Code of Federal Regulations, 2011 CFR
2011-07-01
... identification of non-hazardous secondary materials that are solid wastes when used as fuels or ingredients in...) SOLID WASTES SOLID WASTES USED AS FUELS OR INGREDIENTS IN COMBUSTION UNITS Identification of Non-Hazardous Secondary Materials That Are Solid Wastes When Used as Fuels or Ingredients in Combustion Units...
40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Unwanted material that is not solid or... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Alternative... Eligible Academic Entities § 262.215 Unwanted material that is not solid or hazardous waste. (a) If an...
40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Unwanted material that is not solid or... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Alternative... Eligible Academic Entities § 262.215 Unwanted material that is not solid or hazardous waste. (a) If an...
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne
2015-02-01
This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.
System for chemically digesting low level radioactive, solid waste material
Cowan, Richard G.; Blasewitz, Albert G.
1982-01-01
An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.
Method of draining water through a solid waste site without leaching
Treat, Russell L.; Gee, Glendon W.; Whyatt, Greg A.
1993-01-01
The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.
Method of draining water through a solid waste site without leaching
Treat, R.L.; Gee, G.W.; Whyatt, G.A.
1993-02-02
The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.
40 CFR 258.21 - Cover material requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 258.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.21 Cover material requirements. (a... cover disposed solid waste with six inches of earthen material at the end of each operating day, or at...
40 CFR 258.21 - Cover material requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 258.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.21 Cover material requirements. (a... cover disposed solid waste with six inches of earthen material at the end of each operating day, or at...
Youth Solid Waste Educational Materials List, November 1991.
ERIC Educational Resources Information Center
Cornell Univ., Ithaca, NY. Cooperative Extension Service.
This guide provides a brief description and ordering information for approximately 300 educational materials for grades K-12 on the subject of solid waste. The materials cover a variety of environmental issues and actions related to solid waste management. Entries are divided into five sections including audiovisual programs, books, magazines,…
Modelling the Solid Waste Flow into Sungai Ikan Landfill Sites by Material Flow Analysis Method
NASA Astrophysics Data System (ADS)
Ghani, Latifah A.; Ali, Nora'aini; Hassan, Nur Syafiqah A.
2017-12-01
The purpose of this paper is to model the material flow of solid waste flows at Kuala Terengganu by using Material Flow Analysis (MFA) method, generated by STAN Software Analysis. Sungai Ikan Landfill has been operated for about 10 years. Average, Sungai Ikan Landfill receive an amount around 260 tons per day of solid waste. As for the variety source of the solid waste coming from, leachates that accumulated has been tested and measured. Highest reading of pH of the leachate is 8.29 which is still in the standard level before discharging the leachate to open water which pH in between 8.0-9.0. The percentages of the solid waste has been calculated and seven different types of solid waste has been segregated. That is, plastics, organic waste, paper, polystyrene, wood, fabric and can. The estimation of the solid waste that will be end as a residue are around 244 tons per day.
Code of Federal Regulations, 2013 CFR
2013-07-01
... combustion units. 241.3 Section 241.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOLID WASTES USED AS FUELS OR INGREDIENTS IN COMBUSTION UNITS Identification of Non-Hazardous Secondary Materials That Are Solid Wastes When Used as Fuels or Ingredients in Combustion Units...
Code of Federal Regulations, 2012 CFR
2012-07-01
... combustion units. 241.3 Section 241.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOLID WASTES USED AS FUELS OR INGREDIENTS IN COMBUSTION UNITS Identification of Non-Hazardous Secondary Materials That Are Solid Wastes When Used as Fuels or Ingredients in Combustion Units...
Code of Federal Regulations, 2014 CFR
2014-07-01
... combustion units. 241.3 Section 241.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOLID WASTES USED AS FUELS OR INGREDIENTS IN COMBUSTION UNITS Identification of Non-Hazardous Secondary Materials That Are Solid Wastes When Used as Fuels or Ingredients in Combustion Units...
ERIC Educational Resources Information Center
Meikle, Teresa, Comp.
Municipal solid waste refers to waste materials generated by residential, commercial, and institutional sources, and consists predominantly of paper, glass, metals, plastics, and food and yard waste. Within the definition of the Solid Waste Disposal Act, municipal solid waste does not include sewage sludge or hazardous waste. The three main…
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Solid wastes means garbage, refuse, sludges, and other discarded solid materials resulting from... common water pollutants. (z) Special wastes means nonhazardous solid wastes requiring handling other than... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL...
76 FR 44093 - Definition of Solid Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
...) 325199 All Other Basic Organic Chemical Manufacturing; (5) 325211 Plastics Material and Resin... 1056). In its most recent opinion dealing with the definition of solid waste, Safe Food and Fertilizer... excludes from the definition of solid waste hazardous secondary materials used to make zinc fertilizers...
Methane generation from waste materials
Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza
2010-03-23
An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.
Pugin, K G; Vaĭsman, Ia I
2013-01-01
On the basis of the life cycle of materials, containing wastes of iron and steel industry, new methodological approaches to the assessment of technologies of the secondary use of wastes are developed A complex criteria for selection of the technology for the use of resource potential of solid waste of iron and steel industry are developed with taking into account environmental, technological and economic indices. The technology of the use of wastes of ferrovanadium industry as bulk solid materials at the solid waste landfill is shown.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-30
... stakeholder input regarding the efficacy and scope of the MSW Characterization Report called ``Municipal Solid Waste in the United States'' as part of a broader discussion about sustainable materials management... efficacy and scope of the MSW Characterization Report called ``Municipal Solid Waste in the United States...
75 FR 31843 - Identification of Non-Hazardous Secondary Materials That Are Solid Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-04
...On January 2, 2009, the Environmental Protection Agency (EPA or the Agency) issued an Advanced Notice of Proposed Rulemaking (ANPRM) to solicit comment on which non-hazardous secondary materials that are used as fuels or ingredients in combustion units are solid wastes under the Resource Conservation and Recovery Act (RCRA). The meaning of ``solid waste'' as defined under RCRA is of particular importance since it will determine whether a combustion unit is required to meet emissions standards for solid waste incineration units issued under section 129 of the Clean Air Act (CAA) or emissions standards for commercial, industrial, and institutional boilers issued under CAA section 112. CAA section 129 states that the term ``solid waste'' shall have the meaning ``established by the Administrator pursuant to [RCRA].'' EPA is proposing a definition of non-hazardous solid waste that would be used to identify whether non-hazardous secondary materials burned as fuels or used as ingredients in combustion units are solid waste. EPA is also proposing that non-hazardous secondary materials that have been discarded, and are therefore solid wastes, may be rendered products after they have been processed (altered chemically or physically) into a fuel or ingredient product. This proposed rule is necessary to identify units for the purpose of developing certain standards under sections 112 and 129 of the CAA. In addition to this proposed rule, EPA is concurrently proposing air emission requirements under CAA section 112 for industrial, commercial, and institutional boilers and process heaters, as well as air emission requirements under CAA section 129 for commercial and industrial solid waste incineration units.
Li, Liang; Diederick, Ryan; Flora, Joseph R V; Berge, Nicole D
2013-11-01
Hydrothermal carbonization (HTC) is a thermal conversion technique that converts food wastes and associated packaging materials to a valuable, energy-rich resource. Food waste collected from local restaurants was carbonized over time at different temperatures (225, 250 and 275°C) and solids concentrations to determine how process conditions influence carbonization product properties and composition. Experiments were also conducted to determine the influence of packaging material on food waste carbonization. Results indicate the majority of initial carbon remains integrated within the solid-phase at the solids concentrations and reaction temperatures evaluated. Initial solids concentration influences carbon distribution because of increased compound solubilization, while changes in reaction temperature imparted little change on carbon distribution. The presence of packaging materials significantly influences the energy content of the recovered solids. As the proportion of packaging materials increase, the energy content of recovered solids decreases because of the low energetic retention associated with the packaging materials. HTC results in net positive energy balances at all conditions, except at a 5% (dry wt.) solids concentration. Carbonization of food waste and associated packaging materials also results in net positive balances, but energy needs for solids post-processing are significant. Advantages associated with carbonization are not fully realized when only evaluating process energetics. A more detailed life cycle assessment is needed for a more complete comparison of processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effects from past solid waste disposal practices.
Johnson, L J; Daniel, D E; Abeele, W V; Ledbetter, J O; Hansen, W R
1978-01-01
This paper reviews documented environmental effects experience from the disposal of solid waste materials in the U.S. Selected case histories are discussed that illustrate waste migration and its actual or potential effects on human or environmental health. Principal conclusions resulting from this review were: solid waste materials do migrate beyond the geometric confines of the initial placement location; environmental effects have been experienced from disposal of municipal, agricultural, and toxic chemical wastes; and utilization of presently known science and engineering principles in sitting and operating solid waste disposal facilities would make a significant improvement in the containment capability of shallow land disposal facilities. PMID:367769
Liang, Sai; Zhang, Tianzhu
2012-01-01
Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impacts of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Indrawati, D.; Lindu, M.; Denita, P.
2018-01-01
This study aims to measure the volume of solid waste generated as well asits density, composition, and characteristics, to analyze the potential of waste in TPS to become RDF materials and to analyze the best composition mixture of RDF materials. The results show that the average of solid waste generation in TPS reaches 40.80 m3/day, with the largest percentage of its share is the organic waste component of 77.9%, while the smallest amount of its share is metal and rubber of 0.1%. The average water content and ash content of solid waste at the TPS is 27.7% and 6.4% respectively, while the average calorific potential value is 728.71 kcal/kg. The results of solid waste characteristics comparison at three TPS indicate thatTPS Tanjung Duren has the greatest waste potential to be processed into RDF materials with a calorific value of 893.73 kcal/kg, water content level of 24.6%, andlow ash content of 6.11%. This research has also shown that the best composition for RDF composite materials is rubber, wood, and textile mixtureexposed to outdoor drying conditions because it produced low water content and low ash content of 10.8% and 9.6%, thus optimizedthe calorific value of 4,372.896 kcal/kg.
Chemical digestion of low level nuclear solid waste material
Cooley, Carl R.; Lerch, Ronald E.
1976-01-01
A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230.degree.-300.degree.C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue.
Determining the Level of Regulation for Hazardous Waste Recycling, Recycled Materials that are not Subject to RCRA Hazardous Waste Regulation, Materials Subject to Alternative Regulatory Controls, Materials Subject to Full Hazardous Waste Regulations.
Tapping Resources in Municipal Solid Waste
ERIC Educational Resources Information Center
Blum, S. L.
1976-01-01
Municipal solid waste disposal is becoming complex as costs, wastes, and environmental restrictions increase. Recovery and recycling of materials presents problems of financing, ownership, and operation, technology, and marketing. Energy and materials recovery offers long-term economic and environmental incentives in terms of growing shortages and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Sai, E-mail: liangsai09@gmail.com; Zhang Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn
Highlights: Black-Right-Pointing-Pointer Impacts of solid waste recycling on Suzhou's urban metabolism in 2015 are analyzed. Black-Right-Pointing-Pointer Sludge recycling for biogas is regarded as an accepted method. Black-Right-Pointing-Pointer Technical levels of reusing scrap tires and food wastes should be improved. Black-Right-Pointing-Pointer Other fly ash utilization methods should be exploited. Black-Right-Pointing-Pointer Secondary wastes from reusing food wastes and sludge should be concerned. - Abstract: Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impactsmore » of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned.« less
Sormunen, Annika; Teo, Kanniainen; Tapio, Salo; Riina, Rantsi
2016-07-01
The utilisation of municipal solid waste incineration bottom ash has been extensively studied, for example, in the unbound layers of roads and the products of cement and concrete industry. On the other hand, less attention has been given to other innovative utilisation possibilities, such as using the municipal solid waste incineration bottom ash as a component in growing media of plants. The municipal solid waste incineration bottom ash contains useful substances, such as calcium, that can influence plant growth in a positive manner. Therefore, the utilisation of this waste-derived material in the growing media may substitute the use of commercial fertilisers. Since the municipal solid waste incineration bottom ash also contains hazardous substances that can be toxic to plants, the main aim of this study was to add different amounts of recovered municipal solid waste incineration bottom ash in the growing media and to evaluate the effect of this material on plant growth. Based on the obtained results, the concentration of, for example copper and zinc, increased in test plants; ryegrass and barley, when recovered municipal solid waste incineration bottom ash was added in their growing media. On the other hand, this did not have a significant effect on plant growth, if compared with the growth of plants in commercially produced growing medium. Furthermore, the replacement of natural sand with municipal solid waste incineration bottom ash had a positive liming effect in the growing media. Overall, these findings suggest that the utilisation of recovered municipal solid waste incineration bottom ash as a component in growing media is possible and, thus, may allow more widespread and innovative use of this waste-derived material. © The Author(s) 2016.
Code of Federal Regulations, 2012 CFR
2012-07-01
... application and compaction of soil or other suitable material over disposed solid waste at the end of each... disease vectors' access to the waste. (7) Putrescible wastes means solid waste which contains organic...
Code of Federal Regulations, 2014 CFR
2014-07-01
... application and compaction of soil or other suitable material over disposed solid waste at the end of each... disease vectors' access to the waste. (7) Putrescible wastes means solid waste which contains organic...
Code of Federal Regulations, 2010 CFR
2010-07-01
... application and compaction of soil or other suitable material over disposed solid waste at the end of each... disease vectors' access to the waste. (7) Putrescible wastes means solid waste which contains organic...
Code of Federal Regulations, 2011 CFR
2011-07-01
... application and compaction of soil or other suitable material over disposed solid waste at the end of each... disease vectors' access to the waste. (7) Putrescible wastes means solid waste which contains organic...
Code of Federal Regulations, 2013 CFR
2013-07-01
... application and compaction of soil or other suitable material over disposed solid waste at the end of each... disease vectors' access to the waste. (7) Putrescible wastes means solid waste which contains organic...
Liquid fuels from food waste: An alternative process to co-digestion
NASA Astrophysics Data System (ADS)
Sim, Yoke-Leng; Ch'ng, Boon-Juok; Mok, Yau-Cheng; Goh, Sok-Yee; Hilaire, Dickens Saint; Pinnock, Travis; Adams, Shemlyn; Cassis, Islande; Ibrahim, Zainab; Johnson, Camille; Johnson, Chantel; Khatim, Fatima; McCormack, Andrece; Okotiuero, Mary; Owens, Charity; Place, Meoak; Remy, Cristine; Strothers, Joel; Waithe, Shannon; Blaszczak-Boxe, Christopher; Pratt, Lawrence M.
2017-04-01
Waste from uneaten, spoiled, or otherwise unusable food is an untapped source of material for biofuels. A process is described to recover the oil from mixed food waste, together with a solid residue. This process includes grinding the food waste to an aqueous slurry, skimming off the oil, a combined steam treatment of the remaining solids concurrent with extrusion through a porous cylinder to release the remaining oil, a second oil skimming step, and centrifuging the solids to obtain a moist solid cake for fermentation. The water, together with any resulting oil from the centrifuging step, is recycled back to the grinding step, and the cycle is repeated. The efficiency of oil extraction increases with the oil content of the waste, and greater than 90% of the oil was collected from waste containing at least 3% oil based on the wet mass. Fermentation was performed on the solid cake to obtain ethanol, and the dried solid fermentation residue was a nearly odorless material with potential uses of biochar, gasification, or compost production. This technology has the potential to enable large producers of food waste to comply with new laws which require this material to be diverted from landfills.
Anaerobic digestion of organic solid poultry slaughterhouse waste--a review.
Salminen, E; Rintala, J
2002-05-01
This work reviews the potential of anaerobic digestion for material recovery and energy production from poultry slaughtering by-products and wastes. First, we describe and quantify organic solid by-products and wastes produced in poultry farming and poultry slaughterhouses and discuss their recovery and disposal options. Then we review certain fundamental aspects of anaerobic digestion considered important for the digestion of solid slaughterhouse wastes. Finally, we present an overview of the future potential and current experience of the anaerobic digestion treatment of these materials.
De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Olivieri, Agostino; Vegliò, Francesco
2009-03-15
The present work was focused on the acid leaching process for manganese extraction in reducing environment to low-grade manganiferous ore that comes from Central Italy. The aim of this study was to establish optimum leaching operating conditions to reduce treatment costs of waste or, even better, to allow a waste valorisation as raw materials for other applications. Consequently, the main focus of the work was the characterization and classification of the solid wastes coming from the process carried out at different operating conditions; at the same moment the effect of process parameters on Mn extraction was also analysed. The effect of particles size on the manganese extraction in reductive acid leaching process was investigated, by using lactose as reducing agent. Particle size did not show a large influence on the Mn extraction yields in the investigated process conditions. This aspect suggests the use of the leaching waste for civil and/or environmental application: use of leaching solid wastes like filling material is to be applied, for example, for environmental restoration. The classification of the solid wastes, according to the Italian Laws about Release Test (RT), has demonstrated that the solid waste produced by leaching can be classifiable as "hazardous special waste". An improvement of solid washing let to reduce the SO(4)(2-) and an appropriate treatment is necessary to reduce the dangerousness of these solids. Possible application of ore and waste as raw materials in the ceramic industry was demonstrated not to be feasible.
RCRA Sustainable Materials Management Information
This asset includes a broad variety of documents, descriptive data, technical analyses and guidance materials relative to voluntary improvements in resource conservation, the beneficial use of sustainable materials and the management of non-hazardous wastes and materials. Included in this asset are participant information and outreach materials of various voluntary programs relating to better materials and waste management programs. An example is the WasteWise program and Sustainable Materials Management (SMM) Challenges, which help organizations and businesses apply sustainable materials management practices to reduce municipal and select industrial wastes. Also included in this asset are guidance materials to assist municipalities in recycling and reuse of municipal solid waste, including diverting materials to composting, and the use of conversion methods such as anaerobic digestion. Another component are the data necessary to compile reports on the characterization of municipal solid waste (including such waste streams as food waste, yard and wood waste, discarded electronics, and household non-hazardous waste), the recycled content of manufactured goods, and other analyses performed using such tools as the Waste Assessment Reduction Model (WARM).For industrial non-hazardous waste, this asset includes guidance and outreach materials on industrial materials recycling and waste minimization. Finally, this asset includes research analyses on sustainable materia
Research on solid waste management system: to improve existing situation in Corlu Town of Turkey.
Tinmaz, Esra; Demir, Ibrahim
2006-01-01
Over the past decades, uncontrolled population growth and rapid urbanization and industrialization have resulted in environmental problems in Corlu Town, Turkey. One of the most important problems is solid waste due to inadequate management practices. Nowadays, increasing public awareness of the environment compels local authorities to define and to adopt new solutions for waste management. This paper presents a general overview of current solid waste management practices in Corlu Town and principles of the recommended municipal solid waste (MSW) management system. In Corlu, 170 tonnes of municipal solid waste are generated each day, or 1.150 kg per capita per day. Approximately one-half of the municipal solid waste generated is organic material and 30% of the MSW consists of recyclable materials. The recommended system deals with maximizing recycling and minimizing landfilling of municipal solid waste, and consists of separation at source, collection, sorting, recycling, composting and sanitary landfilling. This study also analyzed the recommended system with respect to feasibility and economics. To evaluate whether the suggested system is cost effective or not, the operating cost of the recommended system and market prices of recyclable materials were compared, and the results show that the recommended system will reduce required landfill volume up to 27% of compared to the present situation. The profit of the recommended system is estimated to be about 80 million US dollars.
Tanigaki, Nobuhiro; Ishida, Yoshihiro; Osada, Morihiro
2015-03-01
This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has great possibilities maximizing material recovery and energy recovery from waste. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-01-01
A hearing on H.R. 5186, which would give states more control over solid wastes entering their boundaries than is provided in the Solid Waste Disposal Act, focused on concerns about the transport and storage of hazardous materials as states face a rapidly decreasing capacity to absorb more waste material. The ten witnesses included local officials, waste processing and management companies, recycling companies, and environmental agencies. Their testimony follows the text of H.R. 5186.
Advancing Sustainable Materials Management: Facts and Figures Report
Each year EPA releases the Advancing Sustainable Materials Management: Facts and Figures report, formerly called Municipal Solid Waste in the United States: Facts and Figures. It includes information on Municipal Solid Waste generation, recycling, an
76 FR 15455 - Identification of Non-Hazardous Secondary Materials That Are Solid Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-21
... waste incineration units. Preamble Outline I. Statutory Authority II. List of Abbreviations and Acronyms... Programs Are Not Solid Waste When Used in Combustion Units Under this provision--40 CFR 241.3(b)(2)(i)--EPA... combustion units, are ``solid wastes'' under the Resource Conservation and Recovery Act (RCRA). This RCRA...
Utilization of solid catfish manure waste as carbon and nutrient source for lactic acid production.
Shi, Suan; Li, Jing; Blersch, David M
2018-06-01
The aim of this work was to study the solid waste (manure) produced by catfish as a potential feedstock for the production of lactic acid (LA) via fermentation. The solid waste contains high levels of both carbohydrates and nutrients that are sufficient for LA bacteria. Simultaneous saccharification and co-fermentation (SSCF) was applied using enzyme and Lactobacillus pentosus, and different loadings of enzyme and solid waste were tested. Results showed LA concentrations of 35.7 g/L were obtained at 15% solids content of catfish waste. Because of the high nutrient content in the fish waste, it could also be used as supplementary substrate for nitrogen and carbon sources with other lignocellulosic materials. A combined feedstock of catfish waste and paper mill sludge was tested, increasing the final LA concentration to 43.1 g/L at 12% solids loading. The catfish waste was shown to be a potential feedstock to provide both carbon and nutrients for LA production, suggesting its use as a sole substrate or in combination with other lignocellulosic materials.
Morin, Nicolas; Arp, Hans Peter H; Hale, Sarah E
2015-07-07
The plastic additive bisphenol A (BPA) is commonly found in landfill leachate at levels exceeding acute toxicity benchmarks. To gain insight into the mechanisms controlling BPA emissions from waste and waste-handling facilities, a comprehensive field and laboratory campaign was conducted to quantify BPA in solid waste materials (glass, combustibles, vehicle fluff, waste electric and electronic equipment (WEEE), plastics, fly ash, bottom ash, and digestate), leachate water, and atmospheric dust from Norwegian sorting, incineration, and landfill facilities. Solid waste concentrations varied from below 0.002 mg/kg (fly ash) to 188 ± 125 mg/kg (plastics). A novel passive sampling method was developed to, for the first time, establish a set of waste-water partition coefficients, KD,waste, for BPA, and to quantify differences between total and freely dissolved concentrations in waste-facility leachate. Log-normalized KD,waste (L/kg) values were similar for all solid waste materials (from 2.4 to 3.1), excluding glass and metals, indicating BPA is readily leachable. Leachate concentrations were similar for landfills and WEEE/vehicle sorting facilities (from 0.7 to 200 μg/L) and dominated by the freely dissolved fraction, not bound to (plastic) colloids (agreeing with measured KD,waste values). Dust concentrations ranged from 2.3 to 50.7 mg/kgdust. Incineration appears to be an effective way to reduce BPA concentrations in solid waste, dust, and leachate.
Felder, M A; Petrell, R J; Duff, S J
2001-08-01
A novel design for a solid waste audit was developed and applied to the University of British Columbia, Canada, in 1998. This audit was designed to determine the characteristics of the residual solid waste generated by the campus and provide directions for waste reduction. The methodology was constructed to address complications in solid waste sampling, including spatial and temporal variation in waste, extrapolation from the study area, and study validation. Accounting for spatial effects decreased the variation in calculating total waste loads. Additionally, collecting information on user flow provided a means to decrease daily variation in solid waste and allow extrapolation over time and space. The total annual waste estimated from the experimental design was compared to documented values and was found to differ by -18%. The majority of this discrepancy was likely attributable to the unauthorised disposal of construction and demolition waste. Several options were proposed to address waste minimisation goals. These included: enhancing the current recycling program, source reduction of plastic materials, and/or diverting organic material to composting (maximum diversion: approximately 320, approximately 270, and approximately 1510 t yr(-1), respectively). The greatest diversion by weight would be accomplished through the diversion of organic material, as it was estimated to comprise 70% of the projected waste stream. The audit methodology designed is most appropriate for facilities/regions that have a separate collection system for seasonal wastes and have a means for tracking user flow.
Reddy, M Srinivasa; Basha, Shaik; Joshi, H V; Sravan Kumar, V G; Jha, B; Ghosh, P K
2005-01-01
Alang-Sosiya is the largest ship-scrapping yard in the world, established in 1982. Every year an average of 171 ships having a mean weight of 2.10 x 10(6)(+/-7.82 x 10(5)) of light dead weight tonnage (LDT) being scrapped. Apart from scrapped metals, this yard generates a massive amount of combustible solid waste in the form of waste wood, plastic, insulation material, paper, glass wool, thermocol pieces (polyurethane foam material), sponge, oiled rope, cotton waste, rubber, etc. In this study multiple regression analysis was used to develop predictive models for energy content of combustible ship-scrapping solid wastes. The scope of work comprised qualitative and quantitative estimation of solid waste samples and performing a sequential selection procedure for isolating variables. Three regression models were developed to correlate the energy content (net calorific values (LHV)) with variables derived from material composition, proximate and ultimate analyses. The performance of these models for this particular waste complies well with the equations developed by other researchers (Dulong, Steuer, Scheurer-Kestner and Bento's) for estimating energy content of municipal solid waste.
40 CFR 243.202-1 - Requirement.
Code of Federal Regulations, 2013 CFR
2013-07-01
... solid waste (or materials which have been separated for the purpose of recycling) which are considered... transportation of solid waste (or materials which have been separated for the purpose of recycling) shall be... materials which have been separated for the purpose of recycling) shall be constructed, operated, and...
40 CFR 243.202-1 - Requirement.
Code of Federal Regulations, 2012 CFR
2012-07-01
... solid waste (or materials which have been separated for the purpose of recycling) which are considered... transportation of solid waste (or materials which have been separated for the purpose of recycling) shall be... materials which have been separated for the purpose of recycling) shall be constructed, operated, and...
40 CFR 243.202-1 - Requirement.
Code of Federal Regulations, 2014 CFR
2014-07-01
... solid waste (or materials which have been separated for the purpose of recycling) which are considered... transportation of solid waste (or materials which have been separated for the purpose of recycling) shall be... materials which have been separated for the purpose of recycling) shall be constructed, operated, and...
40 CFR 243.202-1 - Requirement.
Code of Federal Regulations, 2011 CFR
2011-07-01
... solid waste (or materials which have been separated for the purpose of recycling) which are considered... transportation of solid waste (or materials which have been separated for the purpose of recycling) shall be... materials which have been separated for the purpose of recycling) shall be constructed, operated, and...
40 CFR 243.202-1 - Requirement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... solid waste (or materials which have been separated for the purpose of recycling) which are considered... transportation of solid waste (or materials which have been separated for the purpose of recycling) shall be... materials which have been separated for the purpose of recycling) shall be constructed, operated, and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tinmaz, Esra; Demir, Ibrahim
Over the past decades, uncontrolled population growth and rapid urbanization and industrialization have resulted in environmental problems in Corlu Town, Turkey. One of the most important problems is solid waste due to inadequate management practices. Nowadays, increasing public awareness of the environment compels local authorities to define and to adopt new solutions for waste management. This paper presents a general overview of current solid waste management practices in Corlu Town and principles of the recommended municipal solid waste (MSW) management system. In Corlu, 170 tonnes of municipal solid waste are generated each day, or 1.150 kg per capita per day.more » Approximately one-half of the municipal solid waste generated is organic material and 30% of the MSW consists of recyclable materials. The recommended system deals with maximizing recycling and minimizing landfilling of municipal solid waste, and consists of separation at source, collection, sorting, recycling, composting and sanitary landfilling. This study also analyzed the recommended system with respect to feasibility and economics. To evaluate whether the suggested system is cost effective or not, the operating cost of the recommended system and market prices of recyclable materials were compared, and the results show that the recommended system will reduce required landfill volume up to 27% of compared to the present situation. The profit of the recommended system is estimated to be about 80 million US dollars.« less
Reuse of solid petroleum waste in the manufacture of porcelain stoneware tile.
Pinheiro, B C A; Holanda, J N F
2013-03-30
This study investigates the incorporation of solid petroleum waste as raw material into a porcelain stoneware tile body, in replacement to natural kaolin material by up to 5 wt.%. Tile formulations containing solid petroleum waste were pressed and fired at 1240 °C by using a fast-firing cycle. The tile pieces were tested to determine their properties (linear shrinkage, water absorption, apparent density, and flexural strength), sintered microstructure, and leaching toxicity. The results therefore indicated that the growing addition of solid petroleum waste into tile formulations leads to a decrease of linear shrinkage, apparent density, and flexural strength, and to an increase of water absorption of the produced tile materials. It was also found that the replacement of kaolin with solid petroleum waste, in the range up to 2.5 wt.%, allows the production of porcelain stoneware tile (group BIa, ISO 13006 standard). All concentrations of Ag, As, Ba, Cd, Cr (total), Hg, and Pb of the fired porcelain stoneware tile pieces in the leachate comply with the current regulatory limits. These results indicate that the solid petroleum waste could be used for high-quality porcelain stoneware tile production, thus giving rise to a new possibility for an environmentally friendly management of this abundant waste. Copyright © 2013 Elsevier Ltd. All rights reserved.
The report gives results of a materials flow analysis performed for composting municipal solid waste (MSW) and specific biodegradable organic components of MSW. (NOTE: This work is part of an overall U.S. EPA project providing cost, energy, and materials flow information on diffe...
Waste management in primary healthcare centres of Iran.
Mesdaghinia, Alireza; Naddafi, Kazem; Mahvi, Amir Hossein; Saeedi, Reza
2009-06-01
The waste management practices in primary healthcare centres of Iran were investigated in the present study. A total of 120 primary healthcare centres located across the country were selected using the cluster sampling method and the current situation of healthcare waste management was determined through field investigation. The quantities of solid waste and wastewater generation per outpatient were found to be 60 g outpatient(-1) day(-1) and 26 L outpatient(-1) day(-1), respectively. In all of the facilities, sharp objects were separated almost completely, but separation of other types of hazardous healthcare solid waste was only done in 25% of the centres. The separated hazardous solid waste materials were treated by incineration, temporary incineration and open burning methods in 32.5, 8.3 and 42.5% of the healthcare centres, respectively. In 16.7% of the centres the hazardous solid wastes were disposed of without any treatment. These results indicate that the management of waste materials in primary healthcare centres in Iran faced some problems. Staff training and awareness, separation of healthcare solid waste, establishment of the autoclave method for healthcare solid waste treatment and construction of septic tanks and disinfection units in the centres that were without access to a sewer system are the major measures that are suggested for improvement of the waste management practices.
Abundance of (14)C in biomass fractions of wastes and solid recovered fuels.
Fellner, Johann; Rechberger, Helmut
2009-05-01
In recent years thermal utilization of mixed wastes and solid recovered fuels has become of increasing importance in European waste management. Since wastes or solid recovered fuels are generally composed of fossil and biogenic materials, only part of the CO(2) emissions is accounted for in greenhouse gas inventories or emission trading schemes. A promising approach for determining this fraction is the so-called radiocarbon method. It is based on different ratios of the carbon isotopes (14)C and (12)C in fossil and biogenic fuels. Fossil fuels have zero radiocarbon, whereas biogenic materials are enriched in (14)C and reflect the (14)CO(2) abundance of the ambient atmosphere. Due to nuclear weapons tests in the past century, the radiocarbon content in the atmosphere has not been constant, which has resulted in a varying (14)C content of biogenic matter, depending on the period of growth. In the present paper (14)C contents of different biogenic waste fractions (e.g., kitchen waste, paper, wood), as well as mixtures of different wastes (household, bulky waste, and commercial waste), and solid recovered fuels are determined. The calculated (14)C content of the materials investigated ranges between 98 and 135pMC.
Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste
2011-01-01
Background Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal) upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics) and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling). It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Results Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Conclusions Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants. PMID:21284885
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-09
... for Existing Sources: Commercial and Industrial Solid Waste Incineration Units; Identification of Non-Hazardous Secondary Materials That Are Solid Waste AGENCY: Environmental Protection Agency. ACTION: Notice... Institutional Boilers located at area sources; and Commercial and Industrial Solid Waste Incineration Units. On...
Radioactive waste disposal package
Lampe, Robert F.
1986-11-04
A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.
Radioactive waste disposal package
Lampe, Robert F.
1986-01-01
A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.
Discussion of methodological issues for conducting benefit-cost analysis and provides guidance for selecting and applying the most appropriate and useful mechanisms in benefit-cost analysis of toxic substances, hazardous materials, and solid waste control
Solid Waste Management Available Information Materials. Total Listing 1966-1976.
ERIC Educational Resources Information Center
Larsen, Julie L.
This publication is a compiled and indexed bibliography of solid waste management documents produced in the last ten years. This U.S. Environmental Protection Agency (EPA) publication is compiled from the Office of Solid Waste Management Programs (OSWMP) publications and the National Technical Information Service (NTIS) reports. Included are…
Evaluation of dry solid waste recycling from municipal solid waste: case of Mashhad city, Iran.
Farzadkia, Mahdi; Jorfi, Sahand; Akbari, Hamideh; Ghasemi, Mehdi
2012-01-01
The recycling for recovery and reuse of material and energy resources undoubtedly provides a substantial alternative supply of raw materials and reduces the dependence on virgin feedstock. The main objective of this study was to assess the potential of dry municipal solid waste recycling in Mashhad city, Iran. Several questionnaires were prepared and distributed among various branches of the municipality, related organizations and people. The total amount of solid waste generated in Mashhad in 2008 was 594, 800 tons with per capita solid waste generation rate of 0.609 kg person(-1) day(-1). Environmental educational programmes via mass media and direct education of civilians were implemented to publicize the advantages and necessity of recycling. The amount of recycled dry solid waste was increased from 2.42% of total dry solid waste (2588.36 ton year(-1)) in 1999 to 7.22% (10, 165 ton year(-1)) in 2008. The most important fractions of recycled dry solid waste in Mashhad included paper and board (51.33%), stale bread (14.59%), glass (9.73%), ferrous metals (9.73%), plastic (9.73%), polyethylene terephthalate (2.62%) and non-ferrous metals (0.97%). It can be concluded that unfortunately the potential of dry solid waste recycling in Mashhad has not been considered properly and there is a great effort to be made in order to achieve the desired conditions of recycling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millar, J.S.; Pottmeyer, J.A.; Stratton, T.J.
1995-01-01
Purpose of the study was to estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the Hanford Plutonium Finishing Plant is decontaminated and decommissioned. (Building structure and soil are not covered.) Results indicate that {approximately}5,500 m{sup 3} of solid waste is expected to result from the decontamination and decommissioning of the Pu Finishing Plant. The breakdown of the volumes and percentages of waste by category is 1% dangerous solid waste, 71% low-level waste, 21% transuranic waste, 7% transuranic mixed waste.
Gidarakos, E; Havas, G; Ntzamilis, P
2006-01-01
A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.
Multi-Material Recycling Manual. The Keep America Beautiful System. Revised Edition.
ERIC Educational Resources Information Center
1987
Solid waste management ranks third after schools and roads in most municipal budgets in the United States. Maximizing the separation of recyclable materials that can be reused may offer the highest priority and best use of our waste and should receive high priority in a solid waste management plan. This manual deals with the recycling of material…
Discussion of methodological issues for conducting benefit-cost analysis and provides guidance for selecting and applying the most appropriate and useful mechanisms in benefit-cost analysis of toxic substances, hazardous materials, and solid waste control
Beneficial Use of Waste Materials: State of the Practice 2012
Solid wastes produced in today’s society originate from a myriad of sources, including households, government, businesses, and industry. Current U.S. federal regulations for solid waste management have been developed to promote sound management of these wastes in a manner protect...
Force Provider Solid Waste Characterization Study
2004-08-01
energy converter (WEC) and/or composter . For a five-day period in June 2000, the solid waste generated by soldiers at the Force Provider Training Module...MATERIALS REDUCTION WASTE DISPOSAL MILITARY FACILITIES SANITARY ENGINEERING DISPOSAL FORCE PROVIDER FIELD FEEDING COMPOSTS WASTES GARBAGE WASTE RECYCLING...waste reduction through onsite waste-to-energy conversion and/or composting . The work was performed by Hughes Associates, Inc., 3610 Commerce
78 FR 41960 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-12
... with the various excursions are typically air emissions, waste water (urine, grey-water) and solid waste (food waste, human solid waste, and packaging materials). Human waste and grey water would be..., Santa Cruz, CA. Activity for Which Permit Is Requested Waste Permit; A small expedition would use an ice...
Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko
2017-01-01
Material flow analysis can effectively trace and quantify the flows and stocks of materials such as solid wastes in urban environments. However, the integrity of material flow analysis results is compromised by data uncertainties, an occurrence that is particularly acute in low-and-middle-income study contexts. This article investigates the uncertainties in the input data and their effects in a material flow analysis study of municipal solid waste management in Maputo City, the capital of Mozambique. The analysis is based on data collected in 2007 and 2014. Initially, the uncertainties and their ranges were identified by the data classification model of Hedbrant and Sörme, followed by the application of sensitivity analysis. The average lower and upper bounds were 29% and 71%, respectively, in 2007, increasing to 41% and 96%, respectively, in 2014. This indicates higher data quality in 2007 than in 2014. Results also show that not only data are partially missing from the established flows such as waste generation to final disposal, but also that they are limited and inconsistent in emerging flows and processes such as waste generation to material recovery (hence the wider variation in the 2014 parameters). The sensitivity analysis further clarified the most influencing parameter and the degree of influence of each parameter on the waste flows and the interrelations among the parameters. The findings highlight the need for an integrated municipal solid waste management approach to avoid transferring or worsening the negative impacts among the parameters and flows.
Electrochemical processing of solid waste
NASA Technical Reports Server (NTRS)
Bockris, John OM.
1987-01-01
An investigation of electrochemical waste treatment methods suitable for closed, or partially closed, life support systems for manned space exploration is discussed. The technique being investigated involves the electrolysis of solid waste where the aim is to upgrade waste material (mainly fecal waste) to generate gases that can be recycled in a space station or planetary space environment.
Amey, E.B.; Russell, J.A.; Hurdelbrink, R.J.
1996-01-01
In 1976, the U.S. Congress enacted the Resource Conservation and Recovery Act (RCRA) to further address the problem of increasing industrial and municipal waste. The main objectives of RCRA were to responsibly manage hazardous and solid waste and to procure materials made from recovered wastes. To fulfill these objectives, four main programs of waste management were developed. These programs were defined under Subtitle C, the Hazardous Waste Program; Subtitle D, the Solid Waste Program; Subtitle I, the Underground Storage Tank Program; and Subtitle J, the Medical Waste Program. Subtitle D illustrates the solid waste dilemma occurring in the United States. Under this program, states are encouraged to develop and implement their own waste management plans. These plans include the promotion of recycling solid wastes and the closing and upgrading of all environmentally unsound dumps. ?? 1996 International Association for Mathematical Geology.
HANDBOOK: MATERIAL RECOVERY FACILITIES FOR MUNICIPAL SOLID WASTE.
The purpose of this document is to address the technical and economic aspects of material recovery facility (MRF) equipment and technology in such a manner that the document may be of assistance to solid waste planners and engineers at the local community level. This docum...
Optimizing Resource and Energy Recovery for Municipal Solid Waste Management
Significant reductions of carbon emissions and air quality impacts can be achieved by optimizing municipal solid waste (MSW) as a resource. Materials and discards management were found to contribute ~40% of overall U.S. GHG emissions as a result of materials extraction, transpo...
The Land We Depend On. Fifth Grade.
ERIC Educational Resources Information Center
Illinois State Environmental Protection Agency, Springfield.
These materials are for use by elementary and middle school teachers in the state of Illinois. This document contains five modules for teaching land use and solid waste concepts. Topics include: (1) "Earth's Closed System"; (2) "Waste Alert"; (3) "Solid Waste/Litter"; (4) "Hazardous Waste"; and (5)…
40 CFR 260.42 - Notification requirement for hazardous secondary materials.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.42... according to the exclusion (reported as the EPA hazardous waste numbers that would apply if the hazardous secondary materials were managed as hazardous wastes); (8) For each hazardous secondary material, whether...
40 CFR 260.42 - Notification requirement for hazardous secondary materials.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.42... according to the exclusion (reported as the EPA hazardous waste numbers that would apply if the hazardous secondary materials were managed as hazardous wastes); (8) For each hazardous secondary material, whether...
40 CFR 260.42 - Notification requirement for hazardous secondary materials.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.42... according to the exclusion (reported as the EPA hazardous waste numbers that would apply if the hazardous secondary materials were managed as hazardous wastes); (8) For each hazardous secondary material, whether...
40 CFR 260.42 - Notification requirement for hazardous secondary materials.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.42... according to the exclusion (reported as the EPA hazardous waste numbers that would apply if the hazardous secondary materials were managed as hazardous wastes); (8) For each hazardous secondary material, whether...
Solid anaerobic digestion: State-of-art, scientific and technological hurdles.
André, Laura; Pauss, André; Ribeiro, Thierry
2018-01-01
In this paper, a state-of-art about solid anaerobic digestion (AD), focused on recent progress and trends of research is proposed. Solid anaerobic digestion should be the most appropriate process for degradation of by-products with high total solid (TS) content, especially lignocellulosic materials like agricultural waste (straw, manure), household waste and food waste. Solid AD is already widely used in waste water treatment plant for treating plant for sewage sludge but could be more developed for lignocellulosic materials with high TS content. Many research works were carried out in Europe on solid AD, focused on current hurdles (BMP, codigestion, inhibition, microbial population, rheology, water transfers, inoculum, etc.) in order to optimize the solid AD process. In conclusion, hurdles of solid AD process should and must be solved in order to propose better productivity and profitability of such system operating with high TS content (>15%), favouring reliable industrial processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
The module explains the statutory and regulatory definitions of solid waste, including the standards governing the recycling and management of specific types of wastes. It lists and cites three use/reuse scenarios where the materials are not solid wastes and states the requirements for documentation. It lists examples of sham recycling and describes the conditions under which hazardous waste-derived products may be excluded from regulation. It cites the provisions for precious metal recovery and discusses potential regulatory developments affecting the definition of solid waste and hazardous waste recycling.
Managing America`s solid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.
Managing America's solid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, J. A.
This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.
Xevgenos, D; Athanasopoulos, N; Kostazos, P K; Manolakos, D E; Moustakas, K; Malamis, D; Loizidou, M
2015-05-01
Waste management in Greece relies heavily on unsustainable waste practices (mainly landfills and in certain cases uncontrolled dumping of untreated waste). Even though major improvements have been achieved in the recycling of municipal solid waste during recent years, there are some barriers that hinder the achievement of high recycling rates. Source separation of municipal solid waste has been recognised as a promising solution to produce high-quality recycled materials that can be easily directed to secondary materials markets. This article presents an innovative miniature waste separator/compressor that has been designed and developed for the source separation of municipal solid waste at a household level. The design of the system is in line with the Waste Framework Directive (2008/98/EC), since it allows for the separate collection (and compression) of municipal solid waste, namely: plastic (polyethylene terephthalate and high-density polyethylene), paper (cardboard and Tetrapak) and metal (aluminium and tin cans). It has been designed through the use of suitable software tools (LS-DYNA, INVENTROR and COMSOL). The results from the simulations, as well as the whole design process and philosophy, are discussed in this article. © The Author(s) 2015.
40 CFR 62.14840 - What definitions must I know?
Code of Federal Regulations, 2013 CFR
2013-07-01
... primary chamber. Solid waste means any garbage, refuse, sludge from a waste treatment plant, water supply treatment plant, or air pollution control facility and other discarded material, including solid, liquid... vegetative agricultural materials such as nut and grain hulls and chaff (e.g., almond, walnut, peanut, rice...
40 CFR 62.14840 - What definitions must I know?
Code of Federal Regulations, 2012 CFR
2012-07-01
... primary chamber. Solid waste means any garbage, refuse, sludge from a waste treatment plant, water supply treatment plant, or air pollution control facility and other discarded material, including solid, liquid... vegetative agricultural materials such as nut and grain hulls and chaff (e.g., almond, walnut, peanut, rice...
40 CFR 62.14840 - What definitions must I know?
Code of Federal Regulations, 2014 CFR
2014-07-01
... primary chamber. Solid waste means any garbage, refuse, sludge from a waste treatment plant, water supply treatment plant, or air pollution control facility and other discarded material, including solid, liquid... vegetative agricultural materials such as nut and grain hulls and chaff (e.g., almond, walnut, peanut, rice...
ERIC Educational Resources Information Center
Bergandine, David R.; Holm, D. Andrew
The materials in this curriculum supplement, developed for middle school or high school science classes, present solid waste problems related to plastics. The set of curriculum materials is divided into two units to be used together or independently. Unit I begins by comparing patterns in solid waste from 1960 to 1990 and introducing methods for…
Fuels from pyrolysis of waste plastic
USDA-ARS?s Scientific Manuscript database
A large quantity of carbon containing materials, such as waste plastic, used tires, food waste, and biomass end up in landfills. These materials represent a rich energy source that is currently untapped or underutilized. Municipal solid waste is comprised of 12% waste plastic, but only a small fract...
This study addressed three questions of interest in national-scale solid and hazardous waste management decision-making within the United States: 1) can we quantify the reduction in risk to human and ecological receptors resulting from the reduction of certain industrial waste s...
40 CFR 60.56b - Standards for air curtain incinerators.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994 or for Which... the capacity to combust greater than 250 tons per day of municipal solid waste and that combusts a fuel feed stream composed of 100 percent yard waste and no other municipal solid waste materials shall...
Fortuna, Lorena M; Diyamandoglu, Vasil
2017-08-01
Product reuse in the solid waste management sector is promoted as one of the key strategies for waste prevention. This practice is considered to have favorable impact on the environment, but its benefits have yet to be established. Existing research describes the perspective of "avoided production" only, but has failed to examine the interdependent nature of reuse practices within an entire solid waste management system. This study proposes a new framework that uses optimization to minimize the greenhouse gas emissions of an integrated solid waste management system that includes reuse strategies and practices such as reuse enterprises, online platforms, and materials exchanges along with traditional solid waste management practices such as recycling, landfilling, and incineration. The proposed framework uses material flow analysis in combination with an optimization model to provide the best outcome in terms of GHG emissions by redistributing product flows in the integrated solid waste management system to the least impacting routes and processes. The optimization results provide a basis for understanding the contributions of reuse to the environmental benefits of the integrated solid waste management system and the exploration of the effects of reuse activities on waste prevention. A case study involving second-hand clothing is presented to illustrate the implementation of the proposed framework as applied to the material flow. Results of the case study showed the considerable impact of reuse on GHG emissions even for small replacement rates, and helped illustrate the interdependency of the reuse sector with other waste management practices. One major contribution of this study is the development of a framework centered on product reuse that can be applied to identify the best management strategies to reduce the environmental impact of product disposal and to increase recovery of reusable products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Process and material that encapsulates solid hazardous waste
O'Brien, Michael H.; Erickson, Arnold W.
1999-01-01
A method of encapsulating mixed waste in which a thermoplastic polymer having a melting temperature less than about 150.degree. C. and sulfur and mixed waste are mixed at an elevated temperature not greater than about 200.degree. C. and mixed for a time sufficient to intimately mix the constituents, and then cooled to a solid. The resulting solid is also disclosed.
Solid domestic wastes as a renewable resource: European experience
NASA Astrophysics Data System (ADS)
Fridland, V. S.; Livshits, I. M.
2011-01-01
Ways in which different types of solid domestic wastes, such as wastepaper, crushed glass, plastics and worn-out tires, can be efficiently included into the production, raw-material, and energy balances of the national economy are shown taking Germany and other European countries an example. Methods for recycling these solid domestic wastes and application fields of the obtained products are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gidarakos, E.; Havas, G.; Ntzamilis, P.
A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes,more » non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.« less
Wealth generation through recycling of material for reuse
NASA Astrophysics Data System (ADS)
Chukwudum, Okechukw John; Patience I., E.
2018-06-01
Management of solid waste needs appropriate technology, which is economically affordable, socially accepted and environmentally friendly. The public needs to be sensitized on the potential wealth that their inorganic and organic wastes contain. The paper deals with the idea of recycling as a means of solid waste treatment and explores. In developing countries, where standards are often lower and raw materials very expensive, there is a wider scope for use of recycled material. The range of products varies from building materials to shoes, home to office equipment, sewage pipe to beauty aids. Recyclingand reuse issues overlap a range of disciplines.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-02
... the efficacy and scope of the MSW Characterization Report called ``Municipal Solid Waste in the United States'' as part of a broader discussion about sustainable materials management. This information will be... assessments; however questions are being raised about its scope, the data sources used, the assumptions made...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-09
... Municipal Solid Waste Intended for Use as a Feedstock for Renewable Fuel Production at a Blairstown, IA... from municipal solid waste (MSW) prior to its use as a feedstock for renewable fuel production at their... pursuant to 40 CFR 80.1450(b)(1)(viii) for the separation of recyclable material from municipal solid waste...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metin, E.; Eroeztuerk, A.; Neyim, C
This paper provides a general overview of solid waste data and management practices employed in Turkey during the last decade. Municipal solid waste statistics and management practices including waste recovery and recycling initiatives have been evaluated. Detailed data on solid waste management practices including collection, recovery and disposal, together with the results of cost analyses, have been presented. Based on these evaluations basic cost estimations on collection and sorting of recyclable solid waste in Turkey have been provided. The results indicate that the household solid waste generation in Turkey, per capita, is around 0.6 kg/year, whereas municipal solid waste generationmore » is close to 1 kg/year. The major constituents of municipal solid waste are organic in nature and approximately 1/4 of municipal solid waste is recyclable. Separate collection programmes for recyclable household waste by more than 60 municipalities, continuing in excess of 3 years, demonstrate solid evidence for public acceptance and continuing support from the citizens. Opinion polls indicate that more than 80% of the population in the project regions is ready and willing to participate in separate collection programmes. The analysis of output data of the Material Recovery Facilities shows that, although paper, including cardboard, is the main constituent, the composition of recyclable waste varies strongly by the source or the type of collection point.« less
Method for processing aqueous wastes
Pickett, John B.; Martin, Hollis L.; Langton, Christine A.; Harley, Willie W.
1993-01-01
A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.
Code of Federal Regulations, 2013 CFR
2013-07-01
... agents, radioactive materials, chemicals, biological and laboratory waste, wreck or discarded equipment, rock, sand, excavation debris, industrial, municipal, agricultural, and other waste, but such term does... matter of any kind or description, including, but not limited to, dredged material, solid waste...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@eng.nssmc.com; Ishida, Yoshihiro; Osada, Morihiro
Highlights: • A new waste management scheme and the effects of co-gasification of MSW were assessed. • A co-gasification system was compared with other conventional systems. • The co-gasification system can produce slag and metal with high-quality. • The co-gasification system showed an economic advantage when bottom ash is landfilled. • The sensitive analyses indicate an economic advantage when the landfill cost is high. - Abstract: This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for amore » region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has great possibilities maximizing material recovery and energy recovery from waste.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
This module explains each waste exclusion and its scope, so one can apply this knowledge in determining wheather a given waste is or is not regulated under RCRA Subtitle C. It cites the regulatory section for exclusions and identifies materials that are not solid wastes and solid wastes that are not hazardous wastes. It locates the manufacturing process unit exclusion and identifies the sample and treatability study exclusions and their applicability. It outlines and specifies the conditions for meeting the exclusions for household wastes and mixtures of domestic sewage.
48 CFR 52.211-5 - Material Requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... materials and by-products generated from, and reused within, an original manufacturing process; provided... readjustments and material replacement. Recovered material means waste materials and by-products recovered or diverted from solid waste, but the term does not include those materials and by-products generated from...
Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials
Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.
1999-03-16
Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.
Processing of solid mixed waste containing radioactive and hazardous materials
Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.
1998-05-12
Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.
Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials
Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.
1999-03-16
Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.
Processing of solid mixed waste containing radioactive and hazardous materials
Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.
1998-05-12
Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.
Inspection Checklist Tool for Facilities Generating and Recycling Hazardous Secondary Materials
Series of checklists that assist regulatory authorities with monitoring compliance of the definition of solid waste regulations in 40 CFR section 261.2 and the 2008 definition of solid waste exclusions.
Solid recovered fuels in the steel industry.
Kepplinger, Werner L; Tappeiner, Tamara
2012-04-01
By using waste materials as alternative fuels in metallurgical plants it is possible to minimize the traditionally used reducing agents, such as coke, coal, oil or natural gas. Moreover, by using waste materials in the metallurgical industry it is feasible to recover these materials as far as possible. This also represents another step towards environmental protection because carbon dioxide emissions can be reduced, if the H(2) content of the waste material is greater in comparison with that of the substituted fuel and the effects of global warming can therefore be reduced. In the present article various solid recovered fuels and their applications in the metallurgical industry are detailed.
Possible global environmental impacts of solid waste practices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, M.M.; Holter, G.M.; DeForest, T.J.
1994-09-01
Pollutants resulting from the management of solid waste have been shown to affect the air, land, oceans, and waterways. In addition, solid wastes have other, more indirect impacts such as reduction in feedstocks of natural resources, because useful materials are disposed of rather than recycled. The objective of this study is to evaluate solid waste management practices that have negative implications on the global environment and develop recommendations for reducing such impacts. Recommendations identifying needed changes are identified that will reduce global impacts of solid waste practices in the future. The scope of this study includes the range of non-hazardousmore » solid wastes produced within our society, including municipal solid waste (MSW) and industrial solid waste (ISW), as well as industry-specific wastes from activities such as construction, demolition, and landclearing. Most solid waste management decisions continue to be made and implemented at very local levels, predominantly with a short-term focus to respond to relatively immediate pressures of landfill shortages, funding problems, political considerations, and the like. In this rush to address immediate local problems, little consideration is being given to potential impacts, either short- or long-term, at the national or global level resulting from solid waste management practices. More and more, the cumulative impacts from local decisions concerning solid waste management are beginning to manifest themselves in broader, longer-term impacts than are being addressed by the decision-makers or, at the very least, are presenting a greater and greater potential for such impacts.« less
Solid waste management of a chemical-looping combustion plant using Cu-based oxygen carriers.
García-Labiano, Francisco; Gayán, Pilar; Adánez, Juan; De Diego, Luis F; Forero, Carmen R
2007-08-15
Waste management generated from a Chemical-Looping Combustion (CLC) plant using copper-based materials is analyzed by two ways: the recovery and recycling of the used material and the disposal of the waste. A copper recovery process coupled to the CLC plant is proposed to avoid the loss of active material generated by elutriation from the system. Solid residues obtained from a 10 kWth CLC prototype operated during 100 h with a CuO-Al2O3 oxygen carrier prepared by impregnation were used as raw material in the recovery process. Recovering efficiencies of approximately 80% were obtained in the process, where the final products were an eluate of Cu(NO3)2 and a solid. The eluate was used for preparation of new oxygen carriers by impregnation, which exhibited high reactivity for reduction and oxidation reactions as well as adequate physical and chemical properties to be used in a CLC plant. The proposed recovery process largely decreases the amount of natural resources (Cu and Al203) employed in a CLC power plant as well as the waste generated in the process. To determine the stability of the different solid streams during deposition in a landfill, these were characterized with respect to their leaching behavior according to the European Union normative. The solid residue finally obtained in the CLC plant coupled to the recovery process (composed by Al2O3 and CuAl2O4) can be classified as a stable nonreactive hazardous waste acceptable at landfills for nonhazardous wastes.
40 CFR 227.12 - Insoluble wastes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.12 Insoluble wastes. (a) Solid wastes consisting of inert natural minerals or materials compatible with the ocean...
Improved method and composition for immobilization of waste in cement-based material
Tallent, O.K.; Dodson, K.E.; McDaniel, E.W.
1987-10-01
A composition and method for fixation or immobilization of aqueous hazardous waste material in cement-based materials (grout) is disclosed. The amount of drainable water in the cured grout is reduced by the addition of an ionic aluminum compound to either the waste material or the mixture of waste material and dry-solid cement- based material. This reduction in drainable water in the cured grout obviates the need for large, expensive amounts of gelling clays in grout materials and also results in improved consistency and properties of these cement-based waste disposal materials.
Code of Federal Regulations, 2013 CFR
2013-07-01
...)(3) for acute hazardous waste, or § 261.5(g)(3) for hazardous waste. (e) An unwanted material that is... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Making the hazardous waste....210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...
Code of Federal Regulations, 2014 CFR
2014-07-01
...)(3) for acute hazardous waste, or § 261.5(g)(3) for hazardous waste. (e) An unwanted material that is... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Making the hazardous waste....210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...
Code of Federal Regulations, 2012 CFR
2012-07-01
...)(3) for acute hazardous waste, or § 261.5(g)(3) for hazardous waste. (e) An unwanted material that is... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Making the hazardous waste....210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...
Code of Federal Regulations, 2010 CFR
2010-07-01
...)(3) for acute hazardous waste, or § 261.5(g)(3) for hazardous waste. (e) An unwanted material that is... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Making the hazardous waste....210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...
Code of Federal Regulations, 2011 CFR
2011-07-01
...)(3) for acute hazardous waste, or § 261.5(g)(3) for hazardous waste. (e) An unwanted material that is... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Making the hazardous waste....210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...
48 CFR 52.211-5 - Material Requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... readjustments and material replacement. Recovered material means waste materials and by-products recovered or diverted from solid waste, but the term does not include those materials and by-products generated from... is, or with new technology will become, a source of raw materials. (b) Unless this contract otherwise...
Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Rui, Lo Ming; Isa, Awatif Md; Zawawi, Mohd Hafiz; Alrozi, Rasyidah
2017-12-01
Currently, generation of solid waste per capita in Malaysia is about 1.1 kg/day. Over 26,500 t of solid waste is disposed almost solely through 166 operating landfills in the country every day. Despite the availability of other disposal methods, landfill is the most widely accepted and prevalent method for municipal solid waste (MSW) disposal in developing countries, including Malaysia. This is mainly ascribed to its inherent forte in terms cost saving and simpler operational mechanism. However, there is a downside. Environmental pollution caused by the landfill leachate has been one of the typical dilemmas of landfilling method. Leachate is the liquid produced when water percolates through solid waste and contains dissolved or suspended materials from various disposed materials and biodecomposition processes. It is often a high-strength wastewater with extreme pH, chemical oxygen demand (COD), biochemical oxygen demand (BOD), inorganic salts and toxicity. Its composition differs over the time and space within a particular landfill, influenced by a broad spectrum of factors, namely waste composition, landfilling practice (solid waste contouring and compacting), local climatic conditions, landfill's physico-chemical conditions, biogeochemistry and landfill age. This paper summarises an overview of landfill operation and leachate treatment availability reported in literature: a broad spectrum of landfill management opportunity, leachate parameter discussions and the way forward of landfill leachate treatment applicability.
Municipal Solid Waste Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-06-01
Municipal solid waste (MSW) is a source of biomass material that can be utilized for bioenergy production with minimal additional inputs. MSW resources include mixed commercial and residential garbage such as yard trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. Waste resources such as landfill gas, mill residues, and waste grease are already being utilized for cost-effective renewable energy generation. MSW for bioenergy also represents an opportunity to divert greater volumes of residential and commercial waste from landfills.
Method of encapsulating solid radioactive waste material for storage
Bunnell, Lee Roy; Bates, J. Lambert
1976-01-01
High-level radioactive wastes are encapsulated in vitreous carbon for long-term storage by mixing the wastes as finely divided solids with a suitable resin, formed into an appropriate shape and cured. The cured resin is carbonized by heating under a vacuum to form vitreous carbon. The vitreous carbon shapes may be further protected for storage by encasement in a canister containing a low melting temperature matrix material such as aluminum to increase impact resistance and improve heat dissipation.
Modelling for environmental assessment of municipal solid waste landfills (part II: biodegradation).
Garcia de Cortázar, Amaya Lobo; Lantarón, Javier Herrero; Fernández, Oscar Montero; Monzón, Iñaki Tejero; Lamia, Maria Fantelli
2002-12-01
The biodegradation module of a simulation program for municipal solid waste landfills (MODUELO) was developed. The biodegradation module carries out the balance of organic material starting with the results of the hydrologic simulation and the waste composition. It simulates the biologic reactions of hydrolysis of solids and the gasification of the dissolved biodegradable material. The results of this module are: organic matter (COD, BOD and elemental components such as carbon, hydrogen, nitrogen, oxygen, sulfur and ash), ammonium nitrogen generated with the gas and transported by the leachates and the potential rates of methane and carbon dioxide generation. The model was calibrated by using the general tendency curves of the pollutants recorded in municipal solid waste landfills, fitting the first part of them to available landfill data. Although the results show some agreement, further work is being done to make MODUELO a useful tool for real landfill simulation.
The Role of Packaging in Solid Waste Management 1966 to 1976.
ERIC Educational Resources Information Center
Darnay, Arsen; Franklin, William E.
The goals of waste processors and packagers obviously differ: the packaging industry seeks durable container material that will be unimpaired by external factors. Until recently, no systematic analysis of the relationship between packaging and solid waste disposal had been undertaken. This three-part document defines these interactions, and the…
Solid-shape energy fuels from recyclable municipal solid waste and plastics
NASA Astrophysics Data System (ADS)
Gug, Jeongin
Diversion of waste streams, such as plastics, wood and paper, from municipal landfills and extraction of useful materials from landfills is an area of increasing interest across the country, especially in densely populated areas. One promising technology for recycling MSW (municipal solid waste) is to burn the high energy content components in standard coal boilers. This research seeks to reform wastes into briquette that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, moisture resistance, and retain high fuel value. Household waste with high paper and fibers content was used as the base material for this study. It was combined with recyclable plastics such as PE, PP, PET and PS for enhanced binding and energy efficiency. Fuel pellets were processed using a compression molding technique. The resulting moisture absorption, proximate analysis from burning, and mechanical properties were investigated after sample production and then compared with reference data for commercial coals and biomass briquettes. The effects of moisture content, compression pressure and processing temperature were studied to identify the optimal processing conditions with water uptake tests for the durability of samples under humid conditions and burning tests to examine the composition of samples. Lastly, mechanical testing revealed the structural stability of solid fuels. The properties of fuel briquettes produced from waste and recycled plastics improved with higher processing temperature but without charring the material. Optimization of moisture content and removal of air bubbles increased the density, stability and mechanical strength. The sample composition was found to be more similar to biomass fuels than coals because the majority of the starting material was paper-based solid waste. According to the proximate analysis results, the waste fuels can be expected to have low temperature ignition, less char formation and reduced CO2 emission with the high heating energy value similar to coal. It is concluded that solid fuels from paper based waste and plastics can be a good energy resource as an alternative and sustainable fuel, which may help to alleviate the environmental problems related to landfill space at the same time.
Recovery and recycling practices in municipal solid waste management in Lagos, Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kofoworola, O.F.
The population of Lagos, the largest city in Nigeria, increased seven times from 1950 to 1980 with a current population of over 10 million inhabitants. The majority of the city's residents are poor. The residents make a heavy demand on resources and, at the same time, generate large quantities of solid waste. Approximately 4 million tonnes of municipal solid waste (MSW) is generated annually in the city, including approximately 0.5 million of untreated industrial waste. This is approximately 1.1 kg/cap/day. Efforts by the various waste management agencies set up by the state government to keep its streets and neighborhoods cleanmore » have achieved only minimal success. This is because more than half of these wastes are left uncollected from the streets and the various locations due to the inadequacy and inefficiency of the waste management system. Whilst the benefits of proper solid waste management (SWM), such as increased revenues for municipal bodies, higher productivity rate, improved sanitation standards and better health conditions, cannot be overemphasized, it is important that there is a reduction in the quantity of recoverable materials in residential and commercial waste streams to minimize the problem of MSW disposal. This paper examines the status of recovery and recycling in current waste management practice in Lagos, Nigeria. Existing recovery and recycling patterns, recovery and recycling technologies, approaches to materials recycling, and the types of materials recovered from MSW are reviewed. Based on these, strategies for improving recovery and recycling practices in the management of MSW in Lagos, Nigeria are suggested.« less
Application of material flow analysis to municipal solid waste in Maputo City, Mozambique.
Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko
2017-03-01
Understanding waste flows within an urban area is important for identifying the main problems and improvement opportunities for efficient waste management. Assessment tools such as material flow analysis (MFA), an extensively applied method in waste management studies, provide a structured and objective evaluating process to characterize the waste management system best, to identify its shortcomings and to propose suitable strategies. This paper presents the application of MFA to municipal solid waste management (MSWM) in Maputo City, the capital of Mozambique. The results included the identification and quantification of the main input and output flows of the MSWM system in 2007 and 2014, from the generation, material recovery and collection, to final disposal and the unaccounted flow of municipal solid waste (MSW). We estimated that the waste generation increased from 397×10 3 tonnes in 2007 to 437×10 3 tonnes in 2014, whereas the total material recovery was insignificant in both years - 3×10 3 and 7×10 3 tonnes, respectively. As for collection and final disposal, the official collection of waste to the local dumpsite in the inner city increased about threefold, from 76×10 3 to 253×10 6 tonnes. For waste unaccounted for, the estimates indicated a reduction during the study period from 300×10 3 to 158×10 3 tonnes, due to the increase of collection services. The emphasized aspects include the need for practical waste reduction strategies, the opportunity to explore the potential for material recovery, careful consideration regarding the growing trend of illegal dumping and the urgency in phasing-out from the harmful practice of open dumping.
Turning refuse into resource: a study on aerobic composting.
Janakiram, T; Sridevi, K
2012-07-01
The management of solid waste disposal had been a perennial problem every where in our country. In order to overcome this problem one possible solution is to compost the solid waste in the presence of air, so that it may be converted into an useful manure. With this intention, solid wastes like coir waste and water hyacinth had been collected and composted with the addition of cow dung. The composted material had been examined for the physical and chemical parameters. The content of macronutrients was found to be higher as the period of composting increased. There were gradual variations in the case of other parameters. A comparative account of the two types of solid waste is also given.
Report: landfill alternative daily cover: conserving air space and reducing landfill operating cost.
Haughey, R D
2001-02-01
Title 40, Part 258 of the Code of Federal Regulations, Solid Waste Disposal Facility Criteria, commonly referred to as Subtitle D, became effective on October 9, 1993. It establishes minimum criteria for solid waste disposal facility siting, design, operations, groundwater monitoring and corrective action, and closure and postclosure maintenance, while providing EPA-approved state solid waste regulatory programs flexibility in implementing the criteria. Section 258.21(a) [40 CFR 258.21(a)] requires owners or operators of municipal solid waste landfill (MSWLF) units to cover disposed solid waste with 30cm of earthen material at the end of the operating day, or at more frequent intervals, if necessary, to control disease vectors, fires, odours, blowing litter, and scavenging. This requirement is consistent with already existing solid waste facility regulations in many states. For many MSWLFs, applying daily cover requires the importation of soil which increases landfill operating costs. Daily cover also uses valuable landfill air space, reducing potential operating revenue and the landfill's operating life. 40 CFR 258.21 (b) allows the director of an approved state to approve alternative materials of an alternative thickness if the owner or operator demonstrates that the alternative material and thickness will control disease vectors, fires, odours, blowing litter, and scavenging without presenting a threat to human health and the environment. Many different types of alternative daily cover (ADC) are currently being used, including geosynthetic tarps, foams, garden waste, and auto shredder fluff. These materials use less air space than soil and can reduce operating costs. This paper discusses the variety of ADCs currently being used around the country and their applicability to different climates and operating conditions, highlighting the more unusual types of ADC, the types of demonstrations necessary to obtain approval of ADC, and the impact on landfill air space and operating costs of ADC use.
Mtimkulu, Y; Meyer, A H; Mulidzi, A R; Shange, P L; Nchu, F
2017-01-01
Waste management in winery and distillery industries faces numerous disposal challenges as large volumes of both liquid and solid waste by-products are generated yearly during cellar practices. Composting has been suggested as a feasible option to beneficiate solid organic waste. This incentivized the quest for efficient composting protocols to be put in place. The objective of this study was to experiment with different composting strategies for spent winery solid waste. Compost materials consisting of chopped pruning grape stalks, skins, seed and spent wine filter material consisting of a mixture of organic and inorganic expend ingredients were mixed in compost heaps. The filter material component varied (in percentage) among five treatments: T1 (40%) lined, T2 (20%) lined, T3 (0%) lined, T4 (40%) ground material, lined and T5 (40%) unlined. Composting was allowed to proceed under open field conditions over 12months, from autumn to summer. Indicators such as temperature, moisture, enzyme activities, microbial counts, pH, and C/N ratio, were recorded. Generally, season (df=3, 16, P<0.05) had significant effects (df=1, 3, P<0.05) on heap temperature and moisture in all treatments. Similarly, microorganisms (actinobacteria and heterotrophs) varied significantly in all treatments in response to seasonal change (df=3, 16; P<0.05). Enzyme activities fluctuated in accordance with seasonal factors and compost maturity stages, with phosphatases, esterases, amino-peptidases, proteases and glycosyl-hydrolases being most prominent. Compared to treatments T2 and T3, compost treatments with higher percentage waste filter materials (T1, T4 and T5) had higher N (16,100-21,300mg/kg), P (1500-2300mg/kg), K (19,800-28,200mg/kg), neutral pH, and lower C/N ratios (13:1-10:1), which were also comparable with commercially produced composts. Filter materials therefore, appears to be a vital ingredient for composting of winery solid waste. Copyright © 2016 Elsevier Ltd. All rights reserved.
2003-09-01
Pollution Prevention Requirements; E.O. 12873 Federal Acquisition, Recycling , and Waste Prevention; E.O. 12902 Energy Efficiency and Water Conservation... recycled or recovered. The management of solid (non-hazardous) waste on Fairchild AFB includes the collection and disposal of solid wastes and... recyclable material. Demolition and inert wastes generated on Environmental Assessment Anti-Terrorism/Force Protection Gate Projects at Fairchild AFB
Scenario of solid waste reuse in Khulna city of Bangladesh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bari, Quazi H., E-mail: qhbari@yahoo.com; Mahbub Hassan, K.; Haque, R.
2012-12-15
The reuse and recycling of waste materials are now sincerely considered to be an integral part of solid waste management in many parts of the world. In this context, a vast number of options ranging from small scale decentralized to larger scale centralized plants have been adopted. This study aimed at investigating the waste reuse schemes in Khulna city located in the southern part of Bangladesh and ranked third largest city in the country. The shops for reusable material (SRM) were mostly situated around railway, waterway, and truck station markets which provided easy transportation to further locations. For the reusesmore » of waste materials and products, a chain system was found to collect reusable wastes under a total number of 310 identified SRM with 859 persons directly or indirectly involved in the scheme. This was a decentralized waste management system with self sufficient (autonomous) management. According to mass balance, about 38.52 tons d{sup -1} solid wastes were reused in Khulna city area, accounting for 7.65% of the total generated wastes. This study revealed that apparently a silent, systematic, smooth, and clean reuse chain has been established in Khulna city area under private initiatives, whose sustainability was confirmed over the years in the country without any official or formal funds. However, proper adjustment between the higher and lower chain in the materials flow path, as well as personal hygiene training for the workers, would further improve the achievements of the established reuse scheme.« less
Scenario of solid waste reuse in Khulna city of Bangladesh.
Bari, Quazi H; Mahbub Hassan, K; Haque, R
2012-12-01
The reuse and recycling of waste materials are now sincerely considered to be an integral part of solid waste management in many parts of the world. In this context, a vast number of options ranging from small scale decentralized to larger scale centralized plants have been adopted. This study aimed at investigating the waste reuse schemes in Khulna city located in the southern part of Bangladesh and ranked third largest city in the country. The shops for reusable material (SRM) were mostly situated around railway, waterway, and truck station markets which provided easy transportation to further locations. For the reuses of waste materials and products, a chain system was found to collect reusable wastes under a total number of 310 identified SRM with 859 persons directly or indirectly involved in the scheme. This was a decentralized waste management system with self sufficient (autonomous) management. According to mass balance, about 38.52 tons d(-1) solid wastes were reused in Khulna city area, accounting for 7.65% of the total generated wastes. This study revealed that apparently a silent, systematic, smooth, and clean reuse chain has been established in Khulna city area under private initiatives, whose sustainability was confirmed over the years in the country without any official or formal funds. However, proper adjustment between the higher and lower chain in the materials flow path, as well as personal hygiene training for the workers, would further improve the achievements of the established reuse scheme. Copyright © 2012 Elsevier Ltd. All rights reserved.
Solid Waste from the Operation and Decommissioning of Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Marilyn Ann; D'Arcy, Daniel; Lapsa, Melissa Voss
This baseline report examines the solid waste generated by the U.S. electric power industry, including both waste streams resulting from electricity generation and wastes resulting from the decommissioning of power plants. Coal and nuclear plants produce large volumes of waste during electricity generation, and this report describes the policies and procedures for handling these materials. Natural gas and oil-fired power plants face similar waste challenges. Renewables considered in this baseline report include hydropower, wind and solar.
Method for processing aqueous wastes
Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.
1993-12-28
A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.
THE FEASIBILITY OF UTILIZING SOLID WASTES FOR BUILDING MATERIALS. EXECUTIVE SUMMARY
This report focuses on two phases of a suggested four phase study to evaluate the technological and commercial possibilities of waste - derived composites. The first phase involved a joint and comprehensive literature search to identify wastes with potential as building materials...
MOVING FROM SOLID WASTE DISPOSAL TO MATERIALS MANAGEMENT IN THE UNITED STATES
The desire for less waste and more sustainable use of resources has resulted in the U.S. EPA's Resource Conservation Challenge. This initiative is directed towards helping the U.S. transition from waste disposal towards materials management. Understanding the potential environmen...
NASA Astrophysics Data System (ADS)
Abdullah, N. O.; Pandebesie, E. S.
2018-03-01
Based on Indonesian Government Regulation number 18, 2008, solid waste management should be conducted from the source to minimize the amount of waste. The process includes the waste from domestic, commercial, and institution. This also includes in 3R program (reduce, reuse, and recycle). Vegetable waste from market is a potential material to produce biogas due to its chemical composition (hemi-cellulose, cellulose, and lignin) which transform the biomass to be the raw material of biogas. Acid substance of vegetable becomes an obstacle in process of producing biogas. There has to be buffer material which can improve the performance of biogas process. Cow manure is a material which can be easily obtained as buffer. This research used 24 biogas reactor in volume 6 L by batch method. Biogas volume is measured by checking the preferment in manometer. Methane measurement is conducted by using Gas Chromatography (GC) Hewlett Packard (HP-series 6890) in day 15 and 30. The research was started by sample characterization, sample test by total solid analysis, volatile solid, lignin, ratio C/N, ammonium, and ash. Analysis of pH, temperature, and biogas volume is conducted every day.
Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal.
Margallo, M; Aldaco, R; Irabien, A; Carrillo, V; Fischer, M; Bala, A; Fullana, P
2014-06-01
In recent years, waste management systems have been evaluated using a life cycle assessment (LCA) approach. A main shortcoming of prior studies was the focus on a mixture of waste with different characteristics. The estimation of emissions and consumptions associated with each waste fraction in these studies presented allocation problems. Waste-to-energy (WTE) incineration is a clear example in which municipal solid waste (MSW), comprising many types of materials, is processed to produce several outputs. This paper investigates an approach to better understand incineration processes in Spain and Portugal by applying a multi-input/output allocation model. The application of this model enabled predictions of WTE inputs and outputs, including the consumption of ancillary materials and combustibles, air emissions, solid wastes, and the energy produced during the combustion of each waste fraction. © The Author(s) 2014.
USER'S GUIDE FOR THE MUNICIPAL SOLID WASTE LIFE-CYCLE DATABASE
The report describes how to use the municipal solid waste (MSW) life cycle database, a software application with Microsoft Access interfaces, that provides environmental data for energy production, materials production, and MSW management activities and equipment. The basic datab...
NASA Technical Reports Server (NTRS)
Chamberland, Dennis
1991-01-01
The Controlled Ecological Life Support System (CELSS) for producing oxygen, water, and food in space will require an interactive facility to process and return wastes as resources to the system. This paper examines the bioregenerative techologies for waste processing and resource recovery considered for a CELSS Resource Recovery system. The components of this system consist of a series of biological reactors to treat the liquid and solid material fractions, in which the aerobic and anaerobic reactors are combined in a block called the Combined Reactor Equipment (CORE) block. The CORE block accepts the human wastes, kitchen wastes, inedible refractory plant materials, grey waters from the CELLS system, and aquaculture solids and processes these materials in either aerobic or anaerobic reactors depending on the desired product and the rates required by the integrated system.
Sustainable construction in rural Guatemala.
Temple, Ericka K; Rose, Elizabeth
2011-11-01
Waste management is a significant problem in Guatemala, as elsewhere in the developing world. The inappropriate disposal of solid waste produces pollution and places the environment and human health at risk. Environmental risk factors, including inadequate disposal of solid waste, are implicated in 25-30% of disease worldwide with children bearing a disproportionate burden of those diseases. Therefore, economic development which reduces inappropriate disposal of waste and affords economic opportunities may help reduce the global burden of disease on children. In the indigenous highlands of central Guatemala, a community supported non-profit organisation called Long Way Home (http://www.longwayhomeinc.org) is employing alternative construction techniques to build a vocational school complex. The construction of the school from waste materials demonstrates the use and principles of re-purposing materials, helps clean the environment and affords further educational and vocational opportunities. This article will outline the health problems inherent in an indigenous area of a developing country and will offer an alternative solution to reverse environmental risk factors associated with solid waste pollution and also actively improve child health.
Torrefaction Processing for Human Solid Waste Management
NASA Technical Reports Server (NTRS)
Serio, Michael A.; Cosgrove, Joseph E.; Wójtowicz, Marek A.; Stapleton, Thomas J.; Nalette, Tim A.; Ewert, Michael K.; Lee, Jeffrey; Fisher, John
2016-01-01
This study involved a torrefaction (mild pyrolysis) processing approach that could be used to sterilize feces and produce a stable, odor-free solid product that can be stored or recycled, and also to simultaneously recover moisture. It was demonstrated that mild heating (200-250 C) in nitrogen or air was adequate for torrefaction of a fecal simulant and an analog of human solid waste (canine feces). The net result was a nearly undetectable odor (for the canine feces), complete recovery of moisture, some additional water production, a modest reduction of the dry solid mass, and the production of small amounts of gas and liquid. The liquid product is mainly water, with a small Total Organic Carbon content. The amount of solid vs gas plus liquid products can be controlled by adjusting the torrefaction conditions (final temperature, holding time), and the current work has shown that the benefits of torrefaction could be achieved in a low temperature range (< 250 C). These temperatures are compatible with the PTFE bag materials historically used by NASA for fecal waste containment and will reduce the energy consumption of the process. The solid product was a dry material that did not support bacterial growth and was hydrophobic relative to the starting material. In the case of canine feces, the solid product was a mechanically friable material that could be easily compacted to a significantly smaller volume (approx. 50%). The proposed Torrefaction Processing Unit (TPU) would be designed to be compatible with the Universal Waste Management System (UWMS), now under development by NASA. A stand-alone TPU could be used to treat the canister from the UWMS, along with other types of wet solid wastes, with either conventional or microwave heating. Over time, a more complete integration of the TPU and the UWMS could be achieved, but will require design changes in both units.
Status report on the disposal of radioactive wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culler, F.L. Jr.; McLain, S.
1957-06-25
A comprehensive survey of waste disposal techniques, requirements, costs, hazards, and long-range considerations is presented. The nature of high level wastes from reactors and chemical processes, in the form of fission product gases, waste solutions, solid wastes, and particulate solids in gas phase, is described. Growth predictions for nuclear reactor capacity and the associated fission product and transplutonic waste problem are made and discussed on the basis of present knowledge. Biological hazards from accumulated wastes and potential hazards from reactor accidents, ore and feed material processing, chemical reprocessing plants, and handling of fissionable and fertile material after irradiation and decontaminationmore » are surveyed. The waste transportation problem is considered from the standpoints of magnitude of the problem, present regulations, costs, and cooling periods. The possibilities for ultimate waste management and/or disposal are reviewed and discussed. The costs of disposal, evaporation, storage tanks, and drum-drying are considered.« less
Effects of biodrying process on municipal solid waste properties.
Tambone, F; Scaglia, B; Scotti, S; Adani, F
2011-08-01
In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,779±2,074kJ kg(-1) wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290g kg(-1) VS), reduced of about 28% the total producible biogas. Copyright © 2011 Elsevier Ltd. All rights reserved.
Colombo, P.; Kalb, P.D.
1984-06-05
In the method of the invention low density polyethylene pellets are mixed in a predetermined ratio with radioactive particulate material, then the mixture is fed through a screw-type extruder that melts the low density polyethylene under a predetermined pressure and temperature to form a homogeneous matrix that is extruded and separated into solid monolithic waste forms. The solid waste forms are adapted to be safely handled, stored for a short time, and safely disposed of in approved depositories.
Biogas Upgrading and Waste-to-Energy | Bioenergy | NREL
dots. Waste Feedstocks We inventory WTE feedstocks-waste fat, oil, and greases; municipal solid wastes " and points right to an icon of an Excel spreadsheet labeled "Equipment and Raw Material
There Must Be A-Way (to Deal with Solid Waste).
ERIC Educational Resources Information Center
Fortner, Rosanne W.
1991-01-01
Presents a class project to help upper elementary students grasp the extent of the solid waste disposal problem and develop an individual response. Includes background information for the teacher, project objectives, materials, procedures, and a listing for additional resources. (MCO)
This report summarizes work to develop building materials containing inorganic and organic wastes and wastes-derived products. Attempts were made to produce full-scale products and qualify them for structural applications. Particle board panels were made of peanut hulls and wood ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... transporters of materials used in a manner that constitutes disposal. 266.21 Section 266.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Recyclable...
Military wastes-to-energy applications
NASA Astrophysics Data System (ADS)
Kawaoka, K. E.
1980-11-01
This analysis focuses on the military waste material and byproduct stream and the potential for energy recovery and utilization. Feedstock material includes municipal-type solid waste, selected installation hazardous waste, and biomass residue. The study objectives are to (1) analyze the characteristics of the military waste stream; (2) identify potential energy recovery options; and (3) examine and assess the technical and economic feasibility and environmental and institutional impacts of various energy recovery approaches. Total energy recoverable from DOD solid waste could provide about 2 percent of DOD's facility energy demand. The energy potential available to DOD from biomass and hazardous waste was not available. Available waste-to-energy systems are thermal conversion processes such as incineration with heat recovery. The significance of this recoverable energy from military wastes is put in proper perspective when the benefits and barriers in using waste-derived energy are considered. Some of the benefits of waste-to-energy conversion are as follows: waste energy is a readily available and inexhaustible resource that greatly reduces dependence on imported energy.
Low temperature ozone oxidation of solid waste surrogates
NASA Astrophysics Data System (ADS)
Nabity, James A.; Lee, Jeffrey M.
2015-09-01
Solid waste management presents a significant challenge to human spaceflight and especially, long-term missions beyond Earth orbit. A six-month mission will generate over 300 kg of solid wastes per crewmember that must be dealt with to eliminate the need for storage and prevent it from becoming a biological hazard to the crew. There are several methods for the treatment of wastes that include oxidation via ozone, incineration, microbial oxidation or pyrolysis and physical methods such as microwave drying and compaction. In recent years, a low temperature oxidation process using ozonated water has been developed for the chemical conversion of organic wastes to CO2 and H2O. Experiments were conducted to evaluate the rate and effectiveness with which ozone oxidized several different waste materials. Increasing the surface area by chopping or shredding the solids into small pieces more than doubled the rate of oxidation. A greater flow of ozone and agitation of the ozonated water system also increased processing rates. Of the materials investigated, plastics have proven the most difficult to oxidize. The processing of plastics above the glass transition temperatures caused the plastics to clump together which reduced the exposed surface area, while processing at lower temperatures reduced surface reaction kinetics.
Modular life cycle assessment of municipal solid waste management.
Haupt, M; Kägi, T; Hellweg, S
2018-05-31
Life cycle assessment (LCA) is commonly applied to examine the environmental performance of waste management systems. The system boundaries are, however, often limited to either one tonne of material or to specific waste treatments and are, therefore, lacking a systems perspective. Here, a framework is proposed to assess complete waste management systems based on actual waste flows, assessed with a detailed material flow analysis (MFA) in a modular MFA/LCA approach. The transformation of the MFA into a product-process-matrix facilitates a direct link between MFA and LCA, therefore allowing for the assessment of variations in flows. To allow for an up-to-date and geographically specific assessment, 190 LCA modules were set up based on primary industrial data and the ecoinvent database. The LCA modules show where there have been improvements in different recycling processes over the past years (e.g. for paper recycling) and highlight that, from an environmental perspective, closed-loop recycling is not always preferable to open-loop recycling. In a case study, the Swiss municipal solid waste management system, of which there is already a detailed MFA, was modeled using the new LCA modules and applying the modular MFA/LCA approach. Five different mass flow distribution scenarios for the Swiss municipal solid waste management system were assessed to show the environmental impact of political measures and to test the sensitivity of the results to key parameters. The results of the case study highlight the importance of the dominant fractions in the overall environmental impacts assessment; while the metal fraction has the highest impact on a per kilogram basis, paper, cardboard, glass and mixed municipal solid waste were found to dominate the environmental impacts of the Swiss waste management system due to their mass. The scenarios also highlight the importance of the energy efficiency of municipal solid waste incineration plants and the credits from material substitution as key variables. In countries with advanced waste management systems such as Switzerland, there is limited improvement potential with further increases in recycling rates. In these cases, the focus of political measures should be laid on (i) the utilization of secondary materials in applications where they replace high-impact primary production, and (ii) an increased recovery of energy in waste-to-energy plants. Copyright © 2018. Published by Elsevier Ltd.
Lyophilization -Solid Waste Treatment
NASA Technical Reports Server (NTRS)
Litwiller, Eric; Flynn, Michael; Fisher, John; Reinhard, Martin
2004-01-01
This paper discusses the development of a solid waste treatment system that has been designed for a Mars transit exploration mission. The technology described is an energy-efficient lyophilization technique that is designed to recover water from spacecraft solid wastes. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain free water. The system is designed to operate as a stand-alone process or to be integrated into the International Space Station Waste Collection System. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. The sublimed water is then condensed in a solid ice phase and then melted to generate a liquid product. In the subject system the waste solids are contained within a 0.2 micron bio-guard bag and after drying are removed from the system and stored in a secondary container. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. The system is designed to minimize power consumption through the use of thermoelectric heat pumps. The results of preliminary testing of a prototype system and testing of the final configuration are provided. A mathematical model of the system is also described.
Electricity production from municipal solid waste in Brazil.
Nordi, Guilherme Henrique; Palacios-Bereche, Reynaldo; Gallego, Antonio Garrido; Nebra, Silvia Azucena
2017-07-01
Brazil has an increasing production of municipal solid waste that, allied to the current waste management system, makes the search for alternatives of energy recovery essential. Thus, this work aims to study the incineration of municipal solid waste and the electricity production through steam cycles evaluating the influence of municipal solid waste composition. Several scenarios were studied, in which it was assumed that some fractions of municipal solid waste were removed previously. The municipal solid waste generated in Santo André city, São Paulo State, Brazil, was adopted for this study. Simulation results showed that the removal of organic matter and inert components impacts advantageously on the cycle performance, improving their parameters in some cases; in addition, there is the possibility of reusing the separated fractions. The separation of some recyclables, as plastic material, showed disadvantages by the reduction in the electricity generation potential owing to the high calorific value of plastics. Despite the high energy content of them, there are other possible considerations on this subject, because some plastics have a better recovery potential by recycling.
Incorporating technetium in minerals and other solids: A review
NASA Astrophysics Data System (ADS)
Luksic, Steven A.; Riley, Brian J.; Schweiger, Michael; Hrma, Pavel
2015-11-01
Technetium (Tc) can be incorporated into a number of different solids including spinel, sodalite, rutile, tin dioxide, pyrochlore, perovskite, goethite, layered double hydroxides, cements, and alloys. Synthetic routes are possible for each of these phases, ranging from high-temperature ceramic sintering to ball-milling of constituent oxides. However, in practice, Tc has only been incorporated into solid materials by a limited number of the possible syntheses. A review of the diverse ways in which Tc-immobilizing materials can be made shows the wide range of options available. Special consideration is given to hypothetical application to the Hanford Tank Waste and Vitrification Plant, such as adding a Tc-bearing mineral to waste glass melter feed. A full survey of solid Tc waste forms, the common synthesis routes to those waste forms, and their potential for application to vitrification processes are presented. The use of tin dioxide or ferrite spinel precursors to reduce Tc(VII) out of solution and into a durable form are shown to be of especially high potential.
NASA Technical Reports Server (NTRS)
Spurlock, J. M.
1975-01-01
Promising candidate designs currently being considered for the management of spacecraft solid waste and waste-water materials were assessed. The candidate processes were: (1) the radioisotope thermal energy evaporation/incinerator process; (2) the dry incineration process; and (3) the wet oxidation process. The types of spacecraft waste materials that were included in the base-line computational input to the candidate systems were feces, urine residues, trash and waste-water concentrates. The performance characteristics and system requirements for each candidate process to handle this input and produce the specified acceptable output (i.e., potable water, a storable dry ash, and vapor phase products that can be handled by a spacecraft atmosphere control system) were estimated and compared. Recommendations are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tirado-Soto, Magda Martina, E-mail: magda@pep.ufrj.br; Zamberlan, Fabio Luiz, E-mail: fabio@pep.ufrj.br
Highlights: ► In the marketing of recyclable materials, the waste-pickers are the least wins. ► It is proposed creating a network of recycling cooperatives to achieve viability. ► The waste-pickers contribute to waste management to the city. - Abstract: The objective of this study is to discuss the role of networks formed of waste-picker cooperatives in ameliorating problems of final disposal of solid waste in the city of Rio de Janeiro, since the city’s main landfill will soon have to close because of exhausted capacity. However, it is estimated that in the city of Rio de Janeiro there are aroundmore » five thousand waste-pickers working in poor conditions, with lack of physical infrastructure and training, but contributing significantly by diverting solid waste from landfills. According to the Sustainable Development Indicators (IBGE, 2010a,b) in Brazil, recycling rates hover between 45% and 55%. In the municipality of Rio de Janeiro, only 1% of the waste produced is collected selectively by the government (COMLURB, 2010), demonstrating that recycling is mainly performed by waste-pickers. Furthermore, since the recycling market is an oligopsony that requires economies of scale to negotiate directly with industries, the idea of working in networks of cooperatives meets the demands for joint marketing of recyclable materials. Thus, this work presents a method for creating and structuring a network of recycling cooperatives, with prior training for working in networks, so that the expected synergies and joint efforts can lead to concrete results. We intend to demonstrate that it is first essential to strengthen the waste-pickers’ cooperatives in terms of infrastructure, governance and training so that solid waste management can be environmentally, socially and economically sustainable in the city of Rio de Janeiro.« less
NASA Astrophysics Data System (ADS)
Khuriati, Ainie; Setiabudi, Wahyu; Nur, Muhammad; Istadi, Istadi
2015-12-01
Backpropgation neural network was trained to predict of combustible fraction heating value of MSW from the physical composition. Waste-to-Energy (WtE) is a viable option for municipal solid waste (MSW) management. The influence of the heating value of municipal solid waste (MSW) is very important on the implementation of WtE systems. As MSW is heterogeneous material, direct heating value measurements are often not feasible. In this study an empirical model was developed to describe the heating value of the combustible fraction of municipal solid waste as a function of its physical composition of MSW using backpropagation neural network. Sampling process was carried out at Jatibarang landfill. The weight of each sorting sample taken from each discharged MSW vehicle load is 100 kg. The MSW physical components were grouped into paper wastes, absorbent hygiene product waste, styrofoam waste, HD plastic waste, plastic waste, rubber waste, textile waste, wood waste, yard wastes, kitchen waste, coco waste, and miscellaneous combustible waste. Network was trained by 24 datasets with 1200, 769, and 210 epochs. The results of this analysis showed that the correlation from the physical composition is better than multiple regression method .
USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL
NASA Technical Reports Server (NTRS)
Venuto, Charles
1987-01-01
In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.
Application of life cycle assessment for hospital solid waste management: A case study.
Ali, Mustafa; Wang, Wenping; Chaudhry, Nawaz
2016-10-01
This study was meant to determine environmental aspects of hospital waste management scenarios using a life cycle analysis approach. The survey for this study was conducted at the largest hospital in a major city of Pakistan. The hospital was thoroughly analyzed from November 2014 to January 2015 to quantify its wastes by category. The functional unit of the study was selected as 1 tonne of disposable solid hospital waste. System boundaries included transportation of hospital solid waste and its treatment and disposal by landfilling, incineration, composting, and material recycling methods. These methods were evaluated based on their greenhouse gas emissions. Landfilling and incineration turned out to be the worst final disposal alternatives, whereas composting and material recovery displayed savings in emissions. An integrated system (composting, incineration, and material recycling) was found as the best solution among the evaluated scenarios. This study can be used by policymakers for the formulation of an integrated hospital waste management plan. This study deals with environmental aspects of hospital waste management scenarios. It is an increasing area of concern in many developing and resource-constrained countries of the world. The life cycle analysis (LCA) approach is a useful tool for estimation of greenhouse gas emissions from different waste management activities. There is a shortage of information in existing literature regarding LCA of hospital wastes. To the best knowledge of the authors this work is the first attempt at quantifying the environmental footprint of hospital waste in Pakistan.
Evaluation of municipal solid waste management in egyptian rural areas.
El-Messery, Mamdouh A; Ismail, Gaber A; Arafa, Anwaar K
2009-01-01
A two years study was conducted to evaluate the solid waste management system in 143 villages representing the Egyptian rural areas. The study covers the legal responsibilities, service availability, environmental impacts, service providers, financial resources, private sector participation and the quality of collection services. According to UN reports more than 55% of Egyptian population lives in rural areas. A drastic change in the consumption pattern altered the quantity and quality of the generated solid wastes from these areas. Poor solid waste management systems are stigmata in most of the Egyptian rural areas. This causes several environmental and health problems. It has been found that solid waste collection services cover only 27% of the surveyed villages, while, the statistics show that 75% of the surveyed villages are formally covered. The service providers are local villager units, private contractors and civil community associations with a percentage share 71%, 24% and 5% respectively. The operated services among these sectors were 25%, 71% and 100% respectively. The share of private sector in solid waste management in rural areas is still very limited as a result of the poverty of these communities and the lack of recyclable materials in their solid waste. It has been found that direct throwing of solid waste on the banks of drains and canals as well as open dumping and uncontrolled burning of solid waste are the common practice in most of the Egyptian rural areas. The available land for landfill is not enough, pitiable designed, defectively constructed and unreliably operated. Although solid waste generated in rural areas has high organic contents, no composting plant was installed. Shortage in financial resources allocated for valorization of solid waste management in the Egyptian rural areas and lower collection fees are the main points of weakness which resulted in poor solid waste management systems. On the other hand, the farmer's participation in solid waste management through the composting of organic matter and using of food waste as an animal feed are considered strength points. However, throwing of solid waste on the banks of water streams, open dumping and uncontrolled burning of solid waste are environmental damaging behaviors that need to be changed. Integrated solid waste management in the Egyptian rural areas is not yet among the priorities of the Egyptian government.
Solid waste recycling in Rajshahi city of Bangladesh.
Bari, Q Hamidul; Hassan, K Mahbub; Haque, M Ehsanul
2012-11-01
Efficient recycling of solid wastes is now a global concern for a sustainable and environmentally sound management. In this study, traditional recycling pattern of solid waste was investigated in Rajshahi municipality which is the fourth largest city of Bangladesh. A questionnaire survey had been carried out in various recycle shops during April 2010 to January 2011. There were 140 recycle shops and most of them were located in the vicinity of Stadium market in Rajshahi. About 1906 people were found to be involved in recycling activities of the city. The major fraction of recycled wastes were sent to capital city Dhaka for further manufacture of different new products. Only a small amount of wastes, specially plastics, were processed in local recycle factories to produce small washing pots and bottle caps. Everyday, an estimated 28.13 tons of recycled solid wastes were handled in Rajshahi city area. This recycled portion accounted for 8.25% of the daily total generated wastes (341 ton d(-1)), 54.6% of total recyclable wastes (51.49 ton d(-1)) and 68.29% of readily recyclable wastes (41.19 ton d(-1)). Major recycled materials were found to be iron, glass, plastic, and papers. Only five factories were involved in preliminary processing of recyclable wastes. Collecting and processing secondary materials, manufacturing recycled-content products, and then buying recycled products created a circle or loop that ensured the overall success of recycling and generated a host of financial, environmental, and social returns. Copyright © 2012 Elsevier Ltd. All rights reserved.
40 CFR 243.203-1 - Requirement.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Requirement. 243.203-1 Section 243.203... THE STORAGE AND COLLECTION OF RESIDENTIAL, COMMERCIAL, AND INSTITUTIONAL SOLID WASTE Requirements and Recommended Procedures § 243.203-1 Requirement. Solid wastes (or materials which have been separated for the...
40 CFR 243.204-1 - Requirement.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Requirement. 243.204-1 Section 243.204... THE STORAGE AND COLLECTION OF RESIDENTIAL, COMMERCIAL, AND INSTITUTIONAL SOLID WASTE Requirements and Recommended Procedures § 243.204-1 Requirement. The collection of solid wastes (or materials which have been...
40 CFR 243.204-1 - Requirement.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Requirement. 243.204-1 Section 243.204... THE STORAGE AND COLLECTION OF RESIDENTIAL, COMMERCIAL, AND INSTITUTIONAL SOLID WASTE Requirements and Recommended Procedures § 243.204-1 Requirement. The collection of solid wastes (or materials which have been...
40 CFR 243.203-1 - Requirement.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Requirement. 243.203-1 Section 243.203... THE STORAGE AND COLLECTION OF RESIDENTIAL, COMMERCIAL, AND INSTITUTIONAL SOLID WASTE Requirements and Recommended Procedures § 243.203-1 Requirement. Solid wastes (or materials which have been separated for the...
40 CFR 243.203-1 - Requirement.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Requirement. 243.203-1 Section 243.203... THE STORAGE AND COLLECTION OF RESIDENTIAL, COMMERCIAL, AND INSTITUTIONAL SOLID WASTE Requirements and Recommended Procedures § 243.203-1 Requirement. Solid wastes (or materials which have been separated for the...
40 CFR 243.204-1 - Requirement.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Requirement. 243.204-1 Section 243.204... THE STORAGE AND COLLECTION OF RESIDENTIAL, COMMERCIAL, AND INSTITUTIONAL SOLID WASTE Requirements and Recommended Procedures § 243.204-1 Requirement. The collection of solid wastes (or materials which have been...
Trash to Treasure: NREL's High-Solids Digester Converts Wastes to Biogas and Compost
DOT National Transportation Integrated Search
1994-04-01
This article describes a pilot high-solids digester (HSD) plant for use in : American Samoa. The American Samoa is highly dependent on imported fuel. At : the same time, the local tuna canneries produce large amounts of waste : materials. The HSD pro...
Municipal Solid Waste Landfills and Wood Pallets - What's Happening in the United States
Philip A. Araman; Robert J. Bush; Vijay S. Reddy
1997-01-01
This article on pallet disposal and Municipal Solid Waste sites includes material presented by Dr. Bush at the recent NWPCA Recycling Meeting. This is the first in a two-part series; the second discusses pallet disposal in construction and demolition sites.
ERIC Educational Resources Information Center
Hallowell, Anne; And Others
This study guide was designed to help teachers and students understand the problems surrounding solid wastes. It includes an overview of solid waste and recycling, a glossary, suggested activities and a list of resource publications, audiovisual materials and organizations. There are 19 activity suggestions included in this guide designed for use…
Removal of batteries from solid waste using trommel separation.
Lau, S T; Cheung, W H; Kwong, C K; Wan, C P; Choy, K K H; Leung, C C; Porter, J F; Hui, C W; Mc Kay, G
2005-01-01
This paper describes the design and testing of a trommel for separation of batteries from solid waste. A trommel is a cylindrical separation device that rotates and performs size separation. It has also been used in areas such as municipal solid waste (MSW) processing, classifying construction and demolition debris, screening mass-burn incinerator ash and compost processing. A trommel has been designed based on size separation to separate household batteries from solid waste, which can then be used as feedstock for alternative applications of solid waste combustion, particularly where the metal content of the product is also a critical parameter, such as the Co-Co process for integrated cement and power production. This trommel has been tested with batches of university office and restaurant wastes against various factors. The recovery efficiency of batteries increases with decreasing inclination angle of the trommel and decreasing rotational speed. A physical characterization of the university solid waste has been performed with a 20-kg sample of the tested waste. It was found that there is a trend of decreasing recovery of batteries with increasing paper composition, and a trend of increasing recovery of batteries with increasing organic materials composition.
40 CFR 60.2875 - What definitions must I know?
Code of Federal Regulations, 2012 CFR
2012-07-01
... burn liquid wastes material and gas (Liquid/gas),” “Energy recovery unit designed to burn solid..., liquid fuel or gaseous fuels. Energy recovery unit designed to burn liquid waste material and gas (Liquid/gas) means an energy recovery unit that burns a liquid waste with liquid or gaseous fuels not combined...
40 CFR 60.2875 - What definitions must I know?
Code of Federal Regulations, 2011 CFR
2011-07-01
... burn liquid wastes material and gas (Liquid/gas),” “Energy recovery unit designed to burn solid..., liquid fuel or gaseous fuels. Energy recovery unit designed to burn liquid waste material and gas (Liquid/gas) means an energy recovery unit that burns a liquid waste with liquid or gaseous fuels not combined...
40 CFR 265.198 - Special requirements for ignitable or reactive wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) The resulting waste, mixture, or dissolved material no longer meets the definition of ignitable or... reactive wastes. 265.198 Section 265.198 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE...
Microbiological degradation of pesticides in yard waste composting.
Fogarty, A M; Tuovinen, O H
1991-06-01
Changes in public opinion and legislation have led to the general recognition that solid waste treatment practices must be changed. Solid-waste disposal by landfill is becoming increasingly expensive and regulated and no longer represents a long-term option in view of limited land space and environmental problems. Yard waste, a significant component of municipal solid waste, has previously not been separated from the municipal solid-waste stream. The treatment of municipal solid waste including yard waste must urgently be addressed because disposal via landfill will be prohibited by legislation. Separation of yard waste from municipal solid waste will be mandated in many localities, thus stressing the importance of scrutinizing current composting practices in treating grass clippings, leaves, and other yard residues. Yard waste poses a potential environmental health problem as a result of the widespread use of pesticides in lawn and tree care and the persistence of the residues of these chemicals in plant tissue. Yard waste containing pesticides may present a problem due to the recalcitrant and toxic nature of the pesticide molecules. Current composting processes are based on various modifications of either window systems or in-vessel systems. Both types of processes are ultimately dependent on microbial bioconversions of organic material to innocuous end products. The critical stage of the composting process is the thermophilic phase. The fate and mechanism of removal of pesticides in composting processes is largely unknown and in need of comprehensive analysis.
Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium.
Oliveira, Luiz C A; Gonçalves, Maraísa; Oliveira, Diana Q L; Guerreiro, Mário C; Guilherme, Luiz R G; Dallago, Rogério M
2007-03-06
The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80mgg(-1)) and textile dye reactive red (163mgg(-1)), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials.
Petrovic, Igor
2016-09-01
The most viable option for biostabilisation of old sanitary landfills, filled with raw municipal solid waste, is the so-called bioreactor landfill. Even today, bioreactor landfills are viable options in many economically developing countries. However, in order to reduce the biodegradable component of landfilled waste, mechanical and biological treatment has become a widely accepted waste treatment technology, especially in more prosperous countries. Given that mechanical and biological treatment alters the geotechnical properties of raw waste material, the design of sanitary landfills which accepts mechanically and biologically treated waste, should be carried out with a distinct set of geotechnical parameters. However, under the assumption that 'waste is waste', some design engineers might be tempted to use geotechnical parameters of untreated raw municipal solid waste and mechanical and biological pre-treated municipal solid waste interchangeably. Therefore, to provide guidelines for use and to provide an aggregated source of this information, this mini-review provides comparisons of geotechnical parameters of mechanical and biological pre-treated waste and raw untreated waste at various decomposition stages. This comparison reveals reasonable correlations between the hydraulic conductivity values of untreated and mechanical and biological pre-treated municipal solid waste. It is recognised that particle size might have a significant influence on the hydraulic conductivity of both municipal solid waste types. However, the compression ratios and shear strengths of untreated and pre-treated municipal solid waste do not show such strong correlations. Furthermore, another emerging topic that requires appropriate attention is the recovery of resources that are embedded in old landfills. Therefore, the presented results provide a valuable tool for engineers designing landfills for mechanical and biological pre-treated waste or bioreactor landfills for untreated raw waste as well as planning landfill mining projects. © The Author(s) 2016.
Saad, Walid; Slika, Wael; Mawla, Zara; Saad, George
2017-12-01
Recently, there has been a growing interest in identifying suitable routes for the disposal of pharmaceutical wastes. This study investigates the potential of matrix materials composed of recycled polyethylene/polypropylene reclaimed from municipal solid wastes at immobilizing pharmaceutical solid wastes. Diclofenac (DF) drug product was embedded in boards of recycled plastic material, and leaching in water was assessed at various temperatures. DF concentrations were determined by high-performance liquid chromatography and revealed a maximum leachable fraction of 4% under accelerated conditions of 70°C, and less than 0.3% following 39 days of exposure at 20°C. The Ensemble Kalman Filter was employed to characterize the leaching behavior of DF. The filter verified the occurrence of leaching through diffusion, and was successful in predicting the leaching behavior of DF at 50°C and 70°C.
High solids fermentation reactor
Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.
1993-03-02
A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.
High solids fermentation reactor
Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.
1993-01-01
A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.
Community-Based Solid Waste Management: A Training Facilitator's Guide.
ERIC Educational Resources Information Center
Peace Corps, Washington, DC. Information Collection and Exchange Div.
Urban environmental management and environmental health issues are of increasing concern worldwide. The need for urban environmental management work at the local level where the Peace Corps works most effectively is significant, but training materials dedicated specifically to community-based solid waste management work in urban areas are lacking.…
Who owns urban waste? Appropriation conflicts in emerging countries.
Cavé, Jérémie
2014-09-01
Managing solid waste in developing cities is not an easy task and many public policies have failed to bring the expected results. It is here argued that comprehending the solid waste handling in the South implies reconsidering the proper definition of waste. Where does the product end and where does rubbish begin? The answer to this question is far from being obvious. Solid waste appears as a blurred concept. Such a thorny issue is all the more relevant today, as municipal solid waste management approaches in the developing world are being reformulated: dumping sites are banned, sanitary landfills are imposed, and separate collection is being introduced. The current sector transformations are here analysed through a novel theoretical analysis combined with an original qualitative and quantitative empirical work. Through two case-studies of one-million inhabitant cities from emerging countries, it is shown that if appropriation conflicts arise that is because the urban solid waste deposit in Southern countries can be defined as an impure public good. This issue does not only involve private service operators and informal wastepickers; several other actors covet the urban solid waste deposit's cream, that is, recyclable items. In emerging countries, huge industrial groups are starting to target domestic recyclable waste as an alternative for raw materials, which costs are increasing ever more. © The Author(s) 2014.
Solid-State Division progress report for period ending March 31, 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, P.H.; Watson, D.M.
1983-09-01
Progress and activities are reported on: theoretical solid-state physics (surfaces; electronic, vibrational, and magnetic properties; particle-solid interactions; laser annealing), surface and near-surface properties of solids (surface, plasma-material interactions, ion implantation and ion-beam mixing, pulsed-laser and thermal processing), defects in solids (radiation effects, fracture, impurities and defects, semiconductor physics and photovoltaic conversion), transport properties of solids (fast-ion conductors, superconductivity, mass and charge transport in materials), neutron scattering (small-angle scattering, lattice dynamics, magnetic properties, structure and instrumentation), and preparation and characterization of research materials (growth and preparative methods, nuclear waste forms, special materials). (DLC)
Quantification and classification of ship scraping waste at Alang-Sosiya, India.
Srinivasa Reddy, M; Basha, Shaik; Sravan Kumar, V G; Joshi, H V; Ghosh, P K
2003-12-01
Alang-Sosiya located on the Western Coast of Gulf of Cambay, is the largest ship recycling yard in the world. Every year on average 365 ships having a mean weight (2.10x10(6)+/-7.82x10(5) LDT) are scrapped. This industry generates a huge quantity of solid waste in the form of broken wood, rubber, insulation materials, paper, metals, glass and ceramics, plastics, leather, textiles, food waste, chemicals, paints, thermocol, sponge, ash, oil mixed sponges, miscellaneous combustible and non-combustible. The quantity and composition of solid waste was collected for a period of three months and the average values are presented in this work. Sosiya had the most waste 15.63 kg/m(2) compared to Alang 10.19 kg/m(2). The combustible solid waste quantity was around 83.0% of the total solid waste available at the yard, which represents an average weight of 9.807 kg/m(2); whereas, non-combustible waste is 1.933 kg/m(2). There is not much difference between the average of total solid waste calculated from the sampling data (96.71 MT/day) and the data provided by the port authorities (96.8 MT/day).
Wolfsberger, Tanja; Aldrian, Alexia; Sarc, Renato; Hermann, Robert; Höllen, Daniel; Budischowsky, Andreas; Zöscher, Andreas; Ragoßnig, Arne; Pomberger, Roland
2015-11-01
Since the need for raw materials in countries undergoing industrialisation (like China) is rising, the availability of metal and fossil fuel energy resources (like ores or coal) has changed in recent years. Landfill sites can contain considerable amounts of recyclables and energy-recoverable materials, therefore, landfill mining is an option for exploiting dumped secondary raw materials, saving primary sources. For the purposes of this article, two sanitary landfill sites have been chosen for obtaining actual data to determine the resource potential of Austrian landfills. To evaluate how pretreating waste before disposal affects the resource potential of landfills, the first landfill site has been selected because it has received untreated waste, whereas mechanically-biologically treated waste was dumped in the second. The scope of this investigation comprised: (1) waste characterisation by sorting analyses of recovered waste; and (2) chemical analyses of specific waste fractions for quality assessment regarding potential energy recovery by using it as solid recovered fuels. The content of eight heavy metals and the net calorific values were determined for the chemical characterisation tests. © The Author(s) 2015.
ENGINEERING BULLETIN: SOLIDIFICATION/STABILIZATION OF ORGANICS AND INORGANICS
Solidification refers to techniques that encapsulate hazardous waste into a solid material of high structural integrity. Encapsulation involves either fine waste particles (microencapsulation) or a large block or container of wastes (macroencapsulation). Stabilization refe...
40 CFR 60.1055 - What is a materials separation plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... separating certain components of municipal solid waste for a given service area prior to waste combustion and...
40 CFR 60.1055 - What is a materials separation plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... separating certain components of municipal solid waste for a given service area prior to waste combustion and...
Code of Federal Regulations, 2010 CFR
2010-07-01
... materials that are to be used in a manner that constitutes disposal who are not the ultimate users. 266.22 Section 266.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE...
The organic agricultural waste as a basic source of biohydrogen production
NASA Astrophysics Data System (ADS)
Sriwuryandari, Lies; Priantoro, E. Agung; Sintawardani, Neni; Astuti, J. Tri; Nilawati, Dewi; Putri, A. Mauliva Hada; Mamat, Sentana, Suharwadji; Sembiring, T.
2016-02-01
Biohydrogen production research was carried out using raw materials of agricultural organic waste that was obtained from markets around the Bandung city. The organic part, which consisted of agricultural waste material, mainly fruit and vegetable waste, was crushed and milled using blender. The sludge that produced from milling process was then used as a substrate for mixed culture microorganism as a raw material to produce biohydrogen. As much as 1.2 kg.day-1 of sludge (4% of total solid) was fed into bioreactor that had a capacity of 30L. Experiment was done under anaerobic fermentation using bacteria mixture culture that maintained at pH in the range of 5.6-6.5 and temperature of 25-30oC on semi-continuous mode. Parameters of analysis include pH, temperature, total solid (TS), organic total solid (OTS), total gas production, and hydrogen gas production. The results showed that from 4% of substrate resulted 897.86 L of total gas, which contained 660.74 L (73.59%) of hydrogen gas. The rate of hydrogen production in this study was 11,063 mol.L-1.h-1.
Recovery of fissile materials from nuclear wastes
Forsberg, Charles W.
1999-01-01
A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.
Forming artificial soils from waste materials for mine site rehabilitation
NASA Astrophysics Data System (ADS)
Yellishetty, Mohan; Wong, Vanessa; Taylor, Michael; Li, Johnson
2014-05-01
Surface mining activities often produce large volumes of solid wastes which invariably requires the removal of significant quantities of waste rock (overburden). As mines expand, larger volumes of waste rock need to be moved which also require extensive areas for their safe disposal and containment. The erosion of these dumps may result in landform instability, which in turn may result in exposure of contaminants such as trace metals, elevated sediment delivery in adjacent waterways, and the subsequent degradation of downstream water quality. The management of solid waste materials from industrial operations is also a key component for a sustainable economy. For example, in addition to overburden, coal mines produce large amounts of waste in the form of fly ash while sewage treatment plants require disposal of large amounts of compost. Similarly, paper mills produce large volumes of alkaline rejected wood chip waste which is usually disposed of in landfill. These materials, therefore, presents a challenge in their use, and re-use in the rehabilitation of mine sites and provides a number of opportunities for innovative waste disposal. The combination of solid wastes sourced from mines, which are frequently nutrient poor and acidic, with nutrient-rich composted material produced from sewage treatment and alkaline wood chip waste has the potential to lead to a soil suitable for mine rehabilitation and successful seed germination and plant growth. This paper presents findings from two pilot projects which investigated the potential of artificial soils to support plant growth for mine site rehabilitation. We found that pH increased in all the artificial soil mixtures and were able to support plant establishment. Plant growth was greatest in those soils with the greatest proportion of compost due to the higher nutrient content. These pot trials suggest that the use of different waste streams to form an artificial soil can potentially be used in mine site rehabilitation where there is a nutrient-rich source of waste.
Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro
2012-04-01
This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling. Copyright © 2011 Elsevier Ltd. All rights reserved.
Tirado-Soto, Magda Martina; Zamberlan, Fabio Luiz
2013-04-01
The objective of this study is to discuss the role of networks formed of waste-picker cooperatives in ameliorating problems of final disposal of solid waste in the city of Rio de Janeiro, since the city's main landfill will soon have to close because of exhausted capacity. However, it is estimated that in the city of Rio de Janeiro there are around five thousand waste-pickers working in poor conditions, with lack of physical infrastructure and training, but contributing significantly by diverting solid waste from landfills. According to the Sustainable Development Indicators (IBGE, 2010a,b) in Brazil, recycling rates hover between 45% and 55%. In the municipality of Rio de Janeiro, only 1% of the waste produced is collected selectively by the government (COMLURB, 2010), demonstrating that recycling is mainly performed by waste-pickers. Furthermore, since the recycling market is an oligopsony that requires economies of scale to negotiate directly with industries, the idea of working in networks of cooperatives meets the demands for joint marketing of recyclable materials. Thus, this work presents a method for creating and structuring a network of recycling cooperatives, with prior training for working in networks, so that the expected synergies and joint efforts can lead to concrete results. We intend to demonstrate that it is first essential to strengthen the waste-pickers' cooperatives in terms of infrastructure, governance and training so that solid waste management can be environmentally, socially and economically sustainable in the city of Rio de Janeiro. Copyright © 2012 Elsevier Ltd. All rights reserved.
All "Trashed" Out: An Activity Guide to Solid Waste Management for Grades K-6.
ERIC Educational Resources Information Center
Illinois Univ., Springfield. Center for Solid Waste Management and Research, Springfield.
This activity guide, specifically designed for Illinois classrooms but adaptable for other states, seeks to encourage primary students to make their own personal statement and responses to the environment through increased awareness of reducing, reusing, recycling, and composting of solid waste materials. The activities incorporate environmental…
Solid Waste/Energy Curriculum.
ERIC Educational Resources Information Center
Vivan, V. Eugene; And Others
Provided are solid waste/energy curriculum materials for grades K-2, 3-4, 5-6, 7-9, and 10-12. Separate folders containing units of study (focusing on trash, litter, and recycling) are provided for kindergarten (four units), grade 1 (two units), and grade 2 (two units). Folders contain teachers' directions and activity cards which include picture…
40 CFR 63.4510 - What notifications must I submit?
Code of Federal Regulations, 2013 CFR
2013-07-01
... not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one thinner and/or other additive, and for one cleaning material. (ii) Mass fraction of coating solids... required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste materials...
40 CFR 63.4510 - What notifications must I submit?
Code of Federal Regulations, 2011 CFR
2011-07-01
... not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one thinner and/or other additive, and for one cleaning material. (ii) Mass fraction of coating solids... required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste materials...
40 CFR 63.4510 - What notifications must I submit?
Code of Federal Regulations, 2012 CFR
2012-07-01
... not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one thinner and/or other additive, and for one cleaning material. (ii) Mass fraction of coating solids... required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste materials...
40 CFR 63.4510 - What notifications must I submit?
Code of Federal Regulations, 2014 CFR
2014-07-01
... not need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one thinner and/or other additive, and for one cleaning material. (ii) Mass fraction of coating solids... required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste materials...
IMPACT OF LEAD ACID BATTERIES AND CADMIUM STABILIZERS ON INCINERATOR EMISSIONS
The Waste Analysis Sampling, Testing and Evaluation (WASTE) Program is a multi-year, multi-disciplinary program designed to elicit the source and fate of environmentally significant trace materials as a solid waste progresses through management processes. s part of the WASTE Prog...
Thermoelectric energy harvesting for a solid waste processing toilet
NASA Astrophysics Data System (ADS)
Stokes, C. David; Baldasaro, Nicholas G.; Bulman, Gary E.; Stoner, Brian R.
2014-06-01
Over 2.5 billion people do not have access to safe and effective sanitation. Without a sanitary sewer infrastructure, self-contained modular systems can provide solutions for these people in the developing world and remote areas. Our team is building a better toilet that processes human waste into burnable fuel and disinfects the liquid waste. The toilet employs energy harvesting to produce electricity and does not require external electrical power or consumable materials. RTI has partnered with Colorado State University, Duke University, and Roca Sanitario under a Bill and Melinda Gates Foundation Reinvent the Toilet Challenge (RTTC) grant to develop an advanced stand-alone, self-sufficient toilet to effectively process solid and liquid waste. The system operates through the following steps: 1) Solid-liquid separation, 2) Solid waste drying and sizing, 3) Solid waste combustion, and 4) Liquid waste disinfection. Thermoelectric energy harvesting is a key component to the system and provides the electric power for autonomous operation. A portion of the exhaust heat is captured through finned heat-sinks and converted to electricity by thermoelectric (TE) devices to provide power for the electrochemical treatment of the liquid waste, pumps, blowers, combustion ignition, and controls.
Potential SRF generation from a closed landfill in northern Italy.
Passamani, Giorgia; Ragazzi, Marco; Torretta, Vincenzo
2016-01-01
The aim of this work is to assess the possibility of producing solid recovered fuel (SRF) and "combustible SRF" from a landfill located in the north of Italy, where the waste is placed in cylindrical wrapped bales. Since the use of landfills for the disposal of municipal solid waste has many technical limitations and is subject to strict regulations and given that landfill post-closure care is very expensive, an interesting solution is to recover the bales that are stored in the landfill. The contents of the bales can then be used for energy recovery after specific treatments. Currently the landfill is closed and the local municipal council together with an environmental agency are considering constructing a mechanical biological treatment (MBT) plant for SRF production. The municipal solid waste that is stored in the landfill, the bio-dried material produced by the hypothetically treated waste in a plant for bio-drying, and the SRF obtained after the post-extraction of inert materials, metals and glass from the bio-dried material were characterized according to the quality and classification criteria of regulations in Italy. The analysis highlighted the need to treat the excavated waste in a bio-drying plant and later to remove the inert waste, metals and glass. Thus in compliance with Italian law, the material has a high enough LHV to be considered as "combustible SRF", (i.e. an SRF with enhanced characteristics). Copyright © 2015 Elsevier Ltd. All rights reserved.
Need for improvements in physical pretreatment of source-separated household food waste.
Bernstad, A; Malmquist, L; Truedsson, C; la Cour Jansen, J
2013-03-01
The aim of the present study was to investigate the efficiency in physical pretreatment processes of source-separated solid organic household waste. The investigation of seventeen Swedish full-scale pretreatment facilities, currently receiving separately collected food waste from household for subsequent anaerobic digestion, shows that problems with the quality of produced biomass and high maintenance costs are common. Four full-scale physical pretreatment plants, three using screwpress technology and one using dispergation technology, were compared in relation to resource efficiency, losses of nitrogen and potential methane production from biodegradable matter as well as the ratio of unwanted materials in produced biomass intended for wet anaerobic digestion. Refuse generated in the processes represent 13-39% of TS in incoming wet waste. The methane yield from these fractions corresponds to 14-36Nm(3)/ton separately collected solid organic household waste. Also, 13-32% of N-tot in incoming food waste is found in refuse. Losses of both biodegradable material and nutrients were larger in the three facilities using screwpress technology compared to the facility using dispersion technology.(1) Thus, there are large potentials for increase of both the methane yield and nutrient recovery from separately collected solid organic household waste through increased efficiency in facilities for physical pretreatment. Improved pretreatment processes could thereby increase the overall environmental benefits from anaerobic digestion as a treatment alternative for solid organic household waste. Copyright © 2012 Elsevier Ltd. All rights reserved.
Clinical solid waste management practices and its impact on human health and environment - A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, Md. Sohrab; Santhanam, Amutha; Nik Norulaini, N.A.
2011-04-15
Research highlights: > Appropriate waste management technology for safe handling and disposal of clinical solid waste. > Infectious risk assessment on unsafe handling of clinical solid waste. > Recycling-reuse program of clinical solid waste materials. > Effective sterilization technology to reduce exposure of infectious risk. - Abstract: The management of clinical solid waste (CSW) continues to be a major challenge, particularly, in most healthcare facilities of the developing world. Poor conduct and inappropriate disposal methods exercised during handling and disposal of CSW is increasing significant health hazards and environmental pollution due to the infectious nature of the waste. This articlemore » summarises a literature review into existing CSW management practices in the healthcare centers. The information gathered in this paper has been derived from the desk study of open literature survey. Numerous researches have been conducted on the management of CSW. Although, significant steps have been taken on matters related to safe handling and disposal of the clinical waste, but improper management practice is evident from the point of initial collection to the final disposal. In most cases, the main reasons of the mismanagement of CSW are the lack of appropriate legislation, lack of specialized clinical staffs, lack of awareness and effective control. Furthermore, most of the healthcare centers of the developing world have faced financial difficulties and therefore looking for cost effective disposal methods of clinical waste. This paper emphasizes to continue the recycle-reuse program of CSW materials after sterilization by using supercritical fluid carbon dioxide (SF-CO2) sterilization technology at the point of initial collection. Emphasis is on the priority to inactivate the infectious micro-organisms in CSW. In that case, waste would not pose any threat to healthcare workers. The recycling-reuse program would be carried out successfully with the non-specialized clinical staffs. Therefore, the adoption of SF-CO2 sterilization technology in management of clinical solid waste can reduce exposure to infectious waste, decrease labor, lower costs, and yield better compliance with regulatory. Thus healthcare facilities can both save money and provide a safe environment for patients, healthcare staffs and clinical staffs.« less
Rajor, Anita; Xaxa, Monika; Mehta, Ratika; Kunal
2012-10-15
Solid waste management is one of the major global environmental issues, as there is continuous increase in industrial globalization and generation of waste. Solid wastes encompass the heterogeneous mass of throwaways from the urban community as well as the homogeneous accumulations of agricultural, industrial and mineral wastes. Biomedical waste pose a significant impact on health and environment. A proper waste management system should be required to dispose hazardous biomedical waste and incineration should be the best available technology to reduce the volume of this hazardous waste. The incineration process destroys pathogens and reduces the waste volume and weight but leaves a solid material called biomedical waste ash as residue which increases the levels of heavy metals, inorganic salts and organic compounds in the environment. Disposal of biomedical waste ash in landfill may cause contamination of groundwater as metals are not destroyed during incineration. The limited space and the high cost for land disposal led to the development of recycling technologies and the reuse of ash in different systems. In order to minimize leaching of its hazardous components into the environment several studies confirmed the successful utilization of biomedical waste ash in agriculture and construction sector. This paper presents the overview on the beneficial use of ash in agriculture and construction materials and its leachate characteristics. This review also stressed on the need to further evaluate the leachate studies of the ashes and slag for their proper disposal and utilization. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hla, San Shwe; Roberts, Daniel
2015-07-01
The development and deployment of thermochemical waste-to-energy systems requires an understanding of the fundamental characteristics of waste streams. Despite Australia's growing interest in gasification of waste streams, no data are available on their thermochemical properties. This work presents, for the first time, a characterisation of green waste and municipal solid waste in terms of chemistry and energy content. The study took place in Brisbane, the capital city of Queensland. The municipal solid waste was hand-sorted and classified into ten groups, including non-combustibles. The chemical properties of the combustible portion of municipal solid waste were measured directly and compared with calculations made based on their weight ratios in the overall municipal solid waste. The results obtained from both methods were in good agreement. The moisture content of green waste ranged from 29% to 46%. This variability - and the tendency for soil material to contaminate the samples - was the main contributor to the variation of samples' energy content, which ranged between 7.8 and 10.7MJ/kg. The total moisture content of food wastes and garden wastes was as high as 70% and 60%, respectively, while the total moisture content of non-packaging plastics was as low as 2.2%. The overall energy content (lower heating value on a wet basis, LHVwb) of the municipal solid waste was 7.9MJ/kg, which is well above the World Bank-recommended value for utilisation in thermochemical conversion processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Arab world's contribution to solid waste literature: a bibliometric analysis.
Zyoud, Sa'ed H; Al-Jabi, Samah W; Sweileh, Waleed M; Al-Khalil, Suleiman; Zyoud, Shaher H; Sawalha, Ansam F; Awang, Rahmat
2015-01-01
Environmental and health-related effects of solid waste material are considered worldwide problems. The aim of this study was to assess the volume and impact of Arab scientific output published in journals indexed in the Science Citation Index (SCI) on solid waste. We included all the documents within the SCI whose topic was solid waste from all previous years up to 31 December 2012. In this bibliometric analysis we sought to evaluate research that originated from Arab countries in the field of solid waste, as well as its relative growth rate, collaborative measures, productivity at the institutional level, and the most prolific journals. A total of 382 (2.35 % of the overall global research output in the field of solid waste) documents were retrieved from the Arab countries. The annual number of documents published in the past three decades (1982-2012) indicated that research productivity demonstrated a noticeable rise during the last decade. The highest number of articles associated with solid waste was that of Egypt (22.8 %), followed by Tunisia (19.6), and Jordan (13.4 %). the total number of citations over the analysed years at the date of data collection was 4,097, with an average of 10.7 citations per document. The h-index of the citing articles was 31. Environmental science was the most researched topic, represented by 175 (45.8 %) articles. Waste Management was the top active journal. The study recognized 139 (36.4 %) documents from collaborations with 25 non-Arab countries. Arab authors mainly collaborated with countries in Europe (22.5 %), especially France, followed by countries in the Americas (9.4 %), especially the USA. The most productive institution was the American University of Beirut, Lebanon, with 6.3 % of total publications. Despite the expected increase in solid waste production from Arab world, research activity about solid waste is still low. Governments must invest more in solid waste research to avoid future unexpected problems. Finally, since solid waste is a multidisciplinary science, research teams in engineering, health, toxicology, environment, geology and others must be formulated to produce research in solid waste from different scientific aspects.
Colazo, Ana-Belén; Sánchez, Antoni; Font, Xavier; Colón, Joan
2015-09-01
Anaerobic digestion of source separated organic fraction of municipal solid waste is an increasing waste valorization alternative instead of incineration or landfilling of untreated biodegradable wastes. Nevertheless, a significant portion of biodegradable wastes entering the plant is lost in pre-treatments and post-treatments of anaerobic digestion facilities together with other improper materials such as plastics, paper, textile materials and metals. The rejected materials lost in these stages have two main implications: (i) less organic material enters to digesters and, as a consequence, there is a loss of biogas production and (ii) the rejected materials end up in landfills or incinerators contributing to environmental impacts such as global warming or eutrophication. The main goals of this study are (i) to estimate potential losses of biogas in the rejected solid materials generated during the pre- and post-treatments of two full-scale anaerobic digestion facilities and (ii) to evaluate the environmental burdens associated to the final disposal (landfill or incineration) of these rejected materials by means of Life Cycle Assessment. This study shows that there is a lost of potential biogas production, ranging from 8% to 15%, due to the loss of organic matter during pre-treatment stages in anaerobic digestion facilities. From an environmental point of view, the Life Cycle Assessment shows that the incineration scenario is the most favorable alternative for eight out of nine impact categories compared with the landfill scenario. The studied impact categories are Climate Change, Fossil depletion, Freshwater eutrophication, Marine eutrophication, Ozone depletion, Particulate matter formation, Photochemical oxidant formation, Terrestrial acidification and Water depletion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Foamed lightweight materials made from mixed scrap metal waste powder and sewage sludge ash.
Wang, Kuen-Sheng; Chiou, Ing-Jia
2004-10-01
The porous properties and pozzolanic effects of sewage sludge ash (SSA) make it possible to produce lightweight materials. This study explored the effects of different metallic foaming agents, made from waste aluminium products, on the foaming behaviours and engineering characteristics, as well as the microstructure of sewage sludge ash foamed lightweight materials. The results indicated that aluminium powder and mixed scrap metal waste powder possessed similar chemical compositions. After proper pre-treatment, waste aluminium products proved to be ideal substitutes for metallic foaming agents. Increasing the amount of mixed scrap metal waste by 10-15% compared with aluminium powder would produce a similar foaming ratio and compressive strength. The reaction of the metallic foaming agents mainly produced pores larger than 10 microm, different from the hydration reaction of cement that produced pores smaller than 1 microm mostly. To meet the requirements of the lightweight materials characteristics and the compressive strength, the amount of SSA could be up to 60-80% of the total solids. An adequate amount of aluminium powder is 0.5-0.9% of the total solids. Increasing the fineness of the mixed scrap metal waste powder could effectively reduce the amount required and improve the foaming ratio.
Task 3 - Pyrolysis of Plastic Waste. Semiannual report, November 1, 1996--March 31, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ness, Robert O.; Aulich, Ted R.
1997-12-31
Over the last 50 years, the U.S. Department of Energy (DOE) has produced a wide variety of radioactive wastes from activities associated with nuclear defense and nuclear power generation. These wastes include low-level radioactive solid wastes, mixed wastes, and transuranic (TRU) wastes. A portion of these wastes consists of high- organic-content materials, such as resins, plastics, and other polymers; synthetic and natural rubbers; cellulosic-based materials; and oils, organic solvents, and chlorinated organic solvents. Many of these wastes contain hazardous and/or pyrophoric materials in addition to radioactive species. Physical forms of the waste include ion-exchange resins used to remove radioactive elementsmore » from nuclear reactor cooling water, lab equipment and tools (e.g., measurement and containment vessels, hoses, wrappings, equipment coverings and components, and countertops), oil products (e.g., vacuum pump and lubrication oils), bags and other storage containers (for liquids, solids, and gases), solvents, gloves, lab coats and anti-contamination clothing, and other items. Major polymer and chemical groups found in high-organic-content radioactive wastes include polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP), Teflon(TM), polystyrene (PS), nylon, latex, polyethylene terephthalate (PET), vinyl, high-density polyethylene (HDPE), polycarbonate, nitriles, Tygon(R), butyl, and Tyvec(R).« less
Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production.
Chen, Paul; Xie, Qinglong; Addy, Min; Zhou, Wenguang; Liu, Yuhuan; Wang, Yunpu; Cheng, Yanling; Li, Kun; Ruan, Roger
2016-09-01
Municipal wastes, be it solid or liquid, are rising due to the global population growth and rapid urbanization and industrialization. Conventional management practice involving recycling, combustion, and treatment/disposal is deemed unsustainable. Solutions must be sought to not only increase the capacity but also improve the sustainability of waste management. Research has demonstrated that the non-recyclable waste materials and bio-solids can be converted into useable heat, electricity, or fuel and chemical through a variety of processes, including gasification, pyrolysis, anaerobic digestion, and landfill gas in addition to combustion, and wastewater streams have the potential to support algae growth and provide other energy recovery options. The present review is intended to assess and analyze the current state of knowledge in the municipal solid wastes and wastewater treatment and utilization technologies and recommend practical solution options and future research and development needs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Safety evaluation for packaging (onsite) concrete-lined waste packaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romano, T.
1997-09-25
The Pacific Northwest National Laboratory developed a package to ship Type A, non-transuranic, fissile excepted quantities of liquid or solid radioactive material and radioactive mixed waste to the Central Waste Complex for storage on the Hanford Site.
Komilis, Dimitrios; Evangelou, Alexandros; Giannakis, Georgios; Lymperis, Constantinos
2012-03-01
In this work, the elemental content (C, N, H, S, O), the organic matter content and the calorific value of various organic components that are commonly found in the municipal solid waste stream were measured. The objective of this work was to develop an empirical equation to describe the calorific value of the organic fraction of municipal solid waste as a function of its elemental composition. The MSW components were grouped into paper wastes, food wastes, yard wastes and plastics. Sample sizes ranged from 0.2 to 0.5 kg. In addition to the above individual components, commingled municipal solid wastes were sampled from a bio-drying facility located in Crete (sample sizes ranged from 8 to 15 kg) and were analyzed for the same parameters. Based on the results of this work, an improved empirical model was developed that revealed that carbon, hydrogen and oxygen were the only statistically significant predictors of calorific value. Total organic carbon was statistically similar to total carbon for most materials in this work. The carbon to organic matter ratio of 26 municipal solid waste substrates and of 18 organic composts varied from 0.40 to 0.99. An approximate chemical empirical formula calculated for the organic fraction of commingled municipal solid wastes was C(32)NH(55)O(16). Copyright © 2011 Elsevier Ltd. All rights reserved.
Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium.
Zahra, Sahebnazar; Abbas, Shojaosadati Seyed; Mahsa, Mohammad-Taheri; Mohsen, Nosrati
2010-03-01
In this study, biodegradation of low-density polyethylene (LDPE) by isolated landfill-source fungi was evaluated in a controlled solid waste medium. The fungi, including Aspergillus fumigatus, Aspergillus terreus and Fusarium solani, were isolated from samples taken from an aerobic aged municipal landfill in Tehran. These fungi could degrade LDPE via the formation of a biofilm in a submerged medium. In the sterilized solid waste medium, LPDE films were buried for 100 days in a 1-L flask containing 400 g sterile solid waste raw materials at 28 degrees C. Each fungus was added to a separate flask. The moisture content and pH of the media were maintained at the optimal levels for each fungus. Photo-oxidation (25 days under UV-irradiation) was used as a pretreatment of the LDPE samples. The progress of the process was monitored by measurement of total organic carbon (TOC), pH, temperature and moisture. The results obtained from monitoring the process using isolated fungi under sterile conditions indicate that these fungi are able to grow in solid waste medium. The results of FT-IR and SEM analyses show that A. terreus and A. fumigatus, despite the availability of other organic carbon of materials, could utilize LDPE as carbon source. While there has been much research in the field of LDPE biodegradation under solid conditions, this is the first report of degradation of LDPE by A. fumigatus. Copyright 2009 Elsevier Ltd. All rights reserved.
Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zahra, Sahebnazar; Abbas, Shojaosadati Seyed, E-mail: sa_shoja@modares.ac.i; Mahsa, Mohammad-Taheri
In this study, biodegradation of low-density polyethylene (LDPE) by isolated landfill-source fungi was evaluated in a controlled solid waste medium. The fungi, including Aspergillus fumigatus, Aspergillus terreus and Fusarium solani, were isolated from samples taken from an aerobic aged municipal landfill in Tehran. These fungi could degrade LDPE via the formation of a biofilm in a submerged medium. In the sterilized solid waste medium, LPDE films were buried for 100 days in a 1-L flask containing 400 g sterile solid waste raw materials at 28 deg. C. Each fungus was added to a separate flask. The moisture content and pHmore » of the media were maintained at the optimal levels for each fungus. Photo-oxidation (25 days under UV-irradiation) was used as a pretreatment of the LDPE samples. The progress of the process was monitored by measurement of total organic carbon (TOC), pH, temperature and moisture. The results obtained from monitoring the process using isolated fungi under sterile conditions indicate that these fungi are able to grow in solid waste medium. The results of FT-IR and SEM analyses show that A. terreus and A. fumigatus, despite the availability of other organic carbon of materials, could utilize LDPE as carbon source. While there has been much research in the field of LDPE biodegradation under solid conditions, this is the first report of degradation of LDPE by A. fumigatus.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The possible need to develop a solid waste management/resource recovery facility in Christian County, Kentucky is assessed. The present solid waste management operations are described and an outline of options available in the area of resource recovery and cost estimates for waste management alternatives are given. The construction of a transfer station to handle wastes hauled from a distance is discussed. Specific incineration waste heat recovery systems discussed briefly are: modular controlled air incinerators, modular refractory incinerators, rotary waterwall combustor-boiler, and waterwall incineration - unprocessed waste units. Environmental impacts are considered. An investigation was conducted on separating the raw refusemore » into its major components and recycling materials of value. (MCW)« less
Solid State Division progress report, September 30, 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-04-01
Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials,more » and special materials); and isotope research materials. Publications and papers are listed. (WHK)« less
Adeniran, A E; Nubi, A T; Adelopo, A O
2017-09-01
Waste characterization is the first step to any successful waste management policy. In this paper, the characterization and the trend of solid waste generated in University of Lagos, Nigeria was carried out using ASTM D5231-92 and Resource Conservation Reservation Authority RCRA Waste Sampling Draft Technical Guidance methods. The recyclable potential of the waste is very high constituting about 75% of the total waste generated. The estimated average daily solid waste generation in Unilag Akoka campus was estimated to be 32.2tons. The solid waste characterization was found to be: polythene bags 24% (7.73tons/day), paper 15% (4.83tons/day), organic matters 15%, (4.83tons/day), plastic 9% (2.90tons/day), inert materials 8% (2.58tons/day), sanitary 7% (2.25tons/day), textile 7% (2.25tons/day), others 6% (1.93tons/day), leather 4% (1.29tons/day) metals 3% (0.97tons/day), glass 2% (0.64tons/day) and e-waste 0% (0.0tons/day). The volume and distribution of polythene bags generated on campus had a positive significant statistical correlation with the distribution of commercial and academic structures on campus. Waste management options to optimize reuse, recycling and reduce waste generation were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morcos, T.N.; Tadrous, N.A.; Borai, E.H.
2007-07-01
Increased industrialization over the last years in Egypt has resulted in an increased and uncontrolled generation of industrial hazardous waste. The current lack of management of the solid waste in Egypt has created a situation where large parts of the land (especially industrial areas) are covered by un-planned dumps of industrial wastes. Consequently, in the present work, industrial magnesite waste produced in large quantities after production process of magnesium sulfate in Zinc Misr factory, Egypt, was tried to be recycled. Firstly, this material has been characterized applying different analytical techniques such as infrared spectroscopy (IR), surface analyzer (BET), particle sizemore » distribution (PSD), elemental analysis by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The magnesite material has been used as a source of producing aluminum, chromium, and magnesium oxides that has better chemical stability than conventional metal oxides. Secondly, utilization of magnesite material for removal of certain radionuclides was applied. Different factors affecting the removal capability such as pH, contacting time, metal concentration, particle size were systematically investigated. The overall objective was aimed at determining feasible and economic solution to the environmental problems related to re-use of the industrial solid waste for radioactive waste management. (authors)« less
Methods of Predicting Solid Waste Characteristics.
ERIC Educational Resources Information Center
Boyd, Gail B.; Hawkins, Myron B.
The project summarized by this report involved a preliminary design of a model for estimating and predicting the quantity and composition of solid waste and a determination of its feasibility. The novelty of the prediction model is that it estimates and predicts on the basis of knowledge of materials and quantities before they become a part of the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1992-10-01
This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.
40 CFR 261.2 - Definition of solid waste.
Code of Federal Regulations, 2010 CFR
2010-07-01
... reclaimed, it is not a spent lead acid battery (see § 266.80 and § 273.2), it does not meet the listing... are solid wastes if they are recycled—or accumulated, stored, or treated before recycling—as specified... are not used or reused during the recycling process; and (ii) The material may pose a substantial...
40 CFR 261.2 - Definition of solid waste.
Code of Federal Regulations, 2011 CFR
2011-07-01
... reclaimed, it is not a spent lead acid battery (see § 266.80 and § 273.2), it does not meet the listing... are solid wastes if they are recycled—or accumulated, stored, or treated before recycling—as specified... are not used or reused during the recycling process; and (ii) The material may pose a substantial...
40 CFR 261.2 - Definition of solid waste.
Code of Federal Regulations, 2014 CFR
2014-07-01
... reclaimed, it is not a spent lead acid battery (see § 266.80 and § 273.2), it does not meet the listing... are solid wastes if they are recycled—or accumulated, stored, or treated before recycling—as specified... are not used or reused during the recycling process; and (ii) The material may pose a substantial...
40 CFR 261.2 - Definition of solid waste.
Code of Federal Regulations, 2013 CFR
2013-07-01
... reclaimed, it is not a spent lead acid battery (see § 266.80 and § 273.2), it does not meet the listing... are solid wastes if they are recycled—or accumulated, stored, or treated before recycling—as specified... are not used or reused during the recycling process; and (ii) The material may pose a substantial...
40 CFR 261.2 - Definition of solid waste.
Code of Federal Regulations, 2012 CFR
2012-07-01
... reclaimed, it is not a spent lead acid battery (see § 266.80 and § 273.2), it does not meet the listing... are solid wastes if they are recycled—or accumulated, stored, or treated before recycling—as specified... are not used or reused during the recycling process; and (ii) The material may pose a substantial...
Implementation of the Leaching Environmental Assessment Framework (LEAF) in the United States
LEAF provides a uniform and integrated approach for evaluating leaching from solid materials (e.g., waste, treated wastes such as by solidification/stabilization, secondary materials such as blast furnace slags, energy residuals such as coal fly ash, soil, sediments, mining and m...
40 CFR 268.3 - Dilution prohibited as a substitute for treatment.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) The waste consists of organic, debris-like materials (e.g., wood, paper, plastic, or cloth... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.3 Dilution prohibited as a... restricted waste or the residual from treatment of a restricted waste as a substitute for adequate treatment...
40 CFR 268.3 - Dilution prohibited as a substitute for treatment.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) The waste consists of organic, debris-like materials (e.g., wood, paper, plastic, or cloth... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.3 Dilution prohibited as a... restricted waste or the residual from treatment of a restricted waste as a substitute for adequate treatment...
Mechanical and Physical Performance of Concrete Including Waste Electrical Cable Rubber
NASA Astrophysics Data System (ADS)
Taner Yildirim, Salih; Pelin Duygun, Nur
2017-10-01
Solid wastes are important environmental problem all over the World. Consumption of the plastic solid waste covers big portion within the total solid waste. Although a numerous plastic material is subjected to the recycling process, it is not easy to be destroyed by nature. One of the recommended way to prevent is to utilize as an aggregate in cement-based material. There are many researches on use of recycling rubber in concrete. However, studies on recycling of waste electrical cable rubber (WECR) in concrete is insufficient although there are many research on waste tyre rubbers in concrete. In this study, fine aggregate was replaced with WECR which were 5%, 10%, and 15 % of the total aggregate volume in the concrete and researched workability, unit weight, water absorption, compressive strength, flexural strength, ultrasonic pulse velocity, modulus of elasticity, and abrasion resistance of concrete. As a result of experimental studies, increase of WECR amount in concrete increases workability due to lack of adherence between cement paste and WECR, and hydrophobic structure of WECR while it influences negatively mechanical properties of concrete. It is possible to use WECR in concrete taking into account the reduction in mechanical properties.
Mahto, Ashesh; Gupta, Rajeev; Ghara, Krishna Kanta; Srivastava, Divesh N; Maiti, Pratyush; D, Kalpana; Rivera, Paul-Zavala; Meena, R; Nataraj, S K
2017-10-15
This study aims at developing supercapacitor materials from sugar and distillery industry wastes, thereby mediating waste disposal problem through reuse. In a two-step process, biomethanated spent wash (BMSW) was acid treated to produce solid waste sludge and waste water with significantly reduced total organic carbon (TOC) and biological oxygen demand (BOD) content. Further, waste sludge was directly calcined in presence of activating agent ZnCl 2 in inert atmosphere resulting in high surface area (730-900m 2 g -1 ) carbon of unique hexagonal morphology. Present technique resulted in achieving two-faceted target of liquid-solid waste remediation and production of high-performance carbon material. The resulted high surface area carbon was tested in both three and two electrode systems. Electrochemical tests viz. cyclic voltammetry, galvanostatic charge-discharge and impedance measurement were carried out in aqueous KOH electrolyte yielding specific capacitance as high as 120Fg -1 , whereas all solid supercapacitor devised using PVA/H 3 PO 4 polyelectrolyte showed stable capacitance of 105Fg -1 at 0.2Ag -1 . The presence of transition metal particles and hetero-atoms on carbon surface were confirmed by XPS, EDX and TEM analysis which enhanced the conductivity and imparted pseudocapacitance to some extent into the working electrode. The present study successfully demonstrated production of high-performance electrode material from dirtiest wastewater making process green, sustainable and economically viable. Copyright © 2017. Published by Elsevier B.V.
The characteristics of palm oil plantation solid biomass wastes as raw material for bio oil
NASA Astrophysics Data System (ADS)
Yanti, RN; Hambali, E.; Pari, G.; Suryani, A.
2018-03-01
Indonesia is the largest palm oil plantations estate in the world. It reached 11,30 million hectares in 2015 and increased up to 11,67 million hectares in 2016. The advancement of technology recent, the solid waste of palm oil plantation can be re-produced become bio oil through pyrolysis hydrothermal process and utilized for biofuel. The purpose of this research was to analyze the characteristics of feedstock of bio oil of solid waste of palm oil plantations estate. The feedstock used was derived from solid waste of palm oil plantations in Riau Province. Characteristic analysis of waste oil included chemical compound content (cellulose, hemicellulose, lignin), ultimate analysis (C, H, N, O, S) to know height heating value (HHV). The result of analysis of chemical content showed that solid waste of palm cellulose 31,33 – 66,36 %, hemicellulose 7,54 – 17,94 %, lignin 21,43 - 43,1. The HHV of hydrothermal pyrolysis feedstock was 15,18 kJ/gram - 19,57 kJ/gram. Generally, the solid waste of palm oil plantations estate containing lignocellulose can be utilized as bio oil through hydrothermal pyrolysis. The CG-MS analysis of bio oil indicated hydrocarbon contents such as pentadecane, octadecane, hexadecane and benzene.
NASA Astrophysics Data System (ADS)
Ali, N. E.; Sion, H. C.
2014-02-01
The amount of solid-waste generated in Asian countries has increased tremendously, mainly due to the improvement in living standards, rapid developments in technology, growth in economy and population in the cities. Solid waste management is a global issue and major challenge facing Asian countries and neglecting its management may have negative consequences on the environment. Waste composition data proves the developed countries to have generated more recyclable materials while developing countries produce more organic and less recyclable waste such as paper, plastic and aluminium. In this regard, increase in number of landfills and disposal sites, will have an impact on GHG (greenhouse gas) emissions and pollutants to air and water. Alternative methods should therefore be taken to reduce the volume of waste. Most Asian countries have adopted the 3R (reduce, reuse, recycle) concept in order to reduce solid waste and their governments have implemented laws and regulations in order to support this. Implementation of 3R is the major contributor to the solid waste minimization and it can improve the quality of environmental sustainability and reduction of carbon dioxide emission in to the atmosphere. Based on our review, most of the countries practicing the 3R concept in tandem with laws and regulations perform better than those that just practice the 3R concept without any laws and regulations. The paper suggests that every country must focus on the laws and regulations relating to solid waste minimization so that it could be easily implemented as outlined.
NASA Astrophysics Data System (ADS)
Pranoto; Himawanto, D. A.; Arifin, N. A.
2017-04-01
The combustion of segregated municipal solid waste (MSW) and the resulted char from the pyrolysis process were investigated in this research. The segregated MSW that was collected and used can be divided into organic and inorganic waste materials. The organic materials were bamboo and banana leaves and the inorganic materials were Styrofoam and snack wrappings. The composition ratio of the waste was based on the percentage of weight of each sample. The thermal behaviour of the segregated MSW was investigated by thermo gravimetric analysis. For the pyrolysis process the prepared samples of 200gram were heated from ambient temperature until a variance of final pyrolysis temperature of 550°C, 650°C and 750°C at a constant heating rate of 25°C/min. It was found that the highest activation energy of the raw materials is achieved from sample CC1 (Char with 100% inorganic materials). The activation energy of the raw materials is relatively lower than that of the char. The higher the final pyrolysis temperature, the lower the calorific value of char. The calorific value gradually increases with the amount of inorganic materials.
Experimental research of solid waste drying in the process of thermal processing
NASA Astrophysics Data System (ADS)
Bukhmirov, V. V.; Kolibaba, O. B.; Gabitov, R. N.
2015-10-01
The convective drying process of municipal solid waste layer as a polydispersed multicomponent porous structure is studied. On the base of the experimental data criterial equations for calculating heat transfer and mass transfer processes in the layer, depending on the humidity of the material, the speed of the drying agent and the layer height are obtained. These solutions are used in the thermal design of reactors for the thermal processing of multicomponent organic waste.
Potential Material Sources for Board Products: Used Pallets and Wastewood at Landfills
Philip A. Araman; Robert J. Bush; Vijay S. Reddy
1997-01-01
Millions of tons of pallets and other types of wood waste are being sent to landfills every year. At many landfills wood is or could be reclaimed. One potential use for this material is as furnish for board products. To evaluate the potential to reclaim wood waste for useful products we surveyed municipal solid waste (MSW) and construction and demolition (C&D)...
Marín, Maria; Artola, Adriana; Sánchez, Antoni
2018-04-01
Production of enzymes through solid-state fermentation (SSF) of agro-industrial wastes reports high productivity with low investment. The extraction of the final product from the solid waste and solid disposal represent the main cost of the process. In this work, the complete downstream processes of SSF of two industrial residues for the production of proteases, soy fibre (SF) and a mixture of hair and sludge (HS), were studied in terms of activity recovery, using different extraction parameters (extracting solvent, ratio solid: solvent and extraction mode). Activity after lyophilisation was tested. Solid waste valorisation after extraction was studied using respiration techniques and biogas production tests, as part of a zero waste strategy. Results showed a maximum extraction yield of 91% for SF and 121% for HS, both in agitated mode and distilled water as extraction agent. An average activity recovery of 95 ± 6 and 94 ± 6% for SF and HS, respectively, was obtained after lyophilisation and redissolution. To reduce the cost of extraction, a ratio 1:3 w : v solid-solvent in static mode is advised for SF, and 1:2 w : v extraction ratio in agitated mode for HS, both with distilled water as extracting agent. Both composting and anaerobic digestion are suitable techniques for valorisation of the waste material.
Geopolymers based on the valorization of Municipal Solid Waste Incineration residues
NASA Astrophysics Data System (ADS)
Giro-Paloma, J.; Maldonado-Alameda, A.; Formosa, J.; Barbieri, L.; Chimenos, J. M.; Lancellotti, I.
2017-10-01
The proper management of Municipal Solid Waste (MSW) has become one of the main environmental commitments for developed countries due to the uncontrolled growth of waste caused by the consumption patterns of modern societies. Nowadays, municipal solid waste incineration (MSWI) is one of the most feasible solutions and it is estimated to increase in Europe where the accessibility of landfill is restricted. Bottom ash (BA) is the most significant by-product from MSWI as it accounts for 85 - 95 % of the solid product resulting from combustion, which is classified as a non-hazardous residue that can be revalorized as a secondary aggregate in road sub-base, bulk lightweight filler in construction. In this way, revalorization of weathered BA (WBA) for the production of geopolymers may be a good alternative to common reuse as secondary aggregate material; however, the chemical process to obtain these materials involves several challenges that could disturb the stability of the material, mainly from the environmental point of view. Accordingly, it is necessary that geopolymers are able to stabilize heavy metals contained in the WBA in order to be classified as non-hazardous materials. In this regard, the SiO2/Al2O3 ratio plays an important role for the encapsulation of heavy metals and other toxic elements. The aim of this research is to formulate geopolymers starting from the 0 - 2 mm particle size fraction of WBA, as a unique raw material used as aluminumsilicate precursor. Likewise, leaching tests of the geopolymers formulated were performed to assess their environmental impact. The findings show that it is possible to formulate geopolymers using 100 % WBA as precursor, although more investigations are needed to sustain that geopolymer obtained can be considered as non-hazardous materials.
Bhatnagar, Amit; Kaczala, Fabio; Hogland, William; Marques, Marcia; Paraskeva, Christakis A; Papadakis, Vagelis G; Sillanpää, Mika
2014-01-01
The global olive oil production for 2010 is estimated to be 2,881,500 metric tons. The European Union countries produce 78.5% of the total olive oil, which stands for an average production of 2,136,000 tons. The worldwide consumption of olive oil increased of 78% between 1990 and 2010. The increase in olive oil production implies a proportional increase in olive mill wastes. As a consequence of such increasing trend, olive mills are facing severe environmental problems due to lack of feasible and/or cost-effective solutions to olive-mill waste management. Therefore, immediate attention is required to find a proper way of management to deal with olive mill waste materials in order to minimize environmental pollution and associated health risks. One of the interesting uses of solid wastes generated from olive mills is to convert them as inexpensive adsorbents for water pollution control. In this review paper, an extensive list of adsorbents (prepared by utilizing different types of olive mill solid waste materials) from vast literature has been compiled, and their adsorption capacities for various aquatic pollutants removal are presented. Different physicochemical methods that have been used to convert olive mill solid wastes into efficient adsorbents have also been discussed. Characterization of olive-based adsorbents and adsorption mechanisms of various aquatic pollutants on these developed olive-based adsorbents have also been discussed in detail. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.
Environmentally friendly processes that aid human and environmental health include recovering, recycling, and reusing limited natural resources and waste materials. In this study, we re-used Iron-rich solid waste materials from water treatment plants to synthesize magnetic iron-o...
[Effect of moisture content on anaerobic methanization of municipal solid waste].
Qu, Xian; He, Pin-Jing; Shao, Li-Ming; Bouchez, Théodore
2009-03-15
Biogas production, gas and liquid characteristics were investigated for comparing the effect of moisture content on methanization process of MSW with different compositions of food waste and cellulosic waste. Batch reactors were used to study the anaerobic methanization of typical Chinese and French municipal solid waste (MSW) and cellulosic waste with different moisture content, as 35%, field capacity (65%-70%), 80%, and saturated state (> 95%). The results showed that for the typical Chinese and French waste, which contained putrescible waste, the intermediate product, VFA, was diluted by high content of water, which helped to release the VFA inhibition on hydrolysis and methanization. Mass amount of methane was produced only when the moisture content of typical French waste was higher than 80%, while higher content of moisture was needed when the content of putrescible waste was higher in MSW, as > 95% for typical Chinese waste. Meanwhile the methane production rate and the ultimate cumulated methane production were increased when moisture content was leveled up. The ultimate cumulated methane production of the typical French waste with saturated state was 0.6 times higher than that of the waste with moisture content of 80%. For cellulosic waste, high moisture content of cellulosic materials contributed to increase the attachment area of microbes and enzyme on the surface of the materials, which enhance the waste hydrolysis and methanization. When the moisture content of the cellulosic materials increased from field capacity (65%) to saturated state (> 95%), the ultimate cumulated methane production increased for 3.8 times.
Tansel, Berrin
2017-01-01
Advancements in technology, materials development, and manufacturing processes have changed the consumer products and composition of municipal solid waste (MSW) since 1960s. Increasing quantities of discarded consumer products remain a major challenge for recycling efforts, especially for discarded electronic products (also referred as e-waste). The growing demand for high tech products has increased the e-waste quantities and its cross boundary transport globally. This paper reviews the challenges associated with increasing e-waste quantities. The increasing need for raw materials (especially for rare earth and minor elements) and unregulated e-waste recycling operations in developing and underdeveloped counties contribute to the growing concerns for e-waste management. Although the markets for recycled materials are increasing; there are major challenges for development of the necessary infrastructure for e-waste management and accountability as well as development of effective materials recovery technologies and product design. Copyright © 2016 Elsevier Ltd. All rights reserved.
Supercritical water oxidation - Microgravity solids separation
NASA Technical Reports Server (NTRS)
Killilea, William R.; Hong, Glenn T.; Swallow, Kathleen C.; Thomason, Terry B.
1988-01-01
This paper discusses the application of supercritical water oxidation (SCWO) waste treatment and water recycling technology to the problem of waste disposal in-long term manned space missions. As inorganic constituents present in the waste are not soluble in supercritical water, they must be removed from the organic-free supercritical fluid reactor effluent. Supercritical water reactor/solids separator designs capable of removing precipitated solids from the process' supercritical fluid in zero- and low- gravity environments are developed and evaluated. Preliminary experiments are then conducted to test the concepts. Feed materials for the experiments are urine, feces, and wipes with the addition of reverse osmosis brine, the rejected portion of processed hygiene water. The solid properties and their influence on the design of several oxidation-reactor/solids-separator configurations under study are presented.
Lyophilization for Water Recovery From Solid Waste
NASA Technical Reports Server (NTRS)
Flynn, Michael; Litwiller, Eric; Reinhard, Martin
2003-01-01
This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.
Ballardo, Cindy; Barrena, Raquel; Artola, Adriana; Sánchez, Antoni
2017-12-01
In the framework of a circular economy, organic solid wastes are considered to be resources useful for obtaining value-added products. Among other potential uses, biodegradable wastes from agricultural, industrial, and domestic sources are being studied to obtain biopesticides through solid-state fermentation (SSF), mainly at the laboratory scale. The suitability of biowaste (source-selected organic fraction of municipal solid waste) for use as a substrate for Bacillus thuringiensis (Bt) growth under non-sterile conditions in a 10 L SSF reactor was determined in this study. An operational strategy for setting up a semi-continuous process yielding a stabilised organic compost-like material enriched with Bt suitable for use as a soil amendment was developed. Concentrations of 1.7·10 7 -2.2·10 7 and 1.3·10 7 -2.1·10 7 CFU g -1 DM for Bt viable cells and spores, respectively, were obtained in the final material. As the results confirmed, Bt-enriched compost-like material with potential biopesticide properties can be produced from non-sterile biowaste. Copyright © 2017 Elsevier Ltd. All rights reserved.
Qianqian Wang; J.Y. Zhu; John M. Considine
2013-01-01
We used a new cellulosic material, cellulosic solid residue (CSR), to produce cellulose nanofibrils (CNF) for potential high value applications. Cellulose nanofibrils (CNF) were produced from CSR recovered from the hydrolysates (waste stream) of acid hydrolysis of a bleached Eucalyptus kraft pulp (BEP) to produce nanocrystals (CNC). Acid hydrolysis greatly facilitated...
Code of Federal Regulations, 2011 CFR
2011-07-01
... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...
Code of Federal Regulations, 2012 CFR
2012-07-01
... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...
Code of Federal Regulations, 2014 CFR
2014-07-01
... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...
Code of Federal Regulations, 2010 CFR
2010-07-01
... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...
Code of Federal Regulations, 2013 CFR
2013-07-01
... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...
Dang, Yan; Sun, Dezhi; Woodard, Trevor L; Wang, Li-Ying; Nevin, Kelly P; Holmes, Dawn E
2017-08-01
Growth of bacterial and archaeal species capable of interspecies electron exchange was stimulated by addition of conductive materials (carbon cloth or granular activated carbon (GAC)) to anaerobic digesters treating dog food (a substitute for the dry-organic fraction of municipal solid waste (OFMSW)). Methane production (772-1428mmol vs <80mmol), volatile solids removal (78%-81% vs 54%-64%) and COD removal efficiencies (∼80% vs 20%-30%) were all significantly higher in reactors amended with GAC or carbon cloth than controls. OFMSW degradation was also significantly accelerated and VFA concentrations were substantially lower in reactors amended with conductive materials. These results suggest that both conductive materials (carbon cloth and GAC) can promote conversion of OFMSW to methane even in the presence of extremely high VFA concentrations (∼500mM). Copyright © 2017 Elsevier Ltd. All rights reserved.
Solid wastes integrated management in Rio de Janeiro: input-output analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pimenteira, C.A.P.; Carpio, L.G.T.; Rosa, L.P.
2005-07-01
This paper analyzes the socioeconomic aspects of solid waste management in Rio de Janeiro. An 'input-output' methodology was used to examine how the secondary product resulting from recycling is re-introduced into the productive process. A comparative profile was developed from the state of recycling and the various other aspects of solid waste management, both from the perspective of its economic feasibility and from the social aspects involved. This was done analyzing the greenhouse gas emissions and the decreased energy consumption. The effects of re-introducing recycled raw materials into the matrix and the ensuing reduction of the demand for virgin rawmore » materials was based on the input-output matrix for the State of Rio de Janeiro. This paper also analyzes the energy savings obtained from recycling and measures the avoided emissions of greenhouse gases.« less
Municipal waste processing apparatus
Mayberry, J.L.
1988-04-13
This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.
Municipal Solid Waste - Sustainable Materials Management
The MSW DST was initially developed in the 1990s and has evolved over the years to better account for changes in waste management practices, waste composition, and improvements in decision support tool design and functionality. The most recent version of the tool is publicly ava...
Municipal solid waste recycling and the significance of informal sector in urban China.
Linzner, Roland; Salhofer, Stefan
2014-09-01
The informal sector is active in the collection, processing and trading of recyclable materials in urban China. Formal waste management organisations have established pilot schemes for source separation of recyclables, but this strategy is still in its infancy. The amounts of recyclables informally picked out of the municipal solid waste stream are unknown as informal waste workers do not record their activities. This article estimates the size and significance of the current informal recycling system with a focus on the collection of recyclables. A majority of the reviewed literature detects that official data is displaying mainly 'municipal solid waste collected and transported', whereas less information is available on 'real' waste generation rates at the source. Based on a literature review the variables, the 'number of informal waste workers involved in collection activities', the 'amounts collected daily per informal collector' and the 'number of working days' are used to estimate yearly recyclable amounts that are informally diverted from municipal solid waste. The results show an interval of approximately 0.56%-0.93% of the urban population or 3.3-5.6 million people involved in informal waste collection and recycling activities in urban China. This is the equivalent to estimated informal recycling rates of approximately 17-38 w/w% of the municipal solid waste generated. Despite some uncertainties in these assessments, it can be concluded that a significant share of recyclables is collected and processed by informal waste workers. © The Author(s) 2014.
Occupational Risks Associated with Solid Waste Management in the Informal Sector of Gweru, Zimbabwe
Jerie, Steven
2016-01-01
This study identifies and analyses the occupational risks associated with solid waste management practices in the informal enterprises of Gweru. Many concerns have been raised about the potential harm from waste to the environment and the general public, but the risks and consequent costs of occupational hazards in waste management have received little attention in the rush to adopt or adapt technologies such as composting. A multimethods research design that triangulates qualitative and quantitative research paradigms is employed in this study. The quantitative design involves physical characterisation of solid waste through material component separation and measurements as well as a questionnaire survey that investigates the risks associated with waste management. The qualitative component includes interviews, open-ended questionnaires, and field observations. Occupational risks occur at every stage in the waste management process, from the point where workers handle waste in the enterprises for collection or recycling to the point of ultimate disposal. Key findings from the study revealed that solid waste management practices are dominated by manual handling tasks hence the higher incidents of muscular-skeletal disorders. Other safety and health hazards associated with waste management in the informal enterprises of Gweru include incidents of diarrhoea, viral hepatitis, and higher incidents of obstructive and restrictive disorders. PMID:27418935
Occupational Risks Associated with Solid Waste Management in the Informal Sector of Gweru, Zimbabwe.
Jerie, Steven
2016-01-01
This study identifies and analyses the occupational risks associated with solid waste management practices in the informal enterprises of Gweru. Many concerns have been raised about the potential harm from waste to the environment and the general public, but the risks and consequent costs of occupational hazards in waste management have received little attention in the rush to adopt or adapt technologies such as composting. A multimethods research design that triangulates qualitative and quantitative research paradigms is employed in this study. The quantitative design involves physical characterisation of solid waste through material component separation and measurements as well as a questionnaire survey that investigates the risks associated with waste management. The qualitative component includes interviews, open-ended questionnaires, and field observations. Occupational risks occur at every stage in the waste management process, from the point where workers handle waste in the enterprises for collection or recycling to the point of ultimate disposal. Key findings from the study revealed that solid waste management practices are dominated by manual handling tasks hence the higher incidents of muscular-skeletal disorders. Other safety and health hazards associated with waste management in the informal enterprises of Gweru include incidents of diarrhoea, viral hepatitis, and higher incidents of obstructive and restrictive disorders.
Utilization of household food waste for the production of ethanol at high dry material content.
Matsakas, Leonidas; Kekos, Dimitris; Loizidou, Maria; Christakopoulos, Paul
2014-01-08
Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall ethanol production yield.
Utilization of household food waste for the production of ethanol at high dry material content
2014-01-01
Background Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Results Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. Conclusions In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall ethanol production yield. PMID:24401142
40 CFR 63.4710 - What notifications must I submit?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Mass fraction of organic HAP for one coating, for one thinner, and for one cleaning material. (ii) Volume fraction of coating solids for one coating. (iii) Density for one coating, one thinner, and one... is required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste...
40 CFR 63.4710 - What notifications must I submit?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Mass fraction of organic HAP for one coating, for one thinner, and for one cleaning material. (ii) Volume fraction of coating solids for one coating. (iii) Density for one coating, one thinner, and one... is required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste...
40 CFR 63.4710 - What notifications must I submit?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Mass fraction of organic HAP for one coating, for one thinner, and for one cleaning material. (ii) Volume fraction of coating solids for one coating. (iii) Density for one coating, one thinner, and one... is required. (iv) The amount of waste materials and the mass of organic HAP contained in the waste...
Compatibility tests between Jarytherm DBT synthetic oil and solid materials from wastes
NASA Astrophysics Data System (ADS)
Fasquelle, Thomas; Falcoz, Quentin; Neveu, Pierre; Flamant, Gilles; Walker, Jérémie
2016-05-01
Direct thermocline thermal energy storage is the cheapest sensible thermal energy storage configuration. Indeed, a thermocline tank consists in one tank instead of two and reduces costs. Thermocline thermal energy storages are often filled with cheap solid materials which could react with the heat transfer fluid in the case of incompatibility. PROMES laboratory is building a pilot-scale parabolic trough solar loop including a direct thermocline thermal energy storage system. The working fluid will be a synthetic oil, the Jarytherm® DBT, and the thermal energy storage tank will be filled with stabilized solid materials elaborated from vitrified wastes. Compatibility tests have been conducted in order to check on one hand if the thermo-mechanical properties and life time of the energy storage medium are not affected by the contact with oil and, on the other hand, if the thermal oil performances are not degraded by the solid filler. These experiments consisted in putting in contact the oil and the solid materials in small tanks. In order to discriminate the solid materials tested in the shortest time, accelerating aging conditions at 330 °C for 500 hours were used. The measurements consisted in X-Ray Diffraction and Scanning Electron Microscopy for the solids, and thermo-physical and chemical properties measurements for the oil. Regarding the solid samples, their crystalline structure did not change during the test, but it is difficult to conclude about their elementary composition and they seem to absorb oil. While thermal properties still makes Jarytherm® DBT a good heat transfer fluid after the accelerated aging tests, this study results in differentiating most compatible materials. Thus according to our study, Jarytherm® DBT can be used in direct thermocline thermal energy storage applications when compatibility of the solid material has been demonstrated.
APPLICATION OF THE US DECISION SUPPORT TOOL FOR MATERIALS AND WASTE MANAGEMENT
EPA¿s National Risk Management Research Laboratory has led the development of a municipal solid waste decision support tool (MSW-DST). The computer software can be used to calculate life-cycle environmental tradeoffs and full costs of different waste management plans or recycling...
Impacts of policy and market incentives for solid waste recycling in Dhaka, Bangladesh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matter, Anne; Swisscontact: Swiss Foundation for Technical Cooperation, South Asian Regional Office, House No. 19, Road No. 11, Baridhara, Dhaka 1212; Ahsan, Mehedi
Highlights: • Bangladesh’s industry and population are growing rapidly, producing more urban waste. • Recycling reduces the solid waste management burden of Municipalities. • A wide array of informal and formal actors is involved in collection and recycling. • Demand for recycled materials and renewable energy creates market incentives. • Policy incentives exist, but they only reach the formal industry. - Abstract: Solid waste mismanagement in Dhaka, Bangladesh, illustrates a well-known market failure which can be summarized as: waste is a resource in the wrong place. Inorganic materials such as plastic or paper can be used to feed the demandmore » for recycled materials in the industrial sector. Organic materials can be converted and used in the nutrient-starved agricultural sector which is currently heavily depending on chemical fertilizers. They are also a feedstock to generate renewable energy in the form of biogas for this energy-starved country relying on diminishing natural gas reserves and increasing import of coal. Reality however does not capitalize on this potential; instead the waste is a burden for municipal authorities who spend large portions of their budgets attempting to transport it out of the city for discharge into landfills. The major part of these materials still remains uncollected in the residential areas and is discarded indiscriminately in open spaces, polluting the residents’ living environment including water, soil and air resources, in the city and beyond. Bangladeshi authorities have, to some extent, recognized this market failure and have developed policies to encourage the development of waste recycling activities. It is also important to note that this market failure is only partial: a large, mostly informal recycling sector has developed in Bangladesh, focusing on inorganic recyclables of market value. The fact that this sector remains largely informal means that these actors perceive significant barriers to formalization. Comparatively, the organic waste recycling sector is less driven by market mechanisms. Competition from chemical fertilizers and fossil fuels is fierce and hinders the development of market opportunities for compost and renewable energy. Nevertheless commercial production of compost and biogas from organic municipal waste is formalized and benefiting from policy incentives.« less
Integrated Management of all Historical, Operational and Future Decomissioning Solid ILW at Dounreay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, D.
This paper describes major components of the Dounreay Site Restoration Plan, DSRP to deal with the site's solid intermediate level waste, ILW legacy. Historic solid ILW exists in the Shaft (disposals between 1959 and 1977), the Wet Silo (operated between 1973 and 1998), and in operating engineered drummed storage. Significant further arisings are expected from future operations, post-operations clean out and decommissioning through to the completion of site restoration, expected to be complete by about 2060. The raw waste is in many solid forms and also incorporates sludge, some fissile material and hazardous chemical components. The aim of the Solidmore » ILW Project is to treat and condition all this waste to make it passively safe and in a form which can be stored for a substantial period, and then transported to the planned U.K. national deep repository for ILW disposal. The Solid ILW Project involves the construction of head works for waste retrieval operations at the Shaft and Wet Silo, a Waste Treatment Plant and a Conditioned Waste Store to hold the conditioned waste until the disposal facilities become available. In addition, there are infrastructure activities to enable the new construction: contaminated ground remediation, existing building demolition, underground and overground services diversion, sea cliff stabilization, and groundwater isolation at the Shaft.« less
Method for treating materials for solidification
Jantzen, Carol M.; Pickett, John B.; Martin, Hollis L.
1995-01-01
A method for treating materials such as wastes for solidification to form a solid, substantially nonleachable product. Addition of reactive silica rather than ordinary silica to the material when bringing the initial molar ratio of its silica constituent to a desired ratio within a preselected range increases the solubility and retention of the materials in the solidified matrix. Materials include hazardous, radioactive, mixed, and heavy metal species. Amounts of other constituents of the material, in addition to its silica content are also added so that the molar ratio of each of these constituents is within the preselected ranges for the final solidified product. The mixture is then solidified by cement solidification or vitrification. The method can be used to treat a variety of wastes, including but not limited to spent filter aids from waste water treatment, waste sludges, combinations of spent filter aids and waste sludges, combinations of supernate and waste sludges, incinerator ash, incinerator offgas blowdown, combinations of incinerator ash and offgas blowdown, cementitious wastes and contaminated soils.
Di Maria, Francesco; Benavoli, Manuel; Zoppitelli, Mirco
2008-01-01
Waste management is of the utmost importance for many countries and especially for highly developed ones due to its implications on society. In particular, proper treatment before disposal of the solid urban waste organic fraction is one of the main issues that is addressed in waste management. In fact, the organic fraction is particularly reactive and if disposed in sanitary landfills without previous adequate treatment, a large amount of dangerous and polluting gaseous, liquid and solid substances can be produced. Some waste treatment processes can also present an opportunity to produce other by-products like energy, recycled materials and other products with both economic and environmental benefits. In this paper, the aerobic treatment of the organic fraction of solid urban waste, performed in a biocell plant with the possibility of recovering heat for civil or industrial needs, was examined from the thermodynamic point of view. A theoretical model was proposed both for the biological process of the organic fraction, as well as for the heat recovery system. The most significant results are represented and discussed.
Berm design to reduce risks of catastrophic slope failures at solid waste disposal sites.
De Stefano, Matteo; Gharabaghi, Bahram; Clemmer, Ryan; Jahanfar, M Ali
2016-11-01
Existing waste disposal sites are being strained by exceeding their volumetric capacities because of exponentially increasing rates of municipal solid waste generation worldwide, especially in densely populated metropolises. Over the past 40 years, six well-documented and analyzed disposal sites experienced catastrophic failure. This research presents a novel analysis and design method for implementation of a series of in-situ earth berms to slow down the movement of waste material flow following a catastrophic failure. This is the first study of its kind that employs a dynamic landslide analysis model, DAN-W, and the Voellmy rheological model to approximate solid waste avalanche flow. A variety of single and multiple berm configuration scenarios were developed and tested to find an optimum configuration of the various earth berm geometries and number of berms to achieve desired energy dissipation and reduction in total waste material runout length. The case study application of the novel mitigation measure shows that by constructing a series of six relatively inexpensive 3 m high earth berms at an optimum distance of 250 m from the slope toe, the total runout length of 1000 m and associated fatalities of the Leuwigajah dumpsite catastrophic failure in Bandung, Indonesia, could have been reduced by half. © The Author(s) 2016.
The Application of Microwave Incineration to Regenerative Life Support
NASA Technical Reports Server (NTRS)
Sun, Sidney C.; Srinivasan, Venkatesh; Covington, Al (Technical Monitor)
1995-01-01
Future human exploration missions will require life support systems that are highly regenerative, requiring minimum resupply, enabling the crews to be largely self-sufficient. Solid wastes generated in space will be processed to recover usable material. Researchers at NASA Ames Research Center are studying a commercially-produced microwave incinerator as a solid waste processor. This paper will describe the results of testing to-date.
Solid Waste Processing. A State-of-the-Art Report on Unit Operations and Processes.
ERIC Educational Resources Information Center
Engdahl, Richard B.
The importance and intricacy of the solid wastes disposal problem and the need to deal with it effectively and economically led to the state-of-the-art survey covered by this report. The material presented here was compiled to be used by those in government and private industry who must make or implement decisions concerning the processing of…
NASA Astrophysics Data System (ADS)
Azura Zakarya, Irnis; Azri Jamial, Khairul; Mat Tanda, Norazlinda
2018-03-01
Currently, the Ministry of Housing and Local Government manage solid waste in Malaysia, with the participation of the private sector. Food waste represents almost 60% of the total municipal solid waste disposed in the landfill. Material valorisation of food waste usually conducted by biological processes such as composting. Compost, an organic amendment, is the final product of the composting process. These processes are efficient, low cost and environmentally friendly alternative for managing food waste and are used extensively worldwide. Therefore, organic solid waste management practices program for the communities in Perlis was conducted. The main objective of this program was to instilling environment awareness especially among Perlis citizens. This study was investigated the impact of food waste or kitchen waste composting to the citizens in Perlis State and the beneficial of compost fertilizer to our environment especially in plant growth. Composting method was taught to the food premises owner, individuals, teachers, and students and their responses to the composting practices were then summarized. In future, we can prolong our landfill lifespan by practicing organic waste composting and can preserving our environment.
Silva, R V; de Brito, J; Lynn, C J; Dhir, R K
2017-10-01
This paper presents a literature review on the incorporation of municipal solid waste incinerated bottom ash as raw material in several markets, other than those where it is conventionally used, such as geotechnical applications and road pavement construction. The main findings of an ample selection of experimental investigations on the use of the bottom ash as precursor of alkali-activated materials, as an adsorbent material for the removal of hazardous elements from wastewater and landfill gases, as soil replacement in agricultural activities, as partial or complete substitute of raw materials for the manufacture of ceramic-based products, as landfill cover and as biogas production enhancer, were gathered, collated and analysed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Morello, Luca; Raga, Roberto; Sgarbossa, Paolo; Rosson, Egle; Cossu, Raffaello
2018-05-01
The storage capacity and the potentially residual emissions of a stabilized waste coming from a landfill simulation experiment were evaluated. The evolution in time of the potential emissions and the mobility of some selected elements or compounds were determined, comparing the results of the stabilized waste samples with the values detected in the related fresh waste samples. Analyses were conducted for the total bulk waste and also for each identified category (under-sieve, kitchen residues, green and wooden materials, plastics, cellulosic material and textiles) to highlight the contribution of the different waste fractions in the total emission potential. The waste characterization was performed through analyses on solids and on leaching test eluates; the chemical speciation of carbon, nitrogen, chlorine and sulfur together with the partitioning of heavy metals through a SCE procedure were carried out. Results showed that the under-sieve is the most environmentally relevant fraction, hosting a consistent part of mobile compounds in fresh waste (40.7% of carbon, 44.0% of nitrogen, 47.6% of chloride and 40.0% of sulfur) and the greater part of potentially residual emissions in stabilized waste (88.4% of carbon, 90.9% of nitrogen, 98.4% of chloride and 91.1% of sulfur). Landfilled Municipal Solid Waste (MSW) proved to be an effective sink, finally storing more than 55% of carbon, 53% of nitrogen, 33% of sulfur and 90% of heavy metals (HM) which were initially present in fresh waste samples. A general decrease in leachable fractions from fresh to stabilized waste was observed for each category. Tests showed that solid waste is not a good sink for chlorine, whose residual non-mobile fraction amounts to 12.3% only. Copyright © 2018 Elsevier Ltd. All rights reserved.
Municipal solid waste management in India: From waste disposal to recovery of resources?
Narayana, Tapan
2009-03-01
Unlike that of western countries, the solid waste of Asian cities is often comprised of 70-80% organic matter, dirt and dust. Composting is considered to be the best option to deal with the waste generated. Composting helps reduce the waste transported to and disposed of in landfills. During the course of the research, the author learned that several developing countries established large-scale composting plants that eventually failed for various reasons. The main flaw that led to the unsuccessful establishment of the plants was the lack of application of simple scientific methods to select the material to be composted. Landfills have also been widely unsuccessful in countries like India because the landfill sites have a very limited time frame of usage. The population of the developing countries is another factor that detrimentally impacts the function of landfill sites. As the population keeps increasing, the garbage quantity also increases, which, in turn, exhausts the landfill sites. Landfills are also becoming increasingly expensive because of the rising costs of construction and operation. Incineration, which can greatly reduce the amount of incoming municipal solid waste, is the second most common method for disposal in developed countries. However, incinerator ash may contain hazardous materials including heavy metals and organic compounds such as dioxins, etc. Recycling plays a large role in solid waste management, especially in cities in developing countries. None of the three methods mentioned here are free from problems. The aim of this study is thus to compare the three methods, keeping in mind the costs that would be incurred by the respective governments, and identify the most economical and best option possible to combat the waste disposal problem.
It is estimated that nationally, over 76 million tons of containers and packaging make up the largest portion of municipal solid waste generated, and 39 percent of those discards are sent to landfills. While the specific statistics on takeout waste tonnage
Solid waste characterization in Ketao, a rural town in Togo, West Africa.
Edjabou, Maklawe Essonanawe; Møller, Jacob; Christensen, Thomas H
2012-07-01
In Africa the majority of solid waste data is for big cities. Small and rural towns are generally neglected and waste data from these areas are often unavailable, which makes planning a proper solid waste management difficult. This paper presents the results from two waste characterization projects conducted in Kétao, a rural town in Togo during the rainy season and the dry season in 2010. The seasonal variation has a significant impact on the waste stream. The household waste generation rate was estimated at 0.22 kg person(-1) day(-1) in the dry season and 0.42 in the rainy season. Likewise, the waste moisture content was 4% in the dry season while it was 33-63% in the rainy season. The waste consisted mainly of soil and dirt characterized as 'other' (41%), vegetables and putrescibles (38%) and plastic (11%). In addition to these fractions, considerable amounts of material are either recycled or reused locally and do not enter the waste stream. The study suggests that additional recycling is not feasible, but further examination of the degradability of the organic fraction is needed in order to assess whether the residual waste should be composed or landfilled.
NASA Astrophysics Data System (ADS)
Jeong, Sueng-Won; Lee, Choonoh; Cho, Yong-Chan; Wu, Ying-Hsin
2015-04-01
In Korea, approximately 5,000 metal mines are spread, but 50% of them are still abandoned without any proper remediation and cleanup. Summer heavy rainfall can result in the physicochemical modification of waste rock materials in the mountainous. From the geotechnical monitoring and field investigation, there are visible traces of mass movements every year. Soil erosion is one of severe phenomena in the study area. In particular, study area is located in the upper part of the Busan Metropolitan City and near the city's water supply. With respect to the supply of drinking water and maintenance of ecological balance, proper disposal of waste rock materials is required. For this reason, we examine the rheological properties of waste rock materials as a function of solid content using a ball- and vane-penetrated rheometer. In the flow curves, which are the relationship between the shear stress and shear rate of waste rock materials, we found that the soil samples exhibited a shear thinning beahivor regardless of solid content. The Bingham, Herschel-Bulkley, Power-law, and Papanastasiou models are used to determine the rheological properties. Assuming that the soil samples behaved as the viscoplastic behavior, the yield stress and viscosity are determined for different water contents. As a result, there are clear relationships between the solid content and rheological values (i.e., Bingham yield stress and plastic viscosity). From these relationships, the maximum and minimum of Bingham yield stresses are ranged from 100 to 2000 Pa. The debris flow mobilization is analysed using a 1D BING and 2D Debris flow models. In addition, the effect of wall slip and test apparatus are discussed.
Recycling of Metals and Materials: A Selected Bibliography.
ERIC Educational Resources Information Center
Seidman, Ruth K., Comp.; Castrow, Lee, Comp.
Recycling of metals and materials has as its purpose the easing of two major environmental crises. First, we re-utilize scarce and non-renewable resources. Second, solid waste disposal problems can be alleviated. Industry has long been concerned with reclaiming its own waste products, and is now beginning to respond to the need for dealing with…
Investigating pyrolysis/incineration as a method of resource recovery from solid waste
NASA Technical Reports Server (NTRS)
Robertson, Bobby J.; Lemay, Christopher S.
1993-01-01
Pyrolysis/incineration (P/I) is a physicochemical method for the generation of recoverable resources from solid waste materials such as inedible plant biomass (IPB), paper, plastics, cardboard, etc. P/I permits the collection of numerous gases with a minimal amount of solid residue. Pyrolysis, also known as starved air incineration, is usually conducted at relatively high temperatures (greater than 500 deg C) in the absence of oxygen. Incineration is conducted at lower temperatures in the presence of oxygen. The primary purpose of this study was to design, construct, and test a model P/I. The system design includes safety requirements for temperature and pressure. The objectives of this study were: (1) to design and construct a P/I system for incorporation with the Hybrid Regenerative Water Recovery System; (2) to initiate testing of the P/I system; (3) to collect and analyze P/I system data; (4) to consider test variables; and (5) to determine the feasibility of P/I as an effective method of resource recovery. A P/I system for the recovery of reuseable resources from solid waste materials was designed, constructed, and tested. Since a large amount of inedible plant biomass (IPB) will be generated in a space-based habitat on the lunar surface and Mars, IPB was the primary waste material tested in the system. Analysis of the effluent gases was performed to determine which gases could be used in a life support system.
40 CFR 60.56b - Standards for air curtain incinerators.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fuel feed stream composed of 100 percent yard waste and no other municipal solid waste materials shall...-minute average) is permitted during startup periods during the first 30 minutes of operation of the unit...
Evaluating the use of waste-to-energy bottom ash as road construction materials.
DOT National Transportation Integrated Search
2014-02-01
Current management practice, existing regulations, and environmental consequences of municipal solid : waste incineration (MSWI) ash utilization were comprehensively reviewed worldwide and nationwide : in the U.S. Efforts were made to physically and ...
A Comparative Analysis of Life-Cycle Assessment Tools for ...
We identified and evaluated five life-cycle assessment tools that community decision makers can use to assess the environmental and economic impacts of end-of-life (EOL) materials management options. The tools evaluated in this report are waste reduction mode (WARM), municipal solid waste-decision support tool (MSW-DST), solid waste optimization life-cycle framework (SWOLF), environmental assessment system for environmental technologies (EASETECH), and waste and resources assessment for the environment (WRATE). WARM, MSW-DST, and SWOLF were developed for US-specific materials management strategies, while WRATE and EASETECH were developed for European-specific conditions. All of the tools (with the exception of WARM) allow specification of a wide variety of parameters (e.g., materials composition and energy mix) to a varying degree, thus allowing users to model specific EOL materials management methods even outside the geographical domain they are originally intended for. The flexibility to accept user-specified input for a large number of parameters increases the level of complexity and the skill set needed for using these tools. The tools were evaluated and compared based on a series of criteria, including general tool features, the scope of the analysis (e.g., materials and processes included), and the impact categories analyzed (e.g., climate change, acidification). A series of scenarios representing materials management problems currently relevant to c
Levis, James W; Barlaz, Morton A; Decarolis, Joseph F; Ranjithan, S Ranji
2014-04-01
Solid waste management (SWM) systems must proactively adapt to changing policy requirements, waste composition, and an evolving energy system to sustainably manage future solid waste. This study represents the first application of an optimizable dynamic life-cycle assessment framework capable of considering these future changes. The framework was used to draw insights by analyzing the SWM system of a hypothetical suburban U.S. city of 100 000 people over 30 years while considering changes to population, waste generation, and energy mix and costs. The SWM system included 3 waste generation sectors, 30 types of waste materials, and 9 processes for waste separation, treatment, and disposal. A business-as-usual scenario (BAU) was compared to three optimization scenarios that (1) minimized cost (Min Cost), (2) maximized diversion (Max Diversion), and (3) minimized greenhouse gas (GHG) emissions (Min GHG) from the system. The Min Cost scenario saved $7.2 million (12%) and reduced GHG emissions (3%) relative to the BAU scenario. Compared to the Max Diversion scenario, the Min GHG scenario cost approximately 27% less and more than doubled the net reduction in GHG emissions. The results illustrate how the timed-deployment of technologies in response to changes in waste composition and the energy system results in more efficient SWM system performance compared to what is possible from static analyses.
Methane potential of sterilized solid slaughterhouse wastes.
Pitk, Peep; Kaparaju, Prasad; Vilu, Raivo
2012-07-01
The aim of the current study was to determine chemical composition and methane potential of Category 2 and 3 solid slaughterhouse wastes rendering products (SSHWRP) viz. melt, decanter sludge, meat and bone meal (MBM), technical fat and flotation sludge from wastewater treatment. Chemical analyses showed that SSHWRP were high in protein and lipids with total solids (TS) content of 96-99%. Methane yields of the SSHWRP were between 390 and 978 m(3) CH(4)/t volatile solids (VS)(added). Based on batch experiments, anaerobic digestion of SSHWRP from the dry rendering process could recover 4.6 times more primary energy than the energy required for the rendering process. Estonia has technological capacity to sterilize all the produced Category 2 and 3 solid slaughterhouse wastes (SSHW) and if separated from Category 1 animal by-products (ABP), it could be further utilized as energy rich input material for anaerobic digestion. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cleanup Verification Package for the 618-2 Burial Ground
DOE Office of Scientific and Technical Information (OSTI.GOV)
W. S. Thompson
2006-12-28
This cleanup verification package documents completion of remedial action for the 618-2 Burial Ground, also referred to as Solid Waste Burial Ground No. 2; Burial Ground No. 2; 318-2; and Dry Waste Burial Site No. 2. This waste site was used primarily for the disposal of contaminated equipment, materials and laboratory waste from the 300 Area Facilities.
NASA Astrophysics Data System (ADS)
Schneider, V. E.; Poletto, M.; Peresin, D.; Carra, S. H. Z.; Vanni, D.
2017-07-01
With the increase of population concentration in urban areas, there is an increase in the solid waste generation, which demands the search for alternatives and solutions for the environmentally correct destination of these. In this context, this work presents an evaluation on the forms of organic and selective domestic waste collection and the potential for the recyclability of the waste destined to the same, based on the physical characterization and gravimetric composition of the solid wastes generated in the town of Antônio Prado, located in the state of Rio Grande do Sul, Brazil, between 2014 and 2016. It is observed that the population has significant information regarding the correct disposal of waste in the selective collection, since 60% of the waste destined to the same is effectively recyclable. Plastic (24.8%), paper (10.9%), glass (8.8%) and cardboard (8.4%) are the most representative materials in recycled waste samples in the urban area. The importance of continuity and improvement of environmental education programs is essential, due to the evolution in the quantity and complexity of products and materials currently manufactured, and to the method of mechanized waste collection used by the municipality.
Innovative approach to facilitate reuse of nonhazardous industrial solid waste as building material
DOE Office of Scientific and Technical Information (OSTI.GOV)
St-Laurent, S.G.; Boutin, A.
1997-12-31
The steel industry generates large volumes of inorganic nonhazardous solid waste. During the last five years, Quebec`s steel industry has developed new technologies to recover metal from slags and tailings. Since these processes recover 10 to 30 percent of the metal, large volumes of nonhazardous residues still need to be recycled or disposed of. In order to encourage recycling initiatives, le Ministere de l`Environnement et de la Faune du Quebec (MEF) (Quebec`s Ministry of Environment and Wildlife) established guidelines for the management of nonhazardous industrial solid waste. The aim of these guidelines is to propose a test procedure to evaluatemore » the quality of the material and to define material classes based on their potential for reuse. The evaluation procedure is based on standard tests, generally used for the evaluation of stabilized and solidified hazardous waste. The protocol includes an analysis of the total content of metals in the residue, the determination of the acid neutralization capacity and the prediction of the acid generation potential when the residue contains significant levels of sulfides. The protocol includes three different leachate tests in order to evaluate the mobility of contaminants present in the residue. The leaching procedures are: (1) an equilibrium extraction with water, (2) a modified TCLP extraction, and (3) an acid rain simulation effect extraction. A method is actually under development to collect leachate from a material pile subject to 18 months of rainfall. Materials are categorized into different classes according to their test results. Various potential reuse options are associated with material classes. Evaluation criteria were defined by using water quality standards and results obtained by testing reference construction material supplied by the Quebec`s Ministere des Transports (Ministry of Transportation).« less
Compatibility analysis of material and energy recovery in a regional solid waste management system.
Chang, Ying-Hsi; Chang, Ni-Bin
2003-01-01
The rising prices of raw materials and concerns about energy conservation have resulted in an increasing interest in the simultaneous recovery of materials and energy from waste streams. Compatibility exists for several economic, environmental, and managerial reasons. Installing an on-site or off-site presorting facility before an incinerator could be a feasible alternative to achieve both goals if household recycling programs cannot succeed in local communities. However, the regional impacts of presorting solid waste on a waste-to-energy facility remain unclear because of the inherent complexity of solid waste compositions and properties over different areas. This paper applies a system-based approach to assess the impact of installing a refuse-derived fuel (RDF) process before an incinerator. Such an RDF process, consisting of standard unit operations of shredding, magnetic separation, trommel screening, and air classification, might be useful for integrating the recycling and presorting efforts for a large-scale municipal incinerator from a regional sense. An optimization modeling analysis is performed to characterize such integration potential so that the optimal size of the RDF process and associated shipping patterns for flow control can be foreseen. It aims at exploring how the waste inflows with different rates of generation, physical and chemical compositions, and heating values collected from differing administrative districts can be processed by either a centralized presorting facility or an incinerator to meet both the energy recovery and throughput requirements. A case study conducted in Taipei County, which is one of the most densely populated metropolitan areas in Taiwan, further confirms the application potential of such a cost-benefit analysis.
A study of tritium in municipal solid waste leachate and gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutch Jr, R. D.; Manhattan College, Riverdale, NY; Columbia Univ., New York, NY
2008-07-15
It has become increasingly clear in the last few years that the vast majority of municipal solid waste landfills produce leachate that contains elevated levels of tritium. The authors recently conducted a study of landfills in New York and New Jersey and found that the mean concentration of tritium in the leachate from ten municipal solid waste (MSW) landfills was 33,800 pCi/L with a peak value of 192,000 pCi/L. A 2003 study in California reported a mean tritium concentration of 99,000 pCi/L with a peak value of 304,000 pCi/L. Studies in Pennsylvania and the UK produced similar results. The USEPAmore » MCL for tritium is 20,000 pCi/L. Tritium is also manifesting itself as landfill gas and landfill gas condensate. Landfill gas condensate samples from landfills in the UK and California were found to have tritium concentrations as high as 54,400 and 513,000 pCi/L, respectively. The tritium found in MSW leachate is believed to derive principally from gaseous tritium lighting devices used in some emergency exit signs, compasses, watches, and even novelty items, such as 'glow stick' key chains. This study reports the findings of recent surveys of leachate from a number of municipal solid waste landfills, both open and closed, from throughout the United States and Europe. The study evaluates the human health and ecological risks posed by elevated tritium levels in municipal solid waste leachate and landfill gas and the implications to their safe management. We also assess the potential risks posed to solid waste management facility workers exposed to tritium-containing waste materials in transfer stations and other solid waste management facilities. (authors)« less
Zhao, Xuyuan; Zhan, Lu; Xie, Bing; Gao, Bin
2018-09-01
In this study, hydrothermal method was applied for the treatment of five typical waste plastics (PC, HIPS, ABS, PP and PA6). The hydrothermal products of oils and solid residues were analyzed for the product slate and combustion behaviors. Some predominant chemical feedstock were detected in the oils, such as phenolic compounds and bisphenol A (BPA) in PC oils, single-ringed aromatic compounds and diphenyl-sketetons compounds in HIPS and ABS oils, alkanes in PP oils, and caprolactam (CPL) in PA6 oils. The hydrothermal solid residues were subjected to DSC analysis. Except the solid residues of PA6, all the solid residues had enormous improvement on the enthalpy of combustion. The solid residues of PC had the maximum promotion up to 576.03% compared to the raw material. The hydrothermal treatment significantly improved the energy density and facilitated effective combustion. Meanwhile, the glass fiber was recovered from the PA6 plastics. In addition, the combustion behaviors of the uplifting residues were investigated to provide the theoretical foundation for further study of combustion optimization. All the results indicated that the oils of waste plastics after hydrothermal treatment could be used as chemical feedstock; the solid residues of waste plastics after hydrothermal treatment could be used as potentially clean and efficient solid fuels. The hydrothermal treatment for various waste plastics was verified as a novel waste-to-energy technique. Copyright © 2018 Elsevier Ltd. All rights reserved.
Leaching of heavy metals from E-waste in simulated landfill columns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Yadong; Richardson, Jay B.; Mark Bricka, R.
2009-07-15
In recent history the volume of electronic products purchased by consumers has dramatically escalated. As a result this has produced an ever-increasing electronic waste (E-waste) stream, which has generated concerns regarding the E-waste's potential for adversely impacting the environment. The leaching of toxic substances from obsolete personal computers (PCs) and cathode ray tubes (CRTs) of televisions and monitors, which are the most significant components in E-waste stream, was studied using landfill simulation in columns. Five columns were employed. One column served as a control which was filled with municipal solid waste (MSW), two columns were filled with a mixture ofmore » MSW and CRTs, and the other two were filled with MSW and computer components including printed wire boards, hard disc drives, floppy disc drives, CD/DVD drives, and power supply units. The leachate generated from the columns was monitored for toxic materials throughout the two-year duration of the study. Results indicate that lead (Pb) and various other heavy metals that were of environmental and health concern were not detected in the leachate from the simulators. When the samples of the solids were collected from underneath the E-waste in the columns and were analyzed, significant amount of Pb was detected. This indicates that Pb could readily leach from the E-waste, but was absorbed by the solids around the E-waste materials. While Pb was not observed in the leachate in this study, it is likely that the Pb would eventually enter the leachate after a long term transport.« less
Choura, M; Keskes, M; Tayibi, H; Rouis, J
2011-04-01
Metal hydroxide sludges are classified as hazardous wastes in the European Hazardous Waste Catalogue (EHWC) because of their high heavy metal contents (Zn, Cr, Fe, Cu, etc.) and the release of these pollutants to the environment. Thereby, the disposal of this waste without any treatment is a substantial environmental problem. Stabilization/solidification technologies are widely used for the treatment of wastes and residues in order to obtain inert materials. This work aims to assess the effectiveness of the chemical fixation and solidification of a metal hydroxide sludge generated by the electrotyping surface treatment industry, using Portland Artificial Cement. In order to predict the medium- and long-term behaviour of the solidified waste, an artificial ageing by means of thermal shocks and humidity variation cycles was applied. Scanning Electron Microscopy (SEM) and X-ray Diffraction studies revealed a considerable increase in calcite within the solid matrix after the artificial ageing, which can be attributed to the phenomenon of carbonation. It was also found that the mechanical properties of the solidified material, after ageing, were improved by up to 30%.
Procedures for waste management from street sweeping and stormwater systems.
DOT National Transportation Integrated Search
2016-05-01
Street sweeping and storm water system cleaning activities are conducted regularly by ODOT to comply with NPDES permit requirements and to ensure roadway safety. Once collected, these materials are classified as solid waste and require cost-effective...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirk, D.W.
The generation of industrial solid wastes containing leachable species of environmental concern is a problem for developing and developed nations alike. These materials arise from direct processing of mineral ores, from production of metals and minerals, from manufacturing operations, and from air and water pollution treatment processes. The general characteristics that make these wastes intractable is that their content of hazardous species is not easily liberated from the waste yet is not bound so tightly that they are safe for landfill disposal or industrial use. The approach taken in this work is a thermal treatment that separates the inorganic contaminantsmore » from the wastes. The objective is to provide recovery and reuse of both the residual solids and liberated contaminants. The results from operating this technique using two very different types of waste are described. The reasons that the process will work for a wide variety of wastes are explored. By using the knowledge of the thermodynamic stability of the phases found from the characterization analyses, a thermal regime was found that allowed separation of the contaminants without capturing the matrix materials. Bench scale studies were carried out using a tube furnace. Samples of the wastes were heated in crucible boats from 750 to 1150{degrees}C in the presence of various chlorinating agents. The offgas contained 90{sup +}% of the targeted contaminants despite their complex matrix form. The residue was free of contamination. As a result of the efficient concentrating mechanism of the process, the contaminants in the offgas solids are attractive for reuse in metallurgical industries. As an additional benefit, the organic contaminants of the residues were eliminated. Dioxin traces in the solids before treatment were absent after treatment. 15 refs., 4 figs., 4 tabs.« less
Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE).
Zhao, Yan; Wang, Hong-Tao; Lu, Wen-Jing; Damgaard, Anders; Christensen, Thomas H
2009-06-01
With the purpose of assessing the environmental impacts and benefits of the current municipal solid waste management system and two modified systems, EASEWASTE, a life-cycle-based model, was used to evaluate the waste system of Hangzhou city in China. An integrated model was established, including waste generation, collection, transportation, treatment, disposal and accompanying external processes. The results showed that CH(4) released from landfilling was the primary pollutant contributing to global warming, and HCl and NH(3) from incineration contributed most to acidification. Material recycling and incineration with energy recovery were important because of the induced savings in material production based on virgin materials and in energy production based on coal combustion. A modified system in which waste is transported to the nearest incinerators would be relatively better than the current system, mainly due to the decrease of pollution from landfilled waste and the increase in energy production from waste avoiding energy production by traditional power plants. A ban on free plastic bags for shopping was shown to reduce most environmental impacts due to saved oil resources and other materials used in producing the plastic bags. Sensitivity analysis confirmed the robustness of the results. LCA methodology and a model like EASEWASTE are very suitable for evaluating the overall environmental consequences, and can be used for decision support and strategic planning in developing countries such as China where pollution control has become increasingly important with the rapid increase of waste generation as well as the increasing public awareness of environmental protection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neufeld, R. D.; Bern, J.; Erdogan, H.
1979-11-15
Activities are underway to investigate basic phenomena that would assist demonstration and commercial sized coal conversion facilities in the environmentally acceptable disposal of process solid waste residuals. The approach taken is to consider only those residuals coming from the conversion technology itself, i.e. from gasification, liquefaction, and hot-clean-up steps as well as residuals from the wastewater treatment train. Residuals from the coal mining and coal grinding steps will not be considered in detail since those materials are being handled in some manner in the private sector. Laboratory evalations have been conducted on solid waste samples of fly ash from anmore » existing Capman gasifier. ASTM-A and EPA-EP leaching procedures have been completed on sieved size fractions of the above wastes. Data indicate that smaller size fractions pose greater contamination potential than do larger size particles with a transition zone occurring at particle sizes of about 0.05 inches in diameter. Ames testing of such residuals is reported. Similar studies are under way with samples of H-Coal solid waste residuals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
In 1990, the Lower Savannah Council of Governments (LSCOG) began dialogue with the United States Department of Energy (DOE) regarding possibilities for cooperation and coordination of solid waste management practices among the local governments and the Savannah River Site. The Department of Energy eventually awarded a grant to the Lower Savannah Council of Governments for the development of a study, which was initiated on March 5, 1992. After careful analysis of the region`s solid waste needs, this study indicates a network approach to solid waste management to be the most viable. The network involves the following major components: (1) Ruralmore » Collection Centers, designed to provide convenience to rural citizens, while allowing some degree of participation in recycling; (2) Rural Drop-Off Centers, designed to give a greater level of education and recycling activity; (3) Inert landfills and composting centers, designed to reduce volumes going into municipal (Subtitle D) landfills and produce useable products from yard waste; (4) Transfer Stations, ultimate landfill disposal; (5) Materials Recovery Facilities, designed to separate recyclables into useable and sellable units, and (6) Subtitle D landfill for burial of all solid waste not treated through previous means.« less
Sustainable Approaches for Materials Management in Remote ...
Remote, economically challenged areas in the Commonwealth of the Northern Marianas Islands (CNMI) and American Samoa in the US Pacific island territories face unique challenges with respect to solid waste management. These islands are remote and isolated, with some islands supporting only small populations, thus limiting options for pooling resources among communities in the form of regional waste management facilities, as is common on the US mainland. This isolation also results in greater costs for waste management compared to those encountered in the mainland US, a consequence of, among other factors, more expensive construction and maintenance costs because of the necessary transport of facility components (e.g., landfill liner materials) and the decreased attractiveness of waste recovery for recycling because of lower commodity prices after off-island transportation. Adding to these economic limitations, the gross domestic product and per capita income of the Pacific territories is less than half what it is in parts of the US. The first section of this report outlines a snapshot of the current state of solid waste management overall in the US Pacific island territories, primarily based on site visits.. Steps involved in this work included a review of selected existing published information related to the subject; site visits to Guam, Saipan, Tinian, Rota, Tutuila, and Apia; an assessment of the technical and economic feasibility of different solid waste
Aqueous Electrochemical Mechanisms in Actinide Residue Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, David E.; Burns, Carol J.; Smith, Wayne H.
2000-12-31
Plutonium and uranium residues (e.g., incinerator ash, combustibles, and sand/slag/crucibles) resulting from the purification and processing of nuclear materials constitute an enormous volume of ''lean'' processing waste and represent a significant fraction of the U. S. Department of Energy's (DOE) legacy waste from fifty years of nuclear weapons production activities. Much of this material is presently in storage at sites throughout the DOE weapons production complex (most notably Rocky Flats, Savannah River and Hanford) awaiting further processing and/or final disposition. The chemical and physical stability of much of this material has been called into question recently by the Defense Nuclearmore » Facility Safety Board (DNFSB) and resulted in the issuance of a mandate by the DNFSB to undertake a program to stabilize these materials [1]. The ultimate disposition for much of these materials is anticipated to be geologic repositories such as the proposed Waste Isolation Pilot Plant in New Mexico. However, in light of the mandate to stabilize existing residues and the probable concomitant increase in the volume of material to be disposed as a result of stabilization (e.g., from repackaging at lower residue densities), the projected storage volume for these wastes within anticipated geologic repositories will likely be exceeded simply to handle existing wastes. Additional processing of some of these residue waste streams to reduce radionuclide activity levels, matrix volume, or both is a potentially important strategy to achieve both stabilization and volume reduction so that the anticipated geologic repositories will provide adequate storage volume. In general, the plutonium and uranium that remains in solid residue materials exists in a very stable chemical form (e.g., as binary oxides), and the options available to remove the actinides are limited. However, there have been some demonstrated successes in this vain using aqueous phase electrochemical methods such as the Catalyzed Electrochemical Plutonium Oxide Dissolution (CEPOD) process pioneered by workers at Pacific Northwest National Laboratory in the mid-1970s [2]. The basis for most of these mediated electrochemical oxidation/reduction (MEO/R) processes is the generation of a dissolved electrochemical catalyst, such as Ag2+, which is capable of oxidizing or reducing solid-phase actinide species or actinide sorbates via 7 heterogeneous electron transfer to oxidation states that have significantly greater solubilities (e.g., PuO2(s) to PuO2 2+ (dissolved)). The solubilized actinide can then be recovered by ion exchange or other mechanisms. These aqueous electrochemical methods for residue treatment have been considered in many of the ''trade studies'' to evaluate options for stabilization of the various categories of residue materials. While some concerns generally arise (e.g., large secondary waste volumes could results since the process stream normally goes th rough anion exchange or precipitation steps to remove the actinide), the real utility and versatility of these methods should not be overlooked. They are low temperature, ambient pressure processes that operate in a non-corrosive environment. In principle, they can be designed to be highly selective for the actinides (i.e., no substrate degradation occurs), they can be utilized for many categories of residue materials with little or no modification in hardware or operating conditions, and they can conceivably be engineered to minimize secondary waste stream volume. However, some fundamental questions remain concerning the mechanisms through which these processes act, and how the processes might be optimized to maximize efficiency while minimizing secondary waste. In addition, given the success achieved to date on the limited set of residues, further research is merited to extend the range of applicability of these electrochemical methods to other residue and waste streams. The principal goal of the work described here is to develop a fundamental understanding of the heterogeneous electron transfer thermodynamics and kinetics that lie at the heart of the MEO/R processes for actinide solids and actinide species entrained in or surface-bound to residue substrates. This has been accomplished as described in detail below through spectroscopic characterization of actinide-bearing substrates and electrochemical investigations of electron transfer reactions between uranium- and plutonium- (or surrogates) bearing solids (dispersed actinide solid phases and actinides sorbed to inorganic and organic colloids) and polarizable electrode materials. In general, the actinide solids or substrate-supported species were chosen to represent relevant residue materials (e.g., incinerator ash, sand/slag/crucible, and combustibles).« less
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Oinas, Pekka
2016-01-01
In the production of solid recovered fuel (SRF), certain waste components have excessive influence on the quality of product. The proportion of rubber, plastic (hard) and certain textiles was found to be critical as to the elemental quality of SRF. The mass flow of rubber, plastic (hard) and textiles (to certain extent, especially synthetic textile) components from input waste stream into the output streams of SRF production was found to play the decisive role in defining the elemental quality of SRF. This paper presents the mass flow of polluting and potentially toxic elements (PTEs) in SRF production. The SRF was produced from municipal solid waste (MSW) through mechanical treatment (MT). The results showed that of the total input chlorine content to process, 55% was found in the SRF and 30% in reject material. Of the total input arsenic content, 30% was found in the SRF and 45% in fine fraction. In case of cadmium, lead and mercury, of their total input content to the process, 62%, 38% and 30%, respectively, was found in the SRF. Among the components of MSW, rubber material was identified as potential source of chlorine, containing 8.0 wt.% of chlorine. Plastic (hard) and textile components contained 1.6 and 1.1. wt.% of chlorine, respectively. Plastic (hard) contained higher lead and cadmium content compared with other waste components, i.e. 500 mg kg(-1) and 9.0 mg kg(-1), respectively. © The Author(s) 2015.
Schaffner, Beatrice; Meier, Anton; Wuillemin, Daniel; Hoffelner, Wolfgang; Steinfeld, Aldo
2003-01-01
A novel high-temperature solar chemical reactor is proposed for the thermal recycling of hazardous solid waste material using concentrated solar power. It features two cavities in series, with the inner one functioning as the solar absorber and the outer one functioning as the reaction chamber. The solar reactor can handle thermochemical processes at temperatures above 1,300 K involving multiphases and controlled atmospheres. It further allows for batch or continuous mode of operation and for easy adjustment of the residence time of the reactants to match the kinetics of the reaction. A 10-kW solar reactor prototype was designed and tested for the carbothermic reduction of electric arc furnace dusts (EAFD). The reactor was subjected to mean solar flux intensities of 2,000 kW m(-2) and operated in both batch and continuous mode within the temperature range of 1,120-1,400 K. Extraction of over 90% of the toxic compounds originally contained in the EAFD was achieved while the condensable products of the off-gas contained mainly Zn, Pb, and Cl. The use of concentrated solar energy as the source of process heat offers the possibility of converting hazardous solid waste material into valuable commodities for processes in closed and sustainable material cycles.
Economic and employment potential in textile waste management of Faisalabad.
Noman, Muhammad; Batool, Syeda Adila; Chaudhary, Muhammad Nawaz
2013-05-01
The aim of this study is to characterize the waste from the textile industry, to identify the sources and types of waste generation and to find out the economic and employment potential in this sector. Textile waste, its management, and the economic and employment potential in this sector are unrevealed facts in developing countries such as Pakistan. The textile industry is ranked first in export earning in Pakistan. Textile export of yarn and cloth from Faisalabad is US$3 billion per year. On average 161 325 people are employed in the textile sector in Faisalabad, of which 11 860 are involved in solid waste handling and management. The textile industries generate solid wastes such as fibre, metal, plastic and paper waste. A total of 794 209 kg day(-1) (289 886 285 kg year(-1)) solid waste is produced from this sector and purchased by cotton waste junkshop owners at US$125 027 day(-1) (US$45 634 855 year(-1)). Only pre-consumer textile waste is considered. Interestingly no waste is sent to landfill. The waste is first segregated into different categories/ types by hand and then weighed. Cotton waste is sold to brick kilns where it is used as an alternative fuel as it is cheaper than wood/coal. Iron scrap is sold in the junk market from where it is resold to recycling industries. Paper waste is recycled, minimizing the virgin material used for producing new paper products. Iron and plastic drums are returned to the chemical industries for refilling, thus decreasing the cost of dyes and decreasing the demand for new drums. Cutting rags are used for making different things such as ropes and underlay, it is also shredded and used as fillings for pillows and mattresses, thus improving waste management, reducing cost and minimizing the need for virgin material. As no system of quality control and no monitoring of subsequent products exist there is a need to carry out quality control and monitoring.
Energy content of municipal solid waste bales.
Ozbay, Ismail; Durmusoglu, Ertan
2013-07-01
Baling technology is a preferred method for temporary storage of municipal solid waste (MSW) prior to final disposal. If incineration is intended for final disposal of the bales, the energy content of the baled MSW gains importance. In this study, nine cylindrical bales containing a mix of different waste materials were constructed and several parameters, including total carbon (TC), total organic carbon (TOC), total Kjeldahl nitrogen, moisture content, loss on ignition, gross calorific value and net calorific value (NCV) were determined before the baling and at the end of 10 months of storage. In addition, the relationships between the waste materials and the energy contents of the bales were investigated by the bivariate correlation analyses. At the end, linear regression models were developed in order to forecast the decrease of energy content during storage. While the NCVs of the waste materials before the baling ranged between 6.2 and 23.7 MJ kg(-1) dry basis, they ranged from 1.0 to 16.4 MJ kg(-1) dry basis at the end of the storage period. Moreover, food wastes exhibited the highest negative correlation with NCVs, whereas plastics have significant positive correlation with both NCVs and TCs. Similarly, TOCs and carbon/nitrogen ratios decreased with the increase in food amounts inside the bales. In addition, textile, wood and yard wastes increase the energy content of the bales slightly over the storage period.
[Agroindustrial wastes methanization and bacterial composition in anaerobic digestion].
González-Sánchez, María E; Pérez-Fabiel, Sergio; Wong-Villarreal, Arnoldo; Bello-Mendoza, Ricardo; Yañez-Ocampo, Gustavo
2015-01-01
The tons of organic waste that are annually generated by agro-industry, can be used as raw material for methane production. For this reason, it is important to previously perform biodegradability tests to organic wastes for their full scale methanization. This paper addresses biodegradability, methane production and the behavior of populations of eubacteria and archaeabacteria during anaerobic digestion of banana, mango and papaya agroindustrial wastes. Mango and banana wastes had higher organic matter content than papaya in terms of their volatile solids and total solid rate (94 and 75% respectively). After 63 days of treatment, the highest methane production was observed in banana waste anaerobic digestion: 63.89ml CH4/per gram of chemical oxygen demand of the waste. In the PCR-DGGE molecular analysis, different genomic footprints with oligonucleotides for eubacteria and archeobacteria were found. Biochemical methane potential results proved that banana wastes have the best potential to be used as raw material for methane production. The result of a PCR- DGGE analysis using specific oligonucleotides enabled to identify the behavior of populations of eubacteria and archaeabacteria present during the anaerobic digestion of agroindustrial wastes throughout the process. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
SURVEY OF SOLIDIFICATION/STABILIZATION TECHNOLOGY FOR HAZARDOUS INDUSTRIAL WASTES
Stabilization/solidification or fixation is a process for treating industrial solid wastes (primarily sludges) that contain hazardous constituents to prevent dissolution and loss of toxic materials into the environment. Most of these treatment processes are designed to produce a ...
Cannon shredding of municipal solid waste for the preparation of biological feedstock
NASA Astrophysics Data System (ADS)
Burke, J.
1981-04-01
Explosive decompression as a method of size reduction of materials found in municipal solid waste (MSW) was studied and preliminary data related to the handling and wet separation of exploded material was gathered. Steam was emphasized as the source of pressure. Municipal refuse was placed in an 8-ft long, 10.75-in. ID steel cannon which was sealed and pressurized. After an appropriate time, the cannon muzzle closure was opened and the test material expelled from the cannon through a constrictive orifice, resulting in explosive decompression. Flash evaporation of pressurized saturated water, expansion of steam, and the strong turbulence at the cannon muzzle accomplished size reduction. Hydraulic processing is shown to be an effective technique for separating heavy and light fractions.
Compacting biomass waste materials for use as fuel
NASA Astrophysics Data System (ADS)
Zhang, Ou
Every year, biomass waste materials are produced in large quantity. The combustibles in biomass waste materials make up over 70% of the total waste. How to utilize these waste materials is important to the nation and the world. The purpose of this study is to test optimum processes and conditions of compacting a number of biomass waste materials to form a densified solid fuel for use at coal-fired power plants or ordinary commercial furnaces. Successful use of such fuel as a substitute for or in cofiring with coal not only solves a solid waste disposal problem but also reduces the release of some gases from burning coal which cause health problem, acid rain and global warming. The unique punch-and-die process developed at the Capsule Pipeline Research Center, University of Missouri-Columbia was used for compacting the solid wastes, including waste paper, plastics (both film and hard products), textiles, leaves, and wood. The compaction was performed to produce strong compacts (biomass logs) under room temperature without binder and without preheating. The compaction conditions important to the commercial production of densified biomass fuel logs, including compaction pressure, pressure holding time, back pressure, moisture content, particle size, binder effects, and mold conditions were studied and optimized. The properties of the biomass logs were evaluated in terms of physical, mechanical, and combustion characteristics. It was found that the compaction pressure and the initial moisture content of the biomass material play critical roles in producing high-quality biomass logs. Under optimized compaction conditions, biomass waste materials can be compacted into high-quality logs with a density of 0.8 to 1.2 g/cm3. The logs made from the combustible wastes have a heating value in the range 6,000 to 8,000 Btu/lb which is only slightly (10 to 30%) less than that of subbituminous coal. To evaluate the feasibility of cofiring biomass logs with coal, burn tests were conducted in a stoke boiler. A separate burning test was also carried out by burning biomass logs alone in an outdoor hot-water furnace for heating a building. Based on a previous coal compaction study, the process of biomass compaction was studied numerically by use of a non-linear finite element code. A constitutive model with sufficient generality was adapted for biomass material to deal with pore contraction during compaction. A contact node algorithm was applied to implement the effect of mold wall friction into the finite element program. Numerical analyses were made to investigate the pressure distribution in a die normal to the axis of compaction, and to investigate the density distribution in a biomass log after compaction. The results of the analyses gave generally good agreement with theoretical analysis of coal log compaction, although assumptions had to be made about the variation in the elastic modulus of the material and the Poisson's ratio during the compaction cycle.
Vegas, I; Ibañez, J A; San José, J T; Urzelai, A
2008-01-01
The objective of the study is to analyze the technical suitability of using secondary materials from three waste flows (construction and demolition waste (CDW), Waelz slag and municipal solid waste incineration (MSWI) bottom ash), under the regulations and standards governing the use of materials for road construction. A detailed technical characterization of the materials was carried out according to Spanish General Technical Specifications for Road Construction (PG3). The results show that Waelz slag can be adequate for using in granular structural layers, while CDW fits better as granular material in roadbeds. Likewise, fresh MSWI bottom ash can be used as roadbed material as long as it does not contain a high concentration of soluble salts. This paper also discusses the adequacy of using certain traditional test methods for natural soils when characterizing secondary materials for use as aggregates in road construction.
Ribé, V; Nehrenheim, E; Odlare, M
2014-10-01
Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction as well as a source of renewable energy. In the process fly and bottom ash is generated as a waste material. The ash residue may vary greatly in composition depending on the type of waste incinerated and it can contain elevated levels of harmful contaminants such as heavy metals. In this study, the ecotoxicity of a weathered, untreated incineration bottom ash was characterized as defined by the H14 criterion of the EU Waste Framework Directive by means of an elemental analysis, leaching tests followed by a chemical analysis and a combination of aquatic and solid-phase bioassays. The experiments were conducted to assess the mobility and bioavailability of ash contaminants. A combination of aquatic and terrestrial bioassays was used to determine potentially adverse acute effects of exposure to the solid ash and aqueous ash leachates. The results from the study showed that the bottom ash from a municipal waste incineration plant in mid-Sweden contained levels of metals such as Cu, Pb and Zn, which exceeded the Swedish EPA limit values for inert wastes. The chemical analysis of the ash leachates showed high concentrations of particularly Cr. The leachate concentration of Cr exceeded the limit value for L/S 10 leaching for inert wastes. Filtration of leachates prior to analysis may have underestimated the leachability of complex-forming metals such as Cu and Pb. The germination test of solid ash and ash leachates using T. repens showed a higher inhibition of seedling emergence of seeds exposed to the solid ash than the seeds exposed to ash leachates. This indicated a relatively low mobility of toxicants from the solid ash into the leachates, although some metals exceeded the L/S 10 leaching limit values for inert wastes. The Microtox® toxicity test showed only a very low toxic response to the ash leachate exposure, while the D. magna immobility test showed a moderately high toxic effect of the ash leachates. Overall, the results from this study showed an ecotoxic effect of the solid MSW bottom ash and the corresponding ash leachates. The material may therefore pose an environmental risk if used in construction applications. However, as the testing of the solid ash was rather limited and the ash leachate showed an unusually high leaching of Cr, further assessments are required in order to conclusively characterize the bottom ash studied herein as hazardous according to the H14 criterion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Grout formulation for disposal of low-level and hazardous waste streams containing fluoride
McDaniel, E.W.; Sams, T.L.; Tallent, O.K.
1987-06-02
A composition and related process for disposal of hazardous waste streams containing fluoride in cement-based materials is disclosed. the presence of fluoride in cement-based materials is disclosed. The presence of fluoride in waste materials acts as a set retarder and as a result, prevents cement-based grouts from setting. This problem is overcome by the present invention wherein calcium hydroxide is incorporated into the dry-solid portion of the grout mix. The calcium hydroxide renders the fluoride insoluble, allowing the grout to set up and immobilize all hazardous constituents of concern. 4 tabs.
Incentivizing secondary raw material markets for sustainable waste management.
Schreck, Maximilian; Wagner, Jeffrey
2017-09-01
Notwithstanding several policy initiatives in many countries over a number of years, there remains a general sense that too much municipal solid waste is generated and that too much of the waste that is generated is landfilled. There is an emerging consensus that a sustainable approach to waste management requires further development of secondary raw material markets. The purpose of this paper is to propose a theoretical economic model that focuses upon this stage of a sustainable waste management program and explores policy options that could motivate efficiency in secondary raw material markets. In particular, we show how firm profit and social welfare optimizing objectives can be reconciled in a two-product market of waste management processes: landfilling and material reclamation. Our results provide theoretical support for building out recent Circular Economy initiatives as well as for the relatively recent emergence of landfill mining as a means for procuring secondary raw materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
National markets for organic waste-derived fertilizers and soil amendments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, T.J.; Pierzynski, G.M.; Pepperman, R.E.
1995-12-31
The last decade has seen enormous growth in the U.S. in the recycling of organic waste materials like sewage sludge, manures, yard waste, solid waste and various industrial wastes. This has been prompted by real or perceived shortages of landfill capacity, state and federal regulations favoring beneficial use of organic wastes, and public support for recycling. Use of fertilizers and soil amendments derived from these wastes has been stimulated by favorable supply-side economics, a shift to organic/sustainable agriculture, and water quality concerns that favor slow-release nutrient sources. This paper summarizes the properties and beneficial use attributes of the various wastesmore » and their derived products, markets for these materials, and constraints/strategies for market penetration.« less
FFTF disposable solid waste cask
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, J. D.; Goetsch, S. D.
1983-01-01
Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in thismore » paper.« less
Reuse of ornamental rock-cutting waste in aluminous porcelain.
Silva, M A; Paes, H R; Holanda, J N F
2011-03-01
Large amounts of solid wastes are discarded in the ornamental rocks industry. This work investigates the incorporation of ornamental rock-cutting waste as a raw material into an aluminous porcelain body, replacing natural feldspar material by up to 35 wt.%. Formulations containing rock-cutting waste were pressed and sintered at 1350 °C. The porcelain pieces were tested to determine their properties (linear shrinkage, water absorption, apparent density, mechanical strength, and electrical resistivity). Development of the microstructure was followed by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. The results showed that ornamental rock-cutting waste could be used in aluminous porcelains, in the range up to 10 wt.%, as a partial replacement for traditional flux material, resulting in a valid route for management of this abundant waste. Copyright © 2010 Elsevier Ltd. All rights reserved.
Pontoni, Ludovico; Panico, Antonio; Matanò, Alessia; van Hullebusch, Eric D; Fabbricino, Massimiliano; Esposito, Giovanni; Pirozzi, Francesco
2017-12-06
A novel modification of the sample preparation procedure for the Folin-Ciocalteu colorimetric assay for the determination of total phenolic compounds in natural solid and semisolid organic materials (e.g., foods, organic solid waste, soils, plant tissues, agricultural residues, manure) is proposed. In this method, the sample is prepared by adding sodium sulfate as a solid diluting agent before homogenization. The method allows for the determination of total phenols (TP) in samples with high solids contents, and it provides good accuracy and reproducibility. Additionally, this method permits analyses of significant amounts of sample, which reduces problems related to heterogeneity. We applied this method to phenols-rich lignocellulosic and humic-like solids and semisolid samples, including rice straw (RS), peat-rich soil (PS), and food waste (FW). The TP concentrations measured with the solid dilution (SD) preparation were substantially higher (increases of 41.4%, 15.5%, and 59.4% in RS, PS and FW, respectively) than those obtained with the traditional method (solids suspended in water). These results showed that the traditional method underestimates the phenolic contents in the studied solids.
Assessment and quantification of plastics waste generation in major 60 cities of India.
Nalini, R; Srinivasulu, B; Shit, Subhas C; Nigam, Suneel Kumar; Akolkar, A B; Dwivedfi, R K
2013-04-01
Polymers or plastics materials registered rapid growth in 1970s, 1980s and 1990s at the rate of 2-2.5 times the GDP growth in India. The demand for plastic raw material got more than doubled from 3.3 Million Metric Ton to 6.8 Million Metric Tons in 2010 attributed mainly to rapid urbanization, spread of retail chains, plastics based packaging from grocery to food and vegetable products to cosmetics and consumer items. Plastics packages have its merits over many of conventional materials in the related sector but unless they are collected back effectively after their use to go into recycling process, they become an eyesore in the stream of Municipal Solid Waste (MSW) due to high visibility. As the synthetic and conventional plastics are non-biodegradable in nature, these remain in the dump yards/ landfills for several years, if not collected properly. Due to non- biodegradability, plastics waste remains in the environment for several years, if not collected and disposing plastics wastes at landfills are unsafe since toxic chemicals leach out into the soil and as they contaminate soil and underground water quality. The municipal solid waste also increasing day-by-day due to the inefficient source collection, segregation and transmission of plastics waste for recycling and reusing. In order to find out the realistic plastics waste generation, a study on assessment and quantification of plastics waste has been carried out by CPCB in collaboration with CIPET on selected 60 major cities of India.
Municipal waste management in Sicily: practices and challenges.
Messineo, Antonio; Panno, Domenico
2008-01-01
There are numerous problems yet to be solved in waste management and although efforts towards waste recovery and recycling have been made, landfills are still the most common method used in the EU and many other industrialised countries. Thermal disposal, particularly incineration, is a tested and viable alternative. In 2004, only 11% of the annual waste production of Italy was incinerated. Sicily, with over five million inhabitants, is the second largest region in Italy where waste management is now a critical problem. The use of landfills can no longer be considered a satisfactory environmental solution; therefore, new methods have to be chosen and waste-to-energy plants could provide an answer. This paper gives details of municipal solid waste management in Sicily following a new Waste Management Plan. Four waste-to-energy plants will generate electricity through a steam cycle; the feedstock will become the residue after material recovery, which is calculated as 20-40% weight of the collected municipal solid waste.
ELECTRICAL LEAK LOCATION METHOD FOR GEOMEMBRANE LINERS
Geomembrane liners are sheets of polymeric materials used to prevent leakage of waste from and infiltration of rainwater into solid waste landfills and surface impoundments. The method described consists of voltage applied between the liner and the earth under the liner which pro...
Evaluating the use of waste-to-energy bottom ash as road construction materials : [summary].
DOT National Transportation Integrated Search
2014-02-01
Municipal solid waste incineration (MSWI) generates millions of tons of ash each year. In European and Asian countries, this ash has been recycled into road beds, asphalt paving, and concrete products encouraged and enforced by standards, managem...
Interactive analysis of waste recycling and energy recovery program in a small-scale incinerator.
Chen, Jeng-Chung; Chen, Wei-Hsin; Chang, Ni-Bin; Davila, Eric; Tsai, Cheng-Hsien
2005-09-01
Conflicting goals affecting solid waste management are explored in this paper to find the best implementation of resource recovery with a small-scale waste-to-energy process. Recycling paper and plastic material often leaves a shortage of thermal energy to support incineration that forces operators to supplement the process with auxiliary fuels. Although there are considerable profits to be made from material recovery, the increase of fuel usage causes conflict given that it is cost prohibitive. A series of trials performed on a small-scale 1.5-t/day incineration plant with a cyclone heat recovery system found that material recycling can impede performance. Experimental results are expressed as empirical regression formulas with regard to combustion temperature, energy transfer, and heat recovery. Process optimization is possible if the waste moisture content remains <30%. To test the robustness of the optimization analysis, a series of sensitivity analyses clarify the extent of material recycling needed with regard to plastic, paper, and metal. The experiments also test whether the moisture in the waste would decrease when recycling paper because of its exceptional capacity to absorb moisture. Results show that recycling paper is strongly recommended when the moisture content is >20%, whereas plastic recycling is not necessary at that moisture condition. Notably, plastic recovery reduces the heat needed to vaporize the water content of the solid waste, thus it is recommended only when the moisture content is <10%. For above-normal incineration temperatures, plastic recycling is encouraged, because it removes excess energy. Metal is confirmed as an overall priority in material recycling regardless of the moisture content of the incoming waste.
Routine and Recurring Small Transient and New Test Missions Environmental Assessment
2008-04-01
AFB and National Aeronautics and Space Administration Dryden Flight Research Center ( NASA DFRC) remains constant. Some government personnel would be...hazardous materials, hazardous waste, and solid waste originating from AFFTC and NASA DFRC flight operation are managed, used, and disposed of within...the geographic boundaries of Edwards AFB. Edwards AFB, including NASA DFRC, uses a wide variety of hazardous materials in support of research
Characterization of Products from Fast Micropyrolysis of Municipal Solid Waste Biomass
Klemetsrud, Bethany; Ukaew, Suchada; Thompson, Vicki S.; ...
2016-09-05
Biomass feedstock costs remain one of the largest impediments to biofuel production economics. Municipal solid waste (MSW) represents an attractive feedstock with year-round availability, an established collection infrastructure paid for by waste generators, low cost and the potential to be blended with higher cost feedstocks to reduce overall feedstock costs. Paper waste, yard waste and construction and demolition waste (C&D) were examined for their applicability in the pyrolysis conversion pathway. Paper waste consisted of non-recyclable paper such as mixed low grade paper, food and beverage packaging, kitchen paper wastes and coated paper; yard waste consisted of grass clippings and C&Dmore » wastes consisted of engineered wood products obtained from a construction waste landfill. We tested the waste materials for thermochemical conversion potential using a bench scale fast micro-pyrolysis process. Bio-oil yields were the highest for the C&D materials and lowest for the paper waste. The C&D wastes had the highest level of lignin derived compounds (phenolic and cyclics) while the paper waste had higher levels of carbohydrate derived compounds (aldehydes, organic acids, ketones, alcohols and sugar derived). But, the paper material had higher amounts of lignin derived compounds than expected based upon lignin content that is likely due to the presence of polyphenolic resins used in paper processing. The paper and yard wastes had significantly higher levels of ash content than the C&D wastes (14-15% versus 0.5-1.3%), which further correlated to higher levels of alkali and alkaline earth metals, which are known to reduce pyrolysis bio-oil yields. There appeared to be an inverse correlation of both calcium and potassium content with the amount of chromatographic product peaks, indicative of cracking reactions occurring during product formation. Furthermore the effect of acid washing was evaluated for grass clipping and waste paper and the bio-oil yield was increased from 58% to 73% and 67% to 73%, respectively.« less
Characterization of Products from Fast Micropyrolysis of Municipal Solid Waste Biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klemetsrud, Bethany; Ukaew, Suchada; Thompson, Vicki S.
Biomass feedstock costs remain one of the largest impediments to biofuel production economics. Municipal solid waste (MSW) represents an attractive feedstock with year-round availability, an established collection infrastructure paid for by waste generators, low cost and the potential to be blended with higher cost feedstocks to reduce overall feedstock costs. Paper waste, yard waste and construction and demolition waste (C&D) were examined for their applicability in the pyrolysis conversion pathway. Paper waste consisted of non-recyclable paper such as mixed low grade paper, food and beverage packaging, kitchen paper wastes and coated paper; yard waste consisted of grass clippings and C&Dmore » wastes consisted of engineered wood products obtained from a construction waste landfill. We tested the waste materials for thermochemical conversion potential using a bench scale fast micro-pyrolysis process. Bio-oil yields were the highest for the C&D materials and lowest for the paper waste. The C&D wastes had the highest level of lignin derived compounds (phenolic and cyclics) while the paper waste had higher levels of carbohydrate derived compounds (aldehydes, organic acids, ketones, alcohols and sugar derived). But, the paper material had higher amounts of lignin derived compounds than expected based upon lignin content that is likely due to the presence of polyphenolic resins used in paper processing. The paper and yard wastes had significantly higher levels of ash content than the C&D wastes (14-15% versus 0.5-1.3%), which further correlated to higher levels of alkali and alkaline earth metals, which are known to reduce pyrolysis bio-oil yields. There appeared to be an inverse correlation of both calcium and potassium content with the amount of chromatographic product peaks, indicative of cracking reactions occurring during product formation. Furthermore the effect of acid washing was evaluated for grass clipping and waste paper and the bio-oil yield was increased from 58% to 73% and 67% to 73%, respectively.« less
Balakrishnan, K; Olutoye, M A; Hameed, B H
2013-01-01
The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rapid measurement of the yield stress of anaerobically-digested solid waste using slump tests.
Garcia-Bernet, D; Loisel, D; Guizard, G; Buffière, P; Steyer, J P; Escudié, R
2011-04-01
The anaerobic digestion of solid waste is usually performed using dry or semi-dry technology. Incoming waste and fermenting digestate are pasty media and thus, at the industrial scale, their suitability for pumping and mixing is a prerequisite at the industrial scale. However, their rheology has been poorly characterised in the literature because there is no suitable experimental system for analysing heterogeneous media composed of coarse particles. We have developed a practical rheometrical test, a "slump test", for the analysis of actual digested solid waste. It makes it possible to estimate yield stress from the final slump height. From the slump behavior, we conclude that digestates behave as visco-elastic materials. The yield stress of different digested waste was measured between 200 and 800Pa. We show that the media containing smaller particles or with higher moisture content are characterised by smaller yield stresses. This study thus demonstrates the impact of the origin of the digestate on the yield stress. Copyright © 2010 Elsevier Ltd. All rights reserved.
Inorganic, Radioisotopic, and Organic Analysis of 241-AP-101 Tank Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiskum, S.K.; Bredt, P.R.; Campbell, J.A.
2000-10-17
Battelle received five samples from Hanford waste tank 241-AP-101, taken at five different depths within the tank. No visible solids or organic layer were observed in the individual samples. Individual sample densities were measured, then the five samples were mixed together to provide a single composite. The composite was homogenized and representative sub-samples taken for inorganic, radioisotopic, and organic analysis. All analyses were performed on triplicate sub-samples of the composite material. The sample composite did not contain visible solids or an organic layer. A subsample held at 10 C for seven days formed no visible solids.
SEM Model Medical Solid Waste Hospital Management In Medan City
NASA Astrophysics Data System (ADS)
Simarmata, Verawaty; Pandia, Setiaty; Mawengkang, Herman
2018-01-01
In daily activities, hospitals, as one of the important health care unit, generate both medical solid waste and non-medical solid waste. The occurrence of medical solid waste could be from the results of treatment activities, such as, in the treatment room for a hospital inpatient, general clinic, a dental clinic, a mother and child clinic, laboratories and pharmacies. Most of the medical solid waste contains infectious and hazardous materials. Therefore it should be managed properly, otherwise it could be a source of new infectious for the community around the hospital as well as for health workers themselves. Efforts surveillance of various environmental factors need to be applied in accordance with the principles of sanitation focuses on environmental cleanliness. One of the efforts that need to be done in improving the quality of the environment is to undertake waste management activities, because with proper waste management is the most important in order to achieve an optimal degree of human health. Health development in Indonesian aims to achieve a future in which the Indonesian people live in a healthy environment, its people behave clean and healthy, able to reach quality health services, fair and equitable, so as to have optimal health status, health development paradigm anchored to the healthy. The healthy condition of the individual and society can be influenced by the environment. Poor environmental quality is a cause of various health problems. Efforts surveillance of various environmental factors need to be applied in accordance with the principles of sanitation focuses on environmental cleanliness. This paper proposes a model for managing the medical solid waste in hospitals in Medan city, in order to create healthy environment around hospitals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Programs
2010-10-04
The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) ismore » the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is used throughout this document to describe RACM. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the DOE/NV-325, Nevada National Security Site Waste Acceptance Criteria (NNSSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, or contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, or small quantities of LLHB demolition and construction waste and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NNSSWAC.« less
Solid waste management in Abuja, Nigeria.
Imam, A; Mohammed, B; Wilson, D C; Cheeseman, C R
2008-01-01
The new city of Abuja provided an opportunity to avoid some of the environmental problems associated with other major cities in Africa. The current status of solid waste management in Abuja has been reviewed and recommendations for improvements are made. The existing solid waste management system is affected by unfavourable economic, institutional, legislative, technical and operational constraints. A reliable waste collection service is needed and waste collection vehicles need to be appropriate to local conditions. More vehicles are required to cope with increasing waste generation. Wastes need to be sorted at source as much as possible, to reduce the amount requiring disposal. Co-operation among communities, the informal sector, the formal waste collectors and the authorities is necessary if recycling rates are to increase. Markets for recycled materials need to be encouraged. Despite recent improvements in the operation of the existing dumpsite, a properly sited engineered landfill should be constructed with operation contracted to the private sector. Wastes dumped along roads, underneath bridges, in culverts and in drainage channels need to be cleared. Small-scale waste composting plants could promote employment, income generation and poverty alleviation. Enforcement of waste management legislation and a proper policy and planning framework for waste management are required. Unauthorized use of land must be controlled by enforcing relevant clauses in development guidelines. Accurate population data is necessary so that waste management systems and infrastructure can be properly planned. Funding and affordability remain major constraints and challenges.
2014-08-30
asbestos containing material, pathological wastes, contaminated soils, glass waste, hazardous fly ash, solvents, ceramic waste, incinerator ash, paints...industrial waste into synthetic gas (Syn-Gas) and slag . For this study, the focus will be on the disposal of municipal solid waste. However, there is...Chemical Reactor The two primary by-products resulting from the gasification process are molten slag , which is collected through a portal at the base
Urban-rural mining: waste utilization in Guangdong, China
NASA Astrophysics Data System (ADS)
Zhao, D. D.; Huhetaoli; Yuan, H. R.; Tang, Z. H.
2018-05-01
Attitudes towards waste have changed gradually in view of the environmental pollution created and the potential of waste as a resource. This has led to the city and countryside of China being viewed as a complete "urban-rural mine" resources are extracted from what was once considered waste. Guangdong is a developed province and annual waste generation has recently exceeded 300 million tons. The waste distribution characteristics are as follows: most industrial solid waste is produced in the Pearl River Delta and Mountainous Region, waste associated with domestic activities is concentrated in the Pearl River Delta, and agricultural waste is found throughout the province. The ratios of material recycling and energy recovery are 58% and 11%, respectively, of collected waste. Recycled products include construction material, artificial boards, fuel, plastic, metal, chemicals, oil, and fibers. Energy is recovered by generating electricity from domestic waste, landfill gas, and forest and crop residue.
Material flow and sustainability analyses of biorefining of municipal solid waste.
Sadhukhan, Jhuma; Martinez-Hernandez, Elias
2017-11-01
This paper presents material flow and sustainability analyses of novel mechanical biological chemical treatment system for complete valorization of municipal solid waste (MSW). It integrates material recovery facility (MRF); pulping, chemical conversion; effluent treatment plant (ETP), anaerobic digestion (AD); and combined heat and power (CHP) systems producing end products: recyclables (24.9% by mass of MSW), metals (2.7%), fibre (1.5%); levulinic acid (7.4%); recyclable water (14.7%), fertiliser (8.3%); and electricity (0.126MWh/t MSW), respectively. Refuse derived fuel (RDF) and non-recyclable other waste, char and biogas from MRF, chemical conversion and AD systems, respectively, are energy recovered in the CHP system. Levulinic acid gives profitability independent of subsidies; MSW priced at 50Euro/t gives a margin of 204Euro/t. Global warming potential savings are 2.4 and 1.3kg CO 2 equivalent per kg of levulinic acid and fertiliser, and 0.17kg CO 2 equivalent per MJ of grid electricity offset, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fly ash in landfill top covers - a review.
Brännvall, E; Kumpiene, J
2016-01-01
Increase of energy recovery from municipal solid waste by incineration results in the increased amounts of incineration residues, such as fly ash, that have to be taken care of. Material properties should define whether fly ash is a waste or a viable resource to be used for various applications. Here, two areas of potential fly ash application are reviewed: the use of fly ash in a landfill top cover either as a liner material or as a soil amendment in vegetation layer. Fly ashes from incineration of three types of fuel are considered: refuse derived fuel (RDF), municipal solid waste incineration (MSWI) and biofuel. Based on the observations, RDF and MSWI fly ash is considered as suitable materials to be used in a landfill top cover liner. Whereas MSWI and biofuel fly ashes based on element availability for plant studies, could be considered suitable for the vegetation layer of the top cover. Responsible application of MSWI ashes is, however, warranted in order to avoid element accumulation in soil and elevation of background values over time.
40 CFR Appendix V to Part 261 - Reserved
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Reserved V Appendix V to Part 261 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION... Materials Wording of the instruments. Appendix V to Part 261 [Reserved for Infectious Waste Treatment...
40 CFR Appendix V to Part 261 - Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Reserved V Appendix V to Part 261 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION... Materials Wording of the instruments. Appendix V to Part 261 [Reserved for Infectious Waste Treatment...
40 CFR Appendix V to Part 261 - Reserved
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Reserved V Appendix V to Part 261 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION... Materials Wording of the instruments. Appendix V to Part 261 [Reserved for Infectious Waste Treatment...
40 CFR Appendix V to Part 261 - Reserved
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Reserved V Appendix V to Part 261 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION... Materials Wording of the instruments. Appendix V to Part 261 [Reserved for Infectious Waste Treatment...
40 CFR Appendix V to Part 261 - Reserved
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Reserved V Appendix V to Part 261 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION... Materials Wording of the instruments. Appendix V to Part 261 [Reserved for Infectious Waste Treatment...
Separate collection of plastic waste, better than technical sorting from municipal solid waste?
Feil, Alexander; Pretz, Thomas; Jansen, Michael; Thoden van Velzen, Eggo U
2017-02-01
The politically preferred solution to fulfil legal recycling demands is often implementing separate collection systems. However, experience shows their limitations, particularly in urban centres with a high population density. In response to the European Union landfill directive, mechanical biological waste treatment plants have been installed all over Europe. This technology makes it possible to retrieve plastic waste from municipal solid waste. Operators of mechanical biological waste treatment plants, both in Germany and the Netherlands, have started to change their mechanical separation processes to additionally produce plastic pre-concentrates. Results from mechanical biological waste treatment and separate collection of post-consumer packaging waste will be presented and compared. They prove that both the yield and the quality of plastic waste provided as feedstock for the production of secondary plastic raw material are largely comparable. An economic assessment shows which conditions for a technical sorting plant are economically attractive in comparison to separate collection systems. It is, however, unlikely that plastic recycling will ever reach cost neutrality.
Oduro-Appiah, Kwaku; Scheinberg, Anne; Mensah, Anthony; Afful, Abraham; Boadu, Henry Kofi; de Vries, Nanne
2017-11-01
This article assesses the performance of the city of Accra, Ghana, in municipal solid waste management as defined by the integrated sustainable waste management framework. The article reports on a participatory process to socialise the Wasteaware benchmark indicators and apply them to an upgraded set of data and information. The process has engaged 24 key stakeholders for 9 months, to diagram the flow of materials and benchmark three physical components and three governance aspects of the city's municipal solid waste management system. The results indicate that Accra is well below some other lower middle-income cities regarding sustainable modernisation of solid waste services. Collection coverage and capture of 75% and 53%, respectively, are a disappointing result, despite (or perhaps because of) 20 years of formal private sector involvement in service delivery. A total of 62% of municipal solid waste continues to be disposed of in controlled landfills and the reported recycling rate of 5% indicates both a lack of good measurement and a lack of interest in diverting waste from disposal. Drains, illegal dumps and beaches are choked with discarded bottles and plastic packaging. The quality of collection, disposal and recycling score between low and medium on the Wasteaware indicators, and the scores for user inclusivity, financial sustainability and local institutional coherence are low. The analysis suggests that waste and recycling would improve through greater provider inclusivity, especially the recognition and integration of the informal sector, and interventions that respond to user needs for more inclusive decision-making.
Coelho, Alexa Pupiara Flores; Beck, Carmem Lúcia Colomé; Silva, Rosângela Marion da; Prestes, Francine Cassol; Camponogara, Silviamar; Peserico, Anahlú
2017-04-01
describe elements that promote satisfaction and dissatisfaction in the work of recyclable solid waste segregators and conduct a nursing action focused on these elements. qualitative research, convergent-care, conducted with members of the cooperative. Data production occurred during 2015 through participation observation, semi-structured interviews, and a convergence group. Analysis comprised the phases Apprehension, Synthesis, Theorization, and Transference. four categories emerged. They showed satisfaction and dissatisfaction related to identification with tasks and work content, material and personal gains obtained from solid waste segregation, prejudice, lack of appreciation, and difficulties in interpersonal relationships. This last item, due to its importance, received a nursing action. the study contributed to the advancement of knowledge and the association of possibilities between the research performance and nursing care for workers.
2010-01-21
Headquarters AFRC Campus 2 January 21, 2010 ( pest /vegetation control and oil spill dispersal) using...activities is generated at the Proposed Action Site. This solid waste includes kitchen waste, paper, plastics, metal and glass containers, and standard...includes kitchen waste, paper, plastics, metal and glass containers, and standard housekeeping materials, and is handled in accordance with Robins
2009-04-01
at hospitals, at schools,” or wherever there are people creating masses of trash.5 Pyrolytic Gasification Pyrolytic gasification is not a new...prevalent with both. Gasification is . . . the chemical reaction and molecular breakdown or degradation of materials. The first pyrolytic gasification...dealing with about 2 tons of mixed solid waste per day, will destroy wood, paper card, food, plastics, and sanitary, clinical, and oil waste and
Effect of storage conditions on the calorific value of municipal solid waste.
Nzioka, Antony Mutua; Hwang, Hyeon-Uk; Kim, Myung-Gyun; Yan, Cao Zheng; Lee, Chang-Soo; Kim, Young-Ju
2017-08-01
Storage conditions are considered to be an important factor as far as waste material characteristics are concerned. This experimental investigation was conducted using municipal solid waste (MSW) with a high moisture content and varying composition of organic waste. The objective of this study was to understand the effect of storage conditions and temperature on the moisture content and calorific value of the waste. Samples were subjected to two different storage conditions and investigated at specified temperatures. The composition of sample materials investigated was varied for each storage condition and temperature respectively. Gross calorific value was determined experimentally while net calorific value was calculated using empirical formulas proposed by other researchers. Results showed minimal changes in moisture content as well as in gross and net calorific values when the samples were subjected to sealed storage conditions. Moisture content reduced due to the ventilation process and the rate of moisture removal increased with a rise in storage temperature. As expected, rate of moisture removal had a positive effect on gross and net calorific values. Net calorific values also increased at varying rates with a simultaneous decrease in moisture content. Experimental investigation showed the effectiveness of ventilation in improving the combustion characteristics of the waste.
Engineering development and demonstration of DETOX{sup SM} wet oxidation for mixed waste treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.; Goldblatt, S.D.; Moslander, J.E.
1997-12-01
DETOX{sup SM}, a catalyzed chemical oxidation process, is under development for treatment of hazardous and mixed wastes at Department of Energy sites. To support this effort, developmental engineering studies have been formed for aspects of the process to help ensure safe and effective operation. Subscale agitation studies have been preformed to identify a suitable mixing head and speed for the primary reaction vessel agitator. Mechanisms for feeding solid waste materials to the primary reaction vessel have been investigated. Filtration to remove solid field process residue, and the use of various filtration aids, has been studied. Extended compatibility studies on themore » materials of construction have been performed. Due to a change to Rocky Flats Environmental Technology Site (RFETS) for the mixed waste portion of the demonstration, types of wastes suitable and appropriate for treatment at RFETS had to be chosen. A Prototype unit has been fabricated and will be demonstrated on hazardous and mixed wastes at Savannah River Site (SRS) and RFETS during 1997 and 1998. The unit is in shakedown testing at present. Data validation and an engineering evaluation will be performed during the demonstration.« less
40 CFR 246.202-6 - Recommended procedures: Cost analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., storage and transportation costs have been made, and estimated tonnages of both recoverable material and...) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures... paper sales and savings from diverting recycled materials from disposal. Potential costs to upgrade...
40 CFR 246.201-7 - Recommended procedures: Cost analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., storage and transportation costs have been made, and estimated tonnages of both recoverable materials and...) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures... paper sales and savings from diverting recycled materials from disposal. Potential costs to upgrade...
Materials in the U.S. Municipal Waste Stream, 1960 to 2012 (in tons)
The U.S. Environmental Protection Agency (EPA) has collected and reported data on the generation and disposal of waste in the United States for more than 30 years. We use this information to measure the success of waste reduction and recycling programs across the country. Our trash, or municipal solid waste (MSW), is made up of the things we commonly use and then throw away. These materials include items such as packaging, food scraps, grass clippings, sofas, computers, tires, and refrigerators. MSW does not include industrial, hazardous, or construction waste. The data in Materials and Products in the Municipal Waste Stream, 1960 to 2012, provides estimated data in thousands of tons discarded after recycling and compost recovery for the years 1960, 1970, 1980, 1990, 2000, 2005, 2008, 2010, 2011, and 2012. In this data set, discards include combustion with energy recovery. This data table does not include construction & demolition debris, industrial process wastes, or certain other wastes. Details may not add to totals due to rounding.
Abd Aziz, Mohd Aizudin; Md Isa, Khairuddin; Ab Rashid, Radzuwan
2017-06-01
This article aims to provide insights into the factors that contribute to the separation efficiency of solid particles. In this study, a pneumatic jigging technique was used to assess the separation of solid waste materials that consisted of copper, glass and rubber insulator. Several initial experiments were carried out to evaluate the strengths and limitations of the technique. It is found that despite some limitations of the technique, all the samples prepared for the experiments were successfully separated. The follow-up experiments were then carried out to further assess the separation of copper wire and rubber insulator. The effects of air flow and pulse rates on the separation process were examined. The data for these follow-up experiments were analysed using a sink float analysis technique. The analysis shows that the air flow rate was very important in determining the separation efficiency. However, the separation efficiency may be influenced by the type of materials used.
New materials for thermal energy storage in concentrated solar power plants
NASA Astrophysics Data System (ADS)
Guerreiro, Luis; Collares-Pereira, Manuel
2016-05-01
Solar Thermal Electricity (STE) is an important alternative to PV electricity production, not only because it is getting more cost competitive with the continuous growth in installed capacity, engineering and associated innovations, but also, because of its unique dispatch ability advantage as a result of the already well established 2-tank energy storage using molten salts (MS). In recent years, research has been performed, on direct MS systems, to which features like modularity and combinations with other (solid) thermal storage materials are considered with the goal of achieving lower investment cost. Several alternative materials and systems have been studied. In this research, storage materials were identified with thermo-physical data being presented for different rocks (e.g. quartzite), super concrete, and other appropriate solid materials. Among the new materials being proposed like rocks from old quarries, an interesting option is the incorporation of solid waste material from old mines belonging to the Iberian Pyritic Belt. These are currently handled as byproducts of past mine activity, and can potentially constitute an environmental hazard due to their chemical (metal) content. This paper presents these materials, as part of a broad study to improve the current concept of solar energy storage for STE plants, and additionally presents a potentially valuable solution for environmental protection related to re-use of mining waste.
Pneumatic conveyance apparatus and process
Heckendorn, Frank M.; Matzolf, Athneal D.; Hera, Kevin R.
2010-05-04
A pneumatic nozzle capable of removing dry solid debris, liquids, and mixtures of solid and liquid waste is provided. The pneumatic nozzle uses a pressurized gas stream to push materials through the nozzle. The force of a pressurized gas stream provides a partial vacuum to allow material to be introduced into an opening of a nozzle via a slight suction force. Thereafter, individual particles and materials introduced into the pneumatic nozzle are pushed by a stream of pressurized gas through the nozzle.
NASA Technical Reports Server (NTRS)
Eley, Michael H.; Crews, Lavonne; Johnston, Ben; Lee, David; Colebaugh, James
1995-01-01
The primary objectives of the study were to characterize the solid waste stream for MSFC facilities in Huntsville, Alabama, and to evaluate their present recycling program. The purpose of the study was to determine if improvements could be made in terms of increasing quantities of the present commodities collected, adding more recyclables to the program, and streamlining or improving operational efficiency. In conducting the study, various elements were implemented. These included sampling and sorting representative samples of the waste stream; visually inspecting each refuse bin, recycle bin, and roll-off; interviewing employees and recycling coordinators of other companies; touring local material recycling facilities; contacting experts in the field; and performing a literature search.
ERIC Educational Resources Information Center
Grinstead, Robert R.
1972-01-01
Solid wastes that go at low cost into municipal landfills contain valuable raw materials which technology is not equipped to handle on a large scale. Identifying the key stumbling blocks may help divert the flow of wastes to useful purposes rather than into permanent burial sites. First of a two-part article. (BL)
Morrin, Shane; Lettieri, Paola; Chapman, Chris; Taylor, Richard
2014-01-01
Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO2 and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO2's generation. The response of COS to sulphur in the feed was quite prompt, whereas SO2 was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO2 generation. The more reducing gas phase regions above the bed would have facilitated COS--hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling. Copyright © 2013 Elsevier Ltd. All rights reserved.
Garcés, Diego; Díaz, Eva; Sastre, Herminio; Ordóñez, Salvador; González-LaFuente, José Manuel
2016-01-01
Solid recovered fuels constitute a valuable alternative for the management of those non-hazardous waste fractions that cannot be recycled. The main purpose of this research is to assess the suitability of three different wastes from the landfill of the local waste management company (COGERSA), to be used as solid recovered fuels in a cement kiln near their facilities. The wastes analyzed were: End of life vehicles waste, packaging and bulky wastes. The study was carried out in two different periods of the year: November 2013 and April 2014. In order to characterize and classify these wastes as solid recovered fuels, they were separated into homogeneous fractions in order to determine different element components, such as plastics, cellulosic materials, packagings or textile compounds, and the elemental analysis (including chlorine content), heavy metal content and the heating value of each fraction were determined. The lower heating value of the waste fractions on wet basis varies between 10 MJ kg(-1) and 42 MJ kg(-1). One of the packaging wastes presents a very high chlorine content (6.3 wt.%) due to the presence of polyvinylchloride from pipe fragments, being the other wastes below the established limits. Most of the wastes analyzed meet the heavy metals restrictions, except the fine fraction of the end of life vehicles waste. In addition, none of the wastes exceed the mercury limit content, which is one of the parameters considered for the solid recovered fuels classification. A comparison among the experimental higher heating values and empirical models that predict the heating value from the elemental analysis data was carried out. Finally, from the three wastes measured, the fine fraction of the end of life vehicles waste was discarded for its use as solid recovered fuels due to the lower heating value and its high heavy metals content. From the point of view of the heating value, the end of life vehicles waste was the most suitable residue with a lower heating value of 35.89 MJ kg(-1), followed by the packaging waste and the bulky waste, respectively. When mixing the wastes studied a global waste was obtained, whose classification as solid recovered fuels was NCV 1 Cl 3 Hg 3. From the empirical models used for calculating higher heating value from elemental content, Scheurer-Kestner was the model that best fit the experimental data corresponding to the wastes collected in November 2013, whereas Chang equation was the most approximate to the experimental heating values for April 2014 fractions. This difference is due to higher chlorine content of the second batch of wastes, since Chang equation is the only one that incorporates the chlorine content. Copyright © 2015 Elsevier Ltd. All rights reserved.
Local Gov`t assistance in commercial waste reduction & recycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannah, C.W.
This paper outlines programs and strategies for reducing the waste stream by targeting the commercial, industrial and institutional sectors. The programs described are implemented by the Wake County Solid Waste Management Division, North Carolina. Findings and recommendations of a task force focusing on the role of the private sector in meeting state waste reduction mandates are summarized. Commercial initiatives, educational initiatives, and a grant program are described. Several case studies are provided which overview the variety of businesses and waste materials addressed.
Saeed, Mohamed Osman; Hassan, Mohd Nasir; Mujeebu, M Abdul
2009-07-01
This paper presents a forecasting study of municipal solid waste generation (MSWG) rate and potential of its recyclable components in Kuala Lumpur (KL), the capital city of Malaysia. The generation rates and composition of solid wastes of various classes such as street cleansing, landscape and garden, industrial and constructional, institutional, residential and commercial are analyzed. The past and present trends are studied and extrapolated for the coming years using Microsoft office 2003 Excel spreadsheet assuming a linear behavior. The study shows that increased solid waste generation of KL is alarming. For instance, the amount of daily residential SWG is found to be about 1.62 kg/capita; with the national average at 0.8-0.9 kg/capita and is expected to be increasing linearly, reaching to 2.23 kg/capita by 2024. This figure seems reasonable for an urban developing area like KL city. It is also found that, food (organic) waste is the major recyclable component followed by mix paper and mix plastics. Along with estimated population growth and their business activities, it has been observed that the city is still lacking in terms of efficient waste treatment technology, sufficient fund, public awareness, maintaining the established norms of industrial waste treatment etc. Hence it is recommended that the concerned authority (DBKL) shall view this issue seriously.
Marshall Space Flight Center solid waste characterization and recycling improvement study
NASA Technical Reports Server (NTRS)
Eley, Michael H.; Crews, Lavonne; Johnston, Ben; Lee, David; Colebaugh, James
1995-01-01
The MSFC Facilities Office, which is responsible for disposing of all waste generated by MSFC, issued a delivery order to the University of Alabama in Huntsville (UAH) to characterize current MSFC waste streams and to evaluate their existing recycling program. The purpose of the study was to define the nature, quantity, and types of waste produced and to generate ideas for improving the present recycling program. Specifically, the following tasks were to be performed: Identify various surplus and waste materials--as identified by the Contracting Officer's Technical Representative (COTR)--by source, location, and type; Analyze MSFC's current methods for handling, storage, transport, and disposition of waste and surplussed materials; Determine the composition of various surplus and waste materials as to type and quantities from various sources and locations; Analyze different methods for the disposition of various surplus and waste materials, including quality, quantity, preparation, transport cost, and value; Study possible alternatives to current methods of handling, storage, transport, and disposition of surplus and waste materials to improve the quality and quantities recycled or sold and to reduce and minimize the quantities of surplus and waste material currently being disposed of or stored; Provide recommendations for source and centralized segregation and aggregation of materials for recycling and/or disposition; and The analysis could include identification and laboratory level evaluation of methods and/or equipment, including capital costs, operating costs, maintenance requirements, life cycle and return on investment for systems to support the waste reduction program mission.
Use of lunar regolith as a substrate for plant growth
NASA Technical Reports Server (NTRS)
Ming, D. W.; Henninger, D. L.
1994-01-01
Regenerative Life Support Systems (RLSS) will be required to regenerate air, water, and wastes, and to produce food for human consumption during long-duration missions to the Moon and Mars. It may be possible to supplement some of the materials needed for a lunar RLSS from resources on the Moon. Natural materials at the lunar surface may be used for a variety of lunar RLSS needs, including (1) soils or solid-support substrates for plant growth, (2) sources for extraction of essential, plant-growth nutrients, (3) substrates for microbial populations in the degradation of wastes, (4) sources of O2 and H2, which may be used to manufacture water, (5) feed stock materials for the synthesis of useful minerals (e.g., molecular sieves), and (6) shielding materials surrounding the outpost structure to protect humans, plants, and microorganisms from harmful radiation. Use of indigenous lunar regolith as a terrestrial-like soil for plant growth could offer a solid support substrate, buffering capacity, nutrient source/storage/retention capabilities, and should be relatively easy to maintain. The lunar regolith could, with a suitable microbial population, play a role in waste renovation; much like terrestrial waste application directly on soils. Issues associated with potentially toxic elements, pH, nutrient availability, air and fluid movement parameters, and cation exchange capacity of lunar regolith need to be addressed before lunar materials can be used effectively as soils for plant growth.
GeoMelt{sup R} ICV{sup TM} Treatment of Sellafield Pond Solids Waste - 13414
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witwer, Keith; Woosley, Steve; Campbell, Brett
2013-07-01
Kurion, Inc., in partnership with AMEC Ltd., is demonstrating its GeoMelt{sup R} In-Container Vitrification (ICV){sup TM} Technology to Sellafield Ltd. (SL). SL is evaluating the proposition of directly converting a container (skip/box/drum) of raw solid ILW into an immobilized waste form using thermal treatment, such that the resulting product is suitable for interim storage at Sellafield and subsequent disposal at a future Geological Disposal Facility. Potential SL feed streams include sludges, ion-exchange media, sand, plutonium contaminated material, concrete, uranium, fuel cladding, soils, metals, and decommissioning wastes. The solid wastes have significant proportions of metallic constituents in the form of containers,more » plant equipment, structural material and swarf arising from the nuclear operations at Sellafield. GeoMelt's proprietary ICV process was selected for demonstration, with the focus being high and reactive metal wastes arising from solid ILW material. A composite surrogate recipe was used to demonstrate the technology towards treating waste forms of diverse types and shapes, as well as those considered difficult to process; all the while requiring few (if any) pre-treatment activities. Key strategic objectives, along with their success criterion, were established by SL for this testing, namely: 1. Passivate and stabilize the raw waste simulant, as demonstrated by the entire quantity of material being vitrified, 2. Immobilize the radiological and chemo-toxic species, as demonstrated via indicative mass balance using elemental analyses from an array of samples, 3. Production of an inert and durable product as evidenced by transformation of reactive metals to their inert oxide forms and satisfactory leachability results using PCT testing. Two tests were performed using the GeoMelt Demonstration Unit located at AMEC's Birchwood Park Facilities in the UK. Post-melt examination of the first test indicated some of the waste simulant had not fully processed, due to insufficient processing time and melt temperature. A second test, incorporating operational experience from the first test, was performed and resulted in all of the 138 kg of feed material being treated. The waste simulant portion, at 41 kg, constituted 30 wt% of the total feed mass, with over 90% of this being made up of various reactive and non-reactive metals. The 95 liters of staged material was volume reduced to 41 liters, providing a 57% overall feed to product volume reduction in a fully passivated two-phase glass/metal product. The GeoMelt equipment operated as designed, vitrifying the entire batch of waste simulant. Post-melt analytical testing verified that 91-99+% of the radiological tracer metals were uniformly distributed within the glass/cast refractory/metal product, and the remaining fraction was captured in the offgas filtration systems. PCT testing of the glass and inner refractory liner showed leachability results that outperform the DOE regulatory limit of 2 g/m{sup 2} for the radiological species of interest (Sr, Ru, Cs, Eu, Re), and by more than an order of magnitude better for standard reference analytes (B, Na, Si). (authors)« less
Estimation of construction and demolition waste using waste generation rates in Chennai, India.
Ram, V G; Kalidindi, Satyanarayana N
2017-06-01
A large amount of construction and demolition waste is being generated owing to rapid urbanisation in Indian cities. A reliable estimate of construction and demolition waste generation is essential to create awareness about this stream of solid waste among the government bodies in India. However, the required data to estimate construction and demolition waste generation in India are unavailable or not explicitly documented. This study proposed an approach to estimate construction and demolition waste generation using waste generation rates and demonstrated it by estimating construction and demolition waste generation in Chennai city. The demolition waste generation rates of primary materials were determined through regression analysis using waste generation data from 45 case studies. Materials, such as wood, electrical wires, doors, windows and reinforcement steel, were found to be salvaged and sold on the secondary market. Concrete and masonry debris were dumped in either landfills or unauthorised places. The total quantity of construction and demolition debris generated in Chennai city in 2013 was estimated to be 1.14 million tonnes. The proportion of masonry debris was found to be 76% of the total quantity of demolition debris. Construction and demolition debris forms about 36% of the total solid waste generated in Chennai city. A gross underestimation of construction and demolition waste generation in some earlier studies in India has also been shown. The methodology proposed could be utilised by government bodies, policymakers and researchers to generate reliable estimates of construction and demolition waste in other developing countries facing similar challenges of limited data availability.
Use of recycled plastic in concrete: a review.
Siddique, Rafat; Khatib, Jamal; Kaur, Inderpreet
2008-01-01
Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper.
A procedure to estimate proximate analysis of mixed organic wastes.
Zaher, U; Buffiere, P; Steyer, J P; Chen, S
2009-04-01
In waste materials, proximate analysis measuring the total concentration of carbohydrate, protein, and lipid contents from solid wastes is challenging, as a result of the heterogeneous and solid nature of wastes. This paper presents a new procedure that was developed to estimate such complex chemical composition of the waste using conventional practical measurements, such as chemical oxygen demand (COD) and total organic carbon. The procedure is based on mass balance of macronutrient elements (carbon, hydrogen, nitrogen, oxygen, and phosphorus [CHNOP]) (i.e., elemental continuity), in addition to the balance of COD and charge intensity that are applied in mathematical modeling of biological processes. Knowing the composition of such a complex substrate is crucial to study solid waste anaerobic degradation. The procedure was formulated to generate the detailed input required for the International Water Association (London, United Kingdom) Anaerobic Digestion Model number 1 (IWA-ADM1). The complex particulate composition estimated by the procedure was validated with several types of food wastes and animal manures. To make proximate analysis feasible for validation, the wastes were classified into 19 types to allow accurate extraction and proximate analysis. The estimated carbohydrates, proteins, lipids, and inerts concentrations were highly correlated to the proximate analysis; correlation coefficients were 0.94, 0.88, 0.99, and 0.96, respectively. For most of the wastes, carbohydrate was the highest fraction and was estimated accurately by the procedure over an extended range with high linearity. For wastes that are rich in protein and fiber, the procedure was even more consistent compared with the proximate analysis. The new procedure can be used for waste characterization in solid waste treatment design and optimization.
Funari, Valerio; Braga, Roberto; Bokhari, Syed Nadeem Hussain; Dinelli, Enrico; Meisel, Thomas
2015-11-01
The incineration of municipal solid wastes is an important part of the waste management system along with recycling and waste disposal, and the solid residues produced after the thermal process have received attention for environmental concerns and the recovery of valuable metals. This study focuses on the Critical Raw Materials (CRM) content in solid residues from two Italian municipal waste incinerator (MSWI) plants. We sampled untreated bottom ash and fly ash residues, i.e. the two main outputs of common grate-furnace incinerators, and determined their total elemental composition with sensitive analytical techniques such as XRF and ICP-MS. After the removal of a few coarse metallic objects from bottom ashes, the corresponding ICP solutions were obtained using strong digestion methods, to ensure the dissolution of the most refractory components that could host significant amounts of precious metals and CRM. The integration of accurate chemical data with a substance flow analysis, which takes into account the mass balance and uncertainties assessment, indicates that bottom and fly ashes can be considered as a low concentration stream of precious and high-tech metals. The magnesium, copper, antimony and zinc contents are close to the corresponding values of a low-grade ore. The distribution of the elements flow between bottom and fly ash, and within different grain size fractions of bottom ash, is appraised. Most elements are enriched in the bottom ash flow, especially in the fine grained fractions. However, the calculated transfer coefficients indicate that Sb and Zn strongly partition into the fly ashes. The comparison with available studies indicates that the CRM concentrations in the untreated solid residues are comparable with those residues that undergo post-treatment beneficiations, e.g. separation between ferrous and non-ferrous fractions. The suggested separate collection of "fresh" bottom ash, which could be processed for further mineral upgrading, can constitute an attractive option of the waste management system, when physical-mechanical devices are not available or could not be implemented in old MSWI systems. The suggested procedure may lead to the improvement of recovery efficiency up to 83% for CRM and 94% for other valuable metals. Copyright © 2014 Elsevier Ltd. All rights reserved.
Starvin, A M; Rao, T Prasada
2004-09-10
As a part of removal of toxic heavy metals from hazardous wastes, solid phase extraction (SPE) of mercury(II) at trace and ultra trace levels was studied using 1-(2-thiazolylazo)-2-naphthol (TAN) functionalized activated carbon (AC). The SPE material removes traces of mercury(II) quantitatively in the pH range 6.0 +/- 0.2. Other parameters that influence quantitative recovery of mercury(II), viz. percent concentration of TAN in AC, amount of TAN-AC, preconcentration time and volume of aqueous phase were varied and optimized. The possible means of removal of Hg(II) from other metal ions that are likely to be present in the wastes of the chloroalkali industry is discussed. The potential of TAN-functionalized AC SPE material for decontaminating mercury from the brine sludge and cell house effluent of a chloralkali plant has been evaluated.
Rajamanikam, Ramamoorthy; Poyyamoli, Gopalsamy; Kumar, Sunil; R, Lekshmi
2014-09-01
Poorly planned and uncontrolled urbanization in India has caused a variety of negative, often irreversible, environmental impacts. The impacts appear to be unavoidable and not easily mitigable due to the mounting public health problems caused by non-segregation of solid wastes at source and their subsequent improper management. Recently in India, non-governmental organizations (NGOs) and other civil society organizations have increasingly started to get involved in improving waste management services. Municipal solid waste management being a governmental function, the contribution of NGOs in this field has not been well documented. This study highlights the activities and services of Shuddham, an NGO functioning in the town of Puducherry within the Union Territory of Puducherry in South India. The NGO program promoted much needed awareness and education, encouraged source separation, enhanced door-to-door collection, utilized wastes as raw materials and generated more job opportunities. Even though source separation prior to door-to-door collection is a relatively new concept, a significant percentage of residents (39%) in the study area participated fully, while a further 48% participated in the collection service. The average amount of municipal solid waste generated by residential units in the Raj Bhavan ward was 8582 kg/month of which 47% was recovered through active recycling and composting practices. The study describes the features and performance of NGO-mediated solid waste management, and evaluates the strengths and weaknesses as well as the opportunities and threats of this system to see whether this model can sustainably replace the low-performance conventional solid waste management in practice in the town of Puducherry. The experiences from this case study are expected to provide broad guidelines to better understand the role of NGOs and their contributions towards sustainable waste management practices in urban areas. © The Author(s) 2014.
An industry perspective on commercial radioactive waste disposal conditions and trends.
Romano, Stephen A
2006-11-01
The United States is presently served by Class-A, -B and -C low-level radioactive waste and naturally-occurring and accelerator-produced radioactive material disposal sites in Washington and South Carolina; a Class-A and mixed waste disposal site in Utah that also accepts naturally-occurring radioactive material; and hazardous and solid waste facilities and uranium mill tailings sites that accept certain radioactive materials on a site-specific basis. The Washington site only accepts low-level radioactive waste from 11 western states due to interstate Compact restrictions on waste importation. The South Carolina site will be subject to geographic service area restrictions beginning 1 July 2008, after which only three states will have continued access. The Utah site dominates the commercial Class-A and mixed waste disposal market due to generally lower state fees than apply in South Carolina. To expand existing commercial services, an existing hazardous waste site in western Texas is seeking a Class-A, -B and -C and mixed waste disposal license. With that exception, no new Compact facilities are proposed. This fluid, uncertain situation has inspired national level rulemaking initiatives and policy studies, as well as alternative disposal practices for certain low-activity materials.
40 CFR Appendix I to Part 261 - Representative Sampling Methods
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Representative Sampling Methods I Appendix I to Part 261 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES...—Representative Sampling Methods The methods and equipment used for sampling waste materials will vary with the...
40 CFR 261.151 - Wording of the instruments.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Wording of the instruments. 261.151 Section 261.151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Financial Requirements for Management of Excluded Hazardous Secondary Materials § 261.151...
40 CFR 261.151 - Wording of the instruments.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Wording of the instruments. 261.151 Section 261.151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Financial Requirements for Management of Excluded Hazardous Secondary Materials § 261.151...
The management of municipal solid waste (MSW) in many countries throughout the world has changed significantly over the past fifty years, with a shift from uncontrolled dumping or burning to complex systems that integrate multiple processes to recover materials or energy and prov...
Generation, characterization and reuse of solid wastes from a biodiesel production plant.
Oliveira, Fernando Jorge Santos; Santana, Daniele Dos Santos; Costa, Simone Soraya Brito; Oliveira, Lenise Diniz; Liduino, Vitor Silva; Servulo, Eliana Flávia Camporese
2017-03-01
The aim of this study was to identify and characterize industrial solid wastes generated by a biodiesel production plant in Brazil, as well as to present strategies for the management of these materials. This plant produces every year around 100,000tons of biodiesel from vegetable oils and animal fats. The methodology of the study included technical visits, interviews with the operational and environmental management staff as well as analysis of documents, reports and computerized data systems. An approach to reduce the generation of hazardous waste was investigated. It was take into account the amount of raw material that was processed, reduction of landfill disposal, and the maximization of the their recycling and reuse. The study also identified the sources of waste generation and accordingly prepared an evaluation matrix to determine the types of waste with the higher potential for minimization. The most important residue of the process was the filter material impregnated with oil and biodiesel, requiring, therefore, measures for its minimization. The use of these residues in the production of ceramic artefacts (light bricks) was considered to be very promising, since no significant effect on the physico-chemical and mechanical properties of the artefacts produced was observed. Phytotoxicity test using seeds of Lactuva sativa (lettuce), Brassica juncea (mustard), Abelmoschus esculentus (okra), Chrysanthemum leucanthemum (daisy), Dendranthema grandiflorum (chrysanthemum) and Allium porrum (leek) were carried out. The results clearly show incorporation of the waste material into bricks did not influence relative germination and relative root elongation in comparison to control tests. Copyright © 2016 Elsevier Ltd. All rights reserved.
Impacts of policy and market incentives for solid waste recycling in Dhaka, Bangladesh.
Matter, Anne; Ahsan, Mehedi; Marbach, Michelle; Zurbrügg, Christian
2015-05-01
Solid waste mismanagement in Dhaka, Bangladesh, illustrates a well-known market failure which can be summarized as: waste is a resource in the wrong place. Inorganic materials such as plastic or paper can be used to feed the demand for recycled materials in the industrial sector. Organic materials can be converted and used in the nutrient-starved agricultural sector which is currently heavily depending on chemical fertilizers. They are also a feedstock to generate renewable energy in the form of biogas for this energy-starved country relying on diminishing natural gas reserves and increasing import of coal. Reality however does not capitalize on this potential; instead the waste is a burden for municipal authorities who spend large portions of their budgets attempting to transport it out of the city for discharge into landfills. The major part of these materials still remains uncollected in the residential areas and is discarded indiscriminately in open spaces, polluting the residents' living environment including water, soil and air resources, in the city and beyond. Bangladeshi authorities have, to some extent, recognized this market failure and have developed policies to encourage the development of waste recycling activities. It is also important to note that this market failure is only partial: a large, mostly informal recycling sector has developed in Bangladesh, focusing on inorganic recyclables of market value. The fact that this sector remains largely informal means that these actors perceive significant barriers to formalization. Comparatively, the organic waste recycling sector is less driven by market mechanisms. Competition from chemical fertilizers and fossil fuels is fierce and hinders the development of market opportunities for compost and renewable energy. Nevertheless commercial production of compost and biogas from organic municipal waste is formalized and benefiting from policy incentives. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sustainable solutions for solid waste management in Southeast Asian countries.
Ngoc, Uyen Nguyen; Schnitzer, Hans
2009-06-01
Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.
Requirements Development Issues for Advanced Life Support Systems: Solid Waste Management
NASA Technical Reports Server (NTRS)
Levri, Julie A.; Fisher, John W.; Alazraki, Michael P.; Hogan, John A.
2002-01-01
Long duration missions pose substantial new challenges for solid waste management in Advanced Life Support (ALS) systems. These possibly include storing large volumes of waste material in a safe manner, rendering wastes stable or sterilized for extended periods of time, and/or processing wastes for recovery of vital resources. This is further complicated because future missions remain ill-defined with respect to waste stream quantity, composition and generation schedule. Without definitive knowledge of this information, development of requirements is hampered. Additionally, even if waste streams were well characterized, other operational and processing needs require clarification (e.g. resource recovery requirements, planetary protection constraints). Therefore, the development of solid waste management (SWM) subsystem requirements for long duration space missions is an inherently uncertain, complex and iterative process. The intent of this paper is to address some of the difficulties in writing requirements for missions that are not completely defined. This paper discusses an approach and motivation for ALS SWM requirements development, the characteristics of effective requirements, and the presence of those characteristics in requirements that are developed for uncertain missions. Associated drivers for life support system technological capability are also presented. A general means of requirements forecasting is discussed, including successive modification of requirements and the need to consider requirements integration among subsystems.
Prospects of effective microorganisms technology in wastes treatment in Egypt.
Shalaby, Emad A
2011-06-01
Sludge dewatering and treatment may cost as much as the wastewater treatment. Usually large proportion of the pollutants in wastewater is organic. They are attacked by saprophytic microorganisms, i.e. organisms that feed upon dead organic matter. Activity of organisms causes decomposition of organic matter and destroys them, where the bacteria convert the organic matter or other constituents in the wastewater to new cells, water, gases and other products. Demolition activities, including renovation/remodeling works and complete or selective removal/demolishing of existing structures either by man-made processes or by natural disasters, create an extensive amount of wastes. These demolition wastes are characterized as heterogeneous mixtures of building materials that are usually contaminated with chemicals and dirt. In developing countries, it is estimated that demolition wastes comprise 20% to 30% of the total annual solid wastes. In Egypt, the daily quantity of construction and demolition (C&D) waste has been estimated as 10 000 tones. That is equivalent to one third of the total daily municipal solid wastes generated per day in Egypt. The zabbaliin have since expanded their activities and now take the waste they collect back to their garbage villages where it is sorted into recyclable components: paper, plastics, rags, glass, metal and food. The food waste is fed to pigs and the other items are sold to recycling centers. This paper summarizes the wastewater and solid wastes management in Egypt now and future.
Lapa, N; Santos, Oliveira J F; Camacho, S L; Circeo, L J
2002-01-01
Plasma is the fourth state of matter, following the three states of solid, liquid and gas. Experience has amply demonstrated that solids exposed to the oxygen-deficient plasma flame are converted to liquid, and liquid exposed to the same flame is converted to gas. A low amount of vitrified solid residue material usually remains at the end of this process. Plasma pyrolysis/vitrification (PP/V) has been demonstrated as a safe, efficient, cost-effective technology for the treatment of wastes, including hazardous wastes. Besides the low amounts of gaseous byproducts that PP/V produces, the solid vitrified residue presents a low leachability of pollutants. Studies have been performed in many countries in order to assess the leachability of chemical substances. But from the results of identified studies, none has reported results on the ecotoxicological properties of the leachates. The aim of this study was to contribute to the assessment of ecotoxic risk of four different vitrified materials. Vitrified samples of contaminated soils, municipal solid wastes, and incinerator bottom ashes were submitted to the European leaching pre-standard test number prEN 12457-2. The leachates were analyzed for 22 chemical parameters. The biological characterization comprised the assessment of bioluminescence inhibition of Photobacterium phosphoreum bacterium, growth inhibition of Pseudokirchneriella subcapitata algae and the germination inhibition of Lactuca sativa vegetable. The chemical and ecotoxicological results were analyzed according to the French proposal of Criteria on the Evaluation Methods of Waste Toxicity (CEMWT) and a Toxicity Classification System (TCS). The chemical and ecotoxicological results indicated a low leachability of pollutants and a low toxicity level of leachates. All samples studied were as below the TCS class 1 level (no significant toxicity observed) and as non-ecotoxic for CEMWT. Therefore, the environmental ecotoxic risk of the analyzed vitrified samples was determined to be very low.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edjabou, Maklawe Essonanawe, E-mail: vine@env.dtu.dk; Jensen, Morten Bang; Götze, Ramona
Highlights: • Tiered approach to waste sorting ensures flexibility and facilitates comparison of solid waste composition data. • Food and miscellaneous wastes are the main fractions contributing to the residual household waste. • Separation of food packaging from food leftovers during sorting is not critical for determination of the solid waste composition. - Abstract: Sound waste management and optimisation of resource recovery require reliable data on solid waste generation and composition. In the absence of standardised and commonly accepted waste characterisation methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. In thismore » study, a waste sampling and sorting methodology for efficient and statistically robust characterisation of solid waste was introduced. The methodology was applied to residual waste collected from 1442 households distributed among 10 individual sub-areas in three Danish municipalities (both single and multi-family house areas). In total 17 tonnes of waste were sorted into 10–50 waste fractions, organised according to a three-level (tiered approach) facilitating comparison of the waste data between individual sub-areas with different fractionation (waste from one municipality was sorted at “Level III”, e.g. detailed, while the two others were sorted only at “Level I”). The results showed that residual household waste mainly contained food waste (42 ± 5%, mass per wet basis) and miscellaneous combustibles (18 ± 3%, mass per wet basis). The residual household waste generation rate in the study areas was 3–4 kg per person per week. Statistical analyses revealed that the waste composition was independent of variations in the waste generation rate. Both, waste composition and waste generation rates were statistically similar for each of the three municipalities. While the waste generation rates were similar for each of the two housing types (single-family and multi-family house areas), the individual percentage composition of food waste, paper, and glass was significantly different between the housing types. This indicates that housing type is a critical stratification parameter. Separating food leftovers from food packaging during manual sorting of the sampled waste did not have significant influence on the proportions of food waste and packaging materials, indicating that this step may not be required.« less
Research on Recycling and Utilization of Solid Waste in Civil Airport
NASA Astrophysics Data System (ADS)
Li, Bo; Zhang, Wen; Wang, Jianping; Yi, Wei
2018-05-01
The aviation industry is embracing unprecedented prosperity together with the economic development. Building green airports resource-saving, environment-friendly and sustainable has become the inevitability of the times. The operation of airport will generate the large amount of waste every day, which certainly exposes airports and surrounding regions to waste disposal and ecological environment pressure. Waste disposal directly affects the surrounding environment of airports, which can be effectively mitigated by disposing waste into resources, i.e., sorting and recycling them into renewable materials. The development of green airport can also be promoted in this process. The article elaborates on the current methods of waste disposal adopted by airports. According to the principle of waste reduction, harmlessness, and resource recycling, a set of solid waste recycling and utilization methods suitable for airports are proposed, which can reduce the costs of waste transported to other places and landfilled. Various environmental pollution caused by landfill and other disposal methods can also be contained effectively. At the same time, resources can be fully recycled, converting waste into useful resources in an efficient and environmental-friendly way.
Characterization and thermal behaviour of textile waste from the industrial city of Aleppo in Syria.
Majanny, Abdulkader; Nassour, Abdallah; Gose, Sven; Scholz, Reinhard; Nelles, Michael
2011-03-01
This paper describes the present waste management practices in the industrial city Alsheikh Najjar of Aleppo, mainly with regard to textile waste materials, and provides some insights into future prospects. As a first exploration for energy recovery from textile waste materials, the thermal behaviour of seven different types of textile waste were studied by thermogravimetry. There were assorted differential thermogravimetry peaks found over a particular range of temperatures. Pyrolysis experiments were carried out to identify the pyrolysis products such as gas, liquid, and solid residues known as char. In a subsequent analysis, the combustion behaviour of textile waste was determined and analysed. Typical parameters - reaction front velocity, ignition rate - were considered for the evaluation of the combustion behaviour and the results were compared with values observed for waste wood.
Ferri, Giovane Lopes; Chaves, Gisele de Lorena Diniz; Ribeiro, Glaydston Mattos
2015-06-01
This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering the recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the characteristic of social vulnerability, must be included in the system. In addition to the theoretical contribution to the reverse logistics network problem, this study aids in decision-making for public managers who have limited technical and administrative capacities for the management of solid wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, R.L.
A literature survey was conducted in order to determine the amount of information available to the public concerning the impact of the Resource Conservation and Recovery Act of 1976 (RCRA) on the use or disposal of solid wastes from Texas lignite-fired utility boilers. The utility power plants of ALCOA, Big Brown, Martin Lake, Monticello and San Miguel are the only facilities currently using Texas lignite as fuel. RCRA is a comprehensive federal law which provides for the management of hazardous waste from generation to ultimate disposal. Utility solid wastes such as fly ash and flue gas desulfurization (FGD) sludge aremore » currently classified as excluded wastes (wastes exempt from hazardous classification) pending further information regarding these high-volume, low risk wastes. RCRA also provides for the increased need of recovered materials in Subtitle F - Federal Procurement. The lignite deposits of Texas occur in belts that stretch diagonally across the state from Laredo to Texarkana. The sulfur content and Btu value of Texas lignite combined requires that sulfur scrubbers be installed on new power plant units. The utility solid wastes occur in large quantities and leachate from some of these wastes contained detectable amounts of chromium and selenium. However, the concentration of these elements in the leachate was not sufficient to classify any of the utility wastes in this study as hazardous per current RCRA guidelines. In general, fly ash and FGD sludge are classified as Class II wastes and disposed of in an environmentally acceptable manner. Considerable amounts of bottom ash and fly ash are utilized but, thus far, FGD sludge has been landfilled, usually in combination with fly ash.« less
Chen, Ying-Chu
2016-12-01
Energy recovery and greenhouse gas (GHG) emissions from wastes are getting noticed in recent years. This study evaluated the potential for energy recovery and GHG mitigation from municipal solid waste (MSW) with a waste-to-material (WTM) approach. Waste generated in Taiwan contains a large amount of paper, food waste, and plastics, which previously were mostly sent to waste-to-energy (WTE) plants for incineration. However, the mitigation of GHGs by the WTM approach has been especially successful in the recycling of metals (averaging 1.83×10 6 kgCO 2 -eq/year) and paper (averaging 7.38×10 5 kgCO 2 -eq/year). In addition, the recycling of paper (1.33×10 10 kWh) and plastics (1.26×10 10 kWh) has contributed greatly to energy saving. Both metal and glass are not suitable for incineration due to their low energy content. The volumes of paper and food waste contained in the MSW are positively related to the carbon concentration, which may contribute to increased GHGs during incineration. Therefore, the recycling of paper, metals, and food waste is beneficial for GHG mitigation. Measures to reduce GHGs were also suggested in this study. The development of the WTM approach may be helpful for the proper management of MSW with regards to GHG mitigation. The results of this study can be a successful example for other nations. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hendrianie, Nuniek; Juliastuti, Sri Rachmania; Ar-rosyidah, Fanny Husna; Rochman, Hilal Abdur
2017-05-01
Nowadays the existence of energy sources of oil and was limited. Therefore, it was important to searching for new innovations of renewable energy sources by utilizing the waste into a source of energy. On the other hand, the process of extractable petroleum hydrocarbons biodegradation generated sludge that had calorific value and untapped. Because of the need for alternative sources of energy innovation with the concept of zero waste and the fuel potential from extractable petroleum hydrocarbons biodegradation waste, so it was necessary to study the use of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuel. In addition, sawdust is a waste that had a great quantities and also had a high calorific value to be mixed with extractable petroleum hydrocarbons biodegradation waste. The purpose of this study was to determine the characteristics of the extractable petroleum hydrocarbons biodegradation waste and to determine the potential and a combination of a mixture of extractable petroleum hydrocarbons biodegradation waste and sawdust which has the best calorific value. The variables of this study was the composition of the waste and sawdust as follows 1:1; 1:3; and 3:1 (mass of sawdust : mass of waste) and time of sawdust carbonization was 10, 15 and 20 minutes. Sawdust was carbonized to get the high heating value. The characteristic of main material and fuel analysis performed with proximate analysis. While the calorific value analysis was performed with a bomb calorimeter. From the research, it was known that extractable petroleum hydrocarbons biodegradation waste had a moisture content of 3.06%; volatile matter 19.98%; ash content of 0.56%; fixed carbon content of 76.4% and a calorific value of 717 cal/gram. And a mixture that had the highest calorific value (4286.5 cal/gram) achieved in comparison sawdust : waste (3:1) by carbonization of sawdust for 20 minutes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Programs
The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Wastemore » Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd{sup 3}) (157,437 cubic feet [ft{sup 3}]). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd{sup 3} (756,999 ft{sup 3}) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd{sup 3} (0.9 million ft{sup 3}). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls [PCBs]) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the U.S. Department of Energy, Nevada Operations Office (DOE/NV) 325, Nevada Test Site Waste Acceptance Criteria (NTSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NTS Class III Permit and the NTSWAC.« less
40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.
Code of Federal Regulations, 2014 CFR
2014-07-01
... interact with ocean water to form insoluble matter or new toxic compounds, or materials which may release toxic compounds upon deposition, the Administrator, Regional Administrator, or the District Engineer, as... the material be performed upon a mixture of the waste with ocean water rather than on the material...
40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.
Code of Federal Regulations, 2012 CFR
2012-07-01
... interact with ocean water to form insoluble matter or new toxic compounds, or materials which may release toxic compounds upon deposition, the Administrator, Regional Administrator, or the District Engineer, as... the material be performed upon a mixture of the waste with ocean water rather than on the material...
40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.
Code of Federal Regulations, 2013 CFR
2013-07-01
... interact with ocean water to form insoluble matter or new toxic compounds, or materials which may release toxic compounds upon deposition, the Administrator, Regional Administrator, or the District Engineer, as... the material be performed upon a mixture of the waste with ocean water rather than on the material...
Waste minimization charges up recycling of spent lead-acid batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Queneau, P.B.; Troutman, A.L.
Substantial strides are being made to minimize waste generated form spent lead-acid battery recycling. The Center for Hazardous Materials Research (Pittsburgh) recently investigated the potential for secondary lead smelters to recover lead from battery cases and other materials found at hazardous waste sites. Primary and secondary lead smelters in the U.S. and Canada are processing substantial tons of lead wastes, and meeting regulatory safeguards. Typical lead wastes include contaminated soil, dross and dust by-products from industrial lead consumers, tetraethyl lead residues, chemical manufacturing by-products, leaded glass, china clay waste, munitions residues and pigments. The secondary lead industry also is developingmore » and installing systems to convert process inputs to products with minimum generation of liquid, solid and gaseous wastes. The industry recently has made substantial accomplishments that minimize waste generation during lead production from its bread and butter feedstock--spent lead-acid batteries.« less
Solid recovered fuels in the cement industry with special respect to hazardous waste.
Thomanetz, Erwin
2012-04-01
Cements with good technical properties have been produced in Europe since the nineteenth century and are now worldwide standardized high-quality mass products with enormous production numbers. The basic component for cement is the so-called clinker which is produced mainly from raw meal (limestone plus clay plus sands) in a rotary kiln with preheater and progressively with integrated calciner, at temperatures up to 1450 °C. This process requires large amounts of fossil fuels and is CO₂-intensive. But most CO₂ is released by lime decomposition during the burning process. In the 1980s the use of alternative fuels began--firstly in the form of used oil and waste tyres and then increasingly by pre-conditioned materials from commercial waste and from high calorific industrial waste (i.e. solid recovered fuel (SRF))--as well as organic hazardous waste materials such as solvents, pre-conditioned with sawdust. Therefore the cement industry is more and more a competitor in the waste-to-energy market--be it for municipal waste or for hazardous waste, especially concerning waste incineration, but also for other co-incineration plants. There are still no binding EU rules identifying which types of SRF or hazardous waste could be incinerated in cement kilns, but there are some well-made country-specific 'positive lists', for example in Switzerland and Austria. Thus, for proper planning in the cement industry as well as in the waste management field, waste disposal routes should be considered properly, in order to avoid surplus capacities on one side and shortage on the other.
Khait, Klementina
2005-02-01
A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.
Khait, K.
1998-09-29
A method of making polymeric particulates is described wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatible agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product. 29 figs.
Khait, Klementina
2001-01-30
A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.
Khait, Klementina
1998-09-29
A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.
Bio-processing of solid wastes and secondary resources for metal extraction - A review.
Lee, Jae-Chun; Pandey, Banshi Dhar
2012-01-01
Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed in eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted. Copyright © 2011 Elsevier Ltd. All rights reserved.
Use of Incineration Solid Waste Bottom Ash as Cement Mixture in Cement Production
NASA Astrophysics Data System (ADS)
Jun, N. H.; Abdullah, M. M. A. B.; Jin, T. S.; Kadir, A. A.; Tugui, C. A.; Sandu, A. V.
2017-06-01
Incineration solid waste bottom ash was use to examine the suitability as a substitution in cement production. This study enveloped an innovative technology option for designing new equivalent cement that contains incineration solid waste bottom ash. The compressive strength of the samples was determined at 7, 14, 28 and 90 days. The result was compared to control cement with cement mixture containing incineration waste bottom ash where the result proved that bottom ash cement mixture able achieve its equivalent performance compared to control cement which meeting the requirement of the standards according to EN 196-1. The pozzolanic activity index of bottom ash cement mixture reached 0.92 at 28 days and 0.95 at 90 and this values can be concluded as a pozzolanic material with positive pozzolanic activity. Calcium hydroxide in Portland cement decreasing with the increasing replacement of bottom ash where the reaction occur between Ca(OH)2 and active SiO2.
Metal Recovery from Industrial Solid Waste — Contribution to Resource Sustainability
NASA Astrophysics Data System (ADS)
Yang, Yongxiang
Increased demand of metals has driven the accelerated mining and metallurgical production in recent years, causing fast depletion of primary metals resources. On the contrary, the mining and metallurgical industry generates large amount of solid residues and waste such as tailings, slags, flue dust and leach residues, with relative low valuable metal contents. On the other hand, end-of-life (EoL) consumer products form another significant resources. The current technology and processes for primary metals production are not readily applicable for direct metals extraction from these waste materials, and special adaptation and tailor-made processes are required. In the present paper, various solid waste resources are reviewed, and current technologies and R&D trends are discussed. The recent research at author's group is illustrated for providing potential solutions to future resource problems, including metal recovery from MSW incinerator bottom ashes, zinc recovery from industrial ashes and residues, and rare earth metals recovery from EoL permanent magnets.
Production of sorbent from paper industry solid waste for oil spill cleanup.
Demirel Bayık, G; Altın, A
2017-12-15
The aim of the study is to select a cellulosic waste material from paper industry solid wastes and process it for sorbent production. Four different solid wastes were collected from a local paper production facility and rejects were selected due to its sorption capacity and processability. Oil sorption experiments were conducted according to the ASTM F 726-12 method. Effect of sorbent dosage, contact and dripping time, recovery of the oil, reusability of the sorbent and sorption from the water surface were also determined. Maximum oil sorption capacity was determined as 9.67, 12.92 and 12.84g/g for diesel oil, 0W30 and 10W30 motor oils respectively for the static test and 8.27, 10.45 and 11.69g/g for the dynamic test. An efficient and low-cost sorbent was produced from paper industry rejects that can be used on land and on water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Energy Efficiency of Biogas Produced from Different Biomass Sources
NASA Astrophysics Data System (ADS)
Begum, Shahida; Nazri, A. H.
2013-06-01
Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.
USDA-ARS?s Scientific Manuscript database
Analysis of biological fluids and waste material is difficult and tedious given the sample matrix. A rapid automated method for the determination of volatile fatty acids and phenolic and indole compounds was developed using a multipurpose sampler (MPS) with solid phase microextraction (SPME) and GC-...
Polymers used to absorb fats and oils: A concept
NASA Technical Reports Server (NTRS)
Marsh, H. E., Jr.
1974-01-01
One approach to problem of excessive oils and fats is to develop method by which oil is absorbed into solid mixture for elimination as solid waste. Materials proposed for these purposes are cross-linked (network) polymers that have high affinity for aliphatic substances, i. e., petroleum, animal, and vegetable oils.
1986-07-01
bags. 3) Cushioning of mineral wool , vermiculite or equivalent. Required labeling FLAMMABLE SOLID FLAMMABLE SOLID and DANGEROUS WHEN WET Authorized modes...or equivalent material such as mineral wool . Only permitted, hazardous waste transport companies may carry lithium batteries for disposal. The
26 CFR 1.142(a)(6)-1 - Exempt facility bonds: solid waste disposal facilities.
Code of Federal Regulations, 2012 CFR
2012-04-01
... biological, engineering, industrial, or technological method. (1) Final disposal process. The term final... solid material derived from any agricultural, commercial, consumer, governmental, or industrial... industrial operation or activity, or a component of any such product or activity, and that has been used...
26 CFR 1.142(a)(6)-1 - Exempt facility bonds: solid waste disposal facilities.
Code of Federal Regulations, 2013 CFR
2013-04-01
... biological, engineering, industrial, or technological method. (1) Final disposal process. The term final... solid material derived from any agricultural, commercial, consumer, governmental, or industrial... industrial operation or activity, or a component of any such product or activity, and that has been used...
Synthetic fuel for imitation of municipal solid waste in experimental studies of waste incineration.
Thipse, S S; Sheng, C; Booty, M R; Magee, R S; Dreizin, E L
2001-08-01
Synthetic fuel is prepared to imitate municipal solid waste (MSW) in experimental studies of incineration processes. The fuel is composed based on the Environmental Protection Agency reports on the materials contained in MSW. Uniform synthetic fuel pellets are prepared using available and inexpensive components including newsprint, hardwood mulch, low density polyethylene, iron, animal feed, sand, and water to imitate paperbound, wood, yard trimming, plastic, metal, food wastes, and other materials in MSW. The synthetic fuel preparation procedure enables one to reproduce and modify the fuel for a wide range of experiments in which the mechanisms of waste incineration are addressed. The fuel is characterized using standard ASTM tests and it is shown that its parameters, such as combustion enthalpy, density, as well as moisture, ash and fixed carbon contents are adequate for the representation of municipal solid waste. In addition, chlorine, nitrogen, and sulfur contents of the fuel are shown to be similar to those of MSW. Experiments are conducted in which the synthetic fuel is used for operation of a pilot-scale incinerator research facility. Steady-state temperature operation regimes are achieved and reproduced in these experiments. Thermodynamic equilibrium flame conditions are computed using an isentropic one-dimensional equilibrium code for a wide range of fuel/air ratios. The molecular species used to represent the fuel composition included cellulose, water, iron, polyethylene, methanamine, and silica. The predicted concentrations of carbon monoxide, nitric oxides, and oxygen in the combustion products are compared with the respective experimental concentrations in the pilot-scale incinerator exhaust.
Lu, Xiaowei; Jordan, Beth; Berge, Nicole D
2012-07-01
Hydrothermal carbonization (HTC) is a novel thermal conversion process that may be a viable means for managing solid waste streams while minimizing greenhouse gas production and producing residual material with intrinsic value. HTC is a wet, relatively low temperature (180-350 °C) thermal conversion process that has been shown to convert biomass to a carbonaceous residue referred to as hydrochar. Results from batch experiments indicate HTC of representative waste materials is feasible, and results in the majority of carbon (45-75% of the initially present carbon) remaining within the hydrochar. Gas production during the batch experiments suggests that longer reaction periods may be desirable to maximize the production of energy-favorable products. If using the hydrochar for applications in which the carbon will remain stored, results suggest that the gaseous products from HTC result in fewer g CO(2)-equivalent emissions than the gases associated with landfilling, composting, and incineration. When considering the use of hydrochar as a solid fuel, more energy can be derived from the hydrochar than from the gases resulting from waste degradation during landfilling and anaerobic digestion, and from incineration of food waste. Carbon emissions resulting from the use of the hydrochar as a fuel source are smaller than those associated with incineration, suggesting HTC may serve as an environmentally beneficial alternative to incineration. The type and extent of environmental benefits derived from HTC will be dependent on hydrochar use/the purpose for HTC (e.g., energy generation or carbon storage). Copyright © 2012 Elsevier Ltd. All rights reserved.
Non-hazardous solid materials from industrial processes, once regarded as waste and disposed in landfills, offer numerous environmental and economic advantages when put to beneficial uses (BUs). Proper management of these industrial non-hazardous secondary materials (INSM) requir...
This investigation was conducted to assess the applicability of currently available (ca. 1992) alternative materials for use as daily cover at landfills. Information on characteristics, material and equipment requirements, methods of preparation and application, climatic and ope...
Bio-inspired organic field effect transistors
NASA Astrophysics Data System (ADS)
Irimia-Vladu, Mihai; Troshin, Pavel A.; Schwabegger, Günther; Bodea, Marius; Schwödiauer, Reinhard; Fergus, Jeffrey W.; Razumov, Vladimir; Bauer, Siegfried; Sariciftci, Niyazi Serdar
2010-08-01
Two major concerns in the world nowadays are the plastic consumption and waste. Because to the economic growth and the incessant demand of plastics in developing countries, plastics consumption is projected to increase by a factor of two to three during the actual decade1. As an intuitive example, the amount of municipal solid waste (estimated per person per year) averages ~440 kg for China, ~550 kg for the European Union and ~790 kg for the United States, with almost 50% of the waste being electronic products and plastics1,2. Green technology based on biodegradable/compostable materials is perceived as an ultimate goal for solving waste problems. Currently there are numerous efforts for producing compostable plastic materials for applications in daily life products, such as plastic bags and disposable dishware. When such low-end products are fabricated with compostable materials, electronics included in such goods should be also based on materials that are easily compostable.
Three-dimensional mapping of crystalline ceramic waste form materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cocco, Alex P.; DeGostin, Matthew B.; Wrubel, Jacob A.
Here, we demonstrate the use of synchrotron-based, transmission X-ray microscopy (TXM) and scanning electron microscopy to image the 3-D morphologies and spatial distributions of Ga-doped phases within model, single- and two-phase waste form material systems. Gallium doping levels consistent with those commonly used for nuclear waste immobilization (e.g., Ba 1.04Cs 0.24Ga 2.32Ti 5.68O 16) could be readily imaged. This analysis suggests that a minority phase with different stoichiometry/composition from the primary hollandite phase can be formed by the solid-state ceramic processing route with varying morphology (globular vs. cylindrical) as a function of Cs content. Our results represent a crucial stepmore » in developing the tools necessary to gain an improved understanding of the microstructural and chemical properties of waste form materials that influence their resistance to aqueous corrosion. This understanding will aid in the future design of higher durability waste form materials.« less
Three-dimensional mapping of crystalline ceramic waste form materials
Cocco, Alex P.; DeGostin, Matthew B.; Wrubel, Jacob A.; ...
2017-04-21
Here, we demonstrate the use of synchrotron-based, transmission X-ray microscopy (TXM) and scanning electron microscopy to image the 3-D morphologies and spatial distributions of Ga-doped phases within model, single- and two-phase waste form material systems. Gallium doping levels consistent with those commonly used for nuclear waste immobilization (e.g., Ba 1.04Cs 0.24Ga 2.32Ti 5.68O 16) could be readily imaged. This analysis suggests that a minority phase with different stoichiometry/composition from the primary hollandite phase can be formed by the solid-state ceramic processing route with varying morphology (globular vs. cylindrical) as a function of Cs content. Our results represent a crucial stepmore » in developing the tools necessary to gain an improved understanding of the microstructural and chemical properties of waste form materials that influence their resistance to aqueous corrosion. This understanding will aid in the future design of higher durability waste form materials.« less
Structural Composite Construction Materials Manufactured from Municipal Solid Waste
1994-04-20
in Table 1. Candidate matrix materials included polystyrene (PS) or expanded polystyrene (EPS), high density polyethylene (HDPE), and polyethylene...companies make a variety of expanded polystyrene insulation panels that arc used in insulation and roofing systems.46 Thermoplastics are seeing
Biosafe inertization of municipal solid waste incinerator residues by COSMOS technology.
Guarienti, Michela; Gianoncelli, Alessandra; Bontempi, Elza; Moscoso Cardozo, Sdenka; Borgese, Laura; Zizioli, Daniela; Mitola, Stefania; Depero, Laura E; Presta, Marco
2014-08-30
Municipal solid waste incinerator (MSWI) residues can generate negative environmental impacts when improperly handled. The COlloidal Silica Medium to Obtain Safe inert (COSMOS) technology represents a new method to stabilize MSWI residues and to produce inert safe material. Here we report the results about aquatic biotoxicity of lixiviated MSWI fly ash and the corresponding inertized COSMOS material using a zebrafish (Danio rerio) embryo toxicity test. Quantitative assessment of waste biotoxicity included evaluation of mortality rate and of different morphological and teratogenous endpoints in zebrafish embryos exposed to tested materials from 3 to 72h post-fertilization. The results demonstrate that lixiviated MSWI fly ash exerts a dose-dependent lethal effect paralleled by dramatic morphological/teratogenous alterations and apoptotic events in the whole embryo body. Similar effects were observed following MSWI fly ash stabilization in classical concrete matrices, demonstrating that the obtained materials are not biologically safe. On the contrary, no significant mortality and developmental defects were observed in zebrafish embryos exposed to COSMOS inert solution. Our results provide the first experimental in vivo evidence that, in contrast with concrete stabilization procedure, COSMOS technology provides a biologically safe inert. Copyright © 2014 Elsevier B.V. All rights reserved.
Development of demand forecasting tool for natural resources recouping from municipal solid waste.
Zaman, Atiq Uz; Lehmann, Steffen
2013-10-01
Sustainable waste management requires an integrated planning and design strategy for reliable forecasting of waste generation, collection, recycling, treatment and disposal for the successful development of future residential precincts. The success of the future development and management of waste relies to a high extent on the accuracy of the prediction and on a comprehensive understanding of the overall waste management systems. This study defies the traditional concepts of waste, in which waste was considered as the last phase of production and services, by putting forward the new concept of waste as an intermediate phase of production and services. The study aims to develop a demand forecasting tool called 'zero waste index' (ZWI) for measuring the natural resources recouped from municipal solid waste. The ZWI (ZWI demand forecasting tool) quantifies the amount of virgin materials recovered from solid waste and subsequently reduces extraction of natural resources. In addition, the tool estimates the potential amount of energy, water and emissions avoided or saved by the improved waste management system. The ZWI is tested in a case study of waste management systems in two developed cities: Adelaide (Australia) and Stockholm (Sweden). The ZWI of waste management systems in Adelaide and Stockholm is 0.33 and 0.17 respectively. The study also enumerates per capita energy savings of 2.9 GJ and 2.83 GJ, greenhouse gas emissions reductions of 0.39 tonnes (CO2e) and 0.33 tonnes (CO2e), as well as water savings of 2.8 kL and 0.92 kL in Adelaide and Stockholm respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Johannes G., E-mail: jp.aht.p3@gmail.com; Arce-Jaque, Joan; Ravena, Neil
The integration of the informal sector into municipal solid waste management is a challenge many developing countries face. In Iloilo City, Philippines around 220 tons of municipal solid waste are collected every day and disposed at a 10 ha large dumpsite. In order to improve the local waste management system the Local Government decided to develop a new Waste Management Center with integrated landfill. However, the proposed area is adjacent to the presently used dumpsite where more than 300 waste pickers dwell and depend on waste picking as their source of livelihood. The Local Government recognized the hidden threat imposedmore » by the waste picker's presence for this development project and proposed various measures to integrate the informal sector into the municipal solid waste management (MSWM) program. As a key intervention a Waste Workers Association, called USWAG Calahunan Livelihood Association Inc. (UCLA) was initiated and registered as a formal business enterprise in May 2009. Up to date, UCLA counts 240 members who commit to follow certain rules and to work within a team that jointly recovers wasted materials. As a cooperative they are empowered to explore new livelihood options such as the recovery of Alternative Fuels for commercial (cement industry) and household use, production of compost and making of handicrafts out of used packages. These activities do not only provide alternative livelihood for them but also lessen the generation of leachate and Greenhouse Gases (GHG) emissions from waste disposal, whereby the life time of the proposed new sanitary landfill can be extended likewise.« less
Physical-Chemical Solid Waste Processing for Space Missions at Ames Research Center
NASA Technical Reports Server (NTRS)
Fisher, John W.; Pisharody, Suresh; Moran, Mark; Wignarajah, K.; Tleimat, Maher; Pace, Greg
2001-01-01
As space missions become longer in duration and reach out to more distant locations such as Mars, solids waste processing progresses from storage technologies to reclamation technologies. Current low Earth orbit technologies consist of store-and dispose to space or return to Earth. Fully regenerative technologies recycle wastes. The materials reclaimed from waste can be used to provide the basic materials to support plant growth for food including carbon dioxide, water, and nutrients. Other products can also be reclaimed from waste such as hydrocarbons and activated carbon. This poster describes development at Ames Research Center of a process to make activated carbon from space mission wastes and to make an incineration system that produces clean flue gas. Inedible biomass and feces contain hydrocarbons in a form that can be pyrolyzed and converted to activated carbon. The activated carbon can then be used to clean up contaminants from various other life support systems; in particular, the activated carbon can be used regeneratively to remove NOx from incinerator flue gas. Incinerator flue gas can also be cleaned up by the use of reductive and oxidative catalysts. A catalytic incinerator flue gas cleanup system has been developed at ARC that produces flue gas clean enough (with the exception of carbon dioxide) to meet the Space Minimum Allowable Concentration limits for human exposure.
Life cycle assessment of a household solid waste source separation programme: a Swedish case study.
Bernstad, Anna; la Cour Jansen, Jes; Aspegren, Henrik
2011-10-01
The environmental impact of an extended property close source-separation system for solid household waste (i.e., a systems for collection of recyclables from domestic properties) is investigated in a residential area in southern Sweden. Since 2001, households have been able to source-separate waste into six fractions of dry recyclables and food waste sorting. The current system was evaluated using the EASEWASTE life cycle assessment tool. Current status is compared with an ideal scenario in which households display perfect source-separation behaviour and a scenario without any material recycling. Results show that current recycling provides substantial environmental benefits compared to a non-recycling alternative. The environmental benefit varies greatly between recyclable fractions, and the recyclables currently most frequently source-separated by households are often not the most beneficial from an environmental perspective. With optimal source-separation of all recyclables, the current net contribution to global warming could be changed to a net-avoidance while current avoidance of nutrient enrichment, acidification and photochemical ozone formation could be doubled. Sensitivity analyses show that the type of energy substituted by incineration of non-recycled waste, as well as energy used in recycling processes and in the production of materials substituted by waste recycling, is of high relevance for the attained results.
The study on biomass fraction estimate methodology of municipal solid waste incinerator in Korea.
Kang, Seongmin; Kim, Seungjin; Lee, Jeongwoo; Yun, Hyunki; Kim, Ki-Hyun; Jeon, Eui-Chan
2016-10-01
In Korea, the amount of greenhouse gases released due to waste materials was 14,800,000 t CO2eq in 2012, which increased from 5,000,000 t CO2eq in 2010. This included the amount released due to incineration, which has gradually increased since 2010. Incineration was found to be the biggest contributor to greenhouse gases, with 7,400,000 t CO2eq released in 2012. Therefore, with regards to the trading of greenhouse gases emissions initiated in 2015 and the writing of the national inventory report, it is important to increase the reliability of the measurements related to the incineration of waste materials. This research explored methods for estimating the biomass fraction at Korean MSW incinerator facilities and compared the biomass fractions obtained with the different biomass fraction estimation methods. The biomass fraction was estimated by the method using default values of fossil carbon fraction suggested by IPCC, the method using the solid waste composition, and the method using incinerator flue gas. The highest biomass fractions in Korean municipal solid waste incinerator facilities were estimated by the IPCC Default method, followed by the MSW analysis method and the Flue gas analysis method. Therefore, the difference in the biomass fraction estimate was the greatest between the IPCC Default and the Flue gas analysis methods. The difference between the MSW analysis and the flue gas analysis methods was smaller than the difference with IPCC Default method. This suggested that the use of the IPCC default method cannot reflect the characteristics of Korean waste incinerator facilities and Korean MSW. Incineration is one of most effective methods for disposal of municipal solid waste (MSW). This paper investigates the applicability of using biomass content to estimate the amount of CO2 released, and compares the biomass contents determined by different methods in order to establish a method for estimating biomass in the MSW incinerator facilities of Korea. After analyzing the biomass contents of the collected solid waste samples and the flue gas samples, the results were compared with the Intergovernmental Panel on Climate Change (IPCC) method, and it seems that to calculate the biomass fraction it is better to use the flue gas analysis method than the IPCC method. It is valuable to design and operate a real new incineration power plant, especially for the estimation of greenhouse gas emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batool, Syeda Adila; Chuadhry, Muhammad Nawaz
2009-01-15
The contribution of existing municipal solid waste management to emission of greenhouse gases and the alternative scenarios to reduce emissions were analyzed for Data Ganj Bukhsh Town (DGBT) in Lahore, Pakistan using the life cycle assessment methodology. DGBT has a population of 1,624,169 people living in 232,024 dwellings. Total waste generated is 500,000 tons per year with an average per capita rate of 0.84 kg per day. Alternative scenarios were developed and evaluated according to the environmental, economic, and social atmosphere of the study area. Solid waste management options considered include the collection and transportation of waste, collection of recyclablesmore » with single and mixed material bank container systems (SMBCS, MMBCS), material recovery facilities (MRF), composting, biogasification and landfilling. A life cycle inventory (LCI) of the six scenarios along with the baseline scenario was completed; this helped to quantify the CO{sub 2} equivalents, emitted and avoided, for energy consumption, production, fuel consumption, and methane (CH{sub 4}) emissions. LCI results showed that the contribution of the baseline scenario to the global warming potential as CO{sub 2} equivalents was a maximum of 838,116 tons. The sixth scenario had a maximum reduction of GHG emissions in terms of CO{sub 2} equivalents of -33,773 tons, but the most workable scenario for the current situation in the study area is scenario 5. It saves 25% in CO{sub 2} equivalents compared to the baseline scenario.« less
48 CFR 52.204-4 - Printed or Copied Double-Sided on Postconsumer Fiber Content Paper.
Code of Federal Regulations, 2013 CFR
2013-10-01
... boxes; old newspapers; old magazines; mixed waste paper; tabulating cards; and used cordage; or (2) All paper, paperboard, and fibrous materials that enter and are collected from municipal solid waste; but... practicable, when not using electronic commerce methods to submit information or data to the Government. (End...
48 CFR 52.204-4 - Printed or Copied Double-Sided on Postconsumer Fiber Content Paper.
Code of Federal Regulations, 2012 CFR
2012-10-01
... boxes; old newspapers; old magazines; mixed waste paper; tabulating cards; and used cordage; or (2) All paper, paperboard, and fibrous materials that enter and are collected from municipal solid waste; but... practicable, when not using electronic commerce methods to submit information or data to the Government. (End...
48 CFR 52.204-4 - Printed or Copied Double-Sided on Postconsumer Fiber Content Paper.
Code of Federal Regulations, 2014 CFR
2014-10-01
... boxes; old newspapers; old magazines; mixed waste paper; tabulating cards; and used cordage; or (2) All paper, paperboard, and fibrous materials that enter and are collected from municipal solid waste; but... practicable, when not using electronic commerce methods to submit information or data to the Government. (End...
40 CFR 261.141 - Definitions of terms as used in this subpart.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Financial Requirements for Management of Excluded Hazardous Secondary Materials § 261.141 Definitions of terms as used in this subpart... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Definitions of terms as used in this...
Industries in the United States generate large volumes of non-hazardous wastes, sludges, by-products, and spent materials that require disposal or other end-of-life management. Solid-waste management stakeholders are increasingly employing or researching methods for beneficial r...
New technology recipes include horseradish, vinegar, mushrooms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, J.
1995-08-01
Technology development for more effective environmental management continues to abound. This article contains some recent innovations in the following areas: wastewater treatment; site remediation; and air pollution control. In addition several emerging technologies address solid and hazardous waste management with techniques designed to reduce waste volume, recycle valuable materials and create new energy sources.
Of the identified current and proposed construction projects in which municipal solid waste combustion residues replace traditionally used materials, approximately half are located on landfills or other property controlled by project sponsors, one third are in publicly accessible...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conway, R.; Wade, M.; Tharp, T.
1994-12-31
The first remediation of an Environmental Restoration (ER) Project site at Sandia National Laboratories (SNL) was successfully conducted in May and June 1994 at Technical Area II. The removal action involved four Uranium Calibration Pits (UCPs) filled with radioactive or hazardous materials. The concrete culvert pits were used to test and calibrate borehole radiometric logging tools for uranium exploration. The removal action consisted of excavating and containerizing the pit contents and contaminated soil beneath the culverts, removing the four culverts, and backfilling the excavation. Each UCP removal had unique complexities. Sixty 208-L drums of solid radioactive waste and eight 208-Lmore » drums of liquid hazardous waste were generated during the VCM. Two of the concrete culverts will be disposed as radioactive waste and two as solid waste. Uranium-238 was detected in UCP-2 ore material at 746 pci/g, and at 59 pci/g in UCP-1 silica sand. UCP-4 was empty; sludge from UCP-3 contained 122 mg/L (ppm) chromium.« less
Materials Discarded in the U.S. Municipal Waste Stream, 1960 to 2009 (in tons)
The U.S. Environmental Protection Agency (EPA) has collected and reported data on the generation and disposal of waste in the United States for more than 30 years. We use this information to measure the success of waste reduction and recycling programs across the country. Our trash, or municipal solid waste (MSW), is made up of the things we commonly use and then throw away. These materials include items such as packaging, food scraps, grass clippings, sofas, computers, tires, and refrigerators. MSW does not include industrial, hazardous, or construction waste. The data on Materials Discarded in the Municipal Waste Stream, 1960 to 2009, provides estimated data in thousands of tons discarded after recycling and compost recovery for the years 1960, 1970, 1980, 1990, 2000, 2005, 2007, 2008, and 2009. In this data set, discards include combustion with energy recovery. This data table does not include construction & demolition debris, industrial process wastes, or certain other wastes. The Other category includes electrolytes in batteries and fluff pulp, feces, and urine in disposable diapers. Details may not add to totals due to rounding.
Electrochemical processing of solid waste
NASA Technical Reports Server (NTRS)
Bockris, J. OM.; Hitchens, G. D.; Kaba, L.
1988-01-01
The investigation into electrolysis as a means of waste treatment and recycling on manned space missions is described. The electrochemical reactions of an artificial fecal waste mixture was examined. Waste electrolysis experiments were performed in a single compartment reactor, on platinum electrodes, to determine conditions likely to maximize the efficiency of oxidation of fecal waste material to CO2. The maximum current efficiencies for artificial fecal waste electrolysis to CO2 was found to be around 50 percent in the test apparatus. Experiments involving fecal waste oxidation on platinum indicates that electrodes with a higher overvoltage for oxygen evolution such as lead dioxide will give a larger effective potential range for organic oxidation reactions. An electrochemical packed column reactor was constructed with lead dioxide as electrode material. Preliminary experiments were performed using a packed-bed reactor and continuous flow techniques showing this system may be effective in complete oxidation of fecal material. The addition of redox mediator Ce(3+)/Ce(4+) enhances the oxidation process of biomass components. Scientific literature relevant to biomass and fecal waste electrolysis were reviewed.
Simulation of construction and demolition waste leachate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Townsend, T.G.; Jang, Y.; Thurn, L.G.
1999-11-01
Solid waste produced from construction and demolition (C and D) activities is typically disposed of in unlined landfills. Knowledge of C{ampersand}D debris landfill leachate is limited in comparison to other types of wastes. A laboratory study was performed to examine leachate resulting from simulated rainfall infiltrating a mixed C and D waste stream consisting of common construction materials (e.g., concrete, wood, drywall). Lysimeters (leaching columns) filled with the mixed C and D waste were operated under flooded and unsaturated conditions. Leachate constituent concentrations in the leachate from specific waste components were also examined. Leachate samples were collected and analyzed formore » a number of conventional water quality parameters including pH, alkalinity, total organic carbon, total dissolved solids, and sulfate. In experiments with the mixed C and D waste, high concentrations of total dissolved solids (TDS) and sulfate were detected in the leachate. C and D leachates produced as a result of unsaturated conditions exhibited TDS concentrations in the range of 570--2,200 mg/L. The major contributor to the TDS was sulfate, which ranged in concentration between 280 and 930 mg/L. The concentrations of sulfate in the leachate exceeded the sulfate secondary drinking water standard of 250 mg/L.« less
Productivity improvement with green approach to palm oil factory productivity
NASA Astrophysics Data System (ADS)
Matondang, N.
2018-02-01
The palm oil factory (POF) processes fresh fruit bunches into crude palm oil (CPO) and palm kernel oil (PKO) by products in the form of liquid and solid waste. One of the solid wastes produced in POF Tanjung Kasau is empty fruit bunches of palm oil (FBPO) which have been burned completely on incinerator tubes so that potentially produces pollutants that pollute the environment. If FBPO waste is managed properly, it will improve the productivity of the company. Therefore, it is necessary to conduct a study to find out how far the increased productivity of the company can reduce their impact on the environment, if FBPO is used as raw material of liquid smoke. The productivity improvement approach is done by Green Productivity concept, by looking at three aspects: environmental, social and economical. Green Productivity aims to protect the environment simultaneously by increasing the productivity of the company. One way is to turn FBPO waste into liquid smoke product is by pyrolysis process. The results showed that turning FBPO solid waste into liquid smoke will increase productivity by 18.18%. Implementation of Green Productivity can improve productivity through the improvement of FBPO waste treatment process which has been done by perfect combustion by pyrolysis process so that waste can be minimized to create environment industry POF clean and friendly environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banar, Mufide; Cokaygil, Zerrin; Ozkan, Aysun
Life cycle assessment (LCA) methodology was used to determine the optimum municipal solid waste (MSW) management strategy for Eskisehir city. Eskisehir is one of the developing cities of Turkey where a total of approximately 750 tons/day of waste is generated. An effective MSW management system is needed in this city since the generated MSW is dumped in an unregulated dumping site that has no liner, no biogas capture, etc. Therefore, five different scenarios were developed as alternatives to the current waste management system. Collection and transportation of waste, a material recovery facility (MRF), recycling, composting, incineration and landfilling processes weremore » considered in these scenarios. SimaPro7 libraries were used to obtain background data for the life cycle inventory. One ton of municipal solid waste of Eskisehir was selected as the functional unit. The alternative scenarios were compared through the CML 2000 method and these comparisons were carried out from the abiotic depletion, global warming, human toxicity, acidification, eutrophication and photochemical ozone depletion points of view. According to the comparisons and sensitivity analysis, composting scenario, S3, is the more environmentally preferable alternative. In this study waste management alternatives were investigated only on an environmental point of view. For that reason, it might be supported with other decision-making tools that consider the economic and social effects of solid waste management.« less
Petrovic, Igor; Hip, Ivan; Fredlund, Murray D
2016-09-01
The variability of untreated municipal solid waste (MSW) shear strength parameters, namely cohesion and shear friction angle, with respect to waste stability problems, is of primary concern due to the strong heterogeneity of MSW. A large number of municipal solid waste (MSW) shear strength parameters (friction angle and cohesion) were collected from published literature and analyzed. The basic statistical analysis has shown that the central tendency of both shear strength parameters fits reasonably well within the ranges of recommended values proposed by different authors. In addition, it was established that the correlation between shear friction angle and cohesion is not strong but it still remained significant. Through use of a distribution fitting method it was found that the shear friction angle could be adjusted to a normal probability density function while cohesion follows the log-normal density function. The continuous normal-lognormal bivariate density function was therefore selected as an adequate model to ascertain rational boundary values ("confidence interval") for MSW shear strength parameters. It was concluded that a curve with a 70% confidence level generates a "confidence interval" within the reasonable limits. With respect to the decomposition stage of the waste material, three different ranges of appropriate shear strength parameters were indicated. Defined parameters were then used as input parameters for an Alternative Point Estimated Method (APEM) stability analysis on a real case scenario of the Jakusevec landfill. The Jakusevec landfill is the disposal site of the capital of Croatia - Zagreb. The analysis shows that in the case of a dry landfill the most significant factor influencing the safety factor was the shear friction angle of old, decomposed waste material, while in the case of a landfill with significant leachate level the most significant factor influencing the safety factor was the cohesion of old, decomposed waste material. The analysis also showed that a satisfactory level of performance with a small probability of failure was produced for the standard practice design of waste landfills as well as an analysis scenario immediately after the landfill closure. Copyright © 2015 Elsevier Ltd. All rights reserved.
40 CFR 257.3 - Criteria for classification of solid waste disposal facilities and practices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities and Practices § 257.3 Criteria for classification of solid waste disposal facilities and practices. Solid waste disposal facilities or practices...
40 CFR 257.3 - Criteria for classification of solid waste disposal facilities and practices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities and Practices § 257.3 Criteria for classification of solid waste disposal facilities and practices. Solid waste disposal facilities or practices...
Code of Federal Regulations, 2012 CFR
2012-07-01
... operations on pavements, houses, commercial buildings and other structures. (i) Compartmentalized vehicle... which is designed to compact solid waste or recyclable materials, and which remains stationary when in...
Code of Federal Regulations, 2013 CFR
2013-07-01
... operations on pavements, houses, commercial buildings and other structures. (i) Compartmentalized vehicle... which is designed to compact solid waste or recyclable materials, and which remains stationary when in...
Code of Federal Regulations, 2011 CFR
2011-07-01
... operations on pavements, houses, commercial buildings and other structures. (i) Compartmentalized vehicle... which is designed to compact solid waste or recyclable materials, and which remains stationary when in...
Code of Federal Regulations, 2010 CFR
2010-07-01
... operations on pavements, houses, commercial buildings and other structures. (i) Compartmentalized vehicle... which is designed to compact solid waste or recyclable materials, and which remains stationary when in...
Code of Federal Regulations, 2014 CFR
2014-07-01
... operations on pavements, houses, commercial buildings and other structures. (i) Compartmentalized vehicle... which is designed to compact solid waste or recyclable materials, and which remains stationary when in...
40 CFR 246.202-3 - Recommended procedures: Market study.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures... techniques. (b) Directly contacting buyers and determining the buyers' quality specifications, potential...
40 CFR 246.201-4 - Recommended procedures: Market study.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures... research techniques. (b) Directly contacting buyers and determining the buyers' quality specifications...
40 CFR 246.202-3 - Recommended procedures: Market study.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures... techniques. (b) Directly contacting buyers and determining the buyers' quality specifications, potential...
40 CFR 246.202-3 - Recommended procedures: Market study.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures... techniques. (b) Directly contacting buyers and determining the buyers' quality specifications, potential...
40 CFR 246.201-4 - Recommended procedures: Market study.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures... research techniques. (b) Directly contacting buyers and determining the buyers' quality specifications...
40 CFR 246.201-4 - Recommended procedures: Market study.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures... research techniques. (b) Directly contacting buyers and determining the buyers' quality specifications...
Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials
Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.
1999-01-01
The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.
Boesch, Michael E; Vadenbo, Carl; Saner, Dominik; Huter, Christoph; Hellweg, Stefanie
2014-02-01
A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO2-eq. generated in the incineration process, and 54 kg CO2-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO2-eq. Savings from energy recovery are in the range of 67 to 752 kg CO2-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO2-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates that MSWI plants can be an important element of industrial ecology as they provide waste disposal services and can help to close material and energetic cycles. Copyright © 2013 Elsevier Ltd. All rights reserved.
Process for remediation of plastic waste
Pol, Vilas G [Westmont, IL; Thiyagarajan, Pappannan [Germantown, MD
2012-04-10
A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.
Solid Waste Management Plan. Revision 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-26
The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.
Merrild, Hanna; Larsen, Anna W; Christensen, Thomas H
2012-05-01
Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analysesmore » that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.« less
Sandulescu, Elena
2004-12-01
Waste management is a key process to protect the environment and conserve resources. The contribution of appropriate waste management measures to the reduction of greenhouse gas (GHG) emissions from the city of Bucharest was studied. An analysis of the distribution of waste flows into various treatment options was conducted using the material flows and stocks analysis (MFSA). An optimum scenario (i.e. municipal solid waste stream managed as: recycling of recoverable materials, 8%; incineration of combustibles, 60%; landfilling of non-combustibles, 32%) was modelled to represent the future waste management in Bucharest with regard to its relevance towards the potential for GHG reduction. The results indicate that it can contribute by 5.5% to the reduction of the total amount of GHGs emitted from Bucharest.
Comparative studies on acid leaching of zinc waste materials
NASA Astrophysics Data System (ADS)
Rudnik, Ewa; Włoch, Grzegorz; Szatan, Leszek
2017-11-01
Three industrial waste materials were characterized in terms of their elemental and phase compositions, leaching behaviour in 10% sulfuric acid solution as well as leaching thermal effects. Slag from melting of mixed metallic scrap contained about 50% Zn and 10% Pb. It consisted mainly of various oxides and oxy-chlorides of metals. Zinc spray metallizing dust contained about 77% Zn in form of zinc and/or zinc-iron oxides, zinc metal and Zn-Fe intermetallic. Zinc ash from hot dip galvanizing was a mixture of zinc oxide, metallic zinc and zinc hydroxide chloride and contained about 80% Zn. Dissolution efficiency of zinc from the first material was 80% (independently on the solid to liquid ratio, 50-150 kg/m3), while decrease of the efficacy from 80% to 60% with increased solid to liquid ratio for the two remaining materials was observed. Both increase in the temperature (20 °C to 35 °C) and agitation rate (300 rpm to 900 rpm) did not improve seriously the leaching results. In all cases, transfer of zinc ions to the leachate was accompanied by different levels of solution contamination, depending on the type of the waste. Leaching of the materials was exothermic with the similar reaction heats for two high oxide-type products (slag, zinc ash) and higher values for the spray metallizing dust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bench, T.R.
1997-05-01
This paper details how the Bettis Atomic Power Laboratory modified and utilized a commercially available, solid carbon dioxide (CO{sub 2}) pellet, non-destructive cleaning system to support the disposition and disposal of radioactive waste from shielded hot cells. Some waste materials and equipment accumulated in the shielded hot cells cannot be disposed directly because they are contaminated with transuranic materials (elements with atomic numbers greater than that of uranium) above waste disposal site regulatory limits. A commercially available CO{sub 2} pellet non-destructive cleaning system was extensively modified for remote operation inside a shielded hot cell to remove the transuranic contaminants frommore » the waste and equipment without generating any secondary waste in the process. The removed transuranic contaminants are simultaneously captured, consolidated, and retained for later disposal at a transuranic waste facility.« less
Xu, Wanying; Zhou, Chuanbin; Lan, Yajun; Jin, Jiasheng; Cao, Aixin
2015-05-01
Municipal solid waste (MSW) management (MSWM) is most important and challenging in large urban communities. Sound community-based waste management systems normally include waste reduction and material recycling elements, often entailing the separation of recyclable materials by the residents. To increase the efficiency of source separation and recycling, an incentive-based source separation model was designed and this model was tested in 76 households in Guiyang, a city of almost three million people in southwest China. This model embraced the concepts of rewarding households for sorting organic waste, government funds for waste reduction, and introducing small recycling enterprises for promoting source separation. Results show that after one year of operation, the waste reduction rate was 87.3%, and the comprehensive net benefit under the incentive-based source separation model increased by 18.3 CNY tonne(-1) (2.4 Euros tonne(-1)), compared to that under the normal model. The stakeholder analysis (SA) shows that the centralized MSW disposal enterprises had minimum interest and may oppose the start-up of a new recycling system, while small recycling enterprises had a primary interest in promoting the incentive-based source separation model, but they had the least ability to make any change to the current recycling system. The strategies for promoting this incentive-based source separation model are also discussed in this study. © The Author(s) 2015.
Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint
Moens, Luc
1995-01-01
A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350.degree. and 375.degree. C. to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan.
Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint
Moens, L.
1995-07-11
A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350 and 375 C to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan. 2 figs.
Controlling mechanisms of metals release form cement-based waste form in acetic acid solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Kuang Ye.
1991-01-01
The purpose of this dissertation is to identify the individual leaching mechanisms of metals by knowing the pH profile within the leached specimen and the physical and chemical properties of the leached material. Leaching of cement-based waste form in acetic acid solutions with different acidic strengths has been investigated in this work. The pH profile along the acid penetration route in the cement-based waste form was identified by various pH color indicators. The pH in the surface altered layer varies from 5.0 to 6.0, which is very close to the pH in the bulk leachate. A reacting zone, where themore » pH abruptly changes from 6 to 12, sharply divides the altered surface layer from the remaining unleached waste form or kernel. Leaching of metals is controlled by the acidity available in the leachant. Dissolution of alkaline materials leaves a silica-rich layer on the surface of the cement-based waste form. This surface layer exhibits different properties than those of the unleached material. The surface layer has a higher water content, is lighter weight, and is soft and friable. Furthermore, the abundant silicate content on the solid surface detains portion of the leached metals, while they are moving through the leached layer into bulk solution. The leaching of metals is a consequence of acid penetration. The distance from the solid/solution interface to the front of the leaching boundary can be regarded as the depth of leaching zone, where the metals dissolve and diffuse out of the waste form. The metal ions diffuse through the leached layer may be retarded on the solid surface by the pH-dependent adsorption reactions. It is found that the leaching process through the leached layer is diffusion-controlled for calcium and cadmium, whereas diffusion and adsorption occur simultaneously in the leached layer for lead and arsenic.« less
40 CFR 246.200-8 - Recommended procedures: Cost analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures..., storage, and transportation costs have been made, and estimated tonnages of both recoverable high-grade... for revenue from paper sales and savings from diverting recycled materials from disposal. Potential...
Sustainable solutions for solid waste management in Southeast Asian countries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uyen Nguyen Ngoc; Schnitzer, Hans
2009-06-15
Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will bemore » outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.« less
36 CFR 13.1008 - Solid waste disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...
36 CFR 13.1604 - Solid waste disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...
36 CFR 13.1118 - Solid waste disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...
36 CFR 13.1604 - Solid waste disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...
36 CFR 13.1912 - Solid waste disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located...
36 CFR 13.1008 - Solid waste disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...
36 CFR 13.1118 - Solid waste disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...
40 CFR 246.200-3 - Recommended procedures: Market study.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures... techniques; (b) Directly contacting buyers, and determining the buyers' quality specifications, the exact...
40 CFR 246.200-3 - Recommended procedures: Market study.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures... techniques; (b) Directly contacting buyers, and determining the buyers' quality specifications, the exact...
40 CFR 246.200-3 - Recommended procedures: Market study.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures... techniques; (b) Directly contacting buyers, and determining the buyers' quality specifications, the exact...
NASA Astrophysics Data System (ADS)
Peterson, B. V.; Hummerick, M.; Roberts, M. S.; Krumins, V.; Kish, A. L.; Garland, J. L.; Maxwell, S.; Mills, A.
2004-01-01
Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO 2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis, 1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste subsystem analysis and atmospheric management within the ALS Project.
NASA Technical Reports Server (NTRS)
Peterson, B. V.; Hummerick, M.; Roberts, M. S.; Krumins, V.; Kish, A. L.; Garland, J. L.; Maxwell, S.; Mills, A.
2004-01-01
Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis,1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste subsystem analysis and atmospheric management within the ALS Project. Published by Elsevier Ltd on behalf of COSPAR.
Peterson, B V; Hummerick, M; Roberts, M S; Krumins, V; Kish, A L; Garland, J L; Maxwell, S; Mills, A
2004-01-01
Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis,1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste subsystem analysis and atmospheric management within the ALS Project. Published by Elsevier Ltd on behalf of COSPAR.
NASA Astrophysics Data System (ADS)
Giro-Paloma, J.; Ribas-Manero, V.; Maldonado-Alameda, A.; Formosa, J.; Chimenos, J. M.
2017-10-01
Due to the growing amount of residues in Europe, it is mandatory to provide a viable alternative for managing wastes contributing to the efficient use of resources. Besides, it is also essential to move towards a low carbon economy, priority EU by 2050. Among these, it is important to highlight the development of sustainable alternatives capable of incorporating different kind of wastes in their formulations.Municipal Solid Waste Incineration (MSWI) is estimated to increase in Europe, where the accessibility of landfill is restricted. Bottom ash (BA) is the most significant by-product from MSWI as it accounts for 85 - 95 % of the solid product resulting from combustion. BA is a mixture of calcium-rich compounds and others silicates enriched in iron and sodium. In addition, it is categorized as non-hazardous waste which can be revalorized as secondary material in construction or civil engineering fields, previous weathering stabilization during 2 - 3 months. Taking into account the relative proportion of each size fraction and the corresponding material characterization, the content of glass (primary and secondary) is estimated to be around 60 wt%. Furthermore, as a renewable resource and according to waste management European policies, residual agricultural biomass has attracted attention in preparation of advanced materials for various applications, due to their low cost, abundance, and environment friendliness. Among this residual biomass, rice husk is a by-product of rice milling industry which has high content of silica and has been widely used in buildings as natural thermal insulation material.Weathered BA (WBA) with a particle size less than 30 mm was milled under 100 μm, mixed with 2.0 - 5.0 mm rice husk, formed into ball-shaped pellets and sintered by different thermal treatments, which remove the organic matter content generating a large porosity. Physico-chemical analysis and mechanical behavior of the manufactured lightweight aggregates were tested. The obtained results provide a suitable physico-mechanical formulation using WBA as silica source, as well as a common crop by-product.
Prospects of effective microorganisms technology in wastes treatment in Egypt
Shalaby, Emad A
2011-01-01
Sludge dewatering and treatment may cost as much as the wastewater treatment. Usually large proportion of the pollutants in wastewater is organic. They are attacked by saprophytic microorganisms, i.e. organisms that feed upon dead organic matter. Activity of organisms causes decomposition of organic matter and destroys them, where the bacteria convert the organic matter or other constituents in the wastewater to new cells, water, gases and other products. Demolition activities, including renovation/remodeling works and complete or selective removal/demolishing of existing structures either by man-made processes or by natural disasters, create an extensive amount of wastes. These demolition wastes are characterized as heterogeneous mixtures of building materials that are usually contaminated with chemicals and dirt. In developing countries, it is estimated that demolition wastes comprise 20% to 30% of the total annual solid wastes. In Egypt, the daily quantity of construction and demolition (C&D) waste has been estimated as 10 000 tones. That is equivalent to one third of the total daily municipal solid wastes generated per day in Egypt. The zabbaliin have since expanded their activities and now take the waste they collect back to their garbage villages where it is sorted into recyclable components: paper, plastics, rags, glass, metal and food. The food waste is fed to pigs and the other items are sold to recycling centers. This paper summarizes the wastewater and solid wastes management in Egypt now and future. PMID:23569767
NASA Astrophysics Data System (ADS)
Kowalski, Piotr M.; Ji, Yaqi; Li, Yan; Arinicheva, Yulia; Beridze, George; Neumeier, Stefan; Bukaemskiy, Andrey; Bosbach, Dirk
2017-02-01
Using powerful computational resources and state-of-the-art methods of computational chemistry we contribute to the research on novel nuclear waste forms by providing atomic scale description of processes that govern the structural incorporation and the interactions of radionuclides in host materials. Here we present various results of combined computational and experimental studies on La1-xEuxPO4 monazite-type solid solution. We discuss the performance of DFT + U method with the Hubbard U parameter value derived ab initio, and the derivation of various structural, thermodynamic and radiation-damage related properties. We show a correlation between the cation displacement probabilities and the solubility data, indicating that the binding of cations is the driving factor behind both processes. The combined atomistic modeling and experimental studies result in a superior characterization of the investigated material.
Global capacity, potentials and trends of solid waste research and management.
Nwachukwu, Michael A; Ronald, Mersky; Feng, Huan
2017-09-01
In this study, United States, China, India, United Kingdom, Nigeria, Egypt, Brazil, Italy, Germany, Taiwan, Australia, Canada and Mexico were selected to represent the global community. This enabled an overview of solid waste management worldwide and between developed and developing countries. These are countries that feature most in the International Conference on Solid Waste Technology and Management (ICSW) over the past 20 years. A total of 1452 articles directly on solid waste management and technology were reviewed and credited to their original country of research. Results show significant solid waste research potentials globally, with the United States leading by 373 articles, followed by India with 230 articles. The rest of the countries are ranked in the order of: UK > Taiwan > Brazil > Nigeria > Italy > Japan > China > Canada > Germany >Mexico > Egypt > Australia. Global capacity in solid waste management options is in the order of: Waste characterisation-management > waste biotech/composting > waste to landfill > waste recovery/reduction > waste in construction > waste recycling > waste treatment-reuse-storage > waste to energy > waste dumping > waste education/public participation/policy. It is observed that the solid waste research potential is not a measure of solid waste management capacity. The results show more significant research impacts on solid waste management in developed countries than in developing countries where economy, technology and society factors are not strong. This article is targeted to motivate similar study in each country, using solid waste research articles from other streamed databases to measure research impacts on solid waste management.
Plasma reactor waste management systems
NASA Technical Reports Server (NTRS)
Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.
1992-01-01
The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Testimony by representatives of the Environmental Protection Agency, citizen environmental organizations, DOE, and universities on the Mixed Hazardous Waste Amendment Act of 1985 (H.R. 2009) and the Military Radioactive Emissions Control Act of 1985 (H.R. 2593) focused on safety aspects of mixed wastes at DOE facilities from the point of view of the general public and the implications for tourism and recreation in affected areas. H.R. 2593 calls for standards and continuous independent monitoring, while H.R. 2009 ensures that wastes the Solid Waste Management Act covers solid wastes containing radioactive material. The testimony covered definitions and interpretations by byproduct materialmore » and the problems associated with self-regulation. The testimony of the 10 witnesses follows the text of the two bills.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherubini, Francesco; Bargigli, Silvia; Ulgiati, Sergio
2008-12-15
Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airbornemore » emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption.« less
Cherubini, Francesco; Bargigli, Silvia; Ulgiati, Sergio
2008-12-01
Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airborne emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption.
Lewis, Leroy C.; Trammell, David R.
1986-01-01
A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.
Lewis, L.C.; Trammell, D.R.
1983-10-12
A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.
Pallets: A Growing Source of Recycled Wood
Robert J. Bush; Vijay S. Reddy; Philip A. Araman
1997-01-01
Considerable volumes of solid hardwoods, solid softwoods, and wood panels are used to manufacture pallets and containers in the United States. Increasing quantities of these materials are recovered from the waste stream for reuse and recycling. Two important groups involved in this recovery and recycling are firms in the pallet industry (SIC 2448) and landfill...
Pilot scale high solids anaerobic digestion of steam autoclaved municipal solid waste (MSW) pulp
USDA-ARS?s Scientific Manuscript database
Steam autoclaving is an efficient method for the separation and recovery of nearly all organics from MSW, yet a reliable alternative outlet for the large volume of organics produced has not yet been successfully demonstrated. The material produced by the autoclave contains a high concentration of s...
Dissolution and characterization of HEV NiMH batteries.
Larsson, Kristian; Ekberg, Christian; Ødegaard-Jensen, Arvid
2013-03-01
Metal recovery is an essential part of the recycling of hybrid electric vehicle battery waste and the first step in a hydrometallurgical treatment is dissolution of the solid material. The properties of separated battery electrode materials were investigated. Focus was put on both the solid waste and then the dissolution behaviour. The cathode contains metallic nickel that remains undissolved when utilizing non-oxidizing conditions such as hydrochloric or sulphuric acid in combination with a low oxygen atmosphere. In these conditions the cathode active electrode material is fully dissolved. Not dissolving the nickel metal saves up to 37% of the acid consumption for the cathode electrode material. In the commonly used case of oxidizing conditions the nickel metal dissolves and a cobalt-rich phase remains undissolved from the cathode active material. For the anode material a complete and rapid dissolution can be achieved at mild conditions with hydrochloric, nitric or sulphuric acid. Optimal parameters for all cases of dissolution was pH 1 with a reaction time of approximately ≥ 20,000 s. Copyright © 2012 Elsevier Ltd. All rights reserved.
Integrated models for solid waste management in tourism regions: Langkawi Island, Malaysia.
Shamshiry, Elmira; Nadi, Behzad; Mokhtar, Mazlin Bin; Komoo, Ibrahim; Hashim, Halimaton Saadiah; Yahaya, Nadzri
2011-01-01
The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island.
Integrated Models for Solid Waste Management in Tourism Regions: Langkawi Island, Malaysia
Shamshiry, Elmira; Nadi, Behzad; Bin Mokhtar, Mazlin; Komoo, Ibrahim; Saadiah Hashim, Halimaton; Yahaya, Nadzri
2011-01-01
The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island. PMID:21904559
Greenhouse gas emission mitigation relevant to changes in municipal solid waste management system.
Pikoń, Krzysztof; Gaska, Krzysztof
2010-07-01
Standard methods for assessing the environmental impact of waste management systems are needed to underpin the development and implementation of sustainable waste management practice. Life cycle assessment (LCA) is a tool for comprehensively ensuring such assessment and covers all impacts associated with waste management. LCA is often called "from cradle to grave" analysis. This paper integrates information on the greenhouse gas (GHG) implications of various management options for some of the most common materials in municipal solid waste (MSW). Different waste treatment options for MSW were studied in a system analysis. Different combinations of recycling (cardboard, plastics, glass, metals), biological treatment (composting), and incineration as well as land-filling were studied. The index of environmental burden in the global warming impact category was calculated. The calculations are based on LCA methodology. All emissions taking place in the whole life cycle system were taken into account. The analysis included "own emissions," or emissions from the system at all stages of the life cycle, and "linked emissions," or emissions from other sources linked with the system in an indirect way. Avoided emissions caused by recycling and energy recovery were included in the analysis. Displaced emissions of GHGs originate from the substitution of energy or materials derived from waste for alternative sources. The complex analysis of the environmental impact of municipal waste management systems before and after application of changes in MSW systems according to European Union regulations is presented in this paper. The evaluation is made for MSW systems in Poland.
Biochar, Tool for Climate Change Mitigation and Soil Management
NASA Astrophysics Data System (ADS)
Shackley, Simon; Sohi, Saran; Ibarrola, Rodrigo; Hammond, Jim; Mašek, Ondřej; Brownsort, Peter; Cross, Andrew; Prendergast-Miller, Miranda; Haszeldine, Stuart
Biochar is the solid remains of any organic material that has been heated to at least 350oC in a zero-oxygen or oxygen-limited environment, which is intended to be mixed with soils. If the solid remains are not suitable for addition to soils, or will be burned as a fuel or used as an aggregate in construction, it is defined as char not biochar. There is a very wide range of potential biochar feedstocks, e.g., wood waste, timber, agricultural residues and wastes (straws, bagasse, manure, husks, shells, fibers, etc.), leaves, food wastes, paper and sewage sludge, green waste, distiller's grain, and many others. Pyrolysis is usually the technology of choice for producing biochar, though biomass gasification also produces smaller char yields. Syngas and pyrolytic bio-liquids, which have a potential use as energy carriers, are produced alongside biochar.