Sample records for solid waste produced

  1. Effects of biochars produced from solid organic municipal waste on soil quality parameters

    USDA-ARS?s Scientific Manuscript database

    New, value-added uses for solid organic waste are needed for environmental and economic sustainability. Fortunately, value-added biochars can be produced from mixed organic solid waste, thereby addressing solid waste management issues, and enabling long-term carbon sequestration. We hypothesize that...

  2. Comparison of vermicompost characteristics produced from sewage sludge of wood and paper industry and household solid wastes.

    PubMed

    Amouei, A I; Yousefi, Z; Khosravi, T

    2017-01-01

    The aim of this study was to determine the potential of produced compost from the sludge of wastewater treatment plant using earthworms and compare it with the vermicompost produced from household solid waste. In the current study, three treatments with the same conditions in terms of organic wastes type were prepared to produce vermicompost from household solid waste and sewage sludges using earthworms. The standard methods were used to determine the physical and chemical parameters in the different produced vermicomposts. The mean of C/N in the household solid waste, raw biological and chemical sludges was 32, 22.5, and 26.5, respectively. These levels were 16.5, 14.5, and 15 in the vermicomposts. The mean of nitrogen and phosphorus percentages in the vermicompost of solid waste, biological and chemical sludges was 2.2%, 2.6%, 2.3% and 0.72%, 0.54%, and 0.56%, respectively. The mean percentages of organic matters in the initial substrates and vermicomposts of solid waste, biological and chemical sludges were 97.2%, 90%, 80.5% and 65.8%, 67.8% and 63% respectively. The concentrations of heavy metals decreased in all vermicomposts. The EC levels in solid waste, biological and chemical sludges were 1459, 1041, and 1487 μs/cm, respectively. These levels were 544, 385 and 635 μs/cm in the produced compost. Eisenia fetida can convert household solid waste, and biological and chemical sludges produced from wastewater treatment plant into a high-quality and acceptable compost.

  3. Methane generation from waste materials

    DOEpatents

    Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  4. 40 CFR 60.1465 - What definitions must I know?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... produces gases, liquids, or solids by heating municipal solid waste. The gases, liquids, or solids produced... arithmetic average flue gas temperature measured at the inlet of the particulate matter control device during... solid, liquid, or gasified municipal solid waste including, but not limited to, field-erected combustion...

  5. 40 CFR 60.1465 - What definitions must I know?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... produces gases, liquids, or solids by heating municipal solid waste. The gases, liquids, or solids produced... arithmetic average flue gas temperature measured at the inlet of the particulate matter control device during... solid, liquid, or gasified municipal solid waste including, but not limited to, field-erected combustion...

  6. 40 CFR 60.1465 - What definitions must I know?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... produces gases, liquids, or solids by heating municipal solid waste. The gases, liquids, or solids produced... arithmetic average flue gas temperature measured at the inlet of the particulate matter control device during... solid, liquid, or gasified municipal solid waste including, but not limited to, field-erected combustion...

  7. The potential of biogas production from municipal solid waste in a tropical climate.

    PubMed

    Getahun, Tadesse; Gebrehiwot, Mulat; Ambelu, Argaw; Van Gerven, Tom; Van der Bruggen, Bart

    2014-07-01

    The objective of this study was to estimate the potential of organic municipal solid waste generated in an urban setting in a tropical climate to produce biogas. Five different categories of wastes were considered: fruit waste, food waste, yard waste, paper waste, and mixed waste. These fractions were assessed for their efficiency for biogas production in a laboratory-scale batch digester for a total period of 8 weeks at a temperature of 15-30 °C. During this period, fruit waste, food waste, yard waste, paper waste, and mixed waste were observed to produce 0.15, 0.17, 0.10, 0.08, and 0.15 m(3) of biogas per kilogram of volatile solids, respectively. The biogas produced and caloric value of each feedstock was in the range of 1.25 × 10(-3) m(3) (17 kWh)/cap/day (paper waste) to 15 × 10(-3) m(3) (170 kWh)/cap/day (mixed waste). Paper waste produced the least (<1×10(-3)(<17.8 kWh)/cap/day), and mixed waste produced the highest methane yield (10 × 10(-3) m(3) (178 kWh)/cap/day). Thus, mixed waste was found to be more efficient than other feedstocks for biogas and methane production; this was mainly related to the better C/N ratio in mixed waste. Taking the total waste production in Jimma into account, the total mixed organic solid waste could produce 865 × 10(3) m(3) (5.4 m(3)/capita) of biogas or 537 × 10(3) m(3) (3.4 m(3)/capita) of methane per year. The total caloric value of methane production potential from mixed organic municipal solid waste was many times higher than the total energy requirement of the area.

  8. Examples of Disposition Alternatives for WTP Solid Secondary Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seitz, R.

    The Hanford Waste Treatment and Immobilization Plant is planned to produce a variety of solid secondary wastes that will require disposal at the Integrated Disposal Facility on the Hanford Site. Solid secondary wastes include a variety of waste streams that are a result of waste treatment and processing activities.

  9. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.

  10. Surface treated carbon catalysts produced from waste tires for fatty acids to biofuel conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hood, Zachary D.; Adhikari, Shiba P.; Wright, Marcus W.

    A method of making solid acid catalysts includes the step of sulfonating waste tire pieces in a first sulfonation step. The sulfonated waste tire pieces are pyrolyzed to produce carbon composite pieces having a pore size less than 10 nm. The carbon composite pieces are then ground to produce carbon composite powders having a size less than 50 .mu.m. The carbon composite particles are sulfonated in a second sulfonation step to produce sulfonated solid acid catalysts. A method of making biofuels and solid acid catalysts are also disclosed.

  11. Planet Patrol. An Educational Unit on Solid Waste Solutions for Grades 4-6.

    ERIC Educational Resources Information Center

    Shively, Patti J.; And Others

    This educational unit on solid waste solutions is intended to convey to students an understanding of the four methods of solid waste handling, in priority order, as recommended by the Environmental Protection Agency: (1) reduction in the volume of waste produced; (2) recycling and composting; (3) waste combustion, i.e., incineration of waste; and…

  12. Modules for estimating solid waste from fossil-fuel technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

    1980-10-01

    Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solidmore » wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.« less

  13. Method for producing synthetic fuels from solid waste

    DOEpatents

    Antal, Jr., Michael J.

    1976-11-23

    Organic solid wastes represented by the general chemical formula C.sub.X H.sub.Y O.sub.Z are reacted with steam at elevated temperatures to produce H.sub.2 and CO.sub.2. The overall process is represented by the reaction C.sub.X H.sub.Y O.sub.Z + 2(X-Z/2)H.sub.2 O.fwdarw..sup..delta.XCO.sub.2 + [(Y/2) + 2(X-Z/2)] H.sub.2 . (1) reaction (1) is endothermic and requires heat. This heat is supplied by a tower top solar furnace; alternatively, some of the solid wastes can be burned to supply heat for the reaction. The hydrogen produced by reaction (1) can be used as a fuel or a chemical feedstock. Alternatively, methanol can be produced by the commercial process CO.sub.2 + 3H.sub.2 .fwdarw. CH.sub.3 OH + H.sub.2 O . (2) since reaction (1) is endothermic, the system represents a method for storing heat energy from an external source in a chemical fuel produced from solid wastes.

  14. Energy Efficiency of Biogas Produced from Different Biomass Sources

    NASA Astrophysics Data System (ADS)

    Begum, Shahida; Nazri, A. H.

    2013-06-01

    Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.

  15. Biofuels and bioenergy production from municipal solid waste commingled with agriculturally-derived biomass

    USDA-ARS?s Scientific Manuscript database

    The USDA in partnership with Salinas Valley Solid Waste Authority (SVSWA) and CR3, a technology holding company from Reno, NV, has introduced a biorefinery concept whereby agriculturally- derived biomass is commingled with municipal solid waste (MSW) to produce bioenergy. This team, which originally...

  16. Solid Waste Management Available Information Materials. Total Listing 1966-1976.

    ERIC Educational Resources Information Center

    Larsen, Julie L.

    This publication is a compiled and indexed bibliography of solid waste management documents produced in the last ten years. This U.S. Environmental Protection Agency (EPA) publication is compiled from the Office of Solid Waste Management Programs (OSWMP) publications and the National Technical Information Service (NTIS) reports. Included are…

  17. Effect of biochars produced from solid organic municipal waste on soil quality parameters.

    PubMed

    Randolph, P; Bansode, R R; Hassan, O A; Rehrah, Dj; Ravella, R; Reddy, M R; Watts, D W; Novak, J M; Ahmedna, M

    2017-05-01

    New value-added uses for solid municipal waste are needed for environmental and economic sustainability. Fortunately, value-added biochars can be produced from mixed solid waste, thereby addressing solid waste management issues, and enabling long-term carbon sequestration. We hypothesize that soil deficiencies can be remedied by the application of municipal waste-based biochars. Select municipal organic wastes (newspaper, cardboard, woodchips and landscaping residues) individually or in a 25% blend of all four waste streams were used as feedstocks of biochars. Three sets of pyrolysis temperatures (350, 500, and 750 °C) and 3 sets of pyrolysis residence time (2, 4 and 6 h) were used for biochar preparation. The biochar yield was in the range of 21-62% across all feedstocks and pyrolysis conditions. We observed variations in key biochar properties such as pH, electrical conductivity, bulk density and surface area depending on the feedstocks and production conditions. Biochar increased soil pH and improved its electrical conductivity, aggregate stability, water retention and micronutrient contents. Similarly, leachate from the soil amended with biochar showed increased pH and electrical conductivity. Some elements such as Ca and Mg decreased while NO 3 -N increased in the leachates of soils incubated with biochars. Overall, solid waste-based biochar produced significant improvements to soil fertility parameters indicating that solid municipal wastes hold promising potential as feedstocks for manufacturing value-added biochars with varied physicochemical characteristics, allowing them to not only serve the needs for solid waste management and greenhouse gas mitigation, but also as a resource for improving the quality of depleted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. 40 CFR 62.15410 - What definitions must I know?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., liquids, or solids by heating municipal solid waste. The gases, liquids, or solids produced are combusted... gas temperature measured at the inlet of the particulate matter control device during 4 consecutive... combusts solid, liquid, or gasified municipal solid waste including, but not limited to, field-erected...

  19. 40 CFR 62.15410 - What definitions must I know?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., liquids, or solids by heating municipal solid waste. The gases, liquids, or solids produced are combusted... gas temperature measured at the inlet of the particulate matter control device during 4 consecutive... combusts solid, liquid, or gasified municipal solid waste including, but not limited to, field-erected...

  20. Installation and Setup of Whole School Food Waste Composting Program

    NASA Astrophysics Data System (ADS)

    Zhang, A.; Forder, S. E.

    2014-12-01

    Hong Kong, one of the busiest trading harbors in the world, is also a city of 8 million of people. The biggest problem that the government faces is the lack of solid waste landfill space. Hong Kong produces around 13,500 tons of waste per day. There are three landfills in Hong Kong in operation. These three landfills will soon be exhausted in around 2020, and the solid waste in Hong Kong is still increasing. Out of the 13,500 tons of solid waste, 9,000 tons are organic solid waste or food waste. Food waste, especially domestic waste, is recyclable. The Independent Schools Foundation Academy has a project to collect domestic food waste (from the school cafeteria) for decomposition. Our school produces around 15 tons of food waste per year. The project includes a sub-project in the Primary school, which uses the organic soil produced by an aerobic food waste machine, the Rocket A900, to plant vegetables in school. This not only helps our school to process the waste, but also helps the Primary students to study agriculture and have greater opportunities for experimental learning. For this project, two types of machines will be used for food waste processing. Firstly, the Dehydra made by Tiny Planet reduces the volume and the mass of the food waste, by dehydrating the food waste and separating the ground food waste and the excessive water inside machine for further decomposition. Secondly, the A900 Rocket, also made by Tidy Planet; this is used to process the dehydrated ground food waste for around 14 days thereby producing usable organic soil. It grinds the food waste into tiny pieces so that it is easier to decompose. It also separates the wood chips inside the ground food waste. This machine runs an aerobic process, which includes O2 and will produce CO2 during the process and is less harmful to the environment. On the other hand, if it is an anaerobic process occurs during the operation, it will produce a greenhouse gas- CH4 -and smells bad.

  1. Beneficial Use of Waste Materials: State of the Practice 2012

    EPA Science Inventory

    Solid wastes produced in today’s society originate from a myriad of sources, including households, government, businesses, and industry. Current U.S. federal regulations for solid waste management have been developed to promote sound management of these wastes in a manner protect...

  2. Gas production in anaerobic dark-fermentation processes from agriculture solid waste

    NASA Astrophysics Data System (ADS)

    Sriwuryandari, L.; Priantoro, E. A.; Sintawardani, N.

    2017-03-01

    Approximately, Bandung produces agricultural solid waste of 1549 ton/day. This wastes consist of wet-organic matter and can be used for bio-gas production. The research aimed to apply the available agricultural solid waste for bio-hydrogen. Biogas production was done by a serial of batches anaerobic fermentation using mix-culture bacteria as the active microorganism. Fermentation was carried out inside a 30 L bioreactor at room temperature. The analyzed parameters were of pH, total gas, temperature, and COD. Result showed that from 3 kg/day of organic wastes, various total gases of O2, CH4, H2, CO2, and CnHn,O2 was produced.

  3. A holistic approach for food waste management towards zero-solid disposal and energy/resource recovery.

    PubMed

    Ma, Yingqun; Yin, Yao; Liu, Yu

    2017-03-01

    This study developed a holistic approach which was based on the ultra-fast hydrolysis of food waste with the fungal mash rich in various hydrolytic enzymes produced in situ from food waste as well. After the 8-h hydrolytic treatment, the solid residue and liquor were separated. It was found that the produced solid residue can meet all the requirements for biofertilizer in terms of NPK and heavy metal contents, while the separated liquor with high soluble organics concentration was further subject to anaerobic digestion for enhanced biomethane production. The results showed that 0.41kg of biofertilizer with a moisture content of 76.9% and 54.4L of biomethane could be produced from 1kg of food waste. As such, it is expected that this study may lead to the paradigm shift in food waste management with the ultimate target of zero-solid discharge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Supercritical/Solid Catalyst (SSC)

    ScienceCinema

    Ginosar, Daniel; Fox, Robert; Bright, Patricia

    2018-05-23

    INL's patented, continuous-flow Supercritical/Solid Catalyst (SSC) produces the highest ASTM-quality B-100 biodiesel from waste fats, oils, and greases at the site of waste generation. SSC delivers low-cost transportation fuel, avoids significant landfill costs for municipalities, and reduces potent methane and other emissions produced in landfills from these wastes. You can learn more about INL's energy research programs at http://www.facebook.com/idahonationallaboratory.

  5. Supercritical/Solid Catalyst (SSC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginosar, Daniel; Fox, Robert; Bright, Patricia

    2010-05-28

    INL's patented, continuous-flow Supercritical/Solid Catalyst (SSC) produces the highest ASTM-quality B-100 biodiesel from waste fats, oils, and greases at the site of waste generation. SSC delivers low-cost transportation fuel, avoids significant landfill costs for municipalities, and reduces potent methane and other emissions produced in landfills from these wastes. You can learn more about INL's energy research programs at http://www.facebook.com/idahonationallaboratory.

  6. Strong and Optically Transparent Films Prepared Using Cellulosic Solid Residue Recovered from Cellulose Nanocrystals Production Waste Stream

    Treesearch

    Qianqian Wang; J.Y. Zhu; John M. Considine

    2013-01-01

    We used a new cellulosic material, cellulosic solid residue (CSR), to produce cellulose nanofibrils (CNF) for potential high value applications. Cellulose nanofibrils (CNF) were produced from CSR recovered from the hydrolysates (waste stream) of acid hydrolysis of a bleached Eucalyptus kraft pulp (BEP) to produce nanocrystals (CNC). Acid hydrolysis greatly facilitated...

  7. Further Characterization of CELSS Wastes: A Review of Solid Wastes Present to Support Potential Secondary Biomass Production

    NASA Technical Reports Server (NTRS)

    Muller, Matthew S.

    1996-01-01

    Controlled ecological life support systems (CELSS) may one day play an essential role in extraterrestrial colonies. Key to the success of any CELSS will be the system's ability to approach a self-supporting status through recovery and reuse of basic resources. Primary CELSS solid wastes with potential to support secondary biomass production will be inedible plant biomass and metabolic human wastes. Solid waste production is summarized and reported as 765 g N per day per person, including 300 g C and 37 g N per day per person. One Resource Recovery configuration using the bioprocessing of solid wastes into a Tilapia feed stream is examined. Based on estimated conversion efficiencies, 12 g of protein per day per person is produced as a nutrition supplement. The unique tissue composition of crops produced at the Kennedy Space Center CELSS Program highlights the need to evaluate Resource Recovery components with data generated in the CELSS environment.

  8. An Attempt at Quantifying Factors that Affect Efficiency in the Management of Solid Waste Produced by Commercial Businesses in the City of Tshwane, South Africa

    PubMed Central

    Worku, Yohannes; Muchie, Mammo

    2012-01-01

    Objective. The objective was to investigate factors that affect the efficient management of solid waste produced by commercial businesses operating in the city of Pretoria, South Africa. Methods. Data was gathered from 1,034 businesses. Efficiency in solid waste management was assessed by using a structural time-based model designed for evaluating efficiency as a function of the length of time required to manage waste. Data analysis was performed using statistical procedures such as frequency tables, Pearson's chi-square tests of association, and binary logistic regression analysis. Odds ratios estimated from logistic regression analysis were used for identifying key factors that affect efficiency in the proper disposal of waste. Results. The study showed that 857 of the 1,034 businesses selected for the study (83%) were found to be efficient enough with regards to the proper collection and disposal of solid waste. Based on odds ratios estimated from binary logistic regression analysis, efficiency in the proper management of solid waste was significantly influenced by 4 predictor variables. These 4 influential predictor variables are lack of adherence to waste management regulations, wrong perception, failure to provide customers with enough trash cans, and operation of businesses by employed managers, in a decreasing order of importance. PMID:23209483

  9. Ethanol production from food waste at high solid contents with vacuum recovery technology

    USDA-ARS?s Scientific Manuscript database

    Ethanol production from food wastes does not only solve the environmental issues but also provide renewable biofuel to partially substitute fossil fuels. This study investigated the feasibility of utilization of food wastes for producing ethanol at high solid contents (35%, w/w). Vacuum recovery sys...

  10. U.S. Trends in Solid Waste Management and GHG Emissions

    EPA Science Inventory

    In 2009, 243 million tons of municipal solid waste (MSW) was produced in the United States. Currently, 34% of the 243 million tons of MSW is recovered and recycled or composted which conserves energy and natural resources as well as avoid waste disposal. Of the remaining MSW th...

  11. Integral recycling of municipal solid waste incineration (MSWI) bottom ash fines (0-2mm) and industrial powder wastes by cold-bonding pelletization.

    PubMed

    Tang, P; Brouwers, H J H

    2017-04-01

    The cold-bonding pelletizing technique is applied in this study as an integrated method to recycle municipal solid waste incineration (MSWI) bottom ash fines (BAF, 0-2mm) and several other industrial powder wastes. Artificial lightweight aggregates are produced successfully based on the combination of these solid wastes, and the properties of these artificial aggregates are investigated and then compared with others' results reported in literature. Additionally, methods for improving the aggregate properties are suggested, and the corresponding experimental results show that increasing the BAF amount, higher binder content and addition of polypropylene fibres can improve the pellet properties (bulk density, crushing resistance, etc.). The mechanisms regarding to the improvement of the pellet properties are discussed. Furthermore, the leaching behaviours of contaminants from the produced aggregates are investigated and compared with Dutch environmental legislation. The application of these produced artificial lightweight aggregates are proposed according to their properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Potential application of biodrying to treat solid waste

    NASA Astrophysics Data System (ADS)

    Zaman, Badrus; Oktiawan, Wiharyanto; Hadiwidodo, Mochtar; Sutrisno, Endro; Purwono; Wardana, Irawan Wisnu

    2018-02-01

    The generation of solid waste around the world creates problems if not properly managed. The method of processing solid waste by burning or landfill is currently not optimal. The availability of land where the final processing (TPA) is critical, looking for a new TPA alternative will be difficult and expensive, especially in big cities. The processing of solid waste using bio drying technology has the potential to produce renewable energy and prevention of climate change. Solid waste processing products can serve as Refuse Derived Fuel (RDF), reduce water content of solid waste, meningkatkan kualitas lindi and increase the amount of recycled solid waste that is not completely separated from home. Biodrying technology is capable of enhancing the partial disintegration and hydrolysis of macromolecule organic compounds (such as C-Organic, cellulose, hemicellulose, lignin, total nitrogen). The application of biodrying has the potential to reduce greenhouse gas emissions such as carbon dioxide (CO2), methane (CH4), and dinitrooksida (N2O). These gases cause global warming.

  13. Anaerobic digestion of organic solid poultry slaughterhouse waste--a review.

    PubMed

    Salminen, E; Rintala, J

    2002-05-01

    This work reviews the potential of anaerobic digestion for material recovery and energy production from poultry slaughtering by-products and wastes. First, we describe and quantify organic solid by-products and wastes produced in poultry farming and poultry slaughterhouses and discuss their recovery and disposal options. Then we review certain fundamental aspects of anaerobic digestion considered important for the digestion of solid slaughterhouse wastes. Finally, we present an overview of the future potential and current experience of the anaerobic digestion treatment of these materials.

  14. Waste-to-Chemicals for a Circular Economy: The Case of Urea Production (Waste-to-Urea).

    PubMed

    Antonetti, Elena; Iaquaniello, Gaetano; Salladini, Annarita; Spadaccini, Luca; Perathoner, Siglinda; Centi, Gabriele

    2017-03-09

    The economics and environmental impact of a new technology for the production of urea from municipal solid waste, particularly the residue-derived fuel (RdF) fraction, is analyzed. Estimates indicate a cost of production of approximately €135 per ton of urea (internal rate of return more than 10 %) and savings of approximately 0.113 tons of CH 4 and approximately 0.78 tons of CO 2 per ton of urea produced. Thus, the results show that this waste-to-urea (WtU) technology is both economically valuable and environmentally advantageous (in terms of saving resources and limiting carbon footprint) for the production of chemicals from municipal solid waste in comparison with both the production of urea with conventional technology (starting from natural gas) and the use of RdF to produce electrical energy (waste-to-energy). A further benefit is the lower environmental impact of the solid residue produced from RdF conversion. The further benefit of this technology is the possibility to realize distributed fertilizer production. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Developing a master plan for hospital solid waste management: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karamouz, Mohammad; Zahraie, Banafsheh; Kerachian, Reza

    2007-07-01

    Disposal of about 1750 tons of solid wastes per day is the result of a rapid population growth in the province of Khuzestan in the south west of Iran. Most of these wastes, especially hospital solid wastes which have contributed to the pollution of the environment in the study area, are not properly managed considering environmental standards and regulations. In this paper, the framework of a master plan for managing hospital solid wastes is proposed considering different criteria which are usually used for evaluating the pollution of hospital solid waste loads. The effectiveness of the management schemes is also evaluated.more » In order to rank the hospitals and determine the share of each hospital in the total hospital solid waste pollution load, a multiple criteria decision making technique, namely analytical hierarchy process (AHP), is used. A set of projects are proposed for solid waste pollution control and reduction in the proposed framework. It is partially applied for hospital solid waste management in the province of Khuzestan, Iran. The results have shown that the hospitals located near the capital city of the province, Ahvaz, produce more than 43% of the total hospital solid waste pollution load of the province. The results have also shown the importance of improving management techniques rather than building new facilities. The proposed methodology is used to formulate a master plan for hospital solid waste management.« less

  16. Possible global environmental impacts of solid waste practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, M.M.; Holter, G.M.; DeForest, T.J.

    1994-09-01

    Pollutants resulting from the management of solid waste have been shown to affect the air, land, oceans, and waterways. In addition, solid wastes have other, more indirect impacts such as reduction in feedstocks of natural resources, because useful materials are disposed of rather than recycled. The objective of this study is to evaluate solid waste management practices that have negative implications on the global environment and develop recommendations for reducing such impacts. Recommendations identifying needed changes are identified that will reduce global impacts of solid waste practices in the future. The scope of this study includes the range of non-hazardousmore » solid wastes produced within our society, including municipal solid waste (MSW) and industrial solid waste (ISW), as well as industry-specific wastes from activities such as construction, demolition, and landclearing. Most solid waste management decisions continue to be made and implemented at very local levels, predominantly with a short-term focus to respond to relatively immediate pressures of landfill shortages, funding problems, political considerations, and the like. In this rush to address immediate local problems, little consideration is being given to potential impacts, either short- or long-term, at the national or global level resulting from solid waste management practices. More and more, the cumulative impacts from local decisions concerning solid waste management are beginning to manifest themselves in broader, longer-term impacts than are being addressed by the decision-makers or, at the very least, are presenting a greater and greater potential for such impacts.« less

  17. Why Waste a Second Chance? A Small Town Guide to Recycling.

    ERIC Educational Resources Information Center

    National Association of Towns and Townships, Washington, DC.

    In many communities, garbage disposal--solid waste management--is the third largest municipal expenditure and a fast growing budget item. Many small local governments have controlled the growth of these costs by recycling up to 40% of the total solid waste they produce. This guidebook can help communities identify and develop opportunities…

  18. Thermodynamic analysis of the energy recovery from the aerobic bioconversion of solid urban waste organic fraction.

    PubMed

    Di Maria, Francesco; Benavoli, Manuel; Zoppitelli, Mirco

    2008-01-01

    Waste management is of the utmost importance for many countries and especially for highly developed ones due to its implications on society. In particular, proper treatment before disposal of the solid urban waste organic fraction is one of the main issues that is addressed in waste management. In fact, the organic fraction is particularly reactive and if disposed in sanitary landfills without previous adequate treatment, a large amount of dangerous and polluting gaseous, liquid and solid substances can be produced. Some waste treatment processes can also present an opportunity to produce other by-products like energy, recycled materials and other products with both economic and environmental benefits. In this paper, the aerobic treatment of the organic fraction of solid urban waste, performed in a biocell plant with the possibility of recovering heat for civil or industrial needs, was examined from the thermodynamic point of view. A theoretical model was proposed both for the biological process of the organic fraction, as well as for the heat recovery system. The most significant results are represented and discussed.

  19. Municipal solid-waste management in Istanbul.

    PubMed

    Kanat, Gurdal

    2010-01-01

    Istanbul, with a population of around 13 million people, is located between Europe and Asia and is the biggest city in Turkey. Metropolitan Istanbul produces about 14,000 tons of solid waste per day. The aim of this study was to assess the situation of municipal solid-waste (MSW) management in Istanbul. This was achieved by reviewing the quantity and composition of waste produced in Istanbul. Current requirements and challenges in relation to the optimization of Istanbul's MSW collection and management system are also discussed, and several suggestions for solving the problems identified are presented. The recovery of solid waste from the landfills, as well as the amounts of landfill-generated biogas and electricity, were evaluated. In recent years, MSW management in Istanbul has improved because of strong governance and institutional involvement. However, efforts directed toward applied research are still required to enable better waste management. These efforts will greatly support decision making on the part of municipal authorities. There remains a great need to reduce the volume of MSW in Istanbul. 2010 Elsevier Ltd. All rights reserved.

  20. Investigation on the Influence of Bio-catalytic Enzyme Produced from Fruit and Vegetable Waste on Palm Oil Mill Effluent

    NASA Astrophysics Data System (ADS)

    Rasit, Nazaitulshila; Chee Kuan, Ooi

    2018-04-01

    Pre-consumer waste from supermarkets, such as vegetables and fruits dreg are always discarded as solid waste and disposed to landfill. Implementing waste recovery method as a form of waste management strategy will reduce the amount of waste disposed. One of the ways to achieve this goal is through fermentation of the pre-consumer supermarket waste to produce a solution known as garbage enzyme. This study has been conducted to produce and characterize biocatalytic garbage enzyme and to evaluate its influence on palm oil mill effluent as a pre-treatment process before further biological process takes place. Garbage enzyme was produced by three-month long fermentation of a mixture of molasses, pre-consumer supermarket residues, and water in the ratio of 1:3:10. Subsequently, the characterization of enzyme was conducted based on pH, total solids (TS), total suspended solids (TSS), total dissolved solids (TDS), chemical oxygen demand (COD), and enzyme activities. The influence of produced enzyme was evaluated on oil & grease (O&G), TSS and COD of palm oil mill effluent (POME). Different levels of dilution of garbage enzyme to POME samples (5%, 10%, 15%) were explored as pre-treatment (duration of six days) and the results showed that the garbage enzyme contained bio-catalytic enzyme such as amylase, protease, and lipase. The pre-treatment showed removal of 90% of O&G in 15% dilution of garbage enzyme. Meanwhile, reduction of TSS and COD in dilution of 10% garbage enzyme were measured at 50% and 25% respectively. The findings of this study are important to analyse the effectiveness of pre-treatment for further improvement of anaerobic treatment process of POME, especially during hydrolysis stage.

  1. Biogas production from the mechanically pretreated, liquid fraction of sorted organic municipal solid wastes.

    PubMed

    Alvarado-Lassman, A; Méndez-Contreras, J M; Martínez-Sibaja, A; Rosas-Mendoza, E S; Vallejo-Cantú, N A

    2017-06-01

    The high liquid content in fruit and vegetable wastes makes it convenient to mechanically separate these wastes into mostly liquid and solid fractions by means of pretreatment. Then, the liquid fraction can be treated using a high-rate anaerobic biofilm reactor to produce biogas, simultaneously reducing the amount of solids that must be landfilled. In this work, the specific composition of municipal solid waste (MSW) in a public market was determined; then, the sorted organic fraction of municipal solid waste was treated mechanically to separate and characterize the mostly liquid and solid fractions. Then, the mesophilic anaerobic digestion for biogas production of the first fraction was evaluated. The anaerobic digestion resulted in a reduced hydraulic retention time of two days with high removal of chemical oxygen demand, that is, 88% on average, with the additional benefit of reducing the mass of the solids that had to be landfilled by about 80%.

  2. Evaluation of composting as a strategy for managing organic wastes from a municipal market in Nicaragua.

    PubMed

    Aulinas Masó, Montserrat; Bonmatí Blasi, August

    2008-07-01

    A pilot-scale study was undertaken to evaluate alternatives to the solid waste management of a Central American municipal market located in Estelí, Nicaragua. The municipal solid waste from the local market is the second largest contributor to the municipal solid waste (MSW) stream. Waste from the market without any previous sorting or treatment is open dumped. The options evaluated in this study were windrow composting, windrow composting with yard waste, bokashi and vermicompost. Significant differences between the properties of composts produced were found; however, all of them reduce the initial waste volume and are potential useful agronomic products for a survival agrarian milieu.

  3. Solid Waste from the Operation and Decommissioning of Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Marilyn Ann; D'Arcy, Daniel; Lapsa, Melissa Voss

    This baseline report examines the solid waste generated by the U.S. electric power industry, including both waste streams resulting from electricity generation and wastes resulting from the decommissioning of power plants. Coal and nuclear plants produce large volumes of waste during electricity generation, and this report describes the policies and procedures for handling these materials. Natural gas and oil-fired power plants face similar waste challenges. Renewables considered in this baseline report include hydropower, wind and solar.

  4. Energy recovery from solid waste. [production engineering model

    NASA Technical Reports Server (NTRS)

    Dalton, C.; Huang, C. J.

    1974-01-01

    A recent group study on the problem of solid waste disposal provided a decision making model for a community to use in determining the future for its solid waste. The model is a combination of the following factors: technology, legal, social, political, economic and environmental. An assessment of local or community needs determines what form of energy recovery is desirable. A market for low pressure steam or hot water would direct a community to recover energy from solid waste by incineration to generate steam. A fuel gas could be produced by a process known as pyrolysis if there is a local market for a low heating value gaseous fuel. Solid waste can also be used directly as a fuel supplemental to coal in a steam generator. An evaluation of these various processes is made.

  5. Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal.

    PubMed

    Margallo, M; Aldaco, R; Irabien, A; Carrillo, V; Fischer, M; Bala, A; Fullana, P

    2014-06-01

    In recent years, waste management systems have been evaluated using a life cycle assessment (LCA) approach. A main shortcoming of prior studies was the focus on a mixture of waste with different characteristics. The estimation of emissions and consumptions associated with each waste fraction in these studies presented allocation problems. Waste-to-energy (WTE) incineration is a clear example in which municipal solid waste (MSW), comprising many types of materials, is processed to produce several outputs. This paper investigates an approach to better understand incineration processes in Spain and Portugal by applying a multi-input/output allocation model. The application of this model enabled predictions of WTE inputs and outputs, including the consumption of ancillary materials and combustibles, air emissions, solid wastes, and the energy produced during the combustion of each waste fraction. © The Author(s) 2014.

  6. Recycling paper-pulp waste liquors

    NASA Technical Reports Server (NTRS)

    Sarbolouki, M. N.

    1981-01-01

    Papermills in U.S. annually produce 3 million tons of sulfite waste liquor solids; other fractions of waste liquor are monomeric sugars and lignosulfonates in solution. Recovery of lignosulfonates involves precipitation and cross-linking of sulfonates to form useful solid ion-exchange resin. Contamination of sugars recovered from liquor is avoided by first converting them to ethanol, then removing ethanol by distillation.

  7. LISREL Model Medical Solid Infectious Waste Hazardous Hospital Management In Medan City

    NASA Astrophysics Data System (ADS)

    Simarmata, Verawaty; Siahaan, Ungkap; Pandia, Setiaty; Mawengkang, Herman

    2018-01-01

    Hazardous and toxic waste resulting from activities at most hospitals contain various elements of medical solid waste ranging from heavy metals that have the nature of accumulative toxic which are harmful to human health. Medical waste in the form of gas, liquid or solid generally include the category or the nature of the hazard and toxicity waste. The operational in activities of the hospital aims to improve the health and well-being, but it also produces waste as an environmental pollutant waters, soil and gas. From the description of the background of the above in mind that the management of solid waste pollution control medical hospital, is one of the fundamental problems in the city of Medan and application supervision is the main business licensing and control alternatives in accordance with applicable regulations.

  8. Utilization of solid catfish manure waste as carbon and nutrient source for lactic acid production.

    PubMed

    Shi, Suan; Li, Jing; Blersch, David M

    2018-06-01

    The aim of this work was to study the solid waste (manure) produced by catfish as a potential feedstock for the production of lactic acid (LA) via fermentation. The solid waste contains high levels of both carbohydrates and nutrients that are sufficient for LA bacteria. Simultaneous saccharification and co-fermentation (SSCF) was applied using enzyme and Lactobacillus pentosus, and different loadings of enzyme and solid waste were tested. Results showed LA concentrations of 35.7 g/L were obtained at 15% solids content of catfish waste. Because of the high nutrient content in the fish waste, it could also be used as supplementary substrate for nitrogen and carbon sources with other lignocellulosic materials. A combined feedstock of catfish waste and paper mill sludge was tested, increasing the final LA concentration to 43.1 g/L at 12% solids loading. The catfish waste was shown to be a potential feedstock to provide both carbon and nutrients for LA production, suggesting its use as a sole substrate or in combination with other lignocellulosic materials.

  9. Pie waste - A component of food waste and a renewable substrate for producing ethanol.

    PubMed

    Magyar, Margaret; da Costa Sousa, Leonardo; Jayanthi, Singaram; Balan, Venkatesh

    2017-04-01

    Sugar-rich food waste is a sustainable feedstock that can be converted into ethanol without an expensive thermochemical pretreatment that is commonly used in first and second generation processes. In this manuscript we have outlined the pie waste conversion to ethanol through a two-step process, namely, enzyme hydrolysis using commercial enzyme products mixtures and microbial fermentation using yeast. Optimized enzyme cocktail was found to be 45% alpha amylase, 45% gamma amylase, and 10% pectinase at 2.5mg enzyme protein/g glucan produced a hydrolysate with high glucose concentration. All three solid loadings (20%, 30%, and 40%) produced sugar-rich hydrolysates and ethanol with little to no enzyme or yeast inhibition. Enzymatic hydrolysis and fermentation process mass balance was carried out using pie waste on a 1000g dry weight basis that produced 329g ethanol at 20% solids loading. This process clearly demonstrate how food waste could be efficiently converted to ethanol that could be used for making biodiesel by reacting with waste cooking oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A study of tritium in municipal solid waste leachate and gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutch Jr, R. D.; Manhattan College, Riverdale, NY; Columbia Univ., New York, NY

    2008-07-15

    It has become increasingly clear in the last few years that the vast majority of municipal solid waste landfills produce leachate that contains elevated levels of tritium. The authors recently conducted a study of landfills in New York and New Jersey and found that the mean concentration of tritium in the leachate from ten municipal solid waste (MSW) landfills was 33,800 pCi/L with a peak value of 192,000 pCi/L. A 2003 study in California reported a mean tritium concentration of 99,000 pCi/L with a peak value of 304,000 pCi/L. Studies in Pennsylvania and the UK produced similar results. The USEPAmore » MCL for tritium is 20,000 pCi/L. Tritium is also manifesting itself as landfill gas and landfill gas condensate. Landfill gas condensate samples from landfills in the UK and California were found to have tritium concentrations as high as 54,400 and 513,000 pCi/L, respectively. The tritium found in MSW leachate is believed to derive principally from gaseous tritium lighting devices used in some emergency exit signs, compasses, watches, and even novelty items, such as 'glow stick' key chains. This study reports the findings of recent surveys of leachate from a number of municipal solid waste landfills, both open and closed, from throughout the United States and Europe. The study evaluates the human health and ecological risks posed by elevated tritium levels in municipal solid waste leachate and landfill gas and the implications to their safe management. We also assess the potential risks posed to solid waste management facility workers exposed to tritium-containing waste materials in transfer stations and other solid waste management facilities. (authors)« less

  11. Regulation of solid waste management at Brazilian ports: analysis and proposals for Brazil in light of the European experience.

    PubMed

    Jaccoud, Cristiane; Magrini, Alessandra

    2014-02-15

    With a coastline of 8500 km, Brazil has 34 public ports and various private terminals, which together in 2012 handled 809 million tonnes of goods. The solid wastes produced (from port activities, ships and cargoes) pose a highly relevant problem, both due to the quantity and diversity, requiring a complex and integrated set of practices resulting from legal requirements and proactive initiatives. The main Brazilian law on solid waste management is recent (Law 12,305/2010) and the specific rules on solid waste in ports are badly in need of revision to meet the challenges caused by expansion of the sector and to harmonize them with the best global practices. This paper analyzes the current legal/regulatory framework for solid waste management at Brazilian ports and compares this structure with the practice in Europe. At the end, we suggest initiatives to improve the regulation of solid wastes at Brazilian ports. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Fuqing; Shi Jian; Lv Wen

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of cornmore » stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.« less

  13. Comparing urban solid waste recycling from the viewpoint of urban metabolism based on physical input-output model: A case of Suzhou in China.

    PubMed

    Liang, Sai; Zhang, Tianzhu

    2012-01-01

    Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impacts of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkun, Mehmet; Aras, Egemen; Nemlioglu, Semih

    The increasing amount of solid waste arising from municipalities and other sources and its consequent disposal has been one of the major environmental problems in Turkey. Istanbul is a metropolitan city with a current population of around 14 million, and produces about 9000 ton of solid waste every day. The waste composition for Istanbul has changed markedly from 1981 to 1996 with large decreases in waste density, much of which is related to decreased amounts of ash collected in winter. In recent years, the Istanbul region has implemented a new solid waste management system with transfer stations, sanitary landfills, andmore » methane recovery, which has led to major improvements. In the Black Sea region of Turkey, most of the municipal and industrial solid wastes, mixed with hospital and hazardous wastes, are dumped on the nearest lowlands and river valleys or into the sea. The impact of riverside and seashore dumping of solid wastes adds significantly to problems arising from sewage and industry on the Black Sea coast. Appropriate integrated solid waste management systems are needed here as well; however, they have been more difficult to implement than in Istanbul because of more difficult topography, weaker administrative structures, and the lower incomes of the inhabitants.« less

  15. Hazardous waste treatment for spent pot liner

    NASA Astrophysics Data System (ADS)

    Zhao, Xia; Ma, Lei

    2018-01-01

    The spent pot liner is the largest solid waste produced by the electrolytic aluminum industry, composed of a series of substances that accumulate in the containers with reduced aluminum during the process of bauxite purification and refining. More and more spent pot liner is accumulated and needs to be dealt with. This paper discusses the composition and harm of solid waste. This paper expounds the comprehensive utilization value and disposition of the waste pot liner.

  16. On-site production of crude glucoamylase for kitchen waste hydrolysis.

    PubMed

    Wang, Xiao Qiang; Wang, Qun Hui; Liu, Ying Ying; Ma, Hong Zhi

    2010-06-01

    Kitchen waste from dining rooms accounts for a considerable proportion of municipal solid garbage, and economical recycle ways are needed to be developed. This study investigated glucoamylase production from kitchen waste and the feasibility of kitchen waste hydrolysis by the crude enzymes produced. The key problems of high water content and poor porosity in kitchen waste for glucoamylase production under solid-state fermentation could be solved readily by the addition of corn stover or paddy husk. As a support medium, corn stover was better than paddy husk. Smashed kitchen waste (sKW) mixed with corn stover in the ratio of 3.75 : 1 (dry basis) produced 1838 U g(-1) of glucoamylase by Aspergillus niger UV-60 within 96 h. The enzyme productivity from kitchen waste was over two-fold higher than that from wheat bran with additional nutrients. Without any recovery treatment, the produced glucoamylase could be used directly to hydrolyse sKW slurry. The optimum enzyme dose 8% (crude enzyme/kichen waste, w/w) was not too big, and was sufficient to hydrolyse 10% (dry basis) sKW slurry to produce a maximum amount of reducing sugar of 55.4 g L(-1).

  17. Investigation of solid organic waste processing by oxidative pyrolysis

    NASA Astrophysics Data System (ADS)

    Kolibaba, O. B.; Sokolsky, A. I.; Gabitov, R. N.

    2017-11-01

    A thermal analysis of a mixture of municipal solid waste (MSW) of the average morphological composition and its individual components was carried out in order to develop ways to improve the efficiency of its utilization for energy production in thermal reactors. Experimental studies were performed on a synchronous thermal analyzer NETZSCH STA 449 F3 Jupiter combined with a quadrupole mass spectrometer QMC 403. Based on the results of the experiments, the temperature ranges of the pyrolysis process were determined as well as the rate of decrease of the mass of the sample of solid waste during the drying and oxidative pyrolysis processes, the thermal effects accompanying these processes, as well as the composition and volumes of gases produced during oxidative pyrolysis of solid waste and its components in an atmosphere with oxygen content of 1%, 5%, and 10%. On the basis of experimental data the dependences of the yield of gas on the moisture content of MSW were obtained under different pyrolysis conditions under which a gas of various calorific values was produced.

  18. Comparative analysis of waste-to-energy alternatives for a low-capacity power plant in Brazil.

    PubMed

    Ferreira, Elzimar Tadeu de F; Balestieri, José Antonio P

    2018-03-01

    The Brazilian National Solid Waste Policy has been implemented with some difficulty, especially in convincing the different actors of society about the importance of conscious awareness among every citizen and businesses concerning adequate solid waste disposal and recycling. Technologies for recovering energy from municipal solid waste were considered in National Solid Waste Policy (NSWP), given that their technical and environmental viability is ensured, being the landfill biogas burning in internal combustion engines and solid waste incineration suggested options. In the present work, an analysis of current technologies and a collection of basic data on electricity generation using biogas from waste/liquid effluents is presented, as well as an assessment of the installation of a facility that harnesses biogas from waste or liquid effluents for producing electricity. Two combined cycle concepts were evaluated with capacity in the range 4-11 MW, gas turbine burning landfill biogas and an incinerator that burns solid waste hybrid cycle, and a solid waste gasification system to burn syngas in gas turbines. A comparative analysis of them demonstrated that the cycle with gasification from solid waste has proved to be technically more appealing than the hybrid cycle integrated with incineration because of its greater efficiency and considering the initially defined guidelines for electricity generation. The economic analysis does not reveal significant attractive values; however, this is not a significant penalty to the project given the fact that this is a pilot low-capacity facility, which is intended to be constructed to demonstrate appropriate technologies of energy recovery from solid waste.

  19. Pomace waste management scenarios in Québec--impact on greenhouse gas emissions.

    PubMed

    Gassara, Fatma; Brar, S K; Pelletier, F; Verma, M; Godbout, S; Tyagi, R D

    2011-09-15

    Fruit processing industries generate tremendous amount of solid wastes which is almost 35-40% dry weight of the total produce used for the manufacturing of juices. These solid wastes, referred to as, "pomace" contain high moisture content (70-75%) and biodegradable organic load (high BOD and COD values) so that their management is an important issue. During the management of these pomace wastes by different strategies comprising incineration, landfill, composting, solid-state fermentation to produce high-value enzymes and animal feed, there is production of greenhouse gases (GHG) which must be taken into account. In this perspective, this study is unique that discusses the GHG emission analysis of agro-industrial waste management strategies, especially apple pomace waste management and repercussions of value-addition of these wastes in terms of their sustainability using life cycle assessment (LCA) model. The results of the analysis indicated that, among all the apple pomace management sub-models for a functional unit, solid-state fermentation to produce enzymes was the most effective method for reducing GHG emissions (906.81 tons CO(2) eq. per year), while apple pomace landfill resulted in higher GHG emissions (1841.00 tons CO(2) eq. per year). The assessment and inventory of GHG emissions during solid-state fermentation gave positive indications of environmental sustainability for the use of this strategy to manage apple pomace and other agricultural wastes, particularly in Quebec and also extended to other countries. The analysis and use of parameters in this study were drawn from various analytical approaches and data sources. There was absence of some data in the literature which led to consideration of some assumptions in order to calculate GHG emissions. Hence, supplementary experimental studies will be very important to calculate the GHG emissions coefficients during agro-industrial waste management. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Assessment of anaerobic biodegradability of five different solid organic wastes

    NASA Astrophysics Data System (ADS)

    Kristanto, Gabriel Andari; Asaloei, Huinny

    2017-03-01

    The concept of waste to energy emerges as an alternative solution to increasing waste generation and energy crisis. In the waste to energy concept, waste will be used to produce renewable energy through thermochemical, biochemical, and physiochemical processes. In an anaerobic digester, organic matter brake-down due to anaerobic bacteria produces methane gas as energy source. The organic waste break-down is affected by various characteristics of waste components, such as organic matter content (C, N, O, H, P), solid contents (TS and VS), nutrients ratio (C/N), and pH. This research aims to analyze biodegradability and potential methane production (CH4) from organic waste largely available in Indonesia. Five solid wastes comprised of fecal sludge, cow rumen, goat farm waste, traditional market waste, and tofu dregs were analyzed which showed tofu dregs as waste with the highest rate of biodegradability compared to others since the tofu dregs do not contain any inhibitor which is lignin, have 2.7%VS, 14 C/N ratios and 97.3% organic matter. The highest cumulative methane production known as Biochemical Methane Potential was achieved by tofu dregs with volume of 77 ml during 30-day experiment which then followed by cow rumen, goat farm waste, and traditional market waste. Subsequently, methane productions were calculated through percentage of COD reduction, which showed the efficiency of 99.1% that indicates complete conversion of the high organic matter into methane.

  1. Trash to Treasure: NREL's High-Solids Digester Converts Wastes to Biogas and Compost

    DOT National Transportation Integrated Search

    1994-04-01

    This article describes a pilot high-solids digester (HSD) plant for use in : American Samoa. The American Samoa is highly dependent on imported fuel. At : the same time, the local tuna canneries produce large amounts of waste : materials. The HSD pro...

  2. Solid waste management practices in wet coffee processing industries of Gidabo watershed, Ethiopia.

    PubMed

    Ulsido, Mihret D; Li, Meng

    2016-07-01

    The financial and social contributions of coffee processing industries within most coffee export-based national economies like Ethiopia are generally high. The type and amount of waste produced and the waste management options adopted by these industries can have negative effects on the environment. This study investigated the solid waste management options adopted in wet coffee processing industries in the Gidabo watershed of Ethiopia. A field observation and assessment were made to identify whether the operational characteristics of the industries have any effect on the waste management options that were practiced. The investigation was conducted on 125 wet coffee processing industries about their solid waste handling techniques. Focus group discussion, structured questionnaires, key informant interview and transect walks are some of the tools employed during the investigation. Two major types of wastes, namely hull-bean-pulp blended solid waste and wastewater rich in dissolved and suspended solids were generated in the industries. Wet mills, on average, released 20.69% green coffee bean, 18.58% water and 60.74% pulp by weight. Even though these wastes are rich in organic matter and recyclables; the most favoured solid waste management options in the watershed were disposal (50.4%) and industrial or household composting (49.6%). Laxity and impulsive decision are the driving motives behind solid waste management in Gidabo watershed. Therefore, to reduce possible contamination of the environment, wastes generated during the processing of red coffee cherries, such as coffee wet mill solid wastes, should be handled properly and effectively through maximisation of their benefits with minimised losses. © The Author(s) 2016.

  3. 40 CFR 60.1940 - What definitions must I know?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .../combustion unit means a unit that produces gases, liquids, or solids by heating municipal solid waste. The gases, liquids, or solids produced are combusted and the emissions vented to the atmosphere... arithmetic average flue gas temperature measured at the inlet of the particulate matter control device during...

  4. 40 CFR 60.1940 - What definitions must I know?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .../combustion unit means a unit that produces gases, liquids, or solids by heating municipal solid waste. The gases, liquids, or solids produced are combusted and the emissions vented to the atmosphere... arithmetic average flue gas temperature measured at the inlet of the particulate matter control device during...

  5. 40 CFR 60.1940 - What definitions must I know?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .../combustion unit means a unit that produces gases, liquids, or solids by heating municipal solid waste. The gases, liquids, or solids produced are combusted and the emissions vented to the atmosphere... arithmetic average flue gas temperature measured at the inlet of the particulate matter control device during...

  6. Green plants as solar energy converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-06-01

    A survey covers the potential of energy production from biomass and solid wastes; various processes for the combustion of wastes, such as the co-combustion of solid waste and sewage sludge at the St. Paul/Seneca Treatment Plant Sludge Incinerator; various biological processes for the conversion of solid wastes to fuel such as the Institute of Gas Technology 400 l. digestor for the biogasification of municipal solid waste and sewage solids to a methane-rich product gas; the use of industrial wastes for fuel, such as slash and mill residues used as fuel in lumber mills; the biogasification of animal wastes by usingmore » small-scale on-site digesters to produce methane gas for cooking and lighting; energy farming methods, such as growing giant California kelp, sargassum, and plankton as suitable feedstock for the production of methane, fertilizers, and food; problems, such as the possible alteration of the reflectivity of large areas of the earth's surface by rapidly growing plants raised for biomass; and benefits such as the reduction in air, water, and land pollution associated with the use of wastes and biomass grown especially for energy.« less

  7. Steam jet mill-a prospective solution to industrial exhaust steam and solid waste.

    PubMed

    Zhang, Mingxing; Chen, Haiyan

    2018-04-20

    Bulk industrial solid wastes occupy a lot of our resources and release large amounts of toxic and hazardous substances to the surrounding environment, demanding innovative strategies for grinding, classification, collection, and recycling for economically ultrafine powder. A new technology for grinding, classification, collection, and recycling solid waste is proposed, using the superheated steam produced from the industrial exhaust steam to disperse, grind, classify, and collect the industrial solid waste. A large-scale steam jet mill was designed to operate at an inlet steam temperature 230-300 °C and an inlet pressure of 0.2-0.6 MPa. A kind of industrial solid waste fluidized-bed combustion ashes was used to grinding tests at different steam temperatures and inlet pressures. The total process for grinding, classification, and collection is drying. Two kinds of particle sizes are obtained. One particle size is d 50  = 4.785 μm, and another particle size is d 50  = 8.999 μm. For particle size d 50  = 8.999 μm, the inlet temperature is 296 °C and an inlet pressure is 0.54 MPa for the grinding chamber. The steam flow is 21.7 t/h. The yield of superfine powder is 73 t/h. The power consumption is 3.76 kW h/t. The obtained superfine powder meets the national standard S95 slag. On the basis of these results, a reproducible and sustainable industrial ecological protocol using steam produced by industrial exhaust heat coupled to solid waste recycling is proposed, providing an efficient, large-scale, low-cost, promising, and green method for both solid waste recovery and industrial exhaust heat reutilization.

  8. Waste valorization by biotechnological conversion into added value products.

    PubMed

    Liguori, Rossana; Amore, Antonella; Faraco, Vincenza

    2013-07-01

    Fossil fuel reserves depletion, global warming, unrelenting population growth, and costly and problematic waste recycling call for renewable resources of energy and consumer products. As an alternative to the 100 % oil economy, production processes based on biomass can be developed. Huge amounts of lignocellulosic wastes are yearly produced all around the world. They include agricultural residues, food farming wastes, "green-grocer's wastes," tree pruning residues, and organic and paper fraction of urban solid wastes. The common ways currently adopted for disposal of these wastes present environmental and economic disadvantages. As an alternative, processes for adding value to wastes producing high added products should be developed, that is the upgrading concept: adding value to wastes by production of a product with desired reproducible properties, having economic and ecological advantages. A wide range of high added value products, such as enzymes, biofuels, organic acids, biopolymers, bioelectricity, and molecules for food and pharmaceutical industries, can be obtained by upgrading solid wastes. The most recent advancements of their production by biotechnological processes are overviewed in this manuscript.

  9. Waste diminution in Construction projects: Environmental Predicaments

    NASA Astrophysics Data System (ADS)

    Gharehbaghi, Koorosh; Scott-Young, Christina

    2018-03-01

    Waste diminution in construction projects is not only a behavioural issue, but also an energy consumption and reduction concern. With construction waste equating to the significant amount of exhausted energy together with increased pollution, this contributes to a series of environmental predicaments. The overall goal of construction solid Waste Management is to collect, treat and dispose of solid wastes generated by project activities in an environmentally and socially satisfactory manner, using the most economical means available. As cities expand, their construction activities and consumption patterns further drive up the solid waste quantities. Governments are usually authorized to have responsibility for providing solid Waste Management services, and various administrative laws give them exclusive ownership over the waste produced. In addition, construction waste processing can be further controlled and minimized according to specialized authorities such as Environmental Protection Agencies (EPA) and their relevant acts and regulations. Moreover, a Construction Environmental Management Plan (CEMP) can further control the treatment of waste and therefore, reduce the amount produced. Key elements of a CEMP not only include complying with relevant legislation, standards and guidance from the EPA; however, also to ensuring that there are systems in place to resolve any potential problems associated with site activities. Accordingly, as a part of energy consumption and lessening strategies, this paper will discuss various effective waste reduction methods for construction projects. Finally, this paper will also examine tactics to further improve energy efficiency through innovative construction Waste Management strategies (including desirability rating of most favourable options) to promote the lessening of overall CO2production.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanat, Gurdal, E-mail: gkanat@gmail.co

    Istanbul, with a population of around 13 million people, is located between Europe and Asia and is the biggest city in Turkey. Metropolitan Istanbul produces about 14,000 tons of solid waste per day. The aim of this study was to assess the situation of municipal solid-waste (MSW) management in Istanbul. This was achieved by reviewing the quantity and composition of waste produced in Istanbul. Current requirements and challenges in relation to the optimization of Istanbul's MSW collection and management system are also discussed, and several suggestions for solving the problems identified are presented. The recovery of solid waste from themore » landfills, as well as the amounts of landfill-generated biogas and electricity, were evaluated. In recent years, MSW management in Istanbul has improved because of strong governance and institutional involvement. However, efforts directed toward applied research are still required to enable better waste management. These efforts will greatly support decision making on the part of municipal authorities. There remains a great need to reduce the volume of MSW in Istanbul.« less

  11. Prediction of the amount of urban waste solids by applying a gray theoretical model.

    PubMed

    Li, Xiao-Ming; Zeng, Guang-Ming; Wang, Ming; Liu, Jin-Jin

    2003-01-01

    Urban waste solids are now becoming one of the most crucial environmental problems. There are several different kinds of technologies normally used for waste solids disposal, among which landfill is more favorable in China than others, especially for urban waste solids. Most of the design works up to now are based on a roughly estimation of the amount of urban waste solids without any theoretical support, which lead to a series problems. To meet the basic information requirements for the design work, the amount of the urban waste solids was predicted in this research by applying the gray theoretical model GM (1,1) through non-linear differential equation simulation. The model parameters were estimated with the least square method (LSM) by running a certain MATALAB program, and the hypothesis test results show that the residual between the prediction value and the actual value approximately comply with the normal distribution N (0, 0.21(2)), and the probability of the residual within the range ( -0.17, 0.19) is more than 95%, which indicate obviously that the model can be well used for the prediction of the amount of waste solids and those had been already testified by the latest two years data about the urban waste solids from Loudi City of China. With this model, the predicted amount of the waste solids produced in Loudi City in the next 30 years is 8049000 ton in total.

  12. Estimating national landfill methane emissions: an application of the 2006 Intergovernmental Panel on Climate Change Waste Model in Panama.

    PubMed

    Weitz, Melissa; Coburn, Jeffrey B; Salinas, Edgar

    2008-05-01

    This paper estimates national methane emissions from solid waste disposal sites in Panama over the time period 1990-2020 using both the 2006 Intergovernmental Panel on Climate Change (IPCC) Waste Model spreadsheet and the default emissions estimate approach presented in the 1996 IPCC Good Practice Guidelines. The IPCC Waste Model has the ability to calculate emissions from a variety of solid waste disposal site types, taking into account country- or region-specific waste composition and climate information, and can be used with a limited amount of data. Countries with detailed data can also run the model with country-specific values. The paper discusses methane emissions from solid waste disposal; explains the differences between the two methodologies in terms of data needs, assumptions, and results; describes solid waste disposal circumstances in Panama; and presents the results of this analysis. It also demonstrates the Waste Model's ability to incorporate landfill gas recovery data and to make projections. The former default method methane emissions estimates are 25 Gg in 1994, and range from 23.1 Gg in 1990 to a projected 37.5 Gg in 2020. The Waste Model estimates are 26.7 Gg in 1994, ranging from 24.6 Gg in 1990 to 41.6 Gg in 2020. Emissions estimates for Panama produced by the new model were, on average, 8% higher than estimates produced by the former default methodology. The increased estimate can be attributed to the inclusion of all solid waste disposal in Panama (as opposed to only disposal in managed landfills), but the increase was offset somewhat by the different default factors and regional waste values between the 1996 and 2006 IPCC guidelines, and the use of the first-order decay model with a time delay for waste degradation in the IPCC Waste Model.

  13. Biochar, Tool for Climate Change Mitigation and Soil Management

    NASA Astrophysics Data System (ADS)

    Shackley, Simon; Sohi, Saran; Ibarrola, Rodrigo; Hammond, Jim; Mašek, Ondřej; Brownsort, Peter; Cross, Andrew; Prendergast-Miller, Miranda; Haszeldine, Stuart

    Biochar is the solid remains of any organic material that has been heated to at least 350oC in a zero-oxygen or oxygen-limited environment, which is intended to be mixed with soils. If the solid remains are not suitable for addition to soils, or will be burned as a fuel or used as an aggregate in construction, it is defined as char not biochar. There is a very wide range of potential biochar feedstocks, e.g., wood waste, timber, agricultural residues and wastes (straws, bagasse, manure, husks, shells, fibers, etc.), leaves, food wastes, paper and sewage sludge, green waste, distiller's grain, and many others. Pyrolysis is usually the technology of choice for producing biochar, though biomass gasification also produces smaller char yields. Syngas and pyrolytic bio-liquids, which have a potential use as energy carriers, are produced alongside biochar.

  14. Prediction of municipal solid waste generation using nonlinear autoregressive network.

    PubMed

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Maulud, K N A

    2015-12-01

    Most of the developing countries have solid waste management problems. Solid waste strategic planning requires accurate prediction of the quality and quantity of the generated waste. In developing countries, such as Malaysia, the solid waste generation rate is increasing rapidly, due to population growth and new consumption trends that characterize society. This paper proposes an artificial neural network (ANN) approach using feedforward nonlinear autoregressive network with exogenous inputs (NARX) to predict annual solid waste generation in relation to demographic and economic variables like population number, gross domestic product, electricity demand per capita and employment and unemployment numbers. In addition, variable selection procedures are also developed to select a significant explanatory variable. The model evaluation was performed using coefficient of determination (R(2)) and mean square error (MSE). The optimum model that produced the lowest testing MSE (2.46) and the highest R(2) (0.97) had three inputs (gross domestic product, population and employment), eight neurons and one lag in the hidden layer, and used Fletcher-Powell's conjugate gradient as the training algorithm.

  15. Geothermal Produced Fluids: Characteristics, Treatment Technologies, and Management Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finster, Molly; Clark, Corrie; Schroeder, Jenna

    2015-10-01

    Geothermal power plants use geothermal fluids as a resource and create waste residuals as part of the power generation process. Both the geofluid resource and the waste stream are considered produced fluids. The chemical and physical nature of produced fluids can have a major impact on the geothermal power industry and can influence the feasibility of geothermal power development, exploration approaches, power plant design, operating practices, and the reuse or disposal of residuals. In general, produced fluids include anything that comes out of a geothermal field and that subsequently must be managed on the surface. These fluids vary greatly dependingmore » on the geothermal reservoir being harnessed, power plant design, and the life cycle stage in which the fluid exists, but generally include water and fluids used to drill geothermal wells, fluids used to stimulate wells in enhanced geothermal systems, and makeup and/or cooling water used during operation of a geothermal power plant. Additional geothermal-related produced fluids include many substances that are similar to waste streams from the oil and gas industry, such as scale, flash tank solids, precipitated solids from brine treatment, hydrogen sulfide, and cooling-tower-related waste. This review paper aims to provide baseline knowledge on specific technologies and technology areas associated with geothermal power production. Specifically, this research focused on the management techniques related to fluids produced and used during the operational stage of a geothermal power plant; the vast majority of which are employed in the generation of electricity. The general characteristics of produced fluids are discussed. Constituents of interest that tend to drive the selection of treatment technologies are described, including total dissolved solids, noncondensable gases, scale and corrosion, silicon dioxide, metal sulfides, calcium carbonate, corrosion, metals, and naturally occurring radioactive material. Management options for produced fluids that require additional treatment for these constituents are also discussed, including surface disposal, reuse and recycle, agricultural industrial and domestic uses, mineral extraction and recovery, and solid waste handling.« less

  16. Forming artificial soils from waste materials for mine site rehabilitation

    NASA Astrophysics Data System (ADS)

    Yellishetty, Mohan; Wong, Vanessa; Taylor, Michael; Li, Johnson

    2014-05-01

    Surface mining activities often produce large volumes of solid wastes which invariably requires the removal of significant quantities of waste rock (overburden). As mines expand, larger volumes of waste rock need to be moved which also require extensive areas for their safe disposal and containment. The erosion of these dumps may result in landform instability, which in turn may result in exposure of contaminants such as trace metals, elevated sediment delivery in adjacent waterways, and the subsequent degradation of downstream water quality. The management of solid waste materials from industrial operations is also a key component for a sustainable economy. For example, in addition to overburden, coal mines produce large amounts of waste in the form of fly ash while sewage treatment plants require disposal of large amounts of compost. Similarly, paper mills produce large volumes of alkaline rejected wood chip waste which is usually disposed of in landfill. These materials, therefore, presents a challenge in their use, and re-use in the rehabilitation of mine sites and provides a number of opportunities for innovative waste disposal. The combination of solid wastes sourced from mines, which are frequently nutrient poor and acidic, with nutrient-rich composted material produced from sewage treatment and alkaline wood chip waste has the potential to lead to a soil suitable for mine rehabilitation and successful seed germination and plant growth. This paper presents findings from two pilot projects which investigated the potential of artificial soils to support plant growth for mine site rehabilitation. We found that pH increased in all the artificial soil mixtures and were able to support plant establishment. Plant growth was greatest in those soils with the greatest proportion of compost due to the higher nutrient content. These pot trials suggest that the use of different waste streams to form an artificial soil can potentially be used in mine site rehabilitation where there is a nutrient-rich source of waste.

  17. Liquid fuels from food waste: An alternative process to co-digestion

    NASA Astrophysics Data System (ADS)

    Sim, Yoke-Leng; Ch'ng, Boon-Juok; Mok, Yau-Cheng; Goh, Sok-Yee; Hilaire, Dickens Saint; Pinnock, Travis; Adams, Shemlyn; Cassis, Islande; Ibrahim, Zainab; Johnson, Camille; Johnson, Chantel; Khatim, Fatima; McCormack, Andrece; Okotiuero, Mary; Owens, Charity; Place, Meoak; Remy, Cristine; Strothers, Joel; Waithe, Shannon; Blaszczak-Boxe, Christopher; Pratt, Lawrence M.

    2017-04-01

    Waste from uneaten, spoiled, or otherwise unusable food is an untapped source of material for biofuels. A process is described to recover the oil from mixed food waste, together with a solid residue. This process includes grinding the food waste to an aqueous slurry, skimming off the oil, a combined steam treatment of the remaining solids concurrent with extrusion through a porous cylinder to release the remaining oil, a second oil skimming step, and centrifuging the solids to obtain a moist solid cake for fermentation. The water, together with any resulting oil from the centrifuging step, is recycled back to the grinding step, and the cycle is repeated. The efficiency of oil extraction increases with the oil content of the waste, and greater than 90% of the oil was collected from waste containing at least 3% oil based on the wet mass. Fermentation was performed on the solid cake to obtain ethanol, and the dried solid fermentation residue was a nearly odorless material with potential uses of biochar, gasification, or compost production. This technology has the potential to enable large producers of food waste to comply with new laws which require this material to be diverted from landfills.

  18. Vermi composting--organic waste management and disposal.

    PubMed

    Kumar, J Sudhir; Subbaiah, K Venkata; Rao, P V V Prasada

    2012-01-01

    Solid waste is an unwanted byproduct of modern civilization. Landfills are the most common means of solid waste disposal. But the increasing amount of solid waste is rapidly filling existing landfills, and new sites are difficult to establish. Alternatives to landfills include the use of source reduction, recycling, composting and incineration, as well as use of landfills. Incineration is most economical if it includes energy recovery from the waste. Energy can be recovered directly from waste by incineration or the waste can be processed to produce storable refuse derived fuel (RDF). Information on the composition of solid wastes is important in evaluating alternative equipment needs, systems, management programs and plans. Pulverization of municipal solid waste is done and the pulverized solid waste is dressed to form a bed and the bed is fed by earthworms which convert the bed into vermi compost. The obtained vermi compost is sent to Ministry of Environment & Forests (MoEF) recognized lab for estimating the major nutrients, i.e. Potassium (K), Phosphorous (P), Nitrogen (N) and Micro-nutrient values. It is estimated that 59 - 65 tons of wet waste can be collected in a town per day and if this wet waste is converted to quality compost, around 12.30 tons of vermi compost can be generated. If a Municipal Corporation manages this wet waste an income of over (see text symbol) for 0.8 9 crore per anum can be earned which is a considerable amount for providing of better services to public.

  19. Comparing urban solid waste recycling from the viewpoint of urban metabolism based on physical input-output model: A case of Suzhou in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Sai, E-mail: liangsai09@gmail.com; Zhang Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn

    Highlights: Black-Right-Pointing-Pointer Impacts of solid waste recycling on Suzhou's urban metabolism in 2015 are analyzed. Black-Right-Pointing-Pointer Sludge recycling for biogas is regarded as an accepted method. Black-Right-Pointing-Pointer Technical levels of reusing scrap tires and food wastes should be improved. Black-Right-Pointing-Pointer Other fly ash utilization methods should be exploited. Black-Right-Pointing-Pointer Secondary wastes from reusing food wastes and sludge should be concerned. - Abstract: Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impactsmore » of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned.« less

  20. Innovative use of recovered municipal solid waste incineration bottom ash as a component in growing media.

    PubMed

    Sormunen, Annika; Teo, Kanniainen; Tapio, Salo; Riina, Rantsi

    2016-07-01

    The utilisation of municipal solid waste incineration bottom ash has been extensively studied, for example, in the unbound layers of roads and the products of cement and concrete industry. On the other hand, less attention has been given to other innovative utilisation possibilities, such as using the municipal solid waste incineration bottom ash as a component in growing media of plants. The municipal solid waste incineration bottom ash contains useful substances, such as calcium, that can influence plant growth in a positive manner. Therefore, the utilisation of this waste-derived material in the growing media may substitute the use of commercial fertilisers. Since the municipal solid waste incineration bottom ash also contains hazardous substances that can be toxic to plants, the main aim of this study was to add different amounts of recovered municipal solid waste incineration bottom ash in the growing media and to evaluate the effect of this material on plant growth. Based on the obtained results, the concentration of, for example copper and zinc, increased in test plants; ryegrass and barley, when recovered municipal solid waste incineration bottom ash was added in their growing media. On the other hand, this did not have a significant effect on plant growth, if compared with the growth of plants in commercially produced growing medium. Furthermore, the replacement of natural sand with municipal solid waste incineration bottom ash had a positive liming effect in the growing media. Overall, these findings suggest that the utilisation of recovered municipal solid waste incineration bottom ash as a component in growing media is possible and, thus, may allow more widespread and innovative use of this waste-derived material. © The Author(s) 2016.

  1. Solid state fermentation for extracellular polysaccharide production by Lactobacillus confusus with coconut water and sugar cane juice as renewable wastes.

    PubMed

    Seesuriyachan, Phisit; Techapun, Charin; Shinkawa, Hidenori; Sasaki, Ken

    2010-01-01

    Extracellular polysaccharide (EPS) production by Lactobacillus confusus in liquid and solid state fermentation was carried out using coconut water and sugarcane juice as renewable wastes. High concentrations of EPS of 62 (sugarcane juice) and 18 g/l of coconut water were produced in solid state fermentation when nitrogen sources were reduced 5-fold from the original medium.

  2. Characterisation and classification of solid wastes coming from reductive acid leaching of low-grade manganiferous ore.

    PubMed

    De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Olivieri, Agostino; Vegliò, Francesco

    2009-03-15

    The present work was focused on the acid leaching process for manganese extraction in reducing environment to low-grade manganiferous ore that comes from Central Italy. The aim of this study was to establish optimum leaching operating conditions to reduce treatment costs of waste or, even better, to allow a waste valorisation as raw materials for other applications. Consequently, the main focus of the work was the characterization and classification of the solid wastes coming from the process carried out at different operating conditions; at the same moment the effect of process parameters on Mn extraction was also analysed. The effect of particles size on the manganese extraction in reductive acid leaching process was investigated, by using lactose as reducing agent. Particle size did not show a large influence on the Mn extraction yields in the investigated process conditions. This aspect suggests the use of the leaching waste for civil and/or environmental application: use of leaching solid wastes like filling material is to be applied, for example, for environmental restoration. The classification of the solid wastes, according to the Italian Laws about Release Test (RT), has demonstrated that the solid waste produced by leaching can be classifiable as "hazardous special waste". An improvement of solid washing let to reduce the SO(4)(2-) and an appropriate treatment is necessary to reduce the dangerousness of these solids. Possible application of ore and waste as raw materials in the ceramic industry was demonstrated not to be feasible.

  3. Need for improvements in physical pretreatment of source-separated household food waste.

    PubMed

    Bernstad, A; Malmquist, L; Truedsson, C; la Cour Jansen, J

    2013-03-01

    The aim of the present study was to investigate the efficiency in physical pretreatment processes of source-separated solid organic household waste. The investigation of seventeen Swedish full-scale pretreatment facilities, currently receiving separately collected food waste from household for subsequent anaerobic digestion, shows that problems with the quality of produced biomass and high maintenance costs are common. Four full-scale physical pretreatment plants, three using screwpress technology and one using dispergation technology, were compared in relation to resource efficiency, losses of nitrogen and potential methane production from biodegradable matter as well as the ratio of unwanted materials in produced biomass intended for wet anaerobic digestion. Refuse generated in the processes represent 13-39% of TS in incoming wet waste. The methane yield from these fractions corresponds to 14-36Nm(3)/ton separately collected solid organic household waste. Also, 13-32% of N-tot in incoming food waste is found in refuse. Losses of both biodegradable material and nutrients were larger in the three facilities using screwpress technology compared to the facility using dispersion technology.(1) Thus, there are large potentials for increase of both the methane yield and nutrient recovery from separately collected solid organic household waste through increased efficiency in facilities for physical pretreatment. Improved pretreatment processes could thereby increase the overall environmental benefits from anaerobic digestion as a treatment alternative for solid organic household waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Foamed lightweight materials made from mixed scrap metal waste powder and sewage sludge ash.

    PubMed

    Wang, Kuen-Sheng; Chiou, Ing-Jia

    2004-10-01

    The porous properties and pozzolanic effects of sewage sludge ash (SSA) make it possible to produce lightweight materials. This study explored the effects of different metallic foaming agents, made from waste aluminium products, on the foaming behaviours and engineering characteristics, as well as the microstructure of sewage sludge ash foamed lightweight materials. The results indicated that aluminium powder and mixed scrap metal waste powder possessed similar chemical compositions. After proper pre-treatment, waste aluminium products proved to be ideal substitutes for metallic foaming agents. Increasing the amount of mixed scrap metal waste by 10-15% compared with aluminium powder would produce a similar foaming ratio and compressive strength. The reaction of the metallic foaming agents mainly produced pores larger than 10 microm, different from the hydration reaction of cement that produced pores smaller than 1 microm mostly. To meet the requirements of the lightweight materials characteristics and the compressive strength, the amount of SSA could be up to 60-80% of the total solids. An adequate amount of aluminium powder is 0.5-0.9% of the total solids. Increasing the fineness of the mixed scrap metal waste powder could effectively reduce the amount required and improve the foaming ratio.

  5. Air Quality, Climate and Economic Impacts of Biogas Management Technologies

    EPA Science Inventory

    Anaerobically digested organic waste (e.g. manure, sewage, and municipal solid waste) produces biogas, a source of renewable energy. A recent analysis indicates that the technical resource in California could produce nearly 93 billion cubic feet per year of biomethane from availa...

  6. Thermoelectric energy harvesting for a solid waste processing toilet

    NASA Astrophysics Data System (ADS)

    Stokes, C. David; Baldasaro, Nicholas G.; Bulman, Gary E.; Stoner, Brian R.

    2014-06-01

    Over 2.5 billion people do not have access to safe and effective sanitation. Without a sanitary sewer infrastructure, self-contained modular systems can provide solutions for these people in the developing world and remote areas. Our team is building a better toilet that processes human waste into burnable fuel and disinfects the liquid waste. The toilet employs energy harvesting to produce electricity and does not require external electrical power or consumable materials. RTI has partnered with Colorado State University, Duke University, and Roca Sanitario under a Bill and Melinda Gates Foundation Reinvent the Toilet Challenge (RTTC) grant to develop an advanced stand-alone, self-sufficient toilet to effectively process solid and liquid waste. The system operates through the following steps: 1) Solid-liquid separation, 2) Solid waste drying and sizing, 3) Solid waste combustion, and 4) Liquid waste disinfection. Thermoelectric energy harvesting is a key component to the system and provides the electric power for autonomous operation. A portion of the exhaust heat is captured through finned heat-sinks and converted to electricity by thermoelectric (TE) devices to provide power for the electrochemical treatment of the liquid waste, pumps, blowers, combustion ignition, and controls.

  7. [Solid urban waste: socio-environmental impacts and prospects for sustainable management with social inclusion].

    PubMed

    Gouveia, Nelson

    2012-06-01

    Strategies to reconcile development with the protection of ecosystems will yet again be discussed at the forthcoming Rio +20 Summit. The management of solid urban waste is an issue which has barely been touched upon in such discussions. Given the institutionalization of the National Solid Waste Policy, this paper seeks to contribute to this debate and to single out alternatives to tackle this issue with an emphasis on social inclusion. For this purpose, specialized scientific literature was consulted as well as information on solid waste management. It is clearly seen that inadequate management of solid waste has immediate impacts on the environment and health, and contributes to climate change. Considering the limitations of the current options for waste disposal, it is essential to minimize the quantities produced by reducing, reusing and recycling. In this context, the role of independent waste gatherers who have been conducting work of great environmental importance is highlighted. Given the vulnerabilities of this population, it is necessary to devise public policies to ensure that waste gathering is a more respected and less risky activity that guarantees an income, so as to move towards more healthy, equitable and sustainable development.

  8. Design of an innovative, ecological portable waste compressor for in-house recycling of paper, plastic and metal packaging waste.

    PubMed

    Xevgenos, D; Athanasopoulos, N; Kostazos, P K; Manolakos, D E; Moustakas, K; Malamis, D; Loizidou, M

    2015-05-01

    Waste management in Greece relies heavily on unsustainable waste practices (mainly landfills and in certain cases uncontrolled dumping of untreated waste). Even though major improvements have been achieved in the recycling of municipal solid waste during recent years, there are some barriers that hinder the achievement of high recycling rates. Source separation of municipal solid waste has been recognised as a promising solution to produce high-quality recycled materials that can be easily directed to secondary materials markets. This article presents an innovative miniature waste separator/compressor that has been designed and developed for the source separation of municipal solid waste at a household level. The design of the system is in line with the Waste Framework Directive (2008/98/EC), since it allows for the separate collection (and compression) of municipal solid waste, namely: plastic (polyethylene terephthalate and high-density polyethylene), paper (cardboard and Tetrapak) and metal (aluminium and tin cans). It has been designed through the use of suitable software tools (LS-DYNA, INVENTROR and COMSOL). The results from the simulations, as well as the whole design process and philosophy, are discussed in this article. © The Author(s) 2015.

  9. The Arab world's contribution to solid waste literature: a bibliometric analysis.

    PubMed

    Zyoud, Sa'ed H; Al-Jabi, Samah W; Sweileh, Waleed M; Al-Khalil, Suleiman; Zyoud, Shaher H; Sawalha, Ansam F; Awang, Rahmat

    2015-01-01

    Environmental and health-related effects of solid waste material are considered worldwide problems. The aim of this study was to assess the volume and impact of Arab scientific output published in journals indexed in the Science Citation Index (SCI) on solid waste. We included all the documents within the SCI whose topic was solid waste from all previous years up to 31 December 2012. In this bibliometric analysis we sought to evaluate research that originated from Arab countries in the field of solid waste, as well as its relative growth rate, collaborative measures, productivity at the institutional level, and the most prolific journals. A total of 382 (2.35 % of the overall global research output in the field of solid waste) documents were retrieved from the Arab countries. The annual number of documents published in the past three decades (1982-2012) indicated that research productivity demonstrated a noticeable rise during the last decade. The highest number of articles associated with solid waste was that of Egypt (22.8 %), followed by Tunisia (19.6), and Jordan (13.4 %). the total number of citations over the analysed years at the date of data collection was 4,097, with an average of 10.7 citations per document. The h-index of the citing articles was 31. Environmental science was the most researched topic, represented by 175 (45.8 %) articles. Waste Management was the top active journal. The study recognized 139 (36.4 %) documents from collaborations with 25 non-Arab countries. Arab authors mainly collaborated with countries in Europe (22.5 %), especially France, followed by countries in the Americas (9.4 %), especially the USA. The most productive institution was the American University of Beirut, Lebanon, with 6.3 % of total publications. Despite the expected increase in solid waste production from Arab world, research activity about solid waste is still low. Governments must invest more in solid waste research to avoid future unexpected problems. Finally, since solid waste is a multidisciplinary science, research teams in engineering, health, toxicology, environment, geology and others must be formulated to produce research in solid waste from different scientific aspects.

  10. Dental solid waste characterization and management in Iran: a case study of Sistan and Baluchestan Province.

    PubMed

    Bazrafshan, Edris; Mohammadi, Leili; Mostafapour, Ferdos Kord; Moghaddam, Alireza Ansari

    2014-02-01

    The management of dental solid waste continues to be a major challenge, particularly in most healthcare facilities of the developing world. In Iran, few studies on management of dental solid waste and its composition are available. An effort has been made through this study to evaluate the hazardous and infectious status of dental solid waste, keeping in mind its possible role in cross-infection chain. For this study, 123 private dental centres and 36 public dental centres were selected and the composition and generation rate of dental solid waste produced were measured. Dental solid waste was classified to four main categories: (i) domestic-type; (ii) potentially infectious; (iii) chemical and pharmaceutical; and (iv) toxic, which constituted 11.7, 80.3, 6.3, and 1.7%, respectively, of the total. Also, the results indicated that the dental solid waste per patient per day generation rate for total, domestic-type, potentially infectious, chemical and pharmaceutical, and toxic wastes were 169.9, 8.6, 153.3, 11.2, and 3.3 g/patient/d, respectively. Furthermore, the per day generation rates for total, domestic-type, potentially infectious, chemical and pharmaceutical, and toxic wastes were 194.5, 22.6, 156.1, 12.3, and 3.4 kg/d, respectively. According to findings of this study, for best management of dental waste it is suggested that source reduction, separation, reuse, and recycling programmes be implemented and each section of dental waste be collected and disposed of separately and in accordance with related criteria.

  11. Potential of solid waste utilization as source of refuse derived fuel (RDF) energy (case study at temporary solid waste disposal site in West Jakarta)

    NASA Astrophysics Data System (ADS)

    Indrawati, D.; Lindu, M.; Denita, P.

    2018-01-01

    This study aims to measure the volume of solid waste generated as well asits density, composition, and characteristics, to analyze the potential of waste in TPS to become RDF materials and to analyze the best composition mixture of RDF materials. The results show that the average of solid waste generation in TPS reaches 40.80 m3/day, with the largest percentage of its share is the organic waste component of 77.9%, while the smallest amount of its share is metal and rubber of 0.1%. The average water content and ash content of solid waste at the TPS is 27.7% and 6.4% respectively, while the average calorific potential value is 728.71 kcal/kg. The results of solid waste characteristics comparison at three TPS indicate thatTPS Tanjung Duren has the greatest waste potential to be processed into RDF materials with a calorific value of 893.73 kcal/kg, water content level of 24.6%, andlow ash content of 6.11%. This research has also shown that the best composition for RDF composite materials is rubber, wood, and textile mixtureexposed to outdoor drying conditions because it produced low water content and low ash content of 10.8% and 9.6%, thus optimizedthe calorific value of 4,372.896 kcal/kg.

  12. Anaerobic co-digestion technology in solid wastes treatment for biomethane generation

    NASA Astrophysics Data System (ADS)

    Al Mamun, Muhammad Rashed; Torii, Shuichi

    2017-05-01

    Anaerobic co-digestion is considered to be an efficient way of disposing solid wastes which can not only reduce environmental burden, but also produce bioenergy. Co-digestion of solid wastes in the absence of bacteria inoculums with variable mixing ratios of three wastes has been experimentally tested for 35 days digestion time to determine the biogas potential. The temperature remained relatively constant at a mesophilic range of 29-36°C throughout the study. An average pH of 7.4 was recorded from all digesters. The average biogas yields obtained from the four digesters (D1, D2, D3 and D4) were 13.31, 15.67, 16.52 and 19.12 L/day, respectively. The cumulative result showed that from co-digestion of D4 43.67%, 22.02% and 15.71% more biogas was produced, respectively, than others. The maximum and average COD reduction was 57% and 31%, respectively, in co-digestion wastes. The biogas comprised average of 61% CH4, 33.5% CO2, 222 ppm H2S, and 4.7% H2O, respectively.

  13. Electric energy production from food waste: Microbial fuel cells versus anaerobic digestion.

    PubMed

    Xin, Xiaodong; Ma, Yingqun; Liu, Yu

    2018-05-01

    A food waste resourceful process was developed by integrating the ultra-fast hydrolysis and microbial fuel cells (MFCs) for energy and resource recovery. Food waste was first ultra-fast hydrolyzed by fungal mash rich in hydrolytic enzymes in-situ produced from food waste. After which, the separated solids were readily converted to biofertilizer, while the liquid was fed to MFCs for direct electricity generation with a conversion efficiency of 0.245 kWh/kg food waste. It was estimated that about 192.5 million kWh of electricity could be produced from the food waste annually generated in Singapore, together with 74,390 tonnes of dry biofertilizer. Compared to anaerobic digestion, the proposed approach was more environmentally friendly and economically viable in terms of both electricity conversion and process cost. It is expected that this study may lead to the paradigm shift in food waste management towards ultra-fast concurrent recovery of resource and electricity with zero-solid discharge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. A sustainable biorefinery to convert agricultural residues into value-added chemicals.

    PubMed

    Liu, Zhiguo; Liao, Wei; Liu, Yan

    2016-01-01

    Animal wastes are of particular environmental concern due to greenhouse gases emissions, odor problem, and potential water contamination. Anaerobic digestion (AD) is an effective and widely used technology to treat them for bioenergy production. However, the sustainability of AD is compromised by two by-products of the nutrient-rich liquid digestate and the fiber-rich solid digestate. To overcome these limitations, this paper demonstrates a biorefinery concept to fully utilize animal wastes and create a new value-added route for animal waste management. The studied biorefinery includes an AD, electrocoagulation (EC) treatment of the liquid digestate, and fungal conversion of the solid fiber into a fine chemical-chitin. Animal wastes were first treated by an AD to produce methane gas for energy generation to power the entire biorefinery. The resulting liquid digestate was treated by EC to reclaim water. Enzymatic hydrolysis and fungal fermentation were then applied on the cellulose-rich solid digestate to produce chitin. EC water was used as the processing water for the fungal fermentation. The results indicate that the studied biorefinery converts 1 kg dry animal wastes into 17 g fungal biomass containing 12 % of chitin (10 % of glucosamine), and generates 1.7 MJ renewable energy and 8.5 kg irrigation water. This study demonstrates an energy positive and freshwater-free biorefinery to simultaneously treat animal wastes and produce a fine chemical-chitin. The sustainable biorefinery concept provides a win-win solution for agricultural waste management and value-added chemical production.

  15. Economic and environmental benefits of landfill gas utilisation in Oman.

    PubMed

    Abushammala, Mohammed Fm; Qazi, Wajeeha A; Azam, Mohammed-Hasham; Mehmood, Umais A; Al-Mufragi, Ghithaa A; Alrawahi, Noor-Alhuda

    2016-08-01

    Municipal solid waste disposed in landfill sites decomposes under anaerobic conditions and produces so-called landfill-gas, which contains 30%-40% of carbon dioxide (CO2) and 50%-60% of methane (CH4). Methane has the potential of causing global warming 25 times more than CO2 Therefore, migration of landfill-gas from landfills to the surrounding environment can potentially affect human life and environment. Thus, this research aims to determine municipal solid waste generation in Oman over the years 1971-2030, to quantify annual CH4 emissions inventory that resulted from this waste over the same period of time, and to determine the economic and environmental benefits of capturing the CH4 gas for energy production. It is found that cumulative municipal solid waste landfilled in Oman reaches 3089 Giga gram (Gg) in the year 2030, of which approximately 85 Gg of CH4 emissions are produced in the year 2030. The study also found that capturing CH4 emissions between the years 2016 and 2030 could attract revenues of up to US$333 million and US$291 million from the carbon reduction and electricity generation, simultaneously. It is concluded that CH4 emissions from solid waste in Oman increases enormously with time, and capture of this gas for energy production could provide a sustainable waste management solution in Oman. © The Author(s) 2016.

  16. The characteristics of palm oil plantation solid biomass wastes as raw material for bio oil

    NASA Astrophysics Data System (ADS)

    Yanti, RN; Hambali, E.; Pari, G.; Suryani, A.

    2018-03-01

    Indonesia is the largest palm oil plantations estate in the world. It reached 11,30 million hectares in 2015 and increased up to 11,67 million hectares in 2016. The advancement of technology recent, the solid waste of palm oil plantation can be re-produced become bio oil through pyrolysis hydrothermal process and utilized for biofuel. The purpose of this research was to analyze the characteristics of feedstock of bio oil of solid waste of palm oil plantations estate. The feedstock used was derived from solid waste of palm oil plantations in Riau Province. Characteristic analysis of waste oil included chemical compound content (cellulose, hemicellulose, lignin), ultimate analysis (C, H, N, O, S) to know height heating value (HHV). The result of analysis of chemical content showed that solid waste of palm cellulose 31,33 – 66,36 %, hemicellulose 7,54 – 17,94 %, lignin 21,43 - 43,1. The HHV of hydrothermal pyrolysis feedstock was 15,18 kJ/gram - 19,57 kJ/gram. Generally, the solid waste of palm oil plantations estate containing lignocellulose can be utilized as bio oil through hydrothermal pyrolysis. The CG-MS analysis of bio oil indicated hydrocarbon contents such as pentadecane, octadecane, hexadecane and benzene.

  17. Reuse of solid petroleum waste in the manufacture of porcelain stoneware tile.

    PubMed

    Pinheiro, B C A; Holanda, J N F

    2013-03-30

    This study investigates the incorporation of solid petroleum waste as raw material into a porcelain stoneware tile body, in replacement to natural kaolin material by up to 5 wt.%. Tile formulations containing solid petroleum waste were pressed and fired at 1240 °C by using a fast-firing cycle. The tile pieces were tested to determine their properties (linear shrinkage, water absorption, apparent density, and flexural strength), sintered microstructure, and leaching toxicity. The results therefore indicated that the growing addition of solid petroleum waste into tile formulations leads to a decrease of linear shrinkage, apparent density, and flexural strength, and to an increase of water absorption of the produced tile materials. It was also found that the replacement of kaolin with solid petroleum waste, in the range up to 2.5 wt.%, allows the production of porcelain stoneware tile (group BIa, ISO 13006 standard). All concentrations of Ag, As, Ba, Cd, Cr (total), Hg, and Pb of the fired porcelain stoneware tile pieces in the leachate comply with the current regulatory limits. These results indicate that the solid petroleum waste could be used for high-quality porcelain stoneware tile production, thus giving rise to a new possibility for an environmentally friendly management of this abundant waste. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Organic compounds in re-circulated leachates of aerobic biological treated municipal solid waste.

    PubMed

    Franke, Matthias; Jandl, Gerald; Leinweber, Peter

    2006-10-01

    Biodegradation of organic matter is required to reduce the potential of municipal solid waste for producing gaseous emissions and leaching contaminants. Therefore, we studied leachates of an aerobic-treated waste from municipal solids and a sewage sludge mixture that were re-circulated to decrease the concentration of biodegradable organic matter in laboratory-scale reactors. After 12 months, the total organic C and biological and chemical oxygen demands were reduced, indicating the biodegradation of organic compounds in the leachates. Curie-point pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and pyrolysis-field ionization mass spectrometry (Py-FIMS) revealed that phenols, alkylaromatic compounds, N-containing compounds and carbohydrates were the predominate compounds in the leachates and solid waste. Leachate re-circulation led to a higher thermal stability of the residual organic matter as indicated by temperature-resolved Py-FIMS. Admixture of sewage sludge to solid waste was less effective in removing organic compounds from the leachates. It resulted in drastic higher and more bio-resistant loads of organic matter in the leachates and revealed increased proportions of alkylaromatic compounds. The biodegradation of organic matter in leachates, re-circulated through municipal solid waste, offers the potential for improved aerobic waste treatments and should be investigated on a larger scale.

  19. Optimization of the treatment cycle of pressed-off leachate produced in a facility processing the organic fraction of municipal solid waste.

    PubMed

    d'Antonio, Luca; Fabbricino, Massimiliano; Pontoni, Ludovico

    2015-01-01

    The paper investigates, at a laboratory scale, the applicability of anaerobic digestion for the treatment of pressed-off leachate produced in a biomechanical treatment plant for municipal solid waste. Batch tests show that the anaerobic process proceeds smoothly and produces about 10,000 mL of methane per litre of treated leachate. The process is characterized by a lag phase lasting about 30 days, and is completed in about 2 months. Chemical oxygen demand (COD) and volatile fatty acids monitoring allows studying process kinetics that are modelled through a triple linear expression. Physical and biological treatments are also investigated to reduce the residual organic charge of the produced digestate. The best performances are obtained via aerobic degradation followed by assisted sedimentation. This cycle reduces the residual COD of about 85%, and allows the correct disposal of the final waste stream.

  20. An Approach to Compare the Air Quality, Climate and Economic Impacts of Biogas Management Technologies

    EPA Science Inventory

    Anaerobically digested organic waste (e.g. manure, sewage, and municipal solid waste) produces biogas, a source of renewable energy. A recent analysisindicates that the technical resource in California could produce nearly 93 billion cubic feet per year of biomethane from availab...

  1. Municipal solid waste generation in Kathmandu, Nepal.

    PubMed

    Dangi, Mohan B; Pretz, Christopher R; Urynowicz, Michael A; Gerow, Kenneth G; Reddy, J M

    2011-01-01

    Waste stream characteristics must be understood to tackle waste management problems in Kathmandu Metropolitan City (KMC), Nepal. Three-stage stratified cluster sampling was used to evaluate solid waste data collected from 336 households in KMC. This information was combined with data collected regarding waste from restaurants, hotels, schools and streets. The study found that 497.3 g capita(-1) day(-1) of solid waste was generated from households and 48.5, 113.3 and 26.1 kg facility(-1) day(-1) of waste was generated from restaurants, hotels and schools, respectively. Street litter measured 69.3 metric tons day(-1). The average municipal solid waste generation rate was 523.8 metric tons day(-1) or 0.66 kg capita(-1) day(-1) as compared to the 320 metric tons day(-1) reported by the city. The coefficient of correlation between the number of people and the amount of waste produced was 0.94. Key household waste constituents included 71% organic wastes, 12% plastics, 7.5% paper and paper products, 5% dirt and construction debris and 1% hazardous wastes. Although the waste composition varied depending on the source, the composition analysis of waste from restaurants, hotels, schools and streets showed a high percentage of organic wastes. These numbers suggest a greater potential for recovery of organic wastes via composting and there is an opportunity for recycling. Because there is no previous inquiry of this scale in reporting comprehensive municipal solid waste generation in Nepal, this study can be treated as a baseline for other Nepalese municipalities. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Solid waste management in Asian countries: a review of solid waste minimisation (3'r) towards low carbon

    NASA Astrophysics Data System (ADS)

    Ali, N. E.; Sion, H. C.

    2014-02-01

    The amount of solid-waste generated in Asian countries has increased tremendously, mainly due to the improvement in living standards, rapid developments in technology, growth in economy and population in the cities. Solid waste management is a global issue and major challenge facing Asian countries and neglecting its management may have negative consequences on the environment. Waste composition data proves the developed countries to have generated more recyclable materials while developing countries produce more organic and less recyclable waste such as paper, plastic and aluminium. In this regard, increase in number of landfills and disposal sites, will have an impact on GHG (greenhouse gas) emissions and pollutants to air and water. Alternative methods should therefore be taken to reduce the volume of waste. Most Asian countries have adopted the 3R (reduce, reuse, recycle) concept in order to reduce solid waste and their governments have implemented laws and regulations in order to support this. Implementation of 3R is the major contributor to the solid waste minimization and it can improve the quality of environmental sustainability and reduction of carbon dioxide emission in to the atmosphere. Based on our review, most of the countries practicing the 3R concept in tandem with laws and regulations perform better than those that just practice the 3R concept without any laws and regulations. The paper suggests that every country must focus on the laws and regulations relating to solid waste minimization so that it could be easily implemented as outlined.

  3. Simulation of construction and demolition waste leachate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Townsend, T.G.; Jang, Y.; Thurn, L.G.

    1999-11-01

    Solid waste produced from construction and demolition (C and D) activities is typically disposed of in unlined landfills. Knowledge of C{ampersand}D debris landfill leachate is limited in comparison to other types of wastes. A laboratory study was performed to examine leachate resulting from simulated rainfall infiltrating a mixed C and D waste stream consisting of common construction materials (e.g., concrete, wood, drywall). Lysimeters (leaching columns) filled with the mixed C and D waste were operated under flooded and unsaturated conditions. Leachate constituent concentrations in the leachate from specific waste components were also examined. Leachate samples were collected and analyzed formore » a number of conventional water quality parameters including pH, alkalinity, total organic carbon, total dissolved solids, and sulfate. In experiments with the mixed C and D waste, high concentrations of total dissolved solids (TDS) and sulfate were detected in the leachate. C and D leachates produced as a result of unsaturated conditions exhibited TDS concentrations in the range of 570--2,200 mg/L. The major contributor to the TDS was sulfate, which ranged in concentration between 280 and 930 mg/L. The concentrations of sulfate in the leachate exceeded the sulfate secondary drinking water standard of 250 mg/L.« less

  4. Productivity improvement with green approach to palm oil factory productivity

    NASA Astrophysics Data System (ADS)

    Matondang, N.

    2018-02-01

    The palm oil factory (POF) processes fresh fruit bunches into crude palm oil (CPO) and palm kernel oil (PKO) by products in the form of liquid and solid waste. One of the solid wastes produced in POF Tanjung Kasau is empty fruit bunches of palm oil (FBPO) which have been burned completely on incinerator tubes so that potentially produces pollutants that pollute the environment. If FBPO waste is managed properly, it will improve the productivity of the company. Therefore, it is necessary to conduct a study to find out how far the increased productivity of the company can reduce their impact on the environment, if FBPO is used as raw material of liquid smoke. The productivity improvement approach is done by Green Productivity concept, by looking at three aspects: environmental, social and economical. Green Productivity aims to protect the environment simultaneously by increasing the productivity of the company. One way is to turn FBPO waste into liquid smoke product is by pyrolysis process. The results showed that turning FBPO solid waste into liquid smoke will increase productivity by 18.18%. Implementation of Green Productivity can improve productivity through the improvement of FBPO waste treatment process which has been done by perfect combustion by pyrolysis process so that waste can be minimized to create environment industry POF clean and friendly environment.

  5. The recovery of waste and off-gas in Large Combustion Plants subject to IPPC National Permit in Italy.

    PubMed

    Di Marco, Giuseppe; Manuzzi, Raffaella

    2018-03-01

    The recovery of off-gas, waste, and biomass in Large Combustion Plants for energy production gives the opportunity to recycle waste and by-products and to recover materials produced in agricultural and industrial activities. The paper illustrates the Italian situation regarding the production of energy from off-gas, biomass, and waste in Large Combustion Plants subject to Integrated Pollution Prevention and Control (IPPC) National Permit. Moreover, it focuses on the 4 Italian Large Combustion Plants producing energy from biomass and waste. For these ones it illustrates the specific issues related to and provides a description of the solutions adopted in the 4 Italian plants. Given that air emission performance is the most relevant aspect of this kind of plants, the paper specifically focuses and reports results about this subject. In particular, in Italy among 113 LCPs subject to IPPC National Permit we have found that 4 plants use as fuel waste (i.e. solid or liquid biomasses and Solid Recovered Fuels), or a mixture of waste and traditional fuels (co-combustion of Solid Recovered Fuels and coal), and that 11 plants use as fuel off-gases listed in Annex X (i.e. Refinery Fuel Gas, Syngas, and gases produced in iron and steel industries). Moreover, there are 2 IPPC chemical plants that recovery energy from different off-gases not listed in Annex X. Regarding the 4 LCPs that produce energy from waste combustion or co-combustion, we find that they take into account all the specific issues related to this kind of plants (i.e. detailed waste characterization, waste acceptance procedures, waste handling and storage, waste pretreatment and emissions to air), and adopt solutions that are best available techniques to prevent pollution. Moreover for one of these plants, the only one for which we have a significant set of monitoring data because it obtained the IPPC National Permit in 2008, we find that energy efficiency and air emissions of the principal pollutants are in good compliance with European coal- and lignite-fired combustion plants co-incinerating waste and with BAT-AELs reported in the BREF document. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Profit from a Problem

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Refuse-fired Steam Generating Facility was jointly sponsored by Hampton, NASA Langley and Langley Air Force Base. The facility disposes of all solid waste from the NASA Center, the Air Force Base, the Army's Fort Monroe and other federal installations in the area, and accommodates about 70 percent of Hampton's municipal waste. Incinerated refuse is reduced to a readily-disposable ash whose volume is one-seventh that of the solid waste brought to the plant. The energy produced in the burning process is converted to steam for use in research and administrative facilities at Langley Research Center. Plant is expected to produce some 300 million pounds of steam annually, about 85 percent of Langley Research Center's needs.

  7. Antimony smelting process generating solid wastes and dust: characterization and leaching behaviors.

    PubMed

    Guo, Xuejun; Wang, Kunpeng; He, Mengchang; Liu, Ziwei; Yang, Hailin; Li, Sisi

    2014-07-01

    A large amount of solid waste has been produced by the antimony smelting process in the "World Capital of Antimony", Xikuangshan area in China. This study comprehensively investigated the physical and chemical characteristics of the various solid wastes, as well as the leaching behavior of the solid wastes, which included water-quenched slag, arsenic-alkali residue, desulfurized slag and blast furnace dust. These four types of waste were enriched in a variety of heavy metals and metalloids and more specifically with As and Sb levels up to 8.6 × 10⁴ and 3.16×10⁵ mg/kg, respectively, in arsenic-alkali residue. For desulfurized slag and water-quenched slag, the leaching concentration of Sb significantly exceeded the acceptable limits during the leaching tests using the toxicity characteristic leaching procedure and the synthetic precipitation leaching procedure. In addition, As leaching in arsenic-alkali residue was extraordinarily hazardous, being three orders of magnitude higher than the regulatory level of As. According to the results of the extraction tests, all the tested wastes were classified as hazardous waste. Copyright © 2014. Published by Elsevier B.V.

  8. Organic Laboratory Experiments: Micro vs. Conventional.

    ERIC Educational Resources Information Center

    Chloupek-McGough, Marge

    1989-01-01

    Presents relevant statistics accumulated in a fall organic laboratory course. Discusses laboratory equipment setup to lower the amount of waste. Notes decreased solid wastes were produced compared to the previous semester. (MVL)

  9. Methane production from kitchen waste using Escherichia coli.

    PubMed

    Jayalakshmi, S; Joseph, Kurian; Sukumaran, V

    2007-04-01

    Escherichia coli (E. coli) strain isolated from biogas plant sludge was examined for its ability to enhance biogas from kitchen waste during solid phase anaerobic digestion. The laboratory experiments were conducted for total solid concentrations of 20% and 22%. Kitchen waste was characterized for physico-chemical parameters and laboratory experiments were conducted with and without E. coli strain. It was found that the reactor with E. coli produced 17% more biogas than the reactors that are operated without E. coli strain.

  10. Technical potential of electricity production from municipal solid waste disposed in the biggest cities in Brazil: landfill gas, biogas and thermal treatment.

    PubMed

    de Souza, Samuel Nm; Horttanainen, Mika; Antonelli, Jhonatas; Klaus, Otávia; Lindino, Cleber A; Nogueira, Carlos Ec

    2014-10-01

    This article presents an analysis of possibilities for electrical energy production by using municipal solid waste disposed in the biggest Brazilian cities. Currently, the municipal solid waste in Brazil is collected and disposed of at landfills, but there are also other technologies, which in addition to dealing with the garbage can also provide benefits in terms of energy provision. The following scenarios were studied in this work: electricity production from landfill gas (reference scenario); incineration of all municipal solid waste; anaerobic digestion of organic waste and incineration of refuse-derived fuel fractions after being separated in separation plants. According to this study, the biggest cities in Brazil generate about 18.9 million tonnes of municipal solid waste per year (2011), of which 51.5% is biogenic matter. The overall domestic consumption of electricity is 480,120 GWh y(-1) in Brazil and the municipal solid waste incineration in the 16 largest cities in the country could replace 1.8% of it using incinerators. The city of São Paulo could produce 637 GWh y(-1) with landfill gas, 2368 GWh y(-1) with incineration of municipal solid waste and 1177 GWh y(-1) with incineration of refuse-derived fuel. The latter two scenarios could replace 27% and 13.5% of the residential electrical energy consumption in the city. This shows that thermal treatment might be a viable option of waste-to-energy in Brazil. © The Author(s) 2014.

  11. Sampling, characterisation and processing of solid recovered fuel production from municipal solid waste: An Italian plant case study.

    PubMed

    Ranieri, Ezio; Ionescu, Gabriela; Fedele, Arcangela; Palmieri, Eleonora; Ranieri, Ada Cristina; Campanaro, Vincenzo

    2017-08-01

    This article presents the classification of solid recovered fuel from the Massafra municipal solid waste treatment plant in Southern Italy in compliancy with the EN 15359 standard. In order to ensure the reproducibility of this study, the characterisation methods of waste input and output flow, the mechanical biological treatment line scheme and its main parameters for each stage of the processing chain are presented in details, together with the research results in terms of mass balance and derived fuel properties. Under this study, only 31% of refused municipal solid waste input stream from mechanical biological line was recovered as solid recovered fuel with a net heating value (NC=HV) average of 15.77 MJ kg -1 ; chlorine content average of 0.06% on a dry basis; median of mercury <0.0064 mg MJ -1 and 80th percentile <0.0068 mg MJ -1 . The solid recovered fuel produced meets the European Union standard requirements and can be classified with the class code: Net heating value (3); chlorine (1); mercury (1).

  12. Economic screening of renewable energy technologies: Incineration, anaerobic digestion, and biodiesel as applied to waste water scum.

    PubMed

    Anderson, Erik; Addy, Min; Ma, Huan; Chen, Paul; Ruan, Roger

    2016-12-01

    In the U.S., the total amount of municipal solid waste is continuously rising each year. Millions of tons of solid waste and scum are produced annually that require safe and environmentally sound disposal. The availability of a zero-cost energy source like municipal waste scum is ideal for several types of renewable energy technologies. However, the way the energy is produced, distributed and valued also contributes to the overall process sustainability. An economic screening method was developed to compare the potential energy and economic value of three waste-to-energy technologies; incineration, anaerobic digestion, and biodiesel. A St. Paul, MN wastewater treatment facility producing 3175 "wet" kilograms of scum per day was used as a basis of the comparison. After applying all theoretically available subsidies, scum to biodiesel was shown to have the greatest economic potential, valued between $491,949 and $610,624/year. The incineration of scum yielded the greatest reclaimed energy potential at 29billion kilojoules/year. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, R.; Chowdhury, M.A.I.; Hasan, G.M.J.

    Solid waste management (SWM) services have consistently failed to keep up with the vast amount of solid waste produced in urban areas. There is not currently an efficient system in place for the management, storage, collection, and transportation of solid waste. Kathmandu City, an important urban center of South Asia, is no exception. In Kathmandu Metropolitan City, solid waste generation is predicted to be 1091 m{sup 3}/d (245 tons/day) and 1155 m{sup 3}/d (260 tons/day) for the years 2005 and 2006, respectively. The majority (89%) of households in Kathmandu Metropolitan City are willing to segregate the organic and non-organic portionsmore » of their waste. Overall collection efficiency was 94% in 2003. An increase in waste collection occurred due to private sector involvement, the shutdown of the second transfer station near the airport due to local protest, a lack of funding to maintain trucks/equipment, a huge increase in plastic waste, and the willingness of people to separate their waste into separate bins. Despite a substantial increase in total expenditure, no additional investments were made to the existing development plan to introduce a modern disposal system due to insufficient funding. Due to the lack of a proper lining, raw solid waste from the existing dumping site comes in contact with river water directly, causing severe river contamination and deteriorating the quality of the water.« less

  14. Municipal solid-waste disposal and ground-water quality in a coastal environment, west-central Florida

    USGS Publications Warehouse

    Fernandez, Mario

    1983-01-01

    Solid waste is defined along with various methods of disposal and the hydrogeologic factors to be considered when locating land-fills is presented. Types of solid waste, composition, and sources are identified. Generation of municipal solid waste in Florida has been estimated at 4.5 pounds per day per person or about 7.8 million tons per year. Leachate is generated when precipitation and ground water percolate through the waste. Gases, mainly carbon dioxide and methane, are also produced. Leachate generally contains high concentrations of dissolved organic and inorganic matter. The two typical hydrogeologic conditions in west-central Florida are (1) permeable sand overlying clay and limestone and (2) permeable sand overlying limestone. These conditions are discussed in relation to leachate migration. Factors in landfill site selection are presented and discussed, followed by a discussion on monitoring landfills. Monitoring of landfills includes the drilling of test holes, measuring physical properties of the corings, installation of monitoring wells, and water-quality monitoring. (USGS)

  15. Policy trends of extended producer responsibility in Malaysia.

    PubMed

    Agamuthu, P; Victor, Dennis

    2011-09-01

    This paper seeks to examine the provisions for extended producer responsibility (EPR) within the Malaysian environmental and waste management policies and to determine its existing practice and future prospects in Malaysia. Malaysian waste generation has been increasing drastically where solid waste generation was estimated to increase from about 9.0 million tonnes in 2000 to about 10.9 million tonnes in 2010, to about 12.8 million tonnes in 2015 and finally to about 15.6 million tonnes in 2020. Malaysian e-waste was estimated to be about 652 909 tonnes in 2006 and was estimated to increase to about 706 000 tonnes in 2010 and finally to about 1.2 million tonnes in 2020. The projected increasing generation of both solid waste and scheduled wastes is expected to burden the country's resources and environment in managing these wastes in a sustainable manner. The concept of EPR is provided for in the Malaysia waste management system via the Environmental Quality Act 1974 and the Solid Waste and Public Cleansing Management Act 2007. However, these provisions in the policy are generic in nature without relevant regulations to enable its enforcement and as such the concept of EPR still remains on paper whereas the existing practice of EPR in Malaysia is limited through voluntary participation. In conclusion, policy trends of EPR in Malaysia seem to indicate that Malaysia may be embarking on the path towards EPR through the enactment of an EPR regulation.

  16. The Influences of Stirring and Cow Manure Added on Biogas Production From Vegetable Waste Using Anaerobic Digester

    NASA Astrophysics Data System (ADS)

    Abdullah, N. O.; Pandebesie, E. S.

    2018-03-01

    Based on Indonesian Government Regulation number 18, 2008, solid waste management should be conducted from the source to minimize the amount of waste. The process includes the waste from domestic, commercial, and institution. This also includes in 3R program (reduce, reuse, and recycle). Vegetable waste from market is a potential material to produce biogas due to its chemical composition (hemi-cellulose, cellulose, and lignin) which transform the biomass to be the raw material of biogas. Acid substance of vegetable becomes an obstacle in process of producing biogas. There has to be buffer material which can improve the performance of biogas process. Cow manure is a material which can be easily obtained as buffer. This research used 24 biogas reactor in volume 6 L by batch method. Biogas volume is measured by checking the preferment in manometer. Methane measurement is conducted by using Gas Chromatography (GC) Hewlett Packard (HP-series 6890) in day 15 and 30. The research was started by sample characterization, sample test by total solid analysis, volatile solid, lignin, ratio C/N, ammonium, and ash. Analysis of pH, temperature, and biogas volume is conducted every day.

  17. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.

    PubMed

    Papageorgiou, A; Barton, J R; Karagiannidis, A

    2009-07-01

    Waste management activities contribute to global greenhouse gas emissions approximately by 4%. In particular the disposal of waste in landfills generates methane that has high global warming potential. Effective mitigation of greenhouse gas emissions is important and could provide environmental benefits and sustainable development, as well as reduce adverse impacts on public health. The European and UK waste policy force sustainable waste management and especially diversion from landfill, through reduction, reuse, recycling and composting, and recovery of value from waste. Energy from waste is a waste management option that could provide diversion from landfill and at the same time save a significant amount of greenhouse gas emissions, since it recovers energy from waste which usually replaces an equivalent amount of energy generated from fossil fuels. Energy from waste is a wide definition and includes technologies such as incineration of waste with energy recovery, or combustion of waste-derived fuels for energy production or advanced thermal treatment of waste with technologies such as gasification and pyrolysis, with energy recovery. The present study assessed the greenhouse gas emission impacts of three technologies that could be used for the treatment of Municipal Solid Waste in order to recover energy from it. These technologies are Mass Burn Incineration with energy recovery, Mechanical Biological Treatment via bio-drying and Mechanical Heat Treatment, which is a relatively new and uninvestigated method, compared to the other two. Mechanical Biological Treatment and Mechanical Heat Treatment can turn Municipal Solid Waste into Solid Recovered Fuel that could be combusted for energy production or replace other fuels in various industrial processes. The analysis showed that performance of these two technologies depends strongly on the final use of the produced fuel and they could produce GHG emissions savings only when there is end market for the fuel. On the other hand Mass Burn Incineration generates greenhouse gas emission savings when it recovers electricity and heat. Moreover the study found that the expected increase on the amount of Municipal Solid Waste treated for energy recovery in England by 2020 could save greenhouse gas emission, if certain Energy from Waste technologies would be applied, under certain conditions.

  18. An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives.

    PubMed

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Rui, Lo Ming; Isa, Awatif Md; Zawawi, Mohd Hafiz; Alrozi, Rasyidah

    2017-12-01

    Currently, generation of solid waste per capita in Malaysia is about 1.1 kg/day. Over 26,500 t of solid waste is disposed almost solely through 166 operating landfills in the country every day. Despite the availability of other disposal methods, landfill is the most widely accepted and prevalent method for municipal solid waste (MSW) disposal in developing countries, including Malaysia. This is mainly ascribed to its inherent forte in terms cost saving and simpler operational mechanism. However, there is a downside. Environmental pollution caused by the landfill leachate has been one of the typical dilemmas of landfilling method. Leachate is the liquid produced when water percolates through solid waste and contains dissolved or suspended materials from various disposed materials and biodecomposition processes. It is often a high-strength wastewater with extreme pH, chemical oxygen demand (COD), biochemical oxygen demand (BOD), inorganic salts and toxicity. Its composition differs over the time and space within a particular landfill, influenced by a broad spectrum of factors, namely waste composition, landfilling practice (solid waste contouring and compacting), local climatic conditions, landfill's physico-chemical conditions, biogeochemistry and landfill age. This paper summarises an overview of landfill operation and leachate treatment availability reported in literature: a broad spectrum of landfill management opportunity, leachate parameter discussions and the way forward of landfill leachate treatment applicability.

  19. The Application of Microwave Incineration to Regenerative Life Support

    NASA Technical Reports Server (NTRS)

    Sun, Sidney C.; Srinivasan, Venkatesh; Covington, Al (Technical Monitor)

    1995-01-01

    Future human exploration missions will require life support systems that are highly regenerative, requiring minimum resupply, enabling the crews to be largely self-sufficient. Solid wastes generated in space will be processed to recover usable material. Researchers at NASA Ames Research Center are studying a commercially-produced microwave incinerator as a solid waste processor. This paper will describe the results of testing to-date.

  20. Process for purification of waste water produced by a Kraft process pulp and paper mill

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F. (Inventor)

    1979-01-01

    The water from paper and pulp wastes obtained from a mill using the Kraft process is purified by precipitating lignins and lignin derivatives from the waste stream with quaternary ammonium compounds, removing other impurities by activated carbon produced from the cellulosic components of the water, and then separating the water from the precipitate and solids. The activated carbon also acts as an aid to the separation of the water and solids. If recovery of lignins is also desired, then the precipitate containing the lignins and quaternary ammonium compounds is dissolved in methanol. Upon acidification, the lignin is precipitated from the solution. The methanol and quaternary ammonium compound are recovered for reuse from the remainder.

  1. A multiple criteria analysis for household solid waste management in the urban community of Dakar.

    PubMed

    Kapepula, Ka-Mbayu; Colson, Gerard; Sabri, Karim; Thonart, Philippe

    2007-01-01

    Household solid waste management is a severe problem in big cities of developing countries. Mismanaged solid waste dumpsites produce bad sanitary, ecological and economic consequences for the whole population, especially for the poorest urban inhabitants. Dealing with this problem, this paper utilizes field data collected in the urban community of Dakar, in view of ranking nine areas of the city with respect to multiple criteria of nuisance. Nine criteria are built and organized in three families that represent three classical viewpoints: the production of wastes, their collection and their treatment. Thanks to the method PROMETHEE and the software ARGOS, we do a pair-wise comparison of the nine areas, which allows their multiple criteria rankings according to each viewpoint and then globally. Finding the worst and best areas in terms of nuisance for a better waste management in the city is our final purpose, fitting as well as possible the needs of the urban community. Based on field knowledge and on the literature, we suggest applying general and area-specific remedies to the household solid waste problems.

  2. Evaluation of modified asphalt using chlorinated and maleated waste polymers.

    DOT National Transportation Integrated Search

    2002-07-01

    Asphalt modification using polymeric additives derived from solid wastes, i.e. polyolefins, is reported. Chlorination of polyethylene can be controlled to produce semicrystalline polymeric additives. Differential scanning calorimetry can be used to d...

  3. Small Scale Gasification Application and Perspectives in Circular Economy

    NASA Astrophysics Data System (ADS)

    Klavins, Maris; Bisters, Valdis; Burlakovs, Juris

    2018-06-01

    Gasification is the process converting solid fuels as coal and organic plant matter, or biomass into combustible gas, called syngas. Gasification is a thermal conversion process using carbonaceous fuel, and it differs substantially from other thermal processes such as incineration or pyrolysis. The process can be used with virtually any carbonaceous fuel. It is an endothermic thermal conversion process, with partial oxidation being the dominant feature. Gasification converts various feedstock including waste to a syngas. Instead of producing only heat and electricity, synthesis gas produced by gasification may be transformed into commercial products with higher value as transport fuels, fertilizers, chemicals and even to substitute natural gas. Thermo-chemical conversion of biomass and solid municipal waste is developing as a tool to promote the idea of energy system without fossil fuels to a reality. In municipal solid waste management, gasification does not compete with recycling, moreover it enhances recycling programs. Pre-processing and after-processing must increase the amount of recyclables in the circular economy. Additionally, end of life plastics can serve as an energy feedstock for gasification as otherwise it cannot be sorted out and recycled. There is great potential for application of gasification technology within the biomass waste and solid waste management sector. Industrial self-consumption in the mode of combined heat and power can contribute to sustainable economic development within a circular economy.

  4. The organic agricultural waste as a basic source of biohydrogen production

    NASA Astrophysics Data System (ADS)

    Sriwuryandari, Lies; Priantoro, E. Agung; Sintawardani, Neni; Astuti, J. Tri; Nilawati, Dewi; Putri, A. Mauliva Hada; Mamat, Sentana, Suharwadji; Sembiring, T.

    2016-02-01

    Biohydrogen production research was carried out using raw materials of agricultural organic waste that was obtained from markets around the Bandung city. The organic part, which consisted of agricultural waste material, mainly fruit and vegetable waste, was crushed and milled using blender. The sludge that produced from milling process was then used as a substrate for mixed culture microorganism as a raw material to produce biohydrogen. As much as 1.2 kg.day-1 of sludge (4% of total solid) was fed into bioreactor that had a capacity of 30L. Experiment was done under anaerobic fermentation using bacteria mixture culture that maintained at pH in the range of 5.6-6.5 and temperature of 25-30oC on semi-continuous mode. Parameters of analysis include pH, temperature, total solid (TS), organic total solid (OTS), total gas production, and hydrogen gas production. The results showed that from 4% of substrate resulted 897.86 L of total gas, which contained 660.74 L (73.59%) of hydrogen gas. The rate of hydrogen production in this study was 11,063 mol.L-1.h-1.

  5. Pilot scale high solids anaerobic digestion of steam autoclaved municipal solid waste (MSW) pulp

    USDA-ARS?s Scientific Manuscript database

    Steam autoclaving is an efficient method for the separation and recovery of nearly all organics from MSW, yet a reliable alternative outlet for the large volume of organics produced has not yet been successfully demonstrated. The material produced by the autoclave contains a high concentration of s...

  6. A STUDY OF THE FEASIBILITY OF UTILIZING SOLID WASTES FOR BUILDING MATERIALS. PHASE III AND IV SUMMARY REPORTS

    EPA Science Inventory

    This report summarizes work to develop building materials containing inorganic and organic wastes and wastes-derived products. Attempts were made to produce full-scale products and qualify them for structural applications. Particle board panels were made of peanut hulls and wood ...

  7. Energy from gasification of solid wastes.

    PubMed

    Belgiorno, V; De Feo, G; Della Rocca, C; Napoli, R M A

    2003-01-01

    Gasification technology is by no means new: in the 1850s, most of the city of London was illuminated by "town gas" produced from the gasification of coal. Nowadays, gasification is the main technology for biomass conversion to energy and an attractive alternative for the thermal treatment of solid waste. The number of different uses of gas shows the flexibility of gasification and therefore allows it to be integrated with several industrial processes, as well as power generation systems. The use of a waste-biomass energy production system in a rural community is very interesting too. This paper describes the current state of gasification technology, energy recovery systems, pre-treatments and prospective in syngas use with particular attention to the different process cycles and environmental impacts of solid wastes gasification.

  8. Application of geographic information systems to the analysis of the solid waste production on the city of Bogotá (Colombia)

    NASA Astrophysics Data System (ADS)

    Solano Meza, Johanna; Romero Hernandez, Claudia; Rodrigo Ilarri, Javier

    2017-04-01

    One of the main environmental issues to address in the Capital City of Bogotá (Colombia) is the increasing production of solid waste. Despite significant efforts have been made to implement an integral solid waste system management, the current management methods do not provide a permanent alternative to minimize waste production. According to the most recent data, Bogotá is producing almost 2,7 Mt/year of solid waste and only 17,12% of this amount is reused. This means that 82,88% of the waste production has to be disposed on the municipal landfill which has an estimated life of 7,6 years [1]. Bogotá is nowadays running the so-called Zero Waste Program, which tries to run an adequate solid waste management scheme while updating the most recent Integral Solid Waste Management Plan (ISWMP). However, various strategies and methodologies are still needed to fulfill their objetives. The analysis of the solid waste production inside the city using geographic information systems (GIS) is one of the available strategies that may contribute to the environmental impacts minimization, acting at the same time as a decission support tool. These techniques have already been used to the analysis and optimization of the waste collection routes and the location of waste disposal sites. They allow to visualize the critical urban zones with increasing waste production so the next steps of the management process can be properly designed (collection, trasnport routes design, location of treatment facilities and final waste disposal sites). The estimation of the urban solid waste generation is done applying different mathematical and statistical methods, which are based on the relation between the total population of the city and the per capita waste production. GIS methods allow i) to determine the total amount of waste generated as a function of the population increasement and ii) provide a full view of the zones where priority actions are needed as they take into account both the geographical and spatial component. The behaviour of the waste generation is explained considering also the socieconomic stratiphication. Results show in this research are obtained using ArcGIS considering the official 2005 census population, the population estimation in 2020, the amount of waste recycled and disposed on the municipal landfill and the socioeconomical of the different urban areas following the local waste management plans and programs. [1]Technical Support document, Solid Waste Management Plan of Bogotá D.C. Alcaldía Mayor de Bogotá, November 2016.

  9. Current Development in Treatment and Hydrogen Energy Conversion of Organic Solid Waste

    NASA Astrophysics Data System (ADS)

    Shin, Hang-Sik

    2008-02-01

    This manuscript summarized current developments on continuous hydrogen production technologies researched in Korea advanced institute of science and technology (KAIST). Long-term continuous pilot-scale operation of hydrogen producing processes fed with non-sterile food waste exhibited successful results. Experimental findings obtained by the optimization processes of growth environments for hydrogen producing bacteria, the development of high-rate hydrogen producing strategies, and the feasibility tests for real field application could contribute to the progress of fermentative hydrogen production technologies. Three major technologies such as controlling dilution rate depending on the progress of acidogenesis, maintaining solid retention time independently from hydraulic retention time, and decreasing hydrogen partial pressure by carbon dioxide sparging could enhance hydrogen production using anaerobic leaching beds reactors and anaerobic sequencing batch reactors. These findings could contribute to stable, reliable and effective performances of pilot-scale reactors treating organic wastes.

  10. Modeling of Solid Waste Processing Options in BIO-Plex

    NASA Technical Reports Server (NTRS)

    Rodriguez, Luis F.; Finn, Cory; Kang, Sukwon; Hogan, John; Luna, Bernadette (Technical Monitor)

    2000-01-01

    BIO-Plex is a ground-based test bed currently under development by NASA for testing technologies and practices that may be utilized in future long-term life support missions. All aspects of such an Advanced Life Support (ALS) System must be considered to confidently construct a reliable system, which will not only allow the crew to survive in harsh environments, but allow the crew time to perform meaningful research. Effective handling of solid wastes is a critical aspect of the system, especially when recovery of resources contained in the waste is required. This is particularly important for ALS Systems configurations that include a Biomass Production Chamber. In these cases, significant amounts of inedible biomass waste may be produced, which can ultimately serve as a repository of necessary resources for sustaining life, notably carbon, water, and plant nutrients. Numerous biological and physicochemical solid waste processing options have been considered. Biological options include composting, aerobic digestion, and anaerobic digestion. Physicochemical options include pyrolysis, SCWO (supercritical water oxidation), various incineration configurations, microwave incineration, magnetically assisted gasification, and low temperature plasma reaction. Modeling of these options is a necessary step to assist in the design process. A previously developed top-level model of BIO-Plex implemented in MATLAB Simulink (r) for the use of systems analysis and design has been adopted for this analysis. Presently, this model only considered incineration for solid waste processing. Present work, reported here, includes the expansion of this model to include a wider array of solid waste processing options selected from the above options, bearing in mind potential, near term solid waste treatment systems. Furthermore, a trade study has also been performed among these solid waste processing technologies in an effort to determine the ideal technology for long-term life support missions.

  11. Preparation and application of unhairing enzyme using solid wastes from the leather industry-an attempt toward internalization of solid wastes within the leather industry.

    PubMed

    Ramesh, Renganath Rao; Muralidharan, Vimudha; Palanivel, Saravanan

    2018-01-01

    Usage of the animal fleshing waste as the source of carbon and nitrogen for animal skin unhairing protease (EC 3.4.21) production along with agro-industrial wastes like wheat bran has been investigated. Thermal hydrolysis of delimed fleshing waste for 3 h yielded a fleshing hydrolysate (FH) having a protein content of 20.86 mg/mL and total solids of 46,600 ppm. The FH was lyophilized and spray dried to obtain fleshing hydrolysate powder (FHP) to be used along with wheat bran and rice bran for protease production. The carbon, nitrogen, hydrogen, and sulfur contents of the FHP were found to be 40.1, 13.8, 5.4, and 0.2%. The control solid-state fermented (SSF) medium without FHP showed a maximum activity of only 550 U/g. A maximum protease activity of 956 U/g was obtained by using 6% FHP (taken based on the combined total weight of wheat bran and rice bran) after 96 h of fermentation, resulting in a 1.7-fold increase in the protease activity. The total cost of producing 1 kg of FHP and the cost of producing 1000 kU of protease using FHP along with wheat bran and rice bran were found to be USD 24.62 and USD 2.08, respectively; 25% of SSF protease along with 40% water was found to be capable of unhairing the sheepskins in 7 h eliminating the hazardous conventional lime sulfide unhairing system. Thus, the leather industry's solid waste internalized for the production of unhairing enzyme resulted in a sustainable solution for pollution problems. Graphical abstract ᅟ.

  12. The influence of baking fuel on residues of polycyclic aromatic hydrocarbons and heavy metals in bread.

    PubMed

    Ahmed, M T; Abdel Hadi el-S; el-Samahy, S; Youssof, K

    2000-12-30

    The influence of fuel type used to bake bread on the spectrum and concentrations of some polycyclic aromatic hydrocarbons and heavy metals in baked bread was assessed. Bread samples were collected from different bakeries operated by either electricity, solar, mazot or solid waste and their residue content of PAHs and heavy metals was assessed. The total concentration of PAHs detected in mazot, solar, solid waste and electricity operated bakeries had an average of 320.6, 158.4, 317.3 and 25.5 microgkg(-1), respectively. Samples collected from mazot, solar and solid waste operated bakeries have had a wide spectrum of PAHs, in comparison to that detected in bread samples collected from electricity operated bakeries. Lead had the highest concentrations in the four groups of bread samples, followed by nickel, while the concentrations of zinc and cadmium were the least. The concentration of lead detected in bread samples produced from mazot, solar, solid waste and electricity fueled bakeries were 1375.5, 1114, 1234, and 257.3 microgkg(-1), respectively. Estimated daily intake of PAHs based on bread consumption were 48.2, 28.5, 80. 1, and 4.8 microg per person per day for bread produced in bakeries using mazot, solar, solid waste and electricity, respectively. Meanwhile, the estimated daily intake of benzo (a) pyrene were 3.69, 2.65, 8.1, and 0.81 microg per person per day for bread sample baked with mazot, solar, solid waste and electricity, respectively. The daily intake of lead, based on bread consumption was 291, 200.5, 222, and 46.31 microg per person per day for bread sample baked with mazot, solar, solid waste and electricity, respectively. The present work has indicated the comparatively high level of daily intake of benzo (a) pyrene and lead in comparison to levels reported from many other countries and those recommended by international regulatory bodies. It is probable that residues detected in bread samples are partially cereal-borne but there is strong evidence that the process of baking and the gases emitted are responsible for most of the contamination load.

  13. Production and characterization refuse derived fuel (RDF) from high organic and moisture contents of municipal solid waste (MSW)

    NASA Astrophysics Data System (ADS)

    Dianda, P.; Mahidin; Munawar, E.

    2018-03-01

    Many cities in developing countries is facing a serious problems to dealing with huge municipal solid waste (MSW) generated. The main approach to manage MSW is causes environmental impact associated with the leachate and landfill gas emissions. On the other hand, the energy available also limited by rapid growth of population and economic development due to shortage of the natural resource. In this study, the potential utilized of MSW to produce refuse derived fuel (RDF) was investigate. The RDF was produced with various organic waste content. Then, the RDF was subjected to laboratory analysis to determine its characteristic including the calorific value. The results shows the moisture content was increased by increasing organic waste content, while the calorific value was found 17-36 MJ/kg. The highest calorific value was about 36 MJ/kg obtained at RDF with 40% organic waste content. This results indicated that the RDF can be use to substitute coal in main burning process and calcinations of cement industry.

  14. Co-pyrolysis of swine manure with agricultural plastic waste: laboratory-scale study.

    PubMed

    Ro, Kyoung S; Hunt, Patrick G; Jackson, Michael A; Compton, David L; Yates, Scott R; Cantrell, Keri; Chang, SeChin

    2014-08-01

    Manure-derived biochar is the solid product resulting from pyrolysis of animal manures. It has considerable potential both to improve soil quality with high levels of nutrients and to reduce contaminants in water and soil. However, the combustible gas produced from manure pyrolysis generally does not provide enough energy to sustain the pyrolysis process. Supplementing this process may be achieved with spent agricultural plastic films; these feedstocks have large amounts of available energy. Plastic films are often used in soil fumigation. They are usually disposed in landfills, which is wasteful, expensive, and environmentally unsustainable. The objective of this work was to investigate both the energetics of co-pyrolyzing swine solids with spent plastic mulch films (SPM) and the characteristics of its gas, liquid, and solid byproducts. The heating value of the product gas from co-pyrolysis was found to be much higher than that of natural gas; furthermore, the gas had no detectable toxic fumigants. Energetically, sustaining pyrolysis of the swine solids through the energy of the product gas could be achieved by co-pyrolyzing dewatered swine solids (25%m/m) with just 10% SPM. If more than 10% SPM is used, the co-pyrolysis would generate surplus energy which could be used for power generation. Biochars produced from co-pyrolyzing SPM and swine solid were similar to swine solid alone based on the surface area and the (1)H NMR spectra. The results of this study demonstrated the potential of using pyrolysis technology to manage two prominent agricultural waste streams (SPM and swine solids) while producing value-added biochar and a power source that could be used for local farm operations. Published by Elsevier Ltd.

  15. Methane potential of sterilized solid slaughterhouse wastes.

    PubMed

    Pitk, Peep; Kaparaju, Prasad; Vilu, Raivo

    2012-07-01

    The aim of the current study was to determine chemical composition and methane potential of Category 2 and 3 solid slaughterhouse wastes rendering products (SSHWRP) viz. melt, decanter sludge, meat and bone meal (MBM), technical fat and flotation sludge from wastewater treatment. Chemical analyses showed that SSHWRP were high in protein and lipids with total solids (TS) content of 96-99%. Methane yields of the SSHWRP were between 390 and 978 m(3) CH(4)/t volatile solids (VS)(added). Based on batch experiments, anaerobic digestion of SSHWRP from the dry rendering process could recover 4.6 times more primary energy than the energy required for the rendering process. Estonia has technological capacity to sterilize all the produced Category 2 and 3 solid slaughterhouse wastes (SSHW) and if separated from Category 1 animal by-products (ABP), it could be further utilized as energy rich input material for anaerobic digestion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Review of Potential Candidate Stabilization Technologies for Liquid and Solid Secondary Waste Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Mattigod, Shas V.; Westsik, Joseph H.

    2010-01-30

    Pacific Northwest National Laboratory has initiated a waste form testing program to support the long-term durability evaluation of a waste form for secondary wastes generated from the treatment and immobilization of Hanford radioactive tank wastes. The purpose of the work discussed in this report is to identify candidate stabilization technologies and getters that have the potential to successfully treat the secondary waste stream liquid effluent, mainly from off-gas scrubbers and spent solids, produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Down-selection to the most promising stabilization processes/waste forms is needed to support the design of a solidificationmore » treatment unit (STU) to be added to the Effluent Treatment Facility (ETF). To support key decision processes, an initial screening of the secondary liquid waste forms must be completed by February 2010.« less

  17. Effects of biodrying process on municipal solid waste properties.

    PubMed

    Tambone, F; Scaglia, B; Scotti, S; Adani, F

    2011-08-01

    In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,779±2,074kJ kg(-1) wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290g kg(-1) VS), reduced of about 28% the total producible biogas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Sustainable construction in rural Guatemala.

    PubMed

    Temple, Ericka K; Rose, Elizabeth

    2011-11-01

    Waste management is a significant problem in Guatemala, as elsewhere in the developing world. The inappropriate disposal of solid waste produces pollution and places the environment and human health at risk. Environmental risk factors, including inadequate disposal of solid waste, are implicated in 25-30% of disease worldwide with children bearing a disproportionate burden of those diseases. Therefore, economic development which reduces inappropriate disposal of waste and affords economic opportunities may help reduce the global burden of disease on children. In the indigenous highlands of central Guatemala, a community supported non-profit organisation called Long Way Home (http://www.longwayhomeinc.org) is employing alternative construction techniques to build a vocational school complex. The construction of the school from waste materials demonstrates the use and principles of re-purposing materials, helps clean the environment and affords further educational and vocational opportunities. This article will outline the health problems inherent in an indigenous area of a developing country and will offer an alternative solution to reverse environmental risk factors associated with solid waste pollution and also actively improve child health.

  19. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staiger, Merle Daniel; M. C. Swenson

    2005-01-01

    This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-sitemore » facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.« less

  20. Polyhydroxyalkanoate (PHA) production from waste.

    PubMed

    Rhu, D H; Lee, W H; Kim, J Y; Choi, E

    2003-01-01

    PHA (polyhydroxyalkanoate) production was attempted with SBRs from food waste. Seed microbes were collected from a sewage treatment plant with a biological nutrient removal process, and acclimated with synthetic substrate prior to the application of the fermented food waste. Laboratory SBRs were used to produce PHA with limited oxygen and nutrients. The maximum content of 51% PHA was obtained with an anaerobic/aerobic cycle with P limitation, and the yield was estimated to be about 0.05 gPHA(produced)/gCOD(applied) or 25 kg PHA/dry ton of food waste, assuming more than 40% of the PHA contents were recoverable. PHB/PHA ratios were 0.74 to 0.77 due to the higher acetate concentrations. Economical analysis seemed to suggest the PHA produced from the food waste could be an alternative material to produce the biodegradable plastic to be used for the collection bags for solid waste.

  1. Ethanol production from food waste at high solids content with vacuum recovery technology.

    PubMed

    Huang, Haibo; Qureshi, Nasib; Chen, Ming-Hsu; Liu, Wei; Singh, Vijay

    2015-03-18

    Ethanol production from food wastes does not only solve environmental issues but also provides renewable biofuels. This study investigated the feasibility of producing ethanol from food wastes at high solids content (35%, w/w). A vacuum recovery system was developed and applied to remove ethanol from fermentation broth to reduce yeast ethanol inhibition. A high concentration of ethanol (144 g/L) was produced by the conventional fermentation of food waste without a vacuum recovery system. When the vacuum recovery is applied to the fermentation process, the ethanol concentration in the fermentation broth was controlled below 100 g/L, thus reducing yeast ethanol inhibition. At the end of the conventional fermentation, the residual glucose in the fermentation broth was 5.7 g/L, indicating incomplete utilization of glucose, while the vacuum fermentation allowed for complete utilization of glucose. The ethanol yield for the vacuum fermentation was found to be 358 g/kg of food waste (dry basis), higher than that for the conventional fermentation at 327 g/kg of food waste (dry basis).

  2. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  3. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  4. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  5. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  6. The impact of socioeconomic factors on municipal solid waste generation in São Paulo, Brazil.

    PubMed

    Vieira, Victor H Argentino de Morais; Matheus, Dácio R

    2018-01-01

    Social factors have not been sufficiently explored in municipal solid waste management studies. Latin America has produced even fewer studies with this approach; technical and economic investigations have prevailed. We explored the impacts of socioeconomic factors on municipal solid waste generation in Greater Sao Paulo, which includes 39 municipalities. We investigated the relations between municipal solid waste generation and social factors by Pearson's correlation coefficient. The Student's t-test (at p ← 0.01) proved significance, and further regression analysis was performed with significant factors. We considered 10 socioeconomic factors: population, rural population, density, life expectancy, education (secondary, high and undergraduate level), income per capita, inequality and human development. A later multicollinearity analysis resulted in the determination of inequality (r p = 0.625) and income per capita (r p = 0.607) as major drivers. The results showed the relevance of considering social aspects in municipal solid waste management and isolated inequality as an important factor in planning. Inequality must be used as a complementary factor to income, rather than being used exclusively. Inequality may explain differences of waste generation between areas with similar incomes because of consumption patterns. Therefore, unequal realities demand unequal measures to avoid exacerbation, for example, pay-as-you-throw policies instead of uniform fees. Unequal realities also highlight the importance of tiering policies beyond the waste sector, such as sustainable consumption.

  7. Dry anaerobic digestion of food waste and cardboard at different substrate loads, solid contents and co-digestion proportions.

    PubMed

    Capson-Tojo, Gabriel; Trably, Eric; Rouez, Maxime; Crest, Marion; Steyer, Jean-Philippe; Delgenès, Jean-Philippe; Escudié, Renaud

    2017-06-01

    The increasing food waste production calls for developing efficient technologies for its treatment. Anaerobic processes provide an effective waste valorization. The influence of the initial substrate load on the performance of batch dry anaerobic co-digestion reactors treating food waste and cardboard was investigated. The load was varied by modifying the substrate to inoculum ratio (S/X), the total solids content and the co-digestion proportions. The results showed that the S/X was a crucial parameter. Within the tested values (0.25, 1 and 4gVS·gVS -1 ), only the reactors working at 0.25 produced methane. Methanosarcina was the main archaea, indicating its importance for efficient methanogenesis. Acidogenic fermentation was predominant at higher S/X, producing hydrogen and other metabolites. Higher substrate conversions (≤48%) and hydrogen yields (≤62mL·gVS -1 ) were achieved at low loads. This study suggests that different value-added compounds can be produced in dry conditions, with the initial substrate load as easy-to-control operational parameter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In 1990, the Lower Savannah Council of Governments (LSCOG) began dialogue with the United States Department of Energy (DOE) regarding possibilities for cooperation and coordination of solid waste management practices among the local governments and the Savannah River Site. The Department of Energy eventually awarded a grant to the Lower Savannah Council of Governments for the development of a study, which was initiated on March 5, 1992. After careful analysis of the region`s solid waste needs, this study indicates a network approach to solid waste management to be the most viable. The network involves the following major components: (1) Ruralmore » Collection Centers, designed to provide convenience to rural citizens, while allowing some degree of participation in recycling; (2) Rural Drop-Off Centers, designed to give a greater level of education and recycling activity; (3) Inert landfills and composting centers, designed to reduce volumes going into municipal (Subtitle D) landfills and produce useable products from yard waste; (4) Transfer Stations, ultimate landfill disposal; (5) Materials Recovery Facilities, designed to separate recyclables into useable and sellable units, and (6) Subtitle D landfill for burial of all solid waste not treated through previous means.« less

  9. Method for processing coal-enrichment waste with solid and volatile fuel inclusions

    NASA Astrophysics Data System (ADS)

    Khasanova, A. V.; Zhirgalova, T. B.; Osintsev, K. V.

    2017-10-01

    The method relates to the field of industrial heat and power engineering. It can be used in coal preparation plants for processing coal waste. This new way is realized to produce a loose ash residue directed to the production of silicate products and fuel gas in rotary kilns. The proposed method is associated with industrial processing of brown coal beneficiation waste. Waste is obtained by flotation separation of rock particles up to 13 mm in size from coal particles. They have in their composition both solid and volatile fuel inclusions (components). Due to the high humidity and significant rock content, low heat of combustion, these wastes are not used on energy boilers, they are stored in dumps polluting the environment.

  10. Evaluation and comparison of alternative designs for water/solid-waste processing systems for spacecraft

    NASA Technical Reports Server (NTRS)

    Spurlock, J. M.

    1975-01-01

    Promising candidate designs currently being considered for the management of spacecraft solid waste and waste-water materials were assessed. The candidate processes were: (1) the radioisotope thermal energy evaporation/incinerator process; (2) the dry incineration process; and (3) the wet oxidation process. The types of spacecraft waste materials that were included in the base-line computational input to the candidate systems were feces, urine residues, trash and waste-water concentrates. The performance characteristics and system requirements for each candidate process to handle this input and produce the specified acceptable output (i.e., potable water, a storable dry ash, and vapor phase products that can be handled by a spacecraft atmosphere control system) were estimated and compared. Recommendations are presented.

  11. Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Oinas, Pekka

    2016-01-01

    In the production of solid recovered fuel (SRF), certain waste components have excessive influence on the quality of product. The proportion of rubber, plastic (hard) and certain textiles was found to be critical as to the elemental quality of SRF. The mass flow of rubber, plastic (hard) and textiles (to certain extent, especially synthetic textile) components from input waste stream into the output streams of SRF production was found to play the decisive role in defining the elemental quality of SRF. This paper presents the mass flow of polluting and potentially toxic elements (PTEs) in SRF production. The SRF was produced from municipal solid waste (MSW) through mechanical treatment (MT). The results showed that of the total input chlorine content to process, 55% was found in the SRF and 30% in reject material. Of the total input arsenic content, 30% was found in the SRF and 45% in fine fraction. In case of cadmium, lead and mercury, of their total input content to the process, 62%, 38% and 30%, respectively, was found in the SRF. Among the components of MSW, rubber material was identified as potential source of chlorine, containing 8.0 wt.% of chlorine. Plastic (hard) and textile components contained 1.6 and 1.1. wt.% of chlorine, respectively. Plastic (hard) contained higher lead and cadmium content compared with other waste components, i.e. 500 mg kg(-1) and 9.0 mg kg(-1), respectively. © The Author(s) 2015.

  12. SURVEY OF SOLIDIFICATION/STABILIZATION TECHNOLOGY FOR HAZARDOUS INDUSTRIAL WASTES

    EPA Science Inventory

    Stabilization/solidification or fixation is a process for treating industrial solid wastes (primarily sludges) that contain hazardous constituents to prevent dissolution and loss of toxic materials into the environment. Most of these treatment processes are designed to produce a ...

  13. Solid waste production and its management in dental clinics in Gorgan, northern Iran.

    PubMed

    Nabizadeh, R; Faraji, H; Mohammadi, A A

    2014-10-01

    Waste produced in dental clinics has been the topic of investigations for many years. These waste materials have important health impacts and are hazardous to humans and the environment. To investigating solid waste production and its management in dental clinics in Gorgan, northern Iran. In this cross-sectional study, 45 of 143 public dental practices and 5 of 25 private dental practices were selected and studied. From each clinic, 3 samples were taken and analyzed at the end of successive working days (Tuesday and Wednesday). Samples were manually sorted into 50 components. The measured components were then classified on the basis of their characteristics, hazard potentials, and WHO classification. The total annual amount of dental waste produced in public and private dental practices in Gorgan was 12 015.1 and 3135.0 kg, respectively. Production percentages of infectious, domestic, chemical and pharmaceutical, and toxic waste in public dental practices were 38.4%, 33.7%, 6.6%, and 0.6%, respectively. The percentages for private practices were 8.7%, 10.6%, 1.1%, and 0.1%, respectively. Dental waste management in Gorgan is inadequate; dental waste is not properly segregated, collected, and disposed, as demanded by the WHO. Employees in dentist offices must be trained in correct handling of waste products and the associated risks.

  14. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?

    PubMed

    Sormunen, Laura Annika; Rantsi, Riina

    2015-11-01

    For the past decade, the Finnish waste sector has increasingly moved from the landfilling of municipal solid waste towards waste incineration. New challenges are faced with the growing amounts of municipal solid waste incineration bottom ash, which are mainly landfilled at the moment. Since this is not a sustainable or a profitable solution, finding different utilisation applications for the municipal solid waste incineration bottom ash is crucial. This study reports a comprehensive analysis of bottom ash properties from one waste incineration plant in Finland, which was first treated with a Dutch bottom ash recovery technique called advanced dry recovery. This novel process separates non-ferrous and ferrous metals from bottom ash, generating mineral fractions of different grain sizes (0-2 mm, 2-5 mm, 5-12 mm and 12-50 mm). The main aim of the study was to assess, whether the advanced bottom ash treatment technique, producing mineral fractions of different grain sizes and therefore properties, facilitates the utilisation of municipal solid waste incineration bottom ash in Finland. The results were encouraging; the bottom ash mineral fractions have favourable behaviour against the frost action, which is especially useful in the Finnish conditions. In addition, the leaching of most hazardous substances did not restrict the utilisation of bottom ash, especially for the larger fractions (>5 mm). Overall, this study has shown that the advanced bottom ash recovering technique can be one solution to increase the utilisation of bottom ash and furthermore decrease its landfilling in Finland. © The Author(s) 2015.

  15. Economic and employment potential in textile waste management of Faisalabad.

    PubMed

    Noman, Muhammad; Batool, Syeda Adila; Chaudhary, Muhammad Nawaz

    2013-05-01

    The aim of this study is to characterize the waste from the textile industry, to identify the sources and types of waste generation and to find out the economic and employment potential in this sector. Textile waste, its management, and the economic and employment potential in this sector are unrevealed facts in developing countries such as Pakistan. The textile industry is ranked first in export earning in Pakistan. Textile export of yarn and cloth from Faisalabad is US$3 billion per year. On average 161 325 people are employed in the textile sector in Faisalabad, of which 11 860 are involved in solid waste handling and management. The textile industries generate solid wastes such as fibre, metal, plastic and paper waste. A total of 794 209 kg day(-1) (289 886 285 kg year(-1)) solid waste is produced from this sector and purchased by cotton waste junkshop owners at US$125 027 day(-1) (US$45 634 855 year(-1)). Only pre-consumer textile waste is considered. Interestingly no waste is sent to landfill. The waste is first segregated into different categories/ types by hand and then weighed. Cotton waste is sold to brick kilns where it is used as an alternative fuel as it is cheaper than wood/coal. Iron scrap is sold in the junk market from where it is resold to recycling industries. Paper waste is recycled, minimizing the virgin material used for producing new paper products. Iron and plastic drums are returned to the chemical industries for refilling, thus decreasing the cost of dyes and decreasing the demand for new drums. Cutting rags are used for making different things such as ropes and underlay, it is also shredded and used as fillings for pillows and mattresses, thus improving waste management, reducing cost and minimizing the need for virgin material. As no system of quality control and no monitoring of subsequent products exist there is a need to carry out quality control and monitoring.

  16. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    PubMed

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Lignocellulolytic enzyme activity, substrate utilization, and mushroom yield by Pleurotus ostreatus cultivated on substrate containing anaerobic digester solids.

    PubMed

    Isikhuemhen, Omoanghe S; Mikiashvilli, Nona A

    2009-11-01

    Solid waste from anaerobic digestion of litter from the commercial production of broiler chickens has limited use as fertilizer. Its disposal is a major problem for digester operators who are seeking alternative use for anaerobic digester solids, also referred to as solid waste (SW). The use of SW as substrates for the cultivation of Pleurotus ostreatus strain MBFBL400 was investigated. Lignocellulolytic enzymes activity, substrate utilization, and mushroom yield were evaluated in ten different substrate combinations (SCs) containing varying amounts of solid waste, wheat straw, and millet. Nutritional content of mushrooms produced on the different substrates was also determined. Substrates containing 70-80% wheat straw, 10-20% SW, and 10-20% millet were found to produce the highest mushroom yield (874.8-958.3 g/kg). Loss of organic matter in all SCs tested varied from 45.8% to 56.2%, which had positive correlation with the biological efficiency. Laccase, peroxidase, and carboxymethylcellulase (CMCase) activities were higher before fruiting, whereas xylanase showed higher activities after mushroom fruiting. SW increased the nutritional content in mushrooms harvested, and the combination of wheat straw and SW with millet significantly improved mushroom yield. Our findings demonstrated the possibility of utilizing anaerobic digester solids in mushroom cultivation. The application of SW as such could improve the financial gains in the overall economy of anaerobic digester plants.

  18. A novel strategy for producing compost with enhanced biopesticide properties through solid-state fermentation of biowaste and inoculation with Bacillus thuringiensis.

    PubMed

    Ballardo, Cindy; Barrena, Raquel; Artola, Adriana; Sánchez, Antoni

    2017-12-01

    In the framework of a circular economy, organic solid wastes are considered to be resources useful for obtaining value-added products. Among other potential uses, biodegradable wastes from agricultural, industrial, and domestic sources are being studied to obtain biopesticides through solid-state fermentation (SSF), mainly at the laboratory scale. The suitability of biowaste (source-selected organic fraction of municipal solid waste) for use as a substrate for Bacillus thuringiensis (Bt) growth under non-sterile conditions in a 10 L SSF reactor was determined in this study. An operational strategy for setting up a semi-continuous process yielding a stabilised organic compost-like material enriched with Bt suitable for use as a soil amendment was developed. Concentrations of 1.7·10 7 -2.2·10 7 and 1.3·10 7 -2.1·10 7  CFU g -1 DM for Bt viable cells and spores, respectively, were obtained in the final material. As the results confirmed, Bt-enriched compost-like material with potential biopesticide properties can be produced from non-sterile biowaste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Solid waste recycling in Rajshahi city of Bangladesh.

    PubMed

    Bari, Q Hamidul; Hassan, K Mahbub; Haque, M Ehsanul

    2012-11-01

    Efficient recycling of solid wastes is now a global concern for a sustainable and environmentally sound management. In this study, traditional recycling pattern of solid waste was investigated in Rajshahi municipality which is the fourth largest city of Bangladesh. A questionnaire survey had been carried out in various recycle shops during April 2010 to January 2011. There were 140 recycle shops and most of them were located in the vicinity of Stadium market in Rajshahi. About 1906 people were found to be involved in recycling activities of the city. The major fraction of recycled wastes were sent to capital city Dhaka for further manufacture of different new products. Only a small amount of wastes, specially plastics, were processed in local recycle factories to produce small washing pots and bottle caps. Everyday, an estimated 28.13 tons of recycled solid wastes were handled in Rajshahi city area. This recycled portion accounted for 8.25% of the daily total generated wastes (341 ton d(-1)), 54.6% of total recyclable wastes (51.49 ton d(-1)) and 68.29% of readily recyclable wastes (41.19 ton d(-1)). Major recycled materials were found to be iron, glass, plastic, and papers. Only five factories were involved in preliminary processing of recyclable wastes. Collecting and processing secondary materials, manufacturing recycled-content products, and then buying recycled products created a circle or loop that ensured the overall success of recycling and generated a host of financial, environmental, and social returns. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@eng.nssmc.com; Ishida, Yoshihiro; Osada, Morihiro

    Highlights: • A new waste management scheme and the effects of co-gasification of MSW were assessed. • A co-gasification system was compared with other conventional systems. • The co-gasification system can produce slag and metal with high-quality. • The co-gasification system showed an economic advantage when bottom ash is landfilled. • The sensitive analyses indicate an economic advantage when the landfill cost is high. - Abstract: This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for amore » region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has great possibilities maximizing material recovery and energy recovery from waste.« less

  1. Acute and Chronic Toxicity of Soluble Fractions of Industrial Solid Wastes on Daphnia magna and Vibrio fischeri

    PubMed Central

    Flohr, Letícia; de Castilhos Júnior, Armando Borges; Matias, William Gerson

    2012-01-01

    Industrial wastes may produce leachates that can contaminate the aquatic ecosystem. Toxicity testing in acute and chronic levels is essential to assess environmental risks from the soluble fractions of these wastes, since only chemical analysis may not be adequate to classify the hazard of an industrial waste. In this study, ten samples of solid wastes from textile, metal-mechanic, and pulp and paper industries were analyzed by acute and chronic toxicity tests with Daphnia magna and Vibrio fischeri. A metal-mechanic waste (sample MM3) induced the highest toxicity level to Daphnia magna(CE50,48 h = 2.21%). A textile waste induced the highest toxicity level to Vibrio fischeri (sample TX2, CE50,30 min = 12.08%). All samples of pulp and paper wastes, and a textile waste (sample TX2) induced chronic effects on reproduction, length, and longevity of Daphnia magna. These results could serve as an alert about the environmental risks of an inadequate waste classification method. PMID:22619632

  2. Acute and chronic toxicity of soluble fractions of industrial solid wastes on Daphnia magna and Vibrio fischeri.

    PubMed

    Flohr, Letícia; de Castilhos Júnior, Armando Borges; Matias, William Gerson

    2012-01-01

    Industrial wastes may produce leachates that can contaminate the aquatic ecosystem. Toxicity testing in acute and chronic levels is essential to assess environmental risks from the soluble fractions of these wastes, since only chemical analysis may not be adequate to classify the hazard of an industrial waste. In this study, ten samples of solid wastes from textile, metal-mechanic, and pulp and paper industries were analyzed by acute and chronic toxicity tests with Daphnia magna and Vibrio fischeri. A metal-mechanic waste (sample MM3) induced the highest toxicity level to Daphnia magna(CE(50,48 h) = 2.21%). A textile waste induced the highest toxicity level to Vibrio fischeri (sample TX2, CE(50,30 min) = 12.08%). All samples of pulp and paper wastes, and a textile waste (sample TX2) induced chronic effects on reproduction, length, and longevity of Daphnia magna. These results could serve as an alert about the environmental risks of an inadequate waste classification method.

  3. Activated carbon from leather shaving wastes and its application in removal of toxic materials.

    PubMed

    Kantarli, Ismail Cem; Yanik, Jale

    2010-07-15

    In this study, utilization of a solid waste as raw material for activated carbon production was investigated. For this purpose, activated carbons were produced from chromium and vegetable tanned leather shaving wastes by physical and chemical activation methods. A detailed analysis of the surface properties of the activated carbons including acidity, total surface area, extent of microporosity and mesoporosity was presented. The activated carbon produced from vegetable tanned leather shaving waste produced has a higher surface area and micropore volume than the activated carbon produced from chromium tanned leather shaving waste. The potential application of activated carbons obtained from vegetable tanned shavings as adsorbent for removal of water pollutants have been checked for phenol, methylene blue, and Cr(VI). Adsorption capacities of activated carbons were found to be comparable to that of activated carbons derived from biomass. 2010 Elsevier B.V. All rights reserved.

  4. Recovery of energy and nutrient resources from cattle paunch waste using temperature phased anaerobic digestion.

    PubMed

    Jensen, Paul D; Mehta, Chirag M; Carney, Chris; Batstone, D J

    2016-05-01

    Cattle paunch is comprised of partially digested cattle feed, containing mainly grass and grain and is a major waste produced at cattle slaughterhouses contributing 20-30% of organic matter and 40-50% of P waste produced on-site. In this work, Temperature Phased Anaerobic Digestion (TPAD) and struvite crystallization processes were developed at pilot-scale to recover methane energy and nutrients from paunch solid waste. The TPAD plant achieved a maximum sustainable organic loading rate of 1-1.5kgCODm(-3)day(-1) using a feed solids concentration of approximately 3%; this loading rate was limited by plant engineering and not the biology of the process. Organic solids destruction (60%) and methane production (230LCH4kg(-1) VSfed) achieved in the plant were similar to levels predicted from laboratory biochemical methane potential (BMP) testing. Model based analysis identified no significant difference in batch laboratory parameters vs pilot-scale continuous parameters, and no change in speed or extent of degradation. However the TPAD process did result in a degree of process intensification with a high level of solids destruction at an average treatment time of 21days. Results from the pilot plant show that an integrated process enabled resource recovery at 7.8GJ/dry tonne paunch, 1.8kgP/dry tonne paunch and 1.0kgN/dry tonne paunch. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Treatment of batik waste using distillation method

    NASA Astrophysics Data System (ADS)

    Riyanto, Sidiq, Nurma Yunita; Hidayah, Nailil

    2017-12-01

    In this study has been the treatment of batik waste using distillation method. This study aims to the treatment of batik waste using distillation method. Batik is a world heritage that has an impact on economic improvement and environmental damage. Batik waste is a hazardous and toxic waste material. Batik waste in this research has been taken from Batik Industry in Yogyakarta, Indonesia. Batik waste of 5 L is included in the distillation apparatus, then the distillation run for 4 hours. The distillation product of solids and liquids is collected and analyzed. The solid produced at the distillation boiler was analyzed by FTIR. The distillation liquid was analyzed ammonia and COD concentration using UV-Vis Spectrophotometer. The result of the analysis showed that based on FTIR spectra obtained by dye with high purity. The analysis results shown are of ammonia, COD and pH were 0.652 mg/L, 238.31 mg/L, and 7.306, respectively. The compounds produced by boiler are the azo dye based on the spectrum at wave numbers 1554.07 cm-1. The conclusion of this research is that the distillation method is very suitable for the treatment of the batik waste at small batik industry. Advantages of distillation techniques that can be obtained two products are water and dye that can be used in batik industry.

  6. Treatment of organic waste

    DOEpatents

    Grantham, LeRoy F.

    1979-01-01

    An organic waste containing at least one element selected from the group consisting of strontium, cesium, iodine and ruthenium is treated to achieve a substantial reduction in the volume of the waste and provide for fixation of the selected element in an inert salt. The method of treatment comprises introducing the organic waste and a source of oxygen into a molten salt bath maintained at an elevated temperature to produce solid and gaseous reaction products. The gaseous reaction products comprise carbon dioxide and water vapor, and the solid reaction products comprise the inorganic ash constituents of the organic waste and the selected element which is retained in the molten salt. The molten salt bath comprises one or more alkali metal carbonates, and may optionally include from 1 to about 25 wt.% of an alkali metal sulfate.

  7. Hydrogen recovery from the thermal plasma gasification of solid waste.

    PubMed

    Byun, Youngchul; Cho, Moohyun; Chung, Jae Woo; Namkung, Won; Lee, Hyeon Don; Jang, Sung Duk; Kim, Young-Suk; Lee, Jin-Ho; Lee, Carg-Ro; Hwang, Soon-Mo

    2011-06-15

    Thermal plasma gasification has been demonstrated as one of the most effective and environmentally friendly methods for solid waste treatment and energy utilization in many of studies. Therefore, the thermal plasma process of solid waste gasification (paper mill waste, 1.2 ton/day) was applied for the recovery of high purity H(2) (>99.99%). Gases emitted from a gasification furnace equipped with a nontransferred thermal plasma torch were purified using a bag-filter and wet scrubber. Thereafter, the gases, which contained syngas (CO+H(2)), were introduced into a H(2) recovery system, consisting largely of a water gas shift (WGS) unit for the conversion of CO to H(2) and a pressure swing adsorption (PSA) unit for the separation and purification of H(2). It was successfully demonstrated that the thermal plasma process of solid waste gasification, combined with the WGS and PSA, produced high purity H(2) (20 N m(3)/h (400 H(2)-Nm(3)/PMW-ton), up to 99.99%) using a plasma torch with 1.6 MWh/PMW-ton of electricity. The results presented here suggest that the thermal plasma process of solid waste gasification for the production of high purity H(2) may provide a new approach as a future energy infrastructure based on H(2). Copyright © 2011 Elsevier B.V. All rights reserved.

  8. DISPOSAL OF FLUE-GAS-CLEANING WASTES

    EPA Science Inventory

    The article describes current commercial and emerging technology for disposal of wastes from flue gas cleaning (FGC) systems for coal-fired power plants. Over 80 million metric tons/yr (dry) of coal ash and desulfurization solids are expected to be produced by the 1980's. Althoug...

  9. APPLICATION ANALYSIS REPORT: THE DEHYDRO-TECH CORPORATION CARVER-GREENFIELD PROCESS

    EPA Science Inventory

    This report evaluates the Dehydro-Tech Corporation's Carver-Greenfield (C-G) Process and focuses on the technology’s ability to separate waste mixtures into their constituent solid, organic, and water fractions while producing a solid residual that meets applicable disposal requi...

  10. Separate collection of plastic waste, better than technical sorting from municipal solid waste?

    PubMed

    Feil, Alexander; Pretz, Thomas; Jansen, Michael; Thoden van Velzen, Eggo U

    2017-02-01

    The politically preferred solution to fulfil legal recycling demands is often implementing separate collection systems. However, experience shows their limitations, particularly in urban centres with a high population density. In response to the European Union landfill directive, mechanical biological waste treatment plants have been installed all over Europe. This technology makes it possible to retrieve plastic waste from municipal solid waste. Operators of mechanical biological waste treatment plants, both in Germany and the Netherlands, have started to change their mechanical separation processes to additionally produce plastic pre-concentrates. Results from mechanical biological waste treatment and separate collection of post-consumer packaging waste will be presented and compared. They prove that both the yield and the quality of plastic waste provided as feedstock for the production of secondary plastic raw material are largely comparable. An economic assessment shows which conditions for a technical sorting plant are economically attractive in comparison to separate collection systems. It is, however, unlikely that plastic recycling will ever reach cost neutrality.

  11. The use of urban wood waste as an energy resource

    NASA Astrophysics Data System (ADS)

    Khudyakova, G. I.; Danilova, D. A.; Khasanov, R. R.

    2017-06-01

    The capabilities use of wood waste in the Ekaterinburg city, generated during the felling of trees and sanitation in the care of green plantations in the streets, parks, squares, forest parks was investigated in this study. In the cities at the moment, all the wood, that is removed from city streets turns into waste completely. Wood waste is brought to the landfill of solid household waste, and moreover sorting and evaluation of the quantitative composition of wood waste is not carried out. Several technical solutions that are used in different countries have been proposed for the energy use of wood waste: heat and electrical energy generation, liquid and solid biofuel production. An estimation of the energy potential of the city wood waste was made, for total and for produced heat and electrical energy based on modern engineering developments. According to our estimates total energy potential of wood waste in the city measure up more 340 thousand GJ per year.

  12. Processing of palm oil mill wastes based on zero waste technology

    NASA Astrophysics Data System (ADS)

    Irvan

    2018-02-01

    Indonesia is currently the main producer of palm oil in the world with a total production reached 33.5 million tons per year. In the processing of fresh fruit bunches (FFB) besides producing palm oil and kernel oil, palm oil mills also produce liquid and solid wastes. The increase of palm oil production will be followed by an increase in the production of waste generated. It will give rise to major environmental issues especially the discharge of liquid waste to the rivers, the emission of methane from digestion pond and the incineration of empty fruit bunches (EFB). This paper describes a zero waste technology in processing palm oil mill waste after the milling process. The technology involves fermentation of palm oil mill effluent (POME) to biogas by using continuous stirred tank reactor (CSTR) in the presence of thermophilic microbes, producing activated liquid organic fertilizer (ALOF) from discharge of treated waste effluent from biogas digester, composting EFB by spraying ALOF on the EFB in the composter, and producing pellet or biochar from EFB by pyrolysis process. This concept can be considered as a promising technology for palm oil mills with the main objective of eliminating the effluent from their mills.

  13. Modeling Thermal Changes at Municipal Solid Waste Landfills: A Case Study of the Co-Disposal of Secondary Aluminum Processing Waste

    EPA Science Inventory

    The reaction of secondary aluminum processing waste (referred herein to as salt cake) with water has been documented to produce heat and gases such as hydrogen, methane, and ammonia (US EPA 2015). The objective of this project was to assess the impact of salt cake disposal on MS...

  14. Low Cost Dewatering of Waste Slurries

    NASA Technical Reports Server (NTRS)

    Peterson, J. B.; Sharma, S. K.; Church, R. H.; Scheiner, B. J.

    1993-01-01

    The U.S. Bureau of Mines has developed a technique for dewatering mineral waste slurries which utilizes polymer and a static screen. A variety of waste slurries from placer gold mines and crushed stone operations have been successfully treated using the system. Depending on the waste, a number of polymers have been used successfully with polymer costs ranging from $0.05 to $0.15 per 1,000 gal treated. The dewatering is accomplished using screens made from either ordinary window screen or wedge wire. The screens used are 8 ft wide and 8 ft long. The capacity of the screens varies from 3 to 7 gpm/sq. ft. The water produced is acceptable for recycling to the plant or for discharge to the environment. For example, a fine grain dolomite waste slurry produced from a crushed stone operation was dewatered from a nominal 2.5 pct solids to greater than 50 pct solids using $0.10 to $0.15 worth of polymer per 1,000 gal of slurry. The resulting waste water had a turbidity of less than 50 NTU and could be discharged or recycled. The paper describes field tests conducted using the polymer-screen dewatering system.

  15. Producing methane, methanol and electricity from organic waste of fermentation reaction using novel microbes.

    PubMed

    Dhiman, Saurabh Sudha; Shrestha, Namita; David, Aditi; Basotra, Neha; Johnson, Glenn R; Chadha, Bhupinder S; Gadhamshetty, Venkataramana; Sani, Rajesh K

    2018-06-01

    Residual solid and liquid streams from the one-pot CRUDE (Conversion of Raw and Untreated Disposal into Ethanol) process were treated with two separate biochemical routes for renewable energy transformation. The solid residual stream was subjected to thermophilic anaerobic digestion (TAD), which produced 95 ± 7 L methane kg -1 volatile solid with an overall energy efficiency of 12.9 ± 1.7%. A methanotroph, Methyloferula sp., was deployed for oxidation of mixed TAD biogas into methanol. The residual liquid stream from CRUDE process was used in a Microbial Fuel Cell (MFC) to produce electricity. Material balance calculations confirmed the integration of biochemical routes (i.e. CRUDE, TAD, and MFC) for developing a sustainable approach of energy regeneration. The current work demonstrates the utilization of different residual streams originated after food waste processing to release minimal organic load to the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Potential SRF generation from a closed landfill in northern Italy.

    PubMed

    Passamani, Giorgia; Ragazzi, Marco; Torretta, Vincenzo

    2016-01-01

    The aim of this work is to assess the possibility of producing solid recovered fuel (SRF) and "combustible SRF" from a landfill located in the north of Italy, where the waste is placed in cylindrical wrapped bales. Since the use of landfills for the disposal of municipal solid waste has many technical limitations and is subject to strict regulations and given that landfill post-closure care is very expensive, an interesting solution is to recover the bales that are stored in the landfill. The contents of the bales can then be used for energy recovery after specific treatments. Currently the landfill is closed and the local municipal council together with an environmental agency are considering constructing a mechanical biological treatment (MBT) plant for SRF production. The municipal solid waste that is stored in the landfill, the bio-dried material produced by the hypothetically treated waste in a plant for bio-drying, and the SRF obtained after the post-extraction of inert materials, metals and glass from the bio-dried material were characterized according to the quality and classification criteria of regulations in Italy. The analysis highlighted the need to treat the excavated waste in a bio-drying plant and later to remove the inert waste, metals and glass. Thus in compliance with Italian law, the material has a high enough LHV to be considered as "combustible SRF", (i.e. an SRF with enhanced characteristics). Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme.

    PubMed

    Tanigaki, Nobuhiro; Ishida, Yoshihiro; Osada, Morihiro

    2015-03-01

    This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has great possibilities maximizing material recovery and energy recovery from waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Synthesis of azines in solid state: reactivity of solid hydrazine with aldehydes and ketones.

    PubMed

    Lee, Byeongno; Lee, Kyu Hyung; Cho, Jaeheung; Nam, Wonwoo; Hur, Nam Hwi

    2011-12-16

    Highly conjugated azines were prepared by solid state grinding of solid hydrazine and carbonyl compounds such as aldehydes and ketones, using a mortar and a pestle. Complete conversion to the azine product is generally achieved at room temperature within 24 h, without using solvents or additives. The solid-state reactions afford azines as the sole products with greater than 97% yield, producing only water and carbon dioxide as waste.

  19. Pyrolysis system evaluation study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An evaluation of two different pyrolysis concepts which recover energy from solid waste was conducted in order to determine the merits of each concept for integration into a Integrated Utility System (IUS). The two concepts evaluated were a Lead Bath Furnace Pyrolysis System and a Slagging Vertical Shaft, Partial Air Oxidation Pyrolysis System. Both concepts will produce a fuel gas from the IUS waste and sewage sludge which can be used to offset primary fuel consumption in addition to the sanitary disposal of the waste. The study evaluated the thermal integration of each concept as well as the economic impact on the IUS resulting from integrating each pyrolysis concepts. For reference, the pyrolysis concepts were also compared to incineration which was considered the baseline IUS solid waste disposal system.

  20. The effect of moisture regimes on the anaerobic degradation of municipal solid waste from Metepec (México).

    PubMed

    Hernández-Berriel, Ma C; Márquez-Benavides, L; González-Pérez, D J; Buenrostro-Delgado, O

    2008-01-01

    The State of México, situated in central México, has a population of about 14 million, distributed in approximately 125 counties. Solid waste management represents a serious and ongoing pressure to local authorities. The final disposal site ("El Socavón") does not comply with minimum environmental requirements as no liners or leachate management infrastructure are available. Consequently, leachate composition or the effects of rain water input on municipal solid waste degradation are largely unknown. The aim of this work was to monitor the anaerobic degradation of municipal solid waste (MSW), simulating the water addition due to rainfall, under two different moisture content regimes (70% and 80% humidity). The study was carried out using bioreactors in both laboratory and pilot scales. The variation of organic matter and pH was followed in the solid matrix of the MSW. The leachate produced was used to estimate the field capacity of the MSW and to determine the pH, COD, BOD and heavy metals. Some leachate parameters were found to be within permitted limits, but further research is needed in order to analyze the leachate from lower layers of the disposal site ("El Socavón").

  1. Utilization and recycling of industrial magnesite refractory waste material for removal of certain radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morcos, T.N.; Tadrous, N.A.; Borai, E.H.

    2007-07-01

    Increased industrialization over the last years in Egypt has resulted in an increased and uncontrolled generation of industrial hazardous waste. The current lack of management of the solid waste in Egypt has created a situation where large parts of the land (especially industrial areas) are covered by un-planned dumps of industrial wastes. Consequently, in the present work, industrial magnesite waste produced in large quantities after production process of magnesium sulfate in Zinc Misr factory, Egypt, was tried to be recycled. Firstly, this material has been characterized applying different analytical techniques such as infrared spectroscopy (IR), surface analyzer (BET), particle sizemore » distribution (PSD), elemental analysis by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The magnesite material has been used as a source of producing aluminum, chromium, and magnesium oxides that has better chemical stability than conventional metal oxides. Secondly, utilization of magnesite material for removal of certain radionuclides was applied. Different factors affecting the removal capability such as pH, contacting time, metal concentration, particle size were systematically investigated. The overall objective was aimed at determining feasible and economic solution to the environmental problems related to re-use of the industrial solid waste for radioactive waste management. (authors)« less

  2. DC graphite arc furnace, a simple system to reduce mixed waste volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittle, J.K.; Hamilton, R.A.; Trescot, J.

    1995-12-31

    The volume of low-level radioactive waste can be reduced by the high temperature in a DC Graphite Arc Furnace. This volume reduction can take place with the additional benefit of having the solid residue being stabilized by the vitrified product produced in the process. A DC Graphite Arc Furnace is a simple system in which electricity is used to generate heat to vitrify the material and thermally decompose any organic matter in the waste stream. Examples of this type of waste are protective clothing, resins, and grit blast materials produced in the nuclear industry. The various Department of Energy (DOE)more » complexes produce similar low-level waste streams. Electro-Pyrolysis, Inc. and Svedala/Kennedy Van Saun are engineering and building small 50-kg batch and up to 3,000 kg/hr continuous feed DC furnaces for the remediation, pollution prevention, and decontamination and decommissioning segments of the treatment community. This process has been demonstrated under DOE sponsorship at several facilities and has been shown to produce stable waste forms from surrogate waste materials.« less

  3. Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review.

    PubMed

    Poggi-Varaldo, Héctor M; Munoz-Paez, Karla M; Escamilla-Alvarado, Carlos; Robledo-Narváez, Paula N; Ponce-Noyola, M Teresa; Calva-Calva, Graciano; Ríos-Leal, Elvira; Galíndez-Mayer, Juvencio; Estrada-Vázquez, Carlos; Ortega-Clemente, Alfredo; Rinderknecht-Seijas, Noemí F

    2014-05-01

    Biohydrogen is a sustainable form of energy as it can be produced from organic waste through fermentation processes involving dark fermentation and photofermentation. Very often biohydrogen is included as a part of biorefinery approaches, which reclaim organic wastes that are abundant sources of renewable and low cost substrate that can be efficiently fermented by microorganisms. The aim of this work was to critically assess selected bioenergy alternatives from organic solid waste, such as biohydrogen and bioelectricity, to evaluate their relative advantages and disadvantages in the context of biorefineries, and finally to indicate the trends for future research and development. Biorefining is the sustainable processing of biomass into a spectrum of marketable products, which means: energy, materials, chemicals, food and feed. Dark fermentation of organic wastes could be the beach-head of complete biorefineries that generate biohydrogen as a first step and could significantly influence the future of solid waste management. Series systems show a better efficiency than one-stage process regarding substrate conversion to hydrogen and bioenergy. The dark fermentation also produces fermented by-products (fatty acids and solvents), so there is an opportunity for further combining with other processes that yield more bioenergy. Photoheterotrophic fermentation is one of them: photosynthetic heterotrophs, such as non-sulfur purple bacteria, can thrive on the simple organic substances produced in dark fermentation and light, to give more H2. Effluents from photoheterotrophic fermentation and digestates can be processed in microbial fuel cells for bioelectricity production and methanogenic digestion for methane generation, thus integrating a diverse block of bioenergies. Several digestates from bioenergies could be used for bioproducts generation, such as cellulolytic enzymes and saccharification processes, leading to ethanol fermentation (another bioenergy), thus completing the inverse cascade. Finally, biohydrogen, biomethane and bioelectricity could contribute to significant improvements for solid organic waste management in agricultural regions, as well as in urban areas.

  4. Two Stage Anaerobic Reactor Design and Treatment To Produce Biogas From Mixed Liquor of Vegetable Waste

    NASA Astrophysics Data System (ADS)

    Budiastuti, H.; Ghozali, M.; Wicaksono, H. K.; Hadiansyah, R.

    2018-01-01

    Municipal solid waste has become a common challenged problem to be solved for developing countries including Indonesia. Municipal solid waste generating is always bigger than its treatment to reduce affect of environmental pollution. This research tries to contribute to provide an alternative solution to treat municipal solid waste to produce biogas. Vegetable waste was obtained from Gedebage Market, Bandung and starter as a source of anaerobic microorganisms was cow dung obtained from a cow farm in Lembang. A two stage anaerobic reactor was designed and built to treat the vegetable waste in a batch run. The capacity of each reactor is 20 liters but its active volume in each reactor is 15 liters. Reactor 1 (R1) was fed up with mixture of filtered blended vegetable waste and water at ratio of 1:1 whereas Reactor 2 (R2) was filled with filtered mixed liquor of cow dung and water at ratio of 1:1. Both mixtures were left overnight before use. Into R1 it was added EM-4 at concentration of 10%. pH in R1 was maintained at 5 - 6.5 whereas pH in R1 was maintained at 6.5 - 7.5. Temperature of reactors was not maintained to imitate the real environmental temperature. Parameters taken during experiment were pH, temperature, COD, MLVSS, and composition of biogas. The performance of reactor built was shown from COD efficiencies reduction obtained of about 60% both in R1 and R2, pH average in R1 of 4.5 ± 1 and R2 of 7 ± 0.6, average temperature in both reactors of 25 ± 2°C. About 1L gas produced was obtained during the last 6 days of experiment in which CH4 obtained was 8.951 ppm and CO2 of 1.087 ppm. The maximum increase of MLVSS in R1 reached 156% and R2 reached 89%.

  5. Naval facility energy conversion plants as resource recovery system components

    NASA Astrophysics Data System (ADS)

    Capps, A. G.

    1980-01-01

    This interim report addresses concepts for recovering energy from solid waste by using Naval facilities steam plants as principle building blocks of candidate solid waste/resource recovery systems at Navy installations. The major conclusions of this portion of the project are: although it is technically feasible to adapt Navy energy conversion systems to fire Waste Derived Fuels (WDF) in one or more of its forms, the optimal form selected should be a site-specific total system; near- to intermediate-term programs should probably continue to give first consideration to waterwall incinerators and to the cofiring of solid WDF in coal-capable plants; package incinerators and conversions of oil burning plants to fire a fluff form of solid waste fuel may be the options with the greatest potential for the intermediate term because waterwalls would be uneconomical in many small plants and because the majority of medium-sized oil-burning plants will not be converted to burn coal; and pyrolytic processes to produce gaseous and liquid fuels have not been sufficiently developed as yet to be specified for commerical operation.

  6. Optimization of the Medium for the Production of Extracellular Amylase by the Pseudomonas stutzeri ISL B5 Isolated from Municipal Solid Waste

    PubMed Central

    Dutta, Prajesh; Deb, Akash

    2016-01-01

    The management of municipal solid waste is one of the major problems of the present world. The use of microbial enzymes for sustainable management of the solid waste is the need of the time. In the present study, we have isolated a potent amylase producing strain (ISL B5) from municipal solid waste. The strain was identified as Pseudomonas stutzeri (P. stutzeri) both biochemically and by 16S rDNA sequencing. The optimization studies revealed that the strain ISL B5 exhibited maximum activity in the liquid media containing 2% starch (2.77 U/ml), 0.8% peptone (2.77 U/ml), and 0.001% Ca2+ ion (2.49 U/ml) under the pH 7.5 (2.59 U/ml), temperature 40°C (2.63 U/ml), and 25 h of incubation period (2.49 U/ml). The highest activity of crude enzyme has also been optimized at the pH 8 (2.49 U/ml). PMID:28096816

  7. Bio-charcoal production from municipal organic solid wastes

    NASA Astrophysics Data System (ADS)

    AlKhayat, Z. Q.

    2017-08-01

    The economic and environmental problems of handling the increasingly huge amounts of urban and/or suburban organic municipal solid wastes MSW, from collection to end disposal, in addition to the big fluctuations in power supply and other energy form costs for the various civilian needs, is studied for Baghdad city, the ancient and glamorous capital of Iraq, and a simple control device is suggested, built and tested by carbonizing these dried organic wastes in simple environment friendly bio-reactor in order to produce low pollution potential, economical and local charcoal capsules that might be useful for heating, cooking and other municipal uses. That is in addition to the solve of solid wastes management problem which involves huge human and financial resources and causes many lethal health and environmental problems. Leftovers of different social level residential campuses were collected, classified for organic materials then dried in order to be supplied into the bio-reactor, in which it is burnt and then mixed with small amounts of sugar sucrose that is extracted from Iraqi planted sugar cane, to produce well shaped charcoal capsules. The burning process is smoke free as the closed burner’s exhaust pipe is buried 1m underground hole, in order to use the subsurface soil as natural gas filter. This process has proved an excellent performance of handling about 120kg/day of classified MSW, producing about 80-100 kg of charcoal capsules, by the use of 200 l reactor volume.

  8. Networks of recyclable material waste-picker's cooperatives: an alternative for the solid waste management in the city of Rio de Janeiro.

    PubMed

    Tirado-Soto, Magda Martina; Zamberlan, Fabio Luiz

    2013-04-01

    The objective of this study is to discuss the role of networks formed of waste-picker cooperatives in ameliorating problems of final disposal of solid waste in the city of Rio de Janeiro, since the city's main landfill will soon have to close because of exhausted capacity. However, it is estimated that in the city of Rio de Janeiro there are around five thousand waste-pickers working in poor conditions, with lack of physical infrastructure and training, but contributing significantly by diverting solid waste from landfills. According to the Sustainable Development Indicators (IBGE, 2010a,b) in Brazil, recycling rates hover between 45% and 55%. In the municipality of Rio de Janeiro, only 1% of the waste produced is collected selectively by the government (COMLURB, 2010), demonstrating that recycling is mainly performed by waste-pickers. Furthermore, since the recycling market is an oligopsony that requires economies of scale to negotiate directly with industries, the idea of working in networks of cooperatives meets the demands for joint marketing of recyclable materials. Thus, this work presents a method for creating and structuring a network of recycling cooperatives, with prior training for working in networks, so that the expected synergies and joint efforts can lead to concrete results. We intend to demonstrate that it is first essential to strengthen the waste-pickers' cooperatives in terms of infrastructure, governance and training so that solid waste management can be environmentally, socially and economically sustainable in the city of Rio de Janeiro. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Growth and biomass of Populus irrigated with landfill leachate

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny; David R. Coyle; Richard B. Hall

    2007-01-01

    Resource managers are challenged with waste disposal and leachate produced from its degradation. Poplar (Populus spp.) trees offer an opportunity for ecological leachate disposal as an irrigation source for managed tree systems. Our objective was to irrigate Populus trees with municipal solid waste landfill leachate or fertilized well water (control...

  10. Impact of different particle size distributions on anaerobic digestion of the organic fraction of municipal solid waste.

    PubMed

    Zhang, Y; Banks, C J

    2013-02-01

    Particle size may significantly affect the speed and stability of anaerobic digestion, and matching the choice of particle size reduction equipment to digester type can thus determine the success or failure of the process. In the current research the organic fraction of municipal solid waste was processed using a combination of a shear shredder, rotary cutter and wet macerator to produce streams with different particle size distributions. The pre-processed waste was used in trials in semi-continuous 'wet' and 'dry' digesters at organic loading rate (OLR) up to 6kg volatile solids (VS) m(-3)day(-1). The results indicated that while difference in the particle size distribution did not change the specific biogas yield, the digester performance was affected. In the 'dry' digesters the finer particle size led to acidification and ultimately to process failure at the highest OLR. In 'wet' digestion a fine particle size led to severe foaming and the process could not be operated above 5kgVSm(-3)day(-1). Although the trial was not designed as a direct comparison between 'wet' and 'dry' digestion, the specific biogas yield of the 'dry' digesters was 90% of that produced by 'wet' digesters fed on the same waste at the same OLR. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Bioregenerative technologies for waste processing and resource recovery in advanced space life support system

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis

    1991-01-01

    The Controlled Ecological Life Support System (CELSS) for producing oxygen, water, and food in space will require an interactive facility to process and return wastes as resources to the system. This paper examines the bioregenerative techologies for waste processing and resource recovery considered for a CELSS Resource Recovery system. The components of this system consist of a series of biological reactors to treat the liquid and solid material fractions, in which the aerobic and anaerobic reactors are combined in a block called the Combined Reactor Equipment (CORE) block. The CORE block accepts the human wastes, kitchen wastes, inedible refractory plant materials, grey waters from the CELLS system, and aquaculture solids and processes these materials in either aerobic or anaerobic reactors depending on the desired product and the rates required by the integrated system.

  12. Design criteria for Reedy Creek Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felicione, F.S.; Logan, J.A.

    1980-11-01

    This document defines the basic criteria for the 100-ton/day pilot plant which will use the Andco-Torrax pyrolysis process at Walt Disney World in Orlando, Florida, to produce hot water. The waste will simulate transuranic wastes which are stored at INEL. The Andco-Torrax process is designed to convert mixed municipal refuse into energy and is called slagging pyrolysis solid waste conversion. (DLC)

  13. Recycling of solid waste rich in organic nitrogen from leather industry: mineral nutrition of rice plants.

    PubMed

    Nogueira, Francisco G E; Castro, Isabela A; Bastos, Ana R R; Souza, Guilherme A; de Carvalho, Janice G; Oliveira, Luiz C A

    2011-02-28

    The leather industry produces a large quantity of solid waste (wet blue leather), which contains a high amount of chromium. After its removal from wet blue leather, a solid collagenic material is recovered, containing high nitrogen levels, which can be used as a nitrogen source in agriculture. In order to take more advantage of the collagen, it was enriched with mineral P and K in order to produce NPK formulations. The objective was also to evaluate the efficiency of such formulations as a nutrient supply for rice plants in an Oxisoil, under greenhouse conditions. The application of PK enriched-collagen formulations resulted in N contents in the vegetative parts and grains of rice plants which were equivalent or superior to those obtained with urea and commercial NPK formulations. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Estimating municipal solid waste generation by different activities and various resident groups in five provinces of China.

    PubMed

    Fu, Hui-zhen; Li, Zhen-shan; Wang, Rong-hua

    2015-07-01

    The quantities and composition of municipal solid waste (MSW) are important factors in the planning and management of MSW. Daily human activities were classified into three groups: maintenance activities (meeting the basic needs of food, housing and personal care, MA); subsistence activities (providing the financial support requirements, SA); and leisure activities (social and recreational pursuits, LA). A model, based on the interrelationships of expenditure on consumer goods, time distribution, daily activities, residents groups, and waste generation, was employed to estimate MSW generation by different activities and resident groups in five provinces (Zhejiang, Guangdong, Hebei, Henan and Sichuan) of China. These five provinces were chosen for this study and the distribution patterns of MSW generated by different activities and resident groups were revealed. The results show that waste generation in SA and LA fluctuated slightly from 2003 to 2008. For general waste generation in the five provinces, MA accounts for more than 70% of total MSW, SA approximately 10%, and LA between 10% and 16% by urban residents in 2008. Females produced more daily MSW than males in MA. Males produced more daily MSW than females in SA and LA. The wastes produced at weekends in MA and LA were far greater than on weekdays, but less than on weekdays for SA wastes. Furthermore, one of the model parameters (the waste generation per unit of consumer expenditure) is inversely proportional to per-capita disposable income of urban residents. A significant correlation between gross domestic product (GDP) and waste generation by SA was observed with a high coefficient of determination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  16. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  17. Distributed Waste to Energy Conversion: A Piece of the DOD’s Renewable Energy Puzzle

    DTIC Science & Technology

    2011-11-30

    FOR A CHANGING WORLD GEM Downdraft Gasification in a Nutshell Air Feed Waste or Biomass Feed Air Feed Air Feed Producer Gas Inert Ash Removal Solid...that is well-suited to provide distributed power to installations using local waste and biomass . Under ESTCP funding, Infoscitex is demonstrating...provide distributed power to installations using local waste and biomass . Under ESTCP funding, Infoscitex is demonstrating the technology at a DoD

  18. Evaluation of two different alternatives of energy recovery from municipal solid waste in Brazil.

    PubMed

    Medina Jimenez, Ana Carolina; Nordi, Guilherme Henrique; Palacios Bereche, Milagros Cecilia; Bereche, Reynaldo Palacios; Gallego, Antonio Garrido; Nebra, Silvia Azucena

    2017-11-01

    Brazil has a large population with a high waste generation. The municipal solid waste (MSW) generated is deposited mainly in landfills. However, a considerable fraction of the waste is still improperly disposed of in dumpsters. In order to overcome this inadequate deposition, it is necessary to seek alternative routes. Between these alternatives, it is possible to quote gasification and incineration. The objective of this study is to compare, from an energetic and economic point of view, these technologies, aiming at their possible implementation in Brazilian cities. A total of two configurations were evaluated: (i) waste incineration with energy recovery and electricity production in a steam cycle; and (ii) waste gasification, where the syngas produced is used as fuel in a boiler of a steam cycle for electricity production. Simulations were performed assuming the same amount of available waste for both configurations, with a composition corresponding to the MSW from Santo André, Brazil. The thermal efficiencies of the gasification and incineration configurations were 19.3% and 25.1%, respectively. The difference in the efficiencies was caused by the irreversibilities associated with the gasification process, and the additional electricity consumption in the waste treatment step. The economic analysis presented a cost of electrical energy produced of 0.113 (US$ kWh -1 ) and 0.139 (US$ kWh -1 ) for the incineration and gasification plants respectively.

  19. Consumption patterns and household hazardous solid waste generation in an urban settlement in México.

    PubMed

    Otoniel, Buenrostro Delgado; Liliana, Márquez-Benavides; Francelia, Pinette Gaona

    2008-01-01

    Mexico is currently facing a crisis in the waste management field. Some efforts have just commenced in urban and in rural settlements, e.g., conversion of open dumps into landfills, a relatively small composting culture, and implementation of source separation and plastic recycling strategies. Nonetheless, the high heterogeneity of components in the waste, many of these with hazardous properties, present the municipal collection services with serious problems, due to the risks to the health of the workers and to the impacts to the environment as a result of the inadequate disposition of these wastes. A generation study in the domestic sector was undertaken with the aim of finding out the composition and the generation rate of household hazardous waste (HHW) produced at residences. Simultaneously to the generation study, a socioeconomic survey was applied to determine the influence of income level on the production of HHW. Results from the solid waste generation analysis indicated that approximately 1.6% of the waste stream consists of HHW. Correspondingly, it was estimated that in Morelia, a total amount of 442ton/day of domestic waste are produced, including 7.1ton of HHW per day. Furthermore, the overall amount of HHW is not directly related to income level, although particular byproducts do correlate. However, an important difference was observed, as the brands and the presentation sizes of goods and products used in each socioeconomic stratum varied.

  20. Water Walls for Life Support

    NASA Technical Reports Server (NTRS)

    Hammoudeh, Mona (Inventor); Flynn, Michael T. (Inventor); Gormly, Sherwin J. (Inventor); Richardson, Tra-My Justine (Inventor)

    2017-01-01

    A method and associated system for processing waste gases, liquids and solids, produced by human activity, to separate (i) liquids suitable for processing to produce potable water, (ii) solids and liquids suitable for construction of walls suitable for enclosing a habitat volume and for radiation shielding, and (iii) other fluids and solids that are not suitable for processing. A forward osmosis process and a reverse osmosis process are sequentially combined to reduce fouling and to permit accumulation of different processable substances. The invention may be used for long term life support of human activity.

  1. Theoretical Framework for Plastic Waste Management in Ghana through Extended Producer Responsibility: Case of Sachet Water Waste.

    PubMed

    Quartey, Ebo Tawiah; Tosefa, Hero; Danquah, Kwasi Asare Baffour; Obrsalova, Ilona

    2015-08-20

    Currently, use and disposal of plastic by consumers through waste management activities in Ghana not only creates environmental problems, but also reinforces the notion of a wasteful society. The magnitude of this problem has led to increasing pressure from the public for efficient and practical measures to solve the waste problem. This paper analyses the impact of plastic use and disposal in Ghana. It emphasizes the need for commitment to proper management of the impacts of plastic waste and effective environmental management in the country. Sustainable Solid Waste Management (SSWM) is a critical problem for developing countries with regards to climate change and greenhouse gas emission, and also the general wellbeing of the populace. Key themes of this paper are producer responsibility and management of products at end of life. The paper proposes two theatrical recovery models that can be used to address the issue of sachet waste in Ghana.

  2. Assessment of sanitary landfill leachate characterizations and its impacts on groundwater at Alexandria.

    PubMed

    Hassan, Ahmed Hossam; Ramadan, Mohamed Hassan

    2005-01-01

    The total amount of solid waste generated in Alexandria is 2820 tons/d which increases to 3425 tons/day during summer. In the past, 77% of the collected solid wastes was open dumped. The open dumping sites did not have the minimum requirements for pollution control. Following the exacerbation of the problem, the Alexandria Governorate contracted a company to carry out the solid waste management. The contracted company transferred 75% of the daily generated solid wastes to a new constructed sanitary lanfill. The site receives a daily average of 1910 tons. The landfilling is performed by trench method in the form of cells. The produced leachate is discharged into two lined aerated lagoons. The biogas formed from biodegradation of landfilled solid wastes is burned and the produced heat is used for drying the lagoons leachate. The remaining residues are relandfilled. The study aims at assessment of the solid waste sanitary landfill leachate characterization and its impacts on the groundwater. The analysis of the collected data confirms that leachates from the landfill are severely contaminated with organics, salts, and heavy metals. The fluctuations in concentration levels of the different parameters were attributed to aging and thickness of waste layers, stage of decomposition, and re-landfilling of the concentrated residues from the drying lagoons. The concentrations of NH4-N (600 mg/l) indicated that the process of stabilization was still in the initial stages and attributed to the compaction process. The high BOD5 results (28,833 mg/l) indicated that the process of stabilization was in the initial stages which were very slow. The high COD results (45,240 mg/l) can be attributed to the compaction of the wastes which also retards the degradation of the solid wastes. The BOD and COD values indicated clearly severe contamination. The BOD5/COD ratio measured in the current study (0.64) indicated that the leachate of the present study was biodegradable and unstabilized, and required time and favourable conditions for anaerobic biodegradation. Heavy metals were lower compared with what have been observed in other countries. Re-landfilling of the residue after drying the leachate in lagoons and the short time of biodegradation in the landfill site were factors which effected the high strength of most of the parameters concentrations of the leachate. Assessment of groundwater contamination through piezometer wells around the active cells indicated that there was no contamination from the leachate to the groundwater surrounding the site. The study recommended emphasizing the importance of adjusting the biodegradation factors, the monitoring program, the prohibition of disposing heavy metals, determination of the leachate generation rate, and treatment of leachate.

  3. Solid recovered fuels in the cement industry with special respect to hazardous waste.

    PubMed

    Thomanetz, Erwin

    2012-04-01

    Cements with good technical properties have been produced in Europe since the nineteenth century and are now worldwide standardized high-quality mass products with enormous production numbers. The basic component for cement is the so-called clinker which is produced mainly from raw meal (limestone plus clay plus sands) in a rotary kiln with preheater and progressively with integrated calciner, at temperatures up to 1450 °C. This process requires large amounts of fossil fuels and is CO₂-intensive. But most CO₂ is released by lime decomposition during the burning process. In the 1980s the use of alternative fuels began--firstly in the form of used oil and waste tyres and then increasingly by pre-conditioned materials from commercial waste and from high calorific industrial waste (i.e. solid recovered fuel (SRF))--as well as organic hazardous waste materials such as solvents, pre-conditioned with sawdust. Therefore the cement industry is more and more a competitor in the waste-to-energy market--be it for municipal waste or for hazardous waste, especially concerning waste incineration, but also for other co-incineration plants. There are still no binding EU rules identifying which types of SRF or hazardous waste could be incinerated in cement kilns, but there are some well-made country-specific 'positive lists', for example in Switzerland and Austria. Thus, for proper planning in the cement industry as well as in the waste management field, waste disposal routes should be considered properly, in order to avoid surplus capacities on one side and shortage on the other.

  4. Diversity of Cellulolytic Microbes and the Biodegradation of Municipal Solid Waste by a Potential Strain

    PubMed Central

    Gautam, S. P.; Bundela, P. S.; Pandey, A. K.; Jamaluddin; Awasthi, M. K.; Sarsaiya, S.

    2012-01-01

    Municipal solid waste contains high amounts of cellulose, which is an ideal organic waste for the growth of most of microorganism as well as composting by potential microbes. In the present study, Congo red test was performed for screening of microorganism, and, after selecting a potential strains, it was further used for biodegradation of organic municipal solid waste. Forty nine out of the 250 different microbes tested (165 belong to fungi and 85 to bacteria) produced cellulase enzyme and among these Trichoderma viride was found to be a potential strain in the secondary screening. During the biodegradation of organic waste, after 60 days, the average weight losses were 20.10% in the plates and 33.35% in the piles. There was an increase in pH until 20 days. pH however, stabilized after 30 days in the piles. Temperature also stabilized as the composting process progressed in the piles. The high temperature continued until 30 days of decomposition, after which the temperature dropped to 40°C and below during the maturation. Good quality compost was obtained in 60 days. PMID:22518141

  5. Anaerobic digestion of municipal solid waste composed of food waste, wastepaper, and plastic in a single-stage system: performance and microbial community structure characterization.

    PubMed

    Wan, Shungang; Sun, Lei; Douieb, Yaniv; Sun, Jian; Luo, Wensui

    2013-10-01

    The performance of municipal organic solid waste anaerobic digestion was investigated using a single-stage bioreactor, and the microbial community structures were characterized during the digestion. The results showed that the biogas and methane production rates were 592.4 and 370.1L/kg with volatile solid added at the ratio of 2:1:1 for food waste, wastepaper, and plastic based on dry weight. The methane volume concentration fluctuated between 44.3% and 75.4% at steady stage. Acetic acid, propionic acid, and butyric acid were the major volatile fatty acids produced during the digestion process. The anaerobic process was not inhibited by the accumulation of ammonia and free ammonia. The bacterial community was found to consist of at least 21 bands of bacteria and 12 bands of archaea at the steady state. All of the results indicated that the mixture of food waste, wastepaper, and plastic could be efficiently co-digested using the anaerobic digestion system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Effect of solids retention time on the bioavailability of organic carbon in anaerobically digested swine waste.

    PubMed

    Kinyua, Maureen N; Cunningham, Jeffrey; Ergas, Sarina J

    2014-06-01

    Anaerobic digestion (AD) can be used to stabilize and produce energy from livestock waste; however, digester effluents may require further treatment to remove nitrogen. This paper quantifies the effects of varying solids retention time (SRT) methane yield, volatile solids (VS) reduction and organic carbon bioavailability for denitrification during swine waste AD. Four bench-scale anaerobic digesters, with SRTs of 14, 21, 28 and 42 days, operated with swine waste feed. Effluent organic carbon bioavailability was measured using anoxic microcosms and respirometry. Excellent performance was observed for all four digesters, with >60% VS removal and CH4 yields between 0.1 and 0.3(m(3)CH4)/(kg VS added). Organic carbon in the centrate as an internal organic carbon source for denitrification supported maximum specific denitrification rates between 47 and 56(mg NO3(-)-N)/(g VSS h). The digester with the 21-day SRT had the highest CH4 yield and maximum specific denitrification rates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Production of sorbent from paper industry solid waste for oil spill cleanup.

    PubMed

    Demirel Bayık, G; Altın, A

    2017-12-15

    The aim of the study is to select a cellulosic waste material from paper industry solid wastes and process it for sorbent production. Four different solid wastes were collected from a local paper production facility and rejects were selected due to its sorption capacity and processability. Oil sorption experiments were conducted according to the ASTM F 726-12 method. Effect of sorbent dosage, contact and dripping time, recovery of the oil, reusability of the sorbent and sorption from the water surface were also determined. Maximum oil sorption capacity was determined as 9.67, 12.92 and 12.84g/g for diesel oil, 0W30 and 10W30 motor oils respectively for the static test and 8.27, 10.45 and 11.69g/g for the dynamic test. An efficient and low-cost sorbent was produced from paper industry rejects that can be used on land and on water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Physical-Chemical Solid Waste Processing for Space Missions at Ames Research Center

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Pisharody, Suresh; Moran, Mark; Wignarajah, K.; Tleimat, Maher; Pace, Greg

    2001-01-01

    As space missions become longer in duration and reach out to more distant locations such as Mars, solids waste processing progresses from storage technologies to reclamation technologies. Current low Earth orbit technologies consist of store-and dispose to space or return to Earth. Fully regenerative technologies recycle wastes. The materials reclaimed from waste can be used to provide the basic materials to support plant growth for food including carbon dioxide, water, and nutrients. Other products can also be reclaimed from waste such as hydrocarbons and activated carbon. This poster describes development at Ames Research Center of a process to make activated carbon from space mission wastes and to make an incineration system that produces clean flue gas. Inedible biomass and feces contain hydrocarbons in a form that can be pyrolyzed and converted to activated carbon. The activated carbon can then be used to clean up contaminants from various other life support systems; in particular, the activated carbon can be used regeneratively to remove NOx from incinerator flue gas. Incinerator flue gas can also be cleaned up by the use of reductive and oxidative catalysts. A catalytic incinerator flue gas cleanup system has been developed at ARC that produces flue gas clean enough (with the exception of carbon dioxide) to meet the Space Minimum Allowable Concentration limits for human exposure.

  9. Methane yield in source-sorted organic fraction of municipal solid waste.

    PubMed

    Davidsson, Asa; Gruvberger, Christopher; Christensen, Thomas H; Hansen, Trine Lund; Jansen, Jes la Cour

    2007-01-01

    Treating the source-separated organic fraction of municipal solid waste (SS-OFMSW) by anaerobic digestion is considered by many municipalities in Europe as an environmentally friendly means of treating organic waste and simultaneously producing methane gas. Methane yield can be used as a parameter for evaluation of the many different systems that exist for sorting and pre-treating waste. Methane yield from the thermophilic pilot scale digestion of 17 types of domestically SS-OFMSW originating from seven full-scale sorting systems was found. The samples were collected during 1 year using worked-out procedures tested statistically to ensure representative samples. Each waste type was identified by its origin and by pre-sorting, collection and pre-treatment methods. In addition to the pilot scale digestion, all samples were examined by chemical analyses and methane potential measurements. A VS-degradation rate of around 80% and a methane yield of 300-400Nm(3) CH(4)/ton VS(in) were achieved with a retention time of 15 days, corresponding to approximately 70% of the methane potential. The different waste samples gave minor variation in chemical composition and thus also in methane yield and methane potential. This indicates that sorting and collection systems in the present study do not significantly affect the amount of methane produced per VS treated.

  10. Consolidation process for producing ceramic waste forms

    DOEpatents

    Hash, Harry C.; Hash, Mark C.

    2000-01-01

    A process for the consolidation and containment of solid or semisolid hazardous waste, which process comprises closing an end of a circular hollow cylinder, filling the cylinder with the hazardous waste, and then cold working the cylinder to reduce its diameter while simultaneously compacting the waste. The open end of the cylinder can be sealed prior to or after the cold working process. The preferred method of cold working is to draw the sealed cylinder containing the hazardous waste through a plurality of dies to simultaneously reduce the diameter of the tube while compacting the waste. This process provides a quick continuous process for consolidating hazardous waste, including radioactive waste.

  11. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.

    PubMed

    Abbasi, Maryam; El Hanandeh, Ali

    2016-10-01

    Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Bio-extraction of precious metals from urban solid waste

    NASA Astrophysics Data System (ADS)

    Das, Subhabrata; Natarajan, Gayathri; Ting, Yen-Peng

    2017-01-01

    Reduced product lifecycle and increasing demand for electronic devices have resulted in the generation of huge volumes of electronic waste (e-waste). E-wastes contain high concentrations of toxic heavy metals, which have detrimental effects on health and the environment. However, e-wastes also contain significant concentrations of precious metals such as gold, silver and palladium, which can be a major driving force for recycling of urban waste. Cyanogenic bacteria such as Chromobacterium violaceum generate cyanide as a secondary metabolite which mobilizes gold into solution via a soluble gold-cyanide complex. However, compared to conventional technology for metal recovery, this approach is not effective, owing largely to the low concentration of lixiviants produced by the bacteria. To overcome the challenges of bioleaching of gold from e-waste, several strategies were adopted to enhance gold recovery rates. These included (i) pretreatment of e-waste to remove competing metal ions, (ii) mutation to adapt the bacteria to high pH environment, (iii) metabolic engineering to produce higher cyanide lixiviant, and (iv) spent medium leaching with adjusted initial pH. Compared to 7.1 % recovery by the wild type bacteria, these strategies achieved gold recoveries of 11.3%, 22.5%, 30% and 30% respectively at 0.5% w/v pulp density respectively. Bioleached gold was finally mineralized and precipitated as gold nanoparticles using the bacterium Delftia acidovorans. This study demonstrates the potential for enhancement of biocyanide production and gold recovery from electronic waste through different strategies, and extraction of solid gold from bioleached leachate.

  13. OSSA Space Station waste inventory

    NASA Technical Reports Server (NTRS)

    Rasmussen, Daryl N.; Johnson, Catherine C.; Bosley, John J.; Curran, George L.; Mains, Richard

    1987-01-01

    NASA's Office of Space Science and Applications has compiled an inventory of the types and quantities of the wastes that will be generated by the Space Station's initial operational phase in 35 possible mission scenarios. The objective of this study was the definition of waste management requirements for both the Space Station and the Space Shuttles servicing it. All missions, when combined, will produce about 5350 kg of gaseous, liquid and solid wastes every 90 days. A characterization has been made of the wastes in terms of toxicity, corrosiveness, and biological activity.

  14. Baseline for food waste generation - A case study in Universiti Tun Hussein Onn Malaysia cafeterias

    NASA Astrophysics Data System (ADS)

    Alias, A. R.; Mokhlis, N. A. Mohd; Zainun, N. Y.

    2017-11-01

    Increasing population and economy status have contributed to the increasing volume of solid wastes produced in Malaysia and it creates problems on the existing solid waste management system. Ineffective waste management system was one of the issues that often discussed. The purpose of this study was to suggest the best method for managing food waste in Universiti Tun Hussein Onn Malaysia (UTHM) cafeterias. The scope of the study was to identify the type and quantity of waste generated in each cafeteria. The study area was carried out at six cafeteria in UTHM including residential college cafeteria which are Tun Dr. Ismail (TDI), Tun Fatimah (TF) and Tun Syed Nasir (TSN), G3’s cafeteria, Arked, and Dr. Munie’s cafeteria located at the Faculty of Civil and Environmental Engineering (FKAAS). In this study, food waste was quantified in unit of kilogram (kg). Results of the study showed that total food waste in selected UTHM’s cafeterias was 6197.5 kg for two months. Food waste generated in G3’s cafeteria was the highest value with 1823.5 kg among another cafeteria. This is due to strategic location for students and staff to take meals, the variety of food sold and reasonable price were major factors of generating food waste. Meanwhile, the Dr. Munie's Cafeteria located in FKAAS recorded the least total production of food waste as staffs and students take their meals at others cafeterias. Through literature review, there are list of methods on waste management were identified and composting method was suggested for food waste management in UTHM since the waste was produce in very large quantity.

  15. DEVELOPMENT OF AN INSOLUBLE SALT SIMULANT TO SUPPORT ENHANCED CHEMICAL CLEANING TESTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eibling, R

    The closure process for high level waste tanks at the Savannah River Site will require dissolution of the crystallized salts that are currently stored in many of the tanks. The insoluble residue from salt dissolution is planned to be removed by an Enhanced Chemical Cleaning (ECC) process. Development of a chemical cleaning process requires an insoluble salt simulant to support evaluation tests of different cleaning methods. The Process Science and Engineering section of SRNL has been asked to develop an insoluble salt simulant for use in testing potential ECC processes (HLE-TTR-2007-017). An insoluble salt simulant has been developed based uponmore » the residues from salt dissolution of saltcake core samples from Tank 28F. The simulant was developed for use in testing SRS waste tank chemical cleaning methods. Based on the results of the simulant development process, the following observations were developed: (1) A composition based on the presence of 10.35 grams oxalate and 4.68 grams carbonate per 100 grams solids produces a sufficiently insoluble solids simulant. (2) Aluminum observed in the solids remaining from actual waste salt dissolution tests is probably precipitated from sodium aluminate due to the low hydroxide content of the saltcake. (3) In-situ generation of aluminum hydroxide (by use of aluminate as the Al source) appears to trap additional salts in the simulant in a manner similar to that expected for actual waste samples. (4) Alternative compositions are possible with higher oxalate levels and lower carbonate levels. (5) The maximum oxalate level is limited by the required Na content of the insoluble solids. (6) Periodic mixing may help to limit crystal growth in this type of salt simulant. (7) Long term storage of an insoluble salt simulant is likely to produce a material that can not be easily removed from the storage container. Production of a relatively fresh simulant is best if pumping the simulant is necessary for testing purposes. The insoluble salt simulant described in this report represents the initial attempt to represent the material which may be encountered during final waste removal and tank cleaning. The final selected simulant was produced by heating and evaporation of a salt slurry sample to remove excess water and promote formation and precipitation of solids with solubility characteristics which are consistent with actual tank insoluble salt samples. The exact anion composition of the final product solids is not explicitly known since the chemical components in the final product are distributed between the solid and liquid phases. By combining the liquid phase analyses and total solids analysis with mass balance requirements a calculated composition of assumed simple compounds was obtained and is shown in Table 0-1. Additional improvements to and further characterization of the insoluble salt simulant are possible. During the development of these simulants it was recognized that: (1) Additional waste characterization on the residues from salt dissolution tests with actual waste samples to determine the amount of species such as carbonate, oxalate and aluminosilicate would allow fewer assumptions to be made in constructing an insoluble salt simulant. (2) The tank history will impact the amount and type of insoluble solids that exist in the salt dissolution solids. Varying the method of simulant production (elevated temperature processing time, degree of evaporation, amount of mixing (shear) during preparation, etc.) should be tested.« less

  16. Fate of bromine in pyrolysis of printed circuit board wastes.

    PubMed

    Chien, Y C; Wang, H P; Lin, K S; Huang, Y J; Yang, Y W

    2000-02-01

    Behavior of Br in pyrolysis of the printed circuit board waste with valuable copper and oil recycling has been studied in the present work. Experimentally, pyrolysis of the printed circuit board waste generated approximately 40.6% of oils, 24.9% of noncondensible gases and 34.5% of solid residues that enriched in copper (90-95%). The cuts of the oils produced from pyrolysis of the printed circuit board waste into weighted boiling fraction were primarily light naphtha and heavy gas oil. Approximately 72.3% of total Br in the printed circuit board waste were found in product gas mainly as HBr and bromobenzene. However, by extended X-ray absorption fine structural (EXAFS) spectroscopy, Cu-O and Cu-(O)-Cu species with bond distance of 1.87 and 2.95 A, respectively, were observed in the solid residues. Essentially, no Cu-Br species was found.

  17. Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control--a review.

    PubMed

    Bhatnagar, Amit; Kaczala, Fabio; Hogland, William; Marques, Marcia; Paraskeva, Christakis A; Papadakis, Vagelis G; Sillanpää, Mika

    2014-01-01

    The global olive oil production for 2010 is estimated to be 2,881,500 metric tons. The European Union countries produce 78.5% of the total olive oil, which stands for an average production of 2,136,000 tons. The worldwide consumption of olive oil increased of 78% between 1990 and 2010. The increase in olive oil production implies a proportional increase in olive mill wastes. As a consequence of such increasing trend, olive mills are facing severe environmental problems due to lack of feasible and/or cost-effective solutions to olive-mill waste management. Therefore, immediate attention is required to find a proper way of management to deal with olive mill waste materials in order to minimize environmental pollution and associated health risks. One of the interesting uses of solid wastes generated from olive mills is to convert them as inexpensive adsorbents for water pollution control. In this review paper, an extensive list of adsorbents (prepared by utilizing different types of olive mill solid waste materials) from vast literature has been compiled, and their adsorption capacities for various aquatic pollutants removal are presented. Different physicochemical methods that have been used to convert olive mill solid wastes into efficient adsorbents have also been discussed. Characterization of olive-based adsorbents and adsorption mechanisms of various aquatic pollutants on these developed olive-based adsorbents have also been discussed in detail. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.

  18. Process for remediation of plastic waste

    DOEpatents

    Pol, Vilas G [Westmont, IL; Thiyagarajan, Pappannan [Germantown, MD

    2012-04-10

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  19. Co-digestion of municipal sewage sludge and solid waste: modelling of carbohydrate, lipid and protein content influence.

    PubMed

    Nielfa, A; Cano, R; Pérez, A; Fdez-Polanco, M

    2015-03-01

    Solid wastes from industrial, commercial and community activities are of growing concern as the total volume of waste produced continues to increase. The knowledge of the specific composition and characteristics of the waste is an important tool in the correct development of the anaerobic digestion process. The problems derived from the anaerobic digestion of sole substrates with high lipid, carbohydrate or protein content lead to the co-digestion of these substrates with another disposed waste, such as sewage sludge. The kinetic of the anaerobic digestion is especially difficult to explain adequately, although some mathematical models are able to represent the main aspects of a biological system, thus improving understanding of the parameters involved in the process. The aim of this work is to evaluate the experimental biochemical methane potential on the co-digestion of sewage sludge with different solid wastes (grease; spent grain and cow manure) through the implementation of four kinetic models. The co-digestion of grease waste and mixed sludge obtained the best improvements from the sole substrates, with additional positive synergistic effects. The Gompertz model fits the experimental biochemical methane potential to an accuracy of 99%, showing a correlation between the percentage of lipid in the substrates and co-digestions and the period of lag phase. © The Author(s) 2015.

  20. Composition, production rate and characterization of Greek dental solid waste.

    PubMed

    Mandalidis, Alexandros; Topalidis, Antonios; Voudrias, Evangelos A; Iosifidis, Nikolaos

    2018-05-01

    The overall objective of this work is to determine the composition, characterization and production rate of Greek dental solid waste (DSW). This information is important to design and cost management systems for DSW, for safety and health considerations and for assessing environmental impact. A total of 141 kg of DSW produced by a total of 2542 patients in 20 dental practices from Xanthi, Greece was collected, manually separated and weighed over a period of four working weeks. The waste was separated in 19 sub fractions, which were classified in 2 major categories, according to Greek regulations: Domestic-type waste comprising 8% and hazardous waste comprising 92% by weight of total DSW. The latter was further classified in infectious waste, toxic waste and mixed type waste (infectious and toxic together), accounting for 88.5%, 3.5% and 0.03% of total DSW by weight, respectively. The overall unit production rates (mean ± standard error of the mean) were 381 ± 15 g/practice/d and 53.3 ± 1.4 g/patient/d for total DSW, 337 ± 14 g/practice/d and 46.6 ± 1.2 g/patient/d for total infectious DSW, 13.4 ± 0.7 g/practice/d and 2.1 ± 0.1 g/patient/d for total toxic DSW and 30.4 ± 2.5 g/practice/d and 4.6 ± 0.4 g/patient/d for domestic-type waste. Daily DSW production was correlated with daily number of patients and regression correlations were produced. DSW was subject to laboratory characterization in terms of bulk density, calorific value, moisture, ash and volatile solids content. Measured calorific values were compared to predictions from empirical models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Bioconversion of fish solid waste into PHB using Bacillus subtilis based submerged fermentation process.

    PubMed

    Mohapatra, S; Sarkar, B; Samantaray, D P; Daware, A; Maity, S; Pattnaik, S; Bhattacharjee, S

    2017-12-01

    Currently, one of the major problem affecting the world is solid waste management, predominantly petroleum-based plastic and fish solid waste (FSW). However, it is very difficult to reduce the consumption of plastic as well as fish products, but it is promising to convert FSW to biopolymer to reduce eco-pollution. On account of that, the bioconversion of FSW extract to polyhydroxybutyrate (PHB) was undertaken by using Bacillus subtilis (KP172548). Under optimized conditions, 1.62 g/L of PHB has been produced by the bacterium. The purified compound was further characterized by advanced analytical technologies to elucidate its chemical structure. Results indicated that the biopolymer was found to be PHB, the most common homopolymer of polyhydroxyalkanoates (PHAs). This is the first report demonstrating the efficacy of B. subtilis to utilize FSW extract to produce biopolymer. The biocompatibility of the PHB against murine macrophage cell line RAW264.7 demonstrated that, it was comparatively less toxic, favourable for surface attachment and proliferation in comparison with poly-lactic acid (PLA) and commercially available PHB. Thus, further exploration is highly indispensable to use FSW extract as a substrate for production of PHB at pilot scale.

  2. Extraction of soluble substances from organic solid municipal waste to increase methane production.

    PubMed

    Campuzano, Rosalinda; González-Martínez, Simón

    2015-02-01

    This work deals with the analysis of the methane production from Mexico City's urban organic wastes after separating soluble from suspended substances. Water was used to extract soluble substances under three different water to waste ratios and after three extraction procedures. Methane production was measured at 35 °C during 21 days using a commercial methane potential testing device. Results indicate that volatile solids extraction increases with dilution rate to a maximum of 40% at 20 °C and to 43% at 93 °C. The extracts methane production increases with the dilution rate as a result of enhanced dissolved solids extraction. The combined (extract and bagasse) methane production reached, in 6 days, 66% of the total methane produced in 21 days. The highest methane production rates were measured during the first six days. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Indonesia municiple solid waste life cycle and environmental monitoring: current situation, before and future challenges

    NASA Astrophysics Data System (ADS)

    Susmono

    2017-03-01

    Indonesia is a big country with circa 250 million population, with more than 500 Local Governments and they are going to improve their municiple solid waste dumping method from Open Dumping to Sanitary Landfill (SLF) and to promote Reduce-Reuse-Recycling (3R) since many years ago, and it is strengthened by issuing of Solid Waste Management Act No.18/2008, MSW Government Regulation No.12/2012 and other regulations which are issued by Central Government and Local Governments. During “Water and Sanitation Decade 1980-1990” through “Integrated Urban Infrastructures Development Program” some pilot project such as 30 units of 3R station were developed in the urban areas, and modified or simplification of SLF call Controlled Landfill (CLF) were implemented. In the year of 2002 about 45 units of composting pilot projects were developed under “Western Java Environmental Management Project”, and the result was notified that some of them are not sustain because many aspects. At the beginning of 2007 until now, some pilot projects of 3R were continued in some cities and since 2011 some Waste Banks are growing fast. In the year of 2014 was recorded that of 70 % of 3Rs in Java Island well developed (2014, Directorate of Environment Sanitation Report), and in the year of 2012 was recorded that development of Communal Waste Banks were growing fast during two months from 400 units to 800 units (2012, Ministry of Environment report), now more Communal Waste Banks all ready exist. After the last overview monitoring activity by Ministry of Environment and JICA (2008), because of lack of data is very difficult to give current accurate information of Municiple Solid Waste Handling in Indonesia. Nevertheless some innovation are developed because of impact of many pilot projects, Adipura City Cleanest Competition among Local Governments and growing of the spirit of autonomous policy of Local Governments, but some Local Governments still dependence on Central Government support, both technically and non technically aspects such as new appropriate technology development, new integration management especially between formal and informal organizations, acceleration of community education/empowerment, new required regulations development and law enforcement support. Political will of government. In the beginning, government and people of Indonesia follow the paradigm that municipal solid waste management could be managed by Collecting-Transferring-Dumping system only. This paradigm is appropriate if no problem increase of land providing for solid waste dumping site. Most of local governments are not able to decide it because so many aspects and complexity of problems such as choosing an appropriate technology, finding location for solid waste transfer stations and dumping site, developing of waste management, limitation of affordability, improving people behaviour to increase their low health environment consciousness, as well as lack of professional staffs. Indonesia Ministry of Environment who is responsible for solid waste handling regulations and Ministry of Public Works who is responsible for urban infrastructures development have changed their paradigm that in municipal solid waste handling it is better to reduce as soon as possible. The new approach is to introduce 3R methods from the sources to the solid waste dumping site for minimizing cost of transportation and dumping site area. The Municipal Solid Waste Management Law no 18/2008 stated that municipal solid waste handling consists of Reduction-Reuse-Recycling of waste and running waste management services such as collection of the rest to transport, treat and dumping in the end of the system. Based on the Autonomous Law, the local governments are still the main responsible governments to handle municipal solid waste management in their administrative area. Community participation. During the last few years many solid waste communal and non-governmental organizations were grown and developed, some solid waste communal leaders were born, and solid waste handling motivation and participation of community are grown. To accelerate this situation, the government introduces many training and education to produce more municipal solid waste handling facilitators. Since 2007, environment sanitation motivation activities runs through the yearly Sanitation Jamboree that educate, short train, motivate junior school children and competition among other. Technology innovation. Local governments, with or without central government support, are being to make some improvement how to handle municipal solid waste and through Sister City Program, many innovations were developed such as in Surabaya City (home Takakura composter), Depok (waste separation and composting), Bogor City (management), Malang City, Makasar City and others. The new Closing the Loops of solid waste handling approaches should be introduced in the future to break the bottle neck that always happened in the past. Integration between solid waste management and the farming activities, land plantation rehabilitations, city landscaping and gardening is very urgent to develop, including integration of 3R stakeholders in the region. The challenges. The municipal solid waste problem in urban areas is relative more complicated compared with the same problem in the rural areas. Accurate data collection and analyzing periodically is very important. Road map development and mobilizing of all stake holders both in central government and in local government such as NGOs, private sectors, education and research institutions, civil societies and the community are very urgent. New research action is required to find our new urban municipal solid waste characteristic and our appropriate technology and management to give some input to the central government, local governments and the community or others who involve in the municipal solid waste handling due to the recent fast growing of urban people income and changing of their life style. Conclusion. For the future, the strengthening of central and local governments’ political will is still required including financial mobilization, community education and/or empowerment, law enforcement, technical innovations, management development, providing required urban and regional solid waste management infrastructures, and Public Private Partnership promotion.

  4. Hydrothermal carbonization of food waste for nutrient recovery and reuse.

    PubMed

    Idowu, Ifeolu; Li, Liang; Flora, Joseph R V; Pellechia, Perry J; Darko, Samuel A; Ro, Kyoung S; Berge, Nicole D

    2017-11-01

    Food waste represents a rather large and currently underutilized source of potentially available and reusable nutrients. Laboratory-scale experiments evaluating the hydrothermal carbonization of food wastes collected from restaurants were conducted to understand how changes in feedstock composition and carbonization process conditions influence primary and secondary nutrient fate. Results from this work indicate that at all evaluated reaction times and temperatures, the majority of nitrogen, calcium, and magnesium remain integrated within the solid-phase, while the majority of potassium and sodium reside in the liquid-phase. The fate of phosphorus is dependent on reaction times and temperatures, with solid-phase integration increasing with higher reaction temperature and longer time. A series of leaching experiments to determine potential solid-phase nutrient availability were also conducted and indicate that, at least in the short term, nitrogen release from the solids is small, while almost all of the phosphorus present in the solids produced from carbonizing at 225 and 250°C is released. At a reaction temperature of 275°C, smaller fractions of the solid-phase total phosphorus are released as reaction times increase, likely due to increased solids incorporation. Using these data, it is estimated that up to 0.96% and 2.30% of nitrogen and phosphorus-based fertilizers, respectively, in the US can be replaced by the nutrients integrated within hydrochar and liquid-phases generated from the carbonization of currently landfilled food wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Recovery of fissile materials from nuclear wastes

    DOEpatents

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  6. Barriers on the propagation of renewable energy sources and sustainable solid waste management practices in Greece.

    PubMed

    Boemi, Sn; Papadopoulos, Am; Karagiannidis, A; Kontogianni, S

    2010-11-01

    Renewable energy sources (RES), excluding large hydroelectric plants, currently produce 4.21% of total electricity production in Greece. Even when considering the additional production from large hydroelectric plants, which accounts for some 7.8%, the distance to be covered towards the objective of 20% electricity produced from RES by 2010 and respectively towards 20% of total energy production by 2020 is discouraging. The potential, however, does exist; unfortunately so do serious barriers. On the other hand, solid waste management (SWM) is an issue that generates continuously increasing interest due to the extra amounts of solid waste generated; the lack of existing disposal facilities with adequate infrastructure and integrated management plans, also often accompanied by legislative and institutional gaps. However, socio-economic and public awareness problems are still met in the planning and implementation of RES and SWM projects, together with the lack of a complete national cadastre and a spatial development master plan, specifying areas eligible for RES and SWM development. Specific barriers occur for individual RES and the on-going inclusion of waste-derived renewable energy in the examined palette further increases the complexity of the entire issue. The consolidated study of this broad set of barriers was a main task of the present study which was carried out within the frame of a Hellenic-Canadian research project; the main results will be discussed herein.

  7. 40 CFR 257.3 - Criteria for classification of solid waste disposal facilities and practices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities and Practices § 257.3 Criteria for classification of solid waste disposal facilities and practices. Solid waste disposal facilities or practices...

  8. 40 CFR 257.3 - Criteria for classification of solid waste disposal facilities and practices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities and Practices § 257.3 Criteria for classification of solid waste disposal facilities and practices. Solid waste disposal facilities or practices...

  9. Networks of recyclable material waste-picker’s cooperatives: An alternative for the solid waste management in the city of Rio de Janeiro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tirado-Soto, Magda Martina, E-mail: magda@pep.ufrj.br; Zamberlan, Fabio Luiz, E-mail: fabio@pep.ufrj.br

    Highlights: ► In the marketing of recyclable materials, the waste-pickers are the least wins. ► It is proposed creating a network of recycling cooperatives to achieve viability. ► The waste-pickers contribute to waste management to the city. - Abstract: The objective of this study is to discuss the role of networks formed of waste-picker cooperatives in ameliorating problems of final disposal of solid waste in the city of Rio de Janeiro, since the city’s main landfill will soon have to close because of exhausted capacity. However, it is estimated that in the city of Rio de Janeiro there are aroundmore » five thousand waste-pickers working in poor conditions, with lack of physical infrastructure and training, but contributing significantly by diverting solid waste from landfills. According to the Sustainable Development Indicators (IBGE, 2010a,b) in Brazil, recycling rates hover between 45% and 55%. In the municipality of Rio de Janeiro, only 1% of the waste produced is collected selectively by the government (COMLURB, 2010), demonstrating that recycling is mainly performed by waste-pickers. Furthermore, since the recycling market is an oligopsony that requires economies of scale to negotiate directly with industries, the idea of working in networks of cooperatives meets the demands for joint marketing of recyclable materials. Thus, this work presents a method for creating and structuring a network of recycling cooperatives, with prior training for working in networks, so that the expected synergies and joint efforts can lead to concrete results. We intend to demonstrate that it is first essential to strengthen the waste-pickers’ cooperatives in terms of infrastructure, governance and training so that solid waste management can be environmentally, socially and economically sustainable in the city of Rio de Janeiro.« less

  10. Rotary Kiln Gasification of Solid Waste for Base Camps

    DTIC Science & Technology

    2017-10-02

    cup after full day run 3.3 Feedstock Handling System Garbage bags containing waste feedstock are placed into feed bin FB-101. Ram feeder RF-102...Environmental Science and Technology using the Factory Talk SCADA software running on a laptop computer. A wireless Ethernet router that is located within the...pyrolysis oil produced required consistent draining from the system during operation and became a liquid waste disposal problem. A 5-hour test run could

  11. Solid Waste Management Plan. Revision 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  12. The direct environmental impact of hip arthroscopy for femoroacetabular impingement: a surgical waste audit of five cases

    PubMed Central

    de SA, Darren; Stephens, Kellee; Kuang, Michelle; Simunovic, Nicole; Karlsson, Jon; Ayeni, Olufemi R.

    2016-01-01

    Health care facilities produce significant waste (2200 kg/bed/year) creating 2% of greenhouse gas emissions and 1% total solid waste nationwide, with 20–70% of waste coming from operating rooms. We performed a waste audit of hip arthroscopy for femoroacetabular impingement (FAI) to understand its environmental impact and identify areas for greening practices. A waste audit of five hip arthroscopy procedures for FAI was performed. All waste was collected and separated into six waste streams in real time: (i) normal/landfill waste; (ii) recyclable cardboards and plastics; (iii) biohazard waste; (iv) sharp items; (v) linens and (vi) sterile wrapping. The surgical waste (except laundered linens) from five FAI surgeries totaled 47.4 kg, including 21.7 kg (45.7%) of biohazard waste, 11.7 kg (24.6%) of sterile wrap, 6.4 kg (13.5%) of normal/landfill waste, 6.4 kg (13.5%) of recyclable plastics and 1.2 kg (2.6%) of sharp items. An average of 9.4 kg (excluding laundered linens) of waste was produced per procedure. Given the considerable biohazard waste produced by FAI procedures, additional recycling programs, continued adherence to proper waste segregation and an emphasis on ‘green outcomes’ is encouraged to demonstrate environmental responsibility and effectively manage and allocate finite resources. PMID:27583149

  13. Assessing the environmental burdens of anaerobic digestion in comparison to alternative options for managing the biodegradable fraction of municipal solid wastes.

    PubMed

    Haight, M

    2005-01-01

    Biological treatment processes including anaerobic digestion (biogasification) and composting are increasingly being considered by waste management officials and planners as alternatives for managing the mainly organic residues of municipal solid wastes (MSW). The integrated waste management model which is based upon the application of life-cycle analysis was employed to compare the environmental burdens of landfilling, composting and anaerobic digestion of MSW at a mid-sized Canadian community. Energy consumption (or recovery), residue recoveries and emissions to air and water were quantified. Scenario comparisons were analyzed to demonstrate that the environmental burdens associated with anaerobic digestion are reduced in comparison with the alternative options. The major benefit occurs as a result of the electricity produced from burning the biogas and then supplying the 'green power' to the local electrical grid.

  14. Natural bioactive compounds from winery by-products as health promoters: a review.

    PubMed

    Teixeira, Ana; Baenas, Nieves; Dominguez-Perles, Raul; Barros, Ana; Rosa, Eduardo; Moreno, Diego A; Garcia-Viguera, Cristina

    2014-09-04

    The relevance of food composition for human health has increased consumers' interest in the consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals. This fact has led to a growing attention of suppliers on reuse of agro-industrial wastes rich in healthy plant ingredients. On this matter, grape has been pointed out as a rich source of bioactive compounds. Currently, up to 210 million tons of grapes (Vitis vinifera L.) are produced annually, being the 15% of the produced grapes addressed to the wine-making industry. This socio-economic activity generates a large amount of solid waste (up to 30%, w/w of the material used). Winery wastes include biodegradable solids namely stems, skins, and seeds. Bioactive compounds from winery by-products have disclosed interesting health promoting activities both in vitro and in vivo. This is a comprehensive review on the phytochemicals present in winery by-products, extraction techniques, industrial uses, and biological activities demonstrated by their bioactive compounds concerning potential for human health.

  15. 36 CFR 13.1008 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  16. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...

  17. 36 CFR 13.1118 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  18. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...

  19. 36 CFR 13.1912 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located...

  20. 36 CFR 13.1008 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  1. 36 CFR 13.1118 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  2. Washing of waste prior to landfilling.

    PubMed

    Cossu, Raffaello; Lai, Tiziana

    2012-05-01

    The main impact produced by landfills is represented by the release of leachate emissions. Waste washing treatment has been investigated to evaluate its efficiency in reducing the waste leaching fraction prior to landfilling. The results of laboratory-scale washing tests applied to several significant residues from integrated management of solid waste are presented in this study, specifically: non-recyclable plastics from source separation, mechanical-biological treated municipal solid waste and a special waste, automotive shredded residues. Results obtained demonstrate that washing treatment contributes towards combating the environmental impacts of raw wastes. Accordingly, a leachate production model was applied, leading to the consideration that the concentrations of chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN), parameters of fundamental importance in the characterization of landfill leachate, from a landfill containing washed wastes, are comparable to those that would only be reached between 90 and 220years later in the presence of raw wastes. The findings obtained demonstrated that washing of waste may represent an effective means of reducing the leachable fraction resulting in a consequent decrease in landfill emissions. Further studies on pilot scale are needed to assess the potential for full-scale application of this treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Emerging contaminants at a closed and an operating landfill in Oklahoma

    USGS Publications Warehouse

    Andrews, William J.; Masoner, Jason R.; Cozzarelli, Isabelle M.

    2012-01-01

    Landfills are the final depositories for a wide range of solid waste from both residential and commercial sources, and therefore have the potential to produce leachate containing many organic compounds found in consumer products such as pharmaceuticals, plasticizers, disinfectants, cleaning agents, fire retardants, flavorings, and preservatives, known as emerging contaminants (ECs). Landfill leachate was sampled from landfill cells of three different age ranges from two landfills in Central Oklahoma. Samples were collected from an old cell containing solid waste greater than 25 years old, an intermediate age cell with solid waste between 16 and 3 years old, and operating cell with solid waste less than 5 years old to investigate the chemical variability and persistence of selected ECs in landfill leachate of differing age sources. Twenty-eight of 69 analyzed ECs were detected in one or more samples from the three leachate sources. Detected ECs ranged in concentration from 0.11 to 114 μg/L and included 4 fecal and plant sterols, 13 household\\industrial, 7 hydrocarbon, and 4 pesticide compounds. Four ECs were solely detected in the oldest leachate sample, two ECs were solely detected in the intermediate leachate sample, and no ECs were solely detected in the youngest leachate sample. Eleven ECs were commonly detected in all three leachate samples and are an indication of the contents of solid waste deposited over several decades and the relative resistance of some ECs to natural attenuation processes in and near landfills.

  4. Global capacity, potentials and trends of solid waste research and management.

    PubMed

    Nwachukwu, Michael A; Ronald, Mersky; Feng, Huan

    2017-09-01

    In this study, United States, China, India, United Kingdom, Nigeria, Egypt, Brazil, Italy, Germany, Taiwan, Australia, Canada and Mexico were selected to represent the global community. This enabled an overview of solid waste management worldwide and between developed and developing countries. These are countries that feature most in the International Conference on Solid Waste Technology and Management (ICSW) over the past 20 years. A total of 1452 articles directly on solid waste management and technology were reviewed and credited to their original country of research. Results show significant solid waste research potentials globally, with the United States leading by 373 articles, followed by India with 230 articles. The rest of the countries are ranked in the order of: UK > Taiwan > Brazil > Nigeria > Italy > Japan > China > Canada > Germany >Mexico > Egypt > Australia. Global capacity in solid waste management options is in the order of: Waste characterisation-management > waste biotech/composting > waste to landfill > waste recovery/reduction > waste in construction > waste recycling > waste treatment-reuse-storage > waste to energy > waste dumping > waste education/public participation/policy. It is observed that the solid waste research potential is not a measure of solid waste management capacity. The results show more significant research impacts on solid waste management in developed countries than in developing countries where economy, technology and society factors are not strong. This article is targeted to motivate similar study in each country, using solid waste research articles from other streamed databases to measure research impacts on solid waste management.

  5. Bioconversion of waste biomass to useful products

    DOEpatents

    Grady, J.L.; Chen, G.J.

    1998-10-13

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

  6. Bioconversion of waste biomass to useful products

    DOEpatents

    Grady, James L.; Chen, Guang Jiong

    1998-01-01

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

  7. Solid-shape energy fuels from recyclable municipal solid waste and plastics

    NASA Astrophysics Data System (ADS)

    Gug, Jeongin

    Diversion of waste streams, such as plastics, wood and paper, from municipal landfills and extraction of useful materials from landfills is an area of increasing interest across the country, especially in densely populated areas. One promising technology for recycling MSW (municipal solid waste) is to burn the high energy content components in standard coal boilers. This research seeks to reform wastes into briquette that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, moisture resistance, and retain high fuel value. Household waste with high paper and fibers content was used as the base material for this study. It was combined with recyclable plastics such as PE, PP, PET and PS for enhanced binding and energy efficiency. Fuel pellets were processed using a compression molding technique. The resulting moisture absorption, proximate analysis from burning, and mechanical properties were investigated after sample production and then compared with reference data for commercial coals and biomass briquettes. The effects of moisture content, compression pressure and processing temperature were studied to identify the optimal processing conditions with water uptake tests for the durability of samples under humid conditions and burning tests to examine the composition of samples. Lastly, mechanical testing revealed the structural stability of solid fuels. The properties of fuel briquettes produced from waste and recycled plastics improved with higher processing temperature but without charring the material. Optimization of moisture content and removal of air bubbles increased the density, stability and mechanical strength. The sample composition was found to be more similar to biomass fuels than coals because the majority of the starting material was paper-based solid waste. According to the proximate analysis results, the waste fuels can be expected to have low temperature ignition, less char formation and reduced CO2 emission with the high heating energy value similar to coal. It is concluded that solid fuels from paper based waste and plastics can be a good energy resource as an alternative and sustainable fuel, which may help to alleviate the environmental problems related to landfill space at the same time.

  8. Biological Production of Methane from Lunar Mission Solid Waste: An Initial Feasibility Assessment

    NASA Astrophysics Data System (ADS)

    Strayer, Richard; Garland, Jay; Janine, Captain

    A preliminary assessment was made of the potential for biological production of methane from solid waste generated during an early planetary base mission to the moon. This analysis includes: 1) estimation of the amount of biodegradable solid waste generated, 2) background on the potential biodegradability of plastics given their significance in solid wastes, and 3) calculation of potential methane production from the estimate of biodegradable waste. The completed analysis will also include the feasibility of biological methane production costs associated with the biological processing of the solid waste. NASA workshops and Advanced Life Support documentation have estimated the projected amount of solid wastes generated for specific space missions. From one workshop, waste estimates were made for a 180 day transit mission to Mars. The amount of plastic packaging material was not specified, but our visual examination of trash returned from stocktickerSTS missions indicated a large percentage would be plastic film. This plastic, which is not biodegradable, would amount to 1.526 kgdw crew-1 d-1 or 6.10 kgdw d-1 for a crew of 4. Over a mission of 10 days this would amount to 61 kgdw of plastics and for an 180 day lunar surface habitation it would be nearly 1100 kgdw . Approx. 24 % of this waste estimate would be biodegradable (human fecal waste, food waste, and paper), but if plastic packaging was replaced with biodegradable plastic, then 91% would be biodegradable. Plastics are man-made long chain polymeric molecules, and can be divided into two main groups; thermoplastics and thermoset plastics. Thermoplastics comprise over 90% of total plastic use in the placecountry-regionUnited States and are derived from polymerization of olefins via breakage of the double bond and subsequent formation of additional carbon to carbon bonds. The resulting sole-carbon chain polymers are highly resistant to biodegradation and hydrolytic cleavage. Common thermoplastics include low density polyethylene (packaging, bags), high density polyethylene (bottles, containers, pipes), polystyrene (tanks, containers), polypropylene (tanks, containers), and polyvinylchloride (pipes, containers). Thermoset plastics are formed by the condensation of alcohols or amines to form polyesters or polyamides, and are typically solidified after heating. As opposed to the linear structure of thermoplastic, thermoset plastics have a cross-linked structure which results in higher strength. The most common thermoset plastic is polyurethane which is used for coatings, insulation, paints, and packing. Given both the concerns over pollution reduction and energy conservation, significant efforts are underway on Earth to evaluate biodegradable plastics made from renewable feedstocks; the following summarizes the current state of these efforts. Production of biodegradable plastics involves either the introduction of biodegradable or photo-oxidizable components into the polymer chain or the use of biodegradable polymers themselves. The first approach is based on the observation that polyolefins of low molecular weight (<500 Da) are biodegradable. Insertion of structures susceptible to either photoor chemical degradation within the overall polyolefins chain (which are of 4 - 28 kDa molecular weight), can produce segments sufficiently small to be assimilated and degraded by microorganisms. Biodegradable polymers based strictly on nonpetroleum, biologically-based material have been developed, including some which are used to make currently marketed products. Polyhydroxyalkanoates (PHAs) are polyesters which are accumulated as carbon storage materials by microorganisms under nutrient limiting conditions. MirelTM , a "bioplastic" based on stocktickerPHA produced from microbial fermentation of sugars or oils from vegetables crops, is being produced by TellesTM . The company markets MirelTM bioplastics for use in molding, coatings, films, adhesives, and fibers. Another type of bioplastic is based on polylactic acid, or stocktickerPLA. Starch, typically from corn, is fermented by bacteria to yield lactic acid which is then used to synthesize the stocktickerPLA polymer. stocktickerPLA can be degraded via a combination of abiotic hydrolysis and microbial degradation. NatureWorks LLC markets stocktickerPLA-based plastics (NatureWorks R , IngeoTM ) for a variety of applications, including high-value films, rigid thermoformed food and beverage containers, coated papers and boards and other packaging applications. This review suggests that biodegradable plastics may be feasible for use on near-term lunar missions. Biodegradable plastics products are commercially available, and cost, the main limitation to terrestrial use, is not an issue for the small-scale, specialty use by NASA. If the plastic content of the lunar mission solid waste stream is biodegradable, then a potential yield of methane from the waste can be estimated. Investigators at the placePlaceTypeUniversity of PlaceNameFlorida have reported on a three-stage anaerobic composting system for treatment of solid wastes expected in an Advanced Life Support System for space surface habitation. Their system, a sequential batch anaerobic composter (SEBAC) has been demonstrated for a variety of terrestrial solid wastes. Results for methane production rate from a simulated stocktickerALS solid waste of inedible rice crop debris, paper, and simulated feces averaged 0.30 L CH4 per gdw volatile solids (VS, i.e., organic matter) added. If we extrapolate from their results and assume that the VS in space mission solid waste is 100% biodegradable, then a potential for 620 LCH4 crew-1 d-1 might be obtained with a comparable SEBAC. For a crew of four, 2480 LCH4 d-1 (or 110.7 molesCH4 d-1 , 1772 gCH4 d-1 , or 3.90 lbCH4 d-1 )., would be produced. Over a 180 day surface habitation, this generation rate would yield a total of 446,000 LCH4 (319 kgCH4 , 702 lbCH4 ). The next step in this effort is to estimate the costs of biological processing system required to convert the solid waste steam to methane. We will employ equivalent system mass (ESM) analysis to define the costs of the system in terms of energy, mass, and manpower required for processing, allowing for a better estimation of the net benefit of this in situ resource utilization approach.

  9. Enhanced polyhydroxyalkanoate (PHA) production from the organic fraction of municipal solid waste by using mixed microbial culture.

    PubMed

    Colombo, Bianca; Favini, Francesca; Scaglia, Barbara; Sciarria, Tommy Pepè; D'Imporzano, Giuliana; Pognani, Michele; Alekseeva, Anna; Eisele, Giorgio; Cosentino, Cesare; Adani, Fabrizio

    2017-01-01

    In Europe, almost 87.6 million tonnes of food waste are produced. Despite the high biological value of food waste, traditional management solutions do not consider it as a precious resource. Many studies have reported the use of food waste for the production of high added value molecules. Polyhydroxyalkanoates (PHAs) represent a class of interesting bio-polyesters accumulated by different bacterial cells, and has been proposed for production from the organic fraction of municipal solid waste (OFMSW). Nevertheless, until now, no attention has been paid to the entire biological process leading to the transformation of food waste to organic acids (OA) and then to PHA, getting high PHA yield per food waste unit. In particular, the acid-generating process needs to be optimized, maximizing OA production from OFMSW. To do so, a pilot-scale Anaerobic Percolation Biocell Reactor (100 L in volume) was used to produce an OA-rich percolate from OFMSW which was used subsequently to produce PHA. The optimized acidogenic process resulted in an OA production of 151 g kg -1 from fresh OFMSW. The subsequent optimization of PHA production from OA gave a PHA production, on average, of 223 ± 28 g kg -1 total OA fed. Total mass balance indicated, for the best case studied, a PHA production per OFMSW weight unit of 33.22 ± 4.2 g kg -1 from fresh OFMSW, corresponding to 114.4 ± 14.5 g kg -1 of total solids from OFMSW. PHA composition revealed a hydroxybutyrate/hydroxyvalerate (%) ratio of 53/47 and Mw of 8∙10 5 kDa with a low polydispersity index, i.e. 1.4. This work showed how by optimizing acidic fermentation it could be possible to get a large amount of OA from OFMSW to be then transformed into PHA. This step is important as it greatly affects the total final PHA yield. Data obtained in this work can be useful as the starting point for considering the economic feasibility of PHA production from OFMSW by using mixed culture.

  10. Theoretical Framework for Plastic Waste Management in Ghana through Extended Producer Responsibility: Case of Sachet Water Waste

    PubMed Central

    Quartey, Ebo Tawiah; Tosefa, Hero; Danquah, Kwasi Asare Baffour; Obrsalova, Ilona

    2015-01-01

    Currently, use and disposal of plastic by consumers through waste management activities in Ghana not only creates environmental problems, but also reinforces the notion of a wasteful society. The magnitude of this problem has led to increasing pressure from the public for efficient and practical measures to solve the waste problem. This paper analyses the impact of plastic use and disposal in Ghana. It emphasizes the need for commitment to proper management of the impacts of plastic waste and effective environmental management in the country. Sustainable Solid Waste Management (SSWM) is a critical problem for developing countries with regards to climate change and greenhouse gas emission, and also the general wellbeing of the populace. Key themes of this paper are producer responsibility and management of products at end of life. The paper proposes two theatrical recovery models that can be used to address the issue of sachet waste in Ghana. PMID:26308016

  11. Assessing potential health impacts of waste recovery and reuse business models in Hanoi, Vietnam.

    PubMed

    Winkler, Mirko S; Fuhrimann, Samuel; Pham-Duc, Phuc; Cissé, Guéladio; Utzinger, Jürg; Nguyen-Viet, Hung

    2017-02-01

    In resource-constrained settings, the recovery of nutrients and the production of energy from liquid and solid waste are important. We determined the range and magnitude of potential community health impacts of six solid and liquid waste recovery and reuse business models in Hanoi, Vietnam. We employed a health impact assessment (HIA) approach using secondary data obtained from various sources supplemented with primary data collection. For determining the direction (positive or negative) and magnitude of potential health impacts in the population, a semiquantitative impact assessment was pursued. From a public health perspective, wastewater reuse for inland fish farming, coupled with on-site water treatment has considerable potential for individual and community-level health benefits. One of the business models investigated (i.e. dry fuel manufacturing with agro-waste) resulted in net negative health impacts. In Hanoi, the reuse of liquid and solid waste-as a mean to recover water and nutrients and to produce energy-has considerable potential for health benefits if appropriately managed and tailored to local contexts. Our HIA methodology provides an evidence-based decision-support tool for identification and promotion of business models for implementation in Hanoi.

  12. Cocoa residues as viable biomass for renewable energy production through anaerobic digestion.

    PubMed

    Acosta, Nayaret; De Vrieze, Jo; Sandoval, Verónica; Sinche, Danny; Wierinck, Isabella; Rabaey, Korneel

    2018-05-31

    The aim of this work was to evaluate the bioenergy potential of cocoa residue via anaerobic digestion. Batch and fed-batch lab-scale reactors were operated under low and high solids conditions. In the batch tests, 59 ± 4% of Chemical Oxygen Demand (COD) was recovered as methane. This corresponded with an average methane yield of 174 (wet) and 193 (dry) L kg -1 volatile solids fed, whereas a series of fed-batch reactors produced 70 ± 24 (wet) and 107 ± 39 (dry) L CH 4  kg -1 volatile solids fed during stable conditions. A case study was developed for canton Balao (Ecuador) based on our experimental data, operational estimates and available cocoa waste in the area. Annually, 8341 MWh could be produced, meeting 88% of the current electricity demand in Balao. This case study proves the potential for cocoa waste as a source of renewable energy in rural areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Integrated models for solid waste management in tourism regions: Langkawi Island, Malaysia.

    PubMed

    Shamshiry, Elmira; Nadi, Behzad; Mokhtar, Mazlin Bin; Komoo, Ibrahim; Hashim, Halimaton Saadiah; Yahaya, Nadzri

    2011-01-01

    The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island.

  14. Integrated Models for Solid Waste Management in Tourism Regions: Langkawi Island, Malaysia

    PubMed Central

    Shamshiry, Elmira; Nadi, Behzad; Bin Mokhtar, Mazlin; Komoo, Ibrahim; Saadiah Hashim, Halimaton; Yahaya, Nadzri

    2011-01-01

    The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island. PMID:21904559

  15. Bioconversion of garden waste, kitchen waste and cow dung into value-added products using earthworm Eisenia fetida

    PubMed Central

    Wani, K.A.; Mamta; Rao, R.J.

    2013-01-01

    Solid waste management is a worldwide problem and it is becoming more and more complicated day by day due to rise in population, industrialization and changes in our life style. Transformation of industrial sludges into vermicompost is of double interest: on the one hand, a waste is converted into value added product, and, on the other, it controls a pollutant that is a consequence of increasing industrialization. Garden waste, kitchen waste and cow dung were subjected to recycle through vermicomposting by using the epigeic earthworm Eisenia fetida under field conditions. The pH, moisture content, total organic carbon, humus, nitrogen, phosphorous and potassium in vermicompost was analysed. It was found that moisture content, total organic carbon, humus, nitrogen, phosphorous and potassium was high in cow dung, followed by kitchen waste and garden waste. This study clearly indicates that vermicomposting of garden waste, kitchen waste and cow dung can not only produce a value added produce (vermicomposting) but at the same time reduce the quantity of waste. PMID:23961230

  16. Two-phase anaerobic digestion of vegetable market waste fraction of municipal solid waste and development of improved technology for phase separation in two-phase reactor.

    PubMed

    Majhi, Bijoy Kumar; Jash, Tushar

    2016-12-01

    Biogas production from vegetable market waste (VMW) fraction of municipal solid waste (MSW) by two-phase anaerobic digestion system should be preferred over the single-stage reactors. This is because VMW undergoes rapid acidification leading to accumulation of volatile fatty acids and consequent low pH resulting in frequent failure of digesters. The weakest part in the two-phase anaerobic reactors was the techniques applied for solid-liquid phase separation of digestate in the first reactor where solubilization, hydrolysis and acidogenesis of solid organic waste occur. In this study, a two-phase reactor which consisted of a solid-phase reactor and a methane reactor was designed, built and operated with VMW fraction of Indian MSW. A robust type filter, which is unique in its implementation method, was developed and incorporated in the solid-phase reactor to separate the process liquid produced in the first reactor. Experiments were carried out to assess the long term performance of the two-phase reactor with respect to biogas production, volatile solids reduction, pH and number of occurrence of clogging in the filtering system or choking in the process liquid transfer line. The system performed well and was operated successfully without the occurrence of clogging or any other disruptions throughout. Biogas production of 0.86-0.889m 3 kg -1 VS, at OLR of 1.11-1.585kgm -3 d -1 , were obtained from vegetable market waste, which were higher than the results reported for similar substrates digested in two-phase reactors. The VS reduction was 82-86%. The two-phase anaerobic digestion system was demonstrated to be stable and suitable for the treatment of VMW fraction of MSW for energy generation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Amending the Structure of Renewable Carbon from Biorefinery Waste-Streams for Energy Storage Applications.

    PubMed

    Ho, Hoi Chun; Goswami, Monojoy; Chen, Jihua; Keum, Jong K; Naskar, Amit K

    2018-05-29

    Biorefineries produce impure sugar waste streams that are being underutilized. By converting this waste to a profitable by-product, biorefineries could be safeguarded against low oil prices. We demonstrate controlled production of useful carbon materials from the waste concentrate via hydrothermal synthesis and carbonization. We devise a pathway to producing tunable, porous spherical carbon materials by modeling the gross structure formation and developing an understanding of the pore formation mechanism utilizing simple reaction principles. Compared to a simple hydrothermal synthesis from sugar concentrate, emulsion-based synthesis results in hollow spheres with abundant microporosity. In contrast, conventional hydrothermal synthesis produces solid beads with micro and mesoporosity. All the carbonaceous materials show promise in energy storage application. Using our reaction pathway, perfect hollow activated carbon spheres can be produced from waste sugar in liquid effluence of biomass steam pretreatment units. The renewable carbon product demonstrated a desirable surface area of 872 m 2 /g and capacitance of up to 109 F/g when made into an electric double layer supercapacitor. The capacitor exhibited nearly ideal capacitive behavior with 90.5% capacitance retention after 5000 cycles.

  18. Food waste impact on municipal solid waste angle of internal friction.

    PubMed

    Cho, Young Min; Ko, Jae Hac; Chi, Liqun; Townsend, Timothy G

    2011-01-01

    The impact of food waste content on the municipal solid waste (MSW) friction angle was studied. Using reconstituted fresh MSW specimens with different food waste content (0%, 40%, 58%, and 80%), 48 small-scale (100-mm-diameter) direct shear tests and 12 large-scale (430 mm × 430 mm) direct shear tests were performed. A stress-controlled large-scale direct shear test device allowing approximately 170-mm sample horizontal displacement was designed and used. At both testing scales, the mobilized internal friction angle of MSW decreased considerably as food waste content increased. As food waste content increased from 0% to 40% and from 40% to 80%, the mobilized internal friction angles (estimated using the mobilized peak (ultimate) shear strengths of the small-scale direct shear tests) decreased from 39° to 31° and from 31° to 7°, respectively, while those of large-scale tests decreased from 36° to 26° and from 26° to 15°, respectively. Most friction angle measurements produced in this study fell within the range of those previously reported for MSW. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Comprehensive Planning for Classification and Disposal of Solid Waste at the Industrial Parks regarding Health and Environmental Impacts

    PubMed Central

    Rahmani Samani, Bahareh

    2014-01-01

    The aim of this study is the comprehensive planning for integrated management of solid waste at the industrial parks. The share of each industrial group including food, metal, chemical, non-metallic minerals, textile, electrical and electronical, and cellulose industries were 48.2, 14.9, 6.7, 22, 0.9, 0.6, and 6.5 percent, respectively. The results showed that nearly half of total industrial waste produced from the range of biological materials are biodegradable and discharging them without observing environmental regulations leads to short-term pollution and nuisance in the acceptor environment. Also some parts of case study waste were recyclable which is considerable from viewpoint of economical and environmental pollution. Long-term impacts will appear due to improper site selection of disposal from the spatial standpoint. In this way, an approach for site selection using several socioeconomic, physical, and environmental criteria based on multicriteria decision making model (MCDM) is introduced. Health risks and environment pollution such as soil and surface water may be done. It is essential to revise the studied industries layout, particularly those units which produce special waste which should be more cautious. Also stricter enforcement is required as an effective step in reducing the harmful impacts of it. PMID:24688552

  20. Comprehensive planning for classification and disposal of solid waste at the industrial parks regarding health and environmental impacts.

    PubMed

    Hashemi, Hassan; Pourzamani, Hamidreza; Rahmani Samani, Bahareh

    2014-01-01

    The aim of this study is the comprehensive planning for integrated management of solid waste at the industrial parks. The share of each industrial group including food, metal, chemical, non-metallic minerals, textile, electrical and electronical, and cellulose industries were 48.2, 14.9, 6.7, 22, 0.9, 0.6, and 6.5 percent, respectively. The results showed that nearly half of total industrial waste produced from the range of biological materials are biodegradable and discharging them without observing environmental regulations leads to short-term pollution and nuisance in the acceptor environment. Also some parts of case study waste were recyclable which is considerable from viewpoint of economical and environmental pollution. Long-term impacts will appear due to improper site selection of disposal from the spatial standpoint. In this way, an approach for site selection using several socioeconomic, physical, and environmental criteria based on multicriteria decision making model (MCDM) is introduced. Health risks and environment pollution such as soil and surface water may be done. It is essential to revise the studied industries layout, particularly those units which produce special waste which should be more cautious. Also stricter enforcement is required as an effective step in reducing the harmful impacts of it.

  1. Optimization of solid state anaerobic digestion of the OFMSW by digestate recirculation: A new approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michele, Pognani, E-mail: michele.pognani@unimi.it; Giuliana, D’Imporzano, E-mail: giuliana.dimporzano@unimi.it; Gruppo Ricicla - DiSAA, Università degli Studi di Milano, Biomass and Bioenergy Lab., Parco Tecnologico Padano, Via Einstein, Loc. C.na Codazza, 26900 Lodi

    2015-01-15

    Highlights: • Solid State Anaerobic Digestion (SSAD) of OFMSW can be optimized by irrigation with digestate. • Digestate spreading allows keeping optimal process parameters and high hydrolysis rate. • The 18.4% of CH{sub 4} was produced in the reactor, leaving the 49.7% in the percolate. • Successive CSTR feed with percolate shows a biogas enriched in methane (more than 80%). • The proposed process allow producing the 68% of OFMSW potential CH{sub 4}, getting high quality organic amendment. - Abstract: Dry anaerobic digestion (AD) of OFMSW was optimized in order to produce biogas avoiding the use of solid inoculum. Doingmore » so the dry AD was performed irrigating the solid waste with liquid digestate (flow rate of 1:1.18–1:0.9 w/w waste/digestate; 21 d of hydraulic retention time – HRT) in order to remove fermentation products inhibiting AD process. Results indicated that a high hydrolysis rate of organic matter (OM) and partial biogas production were obtained directly during the dry AD. Hydrolysate OM was removed from digester by the percolate flow and it was subsequently used to feed a liquid anaerobic digester. During dry AD a total loss of 36.9% of total solids was recorded. Methane balance indicated that 18.4% of potential methane can be produced during dry AD and 49.7% by the percolate. Nevertheless results obtained for liquid AD digestion indicated that only 20.4% and 25.7% of potential producible methane was generated by adopting 15 and 20 days of HRT, probably due to the AD inhibition due to high presence of toxic ammonia forms in the liquid medium.« less

  2. Composition and production rate of pharmaceutical and chemical waste from Xanthi General Hospital in Greece.

    PubMed

    Voudrias, Evangelos; Goudakou, Lambrini; Kermenidou, Marianthi; Softa, Aikaterini

    2012-07-01

    The objective of this work was to determine the composition and production rates of pharmaceutical and chemical waste produced by Xanthi General Hospital in Greece (XGH). This information is important to design and cost management systems for pharmaceutical and chemical waste, for safety and health considerations and for assessing environmental impact. A total of 233 kg pharmaceutical and 110 kg chemical waste was collected, manually separated and weighed over a period of five working weeks. The total production of pharmaceutical waste comprised 3.9% w/w of the total hazardous medical waste produced by the hospital. Total pharmaceutical waste was classified in three categories, vial waste comprising 51.1%, syringe waste with 11.4% and intravenous therapy (IV) waste with 37.5% w/w of the total. Vial pharmaceutical waste only was further classified in six major categories: antibiotics, digestive system drugs, analgesics, hormones, circulatory system drugs and "other". Production data below are presented as average (standard deviation in parenthesis). The unit production rates for total pharmaceutical waste for the hospital were 12.4 (3.90) g/patient/d and 24.6 (7.48) g/bed/d. The respective unit production rates were: (1) for vial waste 6.4 (1.6) g/patient/d and 13 (2.6) g/bed/d, (2) for syringe waste 1.4 (0.4) g/patient/d and 2.8 (0.8) g/bed/d and (3) for IV waste 4.6 (3.0) g/patient/d and 9.2 (5.9) g/bed/d. Total chemical waste was classified in four categories, chemical reagents comprising 18.2%, solvents with 52.3%, dyes and tracers with 18.2% and solid waste with 11.4% w/w of the total. The total production of chemical waste comprised 1.8% w/w of the total hazardous medical waste produced by the hospital. Thus, the sum of pharmaceutical and chemical waste was 5.7% w/w of the total hazardous medical waste produced by the hospital. The unit production rates for total chemical waste for the hospital were 5.8 (2.2) g/patient/d and 1.1 (0.4) g/exam/d. The respective unit production rates were: (1) for reagents 1.7 (2.4) g/patient/d and 0.3 (0.4) g/examination/d, (2) for solvents 248 (127) g/patient/d and 192 (101) g/examination/d, (3) for dyes and tracers 4.7 (1.4) g/patient/d and 2.5 (0.9) g/examination/d and (4) for solid waste 54 (28) g/patient/d and 42 (22) g/examination/d. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. 75 FR 16576 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...

  4. 77 FR 21835 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...

  5. 76 FR 21947 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...

  6. Biotransformation of 1,8-cineole by solid-state fermentation of Eucalyptus waste from the essential oil industry using Pleurotus ostreatus and Favolus tenuiculus.

    PubMed

    Omarini, Alejandra; Dambolena, José Sebastián; Lucini, Enrique; Jaramillo Mejía, Santiago; Albertó, Edgardo; Zygadlo, Julio A

    2016-03-01

    Biotechnological conversion of low-cost agro-industrial by-products, such as industrial waste or terpenes from the distillation of essential oils from plants into more valuable oxygenated derivatives, can be achieved by using microbial cells or enzymes. In Argentina, the essential oil industry produces several tons of waste each year that could be used as raw materials in the production of industrially relevant and value-added compounds. In this study, 1,8-cineole, one of the components remaining in the spent leaves of the Eucalyptus cinerea waste, was transformed by solid-state fermentation (SSF) using the two edible mushrooms Pleurotus ostreatus and Favolus tenuiculus. As a result, two new oxygenated derivatives of 1,8-cineole were identified: 1,3,3-trimethyl-2-oxabicyclo [2.2.2]octan-6-ol and 1,3,3-trimethyl-2-oxabicyclo [2.2.2]octan-6-one. Additionally, changes in the relative percentages of other aroma compounds present in the substrate were observed during SSF. Both fungal strains have the ability to produce aroma compounds with potential applications in the food and pharmaceutical industries.

  7. Maintenance of CO2 level in a BLSS by controlling solid waste treatment unit

    NASA Astrophysics Data System (ADS)

    Dong, Yingying; Li, Leyuan; Liu, Hong; Fu, Yuming; Xie, Beizhen; Hu, Dawei; Liu, Dianlei; Dong, Chen; Liu, Guanghui

    A bioregenerative life support system (BLSS) is an artificial closed ecosystem for providing basic human life support for long-duration, far-distance space explorations such as lunar bases. In such a system, the circulation of gases is one of the main factor for realizing a higher closure degree. O2 produced by higher plants goes to humans, as well as microorganisms for the treatment of inedible plant biomass and human wastes; CO2 produced by the crew and microorganisms is provided for plant growth. During this process, an excessively high CO2 level will depress plant growth and may be harmful to human health; and if the CO2 level is too low, plant growth will also be affected. Thus, keeping the balance between CO2 and O2 levels is a crucial problem. In this study, a high-efficiency, controllable solid waste treatment unit is constructed, which adopts microbial fermentation of the mixture of inedible biomass and human wastes. CO2 production during the fermentation process is controlled by adjusting fermentation temperature, aeration rate, moisture, etc., so as to meet the CO2 requirement of plants

  8. Integrated use of residues from olive mill and winery for lipase production by solid state fermentation with Aspergillus sp.

    PubMed

    Salgado, José Manuel; Abrunhosa, Luís; Venâncio, Armando; Domínguez, José Manuel; Belo, Isabel

    2014-02-01

    Two-phase olive mill waste (TPOMW) is presently the major waste produced by the olive mill industry. This waste has potential to be used as substrate for solid state fermentation (SSF) despite of its high concentration of phenolic compounds and low nitrogen content. In this work, it is demonstrated that mixtures of TPOMW with winery wastes support the production of lipase by Aspergillus spp. By agar plate screening, Aspergillus niger MUM 03.58, Aspergillus ibericus MUM 03.49, and Aspergillus uvarum MUM 08.01 were chosen for lipase production by SSF. Plackett-Burman experimental design was employed to evaluate the effect of substrate composition and time on lipase production. The highest amounts of lipase were produced by A. ibericus on a mixture of TPOMW, urea, and exhausted grape mark (EGM). Urea was found to be the most influent factor for the lipase production. Further optimization of lipase production by A. ibericus using a full factorial design (3(2)) conducted to optimal conditions of substrate composition (0.073 g urea/g and 25 % of EGM) achieve 18.67 U/g of lipolytic activity.

  9. Utilization of solid and liquid waste generated during ethanol fermentation process for production of gaseous fuel through anaerobic digestion--a zero waste approach.

    PubMed

    Narra, Madhuri; Balasubramanian, Velmurugan

    2015-03-01

    Preliminary investigations were performed in the laboratory using batch reactors at 10% solid concentration for the assessment of the biogas production at thermophilic and mesophilic temperatures using solid residues generated during ethanol fermentation process. One kg of solid residues (left after enzyme extraction and enzymatic hydrolysis) from thermophilic reactors (TR1 and TR2) produced around 131 and 84L of biogas, respectively, whereas biogas production from mesophilic reactors (MR1 and MR2) was 86 and 62L, respectively. After 20 and 35days of retention time, the TS and VS reductions from TR1, TR2 and MR1, MR2 were found to be 39.2% and 35.0%, 67.3% and 61.0%, 21.0% and 18.0%, 34.7% and 27.8%, respectively. Whereas the liquid waste was treated using four laboratory anaerobic hybrid reactors (AHRs) with two different natural and synthetic packing media at 15-3days HRTs. AHRs packed with natural media showed better COD removal efficiency and methane yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. 40 CFR 260.30 - Non-waste determinations and variances from classification as a solid waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... from classification as a solid waste. 260.30 Section 260.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.30 Non-waste determinations and variances from classification as a solid waste. In...

  11. 40 CFR 260.30 - Non-waste determinations and variances from classification as a solid waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... from classification as a solid waste. 260.30 Section 260.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.30 Non-waste determinations and variances from classification as a solid waste. In...

  12. Method for removing hydrocarbon contaminants from solid materials

    DOEpatents

    Bala, Gregory A.; Thomas, Charles P.

    1995-01-01

    A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).

  13. Method for removing hydrocarbon contaminants from solid materials

    DOEpatents

    Bala, G.A.; Thomas, C.P.

    1995-10-03

    A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.

  14. Apparatus for removing hydrocarbon contaminants from solid materials

    DOEpatents

    Bala, G.A.; Thomas, C.P.

    1996-02-13

    A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.

  15. Apparatus for removing hydrocarbon contaminants from solid materials

    DOEpatents

    Bala, Gregory A.; Thomas, Charles P.

    1996-01-01

    A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).

  16. Experimental and modelling studies on a laboratory scale anaerobic bioreactor treating mechanically biologically treated municipal solid waste.

    PubMed

    Lakshmikanthan, P; Sughosh, P; White, James; Sivakumar Babu, G L

    2017-07-01

    The performance of an anaerobic bioreactor in treating mechanically biologically treated municipal solid waste was investigated using experimental and modelling techniques. The key parameters measured during the experimental test period included the gas yield, leachate generation and settlement under applied load. Modelling of the anaerobic bioreactor was carried out using the University of Southampton landfill degradation and transport model. The model was used to simulate the actual gas production and settlement. A sensitivity analysis showed that the most influential model parameters are the monod growth rate and moisture. In this case, pH had no effect on the total gas production and waste settlement, and only a small variation in the gas production was observed when the heat transfer coefficient of waste was varied from 20 to 100 kJ/(m d K) -1 . The anaerobic bioreactor contained 1.9 kg (dry) of mechanically biologically treated waste producing 10 L of landfill gas over 125 days.

  17. Reuse of municipal solid wastes incineration fly ashes in concrete mixtures.

    PubMed

    Collivignarelli, Carlo; Sorlini, Sabrina

    2002-01-01

    This study is aimed at assessing the feasibility of concrete production using stabilized m.s.w. (municipal solid waste) incineration fly ashes in addition to natural aggregates. The tested fly ashes were washed and milled, then stabilized by a cement-lime process and finally were reused as a "recycled aggregate" for cement mixture production, in substitution of a natural aggregate (with dosage of 200-400 kg m(-3)). These mixtures, after curing, were characterized with conventional physical-mechanical tests (compression, traction, flexure, modulus of elasticity, shrinkage). In samples containing 200 kg(waste) m(-3)(concrete), a good compressive strength was achieved after 28 days of curing. Furthermore, concrete leaching behavior was evaluated by means of different leaching tests, both on milled and on monolithic samples. Experimental results showed a remarkable reduction of metal leaching in comparison with raw waste. In some cases, similar behavior was observed in "natural" concrete (produced with natural aggregates) and in "waste containing" concrete.

  18. Continuous biohydrogen production from waste bread by anaerobic sludge.

    PubMed

    Han, Wei; Huang, Jingang; Zhao, Hongting; Li, Yongfeng

    2016-07-01

    In this study, continuous biohydrogen production from waste bread by anaerobic sludge was performed. The waste bread was first hydrolyzed by the crude enzymes which were generated by Aspergillus awamori and Aspergillus oryzae via solid-state fermentation. It was observed that 49.78g/L glucose and 284.12mg/L free amino nitrogen could be produced with waste bread mass ratio of 15% (w/v). The waste bread hydrolysate was then used for biohydrogen production by anaerobic sludge in a continuous stirred tank reactor (CSTR). The optimal hydrogen production rate of 7.4L/(Ld) was achieved at chemical oxygen demand (COD) of 6000mg/L. According to the results obtained from this study, 1g waste bread could generate 0.332g glucose which could be further utilized to produce 109.5mL hydrogen. This is the first study which reports continuous biohydrogen production from waste bread by anaerobic sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Sustainable production of valuable compound 3-succinoyl-pyridine by genetically engineering Pseudomonas putida using the tobacco waste.

    PubMed

    Wang, Weiwei; Xu, Ping; Tang, Hongzhi

    2015-11-17

    Treatment of solid and liquid tobacco wastes with high nicotine content remains a longstanding challenge. Here, we explored an environmentally friendly approach to replace tobacco waste disposal with resource recovery by genetically engineering Pseudomonas putida. The biosynthesis of 3-succinoyl-pyridine (SP), a precursor in the production of hypotensive agents, from the tobacco waste was developed using whole cells of the engineered Pseudomonas strain, S16dspm. Under optimal conditions in fed-batch biotransformation, the final concentrations of product SP reached 9.8 g/L and 8.9 g/L from aqueous nicotine solution and crude suspension of the tobacco waste, respectively. In addition, the crystal compound SP produced from aqueous nicotine of the tobacco waste in batch biotransformation was of high purity and its isolation yield on nicotine was 54.2%. This study shows a promising route for processing environmental wastes as raw materials in order to produce valuable compounds.

  20. Combating oil spill problem using plastic waste.

    PubMed

    Saleem, Junaid; Ning, Chao; Barford, John; McKay, Gordon

    2015-10-01

    Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5-15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOEpatents

    Moens, Luc

    1995-01-01

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350.degree. and 375.degree. C. to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan.

  2. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOEpatents

    Moens, L.

    1995-07-11

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350 and 375 C to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan. 2 figs.

  3. Lactic acid production from potato peel waste by anaerobic sequencing batch fermentation using undefined mixed culture.

    PubMed

    Liang, Shaobo; McDonald, Armando G; Coats, Erik R

    2015-11-01

    Lactic acid (LA) is a necessary industrial feedstock for producing the bioplastic, polylactic acid (PLA), which is currently produced by pure culture fermentation of food carbohydrates. This work presents an alternative to produce LA from potato peel waste (PPW) by anaerobic fermentation in a sequencing batch reactor (SBR) inoculated with undefined mixed culture from a municipal wastewater treatment plant. A statistical design of experiments approach was employed using set of 0.8L SBRs using gelatinized PPW at a solids content range from 30 to 50 g L(-1), solids retention time of 2-4 days for yield and productivity optimization. The maximum LA production yield of 0.25 g g(-1) PPW and highest productivity of 125 mg g(-1) d(-1) were achieved. A scale-up SBR trial using neat gelatinized PPW (at 80 g L(-1) solids content) at the 3 L scale was employed and the highest LA yield of 0.14 g g(-1) PPW and a productivity of 138 mg g(-1) d(-1) were achieved with a 1 d SRT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Characterization of air pollution control residues produced in a municipal solid waste incinerator in Portugal.

    PubMed

    Quina, Margarida J; Santos, Regina C; Bordado, João C; Quinta-Ferreira, Rosa M

    2008-04-01

    This study is mainly related with the physical and chemical characterization of a solid waste, produced in a municipal solid waste (MSW) incineration process, which is usually referred as air pollution control (APC) residue. The moisture content, loss on ignition (LOI), particle size distribution, density, porosity, specific surface area and morphology were the physical properties addressed here. At the chemical level, total elemental content (TC), total availability (TA) and the leaching behaviour with compliance tests were determined, as well as the acid neutralization capacity (ANC). The main mineralogical crystalline phases were identified, and the thermal behaviour of the APC residues is also shown. The experimental work involves several techniques such as laser diffraction spectrometry, mercury porosimetry, helium pycnometry, gas adsorption, flame atomic absorption spectrometry (FAAS), ion chromatography, scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and simultaneous thermal analysis (STA). The results point out that the APC residues do not comply with regulations in force at the developed countries, and therefore the waste should be considered hazardous. Among the considered heavy metals, lead, zinc and chromium were identified as the most problematic ones, and their total elemental quantities are similar for several samples collected in an industrial plant at different times. Moreover, the high amount of soluble salts (NaCl, KCl, calcium compounds) may constitute a major problem and should be taken into account for all management strategies. The solubility in water is very high (more than 24% for a solid/liquid ratio of 10) and thus the possible utilizations of this residue are very limited, creating difficulties also in the ordinary treatments, such as in solidification/stabilization with binders.

  5. Torrefaction Processing for Human Solid Waste Management

    NASA Technical Reports Server (NTRS)

    Serio, Michael A.; Cosgrove, Joseph E.; Wójtowicz, Marek A.; Stapleton, Thomas J.; Nalette, Tim A.; Ewert, Michael K.; Lee, Jeffrey; Fisher, John

    2016-01-01

    This study involved a torrefaction (mild pyrolysis) processing approach that could be used to sterilize feces and produce a stable, odor-free solid product that can be stored or recycled, and also to simultaneously recover moisture. It was demonstrated that mild heating (200-250 C) in nitrogen or air was adequate for torrefaction of a fecal simulant and an analog of human solid waste (canine feces). The net result was a nearly undetectable odor (for the canine feces), complete recovery of moisture, some additional water production, a modest reduction of the dry solid mass, and the production of small amounts of gas and liquid. The liquid product is mainly water, with a small Total Organic Carbon content. The amount of solid vs gas plus liquid products can be controlled by adjusting the torrefaction conditions (final temperature, holding time), and the current work has shown that the benefits of torrefaction could be achieved in a low temperature range (< 250 C). These temperatures are compatible with the PTFE bag materials historically used by NASA for fecal waste containment and will reduce the energy consumption of the process. The solid product was a dry material that did not support bacterial growth and was hydrophobic relative to the starting material. In the case of canine feces, the solid product was a mechanically friable material that could be easily compacted to a significantly smaller volume (approx. 50%). The proposed Torrefaction Processing Unit (TPU) would be designed to be compatible with the Universal Waste Management System (UWMS), now under development by NASA. A stand-alone TPU could be used to treat the canister from the UWMS, along with other types of wet solid wastes, with either conventional or microwave heating. Over time, a more complete integration of the TPU and the UWMS could be achieved, but will require design changes in both units.

  6. Characterization of thermostable cellulase produced by Bacillus strains isolated from solid waste of carrageenan

    NASA Astrophysics Data System (ADS)

    Listyaningrum, N. P.; Sutrisno, A.; Wardani, A. K.

    2018-03-01

    Cellulase-producing bacteria was isolated from solid waste of carrageenan and identified as Bacillus licheniformis C55 by 16S rRNA sequencing. The optimum condition for cellulase production was obtained at pH and temperature of 8.0 and 50°C, respectively in a medium containing glucose as carbon source and 1.0% carboxymethyl cellulose (CMC) to stimulate the cellulase production. Most remarkably, the enzyme retained its relative activity over 50% after incubation at 50°C for 90 minutes. Substrate specificity suggested that the enzyme is an endoglucanase. The molecular mass of Bacillus licheniformis C55 crude cellulase was found about 18 kDa by SDS-PAGE analysis. This thermostable enzyme would facilitate development of more efficient and cost-effective forms of the process to convert lignocellulosic biomass into high-value products.

  7. Municipal Solid Waste Management: Recycling, Resource Recovery, and Landfills. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Meikle, Teresa, Comp.

    Municipal solid waste refers to waste materials generated by residential, commercial, and institutional sources, and consists predominantly of paper, glass, metals, plastics, and food and yard waste. Within the definition of the Solid Waste Disposal Act, municipal solid waste does not include sewage sludge or hazardous waste. The three main…

  8. Modeling of urban solid waste management system: The case of Dhaka city

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sufian, M.A.; Bala, B.K.

    2007-07-01

    This paper presents a system dynamics computer model to predict solid waste generation, collection capacity and electricity generation from solid waste and to assess the needs for waste management of the urban city of Dhaka, Bangladesh. Simulated results show that solid waste generation, collection capacity and electricity generation potential from solid waste increase with time. Population, uncleared waste, untreated waste, composite index and public concern are projected to increase with time for Dhaka city. Simulated results also show that increasing the budget for collection capacity alone does not improve environmental quality; rather an increased budget is required for both collectionmore » and treatment of solid wastes of Dhaka city. Finally, this model can be used as a computer laboratory for urban solid waste management (USWM) policy analysis.« less

  9. Breakdown of food waste by anaerobic fermentation and non-oxygen producing photosynthesis using a photosynthetic bacterium.

    PubMed

    Mekjinda, N; Ritchie, R J

    2015-01-01

    Large volumes of food waste are produced by restaurants, hotels, etc generating problems in its collection, processing and disposal. Disposal as garbage increases the organic matter in landfills and leachates. The photosynthetic bacterium Rhodopseudomonas palustris (CGA 009) easily broke down food waste. R. palustris produces H2 under anaerobic conditions and digests a very wide range of organic compounds. R. palustris reduced BOD by ≈70% and COD by ≈33%, starch, ammonia, nitrate, was removed but had little effect on reducing sugar or the total phosphorus, lipid, protein, total solid in a 7-day incubation. R. palustris produced a maximum of 80ml H2/g COD/day. A two-stage anaerobic digestion using yeast as the first stage, followed by a R. palustris digestion was tested but production of H2 was low. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Coffee husk waste for fermentation production of mosquitocidal bacteria.

    PubMed

    Poopathi, Subbiah; Abidha, S

    2011-12-01

    Coffee husk waste (CHW) discarded as bio-organic waste, from coffee industries, is rich in carbohydrates. The current study emphasizes the management of solid waste from agro-industrial residues for the production of biopesticides (Bacillus sphaericus, and B. thuringiensis subsp. israelensis), to control disease transmitting mosquito vectors. An experimental culture medium was prepared by extracting the filtrates from coffee husk. A conventional culture medium (NYSM) also was prepared. The studies revealed that the quantity of mosquitocidal toxins produced from CHW is at par with NYSM. The bacteria produced in these media, were bioassayed against mosquito vectors (Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti) and it was found that the toxic effect was statistically comparable. Cost-effective analysis have revealed that, production of biopesticides from CHW is highly economical. Therefore, the utilization of CHW provides dual benefits of effective utilization of environmental waste and efficient production of mosquitocidal toxins.

  11. Task 3 - Pyrolysis of Plastic Waste. Semiannual report, November 1, 1996--March 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ness, Robert O.; Aulich, Ted R.

    1997-12-31

    Over the last 50 years, the U.S. Department of Energy (DOE) has produced a wide variety of radioactive wastes from activities associated with nuclear defense and nuclear power generation. These wastes include low-level radioactive solid wastes, mixed wastes, and transuranic (TRU) wastes. A portion of these wastes consists of high- organic-content materials, such as resins, plastics, and other polymers; synthetic and natural rubbers; cellulosic-based materials; and oils, organic solvents, and chlorinated organic solvents. Many of these wastes contain hazardous and/or pyrophoric materials in addition to radioactive species. Physical forms of the waste include ion-exchange resins used to remove radioactive elementsmore » from nuclear reactor cooling water, lab equipment and tools (e.g., measurement and containment vessels, hoses, wrappings, equipment coverings and components, and countertops), oil products (e.g., vacuum pump and lubrication oils), bags and other storage containers (for liquids, solids, and gases), solvents, gloves, lab coats and anti-contamination clothing, and other items. Major polymer and chemical groups found in high-organic-content radioactive wastes include polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP), Teflon(TM), polystyrene (PS), nylon, latex, polyethylene terephthalate (PET), vinyl, high-density polyethylene (HDPE), polycarbonate, nitriles, Tygon(R), butyl, and Tyvec(R).« less

  12. Energy performance of an integrated bio-and-thermal hybrid system for lignocellulosic biomass waste treatment.

    PubMed

    Kan, Xiang; Yao, Zhiyi; Zhang, Jingxin; Tong, Yen Wah; Yang, Wenming; Dai, Yanjun; Wang, Chi-Hwa

    2017-03-01

    Lignocellulosic biomass waste, a heterogeneous complex of biodegradables and non-biodegradables, accounts for large proportion of municipal solid waste. Due to limitation of single-stage treatment, a two-stage hybrid AD-gasification system was proposed in this work, in which AD acted as pre-treatment to convert biodegradables into biogas followed by gasification converting solid residue into syngas. Energy performance of single and two-stage systems treating 3 typical lignocellulosic wastes was studied using both experimental and numerical methods. In comparison with conventional single-stage gasification treatment, this hybrid system could significantly improve the quality of produced gas for all selected biomass wastes and show its potential in enhancing total gas energy production by a maximum value of 27% for brewer's spent grain treatment at an organic loading rate (OLR) of 3gVS/L/day. The maximum overall efficiency of the hybrid system for horticultural waste treatment was 75.2% at OLR of 11.3gVS/L/day, 5.5% higher than conventional single-stage system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Cardboard proportions and total solids contents as driving factors in dry co-fermentation of food waste.

    PubMed

    Capson-Tojo, Gabriel; Trably, Eric; Rouez, Maxime; Crest, Marion; Bernet, Nicolas; Steyer, Jean-Philippe; Delgenès, Jean-Philippe; Escudié, Renaud

    2018-01-01

    This study evaluated the influence of the co-substrate proportions (0-60% of cardboard in dry basis) and the initial total solid contents (20-40%) on the batch fermentation performance. Maximum hydrogen yields were obtained when mono-fermenting food waste at high solids contents (89mlH 2 ·gVS -1 ). The hydrogen yields were lower when increasing the proportions of cardboard. The lower hydrogen yields at higher proportions of cardboard were translated into higher yields of caproic acid (up to 70.1gCOD·kgCOD bio -1 ), produced by consumption of acetic acid and hydrogen. The highest substrate conversions were achieved at low proportions of cardboard, indicating a stabilization effect due to higher buffering capacities in co-fermentation. Clostridiales were predominant in all operational conditions. This study opens up new possibilities for using the cardboard proportions for controlling the production of high added-value products in dry co-fermentation of food waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The input and output management of solid waste using DEA models: A case study at Jengka, Pahang

    NASA Astrophysics Data System (ADS)

    Mohamed, Siti Rosiah; Ghazali, Nur Fadzrina Mohd; Mohd, Ainun Hafizah

    2017-08-01

    Data Envelopment Analysis (DEA) as a tool for obtaining performance indices has been used extensively in several of organizations sector. The ways to improve the efficiency of Decision Making Units (DMUs) is impractical because some of inputs and outputs are uncontrollable and in certain situation its produce weak efficiency which often reflect the impact for operating environment. Based on the data from Alam Flora Sdn. Bhd Jengka, the researcher wants to determine the efficiency of solid waste management (SWM) in town Jengka Pahang using CCRI and CCRO model of DEA and duality formulation with vector average input and output. Three input variables (length collection in meter, frequency time per week in hour and number of garbage truck) and 2 outputs variables (frequency collection and the total solid waste collection in kilogram) are analyzed. As a conclusion, it shows only three roads from 23 roads are efficient that achieve efficiency score 1. Meanwhile, 20 other roads are in an inefficient management.

  15. An ecotoxic risk assessment of residue materials produced by the plasma pyrolysis/vitrification (PP/V) process.

    PubMed

    Lapa, N; Santos, Oliveira J F; Camacho, S L; Circeo, L J

    2002-01-01

    Plasma is the fourth state of matter, following the three states of solid, liquid and gas. Experience has amply demonstrated that solids exposed to the oxygen-deficient plasma flame are converted to liquid, and liquid exposed to the same flame is converted to gas. A low amount of vitrified solid residue material usually remains at the end of this process. Plasma pyrolysis/vitrification (PP/V) has been demonstrated as a safe, efficient, cost-effective technology for the treatment of wastes, including hazardous wastes. Besides the low amounts of gaseous byproducts that PP/V produces, the solid vitrified residue presents a low leachability of pollutants. Studies have been performed in many countries in order to assess the leachability of chemical substances. But from the results of identified studies, none has reported results on the ecotoxicological properties of the leachates. The aim of this study was to contribute to the assessment of ecotoxic risk of four different vitrified materials. Vitrified samples of contaminated soils, municipal solid wastes, and incinerator bottom ashes were submitted to the European leaching pre-standard test number prEN 12457-2. The leachates were analyzed for 22 chemical parameters. The biological characterization comprised the assessment of bioluminescence inhibition of Photobacterium phosphoreum bacterium, growth inhibition of Pseudokirchneriella subcapitata algae and the germination inhibition of Lactuca sativa vegetable. The chemical and ecotoxicological results were analyzed according to the French proposal of Criteria on the Evaluation Methods of Waste Toxicity (CEMWT) and a Toxicity Classification System (TCS). The chemical and ecotoxicological results indicated a low leachability of pollutants and a low toxicity level of leachates. All samples studied were as below the TCS class 1 level (no significant toxicity observed) and as non-ecotoxic for CEMWT. Therefore, the environmental ecotoxic risk of the analyzed vitrified samples was determined to be very low.

  16. Leaching of heavy metals from E-waste in simulated landfill columns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Yadong; Richardson, Jay B.; Mark Bricka, R.

    2009-07-15

    In recent history the volume of electronic products purchased by consumers has dramatically escalated. As a result this has produced an ever-increasing electronic waste (E-waste) stream, which has generated concerns regarding the E-waste's potential for adversely impacting the environment. The leaching of toxic substances from obsolete personal computers (PCs) and cathode ray tubes (CRTs) of televisions and monitors, which are the most significant components in E-waste stream, was studied using landfill simulation in columns. Five columns were employed. One column served as a control which was filled with municipal solid waste (MSW), two columns were filled with a mixture ofmore » MSW and CRTs, and the other two were filled with MSW and computer components including printed wire boards, hard disc drives, floppy disc drives, CD/DVD drives, and power supply units. The leachate generated from the columns was monitored for toxic materials throughout the two-year duration of the study. Results indicate that lead (Pb) and various other heavy metals that were of environmental and health concern were not detected in the leachate from the simulators. When the samples of the solids were collected from underneath the E-waste in the columns and were analyzed, significant amount of Pb was detected. This indicates that Pb could readily leach from the E-waste, but was absorbed by the solids around the E-waste materials. While Pb was not observed in the leachate in this study, it is likely that the Pb would eventually enter the leachate after a long term transport.« less

  17. Development of a Solid-State Fermentation System for Producing Bioethanol from Food Waste

    NASA Astrophysics Data System (ADS)

    Honda, Hiroaki; Ohnishi, Akihiro; Fujimoto, Naoshi; Suzuki, Masaharu

    Liquid fermentation is the a conventional method of producing bioethanol. However, this method results in the formation of high concentrations waste after distillation and futher treatment requires more energy and is costly(large amounts of costly energy).Saccharification of dried raw garbage was tested for 12 types of Koji starters under the following optimum culture conditions: temperature of 30°C and initial moisture content of 50%.Among all the types, Aspergillus oryzae KBN650 had the highest saccharifying power. The ethanol-producing ability of the raw garbage was investigated for 72 strains of yeast, of which Saccharomyces cerevisiae A30 had the highest ethanol production(yield)under the following optimum conditions: 1 :1 ratio of dried garbage and saccharified garbage by weight, and initial moisture content of 60%. Thus, the solid-state fermentation system consisted of the following 4 processes: moisture control, saccharification, ethanol production and distillation. This system produced 0.6kg of ethanol from 9.6kg of garbage. Moreover the ethanol yield from all sugars was calculated to be 0.37.

  18. A study on production of biodiesel using a novel solid oxide catalyst derived from waste.

    PubMed

    Majhi, Samrat; Ray, Srimanta

    2016-05-01

    The issues of energy security, dwindling supply and inflating price of fossil fuel have shifted the global focus towards fuel of renewable origin. Biodiesel, having renewable origin, has exhibited great potential as substitute for fossil fuels. The most common route of biodiesel production is through transesterification of vegetable oil in presence of homogeneous acid or base or solid oxide catalyst. But, the economics of biodiesel is not competitive with respect to fossil fuel due to high cost of production. The vegetable oil waste is a potential alternative for biodiesel production, particularly when disposal of used vegetable oil has been restricted in several countries. The present study evaluates the efficacy of a low-cost solid oxide catalyst derived from eggshell (a food waste) in transesterification of vegetable oil and simulated waste vegetable oil (SWVO). The impact of thermal treatment of vegetable oil (to simulate frying operation) on transesterification using eggshell-derived solid oxide catalyst (ESSO catalyst) was also evaluated along with the effect of varying reaction parameters. The study reported that around 90 % biodiesel yield was obtained with vegetable oil at methanol/oil molar ratio of 18:1 in 3 h reaction time using 10 % ESSO catalyst. The biodiesel produced with ESSO catalyst from SWVO, thermally treated at 150 °C for 24 h, was found to conform with the biodiesel standard, but the yield was 5 % lower compared to that of the untreated oil. The utilization of waste vegetable oil along with waste eggshell as catalyst is significant for improving the overall economics of the biodiesel in the current market. The utilization of waste for societal benefit with the essence of sustainable development is the novelty of this work.

  19. Solid and hazardous waste management practices onboard ocean going vessels: a review.

    PubMed

    Swamy, Yeddanapudi V R P P

    2012-01-01

    Shipping or carriage of goods play an important role in the development of human societies and international shipping industry, which carries 90% of the world trade, is the life blood of global economy. During ships operational activity a number of solid and hazardous wastes, also referred as garbage are produced from galleys, crew cabins and engine/deck departments stores. This review provides an overview of the current practices onboard and examines the evidence that links waste management plan regulations to shipping trade. With strict compliance to International Maritime Organization's MARPOL regulations, which prevents the pollution of sea from ships various discharges, well documented solid and hazardous waste management practices are being followed onboard ships. All ship board wastes are collected, segregated, stored and disposed of in appropriate locations, in accordance with shipping company's environmental protection policy and solid and hazardous waste management plan. For example, food residues are ground onboard and dropped into the sea as fish food. Cardboard and the like are burned onboard in incinerators. Glass is sorted into dark/light and deposited ashore, as are plastics, metal, tins, batteries, fluorescent tubes, etc. The residue from plastic incineration which is still considered as plastic is brought back to shore for disposal. New targets are being set up to reduce the volume of garbage generated and disposed of to shore facilities, and newer ships are using baling machines which compress cardboard etc into bales to be taken ashore. The garbage management and its control system work as a 'continual improvement' process to achieve new targets.

  20. Reducing acid leaching of manganiferous ore: effect of the iron removal operation on solid waste disposal.

    PubMed

    De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Vegliò, Francesco

    2009-01-01

    The process of reducing acid leaching of manganiferous ore is aimed at the extraction of manganese from low grade manganese ores. This work is focused on the iron removal operation. The following items have been considered in order to investigate the effect of the main operating conditions on solid waste disposal and on the process costs: (i) type and quantity of the base agent used for iron precipitation, (ii) effective need of leaching waste separation prior to the iron removal operation, (iii) presence of a second leaching stage with the roasted ore, which might also act as a preliminary iron removal step, and (iv) effect of tailings washing on the solid waste classification. Different base compounds have been tested, including CaO, CaCO3, NaOH, and Na2CO3. The latter gave the best results concerning both the precipitation process kinetics and the reagent consumption. The filtration of the liquor leach prior to iron removal was not necessary, implying significant savings in capital costs. A reduction of chemical consumption and an increase of manganese concentration in the solution were obtained by introducing secondary leaching tests with the previously roasted ore; this additional step was introduced without a significant decrease of global manganese extraction yield. Finally, toxicity characteristic leaching procedure (TCLP) tests carried out on the leaching solid waste showed: (i) a reduction of arsenic mobility in the presence of iron precipitates, and (ii) the need for a washing step in order to produce a waste that is classifiable as not dangerous, taking into consideration the existing Environmental National Laws.

  1. Pyrolysis processing for solid waste resource recovery

    NASA Technical Reports Server (NTRS)

    Wojtowicz, Marek A. (Inventor); Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Suuberg, Eric M. (Inventor)

    2007-01-01

    Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.

  2. Satellite Power System (SPS) environmental impacts, preliminary assessment

    NASA Technical Reports Server (NTRS)

    Livingston, F. R.

    1978-01-01

    Present power plant assessment factors are used to present satellite power system (SPS) impacts. In contrast to oil, gas, nuclear and coal fueled power plants, the SPS and hydroelectric power plants produce air, water, and solid waste emissions only during the construction phase. Land use impacts result from the placement of rectennas used for microwave receiving and rectifying. Air quality impacts of the SPS resulting from the construction phase amount to 0.405 metric tons per megawatt year. Solid wastes impacts are 0.108 metric tons per year of operation. Other impacts such as those caused by heavy lift launch vehicle sites are also discussed.

  3. Emission of nanoparticles during combustion of waste biomass in fireplace

    NASA Astrophysics Data System (ADS)

    Drastichová, Vendula; Krpec, Kamil; Horák, Jiří; Hopan, František; Kubesa, Petr; Martiník, Lubomír; Koloničný, Jan; Ochodek, Tadeáš; Holubčík, Michal

    2014-08-01

    Contamination of air by solid particles is serious problem for human health and also environment. Small particles in nano-sizes are more dangerous than same weight of larger size. Negative effect namely of the solid particles depends on (i) number, (ii) specific surface area (iii) respirability and (iv) bonding of others substances (e.g. PAHs, As, Cd, Zn, Cu etc.) which are higher for smaller (nano-sizes) particles compared to larger one. For this reason mentioned above this contribution deals with measuring of amount, and distribution of nanoparticles produced form combustion of waste city biomass in small combustion unit with impactor DLPI.

  4. Actinides in metallic waste from electrometallurgical treatment of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Janney, D. E.; Keiser, D. D.

    2003-09-01

    Argonne National Laboratory has developed a pyroprocessing-based technique for conditioning spent sodium-bonded nuclear-reactor fuel in preparation for long-term disposal. The technique produces a metallic waste form whose nominal composition is stainless steel with 15 wt.% Zr (SS-15Zr), up to ˜ 11 wt.% actinide elements (primarily uranium), and a few percent metallic fission products. Actual and simulated waste forms show similar eutectic microstructures with approximately equal proportions of iron solid solution phases and Fe-Zr intermetallics. This article reports on an analysis of simulated waste forms containing uranium, neptunium, and plutonium.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gug, JeongIn, E-mail: Jeongin_gug@student.uml.edu; Cacciola, David, E-mail: david_cacciola@student.uml.edu; Sobkowicz, Margaret J., E-mail: Margaret_sobkowiczkline@uml.edu

    Highlights: • Briquetting was used to produce solid fuels from municipal solid waste and recycled plastics. • Optimal drying, processing temperature and pressure were found to produce stable briquettes. • Addition of waste plastics yielded heating values comparable with typical coal feedstocks. • This processing method improves utilization of paper and plastic diverted from landfills. - Abstract: Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW)more » is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette sample composition was similar to biomass fuels but had significant advantages due to addition of waste plastics that have high energy content compared to other waste types. Addition of PP and HDPE presented better benefits than addition of PET due to lower softening temperature and lower oxygen content. It should be noted that while harmful emissions such as dioxins, furans and mercury can result from burning plastics, WTE facilities have been able to control these emissions to meet US EPA standards. This research provides a drop-in coal replacement that reduces demand on landfill space and replaces a significant fraction of fossil-derived fuel with a renewable alternative.« less

  6. Method of draining water through a solid waste site without leaching

    DOEpatents

    Treat, Russell L.; Gee, Glendon W.; Whyatt, Greg A.

    1993-01-01

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  7. Method of draining water through a solid waste site without leaching

    DOEpatents

    Treat, R.L.; Gee, G.W.; Whyatt, G.A.

    1993-02-02

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  8. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept.

    PubMed

    Hughes, Stephen R; López-Núñez, Juan Carlos; Jones, Marjorie A; Moser, Bryan R; Cox, Elby J; Lindquist, Mitch; Galindo-Leva, Luz Angela; Riaño-Herrera, Néstor M; Rodriguez-Valencia, Nelson; Gast, Fernando; Cedeño, David L; Tasaki, Ken; Brown, Robert C; Darzins, Al; Brunner, Lane

    2014-10-01

    The environmental impact of agricultural waste from the processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from the processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the economies of many countries because its cultivation, processing, trading, and marketing provide employment for millions of people. In coffee-producing countries, improved technology for treatment of the significant amounts of coffee waste is critical to prevent ecological damage. This mini-review discusses a multi-stage biorefinery concept with the potential to convert waste produced at crop processing operations, such as coffee pulping stations, to valuable biofuels and bioproducts using biochemical and thermochemical conversion technologies. The initial bioconversion stage uses a mutant Kluyveromyces marxianus yeast strain to produce bioethanol from sugars. The resulting sugar-depleted solids (mostly protein) can be used in a second stage by the oleaginous yeast Yarrowia lipolytica to produce bio-based ammonia for fertilizer and are further degraded by Y. lipolytica proteases to peptides and free amino acids for animal feed. The lignocellulosic fraction can be ground and treated to release sugars for fermentation in a third stage by a recombinant cellulosic Saccharomyces cerevisiae, which can also be engineered to express valuable peptide products. The residual protein and lignin solids can be jet cooked and passed to a fourth-stage fermenter where Rhodotorula glutinis converts methane into isoprenoid intermediates. The residues can be combined and transferred into pyrocracking and hydroformylation reactions to convert ammonia, protein, isoprenes, lignins, and oils into renewable gas. Any remaining waste can be thermoconverted to biochar as a humus soil enhancer. The integration of multiple technologies for treatment of coffee waste has the potential to contribute to economic and environmental sustainability.

  9. Urban Environmental Education Project, Curriculum Module VI: Solid Waste - Trash or Treasure?

    ERIC Educational Resources Information Center

    Biglan, Barbara

    Included in this module are four activities dealing with issues of solid waste disposal relative to urban concerns. Included activities are: (1) sources and composition of solid waste; (2) a "garbage game"; (3) disposal options for solid waste; and (4) an example county plan for solid waste disposal. Also included are an overview, teacher…

  10. 76 FR 16538 - Solid Waste Rail Transfer Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-24

    ... circumstances. Upon receiving a land-use-exemption permit issued by the Board, a solid waste rail transfer... new application for a land-use-exemption permit if the rail line associated with the solid waste rail... transportation of solid waste by rail. (2) The Board will not grant a land-use-exemption permit for a solid waste...

  11. MSW management for waste minimization in Taiwan: The last two decades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, L.-T.; Hsiao, T.-Y.; Shang, N.-C.

    2006-07-01

    Taiwan is the second most densely populated country in the world; its 22.604 million residents (2002) live in an area of 35,967 km{sup 2} (628 people/km{sup 2}). Taiwan's economy has grown rapidly during the last 20 years, resulting in a corresponding increase in the amount of municipal solid waste (MSW). This study describes and evaluates the municipal solid waste management system in Taiwan. The study's results indicate that the amount of MSW began to decline after 1997, when the government enforced aggressive MSW management policies. By 2002, total MSW production had dropped by 27%, and the average daily per capitamore » weight of MSW had fallen from 1.14 kg in 1997 to 0.81 kg in 2002. Summarizing the successful experience of MSW reduction in Taiwan, the most important factor was the government's combining of the MSW collection system with reduction/recycling programs. The second most important factor was the policy of extended producer responsibility, which laid a foundation of recycling by producers and retailers and promoted public recycling.« less

  12. Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review

    PubMed Central

    Teixeira, Ana; Baenas, Nieves; Dominguez-Perles, Raul; Barros, Ana; Rosa, Eduardo; Moreno, Diego A.; Garcia-Viguera, Cristina

    2014-01-01

    The relevance of food composition for human health has increased consumers’ interest in the consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals. This fact has led to a growing attention of suppliers on reuse of agro-industrial wastes rich in healthy plant ingredients. On this matter, grape has been pointed out as a rich source of bioactive compounds. Currently, up to 210 million tons of grapes (Vitis vinifera L.) are produced annually, being the 15% of the produced grapes addressed to the wine-making industry. This socio-economic activity generates a large amount of solid waste (up to 30%, w/w of the material used). Winery wastes include biodegradable solids namely stems, skins, and seeds. Bioactive compounds from winery by-products have disclosed interesting health promoting activities both in vitro and in vivo. This is a comprehensive review on the phytochemicals present in winery by-products, extraction techniques, industrial uses, and biological activities demonstrated by their bioactive compounds concerning potential for human health. PMID:25192288

  13. Performance evaluation of integrated solid-liquid wastes treatment technology in palm oil industry

    NASA Astrophysics Data System (ADS)

    Amelia, J. R.; Suprihatin, S.; Indrasti, N. S.; Hasanudin, U.; Fujie, K.

    2017-05-01

    The oil palm industry significantly contributes to environmental degradation if without waste management properly. The newest alternative waste management that might be developed is by utilizing the effluent of POME anaerobic digestion with EFB through integrated anaerobic decomposition process. The aim of this research was to examine and evaluate the integrated solid-liquid waste treatment technology in the view point of greenhouse gasses emission, compost, and biogas production. POME was treated in anaerobic digester with loading rate about 1.65 gCOD/L/day. Treated POME with dosis of 15 and 20 L/day was sprayed to the anaerobic digester that was filled of 25 kg of EFB. The results of research showed that after 60 days, the C/N ratio of EFB decreased to 12.67 and 10.96 for dosis of treated POME 15 and 20 L/day, respectively. In case of 60 day decomposition, the integrated waste treatment technology could produce 51.01 and 34.34 m3/Ton FFB which was equivalent with 636,44 and 466,58 kgCO2e/ton FFB for dosis of treated POME 15 and 20 L/day, respectively. The results of research also showed that integrated solid-liquid wastes treatment technology could reduce GHG emission about 421.20 and 251.34 kgCO2e/ton FFB for dosis of treated POME 15 and 20 L/day, respectively.

  14. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium.

    PubMed

    Oliveira, Luiz C A; Gonçalves, Maraísa; Oliveira, Diana Q L; Guerreiro, Mário C; Guilherme, Luiz R G; Dallago, Rogério M

    2007-03-06

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80mgg(-1)) and textile dye reactive red (163mgg(-1)), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials.

  15. Nutrient characterisation and bioenergy potential of common Nigerian food wastes.

    PubMed

    Longjan, Gurumwal George; Dehouche, Zahir

    2018-05-01

    Nigeria is the world's largest producer of yam, cassava, cocoyam/taro, beans/cowpea, egusi/melon seeds and among the largest producers of groundnut/peanut, plantain, corn/maize and ugwu/pumpkin leaves. These food crops generate unavoidable food wastes that can contribute to environmental degradation through unsanctioned waste disposal methods. Such food wastes can be utilised as feedstock for the anaerobic digestion (AD) process to produce renewable energy. In order to determine the suitability of the food wastes as biofuel feedstock, they were experimentally analysed. Their waste content was determined, characterised and used to evaluate their bio-methane potential. The tests were performed using standard proximate analytical methods while the bioenergy potential of the samples was determined using the Baserga model. Results indicated a specific waste index range of 0.2-1.5, with corn having the highest waste proportion. The proximate analysis results of the wastes were within the range of common AD feedstocks such as energy crops and plant by-products. The bio-methane potentials of the samples varied widely with results ranging from 35-460 m 3 tonne -1 on fresh weight and (5.4-6.2) × 10 5 m 3 kg -1 on volatile solid basis. The methane potential varied between 51% and 58% of produced biogas. The energy potential of the food wastes was 31 TWh yr -1 which can make a substantial contribution to the bioenergy production of the country and meet up to the energy demand of 4.7 × 10 7 Nigerian households. Further studies would be required to determine the actual biogas yields of the food wastes.

  16. Estimating municipal solid waste generation by different activities and various resident groups: a case study of Beijing.

    PubMed

    Li, Zhen-shan; Fu, Hui-zhen; Qu, Xiao-yan

    2011-09-15

    Reliable and accurate determinations of the quantities and composition of wastes is required for the planning of municipal solid waste (MSW) management systems. A model, based on the interrelationships of expenditure on consumer goods, time distribution, daily activities, residents groups, and waste generation, was developed and employed to estimate MSW generation by different activities and resident groups in Beijing. The principle is that MSW is produced by consumption of consumer goods by residents in their daily activities: 'Maintenance' (meeting the basic needs of food, housing and personal care), 'Subsistence' (providing the financial requirements) and 'Leisure' (social and recreational pursuits) activities. Three series of important parameters - waste generation per unit of consumer expenditure, consumer expenditure distribution to activities in unit time, and time assignment to activities by different resident groups - were determined using a statistical analysis, a sampling survey and the Analytic Hierarchy Process, respectively. Data for analysis were obtained from the Beijing Statistical Yearbook (2004-2008) and questionnaire survey. The results reveal that 'Maintenance' activity produced the most MSW, distantly followed by 'Leisure' and 'Subsistence' activities. In 2008, in descending order of MSW generation the different resident groups were floating population, non-civil servants, retired people, civil servants, college students (including both undergraduates and graduates), primary and secondary students, and preschoolers. The new estimation model, which was successful in fitting waste generation by different activities and resident groups over the investigated years, was amenable to MSW prediction. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Anthropogenic mercury emissions from 1980 to 2012 in China.

    PubMed

    Huang, Ying; Deng, Meihua; Li, Tingqiang; Japenga, Jan; Chen, Qianqian; Yang, Xiaoe; He, Zhenli

    2017-07-01

    China was considered the biggest contributor for airborne mercury in the world but the amount of mercury emission in effluents and solid wastes has not been documented. In this study, total national and regional mercury emission to the environment via exhaust gases, effluents and solid wastes were accounted with updated emission factors and the amount of goods produced and/or consumed. The national mercury emission in China increased from 448 to 2151 tons during the 1980-2012 period. Nearly all of the emissions were ended up as exhaust gases and solid wastes. The proportion of exhaust gases decreased with increasing share of solid wastes and effluents. Of all the anthropogenic sources, coal was the most important contributor in quantity, followed by mercury mining, gold smelting, nonferrous smelting, iron steel production, domestic wastes, and cement production, with accounting for more than 90% of the total emission. There was a big variation of regional cumulative mercury emission during 1980-2012 in China, with higher emissions occurred in eastern areas and lower values in the western and far northern regions. The biggest cumulative emission occurred in GZ (Guizhou), reaching 3974 t, while the smallest cumulative emission was lower than 10 t in XZ (Tibet). Correspondingly, mercury accumulation in soil were higher in regions with larger emissions in unit area. Therefore, it is urgent to reduce anthropogenic mercury emission and subsequent impact on ecological functions and human health. Copyright © 2017. Published by Elsevier Ltd.

  18. Simulation of municipal solid waste degradation in aerobic and anaerobic bioreactor landfills.

    PubMed

    Patil, Bhagwan Shamrao; C, Agnes Anto; Singh, Devendra Narain

    2017-03-01

    Municipal solid waste generation is huge in growing cities of developing nations such as India, owing to the rapid industrial and population growth. In addition to various methods for treatment and disposal of municipal solid waste (landfills, composting, bio-methanation, incineration and pyrolysis), aerobic/anaerobic bioreactor landfills are gaining popularity for economical and effective disposal of municipal solid waste. However, efficiency of municipal solid waste bioreactor landfills primarily depends on the municipal solid waste decomposition rate, which can be accelerated through monitoring moisture content and temperature by using the frequency domain reflectometry probe and thermocouples, respectively. The present study demonstrates that these landfill physical properties of the heterogeneous municipal solid waste mass can be monitored using these instruments, which facilitates proper scheduling of the leachate recirculation for accelerating the decomposition rate of municipal solid waste.

  19. Amending the Structure of Renewable Carbon from Biorefinery Waste-Streams for Energy Storage Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Hoi Chun; Goswami, Monojoy; Chen, Jihua

    Biorefineries produce impure sugar waste streams that are being underutilized. By converting this waste to a profitable by-product, biorefineries could be safeguarded against low oil prices. We demonstrate controlled production of useful carbon materials from the waste concentrate via hydrothermal synthesis and carbonization. We devise a pathway to producing tunable, porous spherical carbon materials by modeling the gross structure formation and developing an understanding of the pore formation mechanism utilizing simple reaction principles. Compared to a simple hydrothermal synthesis from sugar concentrate, emulsion-based synthesis results in hollow spheres with abundant microporosity. In contrast, conventional hydrothermal synthesis produces solid beads withmore » micro and mesoporosity. All the carbonaceous materials show promise in energy storage application. Using our reaction pathway, perfect hollow activated carbon spheres can be produced from waste sugar in liquid effluence of biomass steam pretreatment units. As a result, the renewable carbon product demonstrated a desirable surface area of 872 m 2/g and capacitance of up to 109 F/g when made into an electric double layer supercapacitor. The capacitor exhibited nearly ideal capacitive behavior with 90.5% capacitance retention after 5000 cycles.« less

  20. Analysis the potential gas production of old municipal solid waste landfill as an alternative energy source: Preliminary results

    NASA Astrophysics Data System (ADS)

    Hayati, A. P.; Emalya, N.; Munawar, E.; Schwarzböck, T.; Lederer, J.; Fellner, J.

    2018-03-01

    The MSW landfill produces gas which is represent the energy resource that lost and polluted the ambient air. The objective of this study is to evaluate the potential gas production of old landfill as an alternative energy source. The study was conducted by using 10 years old waste in landfill simulator reactor (LSR). Four Landfills Simulator Reactors (LSR) were constructed for evaluate the gas production of old MSW landfilled. The LSR was made of high density poly ethylene (HDPE) has 50 cm outside diameter and 150 cm of high. The 10 years old waste was excavated from closed landfill and subsequently separated from inorganic fraction and sieved to maximum 50 mm size particle prior emplaced into the LSR. Although quite small compare to the LSR containing fresh waste has been reported, the LRS containing 10 years old waste still produce much landfill gas. The landfill gas produced of LSR operated with and without leachate recirculation were about 29 and 21 litter. The composition of landfill gas produced was dominated by CO2 with the composition of CH4 and O2 were around 12.5% and 0.2 %, respectively.

  1. Amending the Structure of Renewable Carbon from Biorefinery Waste-Streams for Energy Storage Applications

    DOE PAGES

    Ho, Hoi Chun; Goswami, Monojoy; Chen, Jihua; ...

    2018-05-29

    Biorefineries produce impure sugar waste streams that are being underutilized. By converting this waste to a profitable by-product, biorefineries could be safeguarded against low oil prices. We demonstrate controlled production of useful carbon materials from the waste concentrate via hydrothermal synthesis and carbonization. We devise a pathway to producing tunable, porous spherical carbon materials by modeling the gross structure formation and developing an understanding of the pore formation mechanism utilizing simple reaction principles. Compared to a simple hydrothermal synthesis from sugar concentrate, emulsion-based synthesis results in hollow spheres with abundant microporosity. In contrast, conventional hydrothermal synthesis produces solid beads withmore » micro and mesoporosity. All the carbonaceous materials show promise in energy storage application. Using our reaction pathway, perfect hollow activated carbon spheres can be produced from waste sugar in liquid effluence of biomass steam pretreatment units. As a result, the renewable carbon product demonstrated a desirable surface area of 872 m 2/g and capacitance of up to 109 F/g when made into an electric double layer supercapacitor. The capacitor exhibited nearly ideal capacitive behavior with 90.5% capacitance retention after 5000 cycles.« less

  2. Development of high-performance supercapacitor electrode derived from sugar industry spent wash waste.

    PubMed

    Mahto, Ashesh; Gupta, Rajeev; Ghara, Krishna Kanta; Srivastava, Divesh N; Maiti, Pratyush; D, Kalpana; Rivera, Paul-Zavala; Meena, R; Nataraj, S K

    2017-10-15

    This study aims at developing supercapacitor materials from sugar and distillery industry wastes, thereby mediating waste disposal problem through reuse. In a two-step process, biomethanated spent wash (BMSW) was acid treated to produce solid waste sludge and waste water with significantly reduced total organic carbon (TOC) and biological oxygen demand (BOD) content. Further, waste sludge was directly calcined in presence of activating agent ZnCl 2 in inert atmosphere resulting in high surface area (730-900m 2 g -1 ) carbon of unique hexagonal morphology. Present technique resulted in achieving two-faceted target of liquid-solid waste remediation and production of high-performance carbon material. The resulted high surface area carbon was tested in both three and two electrode systems. Electrochemical tests viz. cyclic voltammetry, galvanostatic charge-discharge and impedance measurement were carried out in aqueous KOH electrolyte yielding specific capacitance as high as 120Fg -1 , whereas all solid supercapacitor devised using PVA/H 3 PO 4 polyelectrolyte showed stable capacitance of 105Fg -1 at 0.2Ag -1 . The presence of transition metal particles and hetero-atoms on carbon surface were confirmed by XPS, EDX and TEM analysis which enhanced the conductivity and imparted pseudocapacitance to some extent into the working electrode. The present study successfully demonstrated production of high-performance electrode material from dirtiest wastewater making process green, sustainable and economically viable. Copyright © 2017. Published by Elsevier B.V.

  3. 40 CFR 240.201 - Solid wastes excluded.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Solid wastes excluded. 240.201 Section 240.201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.201 Solid...

  4. 40 CFR 240.201 - Solid wastes excluded.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Solid wastes excluded. 240.201 Section 240.201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.201 Solid...

  5. 40 CFR 240.200 - Solid wastes accepted.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Solid wastes accepted. 240.200 Section 240.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.200 Solid...

  6. 40 CFR 240.200 - Solid wastes accepted.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Solid wastes accepted. 240.200 Section 240.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.200 Solid...

  7. Effect of aeration rate and waste load on evolution of volatile fatty acids and waste stabilization during thermophilic aerobic digestion of a model high strength agricultural waste.

    PubMed

    Ugwuanyi, J Obeta; Harvey, L M; McNeil, B

    2005-04-01

    Thermophilic aerobic digestion (TAD) is a relatively new, dynamic and versatile low technology for the economic processing of high strength waste slurries. Waste so treated may be safely disposed of or reused. In this work a model high strength agricultural waste, potato peel, was subjected to TAD to study the effects of oxygen supply at 0.1, 0.25, 0.5 and 1.0 vvm (volume air per volume slurry per minute) under batch conditions at 55 degrees C for 156 h on the process. Process pH was controlled at 7.0 or left unregulated. Effects of waste load, as soluble chemical oxygen demand (COD), on TAD were studied at 4.0, 8.0, 12.0 and 16.0 gl(-1) (soluble COD) at pH 7.0, 0.5 vvm and 55 degrees C. Efficiency of treatment, as degradation of total solids, total suspended solids and soluble solid, as well as soluble COD significantly increased with aeration rate, while acetate production increased as the aeration rate decreased or waste load increased, signifying deterioration in treatment. Negligible acetate, and no other acids were produced at 1.0 vvm. Production of propionate and other acids increased after acetate concentration had started to decrease and, during unregulated reactions coincided with the drop in the pH of the slurry. Acetate production was more closely associated with periods of oxygen limitation than were other acids. Reduction in oxygen availability led to deterioration in treatment efficiency as did increase in waste load. These variables may be manipulated to control treated waste quality.

  8. 40 CFR 258.4 - Research, development, and demonstration permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS General § 258.4 Research, development, and... include such terms and conditions at least as protective as the criteria for municipal solid waste... and quantities of municipal solid waste and non-hazardous wastes which the State Director deems...

  9. 40 CFR 256.22 - Recommendations for State regulatory powers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste... prohibit new open dumps and close or upgrade all existing open dumps. (a) Solid waste disposal standards... solid waste disposal facility. These procedures should include identification of future land use or the...

  10. 40 CFR 258.4 - Research, development, and demonstration permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS General § 258.4 Research, development, and... include such terms and conditions at least as protective as the criteria for municipal solid waste... and quantities of municipal solid waste and non-hazardous wastes which the State Director deems...

  11. 40 CFR 256.22 - Recommendations for State regulatory powers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste... prohibit new open dumps and close or upgrade all existing open dumps. (a) Solid waste disposal standards... solid waste disposal facility. These procedures should include identification of future land use or the...

  12. 40 CFR 256.21 - Requirements for State regulatory powers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste... be adequate to enforce solid waste disposal standards which are equivalent to or more stringent than the criteria for classification of solid waste disposal facilities (40 CFR part 257). Such authority...

  13. 40 CFR 256.21 - Requirements for State regulatory powers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste... be adequate to enforce solid waste disposal standards which are equivalent to or more stringent than the criteria for classification of solid waste disposal facilities (40 CFR part 257). Such authority...

  14. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  15. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  16. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  17. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  18. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  19. Greenhouse gas emissions from solid waste in Beijing: The rising trend and the mitigation effects by management improvements.

    PubMed

    Yu, Yongqiang; Zhang, Wen

    2016-04-01

    Disposal of solid waste poses great challenges to city managements. Changes in solid waste composition and disposal methods, along with urbanisation, can certainly affect greenhouse gas emissions from municipal solid waste. In this study, we analysed the changes in the generation, composition and management of municipal solid waste in Beijing. The changes of greenhouse gas emissions from municipal solid waste management were thereafter calculated. The impacts of municipal solid waste management improvements on greenhouse gas emissions and the mitigation effects of treatment techniques of greenhouse gas were also analysed. Municipal solid waste generation in Beijing has increased, and food waste has constituted the most substantial component of municipal solid waste over the past decade. Since the first half of 1950s, greenhouse gas emission has increased from 6 CO2-eq Gg y(-1)to approximately 200 CO2-eq Gg y(-1)in the early 1990s and 2145 CO2-eq Gg y(-1)in 2013. Landfill gas flaring, landfill gas utilisation and energy recovery in incineration are three techniques of the after-emission treatments in municipal solid waste management. The scenario analysis showed that three techniques might reduce greenhouse gas emissions by 22.7%, 4.5% and 9.8%, respectively. In the future, if waste disposal can achieve a ratio of 4:3:3 by landfill, composting and incineration with the proposed after-emission treatments, as stipulated by the Beijing Municipal Waste Management Act, greenhouse gas emissions from municipal solid waste will decrease by 41%. © The Author(s) 2016.

  20. Food Waste Composting Study from Makanan Ringan Mas

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Ismail, S. N. M.; Jamaludin, S. N.

    2016-07-01

    The poor management of municipal solid waste in Malaysia has worsened over the years especially on food waste. Food waste represents almost 60% of the total municipal solid waste disposed in the landfill. Composting is one of low cost alternative method to dispose the food waste. This study is conducted to compost the food waste generation in Makanan Ringan Mas, which is a medium scale industry in Parit Kuari Darat due to the lack knowledge and exposure of food waste recycling practice. The aim of this study is to identify the physical and chemical parameters of composting food waste from Makanan Ringan Mas. The physical parameters were tested for temperature and pH value and the chemical parameter are Nitrogen, Phosphorus and Potassium. In this study, backyard composting was conducted with 6 reactors. Tapioca peel was used as fermentation liquid and soil and coconut grated were used as the fermentation bed. Backyard composting was conducted with six reactors. The overall results from the study showed that the temperature of the reactors were within the range which are from 30° to 50°C. The result of this study revealed that all the reactors which contain processed food waste tend to produce pH value within the range of 5 to 6 which can be categorized as slightly acidic. Meanwhile, the reactors which contained raw food waste tend to produce pH value within the range of 7 to 8 which can be categorized as neutral. The highest NPK obtained is from Reactor B that process only raw food waste. The average value of Nitrogen is 48540 mg/L, Phosphorus is 410 mg/L and Potassium is 1550 mg/L. From the comparison with common chemical fertilizer, it shows that NPK value from the composting are much lower than NPK of the common chemical fertilizer. However, comparison with NPK of organic fertilizer shown only slightly difference value in NPK.

  1. Testing and Analysis of the First Plastic Melt Waste Compactor Prototype

    NASA Technical Reports Server (NTRS)

    Pace, Gregory S.; Fisher, John W.

    2005-01-01

    A half scale Plastic Melt Waste Compactor prototype has been developed at NASA Ames Research Center. The half scale prototype unit will lead to the development of a full scale Plastic Melt Waste Compactor prototype that is representative of flight hardware that would be used on near and far term space missions. This report details the testing being done on the prototype Plastic Melt Waste Compactor by the Solid Waste Management group at NASA Ames Research Center. The tests are designed to determine the prototype's functionality, simplicity of operation, ability to contain and control noxious off-gassing, biological stability of the processed waste, and water recovery potential using a waste composite that is representative of the types of wastes produced on the International Space Station, Space Shuttle, MIR and Skylab missions.

  2. Life-Cycle Assessment of Biodiesel Produced from Grease Trap Waste.

    PubMed

    Hums, Megan E; Cairncross, Richard A; Spatari, Sabrina

    2016-03-01

    Grease trap waste (GTW) is a low-quality waste material with variable lipid content that is an untapped resource for producing biodiesel. Compared to conventional biodiesel feedstocks, GTW requires different and additional processing steps for biodiesel production due to its heterogeneous composition, high acidity, and high sulfur content. Life-cycle assessment (LCA) is used to quantify greenhouse gas emissions, fossil energy demand, and criteria air pollutant emissions for the GTW-biodiesel process, in which the sensitivity to lipid concentration in GTW is analyzed using Monte Carlo simulation. The life-cycle environmental performance of GTW-biodiesel is compared to that of current GTW disposal, the soybean-biodiesel process, and low-sulfur diesel (LSD). The disposal of the water and solid wastes produced from separating lipids from GTW has a high contribution to the environmental impacts; however, the impacts of these processed wastes are part of the current disposal practice for GTW and could be excluded with consequential LCA system boundaries. At lipid concentrations greater than 10%, most of the environmental metrics studied are lower than those of LSD and comparable to soybean biodiesel.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kara, Mustafa, E-mail: mustafa.kara@mam.gov.t; Guenay, Esin; Tabak, Yasemin

    Municipal solid waste (MSW) is one of the most important environmental problems arising from rapid urbanization and industrialization. The use of alternative fuels in rotary kilns of cement plants is very important for reducing cost, saving fossil fuels and also eliminating waste materials, accumulated during production or after using these materials. Cement industries has an important potential for supplying preferable solutions to the waste management. Energy recovery from waste is also important for the reduction of CO{sub 2} emissions. This paper presents an investigation of the development of refuse derived fuel (RDF) materials from non-recycling wastes and the determination ofmore » its potential use as an alternative fuel in cement production in Istanbul, Turkey. RDF produced from MSW was analyzed and its effects on cement production process were examined. For this purpose, the produced RDF was mixed with the main fuel (LPG) in ratios of 0%, 5%, 10%, 15% and 20%. Then chemical and mineralogical analyses of the produced clinker were carried out. It is believed that successful results of this study will be a good example for municipalities and cement industries in order to achieve both economic and environmental benefits.« less

  4. 40 CFR 256.23 - Requirements for closing or upgrading open dumps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid... classification of existing solid waste disposal facilities according to the criteria. This classification shall... solid waste disposal facility; (2) The availability of State regulatory and enforcement powers; and (3...

  5. 40 CFR 256.23 - Requirements for closing or upgrading open dumps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid... classification of existing solid waste disposal facilities according to the criteria. This classification shall... solid waste disposal facility; (2) The availability of State regulatory and enforcement powers; and (3...

  6. 76 FR 43489 - Deferral for CO2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    .... 221320 Sewage treatment facilities. 562212 Solid waste landfills. Fermentation processes......... 325193... processors burning agricultural biomass residues, using fermentation processes, or producing/using biogas... treatment or manure management processes; CO 2 from fermentation during ethanol production or other...

  7. Evaluation of municipal solid waste management in egyptian rural areas.

    PubMed

    El-Messery, Mamdouh A; Ismail, Gaber A; Arafa, Anwaar K

    2009-01-01

    A two years study was conducted to evaluate the solid waste management system in 143 villages representing the Egyptian rural areas. The study covers the legal responsibilities, service availability, environmental impacts, service providers, financial resources, private sector participation and the quality of collection services. According to UN reports more than 55% of Egyptian population lives in rural areas. A drastic change in the consumption pattern altered the quantity and quality of the generated solid wastes from these areas. Poor solid waste management systems are stigmata in most of the Egyptian rural areas. This causes several environmental and health problems. It has been found that solid waste collection services cover only 27% of the surveyed villages, while, the statistics show that 75% of the surveyed villages are formally covered. The service providers are local villager units, private contractors and civil community associations with a percentage share 71%, 24% and 5% respectively. The operated services among these sectors were 25%, 71% and 100% respectively. The share of private sector in solid waste management in rural areas is still very limited as a result of the poverty of these communities and the lack of recyclable materials in their solid waste. It has been found that direct throwing of solid waste on the banks of drains and canals as well as open dumping and uncontrolled burning of solid waste are the common practice in most of the Egyptian rural areas. The available land for landfill is not enough, pitiable designed, defectively constructed and unreliably operated. Although solid waste generated in rural areas has high organic contents, no composting plant was installed. Shortage in financial resources allocated for valorization of solid waste management in the Egyptian rural areas and lower collection fees are the main points of weakness which resulted in poor solid waste management systems. On the other hand, the farmer's participation in solid waste management through the composting of organic matter and using of food waste as an animal feed are considered strength points. However, throwing of solid waste on the banks of water streams, open dumping and uncontrolled burning of solid waste are environmental damaging behaviors that need to be changed. Integrated solid waste management in the Egyptian rural areas is not yet among the priorities of the Egyptian government.

  8. Design and operation of an anaerobic digester for waste management and fuel generation during long term lunar mission

    NASA Astrophysics Data System (ADS)

    Dhoble, Abhishek S.; Pullammanappallil, Pratap C.

    2014-10-01

    Waste treatment and management for manned long term exploratory missions to moon will be a challenge due to longer mission duration. The present study investigated appropriate digester technologies that could be used on the base. The effect of stirring, operation temperature, organic loading rate and reactor design on the methane production rate and methane yield was studied. For the same duration of digestion, the unmixed digester produced 20-50% more methane than mixed system. Two-stage design which separated the soluble components from the solids and treated them separately had more rapid kinetics than one stage system, producing the target methane potential in one-half the retention time than the one stage system. The two stage system degraded 6% more solids than the single stage system. The two stage design formed the basis of a prototype digester sized for a four-person crew during one year exploratory lunar mission.

  9. Utilization of different waste proteins to create a novel PGPR-containing bio-organic fertilizer

    PubMed Central

    Huang, Yan; Sun, Li; Zhao, Jianshu; Huang, Rong; Li, Rong; Shen, Qirong

    2015-01-01

    High-quality bio-organic fertilizers (BIOs) cannot be produced without the addition of some proteins, while many waste proteins are haphazardly disposed, causing serious environmental pollution. In this study, several waste proteins were used as additives to assist with the reproduction of the functional microbe (Bacillus amyloliquefaciens SQR9) inoculated into matured composts to produce BIOs. An optimized composition of solid-state fermentation (SSF) raw materials was predicted by response surface methodology and experimental validation. The results showed that 7.61% (w/w, DW, the same below) rapeseed meal, 8.85% expanded feather meal, 6.47% dewatered blue algal sludge and 77.07% chicken compost resulted in maximum biomass of strain SQR-9 and the maximum amount of lipopeptides 7 days after SSF. Spectroscopy experiments showed that the inner material structural changes in the novel SSF differed from the control and the novel BIO had higher dissolved organic matter. This study offers a high value-added utilization of waste proteins for producing economical but high-quality BIO. PMID:25586328

  10. Production of L-lactic Acid from Biomass Wastes Using Scallop Crude Enzymes and Novel Lactic Acid Bacterium

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Mitsunori; Nakamura, Kanami; Nakasaki, Kiyohiko

    In the present study, biomass waste raw materials including paper mill sludge, bamboo, sea lettuce, and shochu residue (from a distiller) and crude enzymes derived from inedible and discarded scallop parts were used to produce L-lactic acid for the raw material of biodegradable plastic poly-lactic acid. The activities of cellulase and amylase in the crude enzymes were 22 and 170units/L, respectively, and L-lactic acid was produced from every of the above mentioned biomass wastes, by the method of liquid-state simultaneous saccharification and fermentation (SSF) . The L-lactic acid concentrations produced from sea lettuce and shochu residue, which contain high concentration of starch were 3.6 and 9.3g/L, respectively, and corresponded to greater than 25% of the conversion of glucans contained in these biomass wastes. Furthermore, using the solid state SSF method, concentrations as high as 13g/L of L-lactic acid were obtained from sea lettuce and 26g/L were obtained from shochu residue.

  11. Utilization of different waste proteins to create a novel PGPR-containing bio-organic fertilizer

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Sun, Li; Zhao, Jianshu; Huang, Rong; Li, Rong; Shen, Qirong

    2015-01-01

    High-quality bio-organic fertilizers (BIOs) cannot be produced without the addition of some proteins, while many waste proteins are haphazardly disposed, causing serious environmental pollution. In this study, several waste proteins were used as additives to assist with the reproduction of the functional microbe (Bacillus amyloliquefaciens SQR9) inoculated into matured composts to produce BIOs. An optimized composition of solid-state fermentation (SSF) raw materials was predicted by response surface methodology and experimental validation. The results showed that 7.61% (w/w, DW, the same below) rapeseed meal, 8.85% expanded feather meal, 6.47% dewatered blue algal sludge and 77.07% chicken compost resulted in maximum biomass of strain SQR-9 and the maximum amount of lipopeptides 7 days after SSF. Spectroscopy experiments showed that the inner material structural changes in the novel SSF differed from the control and the novel BIO had higher dissolved organic matter. This study offers a high value-added utilization of waste proteins for producing economical but high-quality BIO.

  12. 40 CFR 264.101 - Corrective action for solid waste management units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.101 Corrective action for...

  13. 40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the storage of solid waste military munitions. (a) Criteria for hazardous waste regulation of...

  14. 40 CFR 266.203 - Standards applicable to the transportation of solid waste military munitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... transportation of solid waste military munitions. 266.203 Section 266.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the transportation of solid waste military munitions. (a) Criteria for hazardous waste...

  15. 40 CFR 264.101 - Corrective action for solid waste management units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.101 Corrective action for...

  16. 40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the storage of solid waste military munitions. (a) Criteria for hazardous waste regulation of...

  17. 40 CFR 266.203 - Standards applicable to the transportation of solid waste military munitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... transportation of solid waste military munitions. 266.203 Section 266.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the transportation of solid waste military munitions. (a) Criteria for hazardous waste...

  18. 40 CFR 266.203 - Standards applicable to the transportation of solid waste military munitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... transportation of solid waste military munitions. 266.203 Section 266.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the transportation of solid waste military munitions. (a) Criteria for hazardous waste...

  19. 40 CFR 266.203 - Standards applicable to the transportation of solid waste military munitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... transportation of solid waste military munitions. 266.203 Section 266.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the transportation of solid waste military munitions. (a) Criteria for hazardous waste...

  20. 40 CFR 266.203 - Standards applicable to the transportation of solid waste military munitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... transportation of solid waste military munitions. 266.203 Section 266.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the transportation of solid waste military munitions. (a) Criteria for hazardous waste...

  1. The potential of household solid waste reduction in Sukomanunggal District, Surabaya

    NASA Astrophysics Data System (ADS)

    Warmadewanthi, I. D. A. A.; Kurniawati, S.

    2018-01-01

    The rapid population growth affects the amount of waste generated. Sukomanunggal Subdistrict is the densest area in West Surabaya which has a population of 100,602 inhabitants with a total area of 11.2 km2. The population growth significantly affects the problem of limited land for landfill facilities (final processing sites). According to the prevailing regulations, solid waste management solutions include the solid waste reduction and management. This study aims to determine the potential reduction of household solid waste at the sources. Household solid waste samplings were performed for eight consecutive days. The samples were then analyzed to obtain the generation rate, density, and composition so that the household solid waste reduction potential for the next 20 years could be devised. Results of the analysis showed that the value of waste is 0.27 kg/person/day, while the total household solid waste generation amounted to 27,162.58 kg/day or 187.70 m3/day. Concerning the technical aspects, the current solid waste reduction in Sukomanunggal Subdistrict has reached 2.1% through the application of waste bank, composting, and scavenging activities at the dumping sites by the garbage collectors. In the year of 2036, the potential reduction of household solid waste in Sukomanunggal Subdistrict has been estimated to reach 28.0%.

  2. 40 CFR 240.101 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Solid wastes means garbage, refuse, sludges, and other discarded solid materials resulting from... common water pollutants. (z) Special wastes means nonhazardous solid wastes requiring handling other than... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL...

  3. 40 CFR 257.3-7 - Air.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities... residential, commercial, institutional or industrial solid waste. This requirement does not apply to...

  4. 40 CFR 257.3-7 - Air.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities... residential, commercial, institutional or industrial solid waste. This requirement does not apply to...

  5. 40 CFR 258.16 - Closure of existing municipal solid waste landfill units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.16 Closure of existing municipal solid waste landfill units. (a) Existing MSWLF units that cannot make the... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Closure of existing municipal solid...

  6. 40 CFR 258.16 - Closure of existing municipal solid waste landfill units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.16 Closure of existing municipal solid waste landfill units. (a) Existing MSWLF units that cannot make the... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Closure of existing municipal solid...

  7. 40 CFR 260.33 - Procedures for variances from classification as a solid waste, for variances to be classified as...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... classification as a solid waste, for variances to be classified as a boiler, or for non-waste determinations. 260.33 Section 260.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... from classification as a solid waste, for variances to be classified as a boiler, or for non-waste...

  8. 40 CFR 260.33 - Procedures for variances from classification as a solid waste, for variances to be classified as...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... classification as a solid waste, for variances to be classified as a boiler, or for non-waste determinations. 260.33 Section 260.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... from classification as a solid waste, for variances to be classified as a boiler, or for non-waste...

  9. Stock flow diagram analysis on solid waste management in Malaysia

    NASA Astrophysics Data System (ADS)

    Zulkipli, Faridah; Nopiah, Zulkifli Mohd; Basri, Noor Ezlin Ahmad; Kie, Cheng Jack

    2016-10-01

    The effectiveness on solid waste management is a major importance to societies. Numerous generation of solid waste from our daily activities has risked for our communities. These due to rapid population grow and advance in economic development. Moreover, the complexity of solid waste management is inherently involved large scale, diverse and element of uncertainties that must assist stakeholders with deviating objectives. In this paper, we proposed a system dynamics simulation by developing a stock flow diagram to illustrate the solid waste generation process and waste recycle process. The analysis highlights the impact on increasing the number of population toward the amount of solid waste generated and the amount of recycled waste. The results show an increment in the number of population as well as the amount of recycled waste will decrease the amount of waste generated. It is positively represent the achievement of government aim to minimize the amount of waste to be disposed by year 2020.

  10. Forecasting municipal solid waste generation using prognostic tools and regression analysis.

    PubMed

    Ghinea, Cristina; Drăgoi, Elena Niculina; Comăniţă, Elena-Diana; Gavrilescu, Marius; Câmpean, Teofil; Curteanu, Silvia; Gavrilescu, Maria

    2016-11-01

    For an adequate planning of waste management systems the accurate forecast of waste generation is an essential step, since various factors can affect waste trends. The application of predictive and prognosis models are useful tools, as reliable support for decision making processes. In this paper some indicators such as: number of residents, population age, urban life expectancy, total municipal solid waste were used as input variables in prognostic models in order to predict the amount of solid waste fractions. We applied Waste Prognostic Tool, regression analysis and time series analysis to forecast municipal solid waste generation and composition by considering the Iasi Romania case study. Regression equations were determined for six solid waste fractions (paper, plastic, metal, glass, biodegradable and other waste). Accuracy Measures were calculated and the results showed that S-curve trend model is the most suitable for municipal solid waste (MSW) prediction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Maximization of revenues for power sales from a solid waste resources recovery facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-01

    The report discusses the actual implementation of the best alternative in selling electrical power generated by an existing waste-to-energy facility, the Metro-Dade County Resources Recovery Plant. After the plant processes and extracts various products out of the municipal solid waste, it burns it to produce electrical power. The price for buying power to satisfy the internal needs of our Resources Recovery Facility (RRF) is substantially higher than the power price for selling electricity to any other entity. Therefore, without any further analysis, it was decided to first satisfy those internal needs and then export the excess power. Various alternatives weremore » thoroughly explored as to what to do with the excess power. Selling power to the power utilities or utilizing the power in other facilities were the primary options.« less

  12. Soybean plant growth study conducted using purified protein hydrolysate-based fertilizer made from chrome-tanned leather waste.

    PubMed

    Pati, Anupama; Chaudhary, Rubina

    2015-12-01

    Leather processing discharges enormous amount of chrome containing leather solid waste which creates a major disposal problem. Chrome-tanned leather solid waste is a complex of collagen and chromium. The presence of chromium limits protein application in fertilizer industry. The purified protein hydrolysate with zero chromium could be used as a nitrogen source for fertilizer formulation. In this study, an attempt has been made to employ purified protein hydrolysate derived from chrome-tanned leather shavings (CTLS) in formulation of fertilizer. The formulated fertilizer (1–3 t ha(-1)) is employed as nitrogen source in production of soybean. Plant growth study demonstrates that formulated fertilizer dosage 3 t ha(-1) produced similar effects of commercial fertilizer-treated plants. Application of formulated fertilizer yielded higher seed in plant than commercial fertilizer.

  13. Fine granular of shredded waste tyre for road kerb application as improvised road furniture

    NASA Astrophysics Data System (ADS)

    Munikanan, Vikneswaran; Yahya, Muhamad Azani; Yusof, Mohammed Alias; Radzi, Muhammad Haris Fauzan

    2018-02-01

    Solid waste management in Malaysia was still in a backward stage. Population growth, urbanization and rapid industrialization led to an increase in the solid waste generated by society. Solid waste management is one of the main problems faced by the community, especially in the city. Solid waste management costs of the collection, collecting, transporting waste to the landfill, is very high. The quantity of solid waste should be reduced in order to reduce government spending. Moreover, improper solid waste management caused a negative impact on people and the environment. Method of recycling is one of the best alternatives to reduce the number of solid waste. Therefore, this study was to identify methods of recycling used tires to be used in civil engineering. This study was conducted to determine the effectiveness and properties of rubber from used tires to be add in the road kerb design.

  14. [Effect of moisture content on anaerobic methanization of municipal solid waste].

    PubMed

    Qu, Xian; He, Pin-Jing; Shao, Li-Ming; Bouchez, Théodore

    2009-03-15

    Biogas production, gas and liquid characteristics were investigated for comparing the effect of moisture content on methanization process of MSW with different compositions of food waste and cellulosic waste. Batch reactors were used to study the anaerobic methanization of typical Chinese and French municipal solid waste (MSW) and cellulosic waste with different moisture content, as 35%, field capacity (65%-70%), 80%, and saturated state (> 95%). The results showed that for the typical Chinese and French waste, which contained putrescible waste, the intermediate product, VFA, was diluted by high content of water, which helped to release the VFA inhibition on hydrolysis and methanization. Mass amount of methane was produced only when the moisture content of typical French waste was higher than 80%, while higher content of moisture was needed when the content of putrescible waste was higher in MSW, as > 95% for typical Chinese waste. Meanwhile the methane production rate and the ultimate cumulated methane production were increased when moisture content was leveled up. The ultimate cumulated methane production of the typical French waste with saturated state was 0.6 times higher than that of the waste with moisture content of 80%. For cellulosic waste, high moisture content of cellulosic materials contributed to increase the attachment area of microbes and enzyme on the surface of the materials, which enhance the waste hydrolysis and methanization. When the moisture content of the cellulosic materials increased from field capacity (65%) to saturated state (> 95%), the ultimate cumulated methane production increased for 3.8 times.

  15. Towards Sustainable Ambon Bay: Evaluation of Solid Waste Management in Ambon City

    NASA Astrophysics Data System (ADS)

    Maryati, S.; Miharja, M.; Iscahyono, A. F.; Arsallia, S.; Humaira, AN S.

    2017-07-01

    Ambon Bay is a strategic area in the context of regional economic development, however it also faced environmental problems due to economic development and the growth of population. One of the environmental problems in the Ambon Bay is the growing solid waste which in turn lowers the quality of the water. The purpose of this study is to evaluate solid waste management in the Ambon City and propose recommendation in order to reduce solid waste in the Ambon Bay. The analytical method used is descriptive analysis by comparing a number of criteria based on the concept of solid waste management in coastal region with the current conditions of solid waste management in Ambon City. Criteria for waste management are divided into generation, storage, collection, transport, transfer and disposal. From the results of analysis, it can be concluded that the components of solid waste management at transport, transfer, and disposal level are generally still adequate, but solid waste management at source, storage and collection level have to be improved.

  16. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  17. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  18. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  19. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  20. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  1. Management of solid waste

    NASA Astrophysics Data System (ADS)

    Thompson, W. T.; Stinton, L. H.

    1980-04-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.

  2. Surgical waste audit of 5 total knee arthroplasties.

    PubMed

    Stall, Nathan M; Kagoma, Yoan M; Bondy, Jennifer N; Naudie, Douglas

    2013-04-01

    Operating rooms (ORs) are estimated to generate up to one-third of hospital waste. At the London Health Sciences Centre, prosthetics and implants represent 17% of the institution's ecological footprint. To investigate waste production associated with total knee arthroplasties (TKAs), we performed a surgical waste audit to gauge the environmental impact of this procedure and generate strategies to improve waste management. We conducted a waste audit of 5 primary TKAs performed by a single surgeon in February 2010. Waste was categorized into 6 streams: regular solid waste, recyclable plastics, biohazard waste, laundered linens, sharps and blue sterile wrap. Volume and weight of each stream was quantified. We used Canadian Joint Replacement Registry data (2008-2009) to estimate annual weight and volume totals of waste from all TKAs performed in Canada. The average surgical waste (excluding laundered linens) per TKA was 13.3 kg, of which 8.6 kg (64.5%) was normal solid waste, 2.5 kg (19.2%) was biohazard waste, 1.6 kg (12.1%) was blue sterile wrap, 0.3 kg (2.2%) was recyclables and 0.3 kg (2.2%) was sharps. Plastic wrappers, disposable surgical linens and personal protective equipment contributed considerably to total waste. We estimated that landfill waste from all 47 429 TKAs performed in Canada in 2008-2009 was 407 889 kg by weight and 15 272 m3 by volume. Total knee arthroplasties produce substantial amounts of surgical waste. Environmentally friendly surgical products and waste management strategies may allow ORs to reduce the negative impacts of waste production without compromising patient care. Level IV, case series.

  3. Detection of Pollution Caused by Solid Wastes

    NASA Technical Reports Server (NTRS)

    Golueke, Clarence G.

    1971-01-01

    To develop a means of detecting pollution, it s necessary to know something about the source and nature of the pollution. The type of pollution rising from solid wastes differs considerably from hat from liquid wastes or that from gaseous wastes ni its effect on the immediate environment. It may be "defined" by a series of negatives. When solid wastes are discarded on land, the resulting pollution is not land pollution in the sense of air and water pollution. For one thing, the solid wastes do not become a "part" of the land in that the wastes are neither intimately mixed nor homogenized into the land as are liquid and gaseous wastes into their respective media. The waste particles retain not only their chemical identity but also their visible (i.e., physical) characteristics. When buried, for example, the soil is under, above, and around the solids, because the wastes are there as discrete units. Secondly, solid wastes neither diffuse nor are they carried from the place at which they were deposited. In other words they remain stationary, providing of course the disposal site is land and not moving water. In a given area, solid wastes be not distributed uniformly over that area. Even the solid wastes falling into the specification of letter meets these specifications. In contrast liquid and gaseous wastes become intimately mixed, homogenized, and even dissolved in their media. Because solid wastes remain stationary, pollution constituted by their presence is highly localized and heavily concentrated, even to the extent that the pollution could be termed "micro" when compared to the macro-pollution arising from liquid and gasequs wastes.

  4. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes.

    PubMed

    Sun, Mei; Sun, Wenjie; Barlaz, Morton A

    2016-05-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H2S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H2S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H2S produced by different types of sulfur-containing wastes in a relatively fast (30days) and inexpensive (125mL serum bottles) batch assay. This study confirmed the toxic effect of H2S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H2S by base adsorption was effective for mitigating inhibition. H2S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8mLH2S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H2S yield. A 60day incubation in selected samples resulted in 39-86% additional sulfide production. H2S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H2S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating the importance of assays to estimate the microbial sulfide production potential of sulfur-containing wastes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Urban-rural mining: waste utilization in Guangdong, China

    NASA Astrophysics Data System (ADS)

    Zhao, D. D.; Huhetaoli; Yuan, H. R.; Tang, Z. H.

    2018-05-01

    Attitudes towards waste have changed gradually in view of the environmental pollution created and the potential of waste as a resource. This has led to the city and countryside of China being viewed as a complete "urban-rural mine" resources are extracted from what was once considered waste. Guangdong is a developed province and annual waste generation has recently exceeded 300 million tons. The waste distribution characteristics are as follows: most industrial solid waste is produced in the Pearl River Delta and Mountainous Region, waste associated with domestic activities is concentrated in the Pearl River Delta, and agricultural waste is found throughout the province. The ratios of material recycling and energy recovery are 58% and 11%, respectively, of collected waste. Recycled products include construction material, artificial boards, fuel, plastic, metal, chemicals, oil, and fibers. Energy is recovered by generating electricity from domestic waste, landfill gas, and forest and crop residue.

  6. An investigation of the presence of methane and other gases at the Uzundere-Izmir solid waste disposal site, Izmir, Turkey.

    PubMed

    Onargan, T; Kucuk, K; Polat, M

    2003-01-01

    Izmir is a large metropolitan city with a population of 3,114,860. The city consists of 27 townships, each township has a population of not less than 10,000 inhabitants. The two major solid waste disposal sites are in the townships of Uzundere and Harmandali. The amount of solid waste that is disposed at each of these sites is about 800 and 1800 t/day, respectively. In Uzundere, compost is produced from the organic fraction of urban solid wastes while the residual material is deposited at a disposal site with a remaining capacity of 700,000 m(3) as of 2001. Gas monitoring and measurements were carried out at the disposal site in Uzundere. For this purpose, nine sampling wells were drilled on selected locations. Each well was furnished with perforated metal pipes suitable for gas monitoring and measurements. The following gases were monitored: O(2), CH(4), CO, CO(2), and H(2)S. The most important finding was that the concentrations of CH(4) in the wells ranged from 7 to 57%. Dilution of the CH(4) by O(2) down to the LEL levels (5-15%) is always possible and poses a continuing risk at the site. Furthermore, the levels of O(2) require that access to the site be limited to only authorized personnel.

  7. 40 CFR 257.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities... demolition (C&D) landfill means a solid waste disposal facility subject to the requirements of subparts A or...

  8. A review on current status of municipal solid waste management in India.

    PubMed

    Gupta, Neha; Yadav, Krishna Kumar; Kumar, Vinit

    2015-11-01

    Municipal solid waste management is a major environmental issue in India. Due to rapid increase in urbanization, industrialization and population, the generation rate of municipal solid waste in Indian cities and towns is also increased. Mismanagement of municipal solid waste can cause adverse environmental impacts, public health risk and other socio-economic problem. This paper presents an overview of current status of solid waste management in India which can help the competent authorities responsible for municipal solid waste management and researchers to prepare more efficient plans. Copyright © 2015. Published by Elsevier B.V.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metin, E.; Eroeztuerk, A.; Neyim, C

    This paper provides a general overview of solid waste data and management practices employed in Turkey during the last decade. Municipal solid waste statistics and management practices including waste recovery and recycling initiatives have been evaluated. Detailed data on solid waste management practices including collection, recovery and disposal, together with the results of cost analyses, have been presented. Based on these evaluations basic cost estimations on collection and sorting of recyclable solid waste in Turkey have been provided. The results indicate that the household solid waste generation in Turkey, per capita, is around 0.6 kg/year, whereas municipal solid waste generationmore » is close to 1 kg/year. The major constituents of municipal solid waste are organic in nature and approximately 1/4 of municipal solid waste is recyclable. Separate collection programmes for recyclable household waste by more than 60 municipalities, continuing in excess of 3 years, demonstrate solid evidence for public acceptance and continuing support from the citizens. Opinion polls indicate that more than 80% of the population in the project regions is ready and willing to participate in separate collection programmes. The analysis of output data of the Material Recovery Facilities shows that, although paper, including cardboard, is the main constituent, the composition of recyclable waste varies strongly by the source or the type of collection point.« less

  10. Landfill area estimation based on integrated waste disposal options and solid waste forecasting using modified ANFIS model.

    PubMed

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Younes, Mohammed Y

    2016-09-01

    Solid waste prediction is crucial for sustainable solid waste management. The collection of accurate waste data records is challenging in developing countries. Solid waste generation is usually correlated with economic, demographic and social factors. However, these factors are not constant due to population and economic growth. The objective of this research is to minimize the land requirements for solid waste disposal for implementation of the Malaysian vision of waste disposal options. This goal has been previously achieved by integrating the solid waste forecasting model, waste composition and the Malaysian vision. The modified adaptive neural fuzzy inference system (MANFIS) was employed to develop a solid waste prediction model and search for the optimum input factors. The performance of the model was evaluated using the root mean square error (RMSE) and the coefficient of determination (R(2)). The model validation results are as follows: RMSE for training=0.2678, RMSE for testing=3.9860 and R(2)=0.99. Implementation of the Malaysian vision for waste disposal options can minimize the land requirements for waste disposal by up to 43%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Pyrolysis reaction models of waste tires: Application of Master-Plots method for energy conversion via devolatilization.

    PubMed

    Irmak Aslan, Dilan; Parthasarathy, Prakash; Goldfarb, Jillian L; Ceylan, Selim

    2017-10-01

    Land applied disposal of waste tires has far-reaching environmental, economic, and human health consequences. Pyrolysis represents a potential waste management solution, whereby the solid carbonaceous residue is heated in the absence of oxygen to produce liquid and gaseous fuels, and a solid char. The design of an efficient conversion unit requires information on the reaction kinetics of pyrolysis. This work is the first to probe the appropriate reaction model of waste tire pyrolysis. The average activation energy of pyrolysis was determined via iso-conversional methods over a mass fraction conversion range between 0.20 and 0.80 to be 162.8±23.2kJmol -1 . Using the Master Plots method, a reaction order of three was found to be the most suitable model to describe the pyrolytic decomposition. This suggests that the chemical reactions themselves (cracking, depolymerization, etc.), not diffusion or boundary layer interactions common with carbonaceous biomasses, are the rate-limiting steps in the pyrolytic decomposition of waste tires. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. 40 CFR 258.20 - Procedures for excluding the receipt of hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of hazardous waste. 258.20 Section 258.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.20 Procedures..., regulated hazardous waste means a solid waste that is a hazardous waste, as defined in 40 CFR 261.3, that is...

  13. 40 CFR 258.20 - Procedures for excluding the receipt of hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of hazardous waste. 258.20 Section 258.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.20 Procedures..., regulated hazardous waste means a solid waste that is a hazardous waste, as defined in 40 CFR 261.3, that is...

  14. Cesium Speciation in Dust from Municipal Solid Waste and Sewage Sludge Incineration by Synchrotron Radiation Micro-X-ray Analysis.

    PubMed

    Shiota, Kenji; Takaoka, Masaki; Fujimori, Takashi; Oshita, Kazuyuki; Terada, Yasuko

    2015-11-17

    The chemical behavior of Cs in waste incineration processes is important to consider when disposing of radionuclide-contaminated waste from the Fukushima Daiichi nuclear power plant accident in Japan. To determine the speciation of Cs, we attempted the direct speciation of trace amounts of stable Cs in the dust from municipal solid waste incineration (MSWI) and sewage sludge incineration (SSI) by micro-X-ray fluorescence (μ-XRF) and micro-X-ray absorption fine structure (μ-XAFS) at the SPring-8 facility. The μ-XRF results revealed that locally produced Cs was present in MSWI and SSI dust within the cluster size range of 2-10 μm. The μ-XAFS analysis confirmed that the speciation of Cs in MSWI dust was similar to that of CsCl, while in SSI dusts it was similar to pollucite. The solubility of Cs was considered to be influenced by the exact Cs species present in incineration residue.

  15. 76 FR 63252 - Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ...-2011-0392; FRL-9476-6] RIN 2050-AE81 Hazardous and Solid Waste Management System: Identification and... Protection Agency (Agency or EPA) in conjunction with the proposed rule: Hazardous and Solid Waste Management...-0392. (4) Mail: Send two copies of your comments to Hazardous and Solid Waste Management System...

  16. Reducing acid leaching of manganiferous ore: Effect of the iron removal operation on solid waste disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca

    2009-01-15

    The process of reducing acid leaching of manganiferous ore is aimed at the extraction of manganese from low grade manganese ores. This work is focused on the iron removal operation. The following items have been considered in order to investigate the effect of the main operating conditions on solid waste disposal and on the process costs: (i) type and quantity of the base agent used for iron precipitation, (ii) effective need of leaching waste separation prior to the iron removal operation, (iii) presence of a second leaching stage with the roasted ore, which might also act as a preliminary ironmore » removal step, and (iv) effect of tailings washing on the solid waste classification. Different base compounds have been tested, including CaO, CaCO{sub 3}, NaOH, and Na{sub 2}CO{sub 3}. The latter gave the best results concerning both the precipitation process kinetics and the reagent consumption. The filtration of the liquor leach prior to iron removal was not necessary, implying significant savings in capital costs. A reduction of chemical consumption and an increase of manganese concentration in the solution were obtained by introducing secondary leaching tests with the previously roasted ore; this additional step was introduced without a significant decrease of global manganese extraction yield. Finally, toxicity characteristic leaching procedure (TCLP) tests carried out on the leaching solid waste showed: (i) a reduction of arsenic mobility in the presence of iron precipitates, and (ii) the need for a washing step in order to produce a waste that is classifiable as not dangerous, taking into consideration the existing Environmental National Laws.« less

  17. Possibilities of municipal solid waste incinerator fly ash utilisation.

    PubMed

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.

  18. 40 CFR 241.3 - Standards and procedures for identification of non-hazardous secondary materials that are solid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... identification of non-hazardous secondary materials that are solid wastes when used as fuels or ingredients in...) SOLID WASTES SOLID WASTES USED AS FUELS OR INGREDIENTS IN COMBUSTION UNITS Identification of Non-Hazardous Secondary Materials That Are Solid Wastes When Used as Fuels or Ingredients in Combustion Units...

  19. Solid Waste Activity Packet for Teachers.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Cooperative Extension Service.

    This solid waste activity packet introduces students to the solid waste problem in Illinois. Topics explore consumer practices in the market place, packaging, individual and community garbage generation, and disposal practices. The activities provide an integrated approach to incorporating solid waste management issues into subject areas. The…

  20. 78 FR 20073 - Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ...] Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency... Oregon's approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final regulations... Oregon's Municipal Solid Waste Landfill permit program to allow for Research, Development, and...

  1. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.

    2014-09-12

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressivemore » Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.« less

  2. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    NASA Astrophysics Data System (ADS)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan

    2014-09-01

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.

  3. 40 CFR 260.30 - Non-waste determinations and variances from classification as a solid waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Non-waste determinations and variances from classification as a solid waste. 260.30 Section 260.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking...

  4. 40 CFR 260.30 - Non-waste determinations and variances from classification as a solid waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Non-waste determinations and variances from classification as a solid waste. 260.30 Section 260.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking...

  5. 40 CFR 260.30 - Non-waste determinations and variances from classification as a solid waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Non-waste determinations and variances from classification as a solid waste. 260.30 Section 260.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking...

  6. RCRA, superfund and EPCRA hotline training module. Introduction to: Solid waste programs updated July 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    The module focuses on EPA`s efforts in two areas: municipal and industrial solid waste. The garbage that is managed by the local governments is known as municipal solid waste (MSW). Garbage excluded from hazardous waste regulation but not typically collected by local governments is commonly known as industrial solid waste. This category includes domestic sewage and other wastewater treatment sludge, demolition and construction wastes, agricultural and mining residues, combustion ash, and industrial process wastes.

  7. The solid waste dilemma

    USGS Publications Warehouse

    Amey, E.B.; Russell, J.A.; Hurdelbrink, R.J.

    1996-01-01

    In 1976, the U.S. Congress enacted the Resource Conservation and Recovery Act (RCRA) to further address the problem of increasing industrial and municipal waste. The main objectives of RCRA were to responsibly manage hazardous and solid waste and to procure materials made from recovered wastes. To fulfill these objectives, four main programs of waste management were developed. These programs were defined under Subtitle C, the Hazardous Waste Program; Subtitle D, the Solid Waste Program; Subtitle I, the Underground Storage Tank Program; and Subtitle J, the Medical Waste Program. Subtitle D illustrates the solid waste dilemma occurring in the United States. Under this program, states are encouraged to develop and implement their own waste management plans. These plans include the promotion of recycling solid wastes and the closing and upgrading of all environmentally unsound dumps. ?? 1996 International Association for Mathematical Geology.

  8. New insights into co-digestion of activated sludge and food waste: Biogas versus biofertilizer.

    PubMed

    Ma, Yingqun; Yin, Yao; Liu, Yu

    2017-10-01

    This study explored two holistic approaches for co-digestion of activated sludge and food waste. In Approach 1, mixed activated sludge and food waste were first hydrolyzed with fungal mash, and produced hydrolysate without separation was directly subject to anaerobic digestion. In Approach 2, solid generated after hydrolysis of food waste by fungal mash was directly converted to biofertilizer, while separated liquid with high soluble COD concentration was further co-digested with activated sludge for biomethane production. Although the potential energy produced from Approach 1 was about 1.8-time higher than that from Approach 2, the total economic revenue generated from Approach 2 was about 1.9-fold of that from Approach 1 due to high market value of biofertilizer. It is expected that this study may lead to a paradigm shift in biosolid management towards environmental and economic sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Biogas potential from anaerobic co-digestion of faecal sludge with food waste and garden waste

    NASA Astrophysics Data System (ADS)

    Afifah, Ukhtiy; Priadi, Cindy Rianti

    2017-03-01

    The limited faecal sludge management can be optimized by converting the sludge into biogas. This study purposed to optimize the biogas potential of faecal sludge with food waste and garden waste. The system using Anaerobic Co-digestion on the variation 25% and 50% concentration of faecal sludge based on Volatile Solids (VS). Inoculum used was cow's rumen. The study was operated using lab-scale batch reactor 51 L for 42 days. Biogas produced at 25% concentration of faecal sludge is 0,30 m3CH4/kg with 71,93% VS and 72,42% COD destruction. Meanwhile, at 50% concentration of faecal sludge produce 0,56 m3CH4/kg VS biogas with 92,43% VS and 87,55% COD destruction. This study concludes that biogas potential of 50% concentration greater than 25% concentration of faecal sludge.

  10. Development of the Plastic Melt Waste Compactor- Design and Fabrication of the Half-Scale Prototype

    NASA Technical Reports Server (NTRS)

    Pace, Gregory S.; Fisher, John

    2005-01-01

    A half scale version of a device called the Plastic Melt Waste Compactor prototype has been developed at NASA Ames Research Center to deal with plastic based wastes that are expected to be encountered in future human space exploration scenarios such as Lunar or Martian Missions. The Plastic Melt Waste Compactor design was based on the types of wastes produced on the International Space Station, Space Shuttle, MIR and Skylab missions. The half scale prototype unit will lead to the development of a full scale Plastic Melt Waste Compactor prototype that is representative of flight hardware that would be used on near and far term space missions. This report details the progress of the Plastic Melt Waste Compactor Development effort by the Solid Waste Management group at NASA Ames Research Center.

  11. Recycling the construction and demolition waste to produce polymer concrete

    NASA Astrophysics Data System (ADS)

    Hamza, Mohammad T.; Hameed, Awham M., Dr.

    2018-05-01

    The sustainable management for solid wastes of the construction and demolition waste stimulates searching for safety applications for these wastes. The aim of this research is recycling of construction and demolition waste with some different types of polymeric resins to be used in manufacturing process of polymer mortar or polymer concrete, and studying their mechanical and physical properties, and also Specify how the values of compressive strength and the density are affected via the different parameters. In this research two types of construction and demolition waste were used as aggregates replacement (i.e. waste cement/concrete debris, and the waste blocks) while the two types of polymer resins (i.e. Unsaturated polyester and Epoxy) as cement replacements. The used weight percentages of the resins were changed within (1°, 20, 25 and 30) % to manufacture this polymer concrete.

  12. System for chemically digesting low level radioactive, solid waste material

    DOEpatents

    Cowan, Richard G.; Blasewitz, Albert G.

    1982-01-01

    An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

  13. The Tompkins County Solid Waste Annual Fee: Background and overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penniman, P.W.

    1995-05-01

    This report outlines the development by Tompkins County of a new revenue source for solid waste programs -- The Solid Waste Annual Fee. Over the past two decades in New York State, regulatory demands and the decline in available landfill space have combined to cause a rapid escalation in the cost of solid waste disposal. While the New York State Department of Environmental Conservation (NYSDEC) has implemented tighter regulations for the siting of solid waste landfills, they have also mandated the permitting or closure of all existing landfills in the state. The result is that all communities have been requiredmore » to invest millions of dollars in landfill siting, closure and solid waste processing facilities. In addition, programs for reducing and recycling solid wastes have been mandated to reduce the outflow to landfills. Until recent years, solid waste services in most New York counties have been funded almost entirely through a collection of property taxes. During the past six years, fiscal stress has stimulated a movement toward funding solid waste programs by other means. Alternatives to the property tax include: (1) special assessment taxes or fees; (2) user charges (including tipping fees); and (3) intergovernment grants.« less

  14. Development of Technology and Installation for Biohydrogen Production

    NASA Astrophysics Data System (ADS)

    Pridvizhkin, S. V.; Vyguzova, M. A.; Bazhenov, O. V.

    2017-11-01

    The article discusses the method for hydrogen production and the device this method application. The relevance of the use of renewable fuels and the positive impact of renewable energy on the environment and the economy is also considered. The presented technology relates to a method for hydrogen production from organic materials subject to anaerobic fermentation, such as the components of solid municipal waste, sewage sludge and agricultural enterprises wastes, sewage waste. The aim of the research is to develop an effective eco-friendly technology for hydrogen producing within an industrial project To achieve the goal, the following issues have been addressed in the course of the study: - development of the process schemes for hydrogen producing from organic materials; - development of the technology for hydrogen producing; - optimization of a biogas plant with the aim of hydrogen producing at one of the fermentation stages; - approbation of the research results. The article is recommended for engineers and innovators working on the renewable energy development issues.

  15. 40 CFR 240.206-3 - Recommended procedures: Operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended... spillages occur, emptying the solid waste storage area at least weekly, and routinely cleaning the remainder of the facility. (b) Solid waste and residue should not be allowed to accumulate at the facility for...

  16. 40 CFR 266.202 - Definition of solid waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Definition of solid waste. 266.202 Section 266.202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... MANAGEMENT FACILITIES Military Munitions § 266.202 Definition of solid waste. (a) A military munition is not...

  17. 78 FR 5350 - Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ...] Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On December 7, 2012 Massachusetts submitted an application to...

  18. 40 CFR 266.202 - Definition of solid waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Definition of solid waste. 266.202 Section 266.202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... MANAGEMENT FACILITIES Military Munitions § 266.202 Definition of solid waste. (a) A military munition is not...

  19. Clinical laboratory waste management in Shiraz, Iran.

    PubMed

    Askarian, Mehrdad; Motazedian, Nasrin; Palenik, Charles John

    2012-06-01

    Clinical laboratories are significant generators of infectious waste, including microbiological materials, contaminated sharps, and pathologic wastes such as blood specimens and blood products. Most waste produced in laboratories can be disposed of in the general solid waste stream. However, improper management of infectious waste, including mixing general wastes with infectious wastes and improper handling or storage, could lead to disease transmission. The aim of this study was to assess waste management processes used at clinical laboratories in Shiraz, Iran. One hundred and nine clinical laboratories participated In this cross sectional study, Data collection was by questionnaire and direct observation. Of the total amount of waste generated, 52% (by weight) was noninfectious domestic waste, 43% was non-sharps infectious waste and 5% consisted of sharps. There was no significant relationship between laboratory staff or manager education and the score for quality of waste collection and disposal at clinical laboratories. Improvements in infectious waste management processes should involve clearer, more uniformly accepted definitions of infectious waste and increased staff training.

  20. Solid-state fermentation of industrial solid wastes from the fruits of milk thistle Silybum marianum for feed quality improvement.

    PubMed

    Li, Fang; Li, Feng; Zhao, Ting; Mao, Guanghua; Zou, Ye; Zheng, Daheng; Takase, Mohammed; Feng, Weiwei; Wu, Xiangyang; Yang, Liuqing

    2013-08-01

    The industrial solid wastes generated during the production of silymarin from the fruits of milk thistle Silybum marianum was used as the substrate. Preparation and evaluation of the feeds produced by solid-state fermentation (SSF) of the industrial solid wastes was carried out. The protein content of the fermented feed (FF) from a combination of Aspergillus niger and Candida tropicalis was the highest among the examined strains. The optimal process parameters for protein enrichment with SSF using A. niger and C. tropicalis included incubation temperature of 30.8 °C, fermentation time of 87.0 h, and initial moisture content of 59.7 %. Under these conditions, the value additions of FF occurred. The fiber of FF was decreased by 25.07 %, while the digestibility of protein, protein content, and the ratio of total essential amino acids to total amino acids were increased by 79.85, 16.22, and 8.21 %, respectively. The analysis indicated that FF contained 1.44 mg/kg flavonoids and 0.5 mg/kg silybin, which significantly increased by 2.42 and 1.63 times, respectively than those in unfermented substrates. FF recorded reduced molecular weight of proteins from 20.1 to 44.3 kDa to below 14.3 kDa. The results of feeding trial of FF replacement with soybean meal in broilers diets for 8 weeks showed that FF significantly improved carcass characteristics including abdominal fat rate, serum biochemical parameters including aspartate transaminase, blood urea nitrogen and high density lipoprotein cholesterol, and immune responses of broilers. A potential feed quality improvement was achieved through mixed strains SSF of industrial solid wastes of S. marianum fruits.

  1. Optimization of waste combinations during in-vessel composting of agricultural waste.

    PubMed

    Varma, V Sudharsan; Kalamdhad, Ajay S; Kumar, Bimlesh

    2017-01-01

    In-vessel composting of agricultural waste is a well-described approach for stabilization of compost within a short time period. Although composting studies have shown the different combinations of waste materials for producing good quality compost, studies of the particular ratio of the waste materials in the mix are still limited. In the present study, composting was conducted with a combination of vegetable waste, cow dung, sawdust and dry leaves using a 550 L rotary drum composter. Application of a radial basis functional neural network was used to simulate the composting process. The model utilizes physico-chemical parameters with different waste materials as input variables and three output variables: volatile solids, soluble biochemical oxygen demand and carbon dioxide evolution. For the selected model, the coefficient of determination reached the high value of 0.997. The complicated interaction of agricultural waste components during composting makes it a nonlinear problem so it is difficult to find the optimal waste combinations for producing quality compost. Optimization of a trained radial basis functional model has yielded the optimal proportion as 62 kg, 17 kg and 9 kg for vegetable waste, cow dung and sawdust, respectively. The results showed that the predictive radial basis functional model described for drum composting of agricultural waste was well suited for organic matter degradation and can be successfully applied.

  2. Quantitative analysis of impact of awareness-raising activities on organic solid waste separation behaviour in Balikpapan City, Indonesia.

    PubMed

    Murase, Noriaki; Murayama, Takehiko; Nishikizawa, Shigeo; Sato, Yuriko

    2017-10-01

    Many cities in Indonesia are under pressure to reduce solid waste and dispose of it properly. In response to this pressure, the Japan International Cooperation Agency and the Indonesian Government have implemented a solid waste separation and collection project to reduce solid waste in the target area (810 households) of Balikpapan City. We used a cluster randomised controlled trial method to measure the impact of awareness-raising activities that were introduced by the project on residents' organic solid waste separation behaviour. The level of properly separated organic solid waste increased by 6.0% in areas that conducted awareness-raising activities. Meanwhile, the level decreased by 3.6% in areas that did not conduct similar activities. Therefore, in relative comparison, awareness-raising increased the level by 9.6%. A comparison among small communities in the target area confirmed that awareness-raising activities had a significant impact on organic solid waste separation. High frequencies of monitoring at waste stations and door-to-door visits by community members had a positive impact on organic solid waste separation. A correlation between the proximity of environmental volunteers' houses to waste stations and a high level of separation was also confirmed. The awareness-raising activities introduced by the project led to a significant increase in the separation of organic solid waste.

  3. Recovery of plastic wastes from dumpsite as refuse-derived fuel and its utilization in small gasification system.

    PubMed

    Chiemchaisri, Chart; Charnnok, Boonya; Visvanathan, Chettiyappan

    2010-03-01

    An effort to utilize solid wastes at dumpsite as refuse-derived fuel (RDF) was carried out. The produced RDF briquette was then utilized in the gasification system. These wastes were initially examined for their physical composition and chemical characteristics. The wastes contained high plastic content of 24.6-44.8%, majority in polyethylene plastic bag form. The plastic wastes were purified by separating them from other components through manual separation and trommel screen after which their content increased to 82.9-89.7%. Subsequently, they were mixed with binding agent (cassava root) and transformed into RDF briquette. Maximum plastic content in RDF briquette was limit to 55% to maintain physical strength and maximum chlorine content. The RDF briquette was tested in a down-draft gasifier. The produced gas contained average energy content of 1.76 MJ/m(3), yielding cold gas efficiency of 66%. The energy production cost from this RDF process was estimated as USD0.05 perkWh. 2009 Elsevier Ltd. All rights reserved.

  4. Generation, characterization and reuse of solid wastes from a biodiesel production plant.

    PubMed

    Oliveira, Fernando Jorge Santos; Santana, Daniele Dos Santos; Costa, Simone Soraya Brito; Oliveira, Lenise Diniz; Liduino, Vitor Silva; Servulo, Eliana Flávia Camporese

    2017-03-01

    The aim of this study was to identify and characterize industrial solid wastes generated by a biodiesel production plant in Brazil, as well as to present strategies for the management of these materials. This plant produces every year around 100,000tons of biodiesel from vegetable oils and animal fats. The methodology of the study included technical visits, interviews with the operational and environmental management staff as well as analysis of documents, reports and computerized data systems. An approach to reduce the generation of hazardous waste was investigated. It was take into account the amount of raw material that was processed, reduction of landfill disposal, and the maximization of the their recycling and reuse. The study also identified the sources of waste generation and accordingly prepared an evaluation matrix to determine the types of waste with the higher potential for minimization. The most important residue of the process was the filter material impregnated with oil and biodiesel, requiring, therefore, measures for its minimization. The use of these residues in the production of ceramic artefacts (light bricks) was considered to be very promising, since no significant effect on the physico-chemical and mechanical properties of the artefacts produced was observed. Phytotoxicity test using seeds of Lactuva sativa (lettuce), Brassica juncea (mustard), Abelmoschus esculentus (okra), Chrysanthemum leucanthemum (daisy), Dendranthema grandiflorum (chrysanthemum) and Allium porrum (leek) were carried out. The results clearly show incorporation of the waste material into bricks did not influence relative germination and relative root elongation in comparison to control tests. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Thermal hydrolysis integration in the anaerobic digestion process of different solid wastes: energy and economic feasibility study.

    PubMed

    Cano, R; Nielfa, A; Fdz-Polanco, M

    2014-09-01

    An economic assessment of thermal hydrolysis as a pretreatment to anaerobic digestion has been achieved to evaluate its implementation in full-scale plants. Six different solid wastes have been studied, among them municipal solid waste (MSW). Thermal hydrolysis has been tested with batch lab-scale tests, from which an energy and economic assessment of three scenarios is performed: with and without energy integration (recovering heat to produce steam in a cogeneration plant), finally including the digestate management costs. Thermal hydrolysis has lead to an increase of the methane productions (up to 50%) and kinetics parameters (even double). The study has determined that a proper energy integration design could lead to important economic savings (5 €/t) and thermal hydrolysis can enhance up to 40% the incomes of the digestion plant, even doubling them when digestate management costs are considered. In a full-scale MSW treatment plant (30,000 t/year), thermal hydrolysis would provide almost 0.5 M€/year net benefits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Solid-waste management in Jalandhar city and its impact on community health

    PubMed Central

    Puri, Avinash; Kumar, Manoj; Johal, Eonkar

    2008-01-01

    In this study, solid-waste management practices were evaluated in order to find out its link with occurrence of vector-borne disease. Strategies for solid-waste management were employed as practical model to solve the problems regarding pollution which is originated by solid-waste. PMID:20040983

  7. Energy and solid/hazardous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  8. 76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...] Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved Municipal Solid Waste Landfill (MSWLF) permit program. The approved modification allows the State..., EPA issued a final rule (69 FR 13242) amending the Municipal Solid Waste Landfill (MSWLF) criteria in...

  9. 40 CFR 1.47 - Office of Solid Waste and Emergency Response.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Office of Solid Waste and Emergency... ORGANIZATION AND GENERAL INFORMATION Headquarters § 1.47 Office of Solid Waste and Emergency Response. The Office of Solid Waste and Emergency Response (OSWER), under the supervision of the Assistant...

  10. 75 FR 53220 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved municipal solid waste landfill (MSWLF) program. The approved modification allows the State to..., and demonstration (RD&D) permits to be issued to certain municipal solid waste landfills by approved...

  11. 75 FR 53268 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On June 28, 2010 New Hampshire submitted an application to EPA...

  12. 40 CFR 62.14353 - Standards for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standards for municipal solid waste... POLLUTANTS Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to... municipal solid waste landfill emissions. (a) The owner or operator of a designated facility having a design...

  13. 77 FR 65875 - Adequacy of Arizona Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... modification to Arizona's municipal solid waste landfill (MSWLF) permit program to allow the State to issue... amending the municipal solid waste landfill criteria at 40 CFR 258.4 to allow for Research, Development...

  14. 40 CFR 256.24 - Recommendations for closing or upgrading open dumps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste Disposal Programs § 256.24 Recommendations for closing or upgrading open dumps. (a) All... feasibility of resource recovery or resource conservation to reduce the solid waste volume entering a facility...

  15. 40 CFR 62.14353 - Standards for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Standards for municipal solid waste... POLLUTANTS Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to... municipal solid waste landfill emissions. (a) The owner or operator of a designated facility having a design...

  16. 40 CFR 1.47 - Office of Solid Waste and Emergency Response.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Office of Solid Waste and Emergency... ORGANIZATION AND GENERAL INFORMATION Headquarters § 1.47 Office of Solid Waste and Emergency Response. The Office of Solid Waste and Emergency Response (OSWER), under the supervision of the Assistant...

  17. 40 CFR 256.24 - Recommendations for closing or upgrading open dumps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste Disposal Programs § 256.24 Recommendations for closing or upgrading open dumps. (a) All... feasibility of resource recovery or resource conservation to reduce the solid waste volume entering a facility...

  18. 40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... casting, wastewater treatment, solid waste. 721.10667 Section 721.10667 Protection of Environment... iron casting, wastewater treatment, solid waste. (a) Chemical substance and significant new uses... and iron casting, wastewater treatment, solid waste (PMN P-12-560; CAS No. 1391739-82-4; chemical...

  19. 40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... casting, wastewater treatment, solid waste. 721.10667 Section 721.10667 Protection of Environment... iron casting, wastewater treatment, solid waste. (a) Chemical substance and significant new uses... and iron casting, wastewater treatment, solid waste (PMN P-12-560; CAS No. 1391739-82-4; chemical...

  20. 40 CFR 62.14353 - Standards for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTANTS Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standards for municipal solid waste... municipal solid waste landfill emissions. (a) The owner or operator of a designated facility having a design...

  1. 77 FR 69769 - Solid Waste Rail Transfer Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    .... SUMMARY: These final rules govern land-use-exemption permits for solid waste rail transfer facilities. The... ``land-use-exemption permits'' in certain circumstances. Under the CRA, a solid waste rail transfer... grants a land-use-exemption permit for a solid waste rail transfer facility, such permit would only...

  2. Effect of fermentation time of mixture of solid and liquid wastes from tapioca industry to percentage reduction of TSS (Total Suspended Solids)

    NASA Astrophysics Data System (ADS)

    Pandia, S.; Tanata, S.; Rachel, M.; Octiva, C.; Sialagan, N.

    2018-02-01

    The waste from tapioca industry is as an organic waste that contains many important compounds such as carbohydrate, protein, and glucose. This research as aimed to know the effect of fermentation time from solid waste combined with waste-water from the tapioca industry to percentage reduction of TSS. The study was started by mixing the solid and liquid wastes from tapioca industry at a ratio of 70:30, 60:40, 50:50, 40:60, and 30:70 (w/w) with a starter from solid waste of cattle in a batch anaerobic digester. The percentage reduction of TSS was 72.2289 at a ratio by weight of the composition of solid and liquid wastes from tapioca industry was 70:30 after 30 days of fermentation time.

  3. Examining of solid waste generation and community awareness between city center and suburban area in Medan City, Indonesia

    NASA Astrophysics Data System (ADS)

    Khair, H.; Putri, C. N.; Dalimunthe, R. A.; Matsumoto, T.

    2018-02-01

    Municipal solid waste (MSW) management is still an issue in many cities in Indonesia including Medan. Understanding the waste generation, its characteristic and communities involvement could provide effective solid waste management. This research compares waste generation from people who live in the city center and suburban area. The research also examines the willingness and participation of community about environmental aspect, especially solid waste management. The method of waste generation used Indonesian Nasional Standard 19-3964-1994. The city center generates 0.295 kg/person/day of solid waste and 0.180 kg/person/day for suburbs. The result showed that there are the common amount of waste compositions between the city center and suburban area. The majority waste composition was an organic fraction. Questionnaires were distributed to examine the community awareness. The descriptive statistic used to analyze the data. The result showed that people living in the city center are slightly higher in community awareness than in the suburb. This paper highlights that area of living could give some effect to solid waste generation, waste composition and rate of awareness.

  4. Conversion of municipal solid wastes to carboxylic acids by thermophilic fermentation.

    PubMed

    Chan, Wen Ning; Holtzapple, Mark T

    2003-11-01

    The purpose of this research is to generate carboxylic acids from the biodegradable fraction of municipal solid wastes (MSW) and municipal sewage sludge (MSS) by using a thermophilic (55 degrees C), anaerobic, high-solid fermentation. With terrestrial inocula, the highest total carboxylic acid concentration achieved was 20.5 g/L, the highest conversion obtained was 69%, and the highest acetic acid selectivity was 86.4%. Marine inocula were also used to compare against terrestrial sources. Continuum particle distribution modeling (CPDM) was used to predict the final acid product concentrations and substrate conversions at a wide range of liquid residence times (LRT) and volatile solid loading rates (VSLR). "Maps" showing the product concentration and conversion for various LRT and VSLR were generated from CPDM. The predictions were compared to the experimental results. On average, the difference between the predicted and experimental values were 13% for acid concentration and 10% for conversion. CPDM "maps" show that marine inocula produce higher concentrations than terrestrial inocula.

  5. Co-digestion of solid waste: Towards a simple model to predict methane production.

    PubMed

    Kouas, Mokhles; Torrijos, Michel; Schmitz, Sabine; Sousbie, Philippe; Sayadi, Sami; Harmand, Jérôme

    2018-04-01

    Modeling methane production is a key issue for solid waste co-digestion. Here, the effect of a step-wise increase in the organic loading rate (OLR) on reactor performance was investigated, and four new models were evaluated to predict methane yields using data acquired in batch mode. Four co-digestion experiments of mixtures of 2 solid substrates were conducted in semi-continuous mode. Experimental methane yields were always higher than the BMP values of mixtures calculated from the BMP of each substrate, highlighting the importance of endogenous production (methane produced from auto-degradation of microbial community and generated solids). The experimental methane productions under increasing OLRs corresponded well to the modeled data using the model with constant endogenous production and kinetics identified at 80% from total batch time. This model provides a simple and useful tool for technical design consultancies and plant operators to optimize the co-digestion and the choice of the OLRs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Induction of fungal laccase production under solid state bioprocessing of new agroindustrial waste and its application on dye decolorization.

    PubMed

    Akpinar, Merve; Ozturk Urek, Raziye

    2017-06-01

    Lignocellulosic wastes are generally produced in huge amounts worldwide. Peach waste of these obtained from fruit juice industry was utilized as the substrate for laccase production by Pleurotus eryngii under solid state bioprocessing (SSB). Its chemical composition was determined and this bioprocess was carried out under stationary conditions at 28 °C. The effects of different compounds; copper, iron, Tween 80, ammonium nitrate and manganese, and their variable concentrations on laccase production were investigated in detail. The optimum production of laccase (43,761.33 ± 3845 U L -1 ) was achieved on the day of 20 by employing peach waste of 5.0 g and 70 µM Cu 2+ , 18 µM Fe 2+ , 0.025% (v/v) Tween 80, 4.0 g L -1 ammonium nitrate, 750 µM Mn 2+ as the inducers. The dye decolorization also researched to determine the degrading capability of laccase produced from peach culture under the above-mentioned conditions. Within this scope of the study, methyl orange, tartrazine, reactive red 2 and reactive black dyes were treated with this enzyme. The highest decolorization was performed with methyl orange as 43 ± 2.8% after 5 min of treatment when compared to other dyes. Up to now, this is the first report on the induction of laccase production by P. eryngii under SSB using peach waste as the substrate.

  7. Composition and production rate of pharmaceutical and chemical waste from Xanthi General Hospital in Greece

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voudrias, Evangelos, E-mail: voudrias@env.duth.gr; Goudakou, Lambrini; Kermenidou, Marianthi

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer We studied pharmaceutical and chemical waste production in a Greek hospital. Black-Right-Pointing-Pointer Pharmaceutical waste comprised 3.9% w/w of total hazardous medical waste. Black-Right-Pointing-Pointer Unit production rate for total pharmaceutical waste was 12.4 {+-} 3.90 g/patient/d. Black-Right-Pointing-Pointer Chemical waste comprised 1.8% w/w of total hazardous medical waste. Black-Right-Pointing-Pointer Unit production rate for total chemical waste was 5.8 {+-} 2.2 g/patient/d. - Abstract: The objective of this work was to determine the composition and production rates of pharmaceutical and chemical waste produced by Xanthi General Hospital in Greece (XGH). This information is important to design and cost management systems formore » pharmaceutical and chemical waste, for safety and health considerations and for assessing environmental impact. A total of 233 kg pharmaceutical and 110 kg chemical waste was collected, manually separated and weighed over a period of five working weeks. The total production of pharmaceutical waste comprised 3.9% w/w of the total hazardous medical waste produced by the hospital. Total pharmaceutical waste was classified in three categories, vial waste comprising 51.1%, syringe waste with 11.4% and intravenous therapy (IV) waste with 37.5% w/w of the total. Vial pharmaceutical waste only was further classified in six major categories: antibiotics, digestive system drugs, analgesics, hormones, circulatory system drugs and 'other'. Production data below are presented as average (standard deviation in parenthesis). The unit production rates for total pharmaceutical waste for the hospital were 12.4 (3.90) g/patient/d and 24.6 (7.48) g/bed/d. The respective unit production rates were: (1) for vial waste 6.4 (1.6) g/patient/d and 13 (2.6) g/bed/d, (2) for syringe waste 1.4 (0.4) g/patient/d and 2.8 (0.8) g/bed/d and (3) for IV waste 4.6 (3.0) g/patient/d and 9.2 (5.9) g/bed/d. Total chemical waste was classified in four categories, chemical reagents comprising 18.2%, solvents with 52.3%, dyes and tracers with 18.2% and solid waste with 11.4% w/w of the total. The total production of chemical waste comprised 1.8% w/w of the total hazardous medical waste produced by the hospital. Thus, the sum of pharmaceutical and chemical waste was 5.7% w/w of the total hazardous medical waste produced by the hospital. The unit production rates for total chemical waste for the hospital were 5.8 (2.2) g/patient/d and 1.1 (0.4) g/exam/d. The respective unit production rates were: (1) for reagents 1.7 (2.4) g/patient/d and 0.3 (0.4) g/examination/d, (2) for solvents 248 (127) g/patient/d and 192 (101) g/examination/d, (3) for dyes and tracers 4.7 (1.4) g/patient/d and 2.5 (0.9) g/examination/d and (4) for solid waste 54 (28) g/patient/d and 42 (22) g/examination/d.« less

  8. Anaerobic digestion of municipal solid waste: Technical developments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, C.J.

    1996-01-01

    The anaerobic biogasification of organic wastes generates two useful products: a medium-Btu fuel gas and a compost-quality organic residue. Although commercial-scale digestion systems are used to treat municipal sewage wastes, the disposal of solid organic wastes, including municipal solid wastes (MSW), requires a more cost-efficient process. Modern biogasification systems employ high-rate, high-solids fermentation methods to improve process efficiency and reduce capital costs. The design criteria and development stages are discussed. These systems are also compared with conventional low-solids fermentation technology.

  9. Focussing on recycling attitudes of engineering students at UiTM Shah Alam - towards zero discharge

    NASA Astrophysics Data System (ADS)

    Sharifah, A. S. A. K.; Khamaruddin, P. F. M.; Mohamad, N. N.; Saharuddin, M. Q.

    2018-03-01

    The generation of municipal solid waste (MSW) in Malaysia over the past 10 years has increased by 95 percent due to rapid development in the urban areas. 16.76 million tonne of waste is expected to be generated by Malaysian in the year 2020. Presently, there are about 70 percent of waste produced reported to be collected and 95 percent of it are disposed in landfills with only 5 percent left are being recycled. A 40 percent reduction of waste disposed to landfill by year 2020, through recycling and intermediate treatments such as waste to energy, composting and material recovery is very much needed as opening new landfills are not socially attractive. It clearly shows the awareness in reducing waste through recycling is still at infancy among Malaysians. Hence, a proper solid waste management should be enhanced through education among youngsters to ensure an integrated solid waste management towards zero discharge is achievable. The purpose of the research is two-fold. Firstly, to determine the recycling practices awareness among engineering students through manual and on-line survey. Secondly, a study on the effectiveness of recycling bins at the engineering students’ centre. The data collected were analyzed using statistical analysis. Results show that there is significant relationship (p<0.05) between gender and knowledge on recycling using Chi square test. However, there is an insignificant relationship (p>0.05) between knowledge and awareness of students towards recycling using partial correlation. Nevertheless, it is important to note that recycling practices through the provision of well-designed recycling bins and continuous education will ensure a sound society upholding a Zero Discharge attitude in the future.

  10. Factors influencing household participation in solid waste management (Case study: Waste Bank Malang)

    NASA Astrophysics Data System (ADS)

    Maryati, S.; Arifiani, N. F.; Humaira, A. N. S.; Putri, H. T.

    2018-03-01

    Solid waste management is very important measure in order to reduce the amount of waste. One of solid waste management form in Indonesia is waste banks. This kind of solid waste management required high level of participation of the community. The objective of this study is to explore factors influencing household participation in waste banks. Waste bank in Malang City (WBM) was selected as case study. Questionnaires distribution and investigation in WBM were conducted to identify problems of participation. Quantitative analysis was used to analyze the data. The research reveals that education, income, and knowledge about WBM have relationship with participation in WBM.

  11. Fermentative utilization of glycerol residue for the production of acetic acid

    NASA Astrophysics Data System (ADS)

    Irvan; Trisakti, B.; Hasibuan, R.; Joli, M.

    2018-02-01

    Glycerol residue, frequently known as pitch, is a waste produced from the downstream product of crude glycerine distillation. With the increasing need of pure glycerine in the world, the glycerol residue produced is also increasing. Glycerol residue is a solid waste at room temperature, highly alkaline (pH > 13), corrosive, and categorized as hazardous and poisonous waste. In this research, acetic acid was produced from glycerol residue through the anaerobic fermentation process by using purple non-sulphur photosynthetic bacteria. The purpose of this study was to find out the influence of concentration change of glycerol residue on time and to find out the possibility of glycerol residue to be utilized as acetic acid. In this research, at first 400 g of glycerol residue was diluted with 200 ml of distilled water to change the glycerine phase, from solid to liquid at room temperature, acidified by using hydrochloric acid until pH 2. The top layer formed was fatty acid and triglycerides that should be removed. Meanwhile, the bottom layer was diluted glycerol residue which was then neutralized with caustic soda. To produce acetic acid, glycerol residue with various concentrations, salt, and purple non-sulphur photosynthetic bacteria were put together into a 100 ml bottle which had been previously sterilized, then incubated for four weeks under the light of 40-watt bulb. The result showed that on the 28th day of fermentation, the produced acetic acid were 0.28, 1.85, and 0.2% (w/w) by using glycerine with the concentration of 0.5, 1.0, and 1.5% (w/w), respectively.

  12. Environmental and health impacts of household solid waste handling and disposal practices in third world cities: the case of the Accra Metropolitan Area, Ghana.

    PubMed

    Boadi, Kwasi Owusu; Kuitunen, Markku

    2005-11-01

    Inadequate provision of solid waste management facilities in Third World cities results in indiscriminate disposal and unsanitary environments, which threatens the health of urban residents. The study reported here examined household-level waste management and disposal practices in the Accra Metropolitan Area, Ghana. The residents of Accra currently generate large amounts of solid waste, beyond the management capabilities of the existing waste management system. Because the solid waste infrastructure is inadequate, over 80 percent of the population do not have home collection services. Only 13.5 percent of respondents are served with door-to-door collection of solid waste, while the rest dispose of their waste at communal collection points, in open spaces, and in waterways. The majority of households store their waste in open containers and plastic bags in the home. Waste storage in the home is associated with the presence of houseflies in the kitchen (r = .17, p < .0001). The presence of houseflies in the kitchen during cooking is correlated with the incidence of childhood diarrhea (r = .36, p < .0001). Inadequate solid waste facilities result in indiscriminate burning and burying of solid waste. There is an association between waste burning and the incidence of respiratory health symptoms among adults (r = .25, p < .0001) and children (r = .22, p < .05). Poor handling and disposal of waste are major causes of environmental pollution, which creates breeding grounds for pathogenic organisms, and the spread of infectious diseases. Improving access to solid waste collection facilities and services will help achieve sound environmental health in Accra.

  13. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials.

    PubMed

    Funari, Valerio; Braga, Roberto; Bokhari, Syed Nadeem Hussain; Dinelli, Enrico; Meisel, Thomas

    2015-11-01

    The incineration of municipal solid wastes is an important part of the waste management system along with recycling and waste disposal, and the solid residues produced after the thermal process have received attention for environmental concerns and the recovery of valuable metals. This study focuses on the Critical Raw Materials (CRM) content in solid residues from two Italian municipal waste incinerator (MSWI) plants. We sampled untreated bottom ash and fly ash residues, i.e. the two main outputs of common grate-furnace incinerators, and determined their total elemental composition with sensitive analytical techniques such as XRF and ICP-MS. After the removal of a few coarse metallic objects from bottom ashes, the corresponding ICP solutions were obtained using strong digestion methods, to ensure the dissolution of the most refractory components that could host significant amounts of precious metals and CRM. The integration of accurate chemical data with a substance flow analysis, which takes into account the mass balance and uncertainties assessment, indicates that bottom and fly ashes can be considered as a low concentration stream of precious and high-tech metals. The magnesium, copper, antimony and zinc contents are close to the corresponding values of a low-grade ore. The distribution of the elements flow between bottom and fly ash, and within different grain size fractions of bottom ash, is appraised. Most elements are enriched in the bottom ash flow, especially in the fine grained fractions. However, the calculated transfer coefficients indicate that Sb and Zn strongly partition into the fly ashes. The comparison with available studies indicates that the CRM concentrations in the untreated solid residues are comparable with those residues that undergo post-treatment beneficiations, e.g. separation between ferrous and non-ferrous fractions. The suggested separate collection of "fresh" bottom ash, which could be processed for further mineral upgrading, can constitute an attractive option of the waste management system, when physical-mechanical devices are not available or could not be implemented in old MSWI systems. The suggested procedure may lead to the improvement of recovery efficiency up to 83% for CRM and 94% for other valuable metals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. In-Vessel Composting of Simulated Long-Term Missions Space-Related Solid Wastes

    NASA Technical Reports Server (NTRS)

    Rodriguez-Carias, Abner A.; Sager, John; Krumins, Valdis; Strayer, Richard; Hummerick, Mary; Roberts, Michael S.

    2002-01-01

    Reduction and stabilization of solid wastes generated during space missions is a major concern for the Advanced Life Support - Resource Recovery program at the NASA, Kennedy Space Center. Solid wastes provide substrates for pathogen proliferation, produce strong odor, and increase storage requirements during space missions. A five periods experiment was conducted to evaluate the Space Operation Bioconverter (SOB), an in vessel composting system, as a biological processing technology to reduce and stabilize simulated long-term missions space related solid-wastes (SRSW). For all periods, SRSW were sorted into components with fast (FBD) and slow (SBD) biodegradability. Uneaten food and plastic were used as a major FBD and SBD components, respectively. Compost temperature (C), CO2 production (%), mass reduction (%), and final pH were utilized as criteria to determine compost quality. In period 1, SOB was loaded with a 55% FBD: 45% SBD mixture and was allowed to compost for 7 days. An eleven day second composting period was conducted loading the SOB with 45% pre-composted SRSW and 55% FBD. Period 3 and 4 evaluated the use of styrofoam as a bulking agent and the substitution of regular by degradable plastic on the composting characteristics of SRSW, respectively. The use of ceramic as a bulking agent and the relationship between initial FBD mass and heat production was investigated in period 5. Composting SRSW resulted in an acidic fermentation with a minor increase in compost temperature, low CO2 production, and slightly mass reduction. Addition of styrofoam as a bulking agent and substitution of regular by biodegradable plastic improved the composting characteristics of SRSW, as evidenced by higher pH, CO2 production, compost temperature and mass reduction. Ceramic as a bulking agent and increase the initial FBD mass (4.4 kg) did not improve the composting process. In summary, the SOB is a potential biological technology for reduction and stabilization of mission space-related solid wastes. However, the success of the composting process may depend of the physical characteristics (particle size, porosity, structure, texture) of the SBD components which would require pre-processing of solid wastes before placing them in the SOB.

  15. Recovery of uranium from an irradiated solid target after removal of molybdenum-99 produced from the irradiated target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reilly, Sean Douglas; May, Iain; Copping, Roy

    A process for minimizing waste and maximizing utilization of uranium involves recovering uranium from an irradiated solid target after separating the medical isotope product, molybdenum-99, produced from the irradiated target. The process includes irradiating a solid target comprising uranium to produce fission products comprising molybdenum-99, and thereafter dissolving the target and conditioning the solution to prepare an aqueous nitric acid solution containing irradiated uranium. The acidic solution is then contacted with a solid sorbent whereby molybdenum-99 remains adsorbed to the sorbent for subsequent recovery. The uranium passes through the sorbent. The concentrations of acid and uranium are then adjusted tomore » concentrations suitable for crystallization of uranyl nitrate hydrates. After inducing the crystallization, the uranyl nitrate hydrates are separated from a supernatant. The process results in the purification of uranyl nitrate hydrates from fission products and other contaminants. The uranium is therefore available for reuse, storage, or disposal.« less

  16. Surgical waste audit of 5 total knee arthroplasties

    PubMed Central

    Stall, Nathan M.; Kagoma, Yoan K.; Bondy, Jennifer N.; Naudie, Douglas

    2013-01-01

    Background Operating rooms (ORs) are estimated to generate up to one-third of hospital waste. At the London Health Sciences Centre, prosthetics and implants represent 17% of the institution’s ecological footprint. To investigate waste production associated with total knee arthroplasties (TKAs), we performed a surgical waste audit to gauge the environmental impact of this procedure and generate strategies to improve waste management. Methods We conducted a waste audit of 5 primary TKAs performed by a single surgeon in February 2010. Waste was categorized into 6 streams: regular solid waste, recyclable plastics, biohazard waste, laundered linens, sharps and blue sterile wrap. Volume and weight of each stream was quantified. We used Canadian Joint Replacement Registry data (2008–2009) to estimate annual weight and volume totals of waste from all TKAs performed in Canada. Results The average surgical waste (excluding laundered linens) per TKA was 13.3 kg, of which 8.6 kg (64.5%) was normal solid waste, 2.5 kg (19.2%) was biohazard waste, 1.6 kg (12.1%) was blue sterile wrap, 0.3 kg (2.2%) was recyclables and 0.3 kg (2.2%) was sharps. Plastic wrappers, disposable surgical linens and personal protective equipment contributed considerably to total waste. We estimated that landfill waste from all 47 429 TKAs performed in Canada in 2008–2009 was 407 889 kg by weight and 15 272 m3 by volume. Conclusion Total knee arthroplasties produce substantial amounts of surgical waste. Environmentally friendly surgical products and waste management strategies may allow ORs to reduce the negative impacts of waste production without compromising patient care. Level of evidence Level IV, case series. PMID:23351497

  17. 40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.205 Standards...

  18. 40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.205 Standards...

  19. 40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.205 Standards...

  20. Investigating solid waste production and associated management practices in private dental units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontogianni, S.; Xirogiannopoulou, A.; Karagiannidis, A.

    In the municipality of Thessaloniki in 2006 mercury-bearing dental wastes were not managed properly by 80% of dentists and metal-bearing waste was handled in accordance with internationally established best management practices by less than 50% of dentists. Those results were documented through a biennial field-based research study that took place in private dental units within the Thessaloniki Urban Area. For quantifying the waste produced, structured questionnaires were used and interviews with dentists were performed. In the present work, results of this survey are presented; critical parameters and factors affecting the quantity and quality of the dental waste stream are reportedmore » together with the analysis and classification of dominant conditions and needs of the dental sector in the waste management field.« less

  1. Modelling the Solid Waste Flow into Sungai Ikan Landfill Sites by Material Flow Analysis Method

    NASA Astrophysics Data System (ADS)

    Ghani, Latifah A.; Ali, Nora'aini; Hassan, Nur Syafiqah A.

    2017-12-01

    The purpose of this paper is to model the material flow of solid waste flows at Kuala Terengganu by using Material Flow Analysis (MFA) method, generated by STAN Software Analysis. Sungai Ikan Landfill has been operated for about 10 years. Average, Sungai Ikan Landfill receive an amount around 260 tons per day of solid waste. As for the variety source of the solid waste coming from, leachates that accumulated has been tested and measured. Highest reading of pH of the leachate is 8.29 which is still in the standard level before discharging the leachate to open water which pH in between 8.0-9.0. The percentages of the solid waste has been calculated and seven different types of solid waste has been segregated. That is, plastics, organic waste, paper, polystyrene, wood, fabric and can. The estimation of the solid waste that will be end as a residue are around 244 tons per day.

  2. Responses to Public Comments on EPA’s Standards of Performance for Municipal Solid Waste Landfills and Emission Guidelines and Compliance Times for Municipal Solid Waste Landfills: Proposed Rules - July 2016

    EPA Pesticide Factsheets

    Responses to Public Comments on EPA’s Standards of Performance for Municipal Solid Waste Landfills and Emission Guidelines and Compliance Times for Municipal Solid Waste Landfills: Proposed Rules - July 2016

  3. 36 CFR 6.8 - National Park Service solid waste responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.8 National Park Service solid waste responsibilities. (a) Beginning one year after January 23, 1995, a Superintendent will not permit or allow a person to dispose of solid waste at a National Park Service operated...

  4. 76 FR 55256 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction AGENCY: Internal..., 2011, on the definition of solid waste disposal facilities for purposes of the rules applicable to tax... governments that issue tax-exempt bonds to finance solid waste disposal facilities and to taxpayers that use...

  5. 76 FR 55255 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction AGENCY: Internal..., on the definition of solid waste disposal facilities for purposes of the rules applicable to tax... governments that issue tax-exempt bonds to finance solid waste disposal facilities and to taxpayers that use...

  6. 36 CFR 6.8 - National Park Service solid waste responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.8 National Park Service solid waste responsibilities. (a) Beginning one year after January 23, 1995, a Superintendent will not permit or allow a person to dispose of solid waste at a National Park Service operated...

  7. 40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Unwanted material that is not solid or... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Alternative... Eligible Academic Entities § 262.215 Unwanted material that is not solid or hazardous waste. (a) If an...

  8. 40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Unwanted material that is not solid or... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Alternative... Eligible Academic Entities § 262.215 Unwanted material that is not solid or hazardous waste. (a) If an...

  9. Assessment of environmental policy implementation in solid waste management in Kathmandu, Nepal.

    PubMed

    Dangi, Mohan B; Schoenberger, Erica; Boland, John J

    2017-06-01

    In Nepal, full-fledged environmental legislation was rare before the democratic constitution of 1990. The first law covering the environment and sustainability was the Environment Protection Act 1997. While the Solid Waste Act was introduced in 1987, the problem of solid waste management still surfaces in Kathmandu. In order to understand the bedrock of this unrelenting failure in solid waste management, the manuscript digs deeper into policy implementation by dissecting solid waste rules, environmental legislations, relevant local laws, and solid waste management practices in Kathmandu, Nepal. A very rich field study that included surveys, interviews, site visits, and literature review provided the basis for the article. The study shows that volumes of new Nepalese rules are crafted without effective enforcement of their predecessors and there is a frequent power struggle between local government bodies and central authority in implementing the codes and allocating resources in solid waste management. The study concludes that Kathmandu does not require any new instrument to address solid waste problems; instead, it needs creation of local resources, execution of local codes, and commitment from central government to allow free exercise of these policies.

  10. Comparative Analysis of Households Solid Waste Management in Rural and Urban Ghana

    PubMed Central

    Appiah, Divine Odame; Poku, Adjoa Afriyie; Garsonu, Emmanuel Kofi

    2016-01-01

    The comparative analysis of solid waste management between rural and urban Ghana is largely lacking. This study investigated the solid waste situation and the organisation of solid waste management in both urban and rural settings from the perspective of households. The study employed cross-sectional survey covering both rural and urban districts in the Ashanti and Greater Accra Regions of Ghana. The study systematically sampled houses from which 400 households and respondents were randomly selected. Pearson's Chi square test was used to compare demographic and socioeconomic variables in rural and urban areas. Multivariate Test, Tests of Between-Subjects Effects, and Pair-Wise Comparisons were performed through one-way MANOVA to determine whether or not solid waste situations in rural and urban areas are significantly different. The results revealed that location significantly affects solid waste management in Ghana. Urban communities had lower mean scores than rural communities for poor solid waste situation in homes. However, urban communities had higher mean scores than rural communities for poor solid waste situation in principal streets and dumping sites. The study recommends that the local government authorities implement very comprehensive policies (sanitary inspection, infrastructure development, and community participation) that will take into consideration the specific solid waste management needs of both urban and rural areas. PMID:27807453

  11. Comparative Analysis of Households Solid Waste Management in Rural and Urban Ghana.

    PubMed

    Boateng, Simon; Amoako, Prince; Appiah, Divine Odame; Poku, Adjoa Afriyie; Garsonu, Emmanuel Kofi

    2016-01-01

    The comparative analysis of solid waste management between rural and urban Ghana is largely lacking. This study investigated the solid waste situation and the organisation of solid waste management in both urban and rural settings from the perspective of households. The study employed cross-sectional survey covering both rural and urban districts in the Ashanti and Greater Accra Regions of Ghana. The study systematically sampled houses from which 400 households and respondents were randomly selected. Pearson's Chi square test was used to compare demographic and socioeconomic variables in rural and urban areas. Multivariate Test, Tests of Between-Subjects Effects, and Pair-Wise Comparisons were performed through one-way MANOVA to determine whether or not solid waste situations in rural and urban areas are significantly different. The results revealed that location significantly affects solid waste management in Ghana. Urban communities had lower mean scores than rural communities for poor solid waste situation in homes. However, urban communities had higher mean scores than rural communities for poor solid waste situation in principal streets and dumping sites. The study recommends that the local government authorities implement very comprehensive policies (sanitary inspection, infrastructure development, and community participation) that will take into consideration the specific solid waste management needs of both urban and rural areas.

  12. TECHNOLOGY TRANSFER HANDBOOK: MANAGEMENT OF WATER TREATMENT PLANT RESIDUALS

    EPA Science Inventory

    Potable water treatment processes produce safe drinking water and generate a wide variety of waste products known as residuals, including organic and inorganic compounds in liquid, solid, and gaseous forms. In the current regulatory climate, a complete management program for a w...

  13. Study of problem of waste chemical current sources in Russia and in European countries

    NASA Astrophysics Data System (ADS)

    Zilenina, V. G.; Ulanova, O. V.; Dornack, C.

    2017-10-01

    This article gives a comparative analysis of handling waste chemical current sources in Russia and in the European countries, presents the effective international documents (Directives, acts) and national legislative acts (state standards, building codes, governmental decrees, etc.), demonstrates the mechanisms for disposal and recycling of waste in the European Union countries. Along with the data of the research works, conducted in other countries during many yearsб it presents the experimental data on leaching out heavy metals from chemical current sources by municipal solid waste landfill filtrate, depending on the morphological composition of domestic waste in the city of Irkutsk. An important point described in the article, is assessment and prediction of negative impact produced on the environment.

  14. Solid waste treatment processes for space station

    NASA Technical Reports Server (NTRS)

    Marrero, T. R.

    1983-01-01

    The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.

  15. Energy conservation in solid waste management in Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, M.H.

    1994-12-31

    Recycling of solid wastes has a characteristic pattern in Bangladesh in the context of the general habits and socio-economic status of the population. Extensive resource recovery from solid wastes is being carried out at various stages of disposal. The characteristics of solid wastes at the final disposal site indicate that they contain more than 90% of organic wastes. Hence, anaerobic digestion of these wastes serves a dual purpose in the conservation of energy and of valuable crop nutrients for efficient recycling especially in an agriculture-based economy. This also improves overall environmental sanitation and reduces environmental degradation. In this paper, differentmore » recycling and reuse options for solid wastes are critically discussed from the energy recovery and energy conservation point of view. It has been shown that the resource recovery from solid wastes would minimize the energy problem and would lead to a net reduction of greenhouse gases, particularly in the developing world.« less

  16. The status and developments of leather solid waste treatment: A mini-review.

    PubMed

    Jiang, Huiyan; Liu, Junsheng; Han, Wei

    2016-05-01

    Leather making is one of the most widespread industries in the world. The production of leather goods generates different types of solid wastes and wastewater. These wastes will pollute the environment and threat the health of human beings if they are not well treated. Consequently, the treatment of pollution caused by the wastes from leather tanning is really important. In comparison with the disposal of leather wastewater, the treatment of leather solid wastes is more intractable. Hence, the treatment of leather solid wastes needs more innovations. To keep up with the rapid development of the modern leather industry, various innovative techniques have been newly developed. In this mini-review article, the major achievements in the treatment of leather solid wastes are highlighted. Emphasis will be placed on the treatment of chromium-tanned solid wastes; some new approaches are also discussed. We hope that this mini-review can provide some valuable information to promote the broad understanding and effective treatment of leather solid wastes in the leather industry. © The Author(s) 2016.

  17. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco.

    PubMed

    Makan, Abdelhadi; Assobhei, Omar; Mountadar, Mohammed

    2013-01-03

    This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts.For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times.This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications.

  18. Gravitational sedimentation of flocculated waste activated sludge.

    PubMed

    Chu, C P; Lee, D J; Tay, J H

    2003-01-01

    The sedimentation characteristics of flocculated wastewater sludge have not been satisfactorily explored using the non-destructive techniques, partially owing to the rather low solid content (ca. 1-2%) commonly noted in the biological sediments. This paper investigated, for the first time, the spatial-temporal gravitational settling characteristics of original and polyelectrolyte flocculated waste activated sludge using Computerized Axial Tomography Scanner. The waste activated sludge possessed a distinct settling characteristic from the kaolin slurries. The waste activated sludges settled more slowly and reached a lower solid fraction in the final sediment than the latter. Flocculation markedly enhanced the settleability of both sludges. Although the maximum achievable solid contents for the kaolin slurries were reduced, flocculation had little effects on the activated sludge. The purely plastic rheological model by Buscall and White (J Chem Soc Faraday Trans 1(83) (1987) 873) interpreted the consolidating sediment data, while the purely elastic model by Tiller and Leu (J. Chin. Inst. Chem. Eng. 11 (1980) 61) described the final equilibrated sediment. Flocculation produced lower yield stress during transient settling, thereby resulting in the more easily consolidated sludge than the original sample. Meanwhile, the flocculated activated sludge was stiffer in the final sediment than in the original sample. The data reported herein are valuable to the theories development for clarifier design and operation.

  19. Bioleach: a mathematical model for the joint evaluation of leachate and biogas production in urban solid waste landfills

    NASA Astrophysics Data System (ADS)

    Rodrigo-Clavero, Maria-Elena; Rodrigo-Ilarri, Javier

    2017-04-01

    One of the most serious environmental problems in modern societies is the management and disposal of urban solid waste (MSW). Despite the efforts of the administration to promote recycling and reuse policies and energy recovery technologies, nowadays the majority of MSW still is disposed in sanitary landfills. During the phases of operation and post-closure maintenance of any solid waste disposal site, two of the most relevant problems are the production of leachate and the generation of biogas. The leachate and biogas production formation processes occur simultaneously over time and are coupled together through the consumption and/or production of water. However, no mathematical models have been easily identified that allow to the evaluation of the joint production of leachate and biogas, during the operational and the post-closure phase of an urban waste landfill. This paper introduces BIOLEACH, a new mathematical model programmed on a monthly scale, that evaluates the joint production of leachate and biogas applying water balance techniques and considers the management of the landfill as a bioreactor. The application of such a model on real landfills allows to perform an environmentally sustainable management that minimizes the environmental impacts produced being also economically more profitable.

  20. Salt Composition Derived from Veazey Composition by Thermodynamic Modeling and Predicted Composition of Drum Contents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisbrod, Kirk Ryan; Veirs, Douglas Kirk; Funk, David John

    This report describes the derivation of the salt composition from the Veazey salt stream analysis. It also provides an estimate of the proportions of the kitty litter, nitrate salt and neutralizer that was contained in drum 68660. While the actinide content of waste streams was judiciously followed in the 1980s in TA-55, no record of the salt composition could be found. Consequently, a salt waste stream produced from 1992 to 1994 and reported by Gerry Veazey provided the basis for this study. While chemical analysis of the waste stream was highly variable, an average analysis provided input to the Streammore » Analyzer software to calculate a composition for a concentrated solid nitrate salt and liquid waste stream. The calculation predicted the gas / condensed phase compositions as well as solid salt / saturated liquid compositions. The derived composition provides an estimate of the nitrate feedstream to WIPP for which kinetic measurements can be made. The ratio of salt to Swheat in drum 68660 contents was estimated through an overall mass balance on the parent and sibling drums. The RTR video provided independent confirmation concerning the volume of the mixture. The solid salt layer contains the majority of the salt at a ratio with Swheat that potentially could become exothermic.« less

  1. Assessing and monitoring the effects of filter material amendments on the biophysicochemical properties during composting of solid winery waste under open field and varying climatic conditions.

    PubMed

    Mtimkulu, Y; Meyer, A H; Mulidzi, A R; Shange, P L; Nchu, F

    2017-01-01

    Waste management in winery and distillery industries faces numerous disposal challenges as large volumes of both liquid and solid waste by-products are generated yearly during cellar practices. Composting has been suggested as a feasible option to beneficiate solid organic waste. This incentivized the quest for efficient composting protocols to be put in place. The objective of this study was to experiment with different composting strategies for spent winery solid waste. Compost materials consisting of chopped pruning grape stalks, skins, seed and spent wine filter material consisting of a mixture of organic and inorganic expend ingredients were mixed in compost heaps. The filter material component varied (in percentage) among five treatments: T1 (40%) lined, T2 (20%) lined, T3 (0%) lined, T4 (40%) ground material, lined and T5 (40%) unlined. Composting was allowed to proceed under open field conditions over 12months, from autumn to summer. Indicators such as temperature, moisture, enzyme activities, microbial counts, pH, and C/N ratio, were recorded. Generally, season (df=3, 16, P<0.05) had significant effects (df=1, 3, P<0.05) on heap temperature and moisture in all treatments. Similarly, microorganisms (actinobacteria and heterotrophs) varied significantly in all treatments in response to seasonal change (df=3, 16; P<0.05). Enzyme activities fluctuated in accordance with seasonal factors and compost maturity stages, with phosphatases, esterases, amino-peptidases, proteases and glycosyl-hydrolases being most prominent. Compared to treatments T2 and T3, compost treatments with higher percentage waste filter materials (T1, T4 and T5) had higher N (16,100-21,300mg/kg), P (1500-2300mg/kg), K (19,800-28,200mg/kg), neutral pH, and lower C/N ratios (13:1-10:1), which were also comparable with commercially produced composts. Filter materials therefore, appears to be a vital ingredient for composting of winery solid waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. 40 CFR 264.101 - Corrective action for solid waste management units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., storage or disposal of hazardous waste must institute corrective action as necessary to protect human... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...

  3. 40 CFR 264.101 - Corrective action for solid waste management units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., storage or disposal of hazardous waste must institute corrective action as necessary to protect human... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...

  4. 40 CFR 264.101 - Corrective action for solid waste management units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., storage or disposal of hazardous waste must institute corrective action as necessary to protect human... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...

  5. Thermophilic aerobic digestion process for producing animal nutrients and other digested products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulthard, T.L.; Townsley, P.M.; Saben, H.S.

    1981-09-29

    Waste materials are digested by thermophilic bacteria to produce single-cell protein and vitamin B12. The bacteria are contained in the waste and are not inoculated. Thus, a hog manure slurry containing 10% solids was stirred with aeration in an insulated reactor to allow the temperature to be maintained at greater than 55/sup 0/. The temperature was maintained at 55-65/sup 0/ and the dissolved O/sub 2/ concentration at 1.5-3 ppm for 6 days. After 10 days reaction, the product was fed to hogs as 10% of their nutrient supply with no apparent adverse effects.

  6. Hydrolytic pre-treatment methods for enhanced biobutanol production from agro-industrial wastes.

    PubMed

    Maiti, Sampa; Gallastegui, Gorka; Suresh, Gayatri; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Drogui, Patrick; LeBihan, Yann; Buelna, Gerardo; Verma, Mausam; Soccol, Carlos Ricardo

    2018-02-01

    Brewery industry liquid waste (BLW), brewery spent grain (BSG), apple pomace solid wastes (APS), apple pomace ultrafiltration sludge (APUS) and starch industry wastewater (SIW) have been considered as substrates to produce biobutanol. Efficiency of hydrolysis techniques tested to produce fermentable sugars depended on nature of agro-industrial wastes and process conditions. Acid-catalysed hydrolysis of BLW and BSG gave a total reducing sugar yield of 0.433 g/g and 0.468 g/g respectively. Reducing sugar yield from microwave assisted hydrothermal method was 0.404 g/g from APS and 0.631 g/g from APUS, and, 0.359 g/g from microwave assisted acid-catalysed SIW dry mass. Parameter optimization (time, pH and substrate concentration) for acid-catalysed BLW hydrolysate utilization using central composite model technique produced 307.9 g/kg glucose with generation of inhibitors (5-hydroxymethyl furfural (20 g/kg), furfural (1.6 g/kg), levulinic acid (9.3 g/kg) and total phenolic compound (0.567 g/kg)). 10.62 g/L of acetone-butanol-ethanol was produced by subsequent clostridial fermentation of the substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Adding value to a toxic residue from the biodiesel industry: production of two distinct pool of lipases from Penicillium simplicissimum in castor bean waste.

    PubMed

    Godoy, Mateus G; Gutarra, Melissa L E; Castro, Aline M; Machado, Olga L T; Freire, Denise M G

    2011-08-01

    In countries with a strong agricultural base, such as Brazil, the generation of solid residues is very high. In some cases, these wastes present no utility due to their toxic and allergenic compounds, and so are an environmental concern. The castor bean (Ricinus communis) is a promising candidate for biodiesel production. From the biodiesel production process developed in the Petrobras Research Center using castor bean seeds, a toxic and alkaline waste is produced. The use of agroindustrial wastes in solid-state fermentation (SSF) is a very interesting alternative for obtaining enzymes at low cost. Therefore, in this work, castor bean waste was used, without any treatment, as a culture medium for fungal growth and lipase production. The fungus Penicillium simplicissimum was able to grow and produce an enzyme in this waste. In order to maximize the enzyme production, two sequential designs-Plackett-Burman (variable screening) followed by central composite rotatable design (CCRD)-were carried out, attaining a considerable increase in lipase production, reaching an activity of 155.0 U/g after 96 h of fermentation. The use of experimental design strategy was efficient, leading to an increase of 340% in the lipase production. Zymography showed the presence of different lipases in the crude extract. The partial characterization of such extract showed the occurrence of two lipase pools with distinct characteristics of pH and temperature of action: one group with optimal action at pH 6.5 and 45°C and another one at pH 9.0 and 25°C. These results demonstrate how to add value to a toxic and worthless residue through the production of lipases with distinct characteristics. This pool of enzymes, produced through a low cost methodology, can be applied in different areas of biotechnology.

  8. Assessment of plastic waste generation and its potential recycling of household solid waste in Can Tho City, Vietnam.

    PubMed

    Thanh, Nguyen Phuc; Matsui, Yasuhiro; Fujiwara, Takeshi

    2011-04-01

    Plastic solid waste has become a serious problem when considering the disposal alternatives following the sequential hierarchy of sound solid waste management. This study was undertaken to assess the quantity and composition of household solid waste, especially plastic waste to identify opportunities for waste recycling. A 1-month survey of 130 households was carried out in Can Tho City, the capital city of the Mekong Delta region in southern Vietnam. Household solid waste was collected from each household and classified into ten physical categories; especially plastic waste was sorted into 22 subcategories. The average household solid waste generation rate was 281.27 g/cap/day. The compostable and recyclable shares respectively accounted for high percentage as 80.74% and 11%. Regarding plastic waste, the average plastic waste generation rate was 17.24 g/cap/day; plastic packaging and plastic containers dominated with the high percentage, 95.64% of plastic waste. Plastic shopping bags were especially identified as the major component, accounting for 45.72% of total plastic waste. Relevant factors such as household income and household size were found to have an existing correlation to plastic waste generation in detailed composition. The household habits and behaviors of plastic waste discharge and the aspects of environmental impacts and resource consumption for plastic waste disposal alternatives were also evaluated.

  9. Chemical and engineering properties of fired bricks containing 50 weight percent of class F fly ash

    USGS Publications Warehouse

    Chou, I.-Ming; Patel, V.; Laird, C.J.; Ho, K.K.

    2001-01-01

    The generation of fly ash during coal combustion represents a considerable solid waste disposal problem in the state of Illinois and nationwide. In fact, the majority of the three million tons of fly ash produced from burning Illinois bituminous coals is disposed of in landfills. The purpose of this study was to obtain a preliminary assessment of the technical feasibility of mitigating this solid waste problem by making fired bricks with the large volume of fly ash generated from burning Illinois coals. Test bricks were produced by the extrusion method with increasing amounts (20-50% by weight) of fly ash as a replacement for conventional raw materials. The chemical characteristics and engineering properties of the test bricks produced with and without 50 wt% of fly ash substitutions were analyzed and compared. The properties of the test bricks containing fly ash were at least comparable to, if not better than, those of standard test bricks made without fly ash and met the commercial specifications for fired bricks. The positive results of this study suggest that further study on test bricks with fly ash substitutions of greater than 50wt% is warranted. Successful results could have an important impact in reducing the waste disposal problem related to class F fly ash while providing the brick industry with a new low cost raw material. Copyright ?? 2001 Taylor & Francis.

  10. Manufacturing waste disposal practices of the chemical propulsion industry

    NASA Technical Reports Server (NTRS)

    Goldberg, Benjamin E.; Adams, Daniel E.; Schutzenhofer, Scott A.

    1995-01-01

    The waste production, mitigation and disposal practices of the United States chemical propulsion industry have been investigated, delineated, and comparatively assessed to the U.S. industrial base. Special emphasis has been placed on examination of ozone depleting chemicals (ODC's). The research examines present and anticipated future practices and problems encountered in the manufacture of solid and liquid propulsion systems. Information collected includes current environmental laws and regulations that guide the industry practices, processes in which ODC's are or have been used, quantities of waste produced, funding required to maintain environmentally compliant practices, and preventive efforts.

  11. Study of the production of alkaline keratinases in submerged cultures as an alternative for solid waste treatment generated in leather technology.

    PubMed

    Cavello, Ivana A; Chesini, Mariana; Hours, Roque A; Cavalitto, Sebastián F

    2013-01-01

    Six nonpathogenic fungal strains isolated from alkaline soils of Buenos Aires Province, Argentina (Acremonium murorum, Aspergillus sidowii, Cladosporium cladosporoides, Neurospora tetrasperma, Purpureocillium lilacinum (formerly Paecilomyces lilacinus), and Westerdikella dispersa) were tested for their ability to produce keratinolytic enzymes. Strains were grown on feather meal agar as well as in solid-state and submerged cultures, using a basal mineral medium and "hair waste" as sole sources of carbon and nitrogen. All the tested fungi grew on feather meal agar, but only three of them were capable of hydrolyzing keratin, producing clear zones. Among these strains, P. lilacinum produced the highest proteolytic and keratinolytic activities, both in solid-state and submerged fermentations. The medium composition and culture conditions for the keratinases production by P. lilacinum were optimized. Addition of glucose (5 g/l) and yeast extract (2.23 g/l) to the basal hair medium increased keratinases production. The optimum temperature and initial pH for the enzyme production were 28℃ and 6.0, respectively. A beneficial effect was observed when the original concentration of four metal ions, present in the basal mineral medium, was reduced up to 1:10. The maximum yield of the enzyme was 15.96 Uc/ml in the optimal hair medium; this value was about 6.5-fold higher than the yield in the basal hair medium. These results suggest that keratinases from P. lilacinum can be useful for biotechnological purposes such as biodegradation (or bioconversion) of hair waste, leading to a reduction of the environmental pollution caused by leather technology with the concomitant production of proteolytic enzymes and protein hydrolyzates.

  12. Are municipal solid waste collectors at increased risk of Hepatitis A Virus infection? A Greek cross-sectional study.

    PubMed

    Rachiotis, George; Tsovili, Eva; Papagiannis, Dimitrios; Markaki, Adelais; Hadjichristodoulou, Christos

    2016-12-01

    Municipal solid waste collectors are reportedly at risk for Hepatitis A virus infection (HAV) as an occupational hazard. We aimed to investigate the prevalence and possible risk factors of HAV infection among solid waste collectors in a municipality of the broader region of Attica, Greece. A cross-sectional sero-prevalence study was conducted. Fifty (n=50) waste collectors participated in the study (response rate: 95%). The group of municipal waste collectors was compared to a convenient sample of workers not exposed to solid waste (n=83). Municipal solid waste collectors recorded a higher, but not statistically significant, prevalence of anti-HAV(+) in comparison to subjects without occupational exposure to waste (40% vs 34% respectively p=0,4). No significant associations were found between inappropriate work practices and anti- HAV (+). Education was the only factor independently associated with the risk of HAV infection. This study did not corroborate previous reports of an increased prevalence of Hepatitis A Virus infection among municipal solid waste collectors.

  13. Reference-material system for estimating health and environmental risks of selected material cycles and energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, M.A.; Moskowitz, P.D.

    1981-07-01

    Sample analyses and detailed documentation are presented for a Reference Material System (RMS) to estimate health and environmental risks of different material cycles and energy systems. Data inputs described include: end-use material demands, efficiency coefficients, environmental emission coefficients, fuel demand coefficients, labor productivity estimates, and occupational health and safety coefficients. Application of this model permits analysts to estimate fuel use (e.g., Btu), occupational risk (e.g., fatalities), and environmental emissions (e.g., sulfur oxide) for specific material trajectories or complete energy systems. Model uncertainty is quantitatively defined by presenting a range of estimates for each data input. Systematic uncertainty not quantified relatesmore » to the boundaries chosen for analysis and reference system specification. Although the RMS can be used to analyze material system impacts for many different energy technologies, it was specifically used to examine the health and environmental risks of producing the following four types of photovoltaic devices: silicon n/p single-crystal cells produced by a Czochralski process; silicon metal/insulator/semiconductor (MIS) cells produced by a ribbon-growing process; cadmium sulfide/copper sulfide backwall cells produced by a spray deposition process; and gallium arsenide cells with 500X concentrator produced by a modified Czochralski process. Emission coefficients for particulates, sulfur dioxide and nitrogen dioxide; solid waste; total suspended solids in water; and, where applicable, air and solid waste residuals for arsenic, cadmium, gallium, and silicon are examined and presented. Where data are available the coefficients for particulates, sulfur oxides, and nitrogen oxides include both process and on-site fuel-burning emissions.« less

  14. Hybrid solid anaerobic digestion batch: biomethane production and mass recovery from the organic fraction of solid waste.

    PubMed

    Di Maria, Francesco; Gigliotti, Giovanni; Sordi, Alessio; Micale, Caterina; Zadra, Claudia; Massaccesi, Luisa

    2013-08-01

    An experimental apparatus was constructed to perform hybrid solid anaerobic digestion batch processing of the organic fraction of municipal solid waste. The preliminary process was carried out with a high total solids concentration of about 33% w w(-1) and with an initial organic load of about 340 kg VS kg(-1). The fresh organic fraction to inoculum ratio used to enhance the anaerobic process start-up was 0.910 kg VS kg VS(-1). The process was conducted by spreading the percolate on top of the mixture. The percolate was stored in a separate section of the apparatus with a mean hydraulic retention time of about 1 day. During the process, acetate, butyrate and propionate in the percolate reached concentrations ranging from 3000 to 11 000 mg L(-1). In spite of these high concentrations, the biomethane produced from both the solid and the percolate was quite high, at about 210 NL kg VS(-1). The digestate obtained at the end of the run showed rather good features for being classified as an organic fertilizer according to Italian law. However, a residual phytotoxicity level was detected by a standardized test showing a germination index of about 50%.

  15. Compacting biomass waste materials for use as fuel

    NASA Astrophysics Data System (ADS)

    Zhang, Ou

    Every year, biomass waste materials are produced in large quantity. The combustibles in biomass waste materials make up over 70% of the total waste. How to utilize these waste materials is important to the nation and the world. The purpose of this study is to test optimum processes and conditions of compacting a number of biomass waste materials to form a densified solid fuel for use at coal-fired power plants or ordinary commercial furnaces. Successful use of such fuel as a substitute for or in cofiring with coal not only solves a solid waste disposal problem but also reduces the release of some gases from burning coal which cause health problem, acid rain and global warming. The unique punch-and-die process developed at the Capsule Pipeline Research Center, University of Missouri-Columbia was used for compacting the solid wastes, including waste paper, plastics (both film and hard products), textiles, leaves, and wood. The compaction was performed to produce strong compacts (biomass logs) under room temperature without binder and without preheating. The compaction conditions important to the commercial production of densified biomass fuel logs, including compaction pressure, pressure holding time, back pressure, moisture content, particle size, binder effects, and mold conditions were studied and optimized. The properties of the biomass logs were evaluated in terms of physical, mechanical, and combustion characteristics. It was found that the compaction pressure and the initial moisture content of the biomass material play critical roles in producing high-quality biomass logs. Under optimized compaction conditions, biomass waste materials can be compacted into high-quality logs with a density of 0.8 to 1.2 g/cm3. The logs made from the combustible wastes have a heating value in the range 6,000 to 8,000 Btu/lb which is only slightly (10 to 30%) less than that of subbituminous coal. To evaluate the feasibility of cofiring biomass logs with coal, burn tests were conducted in a stoke boiler. A separate burning test was also carried out by burning biomass logs alone in an outdoor hot-water furnace for heating a building. Based on a previous coal compaction study, the process of biomass compaction was studied numerically by use of a non-linear finite element code. A constitutive model with sufficient generality was adapted for biomass material to deal with pore contraction during compaction. A contact node algorithm was applied to implement the effect of mold wall friction into the finite element program. Numerical analyses were made to investigate the pressure distribution in a die normal to the axis of compaction, and to investigate the density distribution in a biomass log after compaction. The results of the analyses gave generally good agreement with theoretical analysis of coal log compaction, although assumptions had to be made about the variation in the elastic modulus of the material and the Poisson's ratio during the compaction cycle.

  16. Attitudes of Preservice Social Studies Teachers towards Solid Wastes and Recycle

    ERIC Educational Resources Information Center

    Karatekin, Kadir; Merey, Zihni

    2015-01-01

    The objective of this study is to determine the attitudes of preservice social studies-teachers towards solid wastes and recycle. This study used the screening model, In order to determine the attitudes of preservice teachers towards solid wastes and recycle, we used the "Scale for the Attitudes of Preservice Teachers towards Solid Wastes and…

  17. 30 CFR 250.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What solid and liquid wastes and discharges... of Exploration Plans (ep) § 250.217 What solid and liquid wastes and discharges information and cooling water intake information must accompany the EP? The following solid and liquid wastes and...

  18. Estimation and characterization of decontamination and decommissioning solid waste expected from the Plutonium Finishing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millar, J.S.; Pottmeyer, J.A.; Stratton, T.J.

    1995-01-01

    Purpose of the study was to estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the Hanford Plutonium Finishing Plant is decontaminated and decommissioned. (Building structure and soil are not covered.) Results indicate that {approximately}5,500 m{sup 3} of solid waste is expected to result from the decontamination and decommissioning of the Pu Finishing Plant. The breakdown of the volumes and percentages of waste by category is 1% dangerous solid waste, 71% low-level waste, 21% transuranic waste, 7% transuranic mixed waste.

  19. Allocation of solid waste collection bins and route optimisation using geographical information system: A case study of Dhanbad City, India.

    PubMed

    Khan, D; Samadder, S R

    2016-07-01

    Collection of municipal solid waste is one of the most important elements of municipal waste management and requires maximum fund allocated for waste management. The cost of collection and transportation can be reduced in comparison with the present scenario if the solid waste collection bins are located at suitable places so that the collection routes become minimum. This study presents a suitable solid waste collection bin allocation method at appropriate places with uniform distance and easily accessible location so that the collection vehicle routes become minimum for the city Dhanbad, India. The network analyst tool set available in ArcGIS was used to find the optimised route for solid waste collection considering all the required parameters for solid waste collection efficiently. These parameters include the positions of solid waste collection bins, the road network, the population density, waste collection schedules, truck capacities and their characteristics. The present study also demonstrates the significant cost reductions that can be obtained compared with the current practices in the study area. The vehicle routing problem solver tool of ArcGIS was used to identify the cost-effective scenario for waste collection, to estimate its running costs and to simulate its application considering both travel time and travel distance simultaneously. © The Author(s) 2016.

  20. Thirty-year solid waste generation forecast for facilities at SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-07-01

    The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis ofmore » future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.« less

Top