PET and PS for enhanced binding and energy efficiency. Fuel pellets were processed using a compression molding technique. The resulting moisture absorption, proximate analysis from burning, and mechanical properties were investigated after sample production and then compared with reference data for commercial coals and biomass briquettes. The effects of moisture content, compression pressure and processing temperature were studied to identify the optimal processing conditions with water uptake tests for the durability of samples under humid conditions and burning tests to examine the composition of samples. Lastly, mechanical testing revealed the structural stability of solid fuels. The properties of fuel briquettes produced from waste and recycled plastics improved with higher processing temperature but without charring the material. Optimization of moisture content and removal of air bubbles increased the density, stability and mechanical strength. The sample composition was found to be more similar to biomass fuels than coals because the majority of the starting material was paper-based solid waste. According to the proximate analysis results, the waste fuels can be expected to have low temperature ignition, less char formation and reduced CO2 emission with the high heating energy value similar to coal. It is concluded that solid fuels from paper based waste and plastics can be a good energy resource as an alternative and sustainable fuel, which may help to alleviate the environmental problems related to landfill space at the same time.
The impact of municipal waste combustion in small heat sources
NASA Astrophysics Data System (ADS)
Vantúch, Martin; Kaduchová, Katarína; Lenhard, Richard
2016-06-01
At present there is a tendency to make greater use for heating houses for burning solid fuel, such as pieces of wood, coal, coke, local sources of heat to burn natural gas. This tendency is given both the high price of natural gas as well as the availability of cheaper solid fuel. In many cases, in the context saving heating costs, respectively in the context of the disposal of waste is co-incinerated with municipal solid fuels and wastes of different composition. This co entails increased production emissions such as CO (carbon monoxide), NOx (nitrogen oxides), particulate matter (particulate matter), PM10, HCl (hydrogen chloride), PCDD/F (polychlorinated dibenzodioxins and dibenzofurans), PCBs (polychlorinated biphenyls) and others. The experiment was focused on the emission factors from the combustion of fossil fuels in combination with municipal waste in conventional boilers designed to burn solid fuel.
Modelling for environmental assessment of municipal solid waste landfills (part II: biodegradation).
Garcia de Cortázar, Amaya Lobo; Lantarón, Javier Herrero; Fernández, Oscar Montero; Monzón, Iñaki Tejero; Lamia, Maria Fantelli
2002-12-01
The biodegradation module of a simulation program for municipal solid waste landfills (MODUELO) was developed. The biodegradation module carries out the balance of organic material starting with the results of the hydrologic simulation and the waste composition. It simulates the biologic reactions of hydrolysis of solids and the gasification of the dissolved biodegradable material. The results of this module are: organic matter (COD, BOD and elemental components such as carbon, hydrogen, nitrogen, oxygen, sulfur and ash), ammonium nitrogen generated with the gas and transported by the leachates and the potential rates of methane and carbon dioxide generation. The model was calibrated by using the general tendency curves of the pollutants recorded in municipal solid waste landfills, fitting the first part of them to available landfill data. Although the results show some agreement, further work is being done to make MODUELO a useful tool for real landfill simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doll, Stephanie R.; Cooke, Gary A.
The 222-S Laboratory blended supernate waste from Hanford Tanks 241-AN-101, 241-AN- 106, 241-AP-105, 241-AP-106, 241-AP-107, and 241-AY-101 from the hot cell archive to create a bulk composite. The composite was blended with 600 mL 19.4 M NaOH, which brought the total volume to approximately 11.5 L (3 gal). The composite was filtered to remove solids and passed through spherical resorcinol-formaldehyde ion-exchange resin columns to remove cesium. The composite masses were tracked as a treatability study. Samples collected before, during, and after the ion-exchange process were characterized for a full suite of analytes (inorganic, organic, and radionuclides) to aid in themore » classification of the waste for shipping, receiving, treatment, and disposal determinations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doll, S. R.; Cooke, G. A.
The 222-S Laboratory blended supernate waste from Hanford Tanks 241-AN-101, 241-AN- 106, 241-AP-105, 241-AP-106, 241-AP-107, and 241-AY-101 from the hot cell archive to create a bulk composite. The composite was blended with 600 mL 19.4 M NaOH, which brought the total volume to approximately 11.5 L (3 gal). The composite was filtered to remove solids and passed through spherical resorcinol-formaldehyde ion-exchange resin columns to remove cesium. The composite masses were tracked as a treatability study. Samples collected before, during, and after the ion exchange process were characterized for a full suite of analytes (inorganic, organic, and radionuclides) to aid inmore » the classification of the waste for shipping, receiving, treatment, and disposal determinations.« less
Fernandez, Mario
1983-01-01
Solid waste is defined along with various methods of disposal and the hydrogeologic factors to be considered when locating land-fills is presented. Types of solid waste, composition, and sources are identified. Generation of municipal solid waste in Florida has been estimated at 4.5 pounds per day per person or about 7.8 million tons per year. Leachate is generated when precipitation and ground water percolate through the waste. Gases, mainly carbon dioxide and methane, are also produced. Leachate generally contains high concentrations of dissolved organic and inorganic matter. The two typical hydrogeologic conditions in west-central Florida are (1) permeable sand overlying clay and limestone and (2) permeable sand overlying limestone. These conditions are discussed in relation to leachate migration. Factors in landfill site selection are presented and discussed, followed by a discussion on monitoring landfills. Monitoring of landfills includes the drilling of test holes, measuring physical properties of the corings, installation of monitoring wells, and water-quality monitoring. (USGS)
User Guide for GoldSim Model to Calculate PA/CA Doses and Limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, F.
2016-10-31
A model to calculate doses for solid waste disposal at the Savannah River Site (SRS) and corresponding disposal limits has been developed using the GoldSim commercial software. The model implements the dose calculations documented in SRNL-STI-2015-00056, Rev. 0 “Dose Calculation Methodology and Data for Solid Waste Performance Assessment (PA) and Composite Analysis (CA) at the Savannah River Site”.
Anaerobic digestion of municipal solid wastes containing variable proportions of waste types.
Akunna, J C; Abdullahi, Y A; Stewart, N A
2007-01-01
In many parts of the world there are significant seasonal variations in the production of the main organic wastes, food and green wastes. These waste types display significant differences in their biodegradation rates. This study investigated the options for ensuring process stability during the start up and operation of thermophilic high-solids anaerobic digestion of feedstock composed of varying proportions of food and green wastes. The results show that high seed sludge to feedstock ratio (or low waste loading rate) is necessary for ensuring process pH stability without chemical addition. It was also found that the proportion of green wastes in the feedstock can be used to regulate process pH, particularly when operating at high waste loading rates (or low seed sludge to feedstock ratios). The need for chemical pH correction during start-up and digestion operation decreased with increase in green wastes content of the feedstock. Food wastes were found to be more readily biodegradable leading to higher solids reduction while green wastes brought about pH stability and higher digestate solid content. Combining both waste types in various proportions brought about feedstock with varying buffering capacity and digestion performance. Thus, careful selection of feedstock composition can minimise the need for chemical pH regulation as well as reducing the cost for digestate dewatering for final disposal.
C-106 High-Level Waste Solids: Washing/Leaching and Solubility Versus Temperature Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
GJ Lumetta; DJ Bates; PK Berry
This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing and caustic leaching on the composition of the Hanford tank C-106 high-level waste (HLW) solids. The objective of this work was to determine the composition of the C-106 solids remaining after washing with 0.01M NaOH or leaching with 3M NaOH. Another objective of this test was to determine the solubility of various C-106 components as a function of temperature. The work was conducted according to test plan BNFL-TP-29953-8,Rev. 0, Determination of the Solubility of HLW Sludge Solids. The test went accordingmore » to plan, with only minor deviations from the test plan. The deviations from the test plan are discussed in the experimental section.« less
Municipal solid-waste management in Istanbul.
Kanat, Gurdal
2010-01-01
Istanbul, with a population of around 13 million people, is located between Europe and Asia and is the biggest city in Turkey. Metropolitan Istanbul produces about 14,000 tons of solid waste per day. The aim of this study was to assess the situation of municipal solid-waste (MSW) management in Istanbul. This was achieved by reviewing the quantity and composition of waste produced in Istanbul. Current requirements and challenges in relation to the optimization of Istanbul's MSW collection and management system are also discussed, and several suggestions for solving the problems identified are presented. The recovery of solid waste from the landfills, as well as the amounts of landfill-generated biogas and electricity, were evaluated. In recent years, MSW management in Istanbul has improved because of strong governance and institutional involvement. However, efforts directed toward applied research are still required to enable better waste management. These efforts will greatly support decision making on the part of municipal authorities. There remains a great need to reduce the volume of MSW in Istanbul. 2010 Elsevier Ltd. All rights reserved.
Lin, Xiuyi; Yu, Jing; Li, Hedong; Lam, Jeffery Y K; Shih, Kaimin; Sham, Ivan M L; Leung, Christopher K Y
2018-05-26
As an important portion of the total plastic waste bulk but lack of reuse and recycling, the enormous amounts of polyethylene terephthalate (PET) solid wastes have led to serious environmental issues. This study explores the feasibility of recycling PET solid wastes as short fibers in Strain-Hardening Cementitious Composites (SHCCs), which exhibit strain-hardening and multiple cracking under tension, and therefore have clear advantages over conventional concrete for many construction applications. Based on micromechanical modeling, fiber dispersion and alkali resistance, the size of recycled PET fibers was first determined. Then the hydrophobic PET surface was treated with NaOH solution followed by a silane coupling agent to achieve the dual purpose of improving the fiber/matrix interfacial frictional bond (from 0.64 MPa to 0.80 MPa) and enhancing the alkali resistance for applications in alkaline cementitious environment. With surface treatment, recycling PET wastes as fibers in SHCCs is a promising approach to significantly reduce the material cost of SHCCs while disposing hazardous PET wastes in construction industry. Copyright © 2018 Elsevier B.V. All rights reserved.
Pyrolysis processing for solid waste resource recovery
NASA Technical Reports Server (NTRS)
Wojtowicz, Marek A. (Inventor); Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Suuberg, Eric M. (Inventor)
2007-01-01
Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.
NASA Astrophysics Data System (ADS)
Mimura, Hitoshi; Yamagishi, Isao
In an action for the convergence of the Fukushima Daiichi Nuclear Power Plant accident, the completion of Step 2 was declared in last December, 2011. As for the circulating cooling system supporting the cold shutdown of nuclear reactor, the temporary treatment equipment operation maintains stability. On the other hand, the establishment of permanent equipments, safety storage, treatment and disposal for the secondary solid wastes are urgent subjects. This special issue deals with the development of highly functional composite adsorbents and the evaluation of selective adsorption properties. The technical issues for the stable treatment and disposal of solid wastes are further discussed.
Characterization of municipal solid waste from the main landfills of Havana city
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espinosa Llorens, Ma. del C; Lopez Torres, Matilde; Alvarez, Haydee
The city of Havana, the political, administrative and cultural centre of Cuba, is also the centre of many of the economic activities of the nation: industries, services, scientific research and tourism. All of these activities contribute to the generation of municipal solid waste (MSW), which also impact other Cuban cities. Inadequate handling of waste and the lack of appropriate and efficient solutions for its final disposal and treatment increase the risk and possibility of contamination. The main difficulty in the development of a system of management of MSW lies in the lack of knowledge of the chemical composition of themore » waste that is generated in the country as a whole, and especially in Havana, where solid waste management decisions are made. The present study characterizes MSW in Havana city during 2004. The Calle 100, Guanabacoa and Ocho Vias landfills were selected for physical-chemical characterization of MSW, as they are the three biggest landfills in the city. A total of 16 indicators were measured, and weather conditions were recorded. As a result, the necessary information regarding the physical-chemical composition of the MSW became available for the first time in Cuba. The information is essential for making decisions regarding the management of waste and constitutes a valuable contribution to the Study on Integrated Management Plan of MSW in Havana.« less
Characterization of municipal solid waste from the main landfills of Havana city.
Espinosa Lloréns, Ma Del C; Torres, Matilde López; Alvarez, Haydee; Arrechea, Alexis Pellón; García, Jorge Alejandro; Aguirre, Susana Díaz; Fernández, Alejandro
2008-01-01
The city of Havana, the political, administrative and cultural centre of Cuba, is also the centre of many of the economic activities of the nation: industries, services, scientific research and tourism. All of these activities contribute to the generation of municipal solid waste (MSW), which also impact other Cuban cities. Inadequate handling of waste and the lack of appropriate and efficient solutions for its final disposal and treatment increase the risk and possibility of contamination. The main difficulty in the development of a system of management of MSW lies in the lack of knowledge of the chemical composition of the waste that is generated in the country as a whole, and especially in Havana, where solid waste management decisions are made. The present study characterizes MSW in Havana city during 2004. The Calle 100, Guanabacoa and Ocho Vías landfills were selected for physical-chemical characterization of MSW, as they are the three biggest landfills in the city. A total of 16 indicators were measured, and weather conditions were recorded. As a result, the necessary information regarding the physical-chemical composition of the MSW became available for the first time in Cuba. The information is essential for making decisions regarding the management of waste and constitutes a valuable contribution to the Study on Integrated Management Plan of MSW in Havana.
Hageman, Philip L.; Briggs, Paul H.; Desborough, George A.; Lamothe, Paul J.; Theodorakos, Peter M.
2000-01-01
This report details chemistry data derived from leaching of mine-waste composite samples using a modification of E.P.A. Method 1312, Synthetic Precipitation Leaching Procedure (SPLP). In 1998, members of the U.S. Geological Survey Mine Waste Characterization Project collected four mine-waste composite samples from mining districts in southwestern New Mexico (CAR and PET) and near Leadville, Colorado (TUC and MII). Resulting leachate pH values for the four composites ranged from 5.45 to 8.84 and ranked in the following order: CAR < TUC < MII < PET. Specific conductivity values ranged from 85 uS/cm to 847 uS/cm in the following order: PET < MII < CAR < TUC. Geochemical data generated from this investigation reveal that leachate from the CAR composite contains the highest concentrations of Pb, Zn, Ni, Mn, Cu, Cd, and Al
Methane potential of sterilized solid slaughterhouse wastes.
Pitk, Peep; Kaparaju, Prasad; Vilu, Raivo
2012-07-01
The aim of the current study was to determine chemical composition and methane potential of Category 2 and 3 solid slaughterhouse wastes rendering products (SSHWRP) viz. melt, decanter sludge, meat and bone meal (MBM), technical fat and flotation sludge from wastewater treatment. Chemical analyses showed that SSHWRP were high in protein and lipids with total solids (TS) content of 96-99%. Methane yields of the SSHWRP were between 390 and 978 m(3) CH(4)/t volatile solids (VS)(added). Based on batch experiments, anaerobic digestion of SSHWRP from the dry rendering process could recover 4.6 times more primary energy than the energy required for the rendering process. Estonia has technological capacity to sterilize all the produced Category 2 and 3 solid slaughterhouse wastes (SSHW) and if separated from Category 1 animal by-products (ABP), it could be further utilized as energy rich input material for anaerobic digestion. Copyright © 2012 Elsevier Ltd. All rights reserved.
Aleluia, João; Ferrão, Paulo
2016-12-01
This paper characterizes municipal solid waste (MSW) management practices in developing Asia, with a focus on low and middle-income countries. The analysis that is conducted supports a proposed framework that maps out the trends observed in the region in relation to two parameters, waste compositions and urban dimension, which was prepared based on a set of national and urban case studies. The management of MSW in developing Asian countries is driven, first and foremost, by a public health imperative: the collection and disposal of waste in order to avoid the spread of disease vectors from uncollected waste. This comes, however, at a high cost, with local government authorities in these countries spending up to 50% of their budgets in the provision of these services. Little or no value is derived from waste, which is typically seen as a liability and not as a resource that can be harnessed. On the other hand, in many cities in developing Asia there is an informal sector that ekes out a living from the recovery of recyclable materials found in waste. Members of this "informal waste sector" are especially active in areas that are not served by formal waste collection systems, such as slums or squatter areas. A distinctive element shared among many cities in developing Asian countries concerns the composition of the municipal solid waste. MSW in those countries tends to be richer in biodegradable organic matter, which usually accounts for more than 50% of the total waste composition, suggesting that biological methods are more appropriate for treating this organic fraction. Conversely, thermal combustion technologies, which are extensively applied in high-income countries, are technically and economically challenging to deploy in light of the lower calorific value of waste streams which are rich in organics and moisture. Specific approaches and methods are therefore required for designing adequate waste management systems in developing Asian countries. In addition, despite some common characteristics shared among cities in developing Asia, their specific circumstances can significantly vary, even within the same country, calling for the need for context-specific waste management approaches. Set against this background, this paper proposes a guiding framework in the form of a matrix that maps out approaches observed in the management of municipal solid waste in cities of developing Asian countries as a function of the city dimension, share of organics on waste streams, and wealth generated by the city. The cities of Surabaya (Indonesia), Bangalore (India), Quy Nhon (Viet Nam), and Matale (Sri Lanka) are showcased as good practices in the region in the management of solid waste, with their experiences used to illustrate the framework laid out in the matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yadav, Pooja; Samadder, S R
2018-06-01
Selection of suitable municipal solid waste management (MSWM) options is one of the major challenges in urban areas of the developing countries. Success of MSWM requires accurate data of generation rate, composition and physico-chemical characteristics of solid wastes. Improper handling of solid waste can have significant environmental and aesthetical impacts. The present study proposes a new method (applicability index - P ik values) for identifying the most appropriate disposal option with the help of applicability values of Composting-C P , Incineration-I P and Landfill-L P for individual components of MSW based on the results of the physico-chemical analysis of the collected representative solid waste samples from the study area, Dhanbad, India. The mean values of moisture content, carbon, hydrogen, oxygen, nitrogen, sulfur, volatile organic carbon, fixed carbon, ash content, density and calorific values (CV) of individual components were used as input values in this process. Based on the proposed applicability index (P ik ), the highest P ik values were obtained for incineration (I P ) for plastics, polythene, paper, coconut shell, wood, cardboard, textile, thermocol (polystyrene), rubber, sugarcane bagasse, cow dung and leather wastes (I P > C P > L P ) due to high CV of these solid waste components; the highest P ik values were obtained for composting (C P ) of kitchen waste (C P > I P > L P ); and the highest P ik values for inert wastes were obtained for landfill option (L P > I P > C P ). The highest P ik value for a particular waste for a specific treatment option signifies that the waste is suitable for treatment/disposal using that option.
Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staiger, Merle Daniel; M. C. Swenson
2005-01-01
This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-sitemore » facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.« less
Teklay, A; Gebeyehu, G; Getachew, T; Yaynshet, T; Sastry, T P
2017-10-01
Presently, the leftovers from leather product industries are discarded as waste in Ethiopia. The objective of the present study was therefore, to prepare composite sheets by incorporating various plant fibers like enset (Ensete ventricosum), hibiscus (Hibiscus cannabinus), jute (Corchorus trilocularis L.), palm (Phoenix dactylifera) and sisal (Agave sisal) in various proportions into the leather waste. Resin binder (RB) and natural rubber latex (NRL) were used as binding agents for the preparation of the composite sheets. The composite sheets prepared were characterized for their physicochemical properties (tensile strength, elongation at break, stitch tear strength, water absorption, water desorption and flexing strength). Composite sheets prepared using RB having 10% hibiscus, 20% palm and 40% sisal fibers showed better mechanical properties than their respective controls. In composite sheets prepared using NRL having 30% jute fiber exhibited better mechanical properties than its control. Most of the plant fibers used in this study played a role in increasing the performance of the sheets. However, as seen from the results, the contribution of these plant fibers on performance of the composite sheets prepared is dependent on the ratio used and the nature of binder. The SEM studies have exhibited the composite nature of the sheets and FTIR studies have shown the functional groups of collagen protein, cellulose and binders. The prepared sheets were used as raw materials for preparation of items like stiff hand bags, ladies' purse, keychain, chappal upper, wallet, wall cover, mouse pad and other interior decorating products. By preparing such value added products, we can reduce solid waste; minimize environmental pollution and thereby securing environmental sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Liang; Diederick, Ryan; Flora, Joseph R V; Berge, Nicole D
2013-11-01
Hydrothermal carbonization (HTC) is a thermal conversion technique that converts food wastes and associated packaging materials to a valuable, energy-rich resource. Food waste collected from local restaurants was carbonized over time at different temperatures (225, 250 and 275°C) and solids concentrations to determine how process conditions influence carbonization product properties and composition. Experiments were also conducted to determine the influence of packaging material on food waste carbonization. Results indicate the majority of initial carbon remains integrated within the solid-phase at the solids concentrations and reaction temperatures evaluated. Initial solids concentration influences carbon distribution because of increased compound solubilization, while changes in reaction temperature imparted little change on carbon distribution. The presence of packaging materials significantly influences the energy content of the recovered solids. As the proportion of packaging materials increase, the energy content of recovered solids decreases because of the low energetic retention associated with the packaging materials. HTC results in net positive energy balances at all conditions, except at a 5% (dry wt.) solids concentration. Carbonization of food waste and associated packaging materials also results in net positive balances, but energy needs for solids post-processing are significant. Advantages associated with carbonization are not fully realized when only evaluating process energetics. A more detailed life cycle assessment is needed for a more complete comparison of processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Method for processing coal-enrichment waste with solid and volatile fuel inclusions
NASA Astrophysics Data System (ADS)
Khasanova, A. V.; Zhirgalova, T. B.; Osintsev, K. V.
2017-10-01
The method relates to the field of industrial heat and power engineering. It can be used in coal preparation plants for processing coal waste. This new way is realized to produce a loose ash residue directed to the production of silicate products and fuel gas in rotary kilns. The proposed method is associated with industrial processing of brown coal beneficiation waste. Waste is obtained by flotation separation of rock particles up to 13 mm in size from coal particles. They have in their composition both solid and volatile fuel inclusions (components). Due to the high humidity and significant rock content, low heat of combustion, these wastes are not used on energy boilers, they are stored in dumps polluting the environment.
Greenhouse gases emission from municipal waste management: The role of separate collection.
Calabrò, Paolo S
2009-07-01
The municipal solid waste management significantly contributes to the emission in the atmosphere of greenhouse gases (e.g. CO(2), CH(4), N(2)O) and therefore the management process from collection to treatment and disposal has to be optimized in order to reduce these emissions. In this paper, starting from the average composition of undifferentiated municipal solid waste in Italy, the effect of separate collection on greenhouse gases emissions from municipal waste management has been assessed. Different combinations of separate collection scenarios and disposal options (i.e. landfilling and incineration) have been considered. The effect of energy recovery from waste both in landfills and incinerators has also been addressed. The results outline how a separate collection approach can have a significant effect on the emission of greenhouse gases and how wise municipal solid waste management, implying the adoption of Best Available Technologies (i.e. biogas recovery and exploitation system in landfills and energy recovery system in Waste to Energy plants), can not only significantly reduce greenhouse gases emissions but, in certain cases, can also make the overall process a carbon sink. Moreover it has been shown that separate collection of plastic is a major issue when dealing with global warming relevant emissions from municipal solid waste management.
Utilization of Solid Waste as a Substrate for Production of Oil from Oleaginous Microorganisms.
Laker, Fortunate; Agaba, Arnold; Akatukunda, Andrew; Gazet, Robert; Barasa, Joshua; Nanyonga, Sarah; Wendiro, Deborah; Wacoo, Alex Paul
2018-01-01
The overwhelming demand of oil and fats to meet the ever increasing needs for biofuel, cosmetics production, and other industrial purposes has enhanced a number of innovations in this industry. One such innovation is the use of microorganisms as alternative sources of oil and fats. Organic solid waste that is causing a big challenge of disposal worldwide is biodegradable and can be utilized as substrate for alternative oil production. The study evaluated the potential of isolated yeast-like colonies to grow and accumulate oil by using organic solid waste as substrate. Of the 25 yeast-like colonies isolated from the soil samples collected from three different suburbs in Kampala district, Uganda, 20 were screened positive for accumulation of lipid but only 2 were oleaginous. The NHC isolate with the best oil accumulation potential of 48.8% was used in the central composite design (CCD) experiments. The CCD experimental results revealed a maximum oil yield of 61.5% from 1.25 g/L cell biomass at 10 g/L of solid waste and temperature of 25°C. The study revealed that organic solid waste could be used as a substrate for microbial oil production.
DEVELOPMENT OF AN INSOLUBLE SALT SIMULANT TO SUPPORT ENHANCED CHEMICAL CLEANING TESTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eibling, R
The closure process for high level waste tanks at the Savannah River Site will require dissolution of the crystallized salts that are currently stored in many of the tanks. The insoluble residue from salt dissolution is planned to be removed by an Enhanced Chemical Cleaning (ECC) process. Development of a chemical cleaning process requires an insoluble salt simulant to support evaluation tests of different cleaning methods. The Process Science and Engineering section of SRNL has been asked to develop an insoluble salt simulant for use in testing potential ECC processes (HLE-TTR-2007-017). An insoluble salt simulant has been developed based uponmore » the residues from salt dissolution of saltcake core samples from Tank 28F. The simulant was developed for use in testing SRS waste tank chemical cleaning methods. Based on the results of the simulant development process, the following observations were developed: (1) A composition based on the presence of 10.35 grams oxalate and 4.68 grams carbonate per 100 grams solids produces a sufficiently insoluble solids simulant. (2) Aluminum observed in the solids remaining from actual waste salt dissolution tests is probably precipitated from sodium aluminate due to the low hydroxide content of the saltcake. (3) In-situ generation of aluminum hydroxide (by use of aluminate as the Al source) appears to trap additional salts in the simulant in a manner similar to that expected for actual waste samples. (4) Alternative compositions are possible with higher oxalate levels and lower carbonate levels. (5) The maximum oxalate level is limited by the required Na content of the insoluble solids. (6) Periodic mixing may help to limit crystal growth in this type of salt simulant. (7) Long term storage of an insoluble salt simulant is likely to produce a material that can not be easily removed from the storage container. Production of a relatively fresh simulant is best if pumping the simulant is necessary for testing purposes. The insoluble salt simulant described in this report represents the initial attempt to represent the material which may be encountered during final waste removal and tank cleaning. The final selected simulant was produced by heating and evaporation of a salt slurry sample to remove excess water and promote formation and precipitation of solids with solubility characteristics which are consistent with actual tank insoluble salt samples. The exact anion composition of the final product solids is not explicitly known since the chemical components in the final product are distributed between the solid and liquid phases. By combining the liquid phase analyses and total solids analysis with mass balance requirements a calculated composition of assumed simple compounds was obtained and is shown in Table 0-1. Additional improvements to and further characterization of the insoluble salt simulant are possible. During the development of these simulants it was recognized that: (1) Additional waste characterization on the residues from salt dissolution tests with actual waste samples to determine the amount of species such as carbonate, oxalate and aluminosilicate would allow fewer assumptions to be made in constructing an insoluble salt simulant. (2) The tank history will impact the amount and type of insoluble solids that exist in the salt dissolution solids. Varying the method of simulant production (elevated temperature processing time, degree of evaporation, amount of mixing (shear) during preparation, etc.) should be tested.« less
Biodegradability of leachates from Chinese and German municipal solid waste*
Selic, E.; Wang, Chi; Boes, N.; Herbell, J.D.
2007-01-01
The quantitative and qualitative composition of Chinese municipal solid waste (MSW) differs significantly from German waste. The focus of this paper is on whether these differences also lead to dissimilar qualities of leachates during storage or landfilling. Leachates ingredients determine the appropriate treatment technique. MSW compositions of the two cities Guilin (China) and Essen (Germany), each with approx. 600 000 inhabitants, are used to simulate Chinese and German MSW types. A sequencing batch reactor (SBR) is used, combining aerobic and anaerobic reaction principles, to test the biodegradability of leachates. Leachates are tested for temperature, pH-value, redox potentials, and oxygen concentration. Chemical oxygen demand (COD) values are determined. Within 8 h, the biodegradation rates for both kinds of leachates are more than 90%. Due to the high organic content of Chinese waste, the degradation rate for Guilin MSW leachate is even higher, up to 97%. The effluent from SBR technique is suitable for direct discharge into bodies of water. PMID:17173357
Biodegradability of leachates from Chinese and German municipal solid waste.
Selic, E; Wang, Chi; Boes, N; Herbell, J D
2007-01-01
The quantitative and qualitative composition of Chinese municipal solid waste (MSW) differs significantly from German waste. The focus of this paper is on whether these differences also lead to dissimilar qualities of leachates during storage or landfilling. Leachates ingredients determine the appropriate treatment technique. MSW compositions of the two cities Guilin (China) and Essen (Germany), each with approx. 600 000 inhabitants, are used to simulate Chinese and German MSW types. A sequencing batch reactor (SBR) is used, combining aerobic and anaerobic reaction principles, to test the biodegradability of leachates. Leachates are tested for temperature, pH-value, redox potentials, and oxygen concentration. Chemical oxygen demand (COD) values are determined. Within 8 h, the biodegradation rates for both kinds of leachates are more than 90%. Due to the high organic content of Chinese waste, the degradation rate for Guilin MSW leachate is even higher, up to 97%. The effluent from SBR technique is suitable for direct discharge into bodies of water.
C-104 high-level waste solids: Washing/leaching and solubility versus temperature studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
GJ Lumetta; DJ Bates; JP Bramson
This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing and caustic leaching on the composition of the C-104 HLW solids. The objective of this work was to determine the composition of the C-104 solids remaining after washing with 0.01 M NaOH or leaching with 3 M NaOH. Another objective of this test was to determine the solubility of the C-104 solids as a function of temperature. The work was conducted according to test plan BNFL-TP-29953-8, Rev. 0, ``Determination of the Solubility of HLW Sludge Solids.
Municipal solid waste incineration in China and the issue of acidification: A review.
Ji, Longjie; Lu, Shengyong; Yang, Jie; Du, Cuicui; Chen, Zhiliang; Buekens, Alfons; Yan, Jianhua
2016-04-01
In China, incineration is essential for reducing the volume of municipal solid waste arising in its numerous megacities. The evolution of incinerator capacity has been huge, yet it creates strong opposition from a small, but vocal part of the population. The characteristics of Chinese municipal solid waste are analysed and data presented on its calorific value and composition. These are not so favourable for incineration, since the sustained use of auxiliary fuel is necessary for ensuring adequate combustion temperatures. Also, the emission standard for acid gases is more lenient in China than in the European Union, so special attention should be paid to the issue of acidification arising from flue gas. Next, the techniques used in flue gas cleaning in China are reviewed and the acidification potential by cleaned flue gas is estimated. Still, acidification induced by municipal solid waste incinerators remains marginal compared with the effects of coal-fired power plants. © The Author(s) 2016.
Rheological characterisation of biologically treated and non-treated putrescible food waste.
Baroutian, Saeid; Munir, M T; Sun, Jiyang; Eshtiaghi, Nicky; Young, Brent R
2018-01-01
Food waste is gaining increasing attention worldwide due to growing concerns over its environmental and economic costs. Understanding the rheological behaviour of food waste is critical for effective processing so rheological measurements were carried out for different food waste compositions at 25, 35 and 45 °C. Food waste samples of various origins (carbohydrates, vegetables & fruits, and meat), anaerobically digested and diluted samples were used in this study. The results showed that food waste exhibits shear-thinning flow behaviour and viscosity of food waste is a function of temperature and composition. The composition of food waste affected the flow properties. Viscosity decreased at a given temperature as the proportion of carbohydrate increased. This may be due to the high water content of vegetable & fruits as the total solids fraction is likely to be a key controlling factor of the rheology. The Herschel-Bulkley model was used successfully to model food waste flow behaviour. Also, a higher strain was needed to break down the structure of the food waste as digestion time increased. Copyright © 2017 Elsevier Ltd. All rights reserved.
Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. D. Staiger
2007-06-01
This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.
Effect of storage conditions on the calorific value of municipal solid waste.
Nzioka, Antony Mutua; Hwang, Hyeon-Uk; Kim, Myung-Gyun; Yan, Cao Zheng; Lee, Chang-Soo; Kim, Young-Ju
2017-08-01
Storage conditions are considered to be an important factor as far as waste material characteristics are concerned. This experimental investigation was conducted using municipal solid waste (MSW) with a high moisture content and varying composition of organic waste. The objective of this study was to understand the effect of storage conditions and temperature on the moisture content and calorific value of the waste. Samples were subjected to two different storage conditions and investigated at specified temperatures. The composition of sample materials investigated was varied for each storage condition and temperature respectively. Gross calorific value was determined experimentally while net calorific value was calculated using empirical formulas proposed by other researchers. Results showed minimal changes in moisture content as well as in gross and net calorific values when the samples were subjected to sealed storage conditions. Moisture content reduced due to the ventilation process and the rate of moisture removal increased with a rise in storage temperature. As expected, rate of moisture removal had a positive effect on gross and net calorific values. Net calorific values also increased at varying rates with a simultaneous decrease in moisture content. Experimental investigation showed the effectiveness of ventilation in improving the combustion characteristics of the waste.
Gunaseelan, Victor Nallathambi
2016-03-01
In this study, the biochemical CH4 potential, rate, biodegradability, NaOH treatment and the influence of chemical composition on CH4 yield of yard wastes generated from seven trees were examined. All the plant parts were sampled for their chemical composition and subjected to the biochemical CH4 potential assay. The component parts exhibited significant variation in biochemical CH4 potential, which was reflected in their ultimate CH4 yields that ranged from 109 to 382 ml g(-1) volatile solids added and their rate constants that ranged from 0.042 to 0.173 d(-1). The biodegradability of the yard wastes ranged from 0.26 to 0.86. Variation in the biochemical CH4 potential of the yard wastes could be attributed to variation in the chemical composition of the different fractions. In the Thespesia yellow withered leaf, Tamarindus fruit pericarp and Albizia pod husk, NaOH treatment enhanced the ultimate CH4 yields by 17%, 77% and 63%, respectively, and biodegradability by 15%, 77% and 61%, respectively, compared with the untreated samples. The effectiveness of NaOH treatment varied for different yard wastes, depending on the amounts of acid detergent fibre content. Gliricidia petals, Prosopis leaf, inflorescence and immature pod, Tamarindus seeds, Albizia seeds, Cassia seeds and Delonix seeds exhibited CH4 yields higher than 300 ml g(-1) volatile solids added. Multiple linear regression models for predicting the ultimate CH4 yield and biodegradability of yard wastes were designed from the results of this work. © The Author(s) 2016.
Alcohol-free alkoxide process for containing nuclear waste
Pope, James M.; Lahoda, Edward J.
1984-01-01
Disclosed is a method of containing nuclear waste. A composition is first prepared of about 25 to about 80%, calculated as SiO.sub.2, of a partially hydrolyzed silicon compound, up to about 30%, calculated as metal oxide, of a partially hydrolyzed aluminum or calcium compound, about 5 to about 20%, calculated as metal oxide, of a partially hydrolyzed boron or calcium compound, about 3 to about 25%, calculated as metal oxide, of a partially hydrolyzed sodium, potassium or lithium compound, an alcohol in a weight ratio to hydrolyzed alkoxide of about 1.5 to about 3% and sufficient water to remove at least 99% of the alcohol as an azeotrope. The azeotrope is boiled off and up to about 40%, based on solids in the product, of the nuclear waste, is mixed into the composition. The mixture is evaporated to about 25 to about 45% solids and is melted and cooled.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Fuqing; Shi Jian; Lv Wen
2013-01-15
Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of cornmore » stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.« less
A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes.
Sun, Mei; Sun, Wenjie; Barlaz, Morton A
2016-05-01
Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H2S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H2S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H2S produced by different types of sulfur-containing wastes in a relatively fast (30days) and inexpensive (125mL serum bottles) batch assay. This study confirmed the toxic effect of H2S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H2S by base adsorption was effective for mitigating inhibition. H2S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8mLH2S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H2S yield. A 60day incubation in selected samples resulted in 39-86% additional sulfide production. H2S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H2S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating the importance of assays to estimate the microbial sulfide production potential of sulfur-containing wastes. Copyright © 2016 Elsevier B.V. All rights reserved.
Methodology to design a municipal solid waste generation and composition map: A case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallardo, A., E-mail: gallardo@uji.es; Carlos, M., E-mail: mcarlos@uji.es; Peris, M., E-mail: perism@uji.es
Highlights: • To draw a waste generation and composition map of a town a lot of factors must be taken into account. • The methodology proposed offers two different depending on the available data combined with geographical information systems. • The methodology has been applied to a Spanish city with success. • The methodology will be a useful tool to organize the municipal solid waste management. - Abstract: The municipal solid waste (MSW) management is an important task that local governments as well as private companies must take into account to protect human health, the environment and to preserve naturalmore » resources. To design an adequate MSW management plan the first step consist in defining the waste generation and composition patterns of the town. As these patterns depend on several socio-economic factors it is advisable to organize them previously. Moreover, the waste generation and composition patterns may vary around the town and over the time. Generally, the data are not homogeneous around the city as the number of inhabitants is not constant nor it is the economic activity. Therefore, if all the information is showed in thematic maps, the final waste management decisions can be made more efficiently. The main aim of this paper is to present a structured methodology that allows local authorities or private companies who deal with MSW to design its own MSW management plan depending on the available data. According to these data, this paper proposes two ways of action: a direct way when detailed data are available and an indirect way when there is a lack of data and it is necessary to take into account bibliographic data. In any case, the amount of information needed is considerable. This paper combines the planning methodology with the Geographic Information Systems to present the final results in thematic maps that make easier to interpret them. The proposed methodology is a previous useful tool to organize the MSW collection routes including the selective collection. To verify the methodology it has been successfully applied to a Spanish town.« less
Prediction of the compression ratio for municipal solid waste using decision tree.
Heshmati R, Ali Akbar; Mokhtari, Maryam; Shakiba Rad, Saeed
2014-01-01
The compression ratio of municipal solid waste (MSW) is an essential parameter for evaluation of waste settlement and landfill design. However, no appropriate model has been proposed to estimate the waste compression ratio so far. In this study, a decision tree method was utilized to predict the waste compression ratio (C'c). The tree was constructed using Quinlan's M5 algorithm. A reliable database retrieved from the literature was used to develop a practical model that relates C'c to waste composition and properties, including dry density, dry weight water content, and percentage of biodegradable organic waste using the decision tree method. The performance of the developed model was examined in terms of different statistical criteria, including correlation coefficient, root mean squared error, mean absolute error and mean bias error, recommended by researchers. The obtained results demonstrate that the suggested model is able to evaluate the compression ratio of MSW effectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanat, Gurdal, E-mail: gkanat@gmail.co
Istanbul, with a population of around 13 million people, is located between Europe and Asia and is the biggest city in Turkey. Metropolitan Istanbul produces about 14,000 tons of solid waste per day. The aim of this study was to assess the situation of municipal solid-waste (MSW) management in Istanbul. This was achieved by reviewing the quantity and composition of waste produced in Istanbul. Current requirements and challenges in relation to the optimization of Istanbul's MSW collection and management system are also discussed, and several suggestions for solving the problems identified are presented. The recovery of solid waste from themore » landfills, as well as the amounts of landfill-generated biogas and electricity, were evaluated. In recent years, MSW management in Istanbul has improved because of strong governance and institutional involvement. However, efforts directed toward applied research are still required to enable better waste management. These efforts will greatly support decision making on the part of municipal authorities. There remains a great need to reduce the volume of MSW in Istanbul.« less
40 CFR 63.471 - Facility-wide standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... machine in solid waste, obtained as described in paragraph (c)(3) of this section, during the most recent... section either in electronic or written form for a period of 5 years. For purposes of this paragraph... machine. (2) The solvent composition of wastes removed from each solvent cleaning machines as determined...
Preparation of nonwoven and green composites from collagen fibrous networks
USDA-ARS?s Scientific Manuscript database
The disposal of solid wastes, such as trimmings and splits generated in various manufacturing processes in a tannery is a serious challenge to the hides and leather industries. Most of these wastes are transported out of processing plants for landfills, not only incurring the expense of transportat...
Physical properties of collagen fibrous networks derived from bovine hides
USDA-ARS?s Scientific Manuscript database
The hides and leather industry has been facing a serious challenge in the disposal of solid wastes such as trimmings and lime-splits. One strategy to solve this problem is to convert these wastes into useful fibrous products and green composites. Therefore research is needed to investigate the pre...
Model calibration and validation for OFMSW and sewage sludge co-digestion reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esposito, G., E-mail: giovanni.esposito@unicas.it; Frunzo, L., E-mail: luigi.frunzo@unina.it; Panico, A., E-mail: anpanico@unina.it
2011-12-15
Highlights: > Disintegration is the limiting step of the anaerobic co-digestion process. > Disintegration kinetic constant does not depend on the waste particle size. > Disintegration kinetic constant depends only on the waste nature and composition. > The model calibration can be performed on organic waste of any particle size. - Abstract: A mathematical model has recently been proposed by the authors to simulate the biochemical processes that prevail in a co-digestion reactor fed with sewage sludge and the organic fraction of municipal solid waste. This model is based on the Anaerobic Digestion Model no. 1 of the International Watermore » Association, which has been extended to include the co-digestion processes, using surface-based kinetics to model the organic waste disintegration and conversion to carbohydrates, proteins and lipids. When organic waste solids are present in the reactor influent, the disintegration process is the rate-limiting step of the overall co-digestion process. The main advantage of the proposed modeling approach is that the kinetic constant of such a process does not depend on the waste particle size distribution (PSD) and rather depends only on the nature and composition of the waste particles. The model calibration aimed to assess the kinetic constant of the disintegration process can therefore be conducted using organic waste samples of any PSD, and the resulting value will be suitable for all the organic wastes of the same nature as the investigated samples, independently of their PSD. This assumption was proven in this study by biomethane potential experiments that were conducted on organic waste samples with different particle sizes. The results of these experiments were used to calibrate and validate the mathematical model, resulting in a good agreement between the simulated and observed data for any investigated particle size of the solid waste. This study confirms the strength of the proposed model and calibration procedure, which can thus be used to assess the treatment efficiency and predict the methane production of full-scale digesters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horttanainen, M., E-mail: mika.horttanainen@lut.fi; Teirasvuo, N.; Kapustina, V.
Highlights: • New experimental data of mixed MSW properties in a Finnish case region. • The share of renewable energy of mixed MSW. • The results were compared with earlier international studies. • The average share of renewable energy was 30% and the average LHVar 19 MJ/kg. • Well operating source separation decreases the renewable energy content of MSW. - Abstract: For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energymore » share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (50–60%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose.« less
USDA-ARS?s Scientific Manuscript database
Collagen fibers obtained from solid fibrous wastes generated in tannery have a high potential of being used in developing green composites. Earlier studies in our laboratory demonstrate that nonwoven composites can be derived from collagen fiber network using paper-making technology. The purpose of ...
USDA-ARS?s Scientific Manuscript database
Collagen fibers obtained from solid fibrous wastes generated in tannery have a high potential of being used in developing green composites. Earlier studies in our laboratory demonstrated that nonwoven composites can be derived from collagen fiber network using paper-making technology. The purpose of...
The use of urban wood waste as an energy resource
NASA Astrophysics Data System (ADS)
Khudyakova, G. I.; Danilova, D. A.; Khasanov, R. R.
2017-06-01
The capabilities use of wood waste in the Ekaterinburg city, generated during the felling of trees and sanitation in the care of green plantations in the streets, parks, squares, forest parks was investigated in this study. In the cities at the moment, all the wood, that is removed from city streets turns into waste completely. Wood waste is brought to the landfill of solid household waste, and moreover sorting and evaluation of the quantitative composition of wood waste is not carried out. Several technical solutions that are used in different countries have been proposed for the energy use of wood waste: heat and electrical energy generation, liquid and solid biofuel production. An estimation of the energy potential of the city wood waste was made, for total and for produced heat and electrical energy based on modern engineering developments. According to our estimates total energy potential of wood waste in the city measure up more 340 thousand GJ per year.
Mavakala, Bienvenu K; Le Faucheur, Séverine; Mulaji, Crispin K; Laffite, Amandine; Devarajan, Naresh; Biey, Emmanuel M; Giuliani, Gregory; Otamonga, Jean-Paul; Kabatusuila, Prosper; Mpiana, Pius T; Poté, John
2016-09-01
Management of municipal solid wastes in many countries consists of waste disposal into landfill without treatment or selective collection of solid waste fractions including plastics, paper, glass, metals, electronic waste, and organic fraction leading to the unsolved problem of contamination of numerous ecosystems such as air, soil, surface, and ground water. Knowledge of leachate composition is critical in risk assessment of long-term impact of landfills on human health and the environment as well as for prevention of negative outcomes. The research presented in this paper investigates the seasonal variation of draining leachate composition and resulting toxicity as well as the contamination status of soil/sediment from lagoon basins receiving leachates from landfill in Mpasa, a suburb of Kinshasa in the Democratic Republic of the Congo. Samples were collected during the dry and rainy seasons and analyzed for pH, electrical conductivity, dissolved oxygen, soluble ions, toxic metals, and were then subjected to toxicity tests. Results highlight the significant seasonal difference in leachate physicochemical composition. Affected soil/sediment showed higher values for toxic metals than leachates, indicating the possibility of using lagoon system for the purification of landfill leachates, especially for organic matter and heavy metal sedimentation. However, the ecotoxicity tests demonstrated that leachates are still a significant source of toxicity for terrestrial and benthic organisms. Therefore, landfill leachates should not be discarded into the environment (soil or surface water) without prior treatment. Interest in the use of macrophytes in lagoon system is growing and toxic metal retention in lagoon basin receiving systems needs to be fully investigated in the future. This study presents useful tools for evaluating landfill leachate quality and risk in lagoon systems which can be applied to similar environmental compartments. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Purohit, Abhilash; Satapathy, Alok
2018-03-01
In the field of composite research, use of industrial wastes such as slag and sludge particles as filler in wear resistant polymer composites has not been very common. Owing to the very high cost of conventional filler materials in polymer composites, exploring the possibility of using low cost minerals and industrial wastes for this purpose has become the need of the hour. In this context this work explores the possibility of such polymer composites filled with low cost industrial wastes and presents a comparison of mechanical characteristics among three types of epoxy based composites filled with Linz - Donawitz sludge (LD sludge), blast furnace slag (BF slag) and Linz - Donawitz slag (LD slag) respectively. A comparative study in regard to their solid particle erosion wear characteristics under similar test conditions is also included. Composites with different weight proportions (0, 5, 10, 15 and 20 wt. %) of LD sludge are fabricated by solution casting technique. Mechanical properties such as micro- hardness, tensile strength and flexural strength of three types of composites have been evaluated as per ASTM test standards and solid particle erosion wear test is performed following a design of experiment approach based on Taguchi’s orthogonal array. Five control factors (impact velocity, erodent size, filler content, impingement angle and erodent temperature) each at five levels are considered to conduct erosion wear tests. The test results for epoxy-LD sludge composites are compared with those of epoxy-BF slag and epoxy-LD slag composites reported by previous investigators. The comparison reveals that epoxy filled with LD sludge exhibits superior mechanical and erosion wear characteristics among the three types of composites considered in this study. This work also opens up a new avenue for value added utilization of an abundant industrial waste in the making of epoxy based functional composites.
Saint-Joly, C; Desbois, S; Lotti, J P
2000-01-01
The performance of the anaerobic digestion process depends deeply on the quality of the waste to be treated. This has been already demonstrated at the lab-scale. The objective of this study is to confirm this result at the industrial scale, with very long representative period and with the same process, the Valorga process. According to the waste quality and the collection type and even with the same conditions of fermentation, the biogas yield can vary by a factor of 1.5 when it is expressed (under normal conditions of pressure and temperature) in m3 biogas/t fresh waste, and by a factor of 2 when it is expressed in m3 CH4/t volatile solids. So, the biogas performance does not characterise a process since it is deeply governed by waste composition. This biogas productivity becomes a pertinent parameter only with consistent and relevant hypothesis and/or analytical results on the waste composition which depends on the collection procedure, the site characteristics and the season.
Bacterial community dynamics in surface flow constructed wetlands for the treatment of swine waste.
Ibekwe, A M; Ma, J; Murinda, Shelton; Reddy, G B
2016-02-15
Constructed wetlands are generally used for the removal of waste from contaminated water. In the swine production system, wastes are traditionally flushed into an anaerobic lagoon which is then sprayed on agricultural fields. However, continuous spraying of lagoon wastewater on fields can lead to high N and P accumulations in soil or lead to runoff which may contaminate surface or ground water with pathogens and nutrients. In this study, continuous marsh constructed wetland was used for the removal of contaminants from swine waste. Using pyrosequencing, we assessed bacterial composition within the wetland using principal coordinate analysis (PCoA) which showed that bacterial composition from manure influent and lagoon water were significantly different (P=0.001) from the storage pond to the final effluent. Canonical correspondence analysis (CCA) showed that different bacterial populations were significantly impacted by ammonium--NH4 (P=0.035), phosphate--PO4(3-) (P=0.010), chemical oxygen demand--COD (P=0.0165), total solids--TS (P=0.030), and dissolved solids--DS (P=0.030) removal, with 54% of the removal rate explained by NH4+PO4(3-) according to a partial CCA. Our results showed that different bacterial groups were responsible for the composition of different wetland nutrients and decomposition process. This may be the major reason why most wetlands are very efficient in waste decomposition. Published by Elsevier B.V.
Komilis, Dimitrios; Katsafaros, Nikolaos; Vassilopoulos, Panagiotis
2011-08-01
The accurate calculation of the unit generation rates and composition of medical waste generated from medical facilities is necessary in order to design medical waste treatment systems. In this work, the unit medical waste generation rates of 95 public and private medical facilities in the Attica region were calculated based on daily weight records from a central medical waste incineration facility. The calculated medical waste generation rates (in kg bed(-1) day( -1)) varied widely with average values at 0.27 ± 113% and 0.24 ± 121%, for public and private medical facilities, respectively. The hazardous medical waste generation was measured, at the source, in the 40 bed hospital of the island of Ikaria for a period of 42 days during a 6 month period. The average hazardous medical waste generation rate was 1.204 kg occupied bed(-1) day(-1) or 0.33 kg (official) bed( -1) day(-1). From the above amounts, 54% resulted from the patients' room (solid and liquid wastes combined), 24% from the emergency department (solid waste), 17% from the clinical pathology lab and 6% from the X-ray lab. In average, 17% of the total hazardous medical waste was solely infectious. Conclusively, no correlation among the number of beds and the unit medical waste generation rate could be established. Each hospital should be studied separately, since medical waste generation and composition depends on the number and type of departments/laboratories at each hospital, number of external patients and number of occupied beds.
NASA Astrophysics Data System (ADS)
Chen, Xiongbo; Liu, Ying; Yang, Ying; Ren, Tingyan; Pan, Lang; Fang, Ping; Chen, Dingsheng; Cen, Chaoping
2017-08-01
Fly ash from municipal solid waste incineration was modified by hydrothermal treatment and used as catalyst support for Mn-Ce composite oxides. The prepared catalyst showed good activity for the selective catalytic reduction (SCR) of NO by NH3. A NO conversion of 93% could be achieved at 300 °C under a GHSV of 32857 h-1. With the help of characterizations including XRD, BET, SEM, TEM, XPS and TPR, it was found that hydrothermal treatment brought a large surface area and abundant mesoporous to the modified fly ash, and Mn-Ce composite oxides were highly dispersed on the surface of the support. These physical and chemical properties were the intrinsic reasons for the good SCR activity. This work transformed fly ash into high value-added products, providing a new approach to the resource utilization and pollution control of fly ash.
Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China
Zhao, Y.; Zhang, Jiahua; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C.
2008-01-01
The emissions of potentially hazardous trace elements from spontaneous combustion of gob piles from coal mining in Shanxi Province, China, have been studied. More than ninety samples of solid waste from gob piles in Shanxi were collected and the contents of twenty potentially hazardous trace elements (Be, F, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Tl, Pb, Th, and U) in these samples were determined. Trace element contents in solid waste samples showed wide ranges. As compared with the upper continental crust, the solid waste samples are significantly enriched in Se (20x) and Tl (12x) and are moderately enriched in F, As, Mo, Sn, Sb, Hg, Th, and U (2-5x). The solid waste samples are depleted in V, Cr, Mn, Co, Ni, Cu, and Zn. The solid waste samples are enriched in F, V, Mn, Cr, Co, Ni, Cu, Zn, Sb, Th, and U as compared with the Shanxi coals. Most trace elements are higher in the clinker than in the unburnt solid waste except F, Sn, and Hg. Trace element abundances are related to the ash content and composition of the samples. The content of F is negatively correlated with the ash content, while Pb is positively correlated with the ash. The concentrations of As, Mn, Zn, and Cd are highly positively correlated with Fe2O3 in the solid waste. The As content increases with increasing sulfur content in the solid waste. The trace element emissions are calculated for mass balance. The emission factors of trace elements during the spontaneous combustion of the gobs are determined and the trace element concentrations in the flue gas from the spontaneous combustion of solid waste are calculated. More than a half of F, Se, Hg and Pb are released to the atmosphere during spontaneous combustion. Some trace element concentrations in flue gas are higher than the national emission standards. Thus, gob piles from coal mining pose a serious environmental problem. ?? 2007 Elsevier B.V. All rights reserved.
Weitz, Melissa; Coburn, Jeffrey B; Salinas, Edgar
2008-05-01
This paper estimates national methane emissions from solid waste disposal sites in Panama over the time period 1990-2020 using both the 2006 Intergovernmental Panel on Climate Change (IPCC) Waste Model spreadsheet and the default emissions estimate approach presented in the 1996 IPCC Good Practice Guidelines. The IPCC Waste Model has the ability to calculate emissions from a variety of solid waste disposal site types, taking into account country- or region-specific waste composition and climate information, and can be used with a limited amount of data. Countries with detailed data can also run the model with country-specific values. The paper discusses methane emissions from solid waste disposal; explains the differences between the two methodologies in terms of data needs, assumptions, and results; describes solid waste disposal circumstances in Panama; and presents the results of this analysis. It also demonstrates the Waste Model's ability to incorporate landfill gas recovery data and to make projections. The former default method methane emissions estimates are 25 Gg in 1994, and range from 23.1 Gg in 1990 to a projected 37.5 Gg in 2020. The Waste Model estimates are 26.7 Gg in 1994, ranging from 24.6 Gg in 1990 to 41.6 Gg in 2020. Emissions estimates for Panama produced by the new model were, on average, 8% higher than estimates produced by the former default methodology. The increased estimate can be attributed to the inclusion of all solid waste disposal in Panama (as opposed to only disposal in managed landfills), but the increase was offset somewhat by the different default factors and regional waste values between the 1996 and 2006 IPCC guidelines, and the use of the first-order decay model with a time delay for waste degradation in the IPCC Waste Model.
Mathematical modeling to predict residential solid waste generation.
Benítez, Sara Ojeda; Lozano-Olvera, Gabriela; Morelos, Raúl Adalberto; Vega, Carolina Armijo de
2008-01-01
One of the challenges faced by waste management authorities is determining the amount of waste generated by households in order to establish waste management systems, as well as trying to charge rates compatible with the principle applied worldwide, and design a fair payment system for households according to the amount of residential solid waste (RSW) they generate. The goal of this research work was to establish mathematical models that correlate the generation of RSW per capita to the following variables: education, income per household, and number of residents. This work was based on data from a study on generation, quantification and composition of residential waste in a Mexican city in three stages. In order to define prediction models, five variables were identified and included in the model. For each waste sampling stage a different mathematical model was developed, in order to find the model that showed the best linear relation to predict residential solid waste generation. Later on, models to explore the combination of included variables and select those which showed a higher R(2) were established. The tests applied were normality, multicolinearity and heteroskedasticity. Another model, formulated with four variables, was generated and the Durban-Watson test was applied to it. Finally, a general mathematical model is proposed to predict residential waste generation, which accounts for 51% of the total.
Hernández-Berriel, Ma C; Márquez-Benavides, L; González-Pérez, D J; Buenrostro-Delgado, O
2008-01-01
The State of México, situated in central México, has a population of about 14 million, distributed in approximately 125 counties. Solid waste management represents a serious and ongoing pressure to local authorities. The final disposal site ("El Socavón") does not comply with minimum environmental requirements as no liners or leachate management infrastructure are available. Consequently, leachate composition or the effects of rain water input on municipal solid waste degradation are largely unknown. The aim of this work was to monitor the anaerobic degradation of municipal solid waste (MSW), simulating the water addition due to rainfall, under two different moisture content regimes (70% and 80% humidity). The study was carried out using bioreactors in both laboratory and pilot scales. The variation of organic matter and pH was followed in the solid matrix of the MSW. The leachate produced was used to estimate the field capacity of the MSW and to determine the pH, COD, BOD and heavy metals. Some leachate parameters were found to be within permitted limits, but further research is needed in order to analyze the leachate from lower layers of the disposal site ("El Socavón").
In 2012, EPA’s Office of Research and Development released the MSW decision support tool (MSW-DST) to help identify strategies for more sustainable MSW management. Depending upon local infrastructure, energy grid mix, population density, and waste composition and quantity, the m...
Saeed, Mohamed Osman; Hassan, Mohd Nasir; Mujeebu, M Abdul
2009-07-01
This paper presents a forecasting study of municipal solid waste generation (MSWG) rate and potential of its recyclable components in Kuala Lumpur (KL), the capital city of Malaysia. The generation rates and composition of solid wastes of various classes such as street cleansing, landscape and garden, industrial and constructional, institutional, residential and commercial are analyzed. The past and present trends are studied and extrapolated for the coming years using Microsoft office 2003 Excel spreadsheet assuming a linear behavior. The study shows that increased solid waste generation of KL is alarming. For instance, the amount of daily residential SWG is found to be about 1.62 kg/capita; with the national average at 0.8-0.9 kg/capita and is expected to be increasing linearly, reaching to 2.23 kg/capita by 2024. This figure seems reasonable for an urban developing area like KL city. It is also found that, food (organic) waste is the major recyclable component followed by mix paper and mix plastics. Along with estimated population growth and their business activities, it has been observed that the city is still lacking in terms of efficient waste treatment technology, sufficient fund, public awareness, maintaining the established norms of industrial waste treatment etc. Hence it is recommended that the concerned authority (DBKL) shall view this issue seriously.
Compatibility analysis of material and energy recovery in a regional solid waste management system.
Chang, Ying-Hsi; Chang, Ni-Bin
2003-01-01
The rising prices of raw materials and concerns about energy conservation have resulted in an increasing interest in the simultaneous recovery of materials and energy from waste streams. Compatibility exists for several economic, environmental, and managerial reasons. Installing an on-site or off-site presorting facility before an incinerator could be a feasible alternative to achieve both goals if household recycling programs cannot succeed in local communities. However, the regional impacts of presorting solid waste on a waste-to-energy facility remain unclear because of the inherent complexity of solid waste compositions and properties over different areas. This paper applies a system-based approach to assess the impact of installing a refuse-derived fuel (RDF) process before an incinerator. Such an RDF process, consisting of standard unit operations of shredding, magnetic separation, trommel screening, and air classification, might be useful for integrating the recycling and presorting efforts for a large-scale municipal incinerator from a regional sense. An optimization modeling analysis is performed to characterize such integration potential so that the optimal size of the RDF process and associated shipping patterns for flow control can be foreseen. It aims at exploring how the waste inflows with different rates of generation, physical and chemical compositions, and heating values collected from differing administrative districts can be processed by either a centralized presorting facility or an incinerator to meet both the energy recovery and throughput requirements. A case study conducted in Taipei County, which is one of the most densely populated metropolitan areas in Taiwan, further confirms the application potential of such a cost-benefit analysis.
Chanakya, H N; Sharma, Isha; Ramachandra, T V
2009-04-01
The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.
[Microbiological Aspects of Radioactive Waste Storage].
Safonov, A V; Gorbunova, O A; German, K E; Zakharova, E V; Tregubova, V E; Ershov, B G; Nazina, T N
2015-01-01
The article gives information about the microorganisms inhabiting in surface storages of solid radioactive waste and deep disposal sites of liquid radioactive waste. It was shown that intensification of microbial processes can lead to significant changes in the chemical composition and physical state of the radioactive waste. It was concluded that the biogeochemical processes can have both a positive effect on the safety of radioactive waste storages (immobilization of RW macrocomponents, a decreased migration ability of radionuclides) and a negative one (biogenic gas production in subterranean formations and destruction of cement matrix).
Solid rocket propellant waste disposal/ingredient recovery study
NASA Technical Reports Server (NTRS)
Mcintosh, M. J.
1976-01-01
A comparison of facility and operating costs of alternate methods shows open burning to be the lowest cost incineration method of waste propellant disposal. The selection, development, and implementation of an acceptable alternate is recommended. The recovery of ingredients from waste propellant has the probability of being able to pay its way, and even show a profit, when large consistent quantities of composite propellant are available. Ingredients recovered from space shuttle waste propellant would be worth over $1.5 million. Open and controlled burning are both energy wasteful.
Household solid waste characteristics and management in Chittagong, Bangladesh.
Sujauddin, Mohammad; Huda, S M S; Hoque, A T M Rafiqul
2008-01-01
Solid waste management (SWM) is a multidimensional challenge faced by urban authorities, especially in developing countries like Bangladesh. We investigated per capita waste generation by residents, its composition, and the households' attitudes towards waste management at Rahman Nagar Residential Area, Chittagong, Bangladesh. The study involved a structured questionnaire and encompassed 75 households from five different socioeconomic groups (SEGs): low (LSEG), lower middle (LMSEG), middle (MSEG), upper middle (UMSEG) and high (HSEG). Wastes, collected from all of the groups of households, were segregated and weighed. Waste generation was 1.3 kg/household/day and 0.25 kg/person/day. Household solid waste (HSW) was comprised of nine categories of wastes with vegetable/food waste being the largest component (62%). Vegetable/food waste generation increased from the HSEG (47%) to the LSEG (88%). By weight, 66% of the waste was compostable in nature. The generation of HSW was positively correlated with family size (r xy=0.236, p<0.05), education level (r xy=0.244, p<0.05) and monthly income (r xy=0.671, p<0.01) of the households. Municipal authorities are usually the responsible agencies for solid waste collection and disposal, but the magnitude of the problem is well beyond the ability of any municipal government to tackle. Hence dwellers were found to take the service from the local waste management initiative. Of the respondents, an impressive 44% were willing to pay US dollars 0.3 to US dollars 0.4 per month to waste collectors and it is recommended that service charge be based on the volume of waste generated by households. Almost a quarter (22.7%) of the respondents preferred 12-1 pm as the time period for their waste to be collected. This study adequately shows that household solid waste can be converted from burden to resource through segregation at the source, since people are aware of their role in this direction provided a mechanism to assist them in this pursuit exists and the burden is distributed according to the amount of waste generated.
Household solid waste characteristics and management in Chittagong, Bangladesh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sujauddin, Mohammad; Huda, S.M.S.; Hoque, A.T.M. Rafiqul
2008-07-01
Solid waste management (SWM) is a multidimensional challenge faced by urban authorities, especially in developing countries like Bangladesh. We investigated per capita waste generation by residents, its composition, and the households' attitudes towards waste management at Rahman Nagar Residential Area, Chittagong, Bangladesh. The study involved a structured questionnaire and encompassed 75 households from five different socioeconomic groups (SEGs): low (LSEG), lower middle (LMSEG), middle (MSEG), upper middle (UMSEG) and high (HSEG). Wastes, collected from all of the groups of households, were segregated and weighed. Waste generation was 1.3 kg/household/day and 0.25 kg/person/day. Household solid waste (HSW) was comprised of ninemore » categories of wastes with vegetable/food waste being the largest component (62%). Vegetable/food waste generation increased from the HSEG (47%) to the LSEG (88%). By weight, 66% of the waste was compostable in nature. The generation of HSW was positively correlated with family size (r{sub xy} = 0.236, p < 0.05), education level (r{sub xy} = 0.244, p < 0.05) and monthly income (r{sub xy} = 0.671, p < 0.01) of the households. Municipal authorities are usually the responsible agencies for solid waste collection and disposal, but the magnitude of the problem is well beyond the ability of any municipal government to tackle. Hence dwellers were found to take the service from the local waste management initiative. Of the respondents, an impressive 44% were willing to pay US$0.3 to US$0.4 per month to waste collectors and it is recommended that service charge be based on the volume of waste generated by households. Almost a quarter (22.7%) of the respondents preferred 12-1 pm as the time period for their waste to be collected. This study adequately shows that household solid waste can be converted from burden to resource through segregation at the source, since people are aware of their role in this direction provided a mechanism to assist them in this pursuit exists and the burden is distributed according to the amount of waste generated.« less
Characterization of Leachate at Simpang Renggam Landfill Site, Johor, Malaysia
NASA Astrophysics Data System (ADS)
Zailani, L. W. M.; Amdan, N. S. M.; Zin, N. S. M.
2018-04-01
Nowadays, the world facing a major problem in managed solid waste due to the increasing of solid waste. Malaysia, one of the country also involves in this matter which is 296 landfills are open to overcome this problem. Currently, the best alternative option to manage solid waste is by using landfilling method because it has low costing advantages. The disadvantage of landfill method, it might cause a pollution by producing leachate that will give an effect to the ground and surface water resources. This study focuses on analysing the leachate composition at Simpang Renggam Landfill(SRL) site for seven parameters such as COD, BOD, SS, turbidity, pH, BOD5/COD, and ammonia (NH3-N). All the data obtained were compared with previous researcher and Malaysia Environmental Quality Act 1974. From the result, SRL site was categorized as partially stabilized leachate with the parameter of BOD5/COD > 0.1. The SRL site is recommended to use a physical-chemical method for a better treatment because the leachate composition is classified as old leachate and aerated lagoon method are not satisfied to be used in treating the aging leachate at SRL site.
Requirements Development Issues for Advanced Life Support Systems: Solid Waste Management
NASA Technical Reports Server (NTRS)
Levri, Julie A.; Fisher, John W.; Alazraki, Michael P.; Hogan, John A.
2002-01-01
Long duration missions pose substantial new challenges for solid waste management in Advanced Life Support (ALS) systems. These possibly include storing large volumes of waste material in a safe manner, rendering wastes stable or sterilized for extended periods of time, and/or processing wastes for recovery of vital resources. This is further complicated because future missions remain ill-defined with respect to waste stream quantity, composition and generation schedule. Without definitive knowledge of this information, development of requirements is hampered. Additionally, even if waste streams were well characterized, other operational and processing needs require clarification (e.g. resource recovery requirements, planetary protection constraints). Therefore, the development of solid waste management (SWM) subsystem requirements for long duration space missions is an inherently uncertain, complex and iterative process. The intent of this paper is to address some of the difficulties in writing requirements for missions that are not completely defined. This paper discusses an approach and motivation for ALS SWM requirements development, the characteristics of effective requirements, and the presence of those characteristics in requirements that are developed for uncertain missions. Associated drivers for life support system technological capability are also presented. A general means of requirements forecasting is discussed, including successive modification of requirements and the need to consider requirements integration among subsystems.
Bio-processing of solid wastes and secondary resources for metal extraction - A review.
Lee, Jae-Chun; Pandey, Banshi Dhar
2012-01-01
Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed in eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Tongan; Chun, Jaehun; Dixon, Derek R.
During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to themore » high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.« less
The Use of Mushroom Growing Media Waste for Making Composite Particle Board
NASA Astrophysics Data System (ADS)
Tjahjanti, P. H.; Sutarman; Widodo, E.; Kusuma, A. T.
2017-05-01
One of the agricultural waste is mushroom growing media, where the number of this waste is huge and accumulated after mushroom harvest. This accumulation is caused by using the new planting medias. Meanwhile, the old planting medias have thrown out and been as solid matter to widen the slope of cliff area. Therefore, this research aims to use mushroom growing media waste (MGMW) as a composite particle board added by polyester resin and mekpo (methyl ethyl ketone peroxides) as catalys. Some physical and mechanic tests which are done, namely: density, moisture content, thickness swelling after immersion in water, strength of absorption water, internal bonding, modulus of elasticity, modulus of rupture and screw holding power. The composition of 75% MGMW + 24% polyester resin + 1% catalyst mekpo suitable to the physical and mechanic tests and accordance with SNI 03-2105-2006 and JIS A 5908-2003.
Leite, Paulina; Salgado, José Manuel; Venâncio, Armando; Domínguez, José Manuel; Belo, Isabel
2016-08-01
Olive mills generate a large amount of waste that can be revaluated. This work aim to improve the production lignocellulolytic enzymes by solid-state fermentation using ultrasounds pretreated olive mill wastes. The composition of olive mill wastes (crude and exhausted olive pomace) was compared and several physicochemical characteristics were significantly different. The use of both wastes in SSF was evaluated and a screening of fungi for xylanase and cellulase production was carried out. After screening, the use of exhausted olive pomace and Aspergillus niger led to the highest enzyme activities, so that they were used in the study of ultrasounds pre-treatment. The results showed that the sonication led to a 3-fold increase of xylanase activity and a decrease of cellulase activity. Moreover, the liquid fraction obtained from ultrasounds treatment was used to adjust the moisture of solid and a positive effect on xylanase (3.6-fold increase) and cellulase (1.2-fold increase) production was obtained. Copyright © 2016 Elsevier Ltd. All rights reserved.
'Wasteaware' benchmark indicators for integrated sustainable waste management in cities.
Wilson, David C; Rodic, Ljiljana; Cowing, Michael J; Velis, Costas A; Whiteman, Andrew D; Scheinberg, Anne; Vilches, Recaredo; Masterson, Darragh; Stretz, Joachim; Oelz, Barbara
2015-01-01
This paper addresses a major problem in international solid waste management, which is twofold: a lack of data, and a lack of consistent data to allow comparison between cities. The paper presents an indicator set for integrated sustainable waste management (ISWM) in cities both North and South, to allow benchmarking of a city's performance, comparing cities and monitoring developments over time. It builds on pioneering work for UN-Habitat's solid waste management in the World's cities. The comprehensive analytical framework of a city's solid waste management system is divided into two overlapping 'triangles' - one comprising the three physical components, i.e. collection, recycling, and disposal, and the other comprising three governance aspects, i.e. inclusivity; financial sustainability; and sound institutions and proactive policies. The indicator set includes essential quantitative indicators as well as qualitative composite indicators. This updated and revised 'Wasteaware' set of ISWM benchmark indicators is the cumulative result of testing various prototypes in more than 50 cities around the world. This experience confirms the utility of indicators in allowing comprehensive performance measurement and comparison of both 'hard' physical components and 'soft' governance aspects; and in prioritising 'next steps' in developing a city's solid waste management system, by identifying both local strengths that can be built on and weak points to be addressed. The Wasteaware ISWM indicators are applicable to a broad range of cities with very different levels of income and solid waste management practices. Their wide application as a standard methodology will help to fill the historical data gap. Copyright © 2014 Elsevier Ltd. All rights reserved.
Saqib, Naeem; Bäckström, Mattias
2014-12-01
Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature. Copyright © 2014 Elsevier Ltd. All rights reserved.
Composition, production rate and characterization of Greek dental solid waste.
Mandalidis, Alexandros; Topalidis, Antonios; Voudrias, Evangelos A; Iosifidis, Nikolaos
2018-05-01
The overall objective of this work is to determine the composition, characterization and production rate of Greek dental solid waste (DSW). This information is important to design and cost management systems for DSW, for safety and health considerations and for assessing environmental impact. A total of 141 kg of DSW produced by a total of 2542 patients in 20 dental practices from Xanthi, Greece was collected, manually separated and weighed over a period of four working weeks. The waste was separated in 19 sub fractions, which were classified in 2 major categories, according to Greek regulations: Domestic-type waste comprising 8% and hazardous waste comprising 92% by weight of total DSW. The latter was further classified in infectious waste, toxic waste and mixed type waste (infectious and toxic together), accounting for 88.5%, 3.5% and 0.03% of total DSW by weight, respectively. The overall unit production rates (mean ± standard error of the mean) were 381 ± 15 g/practice/d and 53.3 ± 1.4 g/patient/d for total DSW, 337 ± 14 g/practice/d and 46.6 ± 1.2 g/patient/d for total infectious DSW, 13.4 ± 0.7 g/practice/d and 2.1 ± 0.1 g/patient/d for total toxic DSW and 30.4 ± 2.5 g/practice/d and 4.6 ± 0.4 g/patient/d for domestic-type waste. Daily DSW production was correlated with daily number of patients and regression correlations were produced. DSW was subject to laboratory characterization in terms of bulk density, calorific value, moisture, ash and volatile solids content. Measured calorific values were compared to predictions from empirical models. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asmi, Dwi, E-mail: dwiasmi82@yahoo.com, E-mail: dwi.asmi@fmipa.unila.ac.id; Sulaiman, Ahmad, E-mail: ahmadsulaiman@yahoo.co.id; Oktavia, Irene Lucky, E-mail: ireneluckyo@gmail.com
Effect of 10 wt% amorphous SiO{sub 2} from rice husk addition on the microstructures of biohydroxyapatite (BHAp) obtained from bovine bone was synthesized by solid state reaction. In this study, biohydroxyapatite powder was obtained from bovine bone mandible waste heat treated at 800 °C for 5 h and amorphous SiO{sub 2} powder was extracted from citric acid leaching of rice husk followed by combustion at 700°C for 5 h. The composite powder then mixed and sintered at 1200 °C for 3 h. X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) techniques are utilized to characterize the phase relations,more » functional group present and morphology of the sample. The study has revealed that the processing procedures played an important role in microstructural development of BHAp-10 wt% SiO{sub 2} composite. The XRD study of the raw material revealed that the primary phase material in the heat treated of bovine bone mandible waste is hydroxyapatite and in the combustion of rice husk is amorphous SiO{sub 2}. However, in the composite the hydroxyapatite, β-tricalcium phosphate, and calcium phosphate silicate were observed. The FTIR result show that the hydroxyl stretching band in the composite decrease compared with those of hydroxyapatite spectra and the evolution of morphology was occurred in the composite.« less
NASA Astrophysics Data System (ADS)
Asmi, Dwi; Sulaiman, Ahmad; Oktavia, Irene Lucky; Badaruddin, Muhammad; Zulfia, Anne
2016-04-01
Effect of 10 wt% amorphous SiO2 from rice husk addition on the microstructures of biohydroxyapatite (BHAp) obtained from bovine bone was synthesized by solid state reaction. In this study, biohydroxyapatite powder was obtained from bovine bone mandible waste heat treated at 800 °C for 5 h and amorphous SiO2 powder was extracted from citric acid leaching of rice husk followed by combustion at 700°C for 5 h. The composite powder then mixed and sintered at 1200 °C for 3 h. X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) techniques are utilized to characterize the phase relations, functional group present and morphology of the sample. The study has revealed that the processing procedures played an important role in microstructural development of BHAp-10 wt% SiO2 composite. The XRD study of the raw material revealed that the primary phase material in the heat treated of bovine bone mandible waste is hydroxyapatite and in the combustion of rice husk is amorphous SiO2. However, in the composite the hydroxyapatite, β-tricalcium phosphate, and calcium phosphate silicate were observed. The FTIR result show that the hydroxyl stretching band in the composite decrease compared with those of hydroxyapatite spectra and the evolution of morphology was occurred in the composite.
Liu, Xinhua; Wei, Fangxin; Xu, Chunyan; Liao, Yunxuan; Jiang, Jing
2015-09-01
The proper classification of radioactive waste is the basis upon which to define its disposal method. In view of differences between waste containing artificial radionuclides and waste with naturally occurring radionuclides, the scientific definition of the properties of waste arising from the front end of the uranium fuel cycle (UF Waste) is the key to dispose of such waste. This paper is intended to introduce briefly the policy and practice to dispose of such waste in China and some foreign countries, explore how to solve the dilemma facing such waste, analyze in detail the compositions and properties of such waste, and finally put forward a new concept of classifying such waste as waste with naturally occurring radionuclides.
Xu, Fuqing; Shi, Jian; Lv, Wen; Yu, Zhongtang; Li, Yebo
2013-01-01
Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5L/kg VS(feed), while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6L/kg VS(feed). The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3g CaCO(3)/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nielfa, A; Cano, R; Pérez, A; Fdez-Polanco, M
2015-03-01
Solid wastes from industrial, commercial and community activities are of growing concern as the total volume of waste produced continues to increase. The knowledge of the specific composition and characteristics of the waste is an important tool in the correct development of the anaerobic digestion process. The problems derived from the anaerobic digestion of sole substrates with high lipid, carbohydrate or protein content lead to the co-digestion of these substrates with another disposed waste, such as sewage sludge. The kinetic of the anaerobic digestion is especially difficult to explain adequately, although some mathematical models are able to represent the main aspects of a biological system, thus improving understanding of the parameters involved in the process. The aim of this work is to evaluate the experimental biochemical methane potential on the co-digestion of sewage sludge with different solid wastes (grease; spent grain and cow manure) through the implementation of four kinetic models. The co-digestion of grease waste and mixed sludge obtained the best improvements from the sole substrates, with additional positive synergistic effects. The Gompertz model fits the experimental biochemical methane potential to an accuracy of 99%, showing a correlation between the percentage of lipid in the substrates and co-digestions and the period of lag phase. © The Author(s) 2015.
Hartmann, H; Ahring, B K
2006-01-01
Different process strategies for anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) are reviewed weighing high-solids versus low-solids, mesophilic versus thermophilic and single-stage versus multi-stage processes. The influence of different waste characteristics such as composition of biodegradable fractions, C:N ratio and particle size is described. Generally, source sorting of OFMSW and a high content of food waste leads to higher biogas yields than the use of mechanically sorted OFMSW. Thermophilic processes are more efficient than mesophilic processes in terms of higher biogas yields at different organic loading rates (OLR). Highest biogas yields are achieved by means of wet thermophilic processes at OLRs lower than 6 kg-VS x m(-3) d(-1). High-solids processes appear to be relatively more efficient when OLRs higher than 6 kg-VS x m(-3)d(-1) are applied. Multi-stage systems show in some investigations a higher reduction of recalcitrant organic matter compared to single-stage systems, but they are seldom applied in full-scale. An extended cost-benefit calculation shows that the highest overall benefit of the process is achieved at an OLR that is lower and a hydraulic retention time (HRT) that is longer than those values of OLR and HRT, at which the highest biogas production is achieved.
Fu, Dun; Chen, Zheng; Xia, Dong; Shen, Liang; Wang, Yuanpeng; Li, Qingbiao
2017-02-01
Solid digestate, a by-product of anaerobic digestion systems, has led to a range of environmental issues. In the present study, a novel composite based on a solid digestate-biochar-Cu NP composite was synthesized for tetracycline removal from an aqueous medium. The removal efficiency values for tetracycline (200 mg L -1 ) were 31.5% and 97.8%, respectively, by the biochar-Cu NP composite (0.5 g L -1 ) in the absence and presence of hydrogen peroxide (H 2 O 2 , 20 mM) within 6 h of reaction time. The possible degradation pathway of tetracycline was investigated using liquid chromatography-mass spectrometry. The desorption experiment results suggested that no significant concentration of tetracycline was detected on the composite after the reaction, but a small amount of intermediates in terms of total organic carbon (TOC) accounting for 3.1%, and 23.3% of the end-product NH 4 + was adsorbed onto the biochar sheets. The dispersive Cu NPs on the biochar resulted in an increase in the surface area and pore volume of the biochar-Cu NP composite, which enhanced tetracycline adsorption as well as the degradation efficiency. Relative tetracycline removal mechanisms were dominantly ascribed to ·OH generation from the Cu(II)/Cu(I) redox reaction with H 2 O 2 and the electron-transfer process of free radicals (FRs) in biochar. The proposed approach serves dual purposes of waste digestate reuse and treatment of antibiotic pollutants. This study highlights the activation of H 2 O 2 by the dispersive Cu NPs coupling with biochar derived from a waste solid digestate for tetracycline treatment. Copyright © 2016. Published by Elsevier Ltd.
European trends in greenhouse gases emissions from integrated solid waste management.
Calabrò, Paolo S; Gori, Manuela; Lubello, Claudio
2015-01-01
The European Union (EU) has 28 member states, each with very different characteristics (e.g. surface, population density, per capita gross domestic product, per capita municipal solid waste (MSW) production, MSW composition, MSW management options). In this paper several integrated waste management scenarios representative of the European situation have been generated and analysed in order to evaluate possible trends in the net emission of greenhouse gases and in the required landfill volume. The results demonstrate that an integrated system with a high level of separate collection, efficient energy recovery in waste-to-energy plants and very limited landfill disposal is the most effective according to the indices adopted. Moreover, it is evident that a fully integrated system can make MSW management a carbon sink with a potentiality of up to approximately 40 Mt CO2eq year(-1).
Thiagamani, Senthil Muthu Kumar; Nagarajan, Rajini; Jawaid, Mohammad; Anumakonda, Varadarajulu; Siengchin, Suchart
2017-11-01
As the annual production of the solid waste generable in the form of spent coffee bean powder (SCBP) is over 6 million tons, its utilization in the generation of green energy, waste water treatment and as a filler in biocomposites is desirable. The objective of this article is to analyze the possibilities to valorize coffee bean powder as a filler in cellulose matrix. Cellulose matrix was dissolved in the relatively safer aqueous solution mixture (8% LiOH and 15% Urea) precooled to -12.5°C. To the cellulose solution (SCBP) was added in 5-25wt% and the composite films were prepared by regeneration method using ethyl alcohol as a coagulant. Some SCBP was treated with aq. 5% NaOH and the composite films were also prepared using alkali treated SCBP as a filler. The films of composites were uniform with brown in color. The cellulose/SCBP films without and with alkali treated SCBP were characterized by FTIR, XRD, optical and polarized optical microscopy, thermogravimetric analysis (TGA) and tensile tests. The maximum tensile strength of the composite films with alkali treated SCBP varied between (106-149MPa) and increased with SCBP content when compared to the composites with untreated SCBP. The thermal stability of the composite was higher at elevated temperatures when alkali treated SCBP was used. Based on the improved tensile properties and photo resistivity, the cellulose/SCBP composite films with alkali treated SCBP may be considered for packaging and wrapping of flowers and vegetables. Copyright © 2017 Elsevier Ltd. All rights reserved.
Review of LCA studies of solid waste management systems – Part I: Lessons learned and perspectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurent, Alexis, E-mail: alau@dtu.dk; Bakas, Ioannis; Clavreul, Julie
Highlights: • We perform a critical review of 222 LCA studies of solid waste management systems. • Studies mainly concentrated in Europe with little application in developing countries. • Assessments of relevant waste types apart from household waste have been overlooked. • Local specificities of systems prevent a meaningful generalisation of the LCA results. • LCA should support recommendations representative of the local conditions. - Abstract: The continuously increasing solid waste generation worldwide calls for management strategies that integrate concerns for environmental sustainability. By quantifying environmental impacts of systems, life cycle assessment (LCA) is a tool, which can contribute tomore » answer that call. But how, where and to which extent has it been applied to solid waste management systems (SWMSs) until now, and which lessons can be learnt from the findings of these LCA applications? To address these questions, we performed a critical review of 222 published LCA studies of SWMS. We first analysed the geographic distribution and found that the published studies have primarily been concentrated in Europe with little application in developing countries. In terms of technological coverage, they have largely overlooked application of LCA to waste prevention activities and to relevant waste types apart from household waste, e.g. construction and demolition waste. Waste management practitioners are thus encouraged to abridge these gaps in future applications of LCA. In addition to this contextual analysis, we also evaluated the findings of selected studies of good quality and found that there is little agreement in the conclusions among them. The strong dependence of each SWMS on local conditions, such as waste composition or energy system, prevents a meaningful generalisation of the LCA results as we find it in the waste hierarchy. We therefore recommend stakeholders in solid waste management to regard LCA as a tool, which, by its ability of capturing the local specific conditions in the modelling of environmental impacts and benefits of a SWMS, allows identifying critical problems and proposing improvement options adapted to the local specificities.« less
Salgado, José Manuel; Abrunhosa, Luís; Venâncio, Armando; Domínguez, José Manuel; Belo, Isabel
2014-02-01
Two-phase olive mill waste (TPOMW) is presently the major waste produced by the olive mill industry. This waste has potential to be used as substrate for solid state fermentation (SSF) despite of its high concentration of phenolic compounds and low nitrogen content. In this work, it is demonstrated that mixtures of TPOMW with winery wastes support the production of lipase by Aspergillus spp. By agar plate screening, Aspergillus niger MUM 03.58, Aspergillus ibericus MUM 03.49, and Aspergillus uvarum MUM 08.01 were chosen for lipase production by SSF. Plackett-Burman experimental design was employed to evaluate the effect of substrate composition and time on lipase production. The highest amounts of lipase were produced by A. ibericus on a mixture of TPOMW, urea, and exhausted grape mark (EGM). Urea was found to be the most influent factor for the lipase production. Further optimization of lipase production by A. ibericus using a full factorial design (3(2)) conducted to optimal conditions of substrate composition (0.073 g urea/g and 25 % of EGM) achieve 18.67 U/g of lipolytic activity.
NASA Astrophysics Data System (ADS)
Pranoto; Himawanto, D. A.; Arifin, N. A.
2017-04-01
The combustion of segregated municipal solid waste (MSW) and the resulted char from the pyrolysis process were investigated in this research. The segregated MSW that was collected and used can be divided into organic and inorganic waste materials. The organic materials were bamboo and banana leaves and the inorganic materials were Styrofoam and snack wrappings. The composition ratio of the waste was based on the percentage of weight of each sample. The thermal behaviour of the segregated MSW was investigated by thermo gravimetric analysis. For the pyrolysis process the prepared samples of 200gram were heated from ambient temperature until a variance of final pyrolysis temperature of 550°C, 650°C and 750°C at a constant heating rate of 25°C/min. It was found that the highest activation energy of the raw materials is achieved from sample CC1 (Char with 100% inorganic materials). The activation energy of the raw materials is relatively lower than that of the char. The higher the final pyrolysis temperature, the lower the calorific value of char. The calorific value gradually increases with the amount of inorganic materials.
Zhang, Yuanyuan; Yue, Dongbei; Liu, Jianguo; He, Liang; Nie, Yongfeng
2012-06-01
Odor pollution caused by municipal solid waste (MSW) treatment plants has become a growing public concern. Although aerobic pretreatment of MSW has advantages in accelerating landfill stabilization, the property of non-methane organic compound (NMOC) emissions from aerobically pretreated MSW (APMSW) during landfilling is unknown. To investigate NMOC emissions from anaerobic degradation of APMSW and to study the impact of organic compositions of APMSW and their decomposition stages, five simulative anaerobic bioreactors (R1-R5) were filled up with APMSW of different original organic compositions in a laboratory. For NMOC analysis, samples were collected from the gas that accumulated separately during two successive independent stages of the whole experiment. The results showed that the cumulative quantities of NMOCs from R1 to R5 were 1.11, 0.30, 0.18, 0.28, and 0.31 mg/kg DM, respectively, when volatile solid was degraded by 34.8-47.2%. As the organic content of the original waste was lower, the proportion of NMOCs generated in the early stage of anaerobic degradation became higher. Multiple linear regression analyses of the relationship between the quantities of degraded organics and generated NMOCs showed that lipid and protein have a strong effect on NMOC amount. The effect of lipid on NMOC quantity lasts longer than that of protein. This observation suggests that controlling the lipid and protein contents in MSW can reduce the odor from landfills. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hydrothermal carbonization of food waste for nutrient recovery and reuse.
Idowu, Ifeolu; Li, Liang; Flora, Joseph R V; Pellechia, Perry J; Darko, Samuel A; Ro, Kyoung S; Berge, Nicole D
2017-11-01
Food waste represents a rather large and currently underutilized source of potentially available and reusable nutrients. Laboratory-scale experiments evaluating the hydrothermal carbonization of food wastes collected from restaurants were conducted to understand how changes in feedstock composition and carbonization process conditions influence primary and secondary nutrient fate. Results from this work indicate that at all evaluated reaction times and temperatures, the majority of nitrogen, calcium, and magnesium remain integrated within the solid-phase, while the majority of potassium and sodium reside in the liquid-phase. The fate of phosphorus is dependent on reaction times and temperatures, with solid-phase integration increasing with higher reaction temperature and longer time. A series of leaching experiments to determine potential solid-phase nutrient availability were also conducted and indicate that, at least in the short term, nitrogen release from the solids is small, while almost all of the phosphorus present in the solids produced from carbonizing at 225 and 250°C is released. At a reaction temperature of 275°C, smaller fractions of the solid-phase total phosphorus are released as reaction times increase, likely due to increased solids incorporation. Using these data, it is estimated that up to 0.96% and 2.30% of nitrogen and phosphorus-based fertilizers, respectively, in the US can be replaced by the nutrients integrated within hydrochar and liquid-phases generated from the carbonization of currently landfilled food wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yazdani, R.; Kieffer, J.; Akau, H.; Augenstein, D.
2002-12-01
Sanitary landfilling is the dominant method of solid waste disposal in the United States, accounting for about 217 million tons of waste annually (U.S. EPA, 1997) and has more than doubled since 1960. In spite of increasing rates of reuse and recycling, population and economic growth will continue to render landfilling as an important and necessary component of solid waste management. Yolo County Department of Planning and Public Works, Division of Integrated Waste Management is demonstrating a new landfill technology called Bioreactor Landfill to better manage solid waste. In a Bioreactor Landfill, controlled quantities of liquid (leachate, groundwater, gray-water, etc.) are added and recirculated to increase the moisture content of the waste and improve waste decomposition. As demonstrated in a small-scale demonstration project at the Yolo County Central Landfill in 1995, this process significantly increases the biodegradation rate of waste and thus decreases the waste stabilization and composting time (5 to 10 years) relative to what would occur within a conventional landfill (30 to 50 years or more). When waste decomposes anaerobically (in absence of oxygen), it produces landfill gas (biogas). Biogas is primarily a mixture of methane, a potent greenhouse gas, carbon dioxide, and small amounts of Volatile Organic Compounds (VOC's) which can be recovered for electricity or other uses. Other benefits of a bioreactor landfill composting operation include increased landfill waste settlement which increases in landfill capacity and life, improved leachate chemistry, possible reduction of landfill post-closure management time, opportunity to explore decomposed waste for landfill mining, and abatement of greenhouse gases through highly efficient methane capture over a much shorter period of time than is typical of waste management through conventional landfilling. This project also investigates the aerobic decomposition of waste of 13,000 tons of waste (2.5 acre) for elimination of methane production and acceleration of waste decomposition. In the first phase of this project a 12-acre module that contains a 9.5-acre anaerobic cell and a 2.5-acre aerobic cell has been constructed and filled with over 220,000 tons of municipal solid waste. Water and leachate addition began in April 2002 and to date less than 200,000 gallons of liquid has been added to the 3.5-acre anaerobic cell. The waste filling phase of the aerobic cell was completed in June of 2002 and a 12-inches soil cover and 12-inches of greenwaste compost cover was placed on top of the cell. A vacuum will be applied to the piping within the waste to draw air through the landfill. Instrumentations have been installed to monitor the following parameters: waste temperature, moisture, leachate volumes, leachate hydraulic head over the primary liner, leachate composition, gas volumes and composition. A supervisory Control and Data Acquisition (SCADA) system has been installed to monitor and control the operation of the bioreactor cells. Waste samples were taken from each cell for laboratory testing in early June 2002.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Place, B.G., Westinghouse Hanford
1996-09-24
The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed,more » include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.« less
Hansen, Trine Lund; Christensen, Thomas Højlund; Schmidt, Sonia
2006-04-01
Modelling of environmental impacts from the application of treated organic municipal solid waste (MSW) in agriculture differs widely between different models for environmental assessment of waste systems. In this comparative study five models were examined concerning quantification and impact assessment of environmental effects from land application of treated organic MSW: DST (Decision Support Tool, USA), IWM (Integrated Waste Management, U.K.), THE IFEU PROJECT (Germany), ORWARE (ORganic WAste REsearch, Sweden) and EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies, Denmark). DST and IWM are life cycle inventory (LCI) models, thus not performing actual impact assessment. The DST model includes only one water emission (biological oxygen demand) from compost leaching in the results and IWM considers only air emissions from avoided production of commercial fertilizers. THE IFEU PROJECT, ORWARE and EASEWASTE are life cycle assessment (LCA) models containing more detailed land application modules. A case study estimating the environmental impacts from land application of 1 ton of composted source sorted organic household waste was performed to compare the results from the different models and investigate the origin of any difference in type or magnitude of the results. The contributions from the LCI models were limited and did not depend on waste composition or local agricultural conditions. The three LCA models use the same overall approach for quantifying the impacts of the system. However, due to slightly different assumptions, quantification methods and environmental impact assessment, the obtained results varied clearly between the models. Furthermore, local conditions (e.g. soil type, farm type, climate and legal regulation) and waste composition strongly influenced the results of the environmental assessment.
NASA Astrophysics Data System (ADS)
Abdullah, N. O.; Pandebesie, E. S.
2018-03-01
Based on Indonesian Government Regulation number 18, 2008, solid waste management should be conducted from the source to minimize the amount of waste. The process includes the waste from domestic, commercial, and institution. This also includes in 3R program (reduce, reuse, and recycle). Vegetable waste from market is a potential material to produce biogas due to its chemical composition (hemi-cellulose, cellulose, and lignin) which transform the biomass to be the raw material of biogas. Acid substance of vegetable becomes an obstacle in process of producing biogas. There has to be buffer material which can improve the performance of biogas process. Cow manure is a material which can be easily obtained as buffer. This research used 24 biogas reactor in volume 6 L by batch method. Biogas volume is measured by checking the preferment in manometer. Methane measurement is conducted by using Gas Chromatography (GC) Hewlett Packard (HP-series 6890) in day 15 and 30. The research was started by sample characterization, sample test by total solid analysis, volatile solid, lignin, ratio C/N, ammonium, and ash. Analysis of pH, temperature, and biogas volume is conducted every day.
Solid Waste Management Practices in the Eastern Province of Saudi Arabia
NASA Astrophysics Data System (ADS)
Khan, Hasin U.; Husain, Tahir; Khan, Suhail M.
1987-11-01
Solid waste management practices in the Eastern Province of Saudi Arabia are reviewed. The officials of various municipalities and agencies responsible for collecting and disposing of municipal waste were interviewed. The refuse generation rate found is in the range of 1.61 2.72 kg per capita per day. The refuse composition data indicate a high percentage of glass, metals, and wood. For storage purposes, 0.2-m3 barrels are used in residential areas and 0.75 to 1.50 m3-capacity containers are used in commerical areas. The present solid-waste collection system is labor-intensive, and a significant part of the budget is spent on collection and haul operations. The unit collection and haul cost is much higher than the unit disposal cost of refuse. The direct haul of refuse is the common practice, and the use of transfer stations has not yet been considered. It is also observed that the disposal methods used at these sites are not in line with modern techniques for refuse disposal. Landfilling and combined burning and landfilling are the common disposal methods at all the sites.
Municipal solid waste in Brazil: A review.
Alfaia, Raquel Greice de Souza Marotta; Costa, Alyne Moraes; Campos, Juacyara Carbonelli
2017-12-01
The production of municipal solid waste (MSW) represents one of the greatest challenges currently faced by waste managers all around the world. In Brazil, the situation with regard to solid waste management is still deficient in many aspects. In 2015, only 58.7% of the MSW collected in Brazilian cities received appropriate final disposal. It was only as late as 2010 that Brazil established the National Policy on Solid Waste (NPSW) based on the legislation and programmes established in the 1970s in more developed countries. However, the situation with regard to MSW management has changed little since the implementation of the NPSW. Recent data show that, in Brazil, disposal in sanitary landfills is practically the only management approach to MSW. Contrary to expectations, despite the economic recession in 2015 the total annual amount of MSW generated nationwide increased by 1.7%, while in the same period the Brazilian population grew by 0.8% and economic activity decreased by 3.8%. The article describes the panorama with regard to MSW in Brazil from generation to final disposal and discusses the issues related to the delay in implementing the NPSW. The collection of recyclable material, the recycling process, the application of reverse logistics and the determination of the gravimetric composition of MSW in Brazil are also addressed in this article. Finally, a brief comparison is made between MSW management in Brazil and in other countries, the barriers to developing effective waste disposal systems are discussed and some recommendations for future MSW management development in Brazil are given.
Evaluation Criteria for Solid Waste Processing Research and Technology Development
NASA Technical Reports Server (NTRS)
Levri, Julie A.; Hogan, J. A.; Alazraki, M. P.
2001-01-01
A preliminary list of criteria is proposed for evaluation of solid waste processing technologies for research and technology development (R&TD) in the Advanced Life Support (ALS) Program. Completion of the proposed list by current and prospective ALS technology developers, with regard to specific missions of interest, may enable identification of appropriate technologies (or lack thereof) and guide future development efforts for the ALS Program solid waste processing area. An attempt is made to include criteria that capture information about the technology of interest as well as its system-wide impacts. Some of the criteria in the list are mission-independent, while the majority are mission-specific. In order for technology developers to respond to mission-specific criteria, critical information must be available on the quantity, composition and state of the waste stream, the wast processing requirements, as well as top-level mission scenario information (e.g. safety, resource recovery, planetary protection issues, and ESM equivalencies). The technology readiness level (TRL) determines the degree to which a technology developer is able to accurately report on the list of criteria. Thus, a criteria-specific minimum TRL for mandatory reporting has been identified for each criterion in the list. Although this list has been developed to define criteria that are needed to direct funding of solid waste processing technologies, this list processes significant overlap in criteria required for technology selection for inclusion in specific tests or missions. Additionally, this approach to technology evaluation may be adapted to other ALS subsystems.
Composition, Production Rate and Management of Dental Solid Waste in 2017 in Birjand, Iran.
Momeni, Habibe; Tabatabaei Fard, Seyyedeh Fatemeh; Arefinejad, Aliye; Afzali, Afsane; Talebi, Farkhonde; Rahmanpour Salmani, Elham
2018-01-01
The presence of toxic and pathogenic agents in the dental waste products has made it to be classified as "hazardous waste." To assess dental waste production rate and composition and approaches used to manage these waste products in 2017 in Birjand, Iran. 48 dental clinics were evaluated in two months of 2017. Sampling was performed from each clinic 3 times a week. Samples were manually divided into 5 categories of chemical-pharmaceutical, infectious, semi-household, sharp and cutting materials, and toxic waste products, and weighed. A checklist containing 25 questions was used to evaluate the aspects of waste management in dental clinics. The total amount of waste products generated in dental clinics was 7848.02 kg/ year in which semi-household waste had the highest quantity (4263.411 kg/year) and toxic waste had the lowest quantity (9.275 kg/year). Components with the highest amounts in dentistry waste products were nylon gloves (16.7%), paper and cardboard (13.4%), latex gloves (10.8%), and pharmaceuticals (10.2%). Waste separation was restricted to sharp and cutting waste. More than half (57%) of dental units were equipped with amalgam filter. Fixing solutions were directly discharged to sewage in 48.6% of clinics. There was no program to reduce waste generation in 54% of the clinics. Autoclave was the main tool for sterilizing dental instruments. This study showed a remarkable share of recyclable materials in the composition of dental waste and lack of special approach to manage waste in dental clinics. It is necessary to plan for minimizing generation of, separating, and recycling waste at source.
Establishing Value of Ceramic Solid Waste Into Light Weight Concrete
NASA Astrophysics Data System (ADS)
Tarigan, U.; Prasetya, H. R.; Tarigan, U. P. P.
2018-02-01
Ceramic solid waste is a waste in the form of the ceramic or ceramic powder that has a defect and cannot be resold where the amount will continue to increase as the ceramic industry continues to produce. Handling waste so far is done by pilling it on vacant land so that if the waste continues to grow the more areas are also needed to stockpile. In addition, waste handling by boards can be a potential hazard to the surrounding environment such as chemical content in ceramics can be carried to the waters and the dust can be blown by the wind and disrupt breathing. This study aims to convert ceramics solid wastes into bricks that have more added value. Data collection is done with primary and secondary data. The method used is Taguchi experiment design to determine the optimum brick composition. The experiment consisted of 4 factors and 3 levels of ceramic with 4 kg, 5 kg and 6 kg, cement with level 3 kg, 4 kg and 5 kg, silica with level 3 kg, 4 kg and 5 kg, water level 500 ml, 750 ml, and 1000 ml. After that proceed with the financial analysis that is determining the selling price, Break Event Point (BEP, Internal Rate of Return (IRR), Pay Back Period (PBP), and Profitability Index. The results of this research are the optimum composition of the concrete blocks, 6 kg of ceramics, 5 kg of cement, 4 kg of silica sand and 1000 ml of water with the compressive strength of 125,677 kg/cm2 and signal to noise is 41,964 dB. In the financial analysis, the selling price of brick is Rp 7,751.75/unit and BEP 318,612 units of product, IRR level 43.174% and PBP for 1 year and 10 months
Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J
2015-01-01
Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette sample composition was similar to biomass fuels but had significant advantages due to addition of waste plastics that have high energy content compared to other waste types. Addition of PP and HDPE presented better benefits than addition of PET due to lower softening temperature and lower oxygen content. It should be noted that while harmful emissions such as dioxins, furans and mercury can result from burning plastics, WTE facilities have been able to control these emissions to meet US EPA standards. This research provides a drop-in coal replacement that reduces demand on landfill space and replaces a significant fraction of fossil-derived fuel with a renewable alternative. Copyright © 2014 Elsevier Ltd. All rights reserved.
Toxicity Assessment of Contaminated Soils of Solid Domestic Waste Landfill
NASA Astrophysics Data System (ADS)
Pasko, O. A.; Mochalova, T. N.
2014-08-01
The paper delivers the analysis of an 18-year dynamic pattern of land pollutants concentration in the soils of a solid domestic waste landfill. It also presents the composition of the contaminated soils from different areas of the waste landfill during its operating period. The authors calculate the concentrations of the following pollutants: chrome, nickel, tin, vanadium, lead, cuprum, zinc, cobalt, beryllium, barium, yttrium, cadmium, arsenic, germanium, nitrate ions and petrochemicals and determine a consistent pattern of their spatial distribution within the waste landfill area as well as the dynamic pattern of their concentration. Test-objects are used in experiments to make an integral assessment of the polluted soil's impact on living organisms. It was discovered that the soil samples of an animal burial site are characterized by acute toxicity while the area of open waste dumping is the most dangerous in terms of a number of pollutants. This contradiction can be attributed to the synergetic effect of the polluted soil, which accounts for the regularities described by other researchers.
Actinides in metallic waste from electrometallurgical treatment of spent nuclear fuel
NASA Astrophysics Data System (ADS)
Janney, D. E.; Keiser, D. D.
2003-09-01
Argonne National Laboratory has developed a pyroprocessing-based technique for conditioning spent sodium-bonded nuclear-reactor fuel in preparation for long-term disposal. The technique produces a metallic waste form whose nominal composition is stainless steel with 15 wt.% Zr (SS-15Zr), up to ˜ 11 wt.% actinide elements (primarily uranium), and a few percent metallic fission products. Actual and simulated waste forms show similar eutectic microstructures with approximately equal proportions of iron solid solution phases and Fe-Zr intermetallics. This article reports on an analysis of simulated waste forms containing uranium, neptunium, and plutonium.
NASA Astrophysics Data System (ADS)
Utama, P. S.; Saputra, E.; Khairat
2018-04-01
Palm Oil Mill Fly Ash (POMFA) the solid waste of palm oil industry was used as a raw material for synthetic amorphous silica and carbon zeolite composite synthesis in order to minimize the wastes of palm oil industry. The alkaline extraction combine with the sol-gel precipitation and mechanical fragmentation was applied to produce synthetic amorphous silica. The byproduct, extracted POMFA was rich in carbon and silica content in a significant amount. The microwave heated hydrothermal process used to synthesize carbon zeolite composite from the byproduct. The obtained silica had chemical composition, specific surface area and the micrograph similar to commercial precipitated silica for rubber filler. The microwave heated hydrothermal process has a great potential for synthesizing carbon zeolite composite. The process only needs one-step and shorter time compare to conventional hydrothermal process.
Li, Ying; Li, Jinhui; Deng, Chao
2014-01-01
Raw leachate samples were collected from various municipal solid waste (MSW) landfills in a densely populated city in North China to measure the levels and compositional patterns of polybrominated diphenyl ethers (PBDEs) in leachate. The total concentration of PBDEs ranged from 4.0 to 351.2 ng/L, with an average of 73.0 ng/L. BDE-209 dominated the congeners in most of the samples, followed by BDE-47 and -99. Higher PBDEs concentrations were found in leachate from younger landfill facilities in the urban area. Pearson correlation analysis implied a potential dependence of the PBDEs level on landfill age, suspended solids and dissolved organic carbon, while the results of principal component analysis (PCA) suggested potential origins and transportation of PBDEs in leachate. The Monte Carlo method was adopted to estimate the annual leakage of PBDEs into the underground environment nationwide, based on two main scenarios: simple landfills with inadequate liner systems and composite-lined landfills with defective geomembranes. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schneider, V. E.; Poletto, M.; Peresin, D.; Carra, S. H. Z.; Vanni, D.
2017-07-01
With the increase of population concentration in urban areas, there is an increase in the solid waste generation, which demands the search for alternatives and solutions for the environmentally correct destination of these. In this context, this work presents an evaluation on the forms of organic and selective domestic waste collection and the potential for the recyclability of the waste destined to the same, based on the physical characterization and gravimetric composition of the solid wastes generated in the town of Antônio Prado, located in the state of Rio Grande do Sul, Brazil, between 2014 and 2016. It is observed that the population has significant information regarding the correct disposal of waste in the selective collection, since 60% of the waste destined to the same is effectively recyclable. Plastic (24.8%), paper (10.9%), glass (8.8%) and cardboard (8.4%) are the most representative materials in recycled waste samples in the urban area. The importance of continuity and improvement of environmental education programs is essential, due to the evolution in the quantity and complexity of products and materials currently manufactured, and to the method of mechanized waste collection used by the municipality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemathaga, Felicia; Maringa, Sally; Chimuka, Luke
2008-07-01
The shortcomings in the management practices of hospital solid waste in Limpopo Province of South Africa were studied by looking at two hospitals as case studies. Apart from field surveys, the generated hospital waste was weighed to compute the generation rates and was followed through various management practices to the final disposal. The findings revealed a major policy implementation gap between the national government and the hospitals. While modern practices such as landfill and incineration are used, their daily operations were not carried according to minimum standards. Incinerator ash is openly dumped and wastes are burned on landfills instead ofmore » being covered with soil. The incinerators used are also not environmentally friendly as they use old technology. The findings further revealed that there is no proper separation of wastes according to their classification as demanded by the national government. The mean percentage composition of the waste was found in the following decreasing order: general waste (60.74%) > medical waste (30.32%) > sharps (8.94%). The mean generation rates were found to be 0.60 kg per patient per day.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doležalová, Markéta, E-mail: mdolezalova@email.cz; Benešová, Libuše; Závodská, Anita
2013-09-15
Highlights: • The character of household waste in the three different types of households were assesed. • The quantity, density and composition of household waste were determined. • The physicochemical characteristics were determined. • The changing character of household waste during past 10 years was described. • The potential of energy recovery of household waste in Czech republic was assesed. - Abstract: The authors of this paper report on the changing character of household waste, in the Czech Republic between 1999 and 2009 in households differentiated by their heating methods. The data presented are the result of two projects, financedmore » by the Czech Ministry of Environment, which were undertaken during this time period with the aim of focusing on the waste characterisation and complete analysis of the physicochemical properties of the household waste. In the Czech Republic, the composition of household waste varies significantly between different types of households based on the methods of home heating employed. For the purposes of these studies, the types of homes were divided into three categories – urban, mixed and rural. Some of the biggest differences were found in the quantities of certain subsample categories, especially fine residue (matter smaller than 20 mm), between urban households with central heating and rural households that primarily employ solid fuel such coal or wood. The use of these solid fuels increases the fraction of the finer categories because of the higher presence of ash. Heating values of the residual household waste from the three categories varied very significantly, ranging from 6.8 MJ/kg to 14.2 MJ/kg in 1999 and from 6.8 MJ/kg to 10.5 MJ/kg in 2009 depending on the type of household and season. The same factors affect moisture of residual household waste which varied from 23.2% to 33.3%. The chemical parameters also varied significantly, especially in the quantities of Tl, As, Cr, Zn, Fe and Mn, which were higher in rural households. Because knowledge about the properties of household waste, as well as its physicochemical characteristics, is very important not only for future waste management, but also for the prediction of the behaviour and influence of the waste on the environment as the country continues to streamline its legislation to the European Union’s solid waste mandates, the results of these studies were employed by the Czech Ministry of Environment to optimise the national waste management strategy.« less
Gu, Fu; Guo, Jianfeng; Zhang, Wujie; Summers, Peter A; Hall, Philip
2017-12-01
Mechanical recycling of waste plastics is an environmental solution to the problem of waste plastic disposal, and has already become a common practice in industry. However, limited information can be found on either the industralised plastic recycling or the recycled materials, despite the use of recycled plastics has already extended to automobile production. This study investigates the life cycle environmental impacts of mechanical plastic recycling practice of a plastic recycling company in China. Waste plastics from various sources, such as agricultural wastes, plastic product manufacturers, collected solid plastic wastes and parts dismantled from waste electric and electronic equipments, are processed in three routes with products end up in different markets. The results of life cycle assessments show that the extrusion process has the largest environmental impacts, followed by the use of fillers and additives. Compared to production of virgin plastics and composites, the mechanical recycling is proved to be a superior alternative in most environmental aspects. Substituting virgin plastic composites with recycled plastic composites has achieved the highest environmental benefits, as virgin composite production has an impact almost 4 times higher that of the recycled composite production in each ReCiPe endpoint damage factor. Sensitivity analysis shows that the coverage of collecting network contribute affect little to overall environmental impact, and centralisation plays an important role in reducing overall environmental impacts. Among the fillers and additives, impact modifiers account for the most significant contributions to the environmental impacts of recycled composites. This study provides necessary information about the existing industrialised plastic recycling practice, and recommendations are given. Research implications are presented with the purpose to achieve higher substitution rate and lower environmental impact. Copyright © 2017 Elsevier B.V. All rights reserved.
Charnier, Cyrille; Latrille, Eric; Jimenez, Julie; Lemoine, Margaux; Boulet, Jean-Claude; Miroux, Jérémie; Steyer, Jean-Philippe
2017-01-01
The development of anaerobic digestion involves both co-digestion of solid wastes and optimization of the feeding recipe. Within this context, substrate characterisation is an essential issue. Although it is widely used, the biochemical methane potential is not sufficient to optimize the operation of anaerobic digestion plants. Indeed the biochemical composition in carbohydrates, lipids, proteins and the chemical oxygen demand of the inputs are key parameters for the optimisation of process performances. Here we used near infrared spectroscopy as a robust and less-time consuming tool to predict the solid waste content in carbohydrates, lipids and nitrogen, and the chemical oxygen demand. We built a Partial Least Square regression model with 295 samples and validated it with an independent set of 46 samples across a wide range of solid wastes found in anaerobic digestion units. The standard errors of cross-validation were 90mgO 2 ⋅gTS -1 carbohydrates, 2.5∗10 -2 g⋅gTS -1 lipids, 7.2∗10 -3 g⋅gTS -1 nitrogen and 99mgO 2 ⋅gTS -1 chemical oxygen demand. The standard errors of prediction were 53mgO 2 ⋅gTS -1 carbohydrates, 3.2∗10 -2 g⋅gTS -1 lipids, 8.6∗10 -3 g⋅gTS -1 nitrogen and 83mgO 2 ⋅gTS -1 chemical oxygen demand. These results show that near infrared spectroscopy is a new fast and cost-efficient way to characterize solid wastes content and improve their anaerobic digestion monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.
Copper desorption from Gelidium algal biomass.
Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R
2007-04-01
Desorption of divalent copper from marine algae Gelidium sesquipedale, an algal waste (from agar extraction industry) and a composite material (the algal waste immobilized in polyacrylonitrile) was studied in a batch system. Copper ions were first adsorbed until saturation and then desorbed by HNO(3) and Na(2)EDTA solutions. Elution efficiency using HNO(3) increases as pH decreases. At pH=1, for a solid to liquid ratio S/L=4gl(-1), elution efficiency was 97%, 95% and 88%, the stoichiometric coefficient for the ionic exchange, 0.70+/-0.02, 0.73+/-0.05 and 0.76+/-0.06 and the selectivity coefficient, 0.93+/-0.07, 1.0+/-0.3 and 1.1+/-0.3, respectively, for algae Gelidium, algal waste and composite material. Complexation of copper ions by EDTA occurs in a molar proportion of 1:1 and the elution efficiency increases with EDTA concentration. For concentrations of 1.4, 0.88 and 0.57 mmoll(-1), the elution efficiency for S/L=4gl(-1), was 91%, 86% and 78%, respectively, for algae Gelidium, algal waste and composite material. The S/L ratio, in the range 1-20gl(-1), has little influence on copper recovery by using 0.1M HNO(3). Desorption kinetics was very fast for all biosorbents. Kinetic data using HNO(3) as eluant were well described by the mass transfer model, considering the average metal concentration in the solid phase and the equilibrium relationship given by the mass action law. The homogeneous diffusion coefficient varied between 1.0 x 10(-7)cm(2)s(-1) for algae Gelidium and 3.0 x 10(-7)cm(2)s(-1) for the composite material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gug, JeongIn, E-mail: Jeongin_gug@student.uml.edu; Cacciola, David, E-mail: david_cacciola@student.uml.edu; Sobkowicz, Margaret J., E-mail: Margaret_sobkowiczkline@uml.edu
Highlights: • Briquetting was used to produce solid fuels from municipal solid waste and recycled plastics. • Optimal drying, processing temperature and pressure were found to produce stable briquettes. • Addition of waste plastics yielded heating values comparable with typical coal feedstocks. • This processing method improves utilization of paper and plastic diverted from landfills. - Abstract: Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW)more » is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette sample composition was similar to biomass fuels but had significant advantages due to addition of waste plastics that have high energy content compared to other waste types. Addition of PP and HDPE presented better benefits than addition of PET due to lower softening temperature and lower oxygen content. It should be noted that while harmful emissions such as dioxins, furans and mercury can result from burning plastics, WTE facilities have been able to control these emissions to meet US EPA standards. This research provides a drop-in coal replacement that reduces demand on landfill space and replaces a significant fraction of fossil-derived fuel with a renewable alternative.« less
‘Wasteaware’ benchmark indicators for integrated sustainable waste management in cities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, David C., E-mail: waste@davidcwilson.com; Rodic, Ljiljana; Cowing, Michael J.
Highlights: • Solid waste management (SWM) is a key utility service, but data is often lacking. • Measuring their SWM performance helps a city establish priorities for action. • The Wasteaware benchmark indicators: measure both technical and governance aspects. • Have been developed over 5 years and tested in more than 50 cities on 6 continents. • Enable consistent comparison between cities and countries and monitoring progress. - Abstract: This paper addresses a major problem in international solid waste management, which is twofold: a lack of data, and a lack of consistent data to allow comparison between cities. The papermore » presents an indicator set for integrated sustainable waste management (ISWM) in cities both North and South, to allow benchmarking of a city’s performance, comparing cities and monitoring developments over time. It builds on pioneering work for UN-Habitat’s solid waste management in the World’s cities. The comprehensive analytical framework of a city’s solid waste management system is divided into two overlapping ‘triangles’ – one comprising the three physical components, i.e. collection, recycling, and disposal, and the other comprising three governance aspects, i.e. inclusivity; financial sustainability; and sound institutions and proactive policies. The indicator set includes essential quantitative indicators as well as qualitative composite indicators. This updated and revised ‘Wasteaware’ set of ISWM benchmark indicators is the cumulative result of testing various prototypes in more than 50 cities around the world. This experience confirms the utility of indicators in allowing comprehensive performance measurement and comparison of both ‘hard’ physical components and ‘soft’ governance aspects; and in prioritising ‘next steps’ in developing a city’s solid waste management system, by identifying both local strengths that can be built on and weak points to be addressed. The Wasteaware ISWM indicators are applicable to a broad range of cities with very different levels of income and solid waste management practices. Their wide application as a standard methodology will help to fill the historical data gap.« less
Testing and Analysis of the First Plastic Melt Waste Compactor Prototype
NASA Technical Reports Server (NTRS)
Pace, Gregory S.; Fisher, John W.
2005-01-01
A half scale Plastic Melt Waste Compactor prototype has been developed at NASA Ames Research Center. The half scale prototype unit will lead to the development of a full scale Plastic Melt Waste Compactor prototype that is representative of flight hardware that would be used on near and far term space missions. This report details the testing being done on the prototype Plastic Melt Waste Compactor by the Solid Waste Management group at NASA Ames Research Center. The tests are designed to determine the prototype's functionality, simplicity of operation, ability to contain and control noxious off-gassing, biological stability of the processed waste, and water recovery potential using a waste composite that is representative of the types of wastes produced on the International Space Station, Space Shuttle, MIR and Skylab missions.
Chemical Characterization of an Envelope A Sample from Hanford Tank 241-AN-103
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M.S.
2000-08-23
A whole tank composite sample from Hanford waste tank 241-AN-103 was received at the Savannah River Technology Center (SRTC) and chemically characterized. Prior to characterization the sample was diluted to {approximately}5 M sodium concentration. The filtered supernatant liquid, the total dried solids of the diluted sample, and the washed insoluble solids obtained from filtration of the diluted sample were analyzed. A mass balance calculation of the three fractions of the sample analyzed indicate the analytical results appear relatively self-consistent for major components of the sample. However, some inconsistency was observed between results where more than one method of determination wasmore » employed and for species present in low concentrations. A direct comparison to previous analyses of material from tank 241-AN-103 was not possible due to unavailability of data for diluted samples of tank 241-AN-103 whole tank composites. However, the analytical data for other types of samples from 241-AN-103 we re mathematically diluted and compare reasonably with the current results. Although the segments of the core samples used to prepare the sample received at SRTC were combined in an attempt to produce a whole tank composite, determination of how well the results of the current analysis represent the actual composition of the Hanford waste tank 241-AN-103 remains problematic due to the small sample size and the large size of the non-homogenized waste tank.« less
Fate of heavy metals during municipal solid waste incineration.
Abanades, S; Flamant, G; Gagnepain, B; Gauthier, D
2002-02-01
A thermodynamic analysis was performed to determine whether it is suitable to predict the heavy metal (HM) speciation during the Municipal Solid Waste Incineration process. The fate of several selected metals (Cd, Pb, Zn, Cr, Hg, As, Cu, Co, Ni) during incineration was theoretically investigated. The equilibrium analysis predicted the metal partitioning during incineration and determined the impact of operating conditions (temperature and gas composition) on their speciation. The study of the gas composition influence was based on the effects of the contents of oxygen (reducing or oxidising conditions) and chlorine on the HM partitioning. The theoretical HM speciation which was calculated in a complex system representing a burning sample of Municipal Solid Waste can explain the real partitioning (obtained from literature results) of all metals among the various ashes except for Pb. Then, the results of the thermodynamic study were compared with those of characterisation of real incinerator residues, using complementary techniques (chemical extraction series and X-ray micro-analyses). These analysis were performed to determine experimentally the speciation of the three representative metals Cr, Pb, and Zn. The agreement is good for Cr and Zn but not for Pb again, which mainly shows unleachable chemical speciations in the residues. Pb tends to remain in the bottom ash whereas thermodynamics often predicts its complete volatilisation under chlorides, and thus its presence exclusively in fly ash.
NASA Astrophysics Data System (ADS)
Saleh, H. M.; Eskander, S. B.
2012-11-01
Immobilization process of radioactive wastes is a compromise between economic and reliability factors. It involves the use of inert and cheap matrices to fix the wastes in homogenous monolithic solid forms. The characteristics of the resulting waste form were studied in various disposal options before coming to the final conclusion concerning the solidification process. A proposed mortar composite is formed from a mixture of Portland cement and sand in the weight ratio of 0.33 which by slurry of degraded spinney waste fibers at the ratio of 0.7 relative to the Portland cement. The composite was prepared at the laboratory ambient conditions (25 ± 5 °C). The temperature changes accompanying the hydration process were followed up to 96 h. At the end of 28 days, curing period, the performance of the obtained composite was evaluated under immersion circumstances imitating a flooding scenario that could happen at a disposal site. Compressive strength, porosity and mass changes were investigated under complete static immersion conditions in three different leachants, namely acetic acid, groundwater and seawater for 48 weeks. X-ray and scanning electron microscopy were used to follow and evaluate the changes that may occur for the proposed composite under flooding conditions. Based on the experimental data reached, it could be concluded that the prepared mortar composite can be nominated as a matrix for solidification/stabilization of some radwaste categories, even under the aggressive attacks of various immersion media.
Methodology to design a municipal solid waste generation and composition map: a case study.
Gallardo, A; Carlos, M; Peris, M; Colomer, F J
2014-11-01
The municipal solid waste (MSW) management is an important task that local governments as well as private companies must take into account to protect human health, the environment and to preserve natural resources. To design an adequate MSW management plan the first step consist in defining the waste generation and composition patterns of the town. As these patterns depend on several socio-economic factors it is advisable to organize them previously. Moreover, the waste generation and composition patterns may vary around the town and over the time. Generally, the data are not homogeneous around the city as the number of inhabitants is not constant nor it is the economic activity. Therefore, if all the information is showed in thematic maps, the final waste management decisions can be made more efficiently. The main aim of this paper is to present a structured methodology that allows local authorities or private companies who deal with MSW to design its own MSW management plan depending on the available data. According to these data, this paper proposes two ways of action: a direct way when detailed data are available and an indirect way when there is a lack of data and it is necessary to take into account bibliographic data. In any case, the amount of information needed is considerable. This paper combines the planning methodology with the Geographic Information Systems to present the final results in thematic maps that make easier to interpret them. The proposed methodology is a previous useful tool to organize the MSW collection routes including the selective collection. To verify the methodology it has been successfully applied to a Spanish town. Copyright © 2014 Elsevier Ltd. All rights reserved.
Methodology to design a municipal solid waste generation and composition map: a case study.
Gallardo, A; Carlos, M; Peris, M; Colomer, F J
2015-02-01
The municipal solid waste (MSW) management is an important task that local governments as well as private companies must take into account to protect human health, the environment and to preserve natural resources. To design an adequate MSW management plan the first step consists in defining the waste generation and composition patterns of the town. As these patterns depend on several socio-economic factors it is advisable to organize them previously. Moreover, the waste generation and composition patterns may vary around the town and over the time. Generally, the data are not homogeneous around the city as the number of inhabitants is not constant nor it is the economic activity. Therefore, if all the information is showed in thematic maps, the final waste management decisions can be made more efficiently. The main aim of this paper is to present a structured methodology that allows local authorities or private companies who deal with MSW to design its own MSW management plan depending on the available data. According to these data, this paper proposes two ways of action: a direct way when detailed data are available and an indirect way when there is a lack of data and it is necessary to take into account bibliographic data. In any case, the amount of information needed is considerable. This paper combines the planning methodology with the Geographic Information Systems to present the final results in thematic maps that make easier to interpret them. The proposed methodology is a previous useful tool to organize the MSW collection routes including the selective collection. To verify the methodology it has been successfully applied to a Spanish town. Copyright © 2014 Elsevier Ltd. All rights reserved.
Structural Composite Construction Materials Manufactured from Municipal Solid Waste
1994-04-20
in Table 1. Candidate matrix materials included polystyrene (PS) or expanded polystyrene (EPS), high density polyethylene (HDPE), and polyethylene...companies make a variety of expanded polystyrene insulation panels that arc used in insulation and roofing systems.46 Thermoplastics are seeing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritsky, K.J.; Miller, D.L.; Cernansky, N.P.
1994-09-01
A methodology was introduced for modeling the devolatilization characteristics of refuse-derived fuel (RFD) in terms of temperature-dependent weight loss. The basic premise of the methodology is that RDF is modeled as a combination of select municipal solid waste (MSW) components. Kinetic parameters are derived for each component from thermogravimetric analyzer (TGA) data measured at a specific set of conditions. These experimentally derived parameters, along with user-derived parameters, are inputted to model equations for the purpose of calculating thermograms for the components. The component thermograms are summed to create a composite thermogram that is an estimate of the devolatilization for themore » as-modeled RFD. The methodology has several attractive features as a thermal analysis tool for waste fuels. 7 refs., 10 figs., 3 tabs.« less
Hansen, Trine Lund; Bhander, Gurbakhash S; Christensen, Thomas Højlund; Bruun, Sander; Jensen, Lars Stoumann
2006-04-01
A model capable of quantifying the potential environmental impacts of agricultural application of composted or anaerobically digested source-separated organic municipal solid waste (MSW) is presented. In addition to the direct impacts, the model accounts for savings by avoiding the production and use of commercial fertilizers. The model is part of a larger model, Environmental Assessment of Solid Waste Systems and Technology (EASEWASTE), developed as a decision-support model, focusing on assessment of alternative waste management options. The environmental impacts of the land application of processed organic waste are quantified by emission coefficients referring to the composition of the processed waste and related to specific crop rotation as well as soil type. The model contains several default parameters based on literature data, field experiments and modelling by the agro-ecosystem model, Daisy. All data can be modified by the user allowing application of the model to other situations. A case study including four scenarios was performed to illustrate the use of the model. One tonne of nitrogen in composted and anaerobically digested MSW was applied as fertilizer to loamy and sandy soil at a plant farm in western Denmark. Application of the processed organic waste mainly affected the environmental impact categories global warming (0.4-0.7 PE), acidification (-0.06 (saving)-1.6 PE), nutrient enrichment (-1.0 (saving)-3.1 PE), and toxicity. The main contributors to these categories were nitrous oxide formation (global warming), ammonia volatilization (acidification and nutrient enrichment), nitrate losses (nutrient enrichment and groundwater contamination), and heavy metal input to soil (toxicity potentials). The local agricultural conditions as well as the composition of the processed MSW showed large influence on the environmental impacts. A range of benefits, mainly related to improved soil quality from long-term application of the processed organic waste, could not be generally quantified with respect to the chosen life cycle assessment impact categories and were therefore not included in the model. These effects should be considered in conjunction with the results of the life cycle assessment.
Wimmer, Bernhard; Hrad, Marlies; Huber-Humer, Marion; Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G
2013-10-01
Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ(13)C, δ(2)H and δ(18)O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ(13)C-value of the dissolved inorganic carbon (δ(13)C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ(13)C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ(13)C-DIC of -20‰ to -25‰. The production of methane under anaerobic conditions caused an increase in δ(13)C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a δ(13)C-DIC of about -20‰. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidation-reduction status of MSW landfills. Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and stability of the organic matter in landfilled municipal solid waste and can be used for monitoring the progress of in situ aeration. Copyright © 2013 Elsevier Ltd. All rights reserved.
Determination of biogas generation potential as a renewable energy source from supermarket wastes.
Alkanok, Gizem; Demirel, Burak; Onay, Turgut T
2014-01-01
Fruit, vegetable, flower waste (FVFW), dairy products waste (DPW), meat waste (MW) and sugar waste (SW) obtained from a supermarket chain were anaerobically digested, in order to recover methane as a source of renewable energy. Batch mesophilic anaerobic reactors were run at total solids (TS) ratios of 5%, 8% and 10%. The highest methane yield of 0.44 L CH4/g VS(added) was obtained from anaerobic digestion of wastes (FVFW+DPW+MW+SW) at 10% TS, with 66.4% of methane (CH4) composition in biogas. Anaerobic digestion of mixed wastes at 5% and 8% TS provided slightly lower methane yields of 0.41 and 0.40 L CH4/g VS(added), respectively. When the wastes were digested alone without co-substrate addition, the highest methane yield of 0.40 L CH4/g VS(added) was obtained from FVFW at 5% TS. Generally, although the volatile solids (VS) conversion percentages seemed low during the experiments, higher methane yields could be obtained from anaerobic digestion of supermarket wastes. A suitable carbon/nitrogen (C/N) ratio, proper adjustment of the buffering capacity and the addition of essential trace nutrients (such as Ni) could improve VS conversion and biogas production yields significantly. Copyright © 2013 Elsevier Ltd. All rights reserved.
[Agroindustrial wastes methanization and bacterial composition in anaerobic digestion].
González-Sánchez, María E; Pérez-Fabiel, Sergio; Wong-Villarreal, Arnoldo; Bello-Mendoza, Ricardo; Yañez-Ocampo, Gustavo
2015-01-01
The tons of organic waste that are annually generated by agro-industry, can be used as raw material for methane production. For this reason, it is important to previously perform biodegradability tests to organic wastes for their full scale methanization. This paper addresses biodegradability, methane production and the behavior of populations of eubacteria and archaeabacteria during anaerobic digestion of banana, mango and papaya agroindustrial wastes. Mango and banana wastes had higher organic matter content than papaya in terms of their volatile solids and total solid rate (94 and 75% respectively). After 63 days of treatment, the highest methane production was observed in banana waste anaerobic digestion: 63.89ml CH4/per gram of chemical oxygen demand of the waste. In the PCR-DGGE molecular analysis, different genomic footprints with oligonucleotides for eubacteria and archeobacteria were found. Biochemical methane potential results proved that banana wastes have the best potential to be used as raw material for methane production. The result of a PCR- DGGE analysis using specific oligonucleotides enabled to identify the behavior of populations of eubacteria and archaeabacteria present during the anaerobic digestion of agroindustrial wastes throughout the process. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
EXPERIMENTAL METHODS TO ESTIMATE ACCUMULATED SOLIDS IN NUCLEAR WASTE TANKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duignan, M.; Steeper, T.; Steimke, J.
2012-12-10
The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a wastemore » tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream; Magnetic wand used to manually remove stainless steel solids from samples and the tank heel; Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas; Laser rangefinders to determine the volume and shape of the solids mounds; Core sampler to determine the stainless steel solids distribution within the solids mounds; Computer driven positioner that placed the laser rangefinders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These devices and techniques were very effective to estimate the movement, location, and concentrations of the solids representing plutonium and are expected to perform well at a larger scale. The operation of the techniques and their measurement accuracies will be discussed as well as the overall results of the accumulated solids test.« less
Experimental Methods to Estimate Accumulated Solids in Nuclear Waste Tanks - 13313
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duignan, Mark R.; Steeper, Timothy J.; Steimke, John L.
2013-07-01
The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a wastemore » tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: - Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream. - Magnetic wand used to manually remove stainless steel solids from samples and the tank heel. - Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas. - Laser range finders to determine the volume and shape of the solids mounds. - Core sampler to determine the stainless steel solids distribution within the solids mounds. - Computer driven positioner that placed the laser range finders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These devices and techniques were very effective to estimate the movement, location, and concentrations of the solids representing plutonium and are expected to perform well at a larger scale. The operation of the techniques and their measurement accuracies will be discussed as well as the overall results of the accumulated solids test. (authors)« less
Radioactivity in wastes generated from shale gas exploration and production - North-Eastern Poland.
Jodłowski, Paweł; Macuda, Jan; Nowak, Jakub; Nguyen Dinh, Chau
2017-09-01
In the present study, the K-40, U-238, Ra-226, Pb-210, Ra-228 and Th-228 activity concentrations were measured in 64 samples of wastes generated from shale gas exploration in North-Eastern Poland. The measured samples consist of drill cuttings, solid phase of waste drilling muds, fracking fluids, return fracking fluids and waste proppants. The measured activity concentrations in solid samples vary in a wide range from 116 to around 1100 Bq/kg for K-40, from 14 to 393 Bq/kg for U-238, from 15 to 415 Bq/kg for Ra-226, from 12 to 391 Bq/kg for Pb-210, from a few Bq/kg to 516 Bq/kg for Ra-228 and from a few Bq/kg to 515 Bq/kg for Th-228. Excluding the waste proppants, the measured activity concentrations in solid samples oscillate around their worldwide average values in soil. In the case of the waste proppants, the activity concentrations of radionuclides from uranium and thorium decay series are significantly elevated and equal to several hundreds of Bq/kg but it is connected with the mineralogical composition of proppants. The significant enhancement of Ra-226 and Ra-228 activity concentrations after fracking process was observed in the case of return fracking fluids, but the radium isotopes content in these fluids is comparable with that in waste waters from copper and coal mines in Poland. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ratanatamskul, Chavalit; Saleart, Tawinan
2016-04-01
Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m(3)/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production.
Investigation of Tank 241-AW-104 Composite Floating Layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meznarich, H. K.; Bolling, S. D.; Lachut, J. S.
Seven grab samples and one field blank were taken from Tank 241-AW-104 (AW-104) on June 2, 2017, and received at 222-S Laboratory on June 5, 2017. A visible layer with brown solids was observed floating on the top of two surface tank waste samples (4AW-17-02 and 4AW 17 02DUP). The floating layer from both samples was collected, composited, and submitted for chemical analyses and solid phase characterization in order to understand the composition of the floating layer. Tributyl phosphate and tridecane were higher in the floating layer than in the aqueous phase. Density in the floating layer was slightly lowermore » than the mean density of all grab samples. Sodium nitrate and sodium carbonate were major components with a trace of gibbsite and very small size agglomerates were present in the solids of the floating layer. The supernate consisted of organics, soluble salt, and particulates.« less
40 CFR 257.3 - Criteria for classification of solid waste disposal facilities and practices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities and Practices § 257.3 Criteria for classification of solid waste disposal facilities and practices. Solid waste disposal facilities or practices...
40 CFR 257.3 - Criteria for classification of solid waste disposal facilities and practices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities and Practices § 257.3 Criteria for classification of solid waste disposal facilities and practices. Solid waste disposal facilities or practices...
Sources and processing of CELSS wastes
NASA Technical Reports Server (NTRS)
Wydeven, T.; Tremor, J.; Koo, C.; Jacquez, R.
1989-01-01
The production rate and solid content of waste streams found in a life support system for a space habitat (in which plants are grown for food) are discussed. Two recycling scenarios, derived from qualitative considerations as opposed to quantitative mass and energy balances, tradeoff studies, etc., are presented; they reflect differing emphases on and responses to the waste stream formation rates and their composition, as well as indicate the required products from waste treatment that are needed in a life support system. The data presented demonstrate the magnitude of the challenge to developing a life support system for a space habitat requiring a high degree of closure.
Solid Waste Management Plan. Revision 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-26
The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.
Leaching Characteristics of Hanford Ferrocyanide Wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, Matthew K.; Fiskum, Sandra K.; Peterson, Reid A.
2009-12-21
A series of leach tests were performed on actual Hanford Site tank wastes in support of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The samples were targeted composite slurries of high-level tank waste materials representing major complex, radioactive, tank waste mixtures at the Hanford Site. Using a filtration/leaching apparatus, sample solids were concentrated, caustic leached, and washed under conditions representative of those planned for the Pretreatment Facility in the WTP. Caustic leaching was performed to assess the mobilization of aluminum (as gibbsite, Al[OH]3, and boehmite AlO[OH]), phosphates [PO43-], chromium [Cr3+] and, to a lesser extent, oxalates [C2O42-]). Ferrocyanidemore » waste released the solid phase 137Cs during caustic leaching; this was antithetical to the other Hanford waste types studied. Previous testing on ferrocyanide tank waste focused on the aging of the ferrocyanide salt complex and its thermal compatibilities with nitrites and nitrates. Few studies, however, examined cesium mobilization in the waste. Careful consideration should be given to the pretreatment of ferrocyanide wastes in light of this new observed behavior, given the fact that previous testing on simulants indicates a vastly different cesium mobility in this waste form. The discourse of this work will address the overall ferrocyanide leaching characteristics as well as the behavior of the 137Cs during leaching.« less
36 CFR 13.1008 - Solid waste disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...
36 CFR 13.1604 - Solid waste disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...
36 CFR 13.1118 - Solid waste disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...
36 CFR 13.1604 - Solid waste disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...
36 CFR 13.1912 - Solid waste disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located...
36 CFR 13.1008 - Solid waste disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...
36 CFR 13.1118 - Solid waste disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...
[Effect of moisture content on anaerobic methanization of municipal solid waste].
Qu, Xian; He, Pin-Jing; Shao, Li-Ming; Bouchez, Théodore
2009-03-15
Biogas production, gas and liquid characteristics were investigated for comparing the effect of moisture content on methanization process of MSW with different compositions of food waste and cellulosic waste. Batch reactors were used to study the anaerobic methanization of typical Chinese and French municipal solid waste (MSW) and cellulosic waste with different moisture content, as 35%, field capacity (65%-70%), 80%, and saturated state (> 95%). The results showed that for the typical Chinese and French waste, which contained putrescible waste, the intermediate product, VFA, was diluted by high content of water, which helped to release the VFA inhibition on hydrolysis and methanization. Mass amount of methane was produced only when the moisture content of typical French waste was higher than 80%, while higher content of moisture was needed when the content of putrescible waste was higher in MSW, as > 95% for typical Chinese waste. Meanwhile the methane production rate and the ultimate cumulated methane production were increased when moisture content was leveled up. The ultimate cumulated methane production of the typical French waste with saturated state was 0.6 times higher than that of the waste with moisture content of 80%. For cellulosic waste, high moisture content of cellulosic materials contributed to increase the attachment area of microbes and enzyme on the surface of the materials, which enhance the waste hydrolysis and methanization. When the moisture content of the cellulosic materials increased from field capacity (65%) to saturated state (> 95%), the ultimate cumulated methane production increased for 3.8 times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhikun; Zhang, Lei; Li, Aimin, E-mail: leeam@dlut.edu.cn
Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment.more » In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications.« less
CHEMICAL DIFFERENCES BETWEEN SLUDGE SOLIDS AT THE F AND H AREA TANK FARMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reboul, S.
2012-08-29
The primary source of waste solids received into the F Area Tank Farm (FTF) was from PUREX processing performed to recover uranium and plutonium from irradiated depleted uranium targets. In contrast, two primary sources of waste solids were received into the H Area Tank Farm (HTF): a) waste from PUREX processing; and b) waste from H-modified (HM) processing performed to recover uranium and neptunium from burned enriched uranium fuel. Due to the differences between the irradiated depleted uranium targets and the burned enriched uranium fuel, the average compositions of the F and H Area wastes are markedly different from onemore » another. Both F and H Area wastes contain significant amounts of iron and aluminum compounds. However, because the iron content of PUREX waste is higher than that of HM waste, and the aluminum content of PUREX waste is lower than that of HM waste, the iron to aluminum ratios of typical FTF waste solids are appreciably higher than those of typical HTF waste solids. Other constituents present at significantly higher concentrations in the typical FTF waste solids include uranium, nickel, ruthenium, zinc, silver, cobalt and copper. In contrast, constituents present at significantly higher concentrations in the typical HTF waste solids include mercury, thorium, oxalate, and radionuclides U-233, U-234, U-235, U-236, Pu-238, Pu-242, Cm-244, and Cm-245. Because of the higher concentrations of Pu-238 in HTF, the long-term concentrations of Th-230 and Ra-226 (from Pu-238 decay) will also be higher in HTF. The uranium and plutonium distributions of the average FTF waste were found to be consistent with depleted uranium and weapons grade plutonium, respectively (U-235 comprised 0.3 wt% of the FTF uranium, and Pu-240 comprised 6 wt% of the FTF plutonium). In contrast, at HTF, U-235 comprised 5 wt% of the uranium, and Pu-240 comprised 17 wt% of the plutonium, consistent with enriched uranium and high burn-up plutonium. X-ray diffraction analyses of various FTF and HTF samples indicated that the primary crystalline compounds of iron in sludge solids are Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, and FeO(OH), and the primary crystalline compounds of aluminum are Al(OH){sub 3} and AlO(OH). Also identified were carbonate compounds of calcium, magnesium, and sodium; a nitrated sodium aluminosilicate; and various uranium compounds. Consistent with expectations, oxalate compounds were identified in solids associated with oxalic acid cleaning operations. The most likely oxidation states and chemical forms of technetium are assessed in the context of solubility, since technetium-99 is a key risk driver from an environmental fate and transport perspective. The primary oxidation state of technetium in SRS sludge solids is expected to be Tc(IV). In salt waste, the primary oxidation state is expected to be Tc(VII). The primary form of technetium in sludge is expected to be a hydrated technetium dioxide, TcO{sub 2} {center_dot} xH{sub 2}O, which is relatively insoluble and likely co-precipitated with iron. In salt waste solutions, the primary form of technetium is expected to be the very soluble pertechnetate anion, TcO{sub 4}{sup -}. The relative differences between the F and H Tank Farm waste provide a basis for anticipating differences that will occur as constituents of FTF and HTF waste residue enter the environment over the long-term future. If a constituent is significantly more dominant in one of the Tank Farms, its long-term environmental contribution will likely be commensurately higher, assuming the environmental transport conditions of the two Tank Farms share some commonality. It is in this vein that the information cited in this document is provided - for use during the generation, assessment, and validation of Performance Assessment modeling results.« less
Global capacity, potentials and trends of solid waste research and management.
Nwachukwu, Michael A; Ronald, Mersky; Feng, Huan
2017-09-01
In this study, United States, China, India, United Kingdom, Nigeria, Egypt, Brazil, Italy, Germany, Taiwan, Australia, Canada and Mexico were selected to represent the global community. This enabled an overview of solid waste management worldwide and between developed and developing countries. These are countries that feature most in the International Conference on Solid Waste Technology and Management (ICSW) over the past 20 years. A total of 1452 articles directly on solid waste management and technology were reviewed and credited to their original country of research. Results show significant solid waste research potentials globally, with the United States leading by 373 articles, followed by India with 230 articles. The rest of the countries are ranked in the order of: UK > Taiwan > Brazil > Nigeria > Italy > Japan > China > Canada > Germany >Mexico > Egypt > Australia. Global capacity in solid waste management options is in the order of: Waste characterisation-management > waste biotech/composting > waste to landfill > waste recovery/reduction > waste in construction > waste recycling > waste treatment-reuse-storage > waste to energy > waste dumping > waste education/public participation/policy. It is observed that the solid waste research potential is not a measure of solid waste management capacity. The results show more significant research impacts on solid waste management in developed countries than in developing countries where economy, technology and society factors are not strong. This article is targeted to motivate similar study in each country, using solid waste research articles from other streamed databases to measure research impacts on solid waste management.
Ribé, V; Nehrenheim, E; Odlare, M
2014-10-01
Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction as well as a source of renewable energy. In the process fly and bottom ash is generated as a waste material. The ash residue may vary greatly in composition depending on the type of waste incinerated and it can contain elevated levels of harmful contaminants such as heavy metals. In this study, the ecotoxicity of a weathered, untreated incineration bottom ash was characterized as defined by the H14 criterion of the EU Waste Framework Directive by means of an elemental analysis, leaching tests followed by a chemical analysis and a combination of aquatic and solid-phase bioassays. The experiments were conducted to assess the mobility and bioavailability of ash contaminants. A combination of aquatic and terrestrial bioassays was used to determine potentially adverse acute effects of exposure to the solid ash and aqueous ash leachates. The results from the study showed that the bottom ash from a municipal waste incineration plant in mid-Sweden contained levels of metals such as Cu, Pb and Zn, which exceeded the Swedish EPA limit values for inert wastes. The chemical analysis of the ash leachates showed high concentrations of particularly Cr. The leachate concentration of Cr exceeded the limit value for L/S 10 leaching for inert wastes. Filtration of leachates prior to analysis may have underestimated the leachability of complex-forming metals such as Cu and Pb. The germination test of solid ash and ash leachates using T. repens showed a higher inhibition of seedling emergence of seeds exposed to the solid ash than the seeds exposed to ash leachates. This indicated a relatively low mobility of toxicants from the solid ash into the leachates, although some metals exceeded the L/S 10 leaching limit values for inert wastes. The Microtox® toxicity test showed only a very low toxic response to the ash leachate exposure, while the D. magna immobility test showed a moderately high toxic effect of the ash leachates. Overall, the results from this study showed an ecotoxic effect of the solid MSW bottom ash and the corresponding ash leachates. The material may therefore pose an environmental risk if used in construction applications. However, as the testing of the solid ash was rather limited and the ash leachate showed an unusually high leaching of Cr, further assessments are required in order to conclusively characterize the bottom ash studied herein as hazardous according to the H14 criterion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Miezah, Kodwo; Obiri-Danso, Kwasi; Kádár, Zsófia; Fei-Baffoe, Bernard; Mensah, Moses Y
2015-12-01
Reliable national data on waste generation and composition that will inform effective planning on waste management in Ghana is absent. To help obtain this data on a regional basis, selected households in each region were recruited to obtain data on rate of waste generation, physical composition of waste, sorting and separation efficiency and per capita of waste. Results show that rate of waste generation in Ghana was 0.47 kg/person/day, which translates into about 12,710 tons of waste per day per the current population of 27,043,093. Nationally, biodegradable waste (organics and papers) was 0.318 kg/person/day and non-biodegradable or recyclables (metals, glass, textiles, leather and rubbers) was 0.096 kg/person/day. Inert and miscellaneous waste was 0.055 kg/person/day. The average household waste generation rate among the metropolitan cities, except Tamale, was high, 0.72 kg/person/day. Metropolises generated higher waste (average 0.63 kg/person/day) than the municipalities (0.40 kg/person/day) and the least in the districts (0.28 kg/person/day) which are less developed. The waste generation rate also varied across geographical locations, the coastal and forest zones generated higher waste than the northern savanna zone. Waste composition was 61% organics, 14% plastics, 6% inert, 5% miscellaneous, 5% paper, 3% metals, 3% glass, 1% leather and rubber, and 1% textiles. However, organics and plastics, the two major fractions of the household waste varied considerably across the geographical areas. In the coastal zone, the organic waste fraction was highest but decreased through the forest zone towards the northern savanna. However, through the same zones towards the north, plastic waste rather increased in percentage fraction. Households did separate their waste effectively averaging 80%. However, in terms of separating into the bin marked biodegradables, 84% effectiveness was obtained whiles 76% effectiveness for sorting into the bin labeled other waste was achieved. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Foamed lightweight materials made from mixed scrap metal waste powder and sewage sludge ash.
Wang, Kuen-Sheng; Chiou, Ing-Jia
2004-10-01
The porous properties and pozzolanic effects of sewage sludge ash (SSA) make it possible to produce lightweight materials. This study explored the effects of different metallic foaming agents, made from waste aluminium products, on the foaming behaviours and engineering characteristics, as well as the microstructure of sewage sludge ash foamed lightweight materials. The results indicated that aluminium powder and mixed scrap metal waste powder possessed similar chemical compositions. After proper pre-treatment, waste aluminium products proved to be ideal substitutes for metallic foaming agents. Increasing the amount of mixed scrap metal waste by 10-15% compared with aluminium powder would produce a similar foaming ratio and compressive strength. The reaction of the metallic foaming agents mainly produced pores larger than 10 microm, different from the hydration reaction of cement that produced pores smaller than 1 microm mostly. To meet the requirements of the lightweight materials characteristics and the compressive strength, the amount of SSA could be up to 60-80% of the total solids. An adequate amount of aluminium powder is 0.5-0.9% of the total solids. Increasing the fineness of the mixed scrap metal waste powder could effectively reduce the amount required and improve the foaming ratio.
A Study on Tribological Behavior of Glass-Epoxy Composite Filled with Granite Dust
NASA Astrophysics Data System (ADS)
Ray, Subhrajit; Rout, Arun Ku; KuSahoo, Ashok
2017-08-01
Granite powder is one of the solid wastes generated from stone processing industry used as organic filler replacing the conventional ceramic fillers in polymer matrix composite to increase the mechanical properties. The present work investigates the addition of granite powder on erosion wear properties of epoxy-glass fiber composite. The solid particle erosion wear rates of these hybrid composites are recorded considering various control parameters as impingement angles, erodent sizes and impact velocities following erosion resistance test in an air erosion test device at room temperatures. The test was conducted as per the Taguchi experimental design to minimize the erosion loss of material. The SEM views show the surface resistivity for the granite added specimens. The microscopic study also indicates various methods of material removal, crater wear and other subjective allocation during erosion experiment of the samples.
Zhang, Zhikun; Zhang, Lei; Li, Aimin
2015-04-01
Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tansel, Berrin
2017-01-01
Advancements in technology, materials development, and manufacturing processes have changed the consumer products and composition of municipal solid waste (MSW) since 1960s. Increasing quantities of discarded consumer products remain a major challenge for recycling efforts, especially for discarded electronic products (also referred as e-waste). The growing demand for high tech products has increased the e-waste quantities and its cross boundary transport globally. This paper reviews the challenges associated with increasing e-waste quantities. The increasing need for raw materials (especially for rare earth and minor elements) and unregulated e-waste recycling operations in developing and underdeveloped counties contribute to the growing concerns for e-waste management. Although the markets for recycled materials are increasing; there are major challenges for development of the necessary infrastructure for e-waste management and accountability as well as development of effective materials recovery technologies and product design. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yadav, Pooja; Samadder, S R
2017-04-01
This study reviewed the municipal solid waste (MSW) composition, the management practices, and the use of life cycle assessment (LCA) tool for MSW management (MSWM) options in the various income group countries. LCA studies require inventory data, which is difficult to procure for any country including higher income group countries, and this issue gets compounded in low-income and lower middle-income group countries, which limits the implementation of LCA. This paper compared the use of LCA for MSWM between high-income and low-income group countries and also highlights the gap in using LCA for MSWM. A very limited number of LCA studies on MSWM were found for low-income group countries in comparison to high-income group countries. The study also provided a critical discussion on the challenges in applications of LCA in MSWM for better solid waste management in low-income and lower middle-income group countries. The study will help in taking up LCA studies in low-income countries to improve the overall MSWM efficiency.
NASA Astrophysics Data System (ADS)
Zhang, H. B.; Zhang, H. Y.; Wang, G. Q.; Bai, X. J.
2018-03-01
By using on-site sampling and physical-chemical analysis, the physical composition and the contents of heavy metals in Beijing MSW were researched. The result showed that the main components of MSW in Beijing are mainly kitchen waste, the average content of kitchen waste are more than 60% and 50% in summer and in winter, respectively. The pollution of Cu, Hg and Cr are all more serious for MSW in Haidian and Dongcheng district. The heavy metal pollution of MSW in summer is higher than that in winter in Beijing. Seasonal impacts should be taken into consideration when dealing with MSW. The content of heavy metals in MSW exceeded the background value of soil in Haidian and Dongcheng districts. In order to reduce heavy metal pollution, the MSW should be separated collection and treated.
Grout formulation for disposal of low-level and hazardous waste streams containing fluoride
McDaniel, E.W.; Sams, T.L.; Tallent, O.K.
1987-06-02
A composition and related process for disposal of hazardous waste streams containing fluoride in cement-based materials is disclosed. the presence of fluoride in cement-based materials is disclosed. The presence of fluoride in waste materials acts as a set retarder and as a result, prevents cement-based grouts from setting. This problem is overcome by the present invention wherein calcium hydroxide is incorporated into the dry-solid portion of the grout mix. The calcium hydroxide renders the fluoride insoluble, allowing the grout to set up and immobilize all hazardous constituents of concern. 4 tabs.
Study of problem of waste chemical current sources in Russia and in European countries
NASA Astrophysics Data System (ADS)
Zilenina, V. G.; Ulanova, O. V.; Dornack, C.
2017-10-01
This article gives a comparative analysis of handling waste chemical current sources in Russia and in the European countries, presents the effective international documents (Directives, acts) and national legislative acts (state standards, building codes, governmental decrees, etc.), demonstrates the mechanisms for disposal and recycling of waste in the European Union countries. Along with the data of the research works, conducted in other countries during many yearsб it presents the experimental data on leaching out heavy metals from chemical current sources by municipal solid waste landfill filtrate, depending on the morphological composition of domestic waste in the city of Irkutsk. An important point described in the article, is assessment and prediction of negative impact produced on the environment.
Biogenic carbon in combustible waste: waste composition, variability and measurement uncertainty.
Larsen, Anna W; Fuglsang, Karsten; Pedersen, Niels H; Fellner, Johann; Rechberger, Helmut; Astrup, Thomas
2013-10-01
Obtaining accurate data for the contents of biogenic and fossil carbon in thermally-treated waste is essential for determination of the environmental profile of waste technologies. Relations between the variability of waste chemistry and the biogenic and fossil carbon emissions are not well described in the literature. This study addressed the variability of biogenic and fossil carbon in combustible waste received at a municipal solid waste incinerator. Two approaches were compared: (1) radiocarbon dating ((14)C analysis) of carbon dioxide sampled from the flue gas, and (2) mass and energy balance calculations using the balance method. The ability of the two approaches to accurately describe short-term day-to-day variations in carbon emissions, and to which extent these short-term variations could be explained by controlled changes in waste input composition, was evaluated. Finally, the measurement uncertainties related to the two approaches were determined. Two flue gas sampling campaigns at a full-scale waste incinerator were included: one during normal operation and one with controlled waste input. Estimation of carbon contents in the main waste types received was included. Both the (14)C method and the balance method represented promising methods able to provide good quality data for the ratio between biogenic and fossil carbon in waste. The relative uncertainty in the individual experiments was 7-10% (95% confidence interval) for the (14)C method and slightly lower for the balance method.
Rodgers, Kiri J.; Hursthouse, Andrew; Cuthbert, Simon
2015-01-01
As waste management regulations become more stringent, yet demand for resources continues to increase, there is a pressing need for innovative management techniques and more sophisticated supporting analysis techniques. Sequential extraction (SE) analysis, a technique previously applied to soils and sediments, offers the potential to gain a better understanding of the composition of solid wastes. SE attempts to classify potentially toxic elements (PTEs) by their associations with phases or fractions in waste, with the aim of improving resource use and reducing negative environmental impacts. In this review we explain how SE can be applied to steel wastes. These present challenges due to differences in sample characteristics compared with materials to which SE has been traditionally applied, specifically chemical composition, particle size and pH buffering capacity, which are critical when identifying a suitable SE method. We highlight the importance of delineating iron-rich phases, and find that the commonly applied BCR (The community Bureau of reference) extraction method is problematic due to difficulties with zinc speciation (a critical steel waste constituent), hence a substantially modified SEP is necessary to deal with particular characteristics of steel wastes. Successful development of SE for steel wastes could have wider implications, e.g., for the sustainable management of fly ash and mining wastes. PMID:26393631
Rodgers, Kiri J; Hursthouse, Andrew; Cuthbert, Simon
2015-09-18
As waste management regulations become more stringent, yet demand for resources continues to increase, there is a pressing need for innovative management techniques and more sophisticated supporting analysis techniques. Sequential extraction (SE) analysis, a technique previously applied to soils and sediments, offers the potential to gain a better understanding of the composition of solid wastes. SE attempts to classify potentially toxic elements (PTEs) by their associations with phases or fractions in waste, with the aim of improving resource use and reducing negative environmental impacts. In this review we explain how SE can be applied to steel wastes. These present challenges due to differences in sample characteristics compared with materials to which SE has been traditionally applied, specifically chemical composition, particle size and pH buffering capacity, which are critical when identifying a suitable SE method. We highlight the importance of delineating iron-rich phases, and find that the commonly applied BCR (The community Bureau of reference) extraction method is problematic due to difficulties with zinc speciation (a critical steel waste constituent), hence a substantially modified SEP is necessary to deal with particular characteristics of steel wastes. Successful development of SE for steel wastes could have wider implications, e.g., for the sustainable management of fly ash and mining wastes.
Govindan, Siva Shangari; Agamuthu, P
2014-10-01
Waste management can be regarded as a cross-cutting environmental 'mega-issue'. Sound waste management practices support the provision of basic needs for general health, such as clean air, clean water and safe supply of food. In addition, climate change mitigation efforts can be achieved through reduction of greenhouse gas emissions from waste management operations, such as landfills. Landfills generate landfill gas, especially methane, as a result of anaerobic degradation of the degradable components of municipal solid waste. Evaluating the mode of generation and collection of landfill gas has posted a challenge over time. Scientifically, landfill gas generation rates are presently estimated using numerical models. In this study the Intergovernmental Panel on Climate Change's Waste Model is used to estimate the methane generated from a Malaysian sanitary landfill. Key parameters of the model, which are the decay rate and degradable organic carbon, are analysed in two different approaches; the bulk waste approach and waste composition approach. The model is later validated using error function analysis and optimum decay rate, and degradable organic carbon for both approaches were also obtained. The best fitting values for the bulk waste approach are a decay rate of 0.08 y(-1) and degradable organic carbon value of 0.12; and for the waste composition approach the decay rate was found to be 0.09 y(-1) and degradable organic carbon value of 0.08. From this validation exercise, the estimated error was reduced by 81% and 69% for the bulk waste and waste composition approach, respectively. In conclusion, this type of modelling could constitute a sensible starting point for landfills to introduce careful planning for efficient gas recovery in individual landfills. © The Author(s) 2014.
Chang, Ni-Bin; Davila, Eric
2008-01-01
The Lower Rio Grande Valley (LRGV or Valley) in Texas, facing the big waste management challenge along the US-Mexico border today, is at the crossroads as a result of the rapid population growth, the scarcity of landfill space, the bi-nation's trade impacts, and the illusive goal of environmental sustainability. This paper offers a unique municipal solid waste investigation with regard to both physical and chemical characteristics leading to illuminate the necessary management policies with greater regional relevancy. With multiple sampling campaigns conducted during the spring of 2005, this study holistically summarizes the composition of solid waste, the statistical distribution patterns of key recyclable items, and the heating value in an uncertain environment. Research findings indicate that high fractions of plastics and paper in the waste stream imply a strong potential for energy recovery. Incineration options are thus bolstered by mildly high heating values across 10 cities in this region, which may lead to save land resources required for final disposal and increase electricity generation in the long run. Additional regression analyses further identify the correlation between recyclable items and heating value, which show that current recycling programs permit no obvious negative impacts on the incineration option. Final statistical hypothesis tests for both the Brownsville-Harlingen-San Benito and the McAllen-Edinburg-Mission metropolitan regions help foster consistent management strategies across the Valley regardless of the trivial differences of waste characteristics in between.
Muñoz-Cadena, C E; Arenas-Huertero, F J; Ramón-Gallegos, E
2009-03-01
Inorganic urban solid waste (IUSW) is a serious problem in developing countries, and IUSW in the street that does not have adequate final disposal is responsible for serious environmental effects. The aim of this work was to determine the dynamics of the generation of IUSW in the streets of two neighborhoods of different socioeconomic strata in Mexico City during 5 weeks in 2006. The amount of IUSW was recorded every day from 9:00 to 12:00 h, separated, classified, and registered. It was found that plastic (50%) and paper (44.5%) wastes were found most frequently, whereas, textiles (0.4%) and glass (0.5%) wastes were present less frequently in all samples. The IUSWs without commercial brands were more abundant. Branded plastic wrappers of PepsiCo and Bimbo, as well as polyethylene terephthalate (PET) containers of Coca Cola, registered the highest values, while Gatorade, Barrilitos, and Peñafiel registered the lowest. The neighborhood with a higher income and more vegetation on sidewalks or in jardinières, which are used to hide solid waste, had more IUSW than the neighborhood with lower income, where IUSW was thrown out directly into the street. The knowledge of the real generation and composition of IUSW will contribute to the prevention of its negative environmental and social impacts, as well as guarantee the efficiency of its sustainable management.
40 CFR 260.30 - Non-waste determinations and variances from classification as a solid waste.
Code of Federal Regulations, 2010 CFR
2010-07-01
... from classification as a solid waste. 260.30 Section 260.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.30 Non-waste determinations and variances from classification as a solid waste. In...
40 CFR 260.30 - Non-waste determinations and variances from classification as a solid waste.
Code of Federal Regulations, 2011 CFR
2011-07-01
... from classification as a solid waste. 260.30 Section 260.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.30 Non-waste determinations and variances from classification as a solid waste. In...
NASA Astrophysics Data System (ADS)
Samudro, Ganjar; Syafrudin; Nugraha, Winardi Dwi; Sutrisno, Endro; Priyambada, Ika Bagus; Muthi'ah, Hilma; Sinaga, Glory Natalia; Hakiem, Rahmat Tubagus
2018-02-01
This research is conducted to analyze and determine the optimum of COD concentration containing leaves litter, canteen and composite waste to power density and COD removal efficiency as the indicator of SMFC performance. COD as the one of organic matter parameters perform as substrate, nutrient and dominating the whole process of SMFC. Leaves litter and canteen based food waste were obtained from TPST UNDIP in Semarang and treated in SMFC reactor. Its reactor was designed 2 liter volume and equipped by homemade graphene electrodes that were utilized at the surface of organic waste as cathode and in a half of reactor height as anode. COD concentration was initially characterized and became variations of initial COD concentration. Waste volume was maintained 2/3 of volume of reactor. Bacteria sources as the important process factor in SMFC were obtained from river sediment which contain bacteroides and exoelectrogenic bacteria. Temperature and pH were not maintained while power density and COD concentration were periodically observed and measured during 44 days. The results showed that power density up to 4 mW/m2 and COD removal efficiency performance up to 70% were reached by leaves litter, canteen and composite waste at days 11 up to days 44 days. Leaves litter contain 16,567 mg COD/l providing higher COD removal efficiency reached approximately 87.67%, more stable power density reached approximately 4.71 mW/m2, and faster optimum time in the third day than canteen based food waste and composite waste. High COD removal efficiency has not yet resulted in high power density.
Kleeberg, K K; Liu, Y; Jans, M; Schlegelmilch, M; Streese, J; Stegmann, R
2005-01-01
A solid-phase microextraction (SPME) method has been developed for the extraction of odorous compounds from waste gas. The enriched compounds were characterized by gas chromatography-mass spectrometry (GC-MS) and gas chromatography followed by simultaneous flame ionization detection and olfactometry (GC-FID/O). Five different SPME fiber coatings were tested, and the carboxen/polydimethylsiloxane (CAR/PDMS) fiber showed the highest ability to extract odorous compounds from the waste gas. Furthermore, parameters such as exposure time, desorption temperature, and desorption time have been optimized. The SPME method was successfully used to characterize an odorous waste gas from a fat refinery prior to and after waste gas treatment in order to describe the treatment efficiency of the used laboratory scale plant which consisted of a bioscrubber/biofilter combination and an activated carbon adsorber. The developed method is a valuable approach to provide detailed information of waste gas composition and complements existing methods for the determination of odors. However, caution should be exercised if CAR/PDMS fibers are used for the quantification of odorous compounds in multi-component matrices like waste gas emissions since the relative affinity of each analyte was shown to differ according to the total amount of analytes present in the sample.
De la Cruz, Florentino B; Barlaz, Morton A
2010-06-15
The current methane generation model used by the U.S. EPA (Landfill Gas Emissions Model) treats municipal solid waste (MSW) as a homogeneous waste with one decay rate. However, component-specific decay rates are required to evaluate the effects of changes in waste composition on methane generation. Laboratory-scale rate constants, k(lab), for the major biodegradable MSW components were used to derive field-scale decay rates (k(field)) for each waste component using the assumption that the average of the field-scale decay rates for each waste component, weighted by its composition, is equal to the bulk MSW decay rate. For an assumed bulk MSW decay rate of 0.04 yr(-1), k(field) was estimated to be 0.298, 0.171, 0.015, 0.144, 0.033, 0.02, 0.122, and 0.029 yr(-1), for grass, leaves, branches, food waste, newsprint, corrugated containers, coated paper, and office paper, respectively. The effect of landfill waste diversion programs on methane production was explored to illustrate the use of component-specific decay rates. One hundred percent diversion of yard waste and food waste reduced the year 20 methane production rate by 45%. When a landfill gas collection schedule was introduced, collectable methane was most influenced by food waste diversion at years 10 and 20 and paper diversion at year 40.
Fabricating solid carbon porous electrodes from powders
Kaschmitter, James L.; Tran, Tri D.; Feikert, John H.; Mayer, Steven T.
1997-01-01
Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.
Fabricating solid carbon porous electrodes from powders
Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.
1997-06-10
Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.
ERIC Educational Resources Information Center
Meikle, Teresa, Comp.
Municipal solid waste refers to waste materials generated by residential, commercial, and institutional sources, and consists predominantly of paper, glass, metals, plastics, and food and yard waste. Within the definition of the Solid Waste Disposal Act, municipal solid waste does not include sewage sludge or hazardous waste. The three main…
Thermodynamic model for uranium release from hanford site tank residual waste.
Cantrell, Kirk J; Deutsch, William J; Lindberg, Mike J
2011-02-15
A thermodynamic model of U solid-phase solubility and paragenesis was developed for Hanford Site tank residual waste that will remain in place after tank closure. The model was developed using a combination of waste composition data, waste leach test data, and thermodynamic modeling of the leach test data. The testing and analyses were conducted using actual Hanford Site tank residual waste. Positive identification of U phases by X-ray diffraction was generally not possible either because solids in the waste were amorphous or their concentrations were not detectable by XRD for both as-received and leached residual waste. Three leachant solutions were used in the studies: deionized water, CaCO3 saturated solution, and Ca(OH)2 saturated solution. Analysis of calculated saturation indices indicate that NaUO2PO4·xH2O and Na2U2O7(am) are present in the residual wastes initially. Leaching of the residual wastes with deionized water or CaCO3 saturated solution results in preferential dissolution Na2U2O7(am) and formation of schoepite. Leaching of the residual wastes with Ca(OH)2 saturated solution appears to result in transformation of both NaUO2PO4·xH2O and Na2U2O7(am) to CaUO4. Upon the basis of these results, the paragenetic sequence of secondary phases expected to occur as leaching of residual waste progresses for two tank closure scenarios was identified.
Ni, Peng; Li, Hailong; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang
2017-09-01
Due to the alkalinity and high concentration of potentially hazardous heavy metals, fly ash from a municipal solid waste (MSW) incinerator is classified as hazardous waste, which should be of particular concern. Physical and chemical characterizations of the contrasted fly ashes were investigated to explore the relation between leaching characteristics of heavy metals and physical properties of fly ashes. The results showed that CaClOH, NaCl, Ca(OH) 2 , KCl and SiO 2 were primary mineral compositions in the MSWI fly ashes, and the particle size distribution of fly ash ranged between 10 μm and 300 μm. The smaller the particle size distribution of fly ash, the larger the BET-specific surface area, which was beneficial to the leaching of heavy metals. As a result of various pores, it easily accumulated heavy metals as well. The leaching tests exhibited a high leachability of heavy metals and the leaching concentration of Pb in almost all of the fly ash samples went far beyond the Standard for Pollution Control on the Landfill Site of Municipal Solid Waste. Thereupon, it is necessary to establish proper disposal systems and management strategies for environmental protection based on the characteristics of MSW incineration (MSWI) fly ash in China.
Lü, F; Shao, L M; Bru, V; Godon, J J; He, P J
2009-02-01
To investigate the synergetic effect of pH and biochemical components on bacterial community structure during mesophilic anaerobic degradation of solid wastes with different origins, and under acidic or neutral conditions. The bacterial community in 16 samples of solid wastes with different biochemical compositions and origins was evaluated during mesophilic anaerobic degradation at acidic and neutral pH. Denaturing gradient gel electrophoresis (DGGE) and single-strand conformation polymorphism (SSCP) were used to compare the communities. Multivariate analysis of the DGGE and SSCP results revealed that most of the dominant microbes were dependent on the content of easily degradable carbohydrates in the samples. Furthermore, the dominant microbes were divided into two types, those that preferred an acid environment and those that preferred a neutral environment. A shift in pH was found to change their preference for medium substrates. Although most of the substrates with similar origin and biochemical composition had similar microbial diversity during fermentation, some microbes were found only in substrates with specific origins. For example, two microbes were only found in substrate that contained lignocellulose and animal protein without starch. These microbes were related to micro-organisms that are found in swine manure, as well as in other intestinal or oral niches. In addition, the distribution of fermentation products was less sensitive to the changes in pH and biochemical components than the microbial community. Bacterial diversity during anaerobic degradation of organic wastes was affected by both pH and biochemical components; however, pH exerted a greater effect. The results of this study reveal that control of pH may be an effective method to produce a stable bacterial community and relatively similar product distribution during anaerobic digestion of waste, regardless of variation in the waste feedstocks.
Prediction of the rate of gas production from bioreactor landfills is important to optimize energy recovery and to estimate greenhouse gas emissions. Landfill gas (LFG) composition and flow rate were monitored for four years for a conventional and two bioreactor landfill landfil...
77 FR 44224 - Access to Confidential Business Information by Eastern Research Group, Incorporated
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-27
... Resource Conservation and Recovery (ORCR), Resource Conservation and Sustainability Division (RCSD) in developing the Municipal Solid Waste Characterization Report to analyze the composition and amounts of the... landfilled. The methodology used in this report is a ``top-down'' materials flow approach to estimate the...
Funari, Valerio; Braga, Roberto; Bokhari, Syed Nadeem Hussain; Dinelli, Enrico; Meisel, Thomas
2015-11-01
The incineration of municipal solid wastes is an important part of the waste management system along with recycling and waste disposal, and the solid residues produced after the thermal process have received attention for environmental concerns and the recovery of valuable metals. This study focuses on the Critical Raw Materials (CRM) content in solid residues from two Italian municipal waste incinerator (MSWI) plants. We sampled untreated bottom ash and fly ash residues, i.e. the two main outputs of common grate-furnace incinerators, and determined their total elemental composition with sensitive analytical techniques such as XRF and ICP-MS. After the removal of a few coarse metallic objects from bottom ashes, the corresponding ICP solutions were obtained using strong digestion methods, to ensure the dissolution of the most refractory components that could host significant amounts of precious metals and CRM. The integration of accurate chemical data with a substance flow analysis, which takes into account the mass balance and uncertainties assessment, indicates that bottom and fly ashes can be considered as a low concentration stream of precious and high-tech metals. The magnesium, copper, antimony and zinc contents are close to the corresponding values of a low-grade ore. The distribution of the elements flow between bottom and fly ash, and within different grain size fractions of bottom ash, is appraised. Most elements are enriched in the bottom ash flow, especially in the fine grained fractions. However, the calculated transfer coefficients indicate that Sb and Zn strongly partition into the fly ashes. The comparison with available studies indicates that the CRM concentrations in the untreated solid residues are comparable with those residues that undergo post-treatment beneficiations, e.g. separation between ferrous and non-ferrous fractions. The suggested separate collection of "fresh" bottom ash, which could be processed for further mineral upgrading, can constitute an attractive option of the waste management system, when physical-mechanical devices are not available or could not be implemented in old MSWI systems. The suggested procedure may lead to the improvement of recovery efficiency up to 83% for CRM and 94% for other valuable metals. Copyright © 2014 Elsevier Ltd. All rights reserved.
Geochemical transformations and modeling of two deep-well injected hazardous wastes
Roy, W.R.; Seyler, B.; Steele, J.D.; Mravik, S.C.; Moore, D.M.; Krapac, I.G.; Peden, J.M.; Griffin, R.A.
1991-01-01
Two liquid hazardous wastes (an alkaline brine-like solution and a dilute acidic waste) were mixed with finely ground rock samples of three injection-related lithologies (sandstone, dolomite, and siltstone) for 155 to 230 days at 325??K-10.8 MPa. The pH and inorganic chemical composition of the alkaline waste were not significantly altered by any of the rock samples after 230 days of mixing. The acidic waste was neutralized as a consequence of carbonate dissolution, ion exchange, or clay-mineral dissolution, and hence was transformed into a nonhazardous waste. Mixing the alkaline waste with the solid phases yielded several reaction products: brucite, Mg(OH)2; calcite, CaCO3; and possibly a type of sodium metasilicate. Clay-like minerals formed in the sandstone, and hydrotalcite, Mg6Al2-CO3(OH)16??4H2O, may have formed in the siltstone at trace levels. Mixing the alkaline waste with a synthetic brine yielded brucite, calcite, and whewellite (CaC2O4??H2O). The thermodynamic model PHRQPITZ predicted that brucite and calcite would precipitate from solution in the dolomite and siltstone mixtures and in the alkaline waste-brine system. The dilute acidic waste did not significantly alter the mineralogical composition of the three rock types after 155 days of contact. The model PHREEQE indicated that the calcite was thermodynamically stable in the dolomite and siltstone mixtures.
Sustainable solutions for solid waste management in Southeast Asian countries.
Ngoc, Uyen Nguyen; Schnitzer, Hans
2009-06-01
Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.
Compaction of Space Mission Wastes
NASA Technical Reports Server (NTRS)
Fisher, John; Pisharody, Suresh; Wignarajah, K.
2004-01-01
The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.
Current status of solid waste management in small island developing states: A review.
Mohee, Romeela; Mauthoor, Sumayya; Bundhoo, Zumar M A; Somaroo, Geeta; Soobhany, Nuhaa; Gunasee, Sanjana
2015-09-01
This article reviews the current status of waste management in Small Island Developing States (SIDS) and the challenges that are faced in solid waste management. The waste generation rates of SIDS were compared within the three geographic regions namely Caribbean SIDS, Pacific SIDS and Atlantic, Indian Ocean, Mediterranean and South China (AIMS) SIDS and with countries of the Organisation for Economic Co-Operation and Development (OECD). Only Pacific SIDS had a waste generation rate less than 1kg/capita/day. The waste generation rates for the three SIDS regions averaged 1.29kg/capita/day while that for OECD countries was at a mean value of 1.35kg/capita/day. The waste compositions in the different SIDS regions were almost similar owing to comparable consumption patterns while these differed to a large extent with wastes generated in OECD countries. In SIDS, the major fraction of MSW comprised of organics (44%) followed by recyclables namely paper, plastics, glass and metals (total: 43%). In contrast, MSW in OECD countries consisted mainly of recyclables (43%) followed by organics (37%). This article also reviewed the other functional elements of the waste management systems in SIDS. Several shortcomings were noted in the process of waste collection, transfer and transport namely the fact of having outdated collection vehicles and narrow roads which are inaccessible. Among the waste management practices in SIDS, waste disposal via landfilling, illegal dumping and backyard burning were favoured most of the time at the expense of sustainable waste treatment technologies such as composting, anaerobic digestion and recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evaluation of two different alternatives of energy recovery from municipal solid waste in Brazil.
Medina Jimenez, Ana Carolina; Nordi, Guilherme Henrique; Palacios Bereche, Milagros Cecilia; Bereche, Reynaldo Palacios; Gallego, Antonio Garrido; Nebra, Silvia Azucena
2017-11-01
Brazil has a large population with a high waste generation. The municipal solid waste (MSW) generated is deposited mainly in landfills. However, a considerable fraction of the waste is still improperly disposed of in dumpsters. In order to overcome this inadequate deposition, it is necessary to seek alternative routes. Between these alternatives, it is possible to quote gasification and incineration. The objective of this study is to compare, from an energetic and economic point of view, these technologies, aiming at their possible implementation in Brazilian cities. A total of two configurations were evaluated: (i) waste incineration with energy recovery and electricity production in a steam cycle; and (ii) waste gasification, where the syngas produced is used as fuel in a boiler of a steam cycle for electricity production. Simulations were performed assuming the same amount of available waste for both configurations, with a composition corresponding to the MSW from Santo André, Brazil. The thermal efficiencies of the gasification and incineration configurations were 19.3% and 25.1%, respectively. The difference in the efficiencies was caused by the irreversibilities associated with the gasification process, and the additional electricity consumption in the waste treatment step. The economic analysis presented a cost of electrical energy produced of 0.113 (US$ kWh -1 ) and 0.139 (US$ kWh -1 ) for the incineration and gasification plants respectively.
Otoniel, Buenrostro Delgado; Liliana, Márquez-Benavides; Francelia, Pinette Gaona
2008-01-01
Mexico is currently facing a crisis in the waste management field. Some efforts have just commenced in urban and in rural settlements, e.g., conversion of open dumps into landfills, a relatively small composting culture, and implementation of source separation and plastic recycling strategies. Nonetheless, the high heterogeneity of components in the waste, many of these with hazardous properties, present the municipal collection services with serious problems, due to the risks to the health of the workers and to the impacts to the environment as a result of the inadequate disposition of these wastes. A generation study in the domestic sector was undertaken with the aim of finding out the composition and the generation rate of household hazardous waste (HHW) produced at residences. Simultaneously to the generation study, a socioeconomic survey was applied to determine the influence of income level on the production of HHW. Results from the solid waste generation analysis indicated that approximately 1.6% of the waste stream consists of HHW. Correspondingly, it was estimated that in Morelia, a total amount of 442ton/day of domestic waste are produced, including 7.1ton of HHW per day. Furthermore, the overall amount of HHW is not directly related to income level, although particular byproducts do correlate. However, an important difference was observed, as the brands and the presentation sizes of goods and products used in each socioeconomic stratum varied.
Inhibiting localized corrosion during storage of dilute SRP wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oblath, S.B.; Congdon, J.W.
1986-01-01
High-level radioactive waste will be incorporated in borosilicate glass in the Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP). As part of this process, large volumes of inorganic salt wastes will be decontaminated for disposal as low-level waste. The principal contaminants, /sup 137/Cs and /sup 90/Sr, are removed by treatment with sodium tetraphenylborate and sodium titanate. The resulting solids will be slurried with a dilute salt solution and stored in existing carbon steel tanks for several years prior to processing and disposal. Initial tests indicated a tendency for localized corrosion of the tanks. An investigation, using nonradioactivemore » simulants for the expected solution compositions, identified inhibitors which would protect the steel. Changes in solution compositions over time, due to radiolytic effects, were also accounted for by the simulants. Six inhibitors were identified which would protect the steel tanks. The effects these inhibitors would have on later processing steps in the DWPF were then evaluated. After this process, only sodium nitrite remained as an inhibitor that was both effective and compatible with the DWPF. The use of this inhibitor has been demonstrated on a real waste slurry.« less
Method of draining water through a solid waste site without leaching
Treat, Russell L.; Gee, Glendon W.; Whyatt, Greg A.
1993-01-01
The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.
Method of draining water through a solid waste site without leaching
Treat, R.L.; Gee, G.W.; Whyatt, G.A.
1993-02-02
The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.
76 FR 16538 - Solid Waste Rail Transfer Facilities
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-24
... circumstances. Upon receiving a land-use-exemption permit issued by the Board, a solid waste rail transfer... new application for a land-use-exemption permit if the rail line associated with the solid waste rail... transportation of solid waste by rail. (2) The Board will not grant a land-use-exemption permit for a solid waste...
Characterization of undissolved solids from the dissolution of North Anna reactor fuel
Rudisill, Tracy S.; Olson, L. C.; DiPrete, D. P.
2017-06-16
Here, samples of undissolved solids (UDS) from the dissolution of North Anna reactor fuel were characterized to investigate the effects of using air or oxygen as the oxidant during tritium removal. The UDS composition data also support the development of a waste form for disposal. There was no discernible effect of the oxidant used during the tritium removal process or the size fraction on the UDS composition. Scanning electron microscopy (SEM) and energy dispersive (x-ray) spectroscopy were used to estimate the oxygen content of the UDS and it was found to be potentially significant, on the order of 30% bymore » mass and 80% by atom.« less
Significant volume reduction of tank waste by selective crystallization: 1994 Annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herting, D.L.; Lunsford, T.R.
1994-09-27
The objective of this technology task plan is to develop and demonstrate a scaleable process of reclaim sodium nitrate (NaNO{sub 3}) from Hanford waste tanks as a clean nonradioactive salt. The purpose of the so-called Clean Salt Process is to reduce the volume of low level waste glass by as much as 70%. During the reporting period of October 1, 1993, through May 31, 1994, progress was made on four fronts -- laboratory studies, surrogate waste compositions, contracting for university research, and flowsheet development and modeling. In the laboratory, experiments with simulated waste were done to explore the effects ofmore » crystallization parameters on the size and crystal habit of product NaNO{sub 3} crystals. Data were obtained to allows prediction of decontamination factor as a function of solid/liquid separation parameters. Experiments with actual waste from tank 101-SY were done to determine the extent of contaminant occlusions in NaNO{sub 3} crystals. In preparation for defining surrogate waste compositions, single shell tanks were categorized according to the weight percent NaNO{sub 3} in each tank. A detailed process flowsheet and computer model were created using the ASPENPlus steady state process simulator. This is the same program being used by the Tank Waste Remediation System (TWRS) program for their waste pretreatment and disposal projections. Therefore, evaluations can be made of the effect of the Clean Salt Process on the low level waste volume and composition resulting from the TWRS baseline flowsheet. Calculations, using the same assumptions as used for the TWRS baseline where applicable indicate that the number of low level glass vaults would be reduced from 44 to 16 if the Clean Salt Process were incorporated into the baseline flowsheet.« less
Meallem, Ilana; Garb, Yaakov; Cwikel, Julie
2010-01-01
The Bedouin of the Negev region of Israel are a formerly nomadic, indigenous, ethnic minority, of which 40% currently live in unrecognized villages without organized, solid waste disposal. This study, using both quantitative and qualitative methods, explored the transition from traditional rubbish production and disposal to current uses, the current composition of rubbish, methods of waste disposal, and the extent of exposure to waste-related environmental hazards in the village of Um Batim. The modern, consumer lifestyle produced both residential and construction waste that was dumped very close to households. Waste was tended to by women who predominantly used backyard burning for disposal, exposing villagers to corrosive, poisonous, and dangerously flammable items at these burn sites. Village residents expressed a high level of concern over environmental hazards, yet no organized waste disposal or environmental hazards reduction was implemented.
Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions.
Slezak, Radoslaw; Krzystek, Liliana; Ledakowicz, Stanislaw
2015-09-01
In this study the municipal solid waste degradation processes in simulated landfill bioreactors under aerobic and anaerobic conditions is investigated. The effect of waste aeration on the dynamics of the aerobic degradation processes in lysimeters as well as during anaerobic processes after completion of aeration is presented. The results are compared with the anaerobic degradation process to determine the stabilization stage of waste in both experimental modes. The experiments in aerobic lysimeters were carried out at small aeration rate (4.41⋅10(-3)lmin(-1)kg(-1)) and for two recirculation rates (24.9 and 1.58lm(-3)d(-1)). The change of leachate and formed gases composition showed that the application of even a small aeration rate favored the degradation of organic matter. The amount of CO2 and CH4 released from anaerobic lysimeter was about 5 times lower than that from the aerobic lysimeters. Better stabilization of the waste was obtained in the aerobic lysimeter with small recirculation, from which the amount of CO2 produced was larger by about 19% in comparison with that from the aerobic lysimeter with large leachate recirculation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Simulation of municipal solid waste degradation in aerobic and anaerobic bioreactor landfills.
Patil, Bhagwan Shamrao; C, Agnes Anto; Singh, Devendra Narain
2017-03-01
Municipal solid waste generation is huge in growing cities of developing nations such as India, owing to the rapid industrial and population growth. In addition to various methods for treatment and disposal of municipal solid waste (landfills, composting, bio-methanation, incineration and pyrolysis), aerobic/anaerobic bioreactor landfills are gaining popularity for economical and effective disposal of municipal solid waste. However, efficiency of municipal solid waste bioreactor landfills primarily depends on the municipal solid waste decomposition rate, which can be accelerated through monitoring moisture content and temperature by using the frequency domain reflectometry probe and thermocouples, respectively. The present study demonstrates that these landfill physical properties of the heterogeneous municipal solid waste mass can be monitored using these instruments, which facilitates proper scheduling of the leachate recirculation for accelerating the decomposition rate of municipal solid waste.
NASA Astrophysics Data System (ADS)
Kowalski, Piotr; Kasina, Monika; Michalik, Marek
2017-04-01
Bottom ash (BA) from municipal solid waste incineration (MSWI) is composed of grainy ash material, residual components and metallic fragments (from few µm up to 3-5 cm). Its mineral and chemical composition is related to the composition of the waste stream in the incinerator operational area. Wide use of thermal techniques in management of solid waste makes important the studies on valuable components and their distribution within the material in terms of their further processing. By using various valorization or extraction techniques it is possible to extend the range of its possible further application. To investigate metallic elements distribution within metallic fragments of the MSWI BA material produced in municipal waste incineration plant in Poland were collected in 2015 and 2016. BA and its components were investigated using spectroscopic methods of chemical analysis: ICP-OES, ICP-MS, LECO and EDS (used for microanalysis during SEM observations). BA is a material rich in Si (22.5 wt%), Ca (13.4 wt%), Fe (4 wt%), Al (5.2 wt%) and Na (3.5 wt%), composed of equal part of amorphous (silicate glass dominated) and crystalline phase (rich in silicates, aluminosilicates, oxides of non- and metallic elements and sulphates). The content of metallic elements (Al, Fe, Mg, Ti, Mn, Cr, Ni, Sc, Mo, Cu, Pb, Zn, Sn) is 11.5 wt% with domination of Al (5.2 wt%) and Fe (4 wt%) and elevated values of Mg (1 wt%), Ti (0.54 wt%), Cu (0.26 wt%) and Zn (0.27 wt%) (Kowalski et al., 2016). They were mostly concentrated in the form of metallic fragments, mainly as metallic inclusions in the size of 1-20 µm and separated metallic grains in the size of 50-300 µm. Metallic fragments present in the BA are characterized by their composition heterogeneity and various oxygen content. Fragments are rarely composed of single metallic element and usually in their composition up to few main elements dominated over others. The most common were Fe-, Al- and Zn-rich fragments forming respectively 70%, 15% and 5% of the total amount of fragments. Fe occurred mainly as component of metallic inclusions and separate grains. Al was mostly present in metallic fragments on grains boundaries and also and as separate grains (often oxidised), moreover Al was important component of aluminosilicates and amorphous phase. Zn-rich metallic fragments were mostly in the form of separate grains. In complex composition of metallic fragments some regularities in elements co-occurrences were observed: Fe often co-existed with Si, Ca, P, Al and Ti; Al co-occurred with Fe, Si and Ca; Zn co-existed with Ca, Al and Si. Forms and composition of metallic fragments allows to evaluate them as potential polymetallic resource, however an economically reasonable extraction techniques must be applied. Acknowledgment Research was funded by Polish National Science Centre (NCN). Scientific grant No. UMO-2014/15/B/ST10/04171. Reference Kowalski, P.R., Kasina, M. and Michalik M.: Metallic elements fractionation in municipal solid waste incineration residues, Energy Procedia, 97, 31-36, doi: 10.1016/j.egypro.2016.10.013, 2016.
40 CFR 240.201 - Solid wastes excluded.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Solid wastes excluded. 240.201 Section 240.201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.201 Solid...
40 CFR 240.201 - Solid wastes excluded.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Solid wastes excluded. 240.201 Section 240.201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.201 Solid...
40 CFR 240.200 - Solid wastes accepted.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Solid wastes accepted. 240.200 Section 240.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.200 Solid...
40 CFR 240.200 - Solid wastes accepted.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Solid wastes accepted. 240.200 Section 240.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.200 Solid...
40 CFR 258.4 - Research, development, and demonstration permits.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS General § 258.4 Research, development, and... include such terms and conditions at least as protective as the criteria for municipal solid waste... and quantities of municipal solid waste and non-hazardous wastes which the State Director deems...
40 CFR 256.22 - Recommendations for State regulatory powers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste... prohibit new open dumps and close or upgrade all existing open dumps. (a) Solid waste disposal standards... solid waste disposal facility. These procedures should include identification of future land use or the...
40 CFR 258.4 - Research, development, and demonstration permits.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS General § 258.4 Research, development, and... include such terms and conditions at least as protective as the criteria for municipal solid waste... and quantities of municipal solid waste and non-hazardous wastes which the State Director deems...
40 CFR 256.22 - Recommendations for State regulatory powers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste... prohibit new open dumps and close or upgrade all existing open dumps. (a) Solid waste disposal standards... solid waste disposal facility. These procedures should include identification of future land use or the...
40 CFR 256.21 - Requirements for State regulatory powers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste... be adequate to enforce solid waste disposal standards which are equivalent to or more stringent than the criteria for classification of solid waste disposal facilities (40 CFR part 257). Such authority...
40 CFR 256.21 - Requirements for State regulatory powers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste... be adequate to enforce solid waste disposal standards which are equivalent to or more stringent than the criteria for classification of solid waste disposal facilities (40 CFR part 257). Such authority...
36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...
36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...
36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...
36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...
36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...
NASA Astrophysics Data System (ADS)
Saffira, N.; Kristanto, G. A.
2018-01-01
Landfill bioreactor with leachate recirculation is known to enhance waste stabilization. However, the composition of waste in Indonesia is comprised by organic waste which is lignocellulosic materials that considered take a long time to degrade under anaerobic condition. To accelerate the degradation process, enzyme addition is ought to do. Cellulase is an enzyme that can catalyse cellulose and other polysaccharide decomposition processes. Therefore, operation of waste degradation using leachate recirculation with a cellulase addition to enhance waste stabilization was investigated using anaerobic bioreactor landfill. The experiment was performed on 2 conditions; leachate recirculation with cellulase addition and recirculation only as a control. The addition of cellulase is reported to be significant in decreasing organic content, represented by volatile solid parameter. The volatile solid reduction in the cellulase augmented reactor and control reactor was 17.86% and 7.90%, respectively. Cellulase addition also resulted in the highest cellulose reduction. Settlement of the landfill in a bioreactor with enzyme addition (32.67%) was reported to be higher than the control (19.33%). Stabilization of landfill review by the decreasing rate constant of the cellulose and lignin ratio parameter was more rapidly achieved by the enzyme addition (0.014 day-1) compared to control (0.002 day-1).
Methane yield in source-sorted organic fraction of municipal solid waste.
Davidsson, Asa; Gruvberger, Christopher; Christensen, Thomas H; Hansen, Trine Lund; Jansen, Jes la Cour
2007-01-01
Treating the source-separated organic fraction of municipal solid waste (SS-OFMSW) by anaerobic digestion is considered by many municipalities in Europe as an environmentally friendly means of treating organic waste and simultaneously producing methane gas. Methane yield can be used as a parameter for evaluation of the many different systems that exist for sorting and pre-treating waste. Methane yield from the thermophilic pilot scale digestion of 17 types of domestically SS-OFMSW originating from seven full-scale sorting systems was found. The samples were collected during 1 year using worked-out procedures tested statistically to ensure representative samples. Each waste type was identified by its origin and by pre-sorting, collection and pre-treatment methods. In addition to the pilot scale digestion, all samples were examined by chemical analyses and methane potential measurements. A VS-degradation rate of around 80% and a methane yield of 300-400Nm(3) CH(4)/ton VS(in) were achieved with a retention time of 15 days, corresponding to approximately 70% of the methane potential. The different waste samples gave minor variation in chemical composition and thus also in methane yield and methane potential. This indicates that sorting and collection systems in the present study do not significantly affect the amount of methane produced per VS treated.
40 CFR 256.23 - Requirements for closing or upgrading open dumps.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid... classification of existing solid waste disposal facilities according to the criteria. This classification shall... solid waste disposal facility; (2) The availability of State regulatory and enforcement powers; and (3...
40 CFR 256.23 - Requirements for closing or upgrading open dumps.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid... classification of existing solid waste disposal facilities according to the criteria. This classification shall... solid waste disposal facility; (2) The availability of State regulatory and enforcement powers; and (3...
Evaluation of municipal solid waste management in egyptian rural areas.
El-Messery, Mamdouh A; Ismail, Gaber A; Arafa, Anwaar K
2009-01-01
A two years study was conducted to evaluate the solid waste management system in 143 villages representing the Egyptian rural areas. The study covers the legal responsibilities, service availability, environmental impacts, service providers, financial resources, private sector participation and the quality of collection services. According to UN reports more than 55% of Egyptian population lives in rural areas. A drastic change in the consumption pattern altered the quantity and quality of the generated solid wastes from these areas. Poor solid waste management systems are stigmata in most of the Egyptian rural areas. This causes several environmental and health problems. It has been found that solid waste collection services cover only 27% of the surveyed villages, while, the statistics show that 75% of the surveyed villages are formally covered. The service providers are local villager units, private contractors and civil community associations with a percentage share 71%, 24% and 5% respectively. The operated services among these sectors were 25%, 71% and 100% respectively. The share of private sector in solid waste management in rural areas is still very limited as a result of the poverty of these communities and the lack of recyclable materials in their solid waste. It has been found that direct throwing of solid waste on the banks of drains and canals as well as open dumping and uncontrolled burning of solid waste are the common practice in most of the Egyptian rural areas. The available land for landfill is not enough, pitiable designed, defectively constructed and unreliably operated. Although solid waste generated in rural areas has high organic contents, no composting plant was installed. Shortage in financial resources allocated for valorization of solid waste management in the Egyptian rural areas and lower collection fees are the main points of weakness which resulted in poor solid waste management systems. On the other hand, the farmer's participation in solid waste management through the composting of organic matter and using of food waste as an animal feed are considered strength points. However, throwing of solid waste on the banks of water streams, open dumping and uncontrolled burning of solid waste are environmental damaging behaviors that need to be changed. Integrated solid waste management in the Egyptian rural areas is not yet among the priorities of the Egyptian government.
The impact of Mpererwe landfill in Kampala Uganda, on the surrounding environment
NASA Astrophysics Data System (ADS)
Mwiganga, M.; Kansiime, F.
Mpererwe landfill site receives solid wastes from the city of Kampala, Uganda. This study was carried out to assess and evaluate the appropriateness of the location and operation of this landfill, to determine the composition of the solid waste dumped at the landfill and the extent of contamination of landfill leachate to the neighbouring environment (water, soil and plants). Field observations and laboratory measurements were carried out to determine the concentration of nutrients, metals and numbers of bacteriological indicators in the landfill leachate. The landfill is not well located as it is close to a residential area (<200 m) and cattle farms. It is also located upstream of a wetland. The landfill generates nuisances like bad odour; there is scattering of waste by scavenger birds, flies and vermin. Industrial and hospital wastes are disposed of at the landfill without pre-treatment. The concentration of variables (nutrients, bacteriological indicators, BOD and heavy metals) in the leachate were higher than those recommended in the National Environment Standards for Discharge of Effluent into Water and on Land. A composite sample that was taken 1500 m down stream indicated that the wetland considerably reduced the concentration of the parameters that were measured except for sulfides. Despite the fact that there was accumulation of metals in the sediments, the concentration has not reached toxic levels to humans. Soil and plant analyses indicated deficiencies of zinc and copper. The concentration of these elements was lowest in the leachate canal.
Poggio, D; Walker, M; Nimmo, W; Ma, L; Pourkashanian, M
2016-07-01
This work proposes a novel and rigorous substrate characterisation methodology to be used with ADM1 to simulate the anaerobic digestion of solid organic waste. The proposed method uses data from both direct substrate analysis and the methane production from laboratory scale anaerobic digestion experiments and involves assessment of four substrate fractionation models. The models partition the organic matter into a mixture of particulate and soluble fractions with the decision on the most suitable model being made on quality of fit between experimental and simulated data and the uncertainty of the calibrated parameters. The method was tested using samples of domestic green and food waste and using experimental data from both short batch tests and longer semi-continuous trials. The results showed that in general an increased fractionation model complexity led to better fit but with increased uncertainty. When using batch test data the most suitable model for green waste included one particulate and one soluble fraction, whereas for food waste two particulate fractions were needed. With richer semi-continuous datasets, the parameter estimation resulted in less uncertainty therefore allowing the description of the substrate with a more complex model. The resulting substrate characterisations and fractionation models obtained from batch test data, for both waste samples, were used to validate the method using semi-continuous experimental data and showed good prediction of methane production, biogas composition, total and volatile solids, ammonia and alkalinity. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Synthetic fuel for imitation of municipal solid waste in experimental studies of waste incineration.
Thipse, S S; Sheng, C; Booty, M R; Magee, R S; Dreizin, E L
2001-08-01
Synthetic fuel is prepared to imitate municipal solid waste (MSW) in experimental studies of incineration processes. The fuel is composed based on the Environmental Protection Agency reports on the materials contained in MSW. Uniform synthetic fuel pellets are prepared using available and inexpensive components including newsprint, hardwood mulch, low density polyethylene, iron, animal feed, sand, and water to imitate paperbound, wood, yard trimming, plastic, metal, food wastes, and other materials in MSW. The synthetic fuel preparation procedure enables one to reproduce and modify the fuel for a wide range of experiments in which the mechanisms of waste incineration are addressed. The fuel is characterized using standard ASTM tests and it is shown that its parameters, such as combustion enthalpy, density, as well as moisture, ash and fixed carbon contents are adequate for the representation of municipal solid waste. In addition, chlorine, nitrogen, and sulfur contents of the fuel are shown to be similar to those of MSW. Experiments are conducted in which the synthetic fuel is used for operation of a pilot-scale incinerator research facility. Steady-state temperature operation regimes are achieved and reproduced in these experiments. Thermodynamic equilibrium flame conditions are computed using an isentropic one-dimensional equilibrium code for a wide range of fuel/air ratios. The molecular species used to represent the fuel composition included cellulose, water, iron, polyethylene, methanamine, and silica. The predicted concentrations of carbon monoxide, nitric oxides, and oxygen in the combustion products are compared with the respective experimental concentrations in the pilot-scale incinerator exhaust.
Methane generation from waste materials
Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza
2010-03-23
An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.
40 CFR 264.101 - Corrective action for solid waste management units.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.101 Corrective action for...
40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the storage of solid waste military munitions. (a) Criteria for hazardous waste regulation of...
40 CFR 266.203 - Standards applicable to the transportation of solid waste military munitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... transportation of solid waste military munitions. 266.203 Section 266.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the transportation of solid waste military munitions. (a) Criteria for hazardous waste...
40 CFR 264.101 - Corrective action for solid waste management units.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.101 Corrective action for...
40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the storage of solid waste military munitions. (a) Criteria for hazardous waste regulation of...
40 CFR 266.203 - Standards applicable to the transportation of solid waste military munitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... transportation of solid waste military munitions. 266.203 Section 266.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the transportation of solid waste military munitions. (a) Criteria for hazardous waste...
40 CFR 266.203 - Standards applicable to the transportation of solid waste military munitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... transportation of solid waste military munitions. 266.203 Section 266.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the transportation of solid waste military munitions. (a) Criteria for hazardous waste...
40 CFR 266.203 - Standards applicable to the transportation of solid waste military munitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... transportation of solid waste military munitions. 266.203 Section 266.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the transportation of solid waste military munitions. (a) Criteria for hazardous waste...
40 CFR 266.203 - Standards applicable to the transportation of solid waste military munitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... transportation of solid waste military munitions. 266.203 Section 266.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the transportation of solid waste military munitions. (a) Criteria for hazardous waste...
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Solid wastes means garbage, refuse, sludges, and other discarded solid materials resulting from... common water pollutants. (z) Special wastes means nonhazardous solid wastes requiring handling other than... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities... residential, commercial, institutional or industrial solid waste. This requirement does not apply to...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities... residential, commercial, institutional or industrial solid waste. This requirement does not apply to...
Schott, Anna Bernstad Saraiva; Vukicevic, Sanita; Bohn, Irene; Andersson, Tova
2013-08-01
Several treatment alternatives for food waste can result in both energy and nutrient recovery, and thereby potential environmental benefits. However, according to the European Union waste management hierarchy, waste prevention should be the prioritized strategy to decrease the environmental burdens from all solid waste management. The aim of the present study was therefore to investigate the potential for food waste minimization among Swedish households through an investigation of the amount of avoidable food waste currently disposed of. A further aim was to investigate the effect on the national biogas production potential through anaerobic digestion of food waste, considering minimization potentials. A method for waste composition analyses of household food waste, where a differentiation between avoidable and unavoidable food waste is made, was used in a total of 24 waste composition analyses of household waste from Swedish residential areas. The total household food waste generation reached 3.4 kg (household and week)(-1), on average, of which 34% is avoidable. The theoretical methane (CH4) potential in unavoidable food waste reached 442 Ndm(3) (kg VS)(-1) or 128 Nm(3) tonne(-1) wet waste, while the measured (mesophilic CH4 batch tests) CH4 production reached 399 Ndm(3) (kg VS)(-1), which is lower than several previous assessments of CH4 production from household food waste. According to this study the combination of a decrease in food waste generation-in case of successful minimization-and decreased CH4 production from unavoidable food waste will thus result in lower total potential energy recovery from household food waste through anaerobic digestion CH4 potential than previously stated.
40 CFR 258.16 - Closure of existing municipal solid waste landfill units.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.16 Closure of existing municipal solid waste landfill units. (a) Existing MSWLF units that cannot make the... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Closure of existing municipal solid...
40 CFR 258.16 - Closure of existing municipal solid waste landfill units.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.16 Closure of existing municipal solid waste landfill units. (a) Existing MSWLF units that cannot make the... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Closure of existing municipal solid...
Code of Federal Regulations, 2011 CFR
2011-07-01
... classification as a solid waste, for variances to be classified as a boiler, or for non-waste determinations. 260.33 Section 260.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... from classification as a solid waste, for variances to be classified as a boiler, or for non-waste...
Code of Federal Regulations, 2010 CFR
2010-07-01
... classification as a solid waste, for variances to be classified as a boiler, or for non-waste determinations. 260.33 Section 260.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... from classification as a solid waste, for variances to be classified as a boiler, or for non-waste...
Possible global environmental impacts of solid waste practices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, M.M.; Holter, G.M.; DeForest, T.J.
1994-09-01
Pollutants resulting from the management of solid waste have been shown to affect the air, land, oceans, and waterways. In addition, solid wastes have other, more indirect impacts such as reduction in feedstocks of natural resources, because useful materials are disposed of rather than recycled. The objective of this study is to evaluate solid waste management practices that have negative implications on the global environment and develop recommendations for reducing such impacts. Recommendations identifying needed changes are identified that will reduce global impacts of solid waste practices in the future. The scope of this study includes the range of non-hazardousmore » solid wastes produced within our society, including municipal solid waste (MSW) and industrial solid waste (ISW), as well as industry-specific wastes from activities such as construction, demolition, and landclearing. Most solid waste management decisions continue to be made and implemented at very local levels, predominantly with a short-term focus to respond to relatively immediate pressures of landfill shortages, funding problems, political considerations, and the like. In this rush to address immediate local problems, little consideration is being given to potential impacts, either short- or long-term, at the national or global level resulting from solid waste management practices. More and more, the cumulative impacts from local decisions concerning solid waste management are beginning to manifest themselves in broader, longer-term impacts than are being addressed by the decision-makers or, at the very least, are presenting a greater and greater potential for such impacts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chanakya, H.N.; Sharma, Isha; Ramachandra, T.V.
The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their compositionmore » was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.« less
Sheets, Johnathon P; Yang, Liangcheng; Ge, Xumeng; Wang, Zhiwu; Li, Yebo
2015-10-01
Effective treatment and reuse of the massive quantities of agricultural and food wastes generated daily has the potential to improve the sustainability of food production systems. Anaerobic digestion (AD) is used throughout the world as a waste treatment process to convert organic waste into two main products: biogas and nutrient-rich digestate, called AD effluent. Biogas can be used as a source of renewable energy or transportation fuels, while AD effluent is traditionally applied to land as a soil amendment. However, there are economic and environmental concerns that limit widespread land application, which may lead to underutilization of AD for the treatment of agricultural and food wastes. To combat these constraints, existing and novel methods have emerged to treat or reuse AD effluent. The objective of this review is to analyze several emerging methods used for efficient treatment and reuse of AD effluent. Overall, the application of emerging technologies is limited by AD effluent composition, especially the total solid content. Some technologies, such as composting, use the solid fraction of AD effluent, while most other technologies, such as algae culture and struvite crystallization, use the liquid fraction. Therefore, dewatering of AD effluent, reuse of the liquid and solid fractions, and land application could all be combined to sustainably manage the large quantities of AD effluent produced. Issues such as pathogen regrowth and prevalence of emerging organic micro-pollutants are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Continuous anaerobic digestion of food waste and design of digester with lipid removal.
Li, Dong; Sun, Yongming; Guo, Yanfeng; Yuan, Zhenhong; Wang, Yao; Zhen, Feng
2013-01-01
Separation of municipal solid waste has been implemented in many cities in China. As a major component of municipal solid waste, food waste can be treated by anaerobic digestion (AD) for energy production. To provide reference data for disposing of food waste through engineering applications, continuous AD was carried out under various organic loading rates (OLRs) at 27 +/- 2 degrees C in the laboratory. The anaerobic reactor was stable with pH 7.0-7.1, total volatile fatty acid (VFA) concentrations of 206-746 mg/L, and NH4+ -N concentrations of 525-1293 mg/L when the OLR was 1.118-5.588 kg volatile solids (VS)/m(3) x d. The maximum volumetric biogas production rate was 4.41 L/L x d when the OLR was increased to 5.588 kg VS/m(3) x d with a hydraulic retention time of 30 d. When the OLR was increased to 6.706 and 8.382 kg VS/m(3) x d, biogas production was seriously inhibited by VFAs, with maximum total VFA and propionate concentrations of 8738 mg/L and 2864 mg/L, respectively. Due to the incomplete degradation of lipids, the specific methane production rate of 353-488 L/kg VS accounted for 55.2-76.3% of the theoretical methane potential calculated based on the component composition. A retrofitted anaerobic digester with lipid removal was designed to improve the efficiency.
Stock flow diagram analysis on solid waste management in Malaysia
NASA Astrophysics Data System (ADS)
Zulkipli, Faridah; Nopiah, Zulkifli Mohd; Basri, Noor Ezlin Ahmad; Kie, Cheng Jack
2016-10-01
The effectiveness on solid waste management is a major importance to societies. Numerous generation of solid waste from our daily activities has risked for our communities. These due to rapid population grow and advance in economic development. Moreover, the complexity of solid waste management is inherently involved large scale, diverse and element of uncertainties that must assist stakeholders with deviating objectives. In this paper, we proposed a system dynamics simulation by developing a stock flow diagram to illustrate the solid waste generation process and waste recycle process. The analysis highlights the impact on increasing the number of population toward the amount of solid waste generated and the amount of recycled waste. The results show an increment in the number of population as well as the amount of recycled waste will decrease the amount of waste generated. It is positively represent the achievement of government aim to minimize the amount of waste to be disposed by year 2020.
Fine granular of shredded waste tyre for road kerb application as improvised road furniture
NASA Astrophysics Data System (ADS)
Munikanan, Vikneswaran; Yahya, Muhamad Azani; Yusof, Mohammed Alias; Radzi, Muhammad Haris Fauzan
2018-02-01
Solid waste management in Malaysia was still in a backward stage. Population growth, urbanization and rapid industrialization led to an increase in the solid waste generated by society. Solid waste management is one of the main problems faced by the community, especially in the city. Solid waste management costs of the collection, collecting, transporting waste to the landfill, is very high. The quantity of solid waste should be reduced in order to reduce government spending. Moreover, improper solid waste management caused a negative impact on people and the environment. Method of recycling is one of the best alternatives to reduce the number of solid waste. Therefore, this study was to identify methods of recycling used tires to be used in civil engineering. This study was conducted to determine the effectiveness and properties of rubber from used tires to be add in the road kerb design.
Towards Sustainable Ambon Bay: Evaluation of Solid Waste Management in Ambon City
NASA Astrophysics Data System (ADS)
Maryati, S.; Miharja, M.; Iscahyono, A. F.; Arsallia, S.; Humaira, AN S.
2017-07-01
Ambon Bay is a strategic area in the context of regional economic development, however it also faced environmental problems due to economic development and the growth of population. One of the environmental problems in the Ambon Bay is the growing solid waste which in turn lowers the quality of the water. The purpose of this study is to evaluate solid waste management in the Ambon City and propose recommendation in order to reduce solid waste in the Ambon Bay. The analytical method used is descriptive analysis by comparing a number of criteria based on the concept of solid waste management in coastal region with the current conditions of solid waste management in Ambon City. Criteria for waste management are divided into generation, storage, collection, transport, transfer and disposal. From the results of analysis, it can be concluded that the components of solid waste management at transport, transfer, and disposal level are generally still adequate, but solid waste management at source, storage and collection level have to be improved.
Indelicato, Serena; Orecchio, Santino; Avellone, Giuseppe; Bellomo, Sergio; Ceraulo, Leopoldo; Di Leonardo, Rossella; Di Stefano, Vita; Favara, Rocco; Candela, Esterina Gagliano; La Pica, Leonardo; Morici, Sabina; Pecoraino, Giovannella; Pisciotta, Antonino; Scaletta, Claudio; Vita, Fabio; Vizzini, Salvatrice; Bongiorno, David
2017-07-01
The aim of this study was to obtain information on the presence and levels of hazardous organic pollutants in groundwater located close to solid waste landfills. Eighty-two environmental contaminants, including 16 polycyclic aromatic hydrocarbons (PAHs), 20 volatile organic compounds (VOCs), 29 polychlorinated biphenyls (PCBs), 7 dioxins (polychlorinated dibenzo-p-dioxins, PCDDs) and 10 furans (polychlorinated dibenzofurans, PCDFs) were monitored in areas characterised by different geological environments surrounding three municipal solid waste landfills (Palermo, Siculiana and Ragusa) in Sicily (Italy) in three sampling campaigns. The total concentrations of the 16 PAHs were always below the legal threshold. Overall, the Fl/Fl + Py diagnostic ratio revealed that PAHs had a petrogenic origin. VOC levels, except for two notable exceptions near Palermo landfill, were always below the legal limit. As concerns PCB levels, several samples were found positive with levels exceeding the legal limits. It is worth noting that the % PCB distribution differs from that of commercial compositions. In parallel, some samples of groundwater containing PCDDs and PCDFs exceeding the legal threshold were also found. Among the 17 congeners monitored, the most abundant were the highest molecular weight ones.
Determination of biogas generation potential as a renewable energy source from supermarket wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alkanok, Gizem; Demirel, Burak, E-mail: burak.demirel@boun.edu.tr; Onay, Turgut T.
2014-01-15
Highlights: • Disposal of supermarket wastes in landfills may contribute to environmental pollution. • High methane yields can be obtained from supermarket wastes by anaerobic co-digestion. • Fruit and vegetable wastes or dairy products wastes could individually be handled by a two-stage anaerobic process. • Buffering capacity, trace metal and C/N ratio are essential for digestion of supermarket wastes. - Abstract: Fruit, vegetable, flower waste (FVFW), dairy products waste (DPW), meat waste (MW) and sugar waste (SW) obtained from a supermarket chain were anaerobically digested, in order to recover methane as a source of renewable energy. Batch mesophilic anaerobic reactorsmore » were run at total solids (TS) ratios of 5%, 8% and 10%. The highest methane yield of 0.44 L CH{sub 4}/g VS{sub added} was obtained from anaerobic digestion of wastes (FVFW + DPW + MW + SW) at 10% TS, with 66.4% of methane (CH{sub 4}) composition in biogas. Anaerobic digestion of mixed wastes at 5% and 8% TS provided slightly lower methane yields of 0.41 and 0.40 L CH{sub 4}/g VS{sub added}, respectively. When the wastes were digested alone without co-substrate addition, the highest methane yield of 0.40 L CH{sub 4}/g VS{sub added} was obtained from FVFW at 5% TS. Generally, although the volatile solids (VS) conversion percentages seemed low during the experiments, higher methane yields could be obtained from anaerobic digestion of supermarket wastes. A suitable carbon/nitrogen (C/N) ratio, proper adjustment of the buffering capacity and the addition of essential trace nutrients (such as Ni) could improve VS conversion and biogas production yields significantly.« less
40 CFR 267.101 - What must I do to address corrective action for solid waste management units?
Code of Federal Regulations, 2012 CFR
2012-07-01
... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...
40 CFR 267.101 - What must I do to address corrective action for solid waste management units?
Code of Federal Regulations, 2014 CFR
2014-07-01
... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...
40 CFR 267.101 - What must I do to address corrective action for solid waste management units?
Code of Federal Regulations, 2013 CFR
2013-07-01
... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...
40 CFR 267.101 - What must I do to address corrective action for solid waste management units?
Code of Federal Regulations, 2011 CFR
2011-07-01
... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...
40 CFR 267.101 - What must I do to address corrective action for solid waste management units?
Code of Federal Regulations, 2010 CFR
2010-07-01
... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...
NASA Astrophysics Data System (ADS)
Thompson, W. T.; Stinton, L. H.
1980-04-01
Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.
78 FR 46549 - Approval and Promulgation of Implementation Plans; Idaho: State Board Requirements
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-01
... such board or body or the head of an executive agency with similar powers be adequately disclosed.'' 42... Requirements Idaho Code Sec. 39-107, Board--Composition--Officers-- Compensation--Powers--Subpoena--Depositions... regard to their knowledge of and interest in solid waste; two (2) members shall be chosen for their...
Detection of Pollution Caused by Solid Wastes
NASA Technical Reports Server (NTRS)
Golueke, Clarence G.
1971-01-01
To develop a means of detecting pollution, it s necessary to know something about the source and nature of the pollution. The type of pollution rising from solid wastes differs considerably from hat from liquid wastes or that from gaseous wastes ni its effect on the immediate environment. It may be "defined" by a series of negatives. When solid wastes are discarded on land, the resulting pollution is not land pollution in the sense of air and water pollution. For one thing, the solid wastes do not become a "part" of the land in that the wastes are neither intimately mixed nor homogenized into the land as are liquid and gaseous wastes into their respective media. The waste particles retain not only their chemical identity but also their visible (i.e., physical) characteristics. When buried, for example, the soil is under, above, and around the solids, because the wastes are there as discrete units. Secondly, solid wastes neither diffuse nor are they carried from the place at which they were deposited. In other words they remain stationary, providing of course the disposal site is land and not moving water. In a given area, solid wastes be not distributed uniformly over that area. Even the solid wastes falling into the specification of letter meets these specifications. In contrast liquid and gaseous wastes become intimately mixed, homogenized, and even dissolved in their media. Because solid wastes remain stationary, pollution constituted by their presence is highly localized and heavily concentrated, even to the extent that the pollution could be termed "micro" when compared to the macro-pollution arising from liquid and gasequs wastes.
Promising Technologies of Mining and Processing of Solid Minerals
NASA Astrophysics Data System (ADS)
Shabaev, Sergey; Ivanov, Seregey; Vakhianov, Evgeniy
2017-11-01
The continuing growth in mineral extraction entails an increase in industrial waste, which in turn has a negative impact on the environment. Rubber-tired vehicles, in which the tires wear colossally, is mainly used as a transport for loading, unloading, transportation and other types of work in the extraction of solid minerals. The used tires are not disposed in any way, but are stored in special areas where harmful toxic substances are emitted under the influence of ultraviolet rays. Therefore, a decision was made to find a method for utilization and rational use of industrial waste in the road construction sector. The operating temperature of composite rubber-bituminous binders based on rubber crumb from the used automobile tires is estimated in this paper, which is necessary for assigning technological parameters of production and laying of asphalt-concrete mixtures produced on their basis. It is established that composite rubber-bituminous binders based on rubber chips from the used automobile tires, produced according to the two-stage technology, have the same viscosity as the original petroleum bitumen, at a temperature increased by 20°C.
NASA Astrophysics Data System (ADS)
Liu, Yueru; Hu, Kunhong; Hu, Enzhu; Guo, Jianhua; Han, Chengliang; Hu, Xianguo
2017-01-01
Molybdenum disulfide (MoS2) has extensive applications in industries as solid lubricants and catalysts. To improve the lubricating performance of MoS2, novel double-hollow-sphere MoS2 (DHSM) nanoparticles with an average diameter of approximately 90 nm were synthesized on sericite mica (SM). When the DHSM/SM composite was used as an additive in polyalphaolefin oil, friction and wear decreased by 22.4% and 63.5% respectively. The low friction and wear were attributed to the easy exfoliation of DHSM. The DHSM/SM composite was then rubbed under 40 MPa for 1 h to investigate the exfoliation and functional conversion behaviors of DHSM. Results showed that DHSM (lubricating structure) on SM could be completely exfoliated into nanosheets (catalytic structure) by rubbing. The nanosheets exfoliated from DHSM presented good photocatalytic activity for the removal of organic compounds from waste water. This work provided both a novel solid lubricant for industrial applications and a possible approach to designing a novel green lubricant for use as a photocatalyst in organic-waste treatment after lubricating service life.
Quadrant III RFI draft report: Appendix B-I, Volume 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-01
In order to determine the nature and extent of contamination at a RCRA site it is often necessary to investigate and characterize the chemical composition of the medium in question that represents background conditions. Background is defined as current conditions present at a site which are unaffected by past treatment, storage, or disposal of hazardous waste (OEPA, 1991). The background composition of soils at the Portsmouth Gaseous Diffusion Plant (PORTS) site was characterized for the purpose of comparing investigative soil data to a background standard for each metal on the Target Compound List/Target Analyte List and each radiological parameter ofmore » concern in this RFI. Characterization of background compositions with respect to organic parameters was not performed because the organic parameters in the TCL/TAL are not naturally occurring at the site and because the site is not located in a highly industrialized area nor downgradient from another unrelated hazardous waste site. Characterization of the background soil composition with respect to metals and radiological parameters was performed by collecting and analyzing soil boring and hand-auger samples in areas deemed unaffected by past treatment, storage, or disposal of hazardous waste. Criteria used in determining whether a soil sample location would be representative of the true background condition included: environmental history of the location, relation to Solid Waste Management Units (SWMU`s), prevailing wind direction, surface runoff direction, and ground-water flow direction.« less
Quadrant III RFI draft report: Appendix B-I, Volume 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-01
In order to determine the nature and extent of contamination at a RCRA site it is often necessary to investigate and characterize the chemical composition of the medium in question that represents background conditions. Background is defined as current conditions present at a site which are unaffected by past treatment, storage, or disposal of hazardous waste (OEPA, 1991). The background composition of soils at the Portsmouth Gaseous Diffusion Plant (PORTS) site was characterized for the purpose of comparing investigative soil data to a background standard for each metal on the Target Compound List/Target Analyte List and each radiological parameter ofmore » concern in this RFI. Characterization of background compositions with respect to organic parameters was not performed because the organic parameters in the TCL/TAL are not naturally occurring at the site and because the site is not located in a highly industrialized area nor downgradient from another unrelated hazardous waste site. Characterization of the background soil composition with respect to metals and radiological parameters was performed by collecting and analyzing soil boring and hand-auger samples in areas deemed unaffected by past treatment, storage, or disposal of hazardous waste. Criteria used in determining whether a soil sample location would be representative of the true background condition included: environmental history of the location, relation to Solid Waste Management Units (SWMU's), prevailing wind direction, surface runoff direction, and ground-water flow direction.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities... demolition (C&D) landfill means a solid waste disposal facility subject to the requirements of subparts A or...
A review on current status of municipal solid waste management in India.
Gupta, Neha; Yadav, Krishna Kumar; Kumar, Vinit
2015-11-01
Municipal solid waste management is a major environmental issue in India. Due to rapid increase in urbanization, industrialization and population, the generation rate of municipal solid waste in Indian cities and towns is also increased. Mismanagement of municipal solid waste can cause adverse environmental impacts, public health risk and other socio-economic problem. This paper presents an overview of current status of solid waste management in India which can help the competent authorities responsible for municipal solid waste management and researchers to prepare more efficient plans. Copyright © 2015. Published by Elsevier B.V.
Characteristics of the organic fraction of municipal solid waste and methane production: A review.
Campuzano, Rosalinda; González-Martínez, Simón
2016-08-01
Anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) is a viable alternative for waste stabilization and energy recovery. Biogas production mainly depends on the type and amount of organic macromolecules. Based on results from different authors analysing OFMSW from different cities, this paper presents the importance of knowing the OFMSW composition to understand how anaerobic digestion can be used to produce methane. This analysis describes and discusses physical, chemical and bromatological characteristics of OFMSW reported by several authors from different countries and cities and their relationship to methane production. The main conclusion is that the differences are country and not city dependant. Cultural habits and OFMSW management systems do not allow a generalisation but the individual analysis for specific cities allow understanding the general characteristics for a better methane production. Not only are the OFMSW characteristics important but also the conditions under which the methane production tests were performed. Copyright © 2016. Published by Elsevier Ltd.
Niu, Miaomiao; Dong, Qing; Huang, Yaji; Jin, Baosheng; Wang, Hongyan; Gu, Haiming
2018-05-01
To achieve high-temperature gasification-melting of combustible solid waste, ash melting behaviour under conditions simulating high-temperature gasification were studied. Raw ash (RA) and gasified ash (GA) were prepared respectively by waste ashing and fluidized bed gasification. Results of microstructure and composition of the two-ash indicated that GA showed a more porous structure and higher content of alkali and alkali earth metals among metallic elements. Higher temperature promoted GA melting and could reach a complete flowing state at about 1250°C. The order of melting rate of GA under different atmospheres was reducing condition > inert condition > oxidizing condition, which might be related to different existing forms of iron during melting and different flux content with atmosphere. Compared to RA, GA showed lower melting activity at the same condition due to the existence of an unconverted carbon and hollow structure. The melting temperature for sufficient melting and separation of GA should be at least 1250°C in this work.
Natural bioactive compounds from winery by-products as health promoters: a review.
Teixeira, Ana; Baenas, Nieves; Dominguez-Perles, Raul; Barros, Ana; Rosa, Eduardo; Moreno, Diego A; Garcia-Viguera, Cristina
2014-09-04
The relevance of food composition for human health has increased consumers' interest in the consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals. This fact has led to a growing attention of suppliers on reuse of agro-industrial wastes rich in healthy plant ingredients. On this matter, grape has been pointed out as a rich source of bioactive compounds. Currently, up to 210 million tons of grapes (Vitis vinifera L.) are produced annually, being the 15% of the produced grapes addressed to the wine-making industry. This socio-economic activity generates a large amount of solid waste (up to 30%, w/w of the material used). Winery wastes include biodegradable solids namely stems, skins, and seeds. Bioactive compounds from winery by-products have disclosed interesting health promoting activities both in vitro and in vivo. This is a comprehensive review on the phytochemicals present in winery by-products, extraction techniques, industrial uses, and biological activities demonstrated by their bioactive compounds concerning potential for human health.
The study on biomass fraction estimate methodology of municipal solid waste incinerator in Korea.
Kang, Seongmin; Kim, Seungjin; Lee, Jeongwoo; Yun, Hyunki; Kim, Ki-Hyun; Jeon, Eui-Chan
2016-10-01
In Korea, the amount of greenhouse gases released due to waste materials was 14,800,000 t CO2eq in 2012, which increased from 5,000,000 t CO2eq in 2010. This included the amount released due to incineration, which has gradually increased since 2010. Incineration was found to be the biggest contributor to greenhouse gases, with 7,400,000 t CO2eq released in 2012. Therefore, with regards to the trading of greenhouse gases emissions initiated in 2015 and the writing of the national inventory report, it is important to increase the reliability of the measurements related to the incineration of waste materials. This research explored methods for estimating the biomass fraction at Korean MSW incinerator facilities and compared the biomass fractions obtained with the different biomass fraction estimation methods. The biomass fraction was estimated by the method using default values of fossil carbon fraction suggested by IPCC, the method using the solid waste composition, and the method using incinerator flue gas. The highest biomass fractions in Korean municipal solid waste incinerator facilities were estimated by the IPCC Default method, followed by the MSW analysis method and the Flue gas analysis method. Therefore, the difference in the biomass fraction estimate was the greatest between the IPCC Default and the Flue gas analysis methods. The difference between the MSW analysis and the flue gas analysis methods was smaller than the difference with IPCC Default method. This suggested that the use of the IPCC default method cannot reflect the characteristics of Korean waste incinerator facilities and Korean MSW. Incineration is one of most effective methods for disposal of municipal solid waste (MSW). This paper investigates the applicability of using biomass content to estimate the amount of CO2 released, and compares the biomass contents determined by different methods in order to establish a method for estimating biomass in the MSW incinerator facilities of Korea. After analyzing the biomass contents of the collected solid waste samples and the flue gas samples, the results were compared with the Intergovernmental Panel on Climate Change (IPCC) method, and it seems that to calculate the biomass fraction it is better to use the flue gas analysis method than the IPCC method. It is valuable to design and operate a real new incineration power plant, especially for the estimation of greenhouse gas emissions.
Developing a master plan for hospital solid waste management: A case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karamouz, Mohammad; Zahraie, Banafsheh; Kerachian, Reza
2007-07-01
Disposal of about 1750 tons of solid wastes per day is the result of a rapid population growth in the province of Khuzestan in the south west of Iran. Most of these wastes, especially hospital solid wastes which have contributed to the pollution of the environment in the study area, are not properly managed considering environmental standards and regulations. In this paper, the framework of a master plan for managing hospital solid wastes is proposed considering different criteria which are usually used for evaluating the pollution of hospital solid waste loads. The effectiveness of the management schemes is also evaluated.more » In order to rank the hospitals and determine the share of each hospital in the total hospital solid waste pollution load, a multiple criteria decision making technique, namely analytical hierarchy process (AHP), is used. A set of projects are proposed for solid waste pollution control and reduction in the proposed framework. It is partially applied for hospital solid waste management in the province of Khuzestan, Iran. The results have shown that the hospitals located near the capital city of the province, Ahvaz, produce more than 43% of the total hospital solid waste pollution load of the province. The results have also shown the importance of improving management techniques rather than building new facilities. The proposed methodology is used to formulate a master plan for hospital solid waste management.« less
Co-composting of green waste and food waste at low C/N ratio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Mathava; Ou, Y.-L.; Lin, J.-G., E-mail: jglin@mail.nctu.edu.t
2010-04-15
In this study, co-composting of food waste and green waste at low initial carbon to nitrogen (C/N) ratios was investigated using an in-vessel lab-scale composting reactor. The central composite design (CCD) and response surface method (RSM) were applied to obtain the optimal operating conditions over a range of preselected moisture contents (45-75%) and C/N ratios (13.9-19.6). The results indicate that the optimal moisture content for co-composting of food waste and green waste is 60%, and the substrate at a C/N ratio of 19.6 can be decomposed effectively to reduce 33% of total volatile solids (TVS) in 12 days. The TVSmore » reduction can be modeled by using a second-order equation with a good fit. In addition, the compost passes the standard germination index of white radish seed indicating that it can be used as soil amendment.« less
40 CFR 258.20 - Procedures for excluding the receipt of hazardous waste.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of hazardous waste. 258.20 Section 258.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.20 Procedures..., regulated hazardous waste means a solid waste that is a hazardous waste, as defined in 40 CFR 261.3, that is...
40 CFR 258.20 - Procedures for excluding the receipt of hazardous waste.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of hazardous waste. 258.20 Section 258.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.20 Procedures..., regulated hazardous waste means a solid waste that is a hazardous waste, as defined in 40 CFR 261.3, that is...
Sustainable solutions for solid waste management in Southeast Asian countries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uyen Nguyen Ngoc; Schnitzer, Hans
2009-06-15
Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will bemore » outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-12
...-2011-0392; FRL-9476-6] RIN 2050-AE81 Hazardous and Solid Waste Management System: Identification and... Protection Agency (Agency or EPA) in conjunction with the proposed rule: Hazardous and Solid Waste Management...-0392. (4) Mail: Send two copies of your comments to Hazardous and Solid Waste Management System...
Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE).
Riber, Christian; Bhander, Gurbakhash S; Christensen, Thomas H
2008-02-01
A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model is a module in the life-cycle assessment model EASEWASTE. The module accounts for all uses of materials and energy and credits the incinerator for electricity and heat recovered. The energy recovered is defined by the user as a percentage of the energy produced, calculated on the lower heating value of the wet waste incinerated. Emissions are either process-specific (related to the amount of waste incinerated) or input-specific (related to the composition of the waste incinerated), while mass transfer to solid outputs are governed by transfer coefficients specified by the user. The waste input is defined by 48 material fractions and their chemical composition. The model was used to quantify the environmental performance of the incineration plant in Aarhus, Denmark before and after its upgrading in terms of improved flue gas cleaning and energy recovery. It demonstrated its usefulness in identifying the various processes and substances that contributed to environmental loadings as well as to environmental savings. The model was instrumental in demonstrating the importance of the energy recovery system not only for electricity but also heat from the incinerator.
Effects of organic composition on mesophilic anaerobic digestion of food waste.
Li, Yangyang; Jin, Yiying; Borrion, Aiduan; Li, Hailong; Li, Jinhui
2017-11-01
Anaerobic digestion of food waste (FW) has been widely investigated, however, little is known about the influence of organic composition on the FW digestion process. This study aims to identify the optimum composition ratios of carbohydrate (CA), protein (CP) and lipid (EE) for maintaining high methane yield and process stability. The results show that the CA-CP-EE ratio was significantly correlated with performance and degradability parameters. Controlling the CA-CP-EE ratio higher than 1.89 (CA higher than 8.3%, CP lower than 5.0%, and EE lower than 5.6%) could be an effective way to maintain stable digestion and achieve higher methane production (385-627mL/gVS) and shorter digestion retention (196-409h). The CA-CP-EE ratio could be used as an important indicator for digestion performance. To effectively evaluate organic reduction, the concentration and removal efficiency of organic compositions in both solid phases and total FW should be considered. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Staszak, Katarzyna; Wieszczycka, Karolina
2018-04-01
The potential sources of metals from energy industries are discussed. The discussion is organized based on two main metal-contains wastes from power plants: ashes, slags from combustion process and spent catalysts from selective catalytic NOx reduction process with ammonia, known as SCR. The compositions, methods of metals recovery, based mainly on leaching process, and their further application are presented. Solid coal combustion wastes are sources of various compounds such as silica, alumina, iron oxide, and calcium. In the case of the spent SCR catalysts mainly two metals are considered: vanadium and tungsten - basic components of industrial ones.
Code of Federal Regulations, 2011 CFR
2011-07-01
... identification of non-hazardous secondary materials that are solid wastes when used as fuels or ingredients in...) SOLID WASTES SOLID WASTES USED AS FUELS OR INGREDIENTS IN COMBUSTION UNITS Identification of Non-Hazardous Secondary Materials That Are Solid Wastes When Used as Fuels or Ingredients in Combustion Units...
Solid Waste Activity Packet for Teachers.
ERIC Educational Resources Information Center
Illinois Univ., Urbana. Cooperative Extension Service.
This solid waste activity packet introduces students to the solid waste problem in Illinois. Topics explore consumer practices in the market place, packaging, individual and community garbage generation, and disposal practices. The activities provide an integrated approach to incorporating solid waste management issues into subject areas. The…
78 FR 20073 - Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
...] Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency... Oregon's approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final regulations... Oregon's Municipal Solid Waste Landfill permit program to allow for Research, Development, and...
Medium term municipal solid waste generation prediction by autoregressive integrated moving average
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.
2014-09-12
Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressivemore » Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.« less
Medium term municipal solid waste generation prediction by autoregressive integrated moving average
NASA Astrophysics Data System (ADS)
Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan
2014-09-01
Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.
Examples of Disposition Alternatives for WTP Solid Secondary Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seitz, R.
The Hanford Waste Treatment and Immobilization Plant is planned to produce a variety of solid secondary wastes that will require disposal at the Integrated Disposal Facility on the Hanford Site. Solid secondary wastes include a variety of waste streams that are a result of waste treatment and processing activities.
40 CFR 260.30 - Non-waste determinations and variances from classification as a solid waste.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Non-waste determinations and variances from classification as a solid waste. 260.30 Section 260.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking...
40 CFR 260.30 - Non-waste determinations and variances from classification as a solid waste.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Non-waste determinations and variances from classification as a solid waste. 260.30 Section 260.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking...
40 CFR 260.30 - Non-waste determinations and variances from classification as a solid waste.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Non-waste determinations and variances from classification as a solid waste. 260.30 Section 260.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking...
Evaluation of solid residues removed from a mangrove swamp in the São Vicente Estuary, SP, Brazil.
Cordeiro, C A M M; Costa, T M
2010-10-01
Mangrove swamps are found in estuaries along the coastal plains of tropical regions and have be subjected to heavy occupation and use pressure due to their privileged locations and abundance of biological resources. The present work evaluated the ecological characteristics and solid wastes accumulated in eight areas along the Santos - São Vicente Estuary Complex. The superficially deposited residues at each sampling site were collected and subsequently washed, drained, counted, weighed and separated into classes according to their composition and predominant use. The predominant litter type in terms of density was plastic (62.81%) and, by weight, wood (55.53%). The greatest deposition of residues was associated with areas that were less inclined and that had low plant density levels, indicating that the presence of obstacles was not critical for retaining floating residues in mangrove areas. The presence of the most frequently encountered types of solid waste residues could be explained by local activities. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
The module focuses on EPA`s efforts in two areas: municipal and industrial solid waste. The garbage that is managed by the local governments is known as municipal solid waste (MSW). Garbage excluded from hazardous waste regulation but not typically collected by local governments is commonly known as industrial solid waste. This category includes domestic sewage and other wastewater treatment sludge, demolition and construction wastes, agricultural and mining residues, combustion ash, and industrial process wastes.
Amey, E.B.; Russell, J.A.; Hurdelbrink, R.J.
1996-01-01
In 1976, the U.S. Congress enacted the Resource Conservation and Recovery Act (RCRA) to further address the problem of increasing industrial and municipal waste. The main objectives of RCRA were to responsibly manage hazardous and solid waste and to procure materials made from recovered wastes. To fulfill these objectives, four main programs of waste management were developed. These programs were defined under Subtitle C, the Hazardous Waste Program; Subtitle D, the Solid Waste Program; Subtitle I, the Underground Storage Tank Program; and Subtitle J, the Medical Waste Program. Subtitle D illustrates the solid waste dilemma occurring in the United States. Under this program, states are encouraged to develop and implement their own waste management plans. These plans include the promotion of recycling solid wastes and the closing and upgrading of all environmentally unsound dumps. ?? 1996 International Association for Mathematical Geology.
Doležalová, Markéta; Benešová, Libuše; Závodská, Anita
2013-09-01
The authors of this paper report on the changing character of household waste, in the Czech Republic between 1999 and 2009 in households differentiated by their heating methods. The data presented are the result of two projects, financed by the Czech Ministry of Environment, which were undertaken during this time period with the aim of focusing on the waste characterisation and complete analysis of the physicochemical properties of the household waste. In the Czech Republic, the composition of household waste varies significantly between different types of households based on the methods of home heating employed. For the purposes of these studies, the types of homes were divided into three categories - urban, mixed and rural. Some of the biggest differences were found in the quantities of certain subsample categories, especially fine residue (matter smaller than 20 mm), between urban households with central heating and rural households that primarily employ solid fuel such coal or wood. The use of these solid fuels increases the fraction of the finer categories because of the higher presence of ash. Heating values of the residual household waste from the three categories varied very significantly, ranging from 6.8 MJ/kg to 14.2 MJ/kg in 1999 and from 6.8 MJ/kg to 10.5 MJ/kg in 2009 depending on the type of household and season. The same factors affect moisture of residual household waste which varied from 23.2% to 33.3%. The chemical parameters also varied significantly, especially in the quantities of Tl, As, Cr, Zn, Fe and Mn, which were higher in rural households. Because knowledge about the properties of household waste, as well as its physicochemical characteristics, is very important not only for future waste management, but also for the prediction of the behaviour and influence of the waste on the environment as the country continues to streamline its legislation to the European Union's solid waste mandates, the results of these studies were employed by the Czech Ministry of Environment to optimise the national waste management strategy. Copyright © 2013 Elsevier Ltd. All rights reserved.
System for chemically digesting low level radioactive, solid waste material
Cowan, Richard G.; Blasewitz, Albert G.
1982-01-01
An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.
The Tompkins County Solid Waste Annual Fee: Background and overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penniman, P.W.
1995-05-01
This report outlines the development by Tompkins County of a new revenue source for solid waste programs -- The Solid Waste Annual Fee. Over the past two decades in New York State, regulatory demands and the decline in available landfill space have combined to cause a rapid escalation in the cost of solid waste disposal. While the New York State Department of Environmental Conservation (NYSDEC) has implemented tighter regulations for the siting of solid waste landfills, they have also mandated the permitting or closure of all existing landfills in the state. The result is that all communities have been requiredmore » to invest millions of dollars in landfill siting, closure and solid waste processing facilities. In addition, programs for reducing and recycling solid wastes have been mandated to reduce the outflow to landfills. Until recent years, solid waste services in most New York counties have been funded almost entirely through a collection of property taxes. During the past six years, fiscal stress has stimulated a movement toward funding solid waste programs by other means. Alternatives to the property tax include: (1) special assessment taxes or fees; (2) user charges (including tipping fees); and (3) intergovernment grants.« less
NASA Astrophysics Data System (ADS)
Hayati, A. P.; Emalya, N.; Munawar, E.; Schwarzböck, T.; Lederer, J.; Fellner, J.
2018-03-01
The MSW landfill produces gas which is represent the energy resource that lost and polluted the ambient air. The objective of this study is to evaluate the potential gas production of old landfill as an alternative energy source. The study was conducted by using 10 years old waste in landfill simulator reactor (LSR). Four Landfills Simulator Reactors (LSR) were constructed for evaluate the gas production of old MSW landfilled. The LSR was made of high density poly ethylene (HDPE) has 50 cm outside diameter and 150 cm of high. The 10 years old waste was excavated from closed landfill and subsequently separated from inorganic fraction and sieved to maximum 50 mm size particle prior emplaced into the LSR. Although quite small compare to the LSR containing fresh waste has been reported, the LRS containing 10 years old waste still produce much landfill gas. The landfill gas produced of LSR operated with and without leachate recirculation were about 29 and 21 litter. The composition of landfill gas produced was dominated by CO2 with the composition of CH4 and O2 were around 12.5% and 0.2 %, respectively.
NASA Astrophysics Data System (ADS)
Novoselova, I. N.; Novosyolov, A. G.
2018-03-01
The article considers the influence of barite waste on clinker formation processes in raw mixes with the increased content of magnesium oxide. A by-product of the barite concentrate manufacture of Tolcheinskoye deposit has been used as a barite waste, its predominant content of barium sulphate BaSO4 amounts to 76,11%. The impact of BaO and SO3 has been revealed, particularly the impact of barium oxide on clinker formation processes in raw mixes with the increased content of magnesium oxide. It has been clarified that the addition of barite waste into a raw mix causes the formation of dicalcium silicate in two modifications, reduces the amount of alite and influences on the composition of tricalcium aluminate. Barium mono-alluminate is formed in the composition of the intermediate material. Solid solutions with barium oxide are formed in clinker phases. The authors have determined the saturation speed of calcium oxide in magnesium-bearing raw mixes with saturation coefficient (SC) 0,91 and 0,80 in the presence of 2 and 3% barite waste in the temperature range 1300-1450°C.
Effects of biochars produced from solid organic municipal waste on soil quality parameters
USDA-ARS?s Scientific Manuscript database
New, value-added uses for solid organic waste are needed for environmental and economic sustainability. Fortunately, value-added biochars can be produced from mixed organic solid waste, thereby addressing solid waste management issues, and enabling long-term carbon sequestration. We hypothesize that...
40 CFR 240.206-3 - Recommended procedures: Operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended... spillages occur, emptying the solid waste storage area at least weekly, and routinely cleaning the remainder of the facility. (b) Solid waste and residue should not be allowed to accumulate at the facility for...
40 CFR 266.202 - Definition of solid waste.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Definition of solid waste. 266.202 Section 266.202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... MANAGEMENT FACILITIES Military Munitions § 266.202 Definition of solid waste. (a) A military munition is not...
78 FR 5350 - Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-25
...] Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On December 7, 2012 Massachusetts submitted an application to...
40 CFR 266.202 - Definition of solid waste.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Definition of solid waste. 266.202 Section 266.202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... MANAGEMENT FACILITIES Military Munitions § 266.202 Definition of solid waste. (a) A military munition is not...
Effect of natural ageing on volume stability of MSW and wood waste incineration residues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gori, Manuela, E-mail: manuela.gori@dicea.unifi.it; Bergfeldt, Britta; Reichelt, Jürgen
2013-04-15
Highlights: ► Natural weathering on BA from MSW and wood waste incineration was evaluated. ► Type of mineral phases, pH and volume stability were considered. ► Weathering reactions effect in improved stability of the materials. - Abstract: This paper presents the results of a study on the effect of natural weathering on volume stability of bottom ash (BA) from municipal solid waste (MSW) and wood waste incineration. BA samples were taken at different steps of treatment (fresh, 4 weeks and 12 weeks aged) and then characterised for their chemical and mineralogical composition and for volume stability by means of themore » mineralogical test method (M HMVA-StB), which is part of the German quality control system for using aggregates in road construction (TL Gestein-StB 04). Changes of mineralogical composition with the proceeding of the weathering treatment were also monitored by leaching tests. At the end of the 12 weeks of treatment, almost all the considered samples resulted to be usable without restrictions in road construction with reference to the test parameter volume stability.« less
Murase, Noriaki; Murayama, Takehiko; Nishikizawa, Shigeo; Sato, Yuriko
2017-10-01
Many cities in Indonesia are under pressure to reduce solid waste and dispose of it properly. In response to this pressure, the Japan International Cooperation Agency and the Indonesian Government have implemented a solid waste separation and collection project to reduce solid waste in the target area (810 households) of Balikpapan City. We used a cluster randomised controlled trial method to measure the impact of awareness-raising activities that were introduced by the project on residents' organic solid waste separation behaviour. The level of properly separated organic solid waste increased by 6.0% in areas that conducted awareness-raising activities. Meanwhile, the level decreased by 3.6% in areas that did not conduct similar activities. Therefore, in relative comparison, awareness-raising increased the level by 9.6%. A comparison among small communities in the target area confirmed that awareness-raising activities had a significant impact on organic solid waste separation. High frequencies of monitoring at waste stations and door-to-door visits by community members had a positive impact on organic solid waste separation. A correlation between the proximity of environmental volunteers' houses to waste stations and a high level of separation was also confirmed. The awareness-raising activities introduced by the project led to a significant increase in the separation of organic solid waste.
NASA Astrophysics Data System (ADS)
Liao, L. M.; Wang, Z. Q.; Liang, H.; Feng, J.; Zhang, D.
2016-08-01
Supported nano-TiO2photocatalysts play an important role in water environment restoration because of their potential application to photocatalytic degradation of organic contaminants in waste water. With sepiolite as the support, the nano-TiO2/sepiolite composite photocatalysts were synthesized by an easily operated and mild solid-state sintering process.The microstructureand photocatalytic property of the sepiolite supportednano-TiO2 composites were characterized and analyzed by X-ray diffraction spectroscopy, UV-Visible spectroscopy and fluorescence spectroscopy. In addition, the influences of calcination temperature and load ratios on the photocatalytic activity of sepiolite supported nano-TiO2 composites were studied.The results indicated that appropriate ratios of sepiolite supports to nano-TiO2contributed to uniform dispersion of nanoparticles, and enhanced the absorption ability within the UV-Vis range, and consequently increased the photocatalytic activity of the composites.Under the preparation conditions of 90 wt. % TiO2 loading and calcinated at 400 °C, a maximum in photocatalytic activity ofnano-TiO2 sepiolite composite was obtained.
AW-101 entrained solids - Solubility versus temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
GJ Lumetta; RC Lettau; GF Piepel
This report describes the results of a test conducted by Battelle to assess the solubility of the solids entrained in the diluted AW-101 low-activity waste (LAW) sample. BNFL requested Battelle to dilute the AW-1-1 sample using de-ionized water to mimic expected plant operating conditions. BNFL further requested Battelle to assess the solubility of the solids present in the diluted AW-101 sample versus temperature conditions of 30, 40, and 50 C. BNFL requested these tests to assess the composition of the LAW supernatant and solids versus expected plant-operating conditions. The work was conducted according to test plan BNFL-TP-29953-7, Rev. 0, Determinationmore » of the Solubility of LAW Entrained Solids. The test went according to plan, with no deviations from the test plan.« less
Solid-waste management in Jalandhar city and its impact on community health
Puri, Avinash; Kumar, Manoj; Johal, Eonkar
2008-01-01
In this study, solid-waste management practices were evaluated in order to find out its link with occurrence of vector-borne disease. Strategies for solid-waste management were employed as practical model to solve the problems regarding pollution which is originated by solid-waste. PMID:20040983
Energy and solid/hazardous waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1981-12-01
This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)
76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-04
...] Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved Municipal Solid Waste Landfill (MSWLF) permit program. The approved modification allows the State..., EPA issued a final rule (69 FR 13242) amending the Municipal Solid Waste Landfill (MSWLF) criteria in...
40 CFR 1.47 - Office of Solid Waste and Emergency Response.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Office of Solid Waste and Emergency... ORGANIZATION AND GENERAL INFORMATION Headquarters § 1.47 Office of Solid Waste and Emergency Response. The Office of Solid Waste and Emergency Response (OSWER), under the supervision of the Assistant...
75 FR 53220 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-31
...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved municipal solid waste landfill (MSWLF) program. The approved modification allows the State to..., and demonstration (RD&D) permits to be issued to certain municipal solid waste landfills by approved...
75 FR 53268 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-31
...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On June 28, 2010 New Hampshire submitted an application to EPA...
40 CFR 62.14353 - Standards for municipal solid waste landfill emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standards for municipal solid waste... POLLUTANTS Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to... municipal solid waste landfill emissions. (a) The owner or operator of a designated facility having a design...
77 FR 65875 - Adequacy of Arizona Municipal Solid Waste Landfill Permit Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-31
... Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... modification to Arizona's municipal solid waste landfill (MSWLF) permit program to allow the State to issue... amending the municipal solid waste landfill criteria at 40 CFR 258.4 to allow for Research, Development...
40 CFR 256.24 - Recommendations for closing or upgrading open dumps.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste Disposal Programs § 256.24 Recommendations for closing or upgrading open dumps. (a) All... feasibility of resource recovery or resource conservation to reduce the solid waste volume entering a facility...
40 CFR 62.14353 - Standards for municipal solid waste landfill emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Standards for municipal solid waste... POLLUTANTS Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to... municipal solid waste landfill emissions. (a) The owner or operator of a designated facility having a design...
40 CFR 1.47 - Office of Solid Waste and Emergency Response.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Office of Solid Waste and Emergency... ORGANIZATION AND GENERAL INFORMATION Headquarters § 1.47 Office of Solid Waste and Emergency Response. The Office of Solid Waste and Emergency Response (OSWER), under the supervision of the Assistant...
40 CFR 256.24 - Recommendations for closing or upgrading open dumps.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste Disposal Programs § 256.24 Recommendations for closing or upgrading open dumps. (a) All... feasibility of resource recovery or resource conservation to reduce the solid waste volume entering a facility...
40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.
Code of Federal Regulations, 2014 CFR
2014-07-01
... casting, wastewater treatment, solid waste. 721.10667 Section 721.10667 Protection of Environment... iron casting, wastewater treatment, solid waste. (a) Chemical substance and significant new uses... and iron casting, wastewater treatment, solid waste (PMN P-12-560; CAS No. 1391739-82-4; chemical...
40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.
Code of Federal Regulations, 2013 CFR
2013-07-01
... casting, wastewater treatment, solid waste. 721.10667 Section 721.10667 Protection of Environment... iron casting, wastewater treatment, solid waste. (a) Chemical substance and significant new uses... and iron casting, wastewater treatment, solid waste (PMN P-12-560; CAS No. 1391739-82-4; chemical...
40 CFR 62.14353 - Standards for municipal solid waste landfill emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLLUTANTS Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standards for municipal solid waste... municipal solid waste landfill emissions. (a) The owner or operator of a designated facility having a design...
77 FR 69769 - Solid Waste Rail Transfer Facilities
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-21
.... SUMMARY: These final rules govern land-use-exemption permits for solid waste rail transfer facilities. The... ``land-use-exemption permits'' in certain circumstances. Under the CRA, a solid waste rail transfer... grants a land-use-exemption permit for a solid waste rail transfer facility, such permit would only...
Species-specific selection on soil fungal population after olive mill waste-water treatment.
Tardioli, S; Bànnè, E; Santori, F
1997-06-01
Soil was treated with olive mill waste water (OMW) in order to study the effect of this agriculture waste on soil fungal population. Changes in fungal composition were observed after soil pollution. In order to test OMW selective pressure, growth kinetics of Penicillium cyclopium, Scopulariopsis brevicaulis and Cladosporium cladosporioides were studied on solid media supplemented with different OMW concentrations. S. brevicaulis and C. cladosporioides did not grow at OMW concentration higher than 50%, while at concentrations lower than 50% a growth decrease was observed. Instead, P. cyclopium was able to actively grow at all concentrations of OMW tested. Therefore the OMW can influence and modify the soil fungal homeostasis.
Voudrias, Evangelos; Goudakou, Lambrini; Kermenidou, Marianthi; Softa, Aikaterini
2012-07-01
The objective of this work was to determine the composition and production rates of pharmaceutical and chemical waste produced by Xanthi General Hospital in Greece (XGH). This information is important to design and cost management systems for pharmaceutical and chemical waste, for safety and health considerations and for assessing environmental impact. A total of 233 kg pharmaceutical and 110 kg chemical waste was collected, manually separated and weighed over a period of five working weeks. The total production of pharmaceutical waste comprised 3.9% w/w of the total hazardous medical waste produced by the hospital. Total pharmaceutical waste was classified in three categories, vial waste comprising 51.1%, syringe waste with 11.4% and intravenous therapy (IV) waste with 37.5% w/w of the total. Vial pharmaceutical waste only was further classified in six major categories: antibiotics, digestive system drugs, analgesics, hormones, circulatory system drugs and "other". Production data below are presented as average (standard deviation in parenthesis). The unit production rates for total pharmaceutical waste for the hospital were 12.4 (3.90) g/patient/d and 24.6 (7.48) g/bed/d. The respective unit production rates were: (1) for vial waste 6.4 (1.6) g/patient/d and 13 (2.6) g/bed/d, (2) for syringe waste 1.4 (0.4) g/patient/d and 2.8 (0.8) g/bed/d and (3) for IV waste 4.6 (3.0) g/patient/d and 9.2 (5.9) g/bed/d. Total chemical waste was classified in four categories, chemical reagents comprising 18.2%, solvents with 52.3%, dyes and tracers with 18.2% and solid waste with 11.4% w/w of the total. The total production of chemical waste comprised 1.8% w/w of the total hazardous medical waste produced by the hospital. Thus, the sum of pharmaceutical and chemical waste was 5.7% w/w of the total hazardous medical waste produced by the hospital. The unit production rates for total chemical waste for the hospital were 5.8 (2.2) g/patient/d and 1.1 (0.4) g/exam/d. The respective unit production rates were: (1) for reagents 1.7 (2.4) g/patient/d and 0.3 (0.4) g/examination/d, (2) for solvents 248 (127) g/patient/d and 192 (101) g/examination/d, (3) for dyes and tracers 4.7 (1.4) g/patient/d and 2.5 (0.9) g/examination/d and (4) for solid waste 54 (28) g/patient/d and 42 (22) g/examination/d. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chemical Disposition of Plutonium in Hanford Site Tank Wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delegard, Calvin H.; Jones, Susan A.
2015-05-07
This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used tomore » recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these absorbers occurs only if they are physically proximal in solution or the plutonium present in the solid phase is intimately mixed with compounds or solutions of these absorbers. No information on the potential chemical interaction of plutonium with cadmium was found in the technical literature. Definitive evidence of sorption or adsorption of plutonium onto various solid phases from strongly alkaline media is less clear-cut, perhaps owing to fewer studies and to some well-attributed tests run under conditions exceeding the very low solubility of plutonium. The several studies that are well-founded show that only about half of the plutonium is adsorbed from waste solutions onto sludge solid phases. The organic complexants found in many Hanford tank waste solutions seem to decrease plutonium uptake onto solids. A number of studies show plutonium sorbs effectively onto sodium titanate. Finally, this report presents findings describing the behavior of plutonium vis-à-vis other elements during sludge dissolution in nitric acid based on Hanford tank waste experience gained by lab-scale tests, chemical and radiochemical sample characterization, and full-scale processing in preparation for strontium-90 recovery from PUREX sludges.« less
Anaerobic digestion of municipal solid waste: Technical developments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivard, C.J.
1996-01-01
The anaerobic biogasification of organic wastes generates two useful products: a medium-Btu fuel gas and a compost-quality organic residue. Although commercial-scale digestion systems are used to treat municipal sewage wastes, the disposal of solid organic wastes, including municipal solid wastes (MSW), requires a more cost-efficient process. Modern biogasification systems employ high-rate, high-solids fermentation methods to improve process efficiency and reduce capital costs. The design criteria and development stages are discussed. These systems are also compared with conventional low-solids fermentation technology.
Gupta, Sulagna; Lee, Jaslyn J L; Chen, Wei Ning
2018-05-30
Okara is a major agro-waste, generated as a byproduct from the soymilk and tofu industry. Since okara has a high nutritive value, reusing it as a substrate for solid state biofermentation is an economical and environmental friendly option. Rhizopus oligosporus and Lactobacillus plantarum were the probiotic FDA-approved food-grade cultures used in this study. The study revealed that biofermenting okara improves its nutritional composition. It was found that the metabolomic composition (by GC-MS analysis) and antioxidant activity (by DPPH test) improved after the microbial fermentations. Of the two, okara fermented with R. oligosporus showed better results. Further, the metabolites were traced back to their respective biosynthesis pathways, in order to understand the biochemical reactions being triggered during the fermentation processes. The findings of this entire work open up the possibility of employing fermented okara as a potential functional food for animal feed.
NASA Astrophysics Data System (ADS)
Glushkov, D. O.; Zakharevich, A. V.; Strizhak, P. A.; Syrodoi, S. V.
2018-03-01
An experimental study has been made of the regularities of burning of single droplets of typical compositions of a composite liquid fuel during the heating by an air flow with a varied temperature (600-900 K). As the basic components of the compositions of the composite liquid fuel, use was made of the: waste of processing (filter cakes) of bituminous coals of ranks K, C, and T, waste motor, turbine, and transformer oils, process mixture of mazut and oil, heavy crude, and plasticizer. The weight fraction of a liquid combustible component (petroleum) product) ranged within 0-15%. Consideration has been given to droplets of a composite liquid fuel with dimensions (radius) of 0.5 to 2 mm. Conditions of low-temperature initiation of combustion to ensure a minimum possible mass of solid incombustible residue have been determined. Petroleum products have been singled out whose addition to the composition of the composite liquid fuel tends to increase the ash mass (compared to the corresponding composition without a liquid combustible component). Approximation dependences have been obtained which permit predicting the influence of the concentration of the liquid petroleum product as part of the composite liquid fuel on the ash-residue mass.
NASA Astrophysics Data System (ADS)
Glushkov, D. O.; Zakharevich, A. V.; Strizhak, P. A.; Syrodoi, S. V.
2018-05-01
An experimental study has been made of the regularities of burning of single droplets of typical compositions of a composite liquid fuel during the heating by an air flow with a varied temperature (600-900 K). As the basic components of the compositions of the composite liquid fuel, use was made of the: waste of processing (filter cakes) of bituminous coals of ranks K, C, and T, waste motor, turbine, and transformer oils, process mixture of mazut and oil, heavy crude, and plasticizer. The weight fraction of a liquid combustible component (petroleum) product) ranged within 0-15%. Consideration has been given to droplets of a composite liquid fuel with dimensions (radius) of 0.5 to 2 mm. Conditions of low-temperature initiation of combustion to ensure a minimum possible mass of solid incombustible residue have been determined. Petroleum products have been singled out whose addition to the composition of the composite liquid fuel tends to increase the ash mass (compared to the corresponding composition without a liquid combustible component). Approximation dependences have been obtained which permit predicting the influence of the concentration of the liquid petroleum product as part of the composite liquid fuel on the ash-residue mass.
NASA Astrophysics Data System (ADS)
Maryati, S.; Arifiani, N. F.; Humaira, A. N. S.; Putri, H. T.
2018-03-01
Solid waste management is very important measure in order to reduce the amount of waste. One of solid waste management form in Indonesia is waste banks. This kind of solid waste management required high level of participation of the community. The objective of this study is to explore factors influencing household participation in waste banks. Waste bank in Malang City (WBM) was selected as case study. Questionnaires distribution and investigation in WBM were conducted to identify problems of participation. Quantitative analysis was used to analyze the data. The research reveals that education, income, and knowledge about WBM have relationship with participation in WBM.
Boadi, Kwasi Owusu; Kuitunen, Markku
2005-11-01
Inadequate provision of solid waste management facilities in Third World cities results in indiscriminate disposal and unsanitary environments, which threatens the health of urban residents. The study reported here examined household-level waste management and disposal practices in the Accra Metropolitan Area, Ghana. The residents of Accra currently generate large amounts of solid waste, beyond the management capabilities of the existing waste management system. Because the solid waste infrastructure is inadequate, over 80 percent of the population do not have home collection services. Only 13.5 percent of respondents are served with door-to-door collection of solid waste, while the rest dispose of their waste at communal collection points, in open spaces, and in waterways. The majority of households store their waste in open containers and plastic bags in the home. Waste storage in the home is associated with the presence of houseflies in the kitchen (r = .17, p < .0001). The presence of houseflies in the kitchen during cooking is correlated with the incidence of childhood diarrhea (r = .36, p < .0001). Inadequate solid waste facilities result in indiscriminate burning and burying of solid waste. There is an association between waste burning and the incidence of respiratory health symptoms among adults (r = .25, p < .0001) and children (r = .22, p < .05). Poor handling and disposal of waste are major causes of environmental pollution, which creates breeding grounds for pathogenic organisms, and the spread of infectious diseases. Improving access to solid waste collection facilities and services will help achieve sound environmental health in Accra.
Ultrasound assisted extraction of pectin from waste Artocarpus heterophyllus fruit peel.
Moorthy, I Ganesh; Maran, J Prakash; Ilakya, S; Anitha, S L; Sabarima, S Pooja; Priya, B
2017-01-01
Four factors three level face centered central composite response surface design was employed in this study to investigate and optimize the effect of process variables (liquid-solid (LS) ratio (10:1-20:1ml/g), pH (1-2), sonication time (15-30min) and extraction temperature (50-70°C)) on the maximum extraction yield of pectin from waste Artocarpus heterophyllus (Jackfruit) peel by ultrasound assisted extraction method. Numerical optimization method was adapted in this study and the following optimal condition was obtained as follows: Liquid-solid ratio of 15:1ml/g, pH of 1.6, sonication time of 24min and temperature of 60°C. The optimal condition was validated through experiments and the observed value was interrelated with predicted value. Copyright © 2016 Elsevier B.V. All rights reserved.
Gambato, Gabriela; Todescato, Kelly; Pavão, Elisa Maria; Scortegagna, Angélica; Fontana, Roselei Claudete; Salvador, Mirian; Camassola, Marli
2016-05-01
The aim of this study was to investigate the production profile of Pleurotus albidus and Pycnoporus sanguineus on different waste substrates containing natural phenolics, and also to investigate whether phenolic-rich substrates can improve the phenolic content of these macrofungi. The medium formulated with Pinus sp. sawdust (PSW) made possible the highest yields (2.62±0.73%) of P. sanguineus. However, the supplementation of PSW with apple waste (AW) resulted in better P. albidus yields (23.94±2.92%). The results indicated that the substrate composition affected macrofungi production, also the chemical composition and the presence of phenolic compounds in the production media influence phenolic content and antioxidant activity in macrofungi. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shiota, Kenji; Nakamura, Takafumi; Takaoka, Masaki; Aminuddin, Siti Fatimah; Oshita, Kazuyuki; Fujimori, Takashi
2017-11-01
Environmentally sound treatments are required to dispose of municipal solid waste incineration fly ash (MSWIFA) contaminated with radioactive cesium (Cs) from the Fukushima Daiichi nuclear power plant accident in Japan. This study focuses on the stabilization of Cs using an alkali-activated MSWIFA and pyophyllite-based system. Three composite solid products were synthesized after mixtures of raw materials (dehydrated pyrophyllite, MSWIFA, 14 mol/L aqueous sodium hydroxide, and sodium silicate solution) were cured at 105 °C for 24 h. Three types of MSWIFAs were prepared as raw fly ash, raw fly ash with 0.1% CsCl, and raw fly ash with 40% CsCl to understand the stabilization mechanism of Cs. Cs stabilization in two solid products was successful, with less than 6.9% leaching observed from two types tests, and was partly successful for the solid product with the highest concentration of Cs. X-ray diffraction showed that all of the solid products produced several crystalline phases, and that pollucite was formed in the highest Cs concentration product. The X-ray absorption fine structure and scanning electron microscopy with X-ray analysis suggested that most Cs species formed pollucite in the two solid products from MSWIFA with added CsCl. This system provides a technique for the direct stabilization of Cs in MSWIFA. Copyright © 2017 Elsevier Ltd. All rights reserved.
40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.205 Standards...
40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.205 Standards...
40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.205 Standards...
Geotechnical properties of municipal solid waste at different phases of biodegradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Krishna R., E-mail: kreddy@uic.edu; Hettiarachchi, Hiroshan, E-mail: hiroshan@ltu.edu; Gangathulasi, Janardhanan, E-mail: jganga2@uic.edu
Highlights: > Degraded synthetic municipal solid waste (MSW) anaerobically in controlled bench-scale reactors. > Performed laboratory tests to determine geotechnical properties of MSW at different phases of degradation. > Hydraulic conductivity decreased by two orders of magnitude due to degradation. > Compression ratio reduced from 0.34 for initial fresh waste to 0.15 for the mostly degraded waste. > Friction angle reduced, but cohesion increased with degradation. - Abstract: This paper presents the results of laboratory investigation conducted to determine the variation of geotechnical properties of synthetic municipal solid waste (MSW) at different phases of degradation. Synthetic MSW samples were preparedmore » based on the composition of MSW generated in the United States and were degraded in bioreactors with leachate recirculation. Degradation of the synthetic MSW was quantified based on the gas composition and organic content, and the samples exhumed from the bioreactor cells at different phases of degradation were tested for the geotechnical properties. Hydraulic conductivity, compressibility and shear strength of initial and degraded synthetic MSW were all determined at constant initial moisture content of 50% on wet weight basis. Hydraulic conductivity of synthetic MSW was reduced by two orders of magnitude due to degradation. Compression ratio was reduced from 0.34 for initial fresh waste to 0.15 for the mostly degraded waste. Direct shear tests showed that the fresh and degraded synthetic MSW exhibited continuous strength gain with increase in horizontal deformation, with the cohesion increased from 1 kPa for fresh MSW to 16-40 kPa for degraded MSW and the friction angle decreased from 35{sup o} for fresh MSW to 28{sup o} for degraded MSW. During the triaxial tests under CU condition, the total strength parameters, cohesion and friction angle, were found to vary from 21 to 57 kPa and 1{sup o} to 9{sup o}, respectively, while the effective strength parameters, cohesion and friction angle varied from 18 to 56 kPa and from 1{sup o} to 11{sup o}, respectively. Similar to direct shear test results, as the waste degrades an increase in cohesion and slight decrease in friction angle was observed. Decreased friction angle and increased cohesion with increased degradation is believed to be due to the highly cohesive nature of the synthetic MSW. Variation of synthetic MSW properties from this study also suggests that significant changes in geotechnical properties of MSW can occur due to enhanced degradation induced by leachate recirculation.« less
Analysis and forecasting of municipal solid waste in Nankana City using geo-spatial techniques.
Mahmood, Shakeel; Sharif, Faiza; Rahman, Atta-Ur; Khan, Amin U
2018-04-11
The objective of this study was to analyze and forecast municipal solid waste (MSW) in Nankana City (NC), District Nankana, Province of Punjab, Pakistan. The study is based on primary data acquired through a questionnaire, Global Positioning System (GPS), and direct waste sampling and analysis. Inverse distance weighting (IDW) technique was applied to geo-visualize the spatial trend of MSW generation. Analysis revealed that the total MSW generated was 12,419,636 kg/annum (12,419.64 t) or 34,026.4 kg/day (34.03 t), or 0.46 kg/capita/day (kg/cap/day). The average wastes generated per day by studied households, clinics, hospitals, and hotels were 3, 7.5, 20, and 15 kg, respectively. The residential sector was the top producer with 95.5% (32,511 kg/day) followed by commercial sector 1.9% (665 kg/day). On average, high-income and low-income households were generating waste of 4.2 kg/household/day (kg/hh/day) and 1.7 kg/hh/day, respectively. Similarly, large-size families were generating more (4.4 kg/hh/day) waste than small-size families (1.8 kg/hh/day). The physical constituents of MSW generated in the study area with a population of about 70,000 included paper (7%); compostable matter (61%); plastics (9%); fine earth, ashes, ceramics, and stones (20.4%); and others (2.6%).The spatial trend of MSW generation varies; city center has a high rate of generation and towards periphery generation lowers. Based on the current population growth and MSW generation rate, NC is expected to generate 2.8 times more waste by the year 2050.This is imperative to develop a proper solid waste management plan to reduce the risk of environmental degradation and protect human health. This study provides insights into MSW generation rate, physical composition, and forecasting which are vital in its management strategies.
Modelling the Solid Waste Flow into Sungai Ikan Landfill Sites by Material Flow Analysis Method
NASA Astrophysics Data System (ADS)
Ghani, Latifah A.; Ali, Nora'aini; Hassan, Nur Syafiqah A.
2017-12-01
The purpose of this paper is to model the material flow of solid waste flows at Kuala Terengganu by using Material Flow Analysis (MFA) method, generated by STAN Software Analysis. Sungai Ikan Landfill has been operated for about 10 years. Average, Sungai Ikan Landfill receive an amount around 260 tons per day of solid waste. As for the variety source of the solid waste coming from, leachates that accumulated has been tested and measured. Highest reading of pH of the leachate is 8.29 which is still in the standard level before discharging the leachate to open water which pH in between 8.0-9.0. The percentages of the solid waste has been calculated and seven different types of solid waste has been segregated. That is, plastics, organic waste, paper, polystyrene, wood, fabric and can. The estimation of the solid waste that will be end as a residue are around 244 tons per day.
Responses to Public Comments on EPA’s Standards of Performance for Municipal Solid Waste Landfills and Emission Guidelines and Compliance Times for Municipal Solid Waste Landfills: Proposed Rules - July 2016
36 CFR 6.8 - National Park Service solid waste responsibilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.8 National Park Service solid waste responsibilities. (a) Beginning one year after January 23, 1995, a Superintendent will not permit or allow a person to dispose of solid waste at a National Park Service operated...
76 FR 55256 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-07
... Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction AGENCY: Internal..., 2011, on the definition of solid waste disposal facilities for purposes of the rules applicable to tax... governments that issue tax-exempt bonds to finance solid waste disposal facilities and to taxpayers that use...
76 FR 55255 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-07
... Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction AGENCY: Internal..., on the definition of solid waste disposal facilities for purposes of the rules applicable to tax... governments that issue tax-exempt bonds to finance solid waste disposal facilities and to taxpayers that use...
36 CFR 6.8 - National Park Service solid waste responsibilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.8 National Park Service solid waste responsibilities. (a) Beginning one year after January 23, 1995, a Superintendent will not permit or allow a person to dispose of solid waste at a National Park Service operated...
40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Unwanted material that is not solid or... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Alternative... Eligible Academic Entities § 262.215 Unwanted material that is not solid or hazardous waste. (a) If an...
40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Unwanted material that is not solid or... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Alternative... Eligible Academic Entities § 262.215 Unwanted material that is not solid or hazardous waste. (a) If an...
Assessment of environmental policy implementation in solid waste management in Kathmandu, Nepal.
Dangi, Mohan B; Schoenberger, Erica; Boland, John J
2017-06-01
In Nepal, full-fledged environmental legislation was rare before the democratic constitution of 1990. The first law covering the environment and sustainability was the Environment Protection Act 1997. While the Solid Waste Act was introduced in 1987, the problem of solid waste management still surfaces in Kathmandu. In order to understand the bedrock of this unrelenting failure in solid waste management, the manuscript digs deeper into policy implementation by dissecting solid waste rules, environmental legislations, relevant local laws, and solid waste management practices in Kathmandu, Nepal. A very rich field study that included surveys, interviews, site visits, and literature review provided the basis for the article. The study shows that volumes of new Nepalese rules are crafted without effective enforcement of their predecessors and there is a frequent power struggle between local government bodies and central authority in implementing the codes and allocating resources in solid waste management. The study concludes that Kathmandu does not require any new instrument to address solid waste problems; instead, it needs creation of local resources, execution of local codes, and commitment from central government to allow free exercise of these policies.
Planet Patrol. An Educational Unit on Solid Waste Solutions for Grades 4-6.
ERIC Educational Resources Information Center
Shively, Patti J.; And Others
This educational unit on solid waste solutions is intended to convey to students an understanding of the four methods of solid waste handling, in priority order, as recommended by the Environmental Protection Agency: (1) reduction in the volume of waste produced; (2) recycling and composting; (3) waste combustion, i.e., incineration of waste; and…
Modeling and comparative assessment of municipal solid waste gasification for energy production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arafat, Hassan A., E-mail: harafat@masdar.ac.ae; Jijakli, Kenan
Highlights: • Study developed a methodology for the evaluation of gasification for MSW treatment. • Study was conducted comparatively for USA, UAE, and Thailand. • Study applies a thermodynamic model (Gibbs free energy minimization) using the Gasify software. • The energy efficiency of the process and the compatibility with different waste streams was studied. - Abstract: Gasification is the thermochemical conversion of organic feedstocks mainly into combustible syngas (CO and H{sub 2}) along with other constituents. It has been widely used to convert coal into gaseous energy carriers but only has been recently looked at as a process for producingmore » energy from biomass. This study explores the potential of gasification for energy production and treatment of municipal solid waste (MSW). It relies on adapting the theory governing the chemistry and kinetics of the gasification process to the use of MSW as a feedstock to the process. It also relies on an equilibrium kinetics and thermodynamics solver tool (Gasify®) in the process of modeling gasification of MSW. The effect of process temperature variation on gasifying MSW was explored and the results were compared to incineration as an alternative to gasification of MSW. Also, the assessment was performed comparatively for gasification of MSW in the United Arab Emirates, USA, and Thailand, presenting a spectrum of socioeconomic settings with varying MSW compositions in order to explore the effect of MSW composition variance on the products of gasification. All in all, this study provides an insight into the potential of gasification for the treatment of MSW and as a waste to energy alternative to incineration.« less
Potysz, Anna; van Hullebusch, Eric D; Kierczak, Jakub
2018-05-05
Smelting activity by its very nature produces large amounts of metal-bearing waste, often called metallurgical slag(s). In the past, industry used to dispose of these waste products at dumping sites without the appropriate environmental oversight. Once there, ongoing biogeochemical processes affect the stability of the slags and cause the release of metallic contaminants. Rather than viewing metallurgical slags as waste, however, such deposits should be viewed as secondary metal resources. Metal bioleaching is a "green" treatment route for metallurgical slags, currently being studied under laboratory conditions. Metal-laden leachates obtained at the bioleaching stage have to be subjected to further recovery operations in order to obtain metal(s) of interest to achieve the highest levels of purity possible. This perspective paper considers the feasibility of the reuse of base-metal slags as secondary metal resources. Special focus is given to current laboratory bioleaching approaches and associated processing obstacles. Further directions of research for development of more efficient methods for waste slag treatment are also highlighted. The optimized procedure for slag treatment is defined as the result of this review and should include following steps: i) slag characterization (chemical and phase composition and buffering capacity) following the choice of initial pH, ii) the choice of particle size, iii) the choice of the liquid-to-solid ratio, iv) the choice of microorganisms, v) the choice of optimal nutrient supply (growth medium composition). An optimal combination of all these parameters will lead to efficient extraction and generation of metal-free solid residue. Copyright © 2018 Elsevier Ltd. All rights reserved.
Comparative Analysis of Households Solid Waste Management in Rural and Urban Ghana
Appiah, Divine Odame; Poku, Adjoa Afriyie; Garsonu, Emmanuel Kofi
2016-01-01
The comparative analysis of solid waste management between rural and urban Ghana is largely lacking. This study investigated the solid waste situation and the organisation of solid waste management in both urban and rural settings from the perspective of households. The study employed cross-sectional survey covering both rural and urban districts in the Ashanti and Greater Accra Regions of Ghana. The study systematically sampled houses from which 400 households and respondents were randomly selected. Pearson's Chi square test was used to compare demographic and socioeconomic variables in rural and urban areas. Multivariate Test, Tests of Between-Subjects Effects, and Pair-Wise Comparisons were performed through one-way MANOVA to determine whether or not solid waste situations in rural and urban areas are significantly different. The results revealed that location significantly affects solid waste management in Ghana. Urban communities had lower mean scores than rural communities for poor solid waste situation in homes. However, urban communities had higher mean scores than rural communities for poor solid waste situation in principal streets and dumping sites. The study recommends that the local government authorities implement very comprehensive policies (sanitary inspection, infrastructure development, and community participation) that will take into consideration the specific solid waste management needs of both urban and rural areas. PMID:27807453
Comparative Analysis of Households Solid Waste Management in Rural and Urban Ghana.
Boateng, Simon; Amoako, Prince; Appiah, Divine Odame; Poku, Adjoa Afriyie; Garsonu, Emmanuel Kofi
2016-01-01
The comparative analysis of solid waste management between rural and urban Ghana is largely lacking. This study investigated the solid waste situation and the organisation of solid waste management in both urban and rural settings from the perspective of households. The study employed cross-sectional survey covering both rural and urban districts in the Ashanti and Greater Accra Regions of Ghana. The study systematically sampled houses from which 400 households and respondents were randomly selected. Pearson's Chi square test was used to compare demographic and socioeconomic variables in rural and urban areas. Multivariate Test, Tests of Between-Subjects Effects, and Pair-Wise Comparisons were performed through one-way MANOVA to determine whether or not solid waste situations in rural and urban areas are significantly different. The results revealed that location significantly affects solid waste management in Ghana. Urban communities had lower mean scores than rural communities for poor solid waste situation in homes. However, urban communities had higher mean scores than rural communities for poor solid waste situation in principal streets and dumping sites. The study recommends that the local government authorities implement very comprehensive policies (sanitary inspection, infrastructure development, and community participation) that will take into consideration the specific solid waste management needs of both urban and rural areas.
Solid waste treatment processes for space station
NASA Technical Reports Server (NTRS)
Marrero, T. R.
1983-01-01
The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.
Determination of as-discarded methane potential in residential and commercial municipal solid waste.
Chickering, Giles W; Krause, Max J; Townsend, Timothy G
2018-06-01
Methane generation potential, L 0 , is a primary parameter of the first-order decay (FOD) model used for prediction and regulation of landfill gas (LFG) generation in municipal solid waste (MSW) landfills. The current US EPA AP-42 default value for L 0 , which has been in place for almost 20 years, is 100 m 3 CH 4 /Mg MSW as-discarded. Recent research suggests the yield of landfilled waste could be less than 60 m 3 CH 4 /Mg MSW. This study aimed to measure the L 0 of present-day residential and commercial as-discarded MSW. In doing so, 39 waste collection vehicles were sorted for composition before samples of each biodegradable fraction were analyzed for methane generation potential. Methane yields were determined for over 450 samples of 14 different biodegradable MSW fractions, later to be combined with moisture content and volatile solids data to calculate L 0 values for each waste load. An average value of 80 m 3 CH 4 /Mg MSW was determined for all samples with 95% of values in the interval 74-86 m 3 CH 4 /Mg MSW as-discarded. While no statistically significant difference was observed, commercial MSW yields (mean 85, median 88 m 3 CH 4 /Mg MSW) showed a higher average L 0 than residential MSW (mean 75, median 71 m 3 CH 4 /Mg MSW). Many methane potential values for individual fractions described in previous work were found within the range of values determined by BMP in this study. Copyright © 2018 Elsevier Ltd. All rights reserved.
Energy conservation in solid waste management in Bangladesh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, M.H.
1994-12-31
Recycling of solid wastes has a characteristic pattern in Bangladesh in the context of the general habits and socio-economic status of the population. Extensive resource recovery from solid wastes is being carried out at various stages of disposal. The characteristics of solid wastes at the final disposal site indicate that they contain more than 90% of organic wastes. Hence, anaerobic digestion of these wastes serves a dual purpose in the conservation of energy and of valuable crop nutrients for efficient recycling especially in an agriculture-based economy. This also improves overall environmental sanitation and reduces environmental degradation. In this paper, differentmore » recycling and reuse options for solid wastes are critically discussed from the energy recovery and energy conservation point of view. It has been shown that the resource recovery from solid wastes would minimize the energy problem and would lead to a net reduction of greenhouse gases, particularly in the developing world.« less
Natural food colourants derived from onion wastes: application in a yoghurt product.
Mourtzinos, Ioannis; Prodromidis, Prodromos; Grigorakis, Spyros; Makris, Dimitris P; Biliaderis, Costas G; Moschakis, Thomas
2018-06-10
The valorization of onion (Allium cepa) solid wastes, a 450,000 tonnes/year waste in Europe, by a green extraction method is presented. Polyphenols of onion solid wastes were extracted using eco-friendly solvents, such as water and glycerol. The 2-hydroxypropyl-β-cyclodextrin was also used as a co-solvent for the augmentation of the extraction yield. The process has been optimized by implementing a central composite face centered design of experiments, with two replicates in the central point, taking into consideration the following independent variables: glycerol concentration, cyclodextrin concentration and temperature. The assessment of the extraction model was based on two responses: the total pigment yield and the antiradical capacity. LC-MS analysis was also employed in order to identify polyphenols and colourants of the obtained extracts. The main polyphenols found were quercetin and quercetin derivatives and the main colourant was cyanidin 3-O-glucoside. The extract was also tested as a food colourant in a yoghurt matrix. The onion leaf extract was found to be a stable natural colourant and could be utilized as an alternative ingredient to synthetic coloring agents. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
The status and developments of leather solid waste treatment: A mini-review.
Jiang, Huiyan; Liu, Junsheng; Han, Wei
2016-05-01
Leather making is one of the most widespread industries in the world. The production of leather goods generates different types of solid wastes and wastewater. These wastes will pollute the environment and threat the health of human beings if they are not well treated. Consequently, the treatment of pollution caused by the wastes from leather tanning is really important. In comparison with the disposal of leather wastewater, the treatment of leather solid wastes is more intractable. Hence, the treatment of leather solid wastes needs more innovations. To keep up with the rapid development of the modern leather industry, various innovative techniques have been newly developed. In this mini-review article, the major achievements in the treatment of leather solid wastes are highlighted. Emphasis will be placed on the treatment of chromium-tanned solid wastes; some new approaches are also discussed. We hope that this mini-review can provide some valuable information to promote the broad understanding and effective treatment of leather solid wastes in the leather industry. © The Author(s) 2016.
40 CFR 264.101 - Corrective action for solid waste management units.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., storage or disposal of hazardous waste must institute corrective action as necessary to protect human... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...
40 CFR 264.101 - Corrective action for solid waste management units.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., storage or disposal of hazardous waste must institute corrective action as necessary to protect human... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...
40 CFR 264.101 - Corrective action for solid waste management units.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., storage or disposal of hazardous waste must institute corrective action as necessary to protect human... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...
Determination of specific gravity of municipal solid waste.
Yesiller, Nazli; Hanson, James L; Cox, Jason T; Noce, Danielle E
2014-05-01
This investigation was conducted to evaluate experimental determination of specific gravity (Gs) of municipal solid waste (MSW). Water pycnometry, typically used for testing soils was adapted for testing MSW using a large flask with 2000 mL capacity and specimens with 100-350 g masses. Tests were conducted on manufactured waste samples prepared using US waste constituent components; fresh wastes obtained prior and subsequent to compaction at an MSW landfill; and wastes obtained from various depths at the same landfill. Factors that influence specific gravity were investigated including waste particle size, compaction, and combined decomposition and stress history. The measured average specific gravities were 1.377 and 1.530 for as-prepared/uncompacted and compacted manufactured wastes, respectively; 1.072 and 1.258 for uncompacted and compacted fresh wastes, respectively; and 2.201 for old wastes. The average organic content and degree of decomposition were 77.2% and 0%, respectively for fresh wastes and 22.8% and 88.3%, respectively for old wastes. The Gs increased with decreasing particle size, compaction, and increasing waste age. For fresh wastes, reductions in particle size and compaction caused occluded intraparticle pores to be exposed and waste particles to be deformed resulting in increases in specific gravity. For old wastes, the high Gs resulted from loss of biodegradable components that have low Gs as well as potential access to previously occluded pores and deformation of particles due to both degradation processes and applied mechanical stresses. The Gs was correlated to the degree of decomposition with a linear relationship. Unlike soils, the Gs for MSW was not unique, but varied in a landfill environment due both to physical/mechanical processes and biochemical processes. Specific gravity testing is recommended to be conducted not only using representative waste composition, but also using representative compaction, stress, and degradation states. Copyright © 2014 Elsevier Ltd. All rights reserved.
Comparative analysis of waste-to-energy alternatives for a low-capacity power plant in Brazil.
Ferreira, Elzimar Tadeu de F; Balestieri, José Antonio P
2018-03-01
The Brazilian National Solid Waste Policy has been implemented with some difficulty, especially in convincing the different actors of society about the importance of conscious awareness among every citizen and businesses concerning adequate solid waste disposal and recycling. Technologies for recovering energy from municipal solid waste were considered in National Solid Waste Policy (NSWP), given that their technical and environmental viability is ensured, being the landfill biogas burning in internal combustion engines and solid waste incineration suggested options. In the present work, an analysis of current technologies and a collection of basic data on electricity generation using biogas from waste/liquid effluents is presented, as well as an assessment of the installation of a facility that harnesses biogas from waste or liquid effluents for producing electricity. Two combined cycle concepts were evaluated with capacity in the range 4-11 MW, gas turbine burning landfill biogas and an incinerator that burns solid waste hybrid cycle, and a solid waste gasification system to burn syngas in gas turbines. A comparative analysis of them demonstrated that the cycle with gasification from solid waste has proved to be technically more appealing than the hybrid cycle integrated with incineration because of its greater efficiency and considering the initially defined guidelines for electricity generation. The economic analysis does not reveal significant attractive values; however, this is not a significant penalty to the project given the fact that this is a pilot low-capacity facility, which is intended to be constructed to demonstrate appropriate technologies of energy recovery from solid waste.
Rachiotis, George; Tsovili, Eva; Papagiannis, Dimitrios; Markaki, Adelais; Hadjichristodoulou, Christos
2016-12-01
Municipal solid waste collectors are reportedly at risk for Hepatitis A virus infection (HAV) as an occupational hazard. We aimed to investigate the prevalence and possible risk factors of HAV infection among solid waste collectors in a municipality of the broader region of Attica, Greece. A cross-sectional sero-prevalence study was conducted. Fifty (n=50) waste collectors participated in the study (response rate: 95%). The group of municipal waste collectors was compared to a convenient sample of workers not exposed to solid waste (n=83). Municipal solid waste collectors recorded a higher, but not statistically significant, prevalence of anti-HAV(+) in comparison to subjects without occupational exposure to waste (40% vs 34% respectively p=0,4). No significant associations were found between inappropriate work practices and anti- HAV (+). Education was the only factor independently associated with the risk of HAV infection. This study did not corroborate previous reports of an increased prevalence of Hepatitis A Virus infection among municipal solid waste collectors.
Attitudes of Preservice Social Studies Teachers towards Solid Wastes and Recycle
ERIC Educational Resources Information Center
Karatekin, Kadir; Merey, Zihni
2015-01-01
The objective of this study is to determine the attitudes of preservice social studies-teachers towards solid wastes and recycle. This study used the screening model, In order to determine the attitudes of preservice teachers towards solid wastes and recycle, we used the "Scale for the Attitudes of Preservice Teachers towards Solid Wastes and…
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What solid and liquid wastes and discharges... of Exploration Plans (ep) § 250.217 What solid and liquid wastes and discharges information and cooling water intake information must accompany the EP? The following solid and liquid wastes and...
Velis, Costas; Wagland, Stuart; Longhurst, Phil; Robson, Bryce; Sinfield, Keith; Wise, Stephen; Pollard, Simon
2012-02-07
Solid recovered fuel (SRF) produced by mechanical-biological treatment (MBT) of municipal waste can replace fossil fuels, being a CO(2)-neutral, affordable, and alternative energy source. SRF application is limited by low confidence in quality. We present results for key SRF properties centered on the issue of chlorine content. A detailed investigation involved sampling, statistical analysis, reconstruction of composition, and modeling of SRF properties. The total chlorine median for a typical plant during summer operation was 0.69% w/w(d), with lower/upper 95% confidence intervals of 0.60% w/w(d) and 0.74% w/w(d) (class 3 of CEN Cl indicator). The average total chlorine can be simulated, using a reconciled SRF composition before shredding to <40 mm. The relative plastics vs paper mass ratios in particular result in an SRF with a 95% upper confidence limit for ash content marginally below the 20% w/w(d) deemed suitable for certain power plants; and a lower 95% confidence limit of net calorific value (NCV) at 14.5 MJ kg(ar)(-1). The data provide, for the first time, a high level of confidence on the effects of SRF composition on its chlorine content, illustrating interrelationships with other fuel properties. The findings presented here allow rational debate on achievable vs desirable MBT-derived SRF quality, informing the development of realistic SRF quality specifications, through modeling exercises, needed for effective thermal recovery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millar, J.S.; Pottmeyer, J.A.; Stratton, T.J.
1995-01-01
Purpose of the study was to estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the Hanford Plutonium Finishing Plant is decontaminated and decommissioned. (Building structure and soil are not covered.) Results indicate that {approximately}5,500 m{sup 3} of solid waste is expected to result from the decontamination and decommissioning of the Pu Finishing Plant. The breakdown of the volumes and percentages of waste by category is 1% dangerous solid waste, 71% low-level waste, 21% transuranic waste, 7% transuranic mixed waste.
Current status of solid waste management in small island developing states: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohee, Romeela; Mauthoor, Sumayya, E-mail: sumayya.mauthoor@umail.uom.ac.mu; Bundhoo, Zumar M.A.
Highlights: • Waste management is a matter of great concern for small island developing states. • On average, waste generation rate in these islands amounts to 1.29 kg/capita/day. • Illegal dumping and landfilling prevail in most small island developing states. • Sustainable waste management practices, previously absent, are now emerging. • However, many challenges still hinder the implementation of these practices. - Abstract: This article reviews the current status of waste management in Small Island Developing States (SIDS) and the challenges that are faced in solid waste management. The waste generation rates of SIDS were compared within the three geographicmore » regions namely Caribbean SIDS, Pacific SIDS and Atlantic, Indian Ocean, Mediterranean and South China (AIMS) SIDS and with countries of the Organisation for Economic Co-Operation and Development (OECD). Only Pacific SIDS had a waste generation rate less than 1 kg/capita/day. The waste generation rates for the three SIDS regions averaged 1.29 kg/capita/day while that for OECD countries was at a mean value of 1.35 kg/capita/day. The waste compositions in the different SIDS regions were almost similar owing to comparable consumption patterns while these differed to a large extent with wastes generated in OECD countries. In SIDS, the major fraction of MSW comprised of organics (44%) followed by recyclables namely paper, plastics, glass and metals (total: 43%). In contrast, MSW in OECD countries consisted mainly of recyclables (43%) followed by organics (37%). This article also reviewed the other functional elements of the waste management systems in SIDS. Several shortcomings were noted in the process of waste collection, transfer and transport namely the fact of having outdated collection vehicles and narrow roads which are inaccessible. Among the waste management practices in SIDS, waste disposal via landfilling, illegal dumping and backyard burning were favoured most of the time at the expense of sustainable waste treatment technologies such as composting, anaerobic digestion and recycling.« less
Khan, D; Samadder, S R
2016-07-01
Collection of municipal solid waste is one of the most important elements of municipal waste management and requires maximum fund allocated for waste management. The cost of collection and transportation can be reduced in comparison with the present scenario if the solid waste collection bins are located at suitable places so that the collection routes become minimum. This study presents a suitable solid waste collection bin allocation method at appropriate places with uniform distance and easily accessible location so that the collection vehicle routes become minimum for the city Dhanbad, India. The network analyst tool set available in ArcGIS was used to find the optimised route for solid waste collection considering all the required parameters for solid waste collection efficiently. These parameters include the positions of solid waste collection bins, the road network, the population density, waste collection schedules, truck capacities and their characteristics. The present study also demonstrates the significant cost reductions that can be obtained compared with the current practices in the study area. The vehicle routing problem solver tool of ArcGIS was used to identify the cost-effective scenario for waste collection, to estimate its running costs and to simulate its application considering both travel time and travel distance simultaneously. © The Author(s) 2016.
Thirty-year solid waste generation forecast for facilities at SRS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-07-01
The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis ofmore » future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.« less
Science/Society Case Study. Solid Wastes: Diamonds in the Rough?
ERIC Educational Resources Information Center
Moore, John W., Ed.; Moore, Elizabeth A., Ed.
1976-01-01
Expounds on the current solid waste disposal problems of the United States and current methods of waste disposal. Includes a description of the use of solid waste in power generating plants. A bibliography of suggested readings is provided. (CP)
Fate of organic carbon from different waste materials in cropland soils
NASA Astrophysics Data System (ADS)
Paetsch, Lydia; Mueller, Carsten; Rumpel, Cornelia; Houot, Sabine; Kögel-Knabner, Ingrid
2015-04-01
Organic amendments are widely used to enhance the fertility of cropland soils. However, there is only scarce knowledge about the long term impact of added organic matter (OM) on the soil organic carbon (SOC) pool. Therefore, we analyzed a long-term field experiment in Feucherolles (France), which regularly received three different composts (home sorted bio-waste mixed with green waste (BIO), municipal solid waste (MSW) and a mixture of green waste and sewage sludge (GWS) and cattle manure since 1998. With these organic materials approximately 4 Mg total OC were added to the soil in two year intervals. The experiment was fully randomized with 4 replicates for each amendment. In September 2013 we took samples from the surface soil (0-5 cm of Ap horizon) of all 4 treatments and the unamended control. To study the chemical alteration and the fate of the added OC into different soil compartments, we fractionated the soils by physical means using a combined density and particle size protocol. Carbon and N content were determined in bulk soils, amendments as well as in size fractions (fPOM, oPOM <20µm and oPOM >20µm, sand, silt and a combined fine silt-clay fraction). Chemical composition was determined by solid-state 13C CPMAS NMR spectroscopy. We found significant higher C contents for the oPOM small and sand fraction of BIO treated soil and for the clay fraction of GWS treated soils (p<0.05). Nitrogen contents were significantly higher for BIO treated soils in bulk soil, fPOM, oPOM small and for GWS treated soils in bulk soil, fPOM and oPOM. The NMR measurements revealed that only the chemical composition of the fPOM differed according to the treatment; towards the more altered fractions as the oPOM small, the compositional differences leveled out and became almost homogeneous. Furthermore, the NMR measurements indicate a similar OC composition within the independent field replicates regarding the different amendments and fractions. As previously shown, N was found to be concentrated in the clay fractions, but interestingly we were able to show this also for the oPOM small. Proteins and peptides, as indicated by the broad resonance between 30 and 55 ppm, clearly point to the presence of microbial products and residues in this fraction.
Ho, Guan Sem; Faizal, Hasan Mohd; Ani, Farid Nasir
2017-11-01
High temperature thermal plasma has a major drawback which consumes high energy. Therefore, non-thermal plasma which uses comparatively lower energy, for instance, microwave plasma is more attractive to be applied in gasification process. Microwave-induced plasma gasification also carries the advantages in terms of simplicity, compactness, lightweight, uniform heating and the ability to operate under atmospheric pressure that gains attention from researchers. The present paper synthesizes the current knowledge available for microwave plasma gasification on solid fuels and waste, specifically on affecting parameters and their performance. The review starts with a brief outline on microwave plasma setup in general, and followed by the effect of various operating parameters on resulting output. Operating parameters including fuel characteristics, fuel injection position, microwave power, addition of steam, oxygen/fuel ratio and plasma working gas flow rate are discussed along with several performance criteria such as resulting syngas composition, efficiency, carbon conversion, and hydrogen production rate. Based on the present review, fuel retention time is found to be the key parameter that influences the gasification performance. Therefore, emphasis on retention time is necessary in order to improve the performance of microwave plasma gasification of solid fuels and wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Solid waste management practices in wet coffee processing industries of Gidabo watershed, Ethiopia.
Ulsido, Mihret D; Li, Meng
2016-07-01
The financial and social contributions of coffee processing industries within most coffee export-based national economies like Ethiopia are generally high. The type and amount of waste produced and the waste management options adopted by these industries can have negative effects on the environment. This study investigated the solid waste management options adopted in wet coffee processing industries in the Gidabo watershed of Ethiopia. A field observation and assessment were made to identify whether the operational characteristics of the industries have any effect on the waste management options that were practiced. The investigation was conducted on 125 wet coffee processing industries about their solid waste handling techniques. Focus group discussion, structured questionnaires, key informant interview and transect walks are some of the tools employed during the investigation. Two major types of wastes, namely hull-bean-pulp blended solid waste and wastewater rich in dissolved and suspended solids were generated in the industries. Wet mills, on average, released 20.69% green coffee bean, 18.58% water and 60.74% pulp by weight. Even though these wastes are rich in organic matter and recyclables; the most favoured solid waste management options in the watershed were disposal (50.4%) and industrial or household composting (49.6%). Laxity and impulsive decision are the driving motives behind solid waste management in Gidabo watershed. Therefore, to reduce possible contamination of the environment, wastes generated during the processing of red coffee cherries, such as coffee wet mill solid wastes, should be handled properly and effectively through maximisation of their benefits with minimised losses. © The Author(s) 2016.
Petrovic, Igor
2016-09-01
The most viable option for biostabilisation of old sanitary landfills, filled with raw municipal solid waste, is the so-called bioreactor landfill. Even today, bioreactor landfills are viable options in many economically developing countries. However, in order to reduce the biodegradable component of landfilled waste, mechanical and biological treatment has become a widely accepted waste treatment technology, especially in more prosperous countries. Given that mechanical and biological treatment alters the geotechnical properties of raw waste material, the design of sanitary landfills which accepts mechanically and biologically treated waste, should be carried out with a distinct set of geotechnical parameters. However, under the assumption that 'waste is waste', some design engineers might be tempted to use geotechnical parameters of untreated raw municipal solid waste and mechanical and biological pre-treated municipal solid waste interchangeably. Therefore, to provide guidelines for use and to provide an aggregated source of this information, this mini-review provides comparisons of geotechnical parameters of mechanical and biological pre-treated waste and raw untreated waste at various decomposition stages. This comparison reveals reasonable correlations between the hydraulic conductivity values of untreated and mechanical and biological pre-treated municipal solid waste. It is recognised that particle size might have a significant influence on the hydraulic conductivity of both municipal solid waste types. However, the compression ratios and shear strengths of untreated and pre-treated municipal solid waste do not show such strong correlations. Furthermore, another emerging topic that requires appropriate attention is the recovery of resources that are embedded in old landfills. Therefore, the presented results provide a valuable tool for engineers designing landfills for mechanical and biological pre-treated waste or bioreactor landfills for untreated raw waste as well as planning landfill mining projects. © The Author(s) 2016.
The Arab world's contribution to solid waste literature: a bibliometric analysis.
Zyoud, Sa'ed H; Al-Jabi, Samah W; Sweileh, Waleed M; Al-Khalil, Suleiman; Zyoud, Shaher H; Sawalha, Ansam F; Awang, Rahmat
2015-01-01
Environmental and health-related effects of solid waste material are considered worldwide problems. The aim of this study was to assess the volume and impact of Arab scientific output published in journals indexed in the Science Citation Index (SCI) on solid waste. We included all the documents within the SCI whose topic was solid waste from all previous years up to 31 December 2012. In this bibliometric analysis we sought to evaluate research that originated from Arab countries in the field of solid waste, as well as its relative growth rate, collaborative measures, productivity at the institutional level, and the most prolific journals. A total of 382 (2.35 % of the overall global research output in the field of solid waste) documents were retrieved from the Arab countries. The annual number of documents published in the past three decades (1982-2012) indicated that research productivity demonstrated a noticeable rise during the last decade. The highest number of articles associated with solid waste was that of Egypt (22.8 %), followed by Tunisia (19.6), and Jordan (13.4 %). the total number of citations over the analysed years at the date of data collection was 4,097, with an average of 10.7 citations per document. The h-index of the citing articles was 31. Environmental science was the most researched topic, represented by 175 (45.8 %) articles. Waste Management was the top active journal. The study recognized 139 (36.4 %) documents from collaborations with 25 non-Arab countries. Arab authors mainly collaborated with countries in Europe (22.5 %), especially France, followed by countries in the Americas (9.4 %), especially the USA. The most productive institution was the American University of Beirut, Lebanon, with 6.3 % of total publications. Despite the expected increase in solid waste production from Arab world, research activity about solid waste is still low. Governments must invest more in solid waste research to avoid future unexpected problems. Finally, since solid waste is a multidisciplinary science, research teams in engineering, health, toxicology, environment, geology and others must be formulated to produce research in solid waste from different scientific aspects.
Race, Wealth, and Solid Waste Facilities in North Carolina
Norton, Jennifer M.; Wing, Steve; Lipscomb, Hester J.; Kaufman, Jay S.; Marshall, Stephen W.; Cravey, Altha J.
2007-01-01
Background Concern has been expressed in North Carolina that solid waste facilities may be disproportionately located in poor communities and in communities of color, that this represents an environmental injustice, and that solid waste facilities negatively impact the health of host communities. Objective Our goal in this study was to conduct a statewide analysis of the location of solid waste facilities in relation to community race and wealth. Methods We used census block groups to obtain racial and economic characteristics, and information on solid waste facilities was abstracted from solid waste facility permit records. We used logistic regression to compute prevalence odds ratios for 2003, and Cox regression to compute hazard ratios of facilities issued permits between 1990 and 2003. Results The adjusted prevalence odds of a solid waste facility was 2.8 times greater in block groups with ≥50% people of color compared with block groups with < 10% people of color, and 1.5 times greater in block groups with median house values < $60,000 compared with block groups with median house values ≥$100,000. Among block groups that did not have a previously permitted solid waste facility, the adjusted hazard of a new permitted facility was 2.7 times higher in block groups with ≥50% people of color compared with block groups with < 10% people of color. Conclusion Solid waste facilities present numerous public health concerns. In North Carolina solid waste facilities are disproportionately located in communities of color and low wealth. In the absence of action to promote environmental justice, the continued need for new facilities could exacerbate this environmental injustice. PMID:17805426
Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste
2011-01-01
Background Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal) upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics) and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling). It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Results Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Conclusions Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants. PMID:21284885
Solid waste forecasting using modified ANFIS modeling.
Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; K N A, Maulud
2015-10-01
Solid waste prediction is crucial for sustainable solid waste management. Usually, accurate waste generation record is challenge in developing countries which complicates the modelling process. Solid waste generation is related to demographic, economic, and social factors. However, these factors are highly varied due to population and economy growths. The objective of this research is to determine the most influencing demographic and economic factors that affect solid waste generation using systematic approach, and then develop a model to forecast solid waste generation using a modified Adaptive Neural Inference System (MANFIS). The model evaluation was performed using Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and the coefficient of determination (R²). The results show that the best input variables are people age groups 0-14, 15-64, and people above 65 years, and the best model structure is 3 triangular fuzzy membership functions and 27 fuzzy rules. The model has been validated using testing data and the resulted training RMSE, MAE and R² were 0.2678, 0.045 and 0.99, respectively, while for testing phase RMSE =3.986, MAE = 0.673 and R² = 0.98. To date, a few attempts have been made to predict the annual solid waste generation in developing countries. This paper presents modeling of annual solid waste generation using Modified ANFIS, it is a systematic approach to search for the most influencing factors and then modify the ANFIS structure to simplify the model. The proposed method can be used to forecast the waste generation in such developing countries where accurate reliable data is not always available. Moreover, annual solid waste prediction is essential for sustainable planning.
A Model of Solid Waste Management Based Multilateral Co-Operation in Semi-Urban Community
ERIC Educational Resources Information Center
Kanchanabhandhu, Chanchai; Woraphong, Seree
2016-01-01
The purpose of this research was to construct a model of solid waste management based on multilateral cooperation in semi-urban community. Its specific objectives were to 1) study the solid waste situation and involvement of community in the solid waste management in Wangtaku Sub-district, Muang District, Nakhon Pathom Province; 2) construct a…
Planet Patrol. An Environmental Unit on Solid Waste Solutions for Grades 4-6.
ERIC Educational Resources Information Center
Procter and Gamble Educational Services, Cincinnati, OH.
This classroom unit was developed for use in grades 4-6 to help teach the concept of solid waste management. The teacher's guide provides an overview of the issue of solid waste disposal, a description of government, industry, and consumer roles in resolving the solid waste issue, and four lessons involving sanitary landfills, the reduction of…
Code of Federal Regulations, 2010 CFR
2010-07-01
... information obtained under the Solid Waste Disposal Act, as amended. 2.305 Section 2.305 Protection of... § 2.305 Special rules governing certain information obtained under the Solid Waste Disposal Act, as amended. (a) Definitions. For purposes of this section: (1) Act means the Solid Waste Disposal Act, as...
36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites... NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...
36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...
Code of Federal Regulations, 2010 CFR
2010-07-01
... administrative proceedings under the Solid Waste Disposal Act. 22.37 Section 22.37 Protection of Environment... Supplemental rules governing administrative proceedings under the Solid Waste Disposal Act. (a) Scope. This... sections 3005(d) and (e), 3008, 9003 and 9006 of the Solid Waste Disposal Act (42 U.S.C. 6925(d) and (e...
Code of Federal Regulations, 2011 CFR
2011-04-01
... solid waste disposal facilities; temporary rules. 17.1 Section 17.1 Internal Revenue INTERNAL REVENUE... UNDER 26 U.S.C. 103(c) § 17.1 Industrial development bonds used to provide solid waste disposal... substantially all the proceeds of which are used to provide solid waste disposal facilities. Section 1.103-8(f...
Code of Federal Regulations, 2011 CFR
2011-07-01
... information obtained under the Solid Waste Disposal Act, as amended. 2.305 Section 2.305 Protection of... § 2.305 Special rules governing certain information obtained under the Solid Waste Disposal Act, as amended. (a) Definitions. For purposes of this section: (1) Act means the Solid Waste Disposal Act, as...
36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...
Code of Federal Regulations, 2010 CFR
2010-04-01
... solid waste disposal facilities; temporary rules. 17.1 Section 17.1 Internal Revenue INTERNAL REVENUE... UNDER 26 U.S.C. 103(c) § 17.1 Industrial development bonds used to provide solid waste disposal... substantially all the proceeds of which are used to provide solid waste disposal facilities. Section 1.103-8(f...
Code of Federal Regulations, 2011 CFR
2011-07-01
... administrative proceedings under the Solid Waste Disposal Act. 22.37 Section 22.37 Protection of Environment... Supplemental rules governing administrative proceedings under the Solid Waste Disposal Act. (a) Scope. This... sections 3005(d) and (e), 3008, 9003 and 9006 of the Solid Waste Disposal Act (42 U.S.C. 6925(d) and (e...
36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What solid and liquid wastes and discharges...) § 250.248 What solid and liquid wastes and discharges information and cooling water intake information must accompany the DPP or DOCD? The following solid and liquid wastes and discharges information and...
36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...
36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...
36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M. E.; Jones, T. M.; Miller, D. H.
Several Slurry-Fed Melt Rate Furnace (SMRF) tests with earlier projections of the Sludge Batch 4 (SB4) composition have been performed.1,2 The first SB4 SMRF test used Frits 418 and 320, however it was found after the test that the REDuction/OXidation (REDOX) correlation at that time did not have the proper oxidation state for manganese. Because the manganese level in the SB4 sludge was higher than previous sludge batches tested, the impact of the higher manganese oxidation state was greater. The glasses were highly oxidized and very foamy, and therefore the results were inconclusive. After resolving this REDOX issue, Frits 418,more » 425, and 503 were tested in the SMRF with the updated baseline SB4 projection. Based on dry-fed Melt Rate Furnace (MRF) tests and the above mentioned SMRF tests, two previous frit recommendations were made by the Savannah River National Laboratory (SRNL) for processing of SB4 in the Defense Waste Processing Facility (DWPF). The first was Frit 503 based on the June 2006 composition projections.3 The recommendation was changed to Frit 418 as a result of the October 2006 composition projections (after the Tank 40 decant was implemented as part of the preparation plan). However, the start of SB4 processing was delayed due to the control room consolidation outage and the repair of the valve box in the Tank 51 to Tank 40 transfer line. These delays resulted in changes to the projected SB4 composition. Due to the slight change in composition and based on preliminary dry-fed MRF testing, SRNL believed that Frit 510 would increase throughput in processing SB4 in DWPF. Frit 418, which was used in processing Sludge Batch 3 (SB3), was a viable candidate and available in DWPF. Therefore, it was used during the initial SB4 processing. Due to the potential for higher melt rates with Frit 510, SMRF tests with the latest SB4 composition (1298 canisters) and Frits 510 and 418 were performed at a targeted waste loading (WL) of 35%. The '1298 canisters' describes the number of equivalent canisters that would be produced from the beginning of the current contract period before SB3 is blended with SB4. The melt rate for the SMRF SB4/Frit 510 test was 14.6 grams/minute. Due to cold cap mounding problems with the SMRF SB4/Frit 418 feed at 50 weight % solids that prevented a melt rate determination, this feed was diluted to 45 weight % solids. The melt rate for this diluted feed was 8.9 grams/minute. A correction factor of 1.2 for estimating the melt rate at 50 weight % solids from 45 weight % solids test results (based on previous SMRF testing5) was then used to estimate a melt rate of 10.7 grams/minute for SB4/Frit 418 at 50 weight % solids. Therefore, the use of Frit 510 versus Frit 418 with SB4 resulted in a higher melt rate (14.6 versus an estimated 10.7 grams/minute). For reference, a previous SMRF test with SB3/Frit 418 feed at 35% waste loading and 50 weight % solids resulted in a melt rate of 14.1 grams/minute. Therefore, depending on the actual feed rheology, the use of Frit 510 with SB4 could result in similar melt rates as experienced with SB3/Frit 418 feed in the DWPF.« less
Shiota, Kenji; Nakamura, Takafumi; Takaoka, Masaki; Aminuddin, Siti Fatimah; Oshita, Kazuyuki; Fujimori, Takashi
2017-10-01
This work focuses on the stabilization and speciation of lead (Pb) in a composite solid produced from an alkali-activated municipal solid waste incineration fly ash (MSWIFA)-pyophyllite-based system. The solid product was synthesized after mixtures of raw materials (dehydrated pyrophyllite, MSWIFA, 14 mol/L aqueous sodium hydroxide, and sodium silicate solution) were cured at 105 °C for 24 h. The product could reduce the leaching of Pb and the Pb concentration in the leachate was 7.0 × 10 -3 using the Japanese leaching test and 9.7 × 10 -4 mg/L using toxicity characteristics leaching procedure method, which satisfied the respective test criteria and successfully stabilized Pb in this system. The solid product had a compressive strength of 2 MPa and consisted mainly of crystalline phases. Scanning electron microscopy with X-ray analysis and X-ray absorption fine structure suggested that Pb was present along with Al, Si, and O, and that the atomic environment around the Pb was similar to that of PbSiO 3 . These results suggest that the alkali-activated MSWIFA-pyrophyllite-based system could be used to stabilize Pb in MSWIFA. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sethi, Sapna; Kothiyal, N C; Nema, Arvind K
2012-07-01
Leachate recirculation at neutral PH accompanied with buffer/nutrients addition has been used successfully in earlier stabilization of municipal solid waste in bioreactor landfills. In the present study, efforts were made to enhance the stabilization rate of municipal solid waste (MSW) and organic solid waste (OSW) in simulated landfill bioreactors by controlling the pH of recirculated leachate towards slightly alkaline side in absence of additional buffer and nutrients addition. Enhanced stabilization in waste samples was monitored with the help of analytical tools like Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Predominance of bands assigned to inorganic compounds and comparatively lower intensities of bands for organic compounds in the FTIR spectra of waste samples degraded with leachate recirculation under controlled pH confirmed higher rate of biodegradation and mineralization of waste than the samples degraded without controlled leachate recirculation. XRD spectra also confirmed to a greater extent of mineralization in the waste samples degraded under leachate recirculation with controlled pH. Comparison of XRD spectra of two types of wastes pointed out higher degree of mineralization in organic solid waste as compared to municipal solid waste.
Potential application of biodrying to treat solid waste
NASA Astrophysics Data System (ADS)
Zaman, Badrus; Oktiawan, Wiharyanto; Hadiwidodo, Mochtar; Sutrisno, Endro; Purwono; Wardana, Irawan Wisnu
2018-02-01
The generation of solid waste around the world creates problems if not properly managed. The method of processing solid waste by burning or landfill is currently not optimal. The availability of land where the final processing (TPA) is critical, looking for a new TPA alternative will be difficult and expensive, especially in big cities. The processing of solid waste using bio drying technology has the potential to produce renewable energy and prevention of climate change. Solid waste processing products can serve as Refuse Derived Fuel (RDF), reduce water content of solid waste, meningkatkan kualitas lindi and increase the amount of recycled solid waste that is not completely separated from home. Biodrying technology is capable of enhancing the partial disintegration and hydrolysis of macromolecule organic compounds (such as C-Organic, cellulose, hemicellulose, lignin, total nitrogen). The application of biodrying has the potential to reduce greenhouse gas emissions such as carbon dioxide (CO2), methane (CH4), and dinitrooksida (N2O). These gases cause global warming.
Wu, Jing; Cao, Zhiping; Hu, Yuying; Wang, Xiaolu; Wang, Guangqi; Zuo, Jiane; Wang, Kaijun; Qian, Yi
2017-11-30
High solid anaerobic digestion (HSAD) is a rapidly developed anaerobic digestion technique for treating municipal sludge, and has been widely used in Europe and Asia. Recently, the enhanced HSAD process with thermal treatment showed its advantages in both methane production and VS reduction. However, the understanding of the microbial community is still poor. This study investigated microbial communities in a pilot enhanced two-stage HSAD system that degraded waste activated sludge at 9% solid content. The system employed process "thermal pre-treatment (TPT) at 70 °C, thermophilic anaerobic digestion (TAD), and mesophilic anaerobic digestion (MAD)". Hydrogenotrophic methanogens Methanothermobacter spp. dominated the system with relative abundance up to about 100% in both TAD and MAD. Syntrophic acetate oxidation (SAO) bacteria were discovered in TAD, and they converted acetate into H₂ and CO₂ to support hydrogenotrophic methanogenesis. The microbial composition and conversion route of this system are derived from the high solid content and protein content in raw sludge, as well as the operational conditions. This study could facilitate the understanding of the enhanced HSAD process, and is of academic and industrial importance.
Wu, Jing; Cao, Zhiping; Hu, Yuying; Wang, Xiaolu; Wang, Guangqi; Zuo, Jiane; Wang, Kaijun; Qian, Yi
2017-01-01
High solid anaerobic digestion (HSAD) is a rapidly developed anaerobic digestion technique for treating municipal sludge, and has been widely used in Europe and Asia. Recently, the enhanced HSAD process with thermal treatment showed its advantages in both methane production and VS reduction. However, the understanding of the microbial community is still poor. This study investigated microbial communities in a pilot enhanced two-stage HSAD system that degraded waste activated sludge at 9% solid content. The system employed process “thermal pre-treatment (TPT) at 70 °C, thermophilic anaerobic digestion (TAD), and mesophilic anaerobic digestion (MAD)”. Hydrogenotrophic methanogens Methanothermobacter spp. dominated the system with relative abundance up to about 100% in both TAD and MAD. Syntrophic acetate oxidation (SAO) bacteria were discovered in TAD, and they converted acetate into H2 and CO2 to support hydrogenotrophic methanogenesis. The microbial composition and conversion route of this system are derived from the high solid content and protein content in raw sludge, as well as the operational conditions. This study could facilitate the understanding of the enhanced HSAD process, and is of academic and industrial importance. PMID:29189754
Duan, Zhen-ya; Su, Hai-tao; Wang, Feng-yang; Zhang, Lei; Wang, Shu-xiao; Yu, Bin
2016-02-15
Waste incineration is one of the important atmospheric mercury emission sources. The aim of this article is to explore the atmospheric mercury pollution level of waste incineration industry from Chongqing. This study investigated the mercury emissions from a municipal solid waste incineration plant and a medical waste incineration plant in Chongqing. The exhaust gas samples in these two incineration plants were obtained using USA EPA 30B method. The mercury concentrations in the fly ash and bottom ash samples were analyzed. The results indicated that the mercury concentrations of the municipal solid waste and medical waste incineration plant in Chongqing were (26.4 +/- 22.7) microg x m(-3) and (3.1 +/- 0.8) microg x m(-3) in exhaust gas respectively, (5279.2 +/- 798.0) microg x kg(-1) and (11,709.5 +/- 460.5) microg x kg(-1) in fly ash respectively. Besides, the distribution proportions of the mercury content from municipal solid waste and medical waste in exhaust gas, fly ash, and bottom ash were 34.0%, 65.3%, 0.7% and 32.3%, 67.5%, 0.2% respectively; The mercury removal efficiencies of municipal solid waste and medical waste incineration plants were 66.0% and 67.7% respectively. The atmospheric mercury emission factors of municipal solid waste and medical waste incineration plants were (126.7 +/- 109.0) microg x kg(-1) and (46.5 +/- 12.0) microg x kg(-1) respectively. Compared with domestic municipal solid waste incineration plants in the Pearl River Delta region, the atmospheric mercury emission factor of municipal solid waste incineration plant in Chongqing was lower.
Ramaiah, B J; Ramana, G V
2017-05-01
The article presents the stress-strain and volume change behavior, shear strength and stiffness parameters of landfilled municipal solid waste (MSW) collected from two dump sites located in Delhi, India. Over 30 drained triaxial compression (TXC) tests were conducted on reconstituted large-scale specimens of 150mm diameter to study the influence of fiber content, age, density and confining pressure on the shear strength of MSW. In addition, a few TXC tests were also conducted on 70mm diameter specimen to examine the effect of specimen size on the mobilized shear strength. It is observed that the fibrous materials such as textiles and plastics, and their percentage by weight have a significant effect on the stress-strain-volume change behavior, shear strength and stiffness of solid waste. The stress-strain-volume change behavior of MSW at Delhi is qualitatively in agreement with the behavior reported for MSW from different countries. Results of large-scale direct shear tests conducted on MSW with an identical composition used for TXC tests revealed the cross-anisotropic behavior as reported by previous researchers. Effective shear strength parameters of solid waste evaluated from this study is best characterized by ϕ'=39° and c'=0kPa for the limiting strain-based failure criteria of K 0 =0.3+5% axial strain and are in the range of the data reported for MSW from different countries. Data presented in this article is useful for the stress-deformation and stability analysis of the dump sites during their operation as well as closure plans. Copyright © 2017 Elsevier Ltd. All rights reserved.
Municipal solid waste management in Malaysia: practices and challenges.
Manaf, Latifah Abd; Samah, Mohd Armi Abu; Zukki, Nur Ilyana Mohd
2009-11-01
Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.
Energy recovery from solid waste. Volume 1: Summary report
NASA Technical Reports Server (NTRS)
1975-01-01
A systems analysis of energy recovery from solid waste which demonstrates the feasibility of several processes for converting solid waste to an energy form is presented. The social, legal, environmental, and political factors are considered and recommendations made in regard to legislation and policy. A technical and economic evaluation of available and developing energy-recovery processes is given with emphasis on thermal decomposition and biodegradation. A pyrolysis process is suggested. The use of prepared solid waste as a fuel supplemental to coal is considered to be the most economic process for recovery of energy from solid waste. Markets are discussed with suggestions for improving market conditions and for developing market stability. A decision procedure is given to aid a community in deciding on its options in dealing with solid waste.
Code of Federal Regulations, 2013 CFR
2013-07-01
... classification as a solid waste, for variances to be classified as a boiler, or for non-waste determinations. 260.33 Section 260.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.33 Procedures for variances...
Code of Federal Regulations, 2014 CFR
2014-07-01
... classification as a solid waste, for variances to be classified as a boiler, or for non-waste determinations. 260.33 Section 260.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.33 Procedures for variances...
Code of Federal Regulations, 2012 CFR
2012-07-01
... classification as a solid waste, for variances to be classified as a boiler, or for non-waste determinations. 260.33 Section 260.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.33 Procedures for variances...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
The module explains the statutory and regulatory definitions of solid waste, including the standards governing the recycling and management of specific types of wastes. It lists and cites three use/reuse scenarios where the materials are not solid wastes and states the requirements for documentation. It lists examples of sham recycling and describes the conditions under which hazardous waste-derived products may be excluded from regulation. It cites the provisions for precious metal recovery and discusses potential regulatory developments affecting the definition of solid waste and hazardous waste recycling.
7 CFR 1780.17 - Selection priorities and process.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Projects that primarily recycle solid waste products thereby limiting the need for solid waste disposal—5..., DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS General Policies and Requirements... solid waste violations—15 points. (c) Median household income priorities. The median household income of...
7 CFR 1780.17 - Selection priorities and process.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Projects that primarily recycle solid waste products thereby limiting the need for solid waste disposal—5..., DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS General Policies and Requirements... solid waste violations—15 points. (c) Median household income priorities. The median household income of...
7 CFR 1780.17 - Selection priorities and process.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Projects that primarily recycle solid waste products thereby limiting the need for solid waste disposal—5..., DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS General Policies and Requirements... solid waste violations—15 points. (c) Median household income priorities. The median household income of...
Solid Waste Reduction--A Hands-on Study.
ERIC Educational Resources Information Center
Wiessinger, Diane
1991-01-01
This lesson plan uses grocery shopping to demonstrate the importance of source reduction in the handling of solid waste problems. Students consider different priorities in shopping (convenience, packaging, and waste reduction) and draw conclusions about the relationship between packaging techniques and solid waste problems. (MCO)
Solid waste management plans offer a host of benefits for tribes and Alaskan Native villages. Through the preparation of these plans, you can assess your cur-rent and future waste management needs, set priorities, and allocate resources accordingly.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the transportation method and quantities of drilling fluids and chemical products (see § 250.213(b... description of the composition, quantities, and destination(s) of solid and liquid wastes (see § 250.217(a)) you will transport from your drilling unit. (e) Vicinity map. A map showing the location of your...