Study of silicon crystal surface formation based on molecular dynamics simulation results
NASA Astrophysics Data System (ADS)
Barinovs, G.; Sabanskis, A.; Muiznieks, A.
2014-04-01
The equilibrium shape of <110>-oriented single crystal silicon nanowire, 8 nm in cross-section, was found from molecular dynamics simulations using LAMMPS molecular dynamics package. The calculated shape agrees well to the shape predicted from experimental observations of nanocavities in silicon crystals. By parametrization of the shape and scaling to a known value of {111} surface energy, Wulff form for solid-vapor interface was obtained. The Wulff form for solid-liquid interface was constructed using the same model of the shape as for the solid-vapor interface. The parameters describing solid-liquid interface shape were found using values of surface energies in low-index directions known from published molecular dynamics simulations. Using an experimental value of the liquid-vapor interface energy for silicon and graphical solution of Herring's equation, we constructed angular diagram showing relative equilibrium orientation of solid-liquid, liquid-vapor and solid-vapor interfaces at the triple phase line. The diagram gives quantitative predictions about growth angles for different growth directions and formation of facets on the solid-liquid and solid-vapor interfaces. The diagram can be used to describe growth ridges appearing on the crystal surface grown from a melt. Qualitative comparison to the ridges of a Float zone silicon crystal cone is given.
NASA Technical Reports Server (NTRS)
Carlson, F. M.; Chin, L.-Y.; Fripp, A. L.; Crouch, R. K.
1982-01-01
The effect of solid-liquid interface shape on lateral solute segregation during steady-state unidirectional solidification of a binary mixture is calculated under the assumption of no convection in the liquid. A finite element technique is employed to compute the concentration field in the liquid and the lateral segregation in the solid with a curved boundary between the liquid and solid phases. The computational model is constructed assuming knowledge of the solid-liquid interface shape; no attempt is made to relate this shape to the thermal field. The influence of interface curvature on the lateral compositional variation is investigated over a range of system parameters including diffusivity, growth speed, distribution coefficient, and geometric factors of the system. In the limiting case of a slightly nonplanar interface, numerical results from the finite element technique are in good agreement with the analytical solutions of Coriell and Sekerka obtained by using linear theory. For the general case of highly non-planar interface shapes, the linear theory fails and the concentration field in the liquid as well as the lateral solute segregation in the solid can be calculated by using the finite element method.
A quantitative study of factors influencing lamellar eutectic morphology during solidification
NASA Technical Reports Server (NTRS)
Kaukler, W. F. S.
1981-01-01
The factors that influence the shape of the solid-liquid interface of a lamellar binary eutectic alloy are evaluated. Alloys of carbon tetrabromide and hexachloroethane which serve as a transparent analogue of lamellar metallic eutectics are used. The observed interface shapes are analyzed by computer-aided methods. The solid-liquid interfacial free energies of each of the individual phases comprising the eutectic system are measured as a function of composition using a 'grain boundary groove' technique. The solid-liquid interfacial free energy of the two phases are evaluated directly from the eutectic interface. The phase diagram for the system, the heat of fusion as a function of composition, and the density as a function of composition are measured. The shape of the eutectic interface is controlled mainly by the solid-liquid and solid-solid interfacial free energy relationships at the interface and by the temperature gradient present, rather than by interlamellar diffusion in the liquid at the interface, over the range of growth rates studied.
Convection-induced distortion of a solid-liquid interface
NASA Technical Reports Server (NTRS)
Schaefer, R. J.; Coriell, S. R.
1984-01-01
Measurements of convective flow fields and solid-liquid interface shapes during the solidification of a pure and a slightly alloyed transparent material reveal that the convective transport of solute can cause a macroscopic depression to develop in the solid-liquid interface. This effect occurs under conditions close to those which are predicted to produce morphological instability of a planar interface. A cellular or dendritic microstructure later develops within the interface depression. The convection is attributed to the effect of radial temperature gradients in the crystal growth apparatus.
Ultrasonic transmission at solid-liquid interfaces
NASA Astrophysics Data System (ADS)
Wadley, Haydn N. G.; Queheillalt, Douglas T.; Lu, Yichi
1996-11-01
New non-invasive solid-liquid interface sensing technologies are a key element in the development of improved Bridman growth techniques for synthesizing single crystal semiconductor materials. Laser generated and optically detect ultrasonic techniques have the potential to satisfy this need. Using an anisotropic 3D ray tracing methodology combined with elastic constant data measured near the melting point, ultrasonic propagation in cylindrical single crystal bodies containing either a convex, flat, or concave solid-liquid interface has been simulated. Ray paths, wavefronts and the time-of-flight (TOF) of rays that travel from a source to an arbitrarily positioned receiver have all been calculated. Experimentally measured TOF data have been collected using laser generated, optically detected ultrasound on model systems with independently known interface shapes. Both numerically simulated and experimental data have shown that the solidification region can be easily identified from transmission TOF measurements because the velocity of the liquid is much smaller than that of the solid. Since convex and concave solid-liquid interfaces result in distinctively different TOF data profiles, the interface shape can also be readily determined from the TOF data. When TOF data collected in the diametral plane is used in conjunction with a nonlinear least squares algorithm, the interface geometry has been successfully reconstructed and ultrasonic velocities of both the solid and liquid obtained with reconstruction errors less than 5 percent.
NASA Technical Reports Server (NTRS)
Douglas, F. C.; Galasso, F. S.
1974-01-01
Experimental work is reported which was directed toward obtaining interface shape control while a numerical thermal analysis program was being made operational. An experimental system was developed in which the solid-liquid interface in a directionally solidified aluminum-nickel eutectic could be made either concave to the melt or convex to the melt. This experimental system provides control over the solid-liquid interface shape and can be used to study the effect of such control on the microstructure. The SINDA thermal analysis program, obtained from Marshall Space Flight Center, was used to evaluate experimental directional solidification systems for the aluminum-nickel and the aluminum-copper eutectics. This program was applied to a three-dimensional ingot, and was used to calculate the thermal profiles in axisymmetric heat flow. The results show that solid-liquid interface shape control can be attained with physically realizable thermal configurations and the magnitudes of the required thermal inputs were indicated.
Indirect measurement of the solid/liquid interface using the minimization technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, H.; Chun, M.
1985-11-01
The phenomenon of solidification of a flowing fluid in a vertical tube is closely related to the relocation dynamics of molten nuclear fuels in hypothetical core-disruptive accidents of a liquid-metal fast breeder reactor. The knowledge of the transient shape and the position of the liquid/solid interface is of practical importance in analysis of phase change processes. Sparrow and Broadbent directly measured the solid liquid interface via experiments, whereas Viskanta observed the solid/liquid interface motion via a photographic method. In this paper, a new method to predict the transient position of the solid/liquid interface is developed. This method is based onmore » the minimization technique. To use this method one needs the temperature of the wall on which the phase change is to take place. The new technique is useful, in particular, for the case of inward solidification of a flowing fluid in a tube where direct measurement of the solid/liquid interface is not possible, whereas the tube wall temperature measurement is relatively easy.« less
NASA Astrophysics Data System (ADS)
Boiton, P.; Giacometti, N.; Santailler, J. L.; Duffar, T.; Nabot, J. P.
1998-11-01
A facility, based on a profiled resistive heater, has been designed for the growth of antimonide crystals (GaSb, InSb) by the vertical Bridgman method. Solid-liquid interface shapes during the growth of 2-in diameter crystals are marked by means of variations of the pulling rate and are revealed by chemical etching. The comparison with the calculated interface shapes, obtained using a finite element method, gives a satisfactory agreement. It is shown that the heat transfer and consequently the interface shapes are greatly influenced by the crucible assembly. For example, small spacings around the crucible or slots in the crucible holder can change the interface curvature from convex to concave. From numerical simulations it is also shown that convection in the melt flattens the interface but that an increase of the pulling rate has the reverse effect.
Hexagonal bubble formation and nucleation in sodium chloride solution
NASA Astrophysics Data System (ADS)
Wang, Lifen; Liu, Lei; Mohsin, Ali; Wen, Jianguo; Gu, Gong; Miller, Dean
The bubble is formed frequently at a solid-liquid interface when the surface of the solid or liquid has a tendency of accumulating molecular species due to unbalanced surface hydrophobicity attraction. Morphology and shape of the bubble are thought to be associated with the Laplace pressure that spherical-cap-shaped object are commonly observed. Dynamic surface nanobubble formation and nucleation in the controlled system have been not fully investigated due to the direct visualization challenge in liquid systems. Here, utilizing in situ TEM, dynamic formation and collapse of spherical-shaped nanobubbles were observed at the water-graphene interface, while hexagonal nanobubbles grew and merged with each other at water-crystalline sodium chloride interface. Our finding demonstrates that different hydrophobic-hydrophilic interaction systems give rise to the varied morphology of surface nanobubble, leading to the fundamental understanding of the interface-interaction-governed law on the formation of surface nanobubble.
Self-assembly of a surfactin nanolayer at solid-liquid and air-liquid interfaces.
Onaizi, Sagheer A; Nasser, M S; Al-Lagtah, Nasir M A
2016-05-01
Surfactin, a sustainable and environmentally friendly surface active agent, is used as a model to study the adsorption of biosurfactants at hydrophobic and hydrophilic solid-liquid interfaces as well as the air-liquid interface. Surfactin adsorption was monitored as a function of time and concentration using surface plasmon resonance (SPR) technique in the case of the solid-liquid interfaces or the drop shape analysis (DSA) technique in the case of the air-liquid interface. The results obtained in this study showed that surfactin adsorption at the "hard" hydrophobic (functionalized with octadecanethiol) solid-liquid and the "soft" air-liquid interface were 1.12 ± 0.01 mg m(-2) (area per molecule of 157 ± 2 Å(2)) and 1.11 ± 0.05 mg m(-2) (area per molecule of 159 ± 7 Å(2)), respectively, demonstrating the negligible effect of the interface "hardness" on surfactin adsorption. The adsorption of surfactin at the hydrophilic (functionalized with β-mercaptoethanol) solid-liquid interface was about threefold lower than its adsorption at the hydrophobic-liquid interfaces, revealing the importance of hydrophobic interaction in surfactin adsorption process. The affinity constant of surfactin for the investigated interfaces follows the following order: air > octadecanethiol > β-mercaptoethanol. Biosurfactants, such as surfactin, are expected to replace the conventional fossil-based surfactants in several applications, and therefore the current study is a contribution towards the fundamental understanding of biosurfactant behavior, on a molecular level, at hydrophobic and hydrophilic solid-liquid interfaces in addition to the air-liquid interface. Such understanding might aid further optimization of the utilization of surfactin in a number of industrial applications such as enhanced oil recovery, bioremediation, and detergency.
Pseudo-transient heat transfer in vertical Bridgman crystal growth of semi-transparent materials
NASA Astrophysics Data System (ADS)
Barvinschi, F.; Nicoara, I.; Santailler, J. L.; Duffar, T.
1998-11-01
The temperature distribution and the solid-liquid interface shape during semi-transparent crystal growth have been studied by modelling a vertical Bridgman technique, using a pseudo-transient approximation in an ideal configuration. The heat transfer equation and the boundary conditions have been solved by the finite-element method. It has been pointed out that the optical absorption coefficients of the liquid and solid phases have a major effect on the thermal field, especially on the shape and location of the crystallization interface.
2004-04-15
Researchers have found that as melted metals and alloys (combinations of metals) solidify, they can form with different arrangements of atoms, called microstructures. These microstructures depend on the shape of the interface (boundary) between the melted metal and the solid crystal it is forming. There are generally three shapes that the interface can take: planar, or flat; cellular, which looks like the cells of a beehive; and dendritic, which resembles tiny fir trees. Convection at this interface can affect the interface shape and hide the other phenomena (physical events). To reduce the effects of convection, researchers conduct experiments that examine and control conditions at the interface in microgravity. Microgravity also helps in the study of alloys composed of two metals that do not mix. On Earth, the liquid mixtures of these alloys settle into different layers due to gravity. In microgravity, the liquid metals do not settle, and a solid more uniform mixture of both metals can be formed.
Phase-field model of vapor-liquid-solid nanowire growth
NASA Astrophysics Data System (ADS)
Wang, Nan; Upmanyu, Moneesh; Karma, Alain
2018-03-01
We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth velocity and radius depending on the growth condition. For the basic normal growth mode, the steady-state solid-liquid interface tip shape consists of a main facet intersected by two truncated side facets ending at triple points. The ratio of truncated and main facet lengths are in quantitative agreement with the prediction of sharp-interface theory that is developed here for faceted nanowire growth in two dimensions.
NASA Astrophysics Data System (ADS)
Yang, Xi; Ma, Wenhui; Lv, Guoqiang; Zhang, Mingyu
2018-01-01
The shape of solid-liquid interface during the directional solidification process, which is difficult to be observed and measured in actual processes, controls the grain orientation and grain size of polysilicon ingot. We carried out numerical calculations of the directional solidification progress of polycrystalline silicon and invested the means to deal with the latent heat of solidification in numerical simulation. The distributions of the temperature field of the melt for the crystallization progress as well as the transformation of the solid-liquid interface were obtained. The simulation results are consistent with the experimental outcomes. The results show that the curvature of solid-liquid interface is small and stability, larger grain sized columnar crystal can be grown in the laboratory-scale furnace at a solidification rate of 10 μm•s-1. It shall provide important theoretical basis for metallurgical process and polysilicon production technology.
A three-dimensional phase field model for nanowire growth by the vapor-liquid-solid mechanism
NASA Astrophysics Data System (ADS)
Wang, Yanming; Ryu, Seunghwa; McIntyre, Paul C.; Cai, Wei
2014-07-01
We present a three-dimensional multi-phase field model for catalyzed nanowire (NW) growth by the vapor-liquid-solid (VLS) mechanism. The equation of motion contains both a Ginzburg-Landau term for deposition and a diffusion (Cahn-Hilliard) term for interface relaxation without deposition. Direct deposition from vapor to solid, which competes with NW crystal growth through the molten catalyst droplet, is suppressed by assigning a very small kinetic coefficient at the solid-vapor interface. The thermodynamic self-consistency of the model is demonstrated by its ability to reproduce the equilibrium contact angles at the VLS junction. The incorporation of orientation dependent gradient energy leads to faceting of the solid-liquid and solid-vapor interfaces. The model successfully captures the curved shape of the NW base and the Gibbs-Thomson effect on growth velocity.
Human Apolipoprotein A1 at Solid/Liquid and Liquid/Gas Interfaces.
Dogan, Susanne; Paulus, Michael; Forov, Yury; Weis, Christopher; Kampmann, Matthias; Cewe, Christopher; Kiesel, Irena; Degen, Patrick; Salmen, Paul; Rehage, Heinz; Tolan, Metin
2018-04-12
An X-ray reflectivity study on the adsorption behavior of human apolipoprotein A1 (apoA1) at hydrophilic and hydrophobic interfaces is presented. It is shown that the protein interacts via electrostatic and hydrophobic interactions with the interfaces, resulting in the absorption of the protein. pH dependent measurements at the solid/liquid interface between silicon dioxide and aqueous protein solution show that in a small pH range between pH 4 and 6, adsorption is increased due to electrostatic attraction. Here, the native shape of the protein seems to be conserved. In contrast, the adsorption at the liquid/gas interface is mainly driven by hydrophobic effects, presumably by extending the hydrophobic regions of the amphipathic helices, and results in a conformational change of the protein during adsorption. However, the addition of differently charged membrane-forming lipids at the liquid/gas interface illustrates the ability of apoA1 to include lipids, resulting in a depletion of the lipids from the interface.
Visualizing the shape of soft solid and fluid contacts between two surfaces
NASA Astrophysics Data System (ADS)
Pham, Jonathan; Schellenberger, Frank; Kappl, Michael; Vollmer, Doris; Butt, Hans-Jürgen
The soft contact between two surfaces is fundamentally interesting for soft materials and fluid mechanics and relevant for friction and wear. The deformation of soft solid interfaces has received much interest because it interestingly reveals similarities to fluid wetting. We present an experimental route towards visualizing the three-dimensional contact geometry of either liquid-solid (i.e., oil and glass) or solid-solid (i.e., elastomer and glass) interfaces using a home-built combination of confocal microscopy and atomic force microscopy. We monitor the shape of a fluid capillary bridge and the depth of indentation in 3D while simultaneously measuring the force. In agreement with theoretical predictions, the height of the capillary bridge depends on the interfacial tensions. By using a slowly evaporating solvent, we quantify the temporal evolution of the capillary bridge and visualized the influence of pinning points on its shape. The position dependence of the advancing and receding contact angle along the three-phase contact line, particle-liquid-air, is resolved. Extending our system, we explore the contact deformation of soft solids where elasticity, in addition to surface tension, becomes an important factor.
NASA Astrophysics Data System (ADS)
Lee, Hanjie; Pearlstein, Arne J.
2000-09-01
We present steady axisymmetric computations of solute distributions and radial segregation for vertical Bridgman growth of pyridine-doped benzene, a binary aromatic system with anisotropic solid-phase thermal conductivity, that serves as a model of solute transport in crystal growth of organic nonlinear optical materials. The radial variation of solid-phase mass fraction ( Cs) of pyridine, which is rejected at the growing interface, depends strongly on growth conditions. High growth velocities tend to increase Cs near the centerline, the ampoule wall, or both, and low growth velocities give more nearly uniform radial distributions. The maximum ampoule-wall temperature gradient also affects radial segregation, with convex-to-the-liquid interfaces at small temperature gradients being associated with radially monotonic Cs distributions, and ridged interfaces at higher gradients being associated with nonmonotonic distributions having maxima at the centerline and ampoule wall. Nonuniformity is strongly determined by both interface shape and the nature of the flow near the interface. Solute is transported down to the interface by a large toroidal vortex, and swept radially inward to the centerline by a second, flattened toroidal cell. When the interface is depressed at its junction with the ampoule wall, rejected solute accumulates in the overlying liquid, where convection is relatively weak, resulting in local solute enrichment of the solid. Computations at normal and zero gravity show that for two very similar interface shapes, a maximum in the radial solid-phase solute distribution at the ampoule wall is associated with the interface shape, while the maximum on the centerline is associated with sweeping of solute to the centerline by a vortical flow on the interface. We also show that radial solute segregation depends significantly on whether account is taken of the anisotropy of the solid-phase thermal conductivity. Finally, the computations provide guidance as to the minimum ampoule length required to produce an axially uniform solute distribution over at least part of the length of a boule.
Solidification in direct metal deposition by LENS processing
NASA Astrophysics Data System (ADS)
Hofmeister, William; Griffith, Michelle
2001-09-01
Thermal imaging and metallographic analysis were used to study Laser Engineered Net Shaping (LENS™) processing of 316 stainless steel and H13 tool steel. The cooling rates at the solid-liquid interface were measured over a range of conduction conditions. The length scale of the molten zone controls cooling rates during solidification in direct metal deposition. In LENS processing, the molten zone ranges from 0.5 mm in length to 1.5 mm, resulting in cooling rates at the solid-liquid interface ranging from 200 6,000 Ks-1.
The Measurement of the Surface Energy of Solids by Sessile Drop Accelerometry
NASA Astrophysics Data System (ADS)
Calvimontes, Alfredo
2018-05-01
A new physical method, the sessile drop accelerometry (SDACC) for the study and measurement of the interfacial energies of solid-liquid-gas systems, is tested and discussed in this study. The laboratory instrument and technique—a combination of a drop shape analyzer with high-speed camera and a laboratory drop tower- and the evaluation algorithms, were designed to calculate the interfacial energies as a function of the geometrical changes of a sessile droplet shape due to the effect of "switching off" gravity during the experiment. The method bases on Thermodynamics of Interfaces and differs from the conventional approach of the two hundred-years-old Young's equation in that it assumes a thermodynamic equilibrium between interfaces, rather than a balance of tensions on a point of the solid-liquid-gas contour line. A comparison of the mathematical model that supports the method with the widely accepted Young`s equation is discussed in detail in this study. The method opens new possibilities to develop surface characterization procedures by submitting the solid-liquid-system to artificial generated and uniform force fields.
NASA Astrophysics Data System (ADS)
Yeckel, Andrew; Derby, Jeffrey J.
2000-02-01
Three-dimensional axisymmetric, time-dependent simulations of the high-pressure vertical Bridgman growth of large-diameter cadmium zinc telluride are performed to study the effect of accelerated crucible rotation (ACRT) on crystal growth dynamics. The model includes details of heat transfer, melt convection, solid-liquid interface shape, and dilute zinc segregation. Application of ACRT greatly improves mixing in the melt, but causes an overall increased deflection of the solid-liquid interface. The flow exhibits a Taylor-Görtler instability at the crucible sidewall, which further enhances melt mixing. The rate of mixing depends strongly on the length of the ACRT cycle, with an optimum half-cycle length between 2 and 4 Ekman time units. Significant melting of the crystal occurs during a portion of the rotation cycle, caused by periodic reversal of the secondary flow at the solid-liquid interface, indicating the possibility of compositional striations.
Adsorption energy as a metric for wettability at the nanoscale
Giro, Ronaldo; Bryant, Peter W.; Engel, Michael; Neumann, Rodrigo F.; Steiner, Mathias B.
2017-01-01
Wettability is the affinity of a liquid for a solid surface. For energetic reasons, macroscopic drops of liquid form nearly spherical caps. The degree of wettability is then captured by the contact angle where the liquid-vapor interface meets the solid-liquid interface. As droplet volumes shrink to the scale of attoliters, however, surface interactions become significant, and droplets assume distorted shapes. In this regime, the contact angle becomes ambiguous, and a scalable metric for quantifying wettability is needed, especially given the emergence of technologies exploiting liquid-solid interactions at the nanoscale. Here we combine nanoscale experiments with molecular-level simulation to study the breakdown of spherical droplet shapes at small length scales. We demonstrate how measured droplet topographies increasingly reveal non-spherical features as volumes shrink. Ultimately, the nanoscale droplets flatten out to form layer-like molecular assemblies at the solid surface. For the lack of an identifiable contact angle at small scales, we introduce a droplet’s adsorption energy density as a new metric for a liquid’s affinity for a surface. We discover that extrapolating the macroscopic idealization of a drop to the nanoscale, though it does not geometrically resemble a realistic droplet, can nonetheless recover its adsorption energy if line tension is included. PMID:28397869
Laser ultrasonic investigations of vertical Bridgman crystal growth
NASA Astrophysics Data System (ADS)
Queheillalt, Douglas Ted
The many difficulties associated with the growth of premium quality CdTe and (Cd,Zn)Te alloys has stimulated an interest in the development of a non-invasive ultrasonic approach to monitor critical growth parameters such as the solid-liquid interface position and shape during vertical Bridgman growth. This sensor methodology is based upon the recognition that in most materials, the ultrasonic velocity (and the elastic stiffness constants that control it) of the solid and liquid phases are temperature dependent and an abrupt increase of the longitudinal wave velocity occurs upon solidification. The laser ultrasonic approach has also been used to measure the ultrasonic velocity of solid and liquid Cd0.96Zn0.04Te as a function of temperature up to 1140°C. Using longitudinal and shear wave velocity values together with data for the temperature dependent density allowed a complete evaluation of the temperature dependent single crystal elastic stiffness constants for solid and the adiabatic bulk modulus for liquid Cd0.96Zn0.04 Te. It was found that the ultrasonic velocities exhibited a strong monotonically decreasing function of temperature in the solid and liquid phases and the longitudinal wave indicated an abrupt almost 50% decrease upon melting. Because ray propagation in partially solidified bodies is complex and defines the sensing methodology, a ray tracing algorithm has been developed to analyze two-dimensional wave propagation in the diametral plane of cylindrical solid-liquid interfaces. Ray path, wavefront and time-of-flight (TOF) projections for rays that travel from a source to an arbitrarily positioned receiver on the diametral plane have been calculated and compared to experimentally measured data on a model liquid-solid interface. The simulations and the experimental results reveal that the interfacial region can be identified from transmission TOF data and when used in conjunction with a nonlinear least squares reconstruction algorithm, the interface geometry (i.e. axial location and shape) can be precisely recovered and the ultrasonic velocities of both solid and liquid phases obtained. To gain insight into the melting and solidification process, a single zone VB growth furnace was integrated with the laser ultrasonic sensor system and used to monitor the melting-solidification and directional solidification characteristics of Cd0.96Zn 0.04Te.
Flight 1 technical report for experiment 74-37 contained polycrystalline solidification in low-G
NASA Technical Reports Server (NTRS)
Papaziak, J. M.; Kattamis, T. Z.
1976-01-01
A .005 M solution of fluorescein in cyclohexanol was directionally solidified in a standard 10 x 10 x 45mm UV silica cuvette, using a bottom thermoelectric chilling device. Progress of the experiment was monitored by time lapse photography. During flight (SPAR I) the camera malfunctioned and only one quarter of the expected data were collected. Comparison of flight and ground specimens indicated that: (1) The dark green layer observed ahead of the solid-liquid interface which is most likely the solute-enriched zone, appears to be wider in the flight specimen; (2) Parasitic nucleation ahead of the solid-liquid interface in the flight sample led to an irregularly shaped interface, smaller grain size, equiaxed grain morphology and a larger average macroscopic growth rate; (3) The formation of equiaxed grains ahead of the solid-liquid interface in the flight specimen may be attributed to ordered islands within the liquid, which survived remelting because of the low degree of superheating (approximately equal to 1.5 C), did not settle because of reduced gravity and acted as nuclei during cooling.
NASA Astrophysics Data System (ADS)
Missiaen, Jean-Michel; Raharijaona, Jean-Joël; Delannay, Francis
2016-11-01
A model is developed to compute the capillary pressure for the migration of the liquid phase out or into a uniform solid-liquid-vapor system. The capillary pressure is defined as the reduction of the overall interface energy per volume increment of the transferred fluid phase. The model takes into account the particle size of the solid particle aggregate, the packing configuration (coordination number, porosity), the volume fractions of the different phases, and the values of the interface energies in the system. The model is used for analyzing the stability of the composition profile during processing of W-Cu functionally graded materials combining a composition gradient with a particle size gradient. The migration pressure is computed with the model in two stages: (1) just after the melting of copper, i.e., when sintering and shape accommodation of the W particle aggregate can still be neglected and (2) at high temperature, when the system is close to full density with equilibrium particle shape. The model predicts well the different stages of liquid-phase migration observed experimentally.
Cauchy integral method for two-dimensional solidification interface shapes
NASA Astrophysics Data System (ADS)
Siegel, R.; Sosoka, D. J.
1982-07-01
A method is developed to determine the shape of steady state solidification interfaces formed when liquid above its freezing point circulates over a cold surface. The solidification interface, which is at uniform temperature, will form in a shape such that the non-uniform energy convected to it is locally balanced by conduction into the solid. The interface shape is of interest relative to the crystal structure formed during solidification; regulating the crystal structure has application in casting naturally strengthened metallic composites. The results also pertain to phase-change energy storage devices, where the solidified configuration and overall heat transfer are needed. The analysis uses a conformal mapping technique to relate the desired interface coordinates to the components of the temperature gradient at the interface. These components are unknown because the interface shape is unknown. A Cauchy integral formulation provides a second relation involving the components, and a simultaneous solution yields the interface shape.
Nonadditivity of van der Waals forces on liquid surfaces
NASA Astrophysics Data System (ADS)
Venkataram, Prashanth S.; Whitton, Jeremy D.; Rodriguez, Alejandro W.
2016-09-01
We present an approach for modeling nanoscale wetting and dewetting of textured solid surfaces that exploits recently developed, sophisticated techniques for computing exact long-range dispersive van der Waals (vdW) or (more generally) Casimir forces in arbitrary geometries. We apply these techniques to solve the variational formulation of the Young-Laplace equation and predict the equilibrium shapes of liquid-vacuum interfaces near solid gratings. We show that commonly employed methods of computing vdW interactions based on additive Hamaker or Derjaguin approximations, which neglect important electromagnetic boundary effects, can result in large discrepancies in the shapes and behaviors of liquid surfaces compared to exact methods.
Grinthal, Alison; Aizenberg, Joanna
2013-10-14
Life creates some of its most robust, extreme surface materials not from solids but from liquids: a purely liquid interface, stabilized by underlying nanotexture, makes carnivorous plant leaves ultraslippery, the eye optically perfect and dirt-resistant, our knees lubricated and pressure-tolerant, and insect feet reversibly adhesive and shape-adaptive. Novel liquid surfaces based on this idea have recently been shown to display unprecedented omniphobic, self-healing, anti-ice, antifouling, optical, and adaptive properties. In this Perspective, we present a framework and a path forward for developing and designing such liquid surfaces into sophisticated, versatile multifunctional materials. Drawing on concepts from solid materials design andmore » fluid dynamics, we outline how the continuous dynamics, responsiveness, and multiscale patternability of a liquid surface layer can be harnessed to create a wide range of unique, active interfacial functions-able to operate in harsh, changing environments-not achievable with static solids. We discuss how, in partnership with the underlying substrate, the liquid surface can be programmed to adaptively and reversibly reconfigure from a defect-free, molecularly smooth, transparent interface through a range of finely tuned liquid topographies in response to environmental stimuli. In conclusion, with nearly unlimited design possibilities and unmatched interfacial properties, liquid materials-as long-term stable interfaces yet in their fully liquid state-may potentially transform surface design everywhere from medicine to architecture to energy infrastructure.« less
Complex Fluids at Interfaces and Interfaces of Complex Fluids
NASA Astrophysics Data System (ADS)
Nouri, Mariam
The present thesis deals with two independent projects and is consequently divided into two parts. The first part details a computational study of the fluid structure of ring-shaped molecules and their positional and orientational molecular organizations in different degrees of confinement, while the second part concerns an experimental study of phase behavior and interfacial phenomena in confined colloid-polymer systems. In the first part, ring-shaped molecules are studied using Monte Carlo simulation techniques in one, two and three dimensions. The model used to describe ring-shaped molecules is composed of hard-spheres linked together to form planar rigid rings. For rings of various sizes and for a wide range of densities, positional and orientational orderings are reported in forms of pair distribution functions of the ring centers and correlation functions of the ring normal orientations. Special emphasis is given to understand structural formation at interfaces, i.e., the structure and orderings of these molecules when they are confined to two dimensions. In a plane but the rings themselves are free to rotate around all axes, nematic ordering is observed at sufficiently high densities. In the second part, phase equilibria of confined aqueous colloid-polymer systems are studied experimentally using fluorescence microscopy. Aqueous mixtures of fluorescent polystyrene spheres and polyacrylamide are confined between a glass slide and a coverslip. The phase diagram is determined as a function of the colloidal and polymer concentrations. Liquid-liquid phase coexistence between a colloid-rich phase and a polymer-rich phase occurs at intermediate polymer concentrations, while liquid-solid phase coexistence between a polymer-rich liquid and a colloid-rich solid is observed at high polymer concentrations. Interfacial thickness and tension of the interface between these coexisting phases are measured using image analysis techniques. It is also observed that the colloid-rich solid and liquid domains coarsen mainly by Ostwald ripening.
Directional Solidification of Pure Succinonitrile and a Succinonitrile-Acetone Alloy
NASA Technical Reports Server (NTRS)
Simpson, James E.; deGroh, Henry C., III; Garimella, Suresh V.
1999-01-01
An experimental study of the horizontal Bridgman growth of pure succinonitrile (SCN) and of a succinonitrile-1.0 mol.% acetone alloy (SCN-1.0 mol.% ACE) has been performed. Experiments involving both a stationary thermal field (no-growth case) and a translating thermal field (growth case) were conducted. Growth rates of 2 and 40 micrometers/s were investigated. For the pure SCN experiments, the velocity field in the melt was estimated using video images of seed particles in the melt. Observations of the seed particles indicate that a primary longitudinal convective cell is formed. The maximum velocity of two different particles which traveled along similar paths was the same and equal to 1.49 +/- 0.01 mm/s. The general accuracy of velocity measurements is estimated to be +/- 0.08 mm/s, though the data shows consistency to within +/- 0.02 mm/s. The shape of the solid/liquid interface was also quantitatively determined. The solid/liquid interface was stable (non-dendritic and non-cellular) but not flat; rather it was significantly distorted by the influence of convection in (he melt and, for the growth case, by the moving temperature boundary conditions along the ampoule. It was found that the interface shape and position were highly dependent on the alignment of the ampoule in the apparatus. Consequently, the ampoule was carefully aligned for all experiments. The values for front location agree with those determined in previous experiments. For the alloy experiments, the solid/liquid interface was determined to be unstable at growth rates greater than 2.8 micrometers/s, but stable for the cases of no-growth and growth at 2 micrometers/s. When compared to the shape of the pure SCN interface, the alloy interface forms closer to the cold zone, indicating that the melting temperature decreased due to the alloying element. Extensive temperature measurements were performed on the outside of the ampoule containing pure SCN. The resulting thermal profiles are presented in detail in the results section. It is intended that the interface shape, thermal boundary condition and velocity data presented in this paper be used to test numerical simulations.
Directional Solidification of Pure Succinonitrile and a Succinonitrile-Acetone Alloy
NASA Technical Reports Server (NTRS)
Simpson, James E.; deGroh, Henry C., III; Garimella, Suresh V.
2000-01-01
An experimental study of the horizontal Bridgman growth of pure succinonitrile (SCN) and of a succinonitrile-1.0 mol% acetone alloy (SCN-1.0 mol.% ACE) has been performed. Experiments involving both a stationary thermal field (no-growth case) and a translating thermal field (growth case) were conducted. Growth rates of 2 and 40 micrometers/sec were investigated. For the pure SCN experiments, the velocity field in the melt was estimated using video images of seed particles in the melt. Observations of the seed particles indicate that a primary longitudinal convective cell is formed. The maximum velocity of two different particles which traveled along similar paths was the same and equal to 1.49 +/- 0.01 mm/s. The general accuracy of velocity measurements is estimated to be +/-0.08 mm/s, though the data shows consistency to within +/- 0.02 mm/s. The shape of the solid/liquid interface was also quantitatively determined. The solid/liquid interface was stable (non-dendritic and non-cellular) but not flat: rather it was significantly distorted by the influence of connection in the melt and, for the growth case, by the moving temperature boundary conditions along the ampoule. It was found that the interface shape and position were highly dependent on the alignment of the ampoule in the apparatus. Consequently, the ampoule was carefully aligned for all experiments. The values for front location agree with those determined in previous experiments. For the alloy experiments, the solid/liquid interface was determined to be unstable at growth rates greater than 2.8 micrometers/sec, but stable for the cases of no-growth and growth at 2 micrometers/sec. When compared to the shape of the pure SCN interface, the alloy interface forms closer to the cold zone, indicating that the melting temperature decreased due to the alloying element. Extensive temperature measurements were performed on the outside of the ampoule containing pure SCN. The resulting thermal profiles are presented in detail in the results section. It is intended that the interface shape, thermal boundary condition, and velocity data presented in this paper be used to test numerical simulations.
Eddy current sensor concepts for the Bridgman growth of semiconductors
NASA Astrophysics Data System (ADS)
Dharmasena, Kumar P.; Wadley, Haydn N. G.
1997-03-01
Electromagnetic finite element methods have been used to identify eddy current sensor designs for monitoring CdTe vertical Bridgman crystal growth. A model system consisting of pairs of silicon cylinders with electrical conductivities similar to those of solid and liquid CdTe has been used to evaluate the multifrequency response of several sensors designed for locating and characterizing the curvature of liquid-solid interfaces during vertical Bridgman growth. At intermediate frequencies (100-800 kHz), the sensor's imaginary impedance monotonically increases as interfacial curvature changes from concave to convex or the interface location moves upwards through the sensor. The experimental data are in excellent agreement with theoretical predictions. At higher test frequencies (˜ 5 MHz), the test circuit's parasitics contribute to the sensor's response. Even so, the predicted trends with interface location/curvature were found to be still preserved, and the experiments confirm that the sensor's high frequency response depends more on interface location and has only a small sensitivity to curvature. Multifrequency data obtained from these types of sensors have the potential to separately discriminate the location and the shape of liquid-solid interfaces during the vertical Bridgman growth of CdTe and other semiconductor materials of higher electrical conductivity.
Near Axisymmetric Partial Wetting Using Interface-Localized Liquid Dielectrophoresis.
Brabcova, Zuzana; McHale, Glen; Wells, Gary G; Brown, Carl V; Newton, Michael I; Edwards, Andrew M J
2016-10-25
The wetting of solid surfaces can be modified by altering the surface free energy balance between the solid, liquid, and vapor phases. Liquid dielectrophoresis (L-DEP) can produce wetting on normally nonwetting surfaces, without modification of the surface topography or chemistry. L-DEP is a bulk force acting on the dipoles of a dielectric liquid and is not normally considered to be a localized effect acting at the interface between the liquid and a solid or other fluid. However, if this force is induced by a nonuniform electric field across a solid-liquid interface, it can be used to enhance and control the wetting of a dielectric liquid. Recently, it was reported theoretically and experimentally that this approach can cause a droplet of oil to spread along parallel interdigitated electrodes thus forming a stripe of liquid. Here we show that by using spiral-shaped electrodes actuated with four 90° successive phase-shifted signals, a near axisymmetric spreading of droplets can be achieved. Experimental observations show that the induced wetting can achieve film formation, an effect not possible with electrowetting. We show that the spreading is reversible thus enabling a wide range of partial wetting droplet states to be achieved in a controllable manner. Furthermore, we find that the cosine of the contact angle has a quadratic dependence on applied voltage during spreading and deduce a scaling law for the dependence of the strength of the effect on the electrode size.
PREFACE: Functionalized Liquid Liquid Interfaces
NASA Astrophysics Data System (ADS)
Girault, Hubert; Kornyshev, Alexei A.; Monroe, Charles W.; Urbakh, Michael
2007-09-01
Most natural processes take place at interfaces. For this reason, surface science has been a focal point of modern research. At solid-liquid interfaces one can induce various species to adsorb or react, and thus may study interactions between the substrate and adsorbates, kinetic processes, optical properties, etc. Liquid-liquid interfaces, formed by immiscible liquids such as water and oil, have a number of distinctive features. Both sides of the interface are amenable to detailed physical and chemical analysis. By chemical or electrochemical means, metal or semiconductor nanoparticles can be formed or localised at the interface. Surfactants can be used to tailor surface properties, and also to place organic molecular or supermolecular constructions at the boundary between the liquids. Electric fields can be used to drive ions from one fluid to another, or even change the shape of the interface itself. In many cases, both liquids are optically transparent, making functionalized liquid-liquid interfaces promising for various optical applications based on the transmission or reflection of light. An advantage common to most of these systems is self-assembly; because a liquid-liquid interface is not mechanically constrained like a solid-liquid interface, it can easily access its most stable state, even after it has been driven far from equilibrium. This special issue focuses on four modes of liquid-liquid interfacial functionalization: the controlled adsorption of molecules or nanoparticles, the formation of adlayers or films, electrowetting, and ion transfer or interface-localized reactions. Interfacial adsorption can be driven electrically, chemically, or mechanically. The liquid-liquid interface can be used to study how anisotropic particles orient at a surface under the influence of a field, how surfactants interact with other adsorbates, and how nanoparticles aggregate; the transparency of the interface also makes the chirality of organic adsorbates amenable to optical study. Film formation goes a step beyond adsorption; some surfactants form monolayers or multilayers at the interface. A polymer microfilm or a polymer-particle matrix can be synthesized at the liquid-liquid boundary. Such films exhibit unique adsorption and ion-intercalation properties of their own. Electrowetting refers broadly to the phenomenon in which an applied voltage modulates the shape of a liquid-liquid interface, essentially by altering the surface tension. Electric fields can be used to induce droplets on solid substrates to change shape, or to affect the structure of liquid-liquid emulsions. Various chemical reactions can be performed at the liquid-liquid boundary. Liquid-liquid microelectrodes allow detailed study of ion-transfer kinetics at the interface. Photochemical processes can also be used to control the conformations of molecules adsorbed at the interface. But how much precise control do we actually have on the state of the interfacial region? Several contributions to this issue address a system which has been studied for decades in electrochemistry, but remains essentially unfamilar to physicists. This is the interface between two immiscible electrolytic solutions (ITIES), a progressing interdisciplinary field in which condensed-matter physics and physical chemistry meet molecular electrochemistry. Why is it so exciting? The reason is simple. The ITIES is chargeable: when positioned between two electrodes it can be polarized, and back- to-back electrical double layers form on both sides of the liquid-liquid interface. Importantly, the term immiscible refers not only to oil and water but also to the electrolytes. Inorganic electrolytes, such as alkali halides, tend to stay in water, whereas organic electrolytes, such as tetrabutylammonium tetraphenylborate, stay in oil. This behaviour arises because energies of the order of 0.2-0.3 eV are needed to drive ions across the interface. As long as these free energies of transfer are not exceeded by the external potential bias, the ITIES works as an 'electrode'; there is no traffic of ions across it. Thus the interface can sustain fields of the order of 106 V/cm, which are localized in a nanoscopic layer near the interface. This gives many new options for building various kinds of electrically tunable self assembled moloecular devices. Through the years, ITIES have been considered by electrochemists as a popular biomimetic model system, or for studies of interfacial reaction kinetics; ITIES were also used in industrial phase-transfer catalysis. Recently, this system has opened up new options for nano-scale engineering of functional assemblies (for dense information storage, efficient energy conversion, light-harvesting, and miniaturized sensors), which justifies its presentation in this issue.
Developing interface localized liquid dielectrophoresis for optical applications
NASA Astrophysics Data System (ADS)
McHale, Glen; Brown, Carl V.; Newton, Michael I.; Wells, Gary G.; Sampara, Naresh
2012-11-01
Electrowetting charges the solid-liquid interface to change the contact area of a droplet of a conducting liquid. It is a powerful technique used to create variable focus liquid lenses, electronic paper and other devices, but it depends upon ions within the liquid. Liquid dielectrophoresis (L-DEP) is a bulk force acting on the dipoles throughout a dielectric liquid and is not normally considered to be a localized effect acting at the interface between the liquid and a solid or other fluid. In this work, we show theoretically how non-uniform electric fields generated by interdigitated electrodes can effectively convert L-DEP into an interface localized form. We show that for droplets of sufficient thickness, the change in the cosine of the contact angle is proportional to the square of the applied voltage and so obeys a similar equation to that for electrowetting - this we call dielectrowetting. However, a major difference to electrowetting is that the strength of the effect is controlled by the electrode spacing and the liquid permittivity rather than the properties of an insulator in a sandwich structure. Experimentally, we show that that this dielectrowetting equation accurately describes the contact angle of a droplet of oil viewed across parallel interdigitated electrodes. Importantly, the induced spreading can be complete, such that contact angle saturation does not occur. We then show that for thin films, L-DEP can shape the liquid-air interface creating a spatially periodic wrinkle and that such a wrinkle can be used to create a voltage programmable phase diffraction grating.
Determination of the Contact Angle Based on the Casimir Effect
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin; Volz, Martin P.
2015-01-01
On a macroscopic scale, a nonreactive liquid partially covering a homogeneous solid surface will intersect the solid at an angle called the contact angle. For molten metals and semiconductors, the contact angle is materially dependent upon both the solid and liquid and typical values fall in the range 80-170 deg, depending on the crucible material. On a microscopic scale, there does not exist a precise and sharp contact angle but rather the liquid and solid surfaces merge smoothly and continuously. Consider the example of the so called detached Bridgman crystal growth process. In this technique, a small gap is formed between the growing crystal and the crucible. At the crystal/melt interface, a meniscus ring is formed. Its width can be in the range of a few micrometers, approaching a microscopic scale. It then becomes questionable to describe the shape of this meniscus by the contact angle. A more advanced treatment of the interface is needed and here we propose such a refined model. The interaction of the liquid surface with the solid can be calculated by considering two forces: a short-range repulsive force and a longer range (up to a few micrometers) Casimir or van der Waals force.
Theoretical analysis for double-liquid variable focus lens
NASA Astrophysics Data System (ADS)
Peng, Runling; Chen, Jiabi; Zhuang, Songlin
2007-09-01
In this paper, various structures for double-liquid variable focus lens are introduced. And based on an energy minimization method, explicit calculations and detailed analyses upon an extended Young-type equation are given for double-liquid lenses with cylindrical electrode. Such an equation is especially applicable to liquid-liquid-solid tri-phase systems. It is a little different from the traditional Young equation that was derived according to vapor-liquid-solid triphase systems. The electrowetting effect caused by an external voltage changes the interface shape between two liquids as well as the focal length of the lens. Based on the extended Young-type equation, the relationship between the focal length and the external voltage can also be derived. Corresponding equations and simulation results are presented.
Liu, Fanghui; Zargarzadeh, Leila; Chung, Hyun-Joong; Elliott, Janet A W
2017-10-12
Thermodynamic phase behavior is affected by curved interfaces in micro- and nanoscale systems. For example, capillary freezing point depression is associated with the pressure difference between the solid and liquid phases caused by interface curvature. In this study, the thermal, mechanical, and chemical equilibrium conditions are derived for binary solid-liquid equilibrium with a curved solid-liquid interface due to confinement in a capillary. This derivation shows the equivalence of the most general forms of the Gibbs-Thomson and Ostwald-Freundlich equations. As an example, the effect of curvature on solid-liquid equilibrium is explained quantitatively for the water/glycerol system. Considering the effect of a curved solid-liquid interface, a complete solid-liquid phase diagram is developed over a range of concentrations for the water/glycerol system (including the freezing of pure water or precipitation of pure glycerol depending on the concentration of the solution). This phase diagram is compared with the traditional phase diagram in which the assumption of a flat solid-liquid interface is made. We show the extent to which nanoscale interface curvature can affect the composition-dependent freezing and precipitating processes, as well as the change in the eutectic point temperature and concentration with interface curvature. Understanding the effect of curvature on solid-liquid equilibrium in nanoscale capillaries has applications in the food industry, soil science, cryobiology, nanoporous materials, and various nanoscience fields.
NASA Technical Reports Server (NTRS)
Parr, R. A.; Johnston, M. H.; Mcclure, J. C.
1980-01-01
Monotectic alloys having aligned spherical particles of rods of the minor component dispersed in a matrix of the major component are prepared by forming a melt containing predetermined amounts of the major and minor components of a chosen monotectic system, providing in the melt a dopant capable of breaking down the liquid solid interface for the chosen alloy, and directionally solidfying the melt at a selected temperature gradient and a selected rate of movement of the liquid-solid interface (growth rate). Shaping of the minor component into spheres or rods and the spacing between them are controlled by the amount of dopant and the temperature gradient and growth rate values. Specific alloy systems include Al Bi, Al Pb and Zn Bi, using a transition element such as iron.
Simulation of an electrowetting solar concentration cell
NASA Astrophysics Data System (ADS)
Khan, Iftekhar; Rosengarten, Gary
2015-09-01
Electrowetting control of liquid lenses has emerged as a novel approach for solar tracking and concentration. Recent studies have demonstrated the concept of steering sunlight using thin electrowetting cells without the use of any bulky mechanical equipment. Effective application of this technique may facilitate designing thin and flat solar concentrators. Understanding the behavior of liquid-liquid and liquid-solid interface of the electrowetting cell through trial and error experimental processes is not efficient and is time consuming. In this paper, we present a simulation model to predict the liquid-liquid and liquid-solid interface behavior of electrowetting cell as a function of various parameters such as applied voltage, dielectric constant, cell size etc. We used Comsol Multiphysics simulations incorporating experimental data of different liquids. We have designed both two dimensional and three dimensional simulation models, which predict the shape of the liquid lenses. The model calculates the contact angle using the Young-Lippman equation and uses a moving mesh interface to solve the Navier-stokes equation with Navier slip wall boundary condition. Simulation of the electric field from the electrodes is coupled to the Young-Lippman equation. The model can also be used to determine operational characteristics of other MEMS electrowetting devices such as electrowetting display, optical switches, electronic paper, electrowetting Fresnel lens etc.
Diameter-dependent wetting of tungsten disulfide nanotubes
Goldbart, Ohad; Cohen, Sidney R.; Kaplan-Ashiri, Ifat; Glazyrina, Polina; Wagner, H. Daniel; Enyashin, Andrey; Tenne, Reshef
2016-01-01
The simple process of a liquid wetting a solid surface is controlled by a plethora of factors—surface texture, liquid droplet size and shape, energetics of both liquid and solid surfaces, as well as their interface. Studying these events at the nanoscale provides insights into the molecular basis of wetting. Nanotube wetting studies are particularly challenging due to their unique shape and small size. Nonetheless, the success of nanotubes, particularly inorganic ones, as fillers in composite materials makes it essential to understand how common liquids wet them. Here, we present a comprehensive wetting study of individual tungsten disulfide nanotubes by water. We reveal the nature of interaction at the inert outer wall and show that remarkably high wetting forces are attained on small, open-ended nanotubes due to capillary aspiration into the hollow core. This study provides a theoretical and experimental paradigm for this intricate problem. PMID:27856759
Metastable nanobubbles at the solid-liquid interface due to contact angle hysteresis.
Nishiyama, Takashi; Yamada, Yutaka; Ikuta, Tatsuya; Takahashi, Koji; Takata, Yasuyuki
2015-01-27
Nanobubbles exist at solid-liquid interfaces between pure water and hydrophobic surfaces with very high stability, lasting in certain cases up to several days. Not only semispherical but also other shapes, such as micropancakes, are known to exist at such interfaces. However, doubt has been raised as to whether or not the nanobubbles are gas-phase entities. In this study, surface nanobubbles at a pure water-highly ordered pyrolytic graphite (HOPG) interface were investigated by peak force quantitative nanomechanics (PF-QNM). Multiple isolated nanobubbles generated by the solvent-exchange method were present on the terraced areas, avoiding the steps of the HOPG surface. Adjacent nanobubbles coalesced and formed metastable nanobubbles. Coalescence was enhanced by the PF-QNM measurement. We determined that nanobubbles can exist for a long time because of nanoscale contact angle hysteresis at the water-HOPG interface. Moreover, the hydrophilic steps of HOPG were avoided during coalescence, providing evidence that the nanobubbles are truly gas phase.
Systems and methods for monitoring a solid-liquid interface
Stoddard, Nathan G; Lewis, Monte A.; Clark, Roger F
2013-06-11
Systems and methods are provided for monitoring a solid-liquid interface during a casting process. The systems and methods enable determination of the location of a solid-liquid interface during the casting process.
Determination of the mean solid-liquid interface energy of pivalic acid
NASA Technical Reports Server (NTRS)
Singh, N. B.; Gliksman, M. E.
1989-01-01
A high-confidence solid-liquid interfacial energy is determined for an anisotropic material. A coaxial composite having a cylindrical specimen chamber geometry provides a thermal gradient with an axial heating wire. The surface energy is derived from measurements of grain boundary groove shapes. Applying this method to pivalic acid, a surface energy of 2.84 erg/sq cm was determined with a total systematic and random error less than 10 percent. The value of interfacial energy corresponds to 24 percent of the latent heat of fusion per molecule.
Identification and control of a multizone crystal growth furnace
NASA Technical Reports Server (NTRS)
Batur, C.; Sharpless, R. B.; Duval, W. M. B.; Rosenthal, B. N.; Singh, N. B.
1992-01-01
This paper presents an intelligent adaptive control system for the control of a solid-liquid interface of a crystal while it is growing via directional solidification inside a multizone transparent furnace. The task of the process controller is to establish a user-specified axial temperature profile and to maintain a desirable interface shape. Both single-input-single-output and multi-input-multi-output adaptive pole placement algorithms have been used to control the temperature. Also described is an intelligent measurement system to assess the shape of the crystal while it is growing. A color video imaging system observes the crystal in real time and determines the position and the shape of the interface. This information is used to evaluate the crystal growth rate, and to analyze the effects of translational velocity and temperature profiles on the shape of the interface. Creation of this knowledge base is the first step to incorporate image processing into furnace control.
Structural ordering at solid-liquid interfaces in Al-Sm system: A molecular-dynamics study
Sun, Yang; Zhang, Feng; Ye, Zhuo; ...
2016-07-12
The structural ordering at solid-liquid interfaces far from equilibrium is studied with molecular dynamics simulations for the Al-Sm system. Using the van-Hove self-correlation function as the criterion to identify attachment/detachment events that occur at the interface, we are able to determine the time-dependent interface position, and characterize the detailed interfacial structure ordering surrounding the attached atoms. For the interface between an undercooled Al90Sm10 liquid and a metastable cubic structure, the solid induces the crystalline order of the cubic phase in the liquid layers, promoting the continuous growth of the crystal phase. When the same liquid is put in contact withmore » f.c.c. Al, Sm from the liquid can still attach to the solid interface despite its insolubility in the Al lattice. Non-f.c.c. order is revealed surrounding the attached Sm atoms. Lastly, we show that the local structure ordering at interface is highly correlated to solid packing and liquid ordering.« less
Understanding the liquid-liquid (water-hexane) interface
NASA Astrophysics Data System (ADS)
Murad, Sohail; Puri, Ishwar K.
2017-10-01
Nonequilibrium molecular dynamics simulations are employed to investigate the interfacial thermal resistance of nanoscale hexane-water interfaces subject to an applied heat flux. Our studies show that these liquid-liquid interfaces exhibit behavior significantly dissimilar to that of solid-liquid and solid-vapor interfaces. Notably, the thermal resistance of a hexane-water interface is contingent on the interfacial temperature gradient alone with negligible dependence on the mean interfacial temperature, while the solid-liquid dependent strongly on the interfacial temperature. Application of a heat flux also increases the interface thickness significantly as compared to an equilibrium isothermal interface. Since liquid-liquid interfaces have been proposed for diverse applications, e.g., sensors for wastewater treatment and for extraction of toxic ions from water, they can be designed to be wider by applying a heat flux. This may allow the interface to be used for other applications not possible currently because of the very limited thickness of the interface in isothermal systems.
Analytical Solution for the Critical Velocity of Pushing/Engulfment Transition
NASA Technical Reports Server (NTRS)
Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu
2004-01-01
The distribution of ceramic particles in a metal matrix composite material depends primarily on the interaction of the particles with the solid/liquid interface during the solidification process. A numerical model that describes the evolution of the shape of the solid/liquid interface in the proximity of a foreign particle will presented in this paper. The model accounts for the influence of the temperature gradient and the Gibbs-Thomson and disjoining pressure effects. It shows that for the systems characterized by k(sub p) < k(sub L) the disjoining pressure causes the interface curvature to change its sign in the close-contact particle/interface region. It also shows that the increase of the temperature gradient diminishes the effect of the disjoining pressure. The analysis of the numerical results obtained for a large range of processing conditions and materials parameters has led to the development of an analytical solution for the critical velocity of pushing/engulfinent transition. The theoretical results will be discussed and compared with the experimental measurements performed under microgravity conditions.
Keyhole and weld shapes for plasma arc welding under normal and zero gravity
NASA Technical Reports Server (NTRS)
Keanini, R. G.; Rubinsky, B.
1990-01-01
A first order study of the interfacial (keyhole) shape between a penetrating argon plasma arc jet and a stationary liquid metal weld pool is presented. The interface is determined using the Young-Laplace equation by assuming that the plasma jet behaves as a one-dimensional ideal gas flow and by neglecting flow within the weld pool. The solution for the keyhole shape allows an approximate determination of the liquid-solid metal phase boundary location based on the assumption that the liquid melt is a stagnant thermal boundary layer. Parametric studies examine the effect of plasma mass flow rate, initial plasma enthalpy, liquid metal surface tension, and jet shear on weldment shape under both normal and zero gravity. Among the more important findings of this study is that keyhole and weld geometries are minimally affected by gravity, suggesting that data gathered under gravity can be used in planning in-space welding.
Liquid phase stabilization versus bubble formation at a nanoscale curved interface
NASA Astrophysics Data System (ADS)
Schiffbauer, Jarrod; Luo, Tengfei
2018-03-01
We investigate the nature of vapor bubble formation near a nanoscale-curved convex liquid-solid interface using two models: an equilibrium Gibbs model for homogenous nucleation, and a nonequilibrium dynamic van der Waals-diffuse-interface model for phase change in an initially cool liquid. Vapor bubble formation is shown to occur for sufficiently large radius of curvature and is suppressed for smaller radii. Solid-fluid interactions are accounted for and it is shown that liquid-vapor interfacial energy, and hence Laplace pressure, has limited influence over bubble formation. The dominant factor is the energetic cost of creating the solid-vapor interface from the existing solid-liquid interface, as demonstrated via both equilibrium and nonequilibrium arguments.
Slip-mediated dewetting of polymer microdroplets
McGraw, Joshua D.; Chan, Tak Shing; Maurer, Simon; Salez, Thomas; Benzaquen, Michael; Raphaël, Elie; Brinkmann, Martin; Jacobs, Karin
2016-01-01
Classical hydrodynamic models predict that infinite work is required to move a three-phase contact line, defined here as the line where a liquid/vapor interface intersects a solid surface. Assuming a slip boundary condition, in which the liquid slides against the solid, such an unphysical prediction is avoided. In this article, we present the results of experiments in which a contact line moves and where slip is a dominating and controllable factor. Spherical cap-shaped polystyrene microdroplets, with nonequilibrium contact angle, are placed on solid self-assembled monolayer coatings from which they dewet. The relaxation is monitored using in situ atomic force microscopy. We find that slip has a strong influence on the droplet evolutions, both on the transient nonspherical shapes and contact line dynamics. The observations are in agreement with scaling analysis and boundary element numerical integration of the governing Stokes equations, including a Navier slip boundary condition. PMID:26787903
A Simple Inexpensive Bridgman-Stockbarger Crystal Growth System for Organic Materials
NASA Technical Reports Server (NTRS)
Choi, J.; Aggarwal, M. D.; Wang, W. S.; Metzl, R.; Bhat, K.; Penn, Benjamin G.; Frazier, Donald O.
1996-01-01
Direct observation of solid-liquid interface is important for the directional solidification to determine the desired interface shape by controlling the growth parameters. To grow good quality single crystals of novel organic nonlinear optical materials, a simple inexpensive Bridgman-Stockbarger (BS) crystal growth system has been designed and fabricated. Two immiscible liquids have been utilized to create two zones for this crystal growth system. Bulk single crystals of benzil derivative and n-salicylidene-aniline have been successfully grown in this system. The optimum lowering rate has been found to be 0.1 mm/h for the flat interface. Results on the crystal growth and other parameters of the grown crystals are presented.
3D lithography by rapid curing of the liquid instabilities at nanoscale
Coppola, Sara; Vespini, Veronica; Merola, Francesco; Finizio, Andrea; Ferraro, Pietro
2011-01-01
In liquids realm, surface tension and capillarity are the key forces driving the formation of the shapes pervading the nature. The steady dew drops appearing on plant leaves and spider webs result from the minimization of the overall surface energy [Zheng Y, et al. (2010) Nature 463:640–643]. Thanks to the surface tension, the interfaces of such spontaneous structures exhibit extremely good spherical shape and consequently worthy optical quality. Also nanofluidic instabilities generate a variety of fascinating liquid silhouettes, but they are however intrinsically short-lived. Here we show that such unsteady liquid structures, shaped in polymeric liquids by an electrohydrodynamic pressure, can be rapidly cured by appropriate thermal treatments. The fabrication of many solid microstructures exploitable in photonics is demonstrated, thus leading to a new concept in 3D lithography. The applicability of specific structures as optical tweezers and as novel remotely excitable quantum dots–embedded microresonators is presented. PMID:21896720
Numerical study of the effect of the shape of the phase diagram on the eutectic freezing temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ode, M.; Shimono, M.; Sasajima, N.
2013-09-11
To evaluate the reliability of metal-carbon eutectic systems as fixed points for the next generation of high-temperature standards the effect of thermodynamic properties related to the shape of eutectic phase diagram on the freezing temperature is investigated within the context of the numerical multi-phase-field model. The partition coefficient and liquidus slopes of the two solids involved in the eutectic reaction are varied deliberately and independently. The difference between the eutectic temperature and the freezing temperature is determined in dependence of the solid/liquid (s/l) interface shape and concentration. Where appropriate reference is made to the Jackson-Hunt analytical theory. It is shownmore » that there are mainly two typical conditions to decrease the undercooling: 1) a small liquidus slope and 2) the associated difference between the eutectic composition and the liquid composition during solidification.« less
Numerical simulation of heat and mass transport during space crystal growth with MEPHISTO
NASA Technical Reports Server (NTRS)
Yao, Minwu; Raman, Raghu; Degroh, Henry C., III
1995-01-01
The MEPHISTO space experiments are collaborative United States and French investigations aimed at understanding the fundamentals of crystal growth. Microgravity experiments were conducted aboard the USMP-1 and -2 missions on STS-52 and 62 in October 1992 and March 1994 respectively. MEPHISTO is a French designed and built Bridgman type furnace which uses the Seebeck technique to monitor the solid/liquid interface temperature and Peltier pulsing to mark the location and shape of the solid/liquid interface. In this paper the Bridgman growth of Sn-Bi and Bi-Sn under terrestrial and microgravity conditions is modeled using the finite element code, FIDAP*. The numerical model considers fully coupled heat and mass transport, fluid motion and solid/liquid phase changes in the crystal growth process. The primary goals of this work are: to provide a quantitative study of the thermal buoyancy-induced convection in the melt for the two flight experiments; to compare the vertical and horizontal growth configurations and systematically evaluate the effects of various gravity levels on the solute segregation. Numerical results of the vertical and horizontal Bridgman growth configurations are presented.
Effect of Interface Shape and Magnetic Field on the Microstructure of Bulk Ge:Ga
NASA Technical Reports Server (NTRS)
Cobb, S. D.; Szofran, F. R.; Volz, M. P.
1999-01-01
Thermal and compositional gradients induced during the growth process contribute significantly to the development of defects in the solidified boule. Thermal gradients and the solid-liquid interface shape can be greatly effected by ampoule material. Compositional gradients are strongly influenced by interface curvature and convective flow in the liquid. Results of this investigation illustrate the combined influences of interface shape and convective fluid flow. An applied magnetic field was used to reduce the effects of convective fluid flow in the electrically conductive melt during directional solidification. Several 8 mm diameter boules of Ga-doped Ge were grown at different field strengths, up to 5 Tesla, in four different ampoule materials. Compositional profiles indicate mass transfer conditions ranged from completely mixed to diffusion controlled. The influence of convection in the melt on the developing crystal microstructure and defect density was investigated as a function of field strength and ampoule material. Chemical etching and electron backscattered electron diffraction were used to map the crystal structure of each boule along the center plane. Dislocation etch pit densities were measured for each boule. Results show the influence of magnetic field strength and ampoule material on overall crystal quality.
Observation of the thermal influenced quantum behaviour of water near a solid interface.
Yoon, Hongkee; Yoon, Byoung Jip
2018-05-03
Water is essential for life. However, the structure and properties of water are still not well understood. It has been introduced that anomalies are in vicinal water near solid interfaces. We performed capillary flow experiments on water with a silica colloid sample using a high-performance liquid chromatography (HPLC) system by accurately varying the temperature and analysed the peak shape rigorously. We obtained a novel anomalous temperature spectrum from the peak-shape analysis. Here we report the observed distinct specific anomalous temperature (SAT) behaviour in vicinal water at silica interface. The anomaly appeared in the viscous force that was derived from a relationship between the shape of the HPLC peak and the velocity profile for the capillary flow. The observations were highly reproducible, and we conclude that the SAT is related to the quantum mechanical behaviour of water, in agreement of the characteristic acceptance of thermal displacement according to the Franck-Condon principle. We performed the same experiments using heavy water and water mixed with a small amount of methanol, and the results support the quantum phenomenological origin.
Wang, Hailiang; Sapi, Andras; Thompson, Christopher M; Liu, Fudong; Zherebetskyy, Danylo; Krier, James M; Carl, Lindsay M; Cai, Xiaojun; Wang, Lin-Wang; Somorjai, Gabor A
2014-07-23
We synthesize platinum nanoparticles with controlled average sizes of 2, 4, 6, and 8 nm and use them as model catalysts to study isopropanol oxidation to acetone in both the liquid and gas phases at 60 °C. The reaction at the solid/liquid interface is 2 orders of magnitude slower than that at the solid/gas interface, while catalytic activity increases with the size of platinum nanoparticles for both the liquid-phase and gas-phase reactions. The activation energy of the gas-phase reaction decreases with the platinum nanoparticle size and is in general much higher than that of the liquid-phase reaction which is largely insensitive to the size of catalyst nanoparticles. Water substantially promotes isopropanol oxidation in the liquid phase. However, it inhibits the reaction in the gas phase. The kinetic results suggest different mechanisms between the liquid-phase and gas-phase reactions, correlating well with different orientations of IPA species at the solid/liquid interface vs the solid/gas interface as probed by sum frequency generation vibrational spectroscopy under reaction conditions and simulated by computational calculations.
Manipulation of small particles at solid liquid interface: light driven diffusioosmosis.
Feldmann, David; Maduar, Salim R; Santer, Mark; Lomadze, Nino; Vinogradova, Olga I; Santer, Svetlana
2016-11-03
The strong adhesion of sub-micron sized particles to surfaces is a nuisance, both for removing contaminating colloids from surfaces and for conscious manipulation of particles to create and test novel micro/nano-scale assemblies. The obvious idea of using detergents to ease these processes suffers from a lack of control: the action of any conventional surface-modifying agent is immediate and global. With photosensitive azobenzene containing surfactants we overcome these limitations. Such photo-soaps contain optical switches (azobenzene molecules), which upon illumination with light of appropriate wavelength undergo reversible trans-cis photo-isomerization resulting in a subsequent change of the physico-chemical molecular properties. In this work we show that when a spatial gradient in the composition of trans- and cis- isomers is created near a solid-liquid interface, a substantial hydrodynamic flow can be initiated, the spatial extent of which can be set, e.g., by the shape of a laser spot. We propose the concept of light induced diffusioosmosis driving the flow, which can remove, gather or pattern a particle assembly at a solid-liquid interface. In other words, in addition to providing a soap we implement selectivity: particles are mobilized and moved at the time of illumination, and only across the illuminated area.
Manipulation of small particles at solid liquid interface: light driven diffusioosmosis
NASA Astrophysics Data System (ADS)
Feldmann, David; Maduar, Salim R.; Santer, Mark; Lomadze, Nino; Vinogradova, Olga I.; Santer, Svetlana
2016-11-01
The strong adhesion of sub-micron sized particles to surfaces is a nuisance, both for removing contaminating colloids from surfaces and for conscious manipulation of particles to create and test novel micro/nano-scale assemblies. The obvious idea of using detergents to ease these processes suffers from a lack of control: the action of any conventional surface-modifying agent is immediate and global. With photosensitive azobenzene containing surfactants we overcome these limitations. Such photo-soaps contain optical switches (azobenzene molecules), which upon illumination with light of appropriate wavelength undergo reversible trans-cis photo-isomerization resulting in a subsequent change of the physico-chemical molecular properties. In this work we show that when a spatial gradient in the composition of trans- and cis- isomers is created near a solid-liquid interface, a substantial hydrodynamic flow can be initiated, the spatial extent of which can be set, e.g., by the shape of a laser spot. We propose the concept of light induced diffusioosmosis driving the flow, which can remove, gather or pattern a particle assembly at a solid-liquid interface. In other words, in addition to providing a soap we implement selectivity: particles are mobilized and moved at the time of illumination, and only across the illuminated area.
NASA Astrophysics Data System (ADS)
Galenko, Peter K.; Alexandrov, Dmitri V.; Titova, Ekaterina A.
2018-01-01
The boundary integral method for propagating solid/liquid interfaces is detailed with allowance for the thermo-solutal Stefan-type models. Two types of mass transfer mechanisms corresponding to the local equilibrium (parabolic-type equation) and local non-equilibrium (hyperbolic-type equation) solidification conditions are considered. A unified integro-differential equation for the curved interface is derived. This equation contains the steady-state conditions of solidification as a special case. The boundary integral analysis demonstrates how to derive the quasi-stationary Ivantsov and Horvay-Cahn solutions that, respectively, define the paraboloidal and elliptical crystal shapes. In the limit of highest Péclet numbers, these quasi-stationary solutions describe the shape of the area around the dendritic tip in the form of a smooth sphere in the isotropic case and a deformed sphere along the directions of anisotropy strength in the anisotropic case. A thermo-solutal selection criterion of the quasi-stationary growth mode of dendrites which includes arbitrary Péclet numbers is obtained. To demonstrate the selection of patterns, computational modelling of the quasi-stationary growth of crystals in a binary mixture is carried out. The modelling makes it possible to obtain selected structures in the form of dendritic, fractal or planar crystals. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.
The calculation of weakly non-spherical cavitation bubble impact on a solid
NASA Astrophysics Data System (ADS)
Aganin, A. A.; Guseva, T. S.; Kosolapova, L. A.; Khismatullina, N. A.
2016-11-01
The effect of small spheroidal non-sphericity of a cavitation bubble touching a solid at the beginning of its collapse on its impact on the solid of a copper-nickel alloy is investigated. The impact on the solid is realized by means of a high-speed liquid jet arising at collapse on the bubble surface. The shape of the jet, its velocity and pressure are calculated by the boundary element method. The spatial and temporal characteristics of the pressure pulses on the solid surface are determined by the CIP-CUP method on dynamically adaptive grids without explicitly separating the gas-liquid interface. The solid surface layer dynamics is evaluated by the Godunov method. The results are analyzed in dimensionless variables obtained with using the water hammer pressure, the time moment and the jet-solid contact area radius at which the jet begins to spread on the solid surface. It is shown that in those dimensionless variables, the dependence of the spatial and temporal characteristics of the solid surface pressure pulses on the initial bubble shape non-sphericity is relatively small. The nonsphericity also slightly influences the main qualitative features of the dynamic processes inside the solid, whereas its effect on their quantitative characteristics can be significant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favaro, Marco; Liu, Zhi; Crumlin, Ethan J.
Ambient-pressure X-ray photoelectron spectroscopy (APXPS) has contributed greatly to a wide range of research fields, including environmental science, catalysis, and electrochemistry, to name a few. The use of this technique at synchrotron facilities primarily focused on probing the solid/gas interface; however, it quickly advanced to the probing of liquid/vapor interfaces and solid/liquid interfaces through an X-ray-transparent window. Most recently, combining APXPS with “Tender” X-rays (~2.5 keV to 8 keV) on beamline 9.3.1 at the Advanced Light Source in Lawrence Berkeley National Laboratory (which can generate photoelectrons with much longer inelastic mean free paths) has enabled us to probe the solid/liquidmore » interface without needing a window. This innovation allows us to probe interfacial chemistries of electrochemically controlled solid/liquid interfaces undergoing charge transfer reactions. Lastly, these advancements have transitioned APXPS from a traditional surface science tool to an essential interface science technique.« less
Favaro, Marco; Liu, Zhi; Crumlin, Ethan J.
2017-03-31
Ambient-pressure X-ray photoelectron spectroscopy (APXPS) has contributed greatly to a wide range of research fields, including environmental science, catalysis, and electrochemistry, to name a few. The use of this technique at synchrotron facilities primarily focused on probing the solid/gas interface; however, it quickly advanced to the probing of liquid/vapor interfaces and solid/liquid interfaces through an X-ray-transparent window. Most recently, combining APXPS with “Tender” X-rays (~2.5 keV to 8 keV) on beamline 9.3.1 at the Advanced Light Source in Lawrence Berkeley National Laboratory (which can generate photoelectrons with much longer inelastic mean free paths) has enabled us to probe the solid/liquidmore » interface without needing a window. This innovation allows us to probe interfacial chemistries of electrochemically controlled solid/liquid interfaces undergoing charge transfer reactions. Lastly, these advancements have transitioned APXPS from a traditional surface science tool to an essential interface science technique.« less
Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu
2015-05-20
A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid-liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid-liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid-liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid-liquid interfaces.
On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations.
Ravipati, Srikanth; Aymard, Benjamin; Kalliadasis, Serafim; Galindo, Amparo
2018-04-28
We present a new methodology to estimate the contact angles of sessile drops from molecular simulations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114, 1954-1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density contour with average coarse-grained density value equal to half of the bulk liquid density is identified as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average LV interface and unit normal vector to the solid surface, as a function of the distance normal to the solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase contact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our methodology for the first two systems are shown to be in good agreement with the angles predicted from Young's equation. The interfacial tensions required for this equation are computed by employing the test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the widely adopted spherical-cap approximation should be used with caution, as it could take a long time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water molecules initiated in a lattice configuration on a solid surface. But even though a water drop can take a long time to reach the spherical shape, we find that the contact angle is well established much faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation dynamics. Making use of this observation, our methodology allows a good estimation of the sessile drop contact angle values even for moderate system sizes (with, e.g., 4000 molecules), without the need for long simulation times to reach the spherical shape.
On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Ravipati, Srikanth; Aymard, Benjamin; Kalliadasis, Serafim; Galindo, Amparo
2018-04-01
We present a new methodology to estimate the contact angles of sessile drops from molecular simulations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114, 1954-1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density contour with average coarse-grained density value equal to half of the bulk liquid density is identified as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average LV interface and unit normal vector to the solid surface, as a function of the distance normal to the solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase contact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our methodology for the first two systems are shown to be in good agreement with the angles predicted from Young's equation. The interfacial tensions required for this equation are computed by employing the test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the widely adopted spherical-cap approximation should be used with caution, as it could take a long time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water molecules initiated in a lattice configuration on a solid surface. But even though a water drop can take a long time to reach the spherical shape, we find that the contact angle is well established much faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation dynamics. Making use of this observation, our methodology allows a good estimation of the sessile drop contact angle values even for moderate system sizes (with, e.g., 4000 molecules), without the need for long simulation times to reach the spherical shape.
Interaction of Porosity with a Planar Solid/Liquid Interface
NASA Technical Reports Server (NTRS)
Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu; Kaukler, William F.
2004-01-01
In this article, an investigation of the interaction between gas porosity and a planar solid/liquid (SL) interface is reported. A two-dimensional numerical model able to accurately track sharp SL interfaces during solidification of pure metals and alloys is proposed. The finite-difference method and a rectangular undeformed grid are used for computation. The SL interface is described through the points of intersection with the grid lines. Its motion is determined by the thermal and solute gradients at each particular point. Changes of the interface temperature because of capillarity or solute redistribution as well as any perturbation of the thermal and solute field produced by the presence of non-metallic inclusions can be computed. To validate the model, the dynamics of the interaction between a gas pore and a solidification front in metal alloys was observed using a state of the art X-ray transmission microscope (XTM). The experiments included observation of the distortion of the SL interface near a pore, real-time measurements of the growth rate, and the change in shape of the porosity during interaction with the SL interface in pure Al and Al-0.25 wt pct Au alloy. In addition, porosity-induced solute segregation patterns surrounding a pore were also quantified.
Impact dynamics of liquid marbles
NASA Astrophysics Data System (ADS)
Marston, Jeremy; Supakar, Tinku
2016-11-01
The impact of particle coated droplets (a.k.a. liquid marbles or armored droplets) onto solid substrates is assessed experimentally with high-speed video. The impact is characterized by the maximum spread diameter, which conforms to scaling laws in terms of the impact Weber number, meaning that the marbles behave similar to water droplets during this stage. However, the motion of the particles across the surface allows us to observe both clustering and divergence of the particle shell and, in particular, we observe the formation of arrested shapes (i.e. jammed interfaces) after impact onto hydrophobic surfaces, from an initially spherical shape. In this case, we postulate that the speed of retraction and rate of change of surface coverage is a key ingredient leading to arrested shapes.
Huang, Liu; Wan, Xiaodong; Rong, Hongpan; Yao, Yuan; Xu, Meng; Liu, Jia; Ji, Muwei; Liu, Jiajia; Jiang, Lan; Zhang, Jiatao
2018-04-01
High-efficient charge and energy transfer between nanocrystals (NCs) in a bottom-up assembly are hard to achieve, resulting in an obstacle in application. Instead of the ligands exchange strategies, the advantage of a continuous laser is taken with optimal wavelength and power to irradiate the film-scale NCs superlattices at solid-liquid interfaces. Owing to the Au-based NCs' surface plasmon resonance (SPR) effect, the gentle laser irradiation leads the Au NCs or Au@CdS core/shell NCs to attach each other with controlled pattern at the interfaces between solid NCs phase and liquid ethanol/ethylene glycol. A continuous wave 532 nm laser (6.68-13.37 W cm -2 ), to control Au-based superlattices, is used to form the monolayer with uniformly reduced interparticle distance followed by welded superstructures. Considering the size effect to Au NCs' melting, when decreasing the Au NCs size to ≈5 nm, stronger welding nanostructures are obtained with diverse unprecedented shapes which cannot be achieved by normal colloidal synthesis. With the help of facile scale-up and formation at solid-liquid interfaces, and a good connection of crystalline between NCs, the obtained plasmonic superstructured films that could be facilely transferred onto different substrates exhibit broad SPR absorption in the visible and near-infrared regime, enhanced electric conductivities, and wide applications as surface enhanced Raman scattering (SERS)-active substrates. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrowetting-actuated zoom lens with spherical-interface liquid lenses.
Peng, Runling; Chen, Jiabi; Zhuang, Songlin
2008-11-01
The interface shape of two immiscible liquids in a conical chamber is discussed. The analytical solution of the differential equation describing the interface shape shows that the interface shape is completely spherical when the density difference of two liquids is zero. On the basis of the spherical-interface shape and an energy-minimization method, explicit calculations and detailed analyses of an extended Young-type equation for the conical double-liquid lens are given. Finally, a novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two conical double-liquid variable-focus lenses. The structure and principle of the lens system are introduced in this paper. Taking finite objects as example, detailed calculations and simulation examples are presented to predict how two liquid lenses are related to meet the basic requirements of zoom lenses.
Biofilm growth program and architecture revealed by single-cell live imaging
NASA Astrophysics Data System (ADS)
Yan, Jing; Sabass, Benedikt; Stone, Howard; Wingreen, Ned; Bassler, Bonnie
Biofilms are surface-associated bacterial communities. Little is known about biofilm structure at the level of individual cells. We image living, growing Vibrio cholerae biofilms from founder cells to ten thousand cells at single-cell resolution, and discover the forces underpinning the architectural evolution of the biofilm. Mutagenesis, matrix labeling, and simulations demonstrate that surface-adhesion-mediated compression causes V. cholerae biofilms to transition from a two-dimensional branched morphology to a dense, ordered three-dimensional cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture, and this growth pattern is controlled by a single gene. Competition analyses reveal the advantages of the dense growth mode in providing the biofilm with superior mechanical properties. We will further present continuum theory to model the three-dimensional growth of biofilms at the solid-liquid interface as well as solid-air interface.
3-D Distribution of Retained Colloids in Unsaturated Porous Media
NASA Astrophysics Data System (ADS)
Morales, V. L.; Perez-Reche, F. J.; Holzner, M.; Kinzelbach, W. K.; Otten, W.
2013-12-01
It is well accepted that colloid transport processes in porous media differ substantially between water saturated and unsaturated conditions. Differences are frequently ascribed to colloid immobilization by association with interfaces with the gas, as well as to restrictions of the liquid medium through which colloids are transported. Such factors depend on interfacial conditions provided by the water saturation of the porous medium. Yet, the current understanding of the importance of colloid retention at gas interfaces is based on observations of single pores or two-dimensional pore network representations, leaving open the question of their statistical significance when all pores in the medium are considered. In order to address this question, column experiments were performed using a model porous medium of glass beads through which colloidal silver particles were transported for conditions of varying water content. X-ray microtomography was subsequently employed as a non-destructive imaging technique to obtain pore-scale information of the entire column regarding: i) the presence and distribution of the four main locations where colloids can become retained (interfaces with the liquid-solid, gas-liquid and gas-solid, and the bulk liquid), ii) deposition profiles of colloids along the column classified by the available retention location, iii) morphological characteristics of the deposited colloidal aggregates, and iv) channel widths of 3-dimensional pore-water network representations. The results presented provide, for the first time, a direct statistical evaluation on the significance of colloid retention by attachment to the liquid-solid, gas-liquid, gas-solid interfaces, and by straining in the bulk liquid. Additionally, an effective-pore structure characteristic is proposed to improve predictions of mass removal by straining under various water saturations. A) Unsaturated conditions. B) Saturated conditions. Left: Tomograph slice illustrating with false coloring Regions Of Interest corresponding to retention locations at the gas-liquid (purple), gas-solid (white) and solid-liquid interface (blue), and the bulk liquid (teal). Right: Deposition profiles of silver colloids (Ag) per retention location (T: total, GLI: gas-liquid interface, GSI: gas-solid interface, SLI: solid-liquid interface, L: bulk liquid) (Top). Depth profiles of the volume occupied by each retention location (Middle). Normalized deposition profiles of silver volume retained by its corresponding retention-location volume (Bottom).
Liquid?solid helium interface: some conceptual questions
NASA Astrophysics Data System (ADS)
Leggett, A. J.
2003-12-01
I raise, and discuss qualitatively, some conceptual issues concerning the interface between the crystalline solid and superfluid liquid phases of 4He emphasizing, in particular, the fact that the ground-state wave functions of the two phases are prima facie qualitatively quite different, in that the superfluid liquid phase possesses off-diagonal long-range order (ODLRO), while the crystalline solid does not. The fact that the statics and dynamics of the interface do not appear to be particularly sensitive to the presence of ODLRO in the liquid is tentatively explained by the fact that because of a subtlety associated with the Bose statistics obeyed by the atoms, the solid and liquid wave functions are not locally very different.
Deformation of Surface Nanobubbles Induced by Substrate Hydrophobicity.
Wei, Jiachen; Zhang, Xianren; Song, Fan
2016-12-13
Recent experimental measurements have shown that there exists a population of nanobubbles with different curvature radii, whereas both computer simulations and theoretical analysis indicated that the curvature radii of different nanobubbles should be the same at a given supersaturation. To resolve such inconsistency, we perform molecular dynamics simulations on surface nanobubbles that are stabilized by heterogeneous substrates either in the geometrical heterogeneity model (GHM) or in the chemical heterogeneity model (CHM) and propose that the inconsistency could be ascribed to the substrate-induced nanobubble deformation. We find that, as expected from theory and computer simulation, for either the GHM or the CHM, there exists a universal upper limit of contact angle for the nanobubbles, which is determined by the degree of supersaturation alone. By analyzing the evolution of the shape of nanobubbles as a function of substrate hydrophobicity that is controlled here by the liquid-solid interaction, two different origins of nanobubble deformation are identified. For substrates in the GHM, where the contact line is pinned by surface roughness, variation in the liquid-solid interaction changes only the location of the contact line and the measured contact angle, without causing a change in the nanobubble curvature. For substrates in the CHM, however, the liquid-solid interaction exerted by the bottom substrate can deform the vapor-liquid interface, resulting in variations in both the curvature of the vapor-liquid interface and the contact angle.
Behavior of fluids in a weightless environment
NASA Technical Reports Server (NTRS)
Fester, D. A.; Eberhardt, R. N.; Tegart, J. R.
1977-01-01
Fluid behavior in a low-g environment is controlled primarily by surface tension forces. Certain fluid and system characteristics determine the magnitude of these forces for both a free liquid surface and liquid in contact with a solid. These characteristics, including surface tension, wettability or contact angle, system geometry, and the relationships governing their interaction, are discussed. Various aspects of fluid behavior in a low-g environment are then presented. This includes the formation of static interface shapes, oscillation and rotation of drops, coalescence, the formation of foams, tendency for cavitation, and diffusion in liquids which were observed during the Skylab fluid mechanics science demonstrations. Liquid reorientation and capillary pumping to establish equilibrium configurations for various system geometries, observed during various free-fall (drop-tower) low-g tests, are also presented. Several passive low-g fluid storage and transfer systems are discussed. These systems use surface tension forces to control the liquid/vapor interface and provide gas-free liquid transfer and liquid-free vapor venting.
Polymer-grafted Lignin: Molecular Design and Interfacial Activities
NASA Astrophysics Data System (ADS)
Gupta, Chetali
The broader technical objective of this work is to develop a strategy for using the biopolymer lignin in a wide variety of surfactant applications through polymer grafting. These applications include emulsion stabilizers, dispersants and foaming agents. The scientific objective of the research performed within this thesis is to understand the effect of molecular architecture and polymer grafting on the interfacial activity at the air-liquid, liquid-liquid and solid-liquid interface. Research has focused on designing of these lignopolymers with controlled architecture using polyethylene glycol, poly(acrylic acid) and polyacrylamide grafts. The interfacial activity for all polymer grafts has been tested at all three interfaces using a broad range of techniques specific to the interface. Results have shown that the hydrophobicity of the lignin core is responsible for enhanced interfacial activity at the air-liquid and liquid-liquid interface. Conversely, improved hydrophilicity and "electrosteric" interactions are required for higher interfacial activity of the lignin at the liquid-solid interface. The high interfacial activity of the polymer-grafted lignin observed in the air-liquid and liquid-liquid interfaces not only resulted in viscosity reduction but also strength enhancement at the liquid-solid interface. The broader implication of this study is to be able to predict what chemical functionalities need to be adjusted to get the desired viscosity reduction.
Han, Haoxue; Mérabia, Samy; Müller-Plathe, Florian
2017-05-04
The integration of three-dimensional microelectronics is hampered by overheating issues inherent to state-of-the-art integrated circuits. Fundamental understanding of heat transfer across soft-solid interfaces is important for developing efficient heat dissipation capabilities. At the microscopic scale, the formation of a dense liquid layer at the solid-liquid interface decreases the interfacial heat resistance. We show through molecular dynamics simulations of n-perfluorohexane on a generic wettable surface that enhancement of the liquid structure beyond a single adsorbed layer drastically enhances interfacial heat conductance. Pressure is used to control the extent of the liquid layer structure. The interfacial thermal conductance increases with pressure values up to 16.2 MPa at room temperature. Furthermore, it is shown that liquid structuring enhances the heat-transfer rate of high-energy lattice waves by broadening the transmission peaks in the heat flux spectrum. Our results show that pressure is an important external parameter that may be used to control interfacial heat conductance at solid-soft interfaces.
Behavior of ceramic particles at the solid-liquid metal interface in metal matrix composites
NASA Technical Reports Server (NTRS)
Stefanescu, D. M.; Dhindaw, B. K.; Kacar, S. A.; Moitra, A.
1988-01-01
Directional solidification results were obtained in order to investigate particle behavior at the solid-liquid interface in Al-2 pct Mg (cellular interface) and Al-6.1 pct Ni (eutectic interface) alloys. It is found that particles can be entrapped in the solid if adequate solidification rates and temperature gradients are used. Model results showed critical velocity values slightly higher than those obtained experimentally.
Heat transfer process during the crystallization of benzil grown by the Bridgman-Stockbarger method
NASA Astrophysics Data System (ADS)
Barvinschi, F.; Stanculescu, A.; Stanculescu, F.
2011-02-01
The temperature distribution and solid-liquid interface shape during benzil growth have been studied both experimentally and numerically. The heat transfer equation with appropriate boundary conditions has been solved by modelling a vertical Bridgman-Stockbarger growth configuration. Two models have been developed, namely a global numerical model and a pseudo-transient approximation in an ideal configuration.
Solid/liquid interfacial free energies in binary systems
NASA Technical Reports Server (NTRS)
Nason, D.; Tiller, W. A.
1973-01-01
Description of a semiquantitative technique for predicting the segregation characteristics of smooth interfaces between binary solid and liquid solutions in terms of readily available thermodynamic parameters of the bulk solutions. A lattice-liquid interfacial model and a pair-bonded regular solution model are employed in the treatment with an accommodation for liquid interfacial entropy. The method is used to calculate the interfacial segregation and the free energy of segregation for solid-liquid interfaces between binary solutions for the (111) boundary of fcc crystals. The zone of compositional transition across the interface is shown to be on the order of a few atomic layers in width, being moderately narrower for ideal solutions. The free energy of the segregated interface depends primarily upon the solid composition and the heats of fusion of the component atoms, the composition difference of the solutions, and the difference of the heats of mixing of the solutions.
Phase transition detection by surface photo charge effect in liquid crystals
NASA Astrophysics Data System (ADS)
Ivanov, O.; Petrov, M.; Naradikian, H.; Perez-Diaz, J. L.
2018-05-01
The surface photo charge effect (SPCE) was applied for the first time at structure and phase transitions study of hydrogen bonded in dimer liquid crystals (HBDLCs). Due to the high sensitivity of this method, besides first-order phase transitions, characteristic for the p,n-octyloxibenzoic acids (8OBA), an order transition was definitely detected within the nematic range. We state that the SPCE, arising at the solid-HBDLCs interface due to the double electrical layer, is invariably concomitant with solid surface-liquid interfaces, and indicates that the changes of the characteristics of this layer, under incident optical irradiation, induce surface charge rearrangement and alternating potential difference. A mechanism of induction of the SPCE at the interface of solid surface-anisotropic liquids is proposed. We also indicate that this mechanism can be adapted for solid surface-isotropic liquid interface, including colloids (milk) and fog (aerosols)-condensed medium.
Role of adsorption in liquid lubrication
NASA Technical Reports Server (NTRS)
Groszek, A. J.
1973-01-01
Changes at solid-liquid interfaces caused by adsorption from solution are discussed paying attention to the following aspects: (1) stability of adsorbed films and the structure of metal-additive-film-liquid interface and effect of adsorbate orientation. (2) chemical versus physical adsorption, (3) heat of adsorption, (4) adsorption of additives, (5) activated adsorption, effect of activating adsorbates, (6) displacement phenomena at solid-liquid interfaces, (7) competition of antiwear additives, their solvents, and water, (8) effect of adsorption on the orientation of liquid in the interfacial region, and (9) relation between the chemical nature of solid surfaces and their interaction with liquid lubricants. The relevance of the above adsorption phenomena to lubrication is discussed, referring where possible to specific examples.
A new model for fluid velocity slip on a solid surface.
Shu, Jian-Jun; Teo, Ji Bin Melvin; Chan, Weng Kong
2016-10-12
A general adsorption model is developed to describe the interactions between near-wall fluid molecules and solid surfaces. This model serves as a framework for the theoretical modelling of boundary slip phenomena. Based on this adsorption model, a new general model for the slip velocity of fluids on solid surfaces is introduced. The slip boundary condition at a fluid-solid interface has hitherto been considered separately for gases and liquids. In this paper, we show that the slip velocity in both gases and liquids may originate from dynamical adsorption processes at the interface. A unified analytical model that is valid for both gas-solid and liquid-solid slip boundary conditions is proposed based on surface science theory. The corroboration with the experimental data extracted from the literature shows that the proposed model provides an improved prediction compared to existing analytical models for gases at higher shear rates and close agreement for liquid-solid interfaces in general.
Dynamics of solid nanoparticles near a liquid-liquid interface
NASA Astrophysics Data System (ADS)
Daher, Ali; Ammar, Amine; Hijazi, Abbas
2018-05-01
The liquid - liquid interface can be used as a suitable medium for generating some nanostructured films of metals, or inorganic materials such as semi conducting metals. This process can be controlled well if we study the dynamics of nanoparticles (NPs) at the liquid-liquid interface which is a new field of study, and is not understood well yet. The dynamics of NPs at liquid-liquid interfaces is investigated by solving the fluid-particle and particle-particle interactions. Our work is based on the Molecular Dynamics (MD) simulation in addition to Phase Field (PF) method. We modeled the liquid-liquid interface using the diffuse interface model, where the interface is considered to have a characteristic thickness. We have shown that the concentration gradient of one fluid in the other gives rise to a hydrodynamic force that drives the NPs to agglomerate at the interface. These obtained results may introduce new applications where certain interfaces can be considered to be suitable mediums for the synthesis of nanostructured materials. In addition, some liquid interfaces can play the role of effective filters for different species of biological NPs and solid state waste NPs, which will be very important in many industrial and biomedical domains.
Dependence of solid-liquid interface free energy on liquid structure
NASA Astrophysics Data System (ADS)
Wilson, S. R.; Mendelev, M. I.
2014-09-01
The Turnbull relation is widely believed to enable prediction of solid-liquid interface (SLI) free energies from measurements of the latent heat and the solid density. Ewing proposed an additional contribution to the SLI free energy to account for variations in liquid structure near the interface. In the present study, molecular dynamics (MD) simulations were performed to investigate whether SLI free energy depends on liquid structure. Analysis of the MD simulation data for 11 fcc metals demonstrated that the Turnbull relation is only a rough approximation for highly ordered liquids, whereas much better agreement is observed with Ewing's theory. A modification to Ewing's relation is proposed in this study that was found to provide excellent agreement with MD simulation data.
The role of nanopore shape in surface-induced crystallization
NASA Astrophysics Data System (ADS)
Diao, Ying; Harada, Takuya; Myerson, Allan S.; Alan Hatton, T.; Trout, Bernhardt L.
2011-11-01
Crystallization of a molecular liquid from solution often initiates at solid-liquid interfaces, and nucleation rates are generally believed to be enhanced by surface roughness. Here we show that, on a rough surface, the shape of surface nanopores can also alter nucleation kinetics. Using lithographic methods, we patterned polymer films with nanopores of various shapes and found that spherical nanopores 15-120 nm in diameter hindered nucleation of aspirin crystals, whereas angular nanopores of the same size promoted it. We also show that favourable surface-solute interactions are required for angular nanopores to promote nucleation, and propose that pore shape affects nucleation kinetics through the alteration of the orientational order of the crystallizing molecule near the angles of the pores. Our findings have clear technological implications, for instance in the control of pharmaceutical polymorphism and in the design of ‘seed’ particles for the regulation of crystallization of fine chemicals.
1995-10-20
Interface Configuration Experiment on the Second United States Microgravity Laboratory (USML-2). Over time the photos show a change in the shape of the interface between a liquid and a gas in a sealed, slightly asymmetrical container. Under the force of Earth's gravity, the interface would remain nearly flat, but in microgravity, the interface shape and location changes significantly in the container, resulting in major shifts of liquid arising from small asymmetries in the container shape.
Sapi, Andras; Liu, Fudong; Cai, Xiaojun; Thompson, Christopher M; Wang, Hailiang; An, Kwangjin; Krier, James M; Somorjai, Gabor A
2014-11-12
Pt nanoparticles with controlled size (2, 4, and 6 nm) are synthesized and tested in ethanol oxidation by molecular oxygen at 60 °C to acetaldehyde and carbon dioxide both in the gas and liquid phases. The turnover frequency of the reaction is ∼80 times faster, and the activation energy is ∼5 times higher at the gas-solid interface compared to the liquid-solid interface. The catalytic activity is highly dependent on the size of the Pt nanoparticles; however, the selectivity is not size sensitive. Acetaldehyde is the main product in both media, while twice as much carbon dioxide was observed in the gas phase compared to the liquid phase. Added water boosts the reaction in the liquid phase; however, it acts as an inhibitor in the gas phase. The more water vapor was added, the more carbon dioxide was formed in the gas phase, while the selectivity was not affected by the concentration of the water in the liquid phase. The differences in the reaction kinetics of the solid-gas and solid-liquid interfaces can be attributed to the molecular orientation deviation of the ethanol molecules on the Pt surface in the gas and liquid phases as evidenced by sum frequency generation vibrational spectroscopy.
Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface.
Williamson, M J; Tromp, R M; Vereecken, P M; Hull, R; Ross, F M
2003-08-01
Dynamic processes at the solid-liquid interface are of key importance across broad areas of science and technology. Electrochemical deposition of copper, for example, is used for metallization in integrated circuits, and a detailed understanding of nucleation, growth and coalescence is essential in optimizing the final microstructure. Our understanding of processes at the solid-vapour interface has advanced tremendously over the past decade due to the routine availability of real-time, high-resolution imaging techniques yielding data that can be compared quantitatively with theory. However, the difficulty of studying the solid-liquid interface leaves our understanding of processes there less complete. Here we analyse dynamic observations--recorded in situ using a novel transmission electron microscopy technique--of the nucleation and growth of nanoscale copper clusters during electrodeposition. We follow in real time the evolution of individual clusters, and compare their development with simulations incorporating the basic physics of electrodeposition during the early stages of growth. The experimental technique developed here is applicable to a broad range of dynamic phenomena at the solid-liquid interface.
Surfactant Effect on the Average Flow Generation Near Curved Interface
NASA Astrophysics Data System (ADS)
Klimenko, Lyudmila; Lyubimov, Dmitry
2018-02-01
The present work is devoted to the average flow generation near curved interface with a surfactant adsorbed on the surface layer. The investigation was carried out for a liquid drop embedded in a viscous liquid with a different density. The liquid flows inside and outside the drop are generated by small amplitude and high frequency vibrations. Surfactant exchange between the drop surface and the surrounding liquid is limited by the process of adsorption-desorption. It was assumed that the surfactant is soluble in the surrounding liquid, but not soluble in the liquid drop. Surrounding liquid and the liquid in the drop are considered incompressible. Normal and shear viscous stresses balance at the interface is performed under the condition that the film thickness of the adsorbed surfactant is negligible. The problem is solved under assumption that the shape of the drop in the presence of adsorbed surfactant remains spherical symmetry. The effective boundary conditions for the tangential velocity jump and shear stress jump, describing the above generation have been obtained by matched asymptotic expansions method. The conditions under which the drop surface can be considered as a quasi-solid are determined. It is shown that in the case of the significant effect of surfactant on the surface tension, the dominant mechanism for the generation is the Schlichting mechanisms under vibrations.
NASA Astrophysics Data System (ADS)
Fathy, Naglaa; Ramadan, Mohamed
2018-05-01
The influence of volume ratio of liquid to Solid and low pouring temperature on interface structure of cast Babbitt-steel bimetal composite was evaluated for static casting technique. At low pouring temperature of 380 °C, Babbitt microstructures are improved to be finer and more globular. On the other side pouring the Babbitt at low pouring temperature of 380 °C increases the chance of present higher unbonded area percent. Increasing the volume ratio of liquid to solid decreases the Sn-Pb interface thicknesses and increases the bonded interface area. In order to optimize the production of Babbitt-steel bimetal composite at low pouring temperature, the volume ratio of liquid Babbitt to solid steel shell should be higher value that could be more than 5 depending on the extrapolation of current data presented.
Contact-angle hysteresis on periodic microtextured surfaces: Strongly corrugated liquid interfaces.
Iliev, Stanimir; Pesheva, Nina
2016-06-01
We study numerically the shapes of a liquid meniscus in contact with ultrahydrophobic pillar surfaces in Cassie's wetting regime, when the surface is covered with identical and periodically distributed micropillars. Using the full capillary model we obtain the advancing and the receding equilibrium meniscus shapes when the cross-sections of the pillars are both of square and circular shapes, for a broad interval of pillar concentrations. The bending of the liquid interface in the area between the pillars is studied in the framework of the full capillary model and compared to the results of the heterogeneous approximation model. The contact angle hysteresis is obtained when the three-phase contact line is located on one row (block case) or several rows (kink case) of pillars. It is found that the contact angle hysteresis is proportional to the line fraction of the contact line on pillars tops in the block case and to the surface fraction for pillar concentrations 0.1-0.5 in the kink case. The contact angle hysteresis does not depend on the shape (circular or square) of the pillars cross-section. The expression for the proportionality of the receding contact angle to the line fraction [Raj et al., Langmuir 28, 15777 (2012)LANGD50743-746310.1021/la303070s] in the case of block depinning is theoretically substantiated through the capillary force, acting on the solid plate at the meniscus contact line.
NASA Astrophysics Data System (ADS)
Takeya, J.
2008-10-01
The environment of surface electrons at 'solid-to-liquid' interfaces is somewhat extreme, subjected to intense local electric fields or harsh chemical pressures that high-density ionic charge or polarization of mobile molecules create. In this proceedings, we argue functions of electronic carriers generated at the surface of organic semiconductor crystals in response to the local electric fields in the very vicinity of the interface to ionic liquid. The ionic liquids (ILs), or room temperature molten salts, are gaining considerable interest in the recent decade at the prospect of nonvolatile 'green solvents', with the development of chemically stable and nontoxic compounds. Moreover, such materials are also applied to electrolytes for lithium ion batteries and electric double-layer (EDL) capacitors. Our present solid-to-liquid interfaces of rubrene single crystals and ionic liquids work as fast-switching organic field-effect transistors (OFETs) with the highest transconductance, i.e. the most efficient response of the output current to the input voltage, among the OFETs ever built.
Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; ...
2015-05-07
We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquidmore » and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²⁺ and Pt⁴⁺ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua
We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquidmore » and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²⁺ and Pt⁴⁺ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.« less
NASA Technical Reports Server (NTRS)
Silberstein, R. P.; Larson, D. J., Jr.; Dressler, B.
1984-01-01
Extensive in situ thermal measurements using Peltier Interface Demarcation (PID) during directional solidification of eutectic Bi/MnBi were carried out. Observations indicate that significant thermal transients occur throughout the sample as a result of the Peltier pulsing. The contributions of the Peltier, Thomson, and Joule heats were separated and studied as a function of pulse intensity and polarity. The Joule and the combined Peltier and Thomson thermal contributions were determined as a function of time during and after the current pulses, close to the solid/liquid interface. Variations of the Bi/MnBi particle morphology clearly reveal the interface shape, changes in interface velocity, meltback, and temporary loss of cooperative growth, as a result of the pulsing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saitoh, T.S.; Hoshi, A.
1998-07-01
Melting and solidification of a phase change material (PCM) in a capsule is of practical importance in latent heat thermal energy storage (LHTES) systems which are considered to be very promising to reduce a peak demand of electricity in the summer season and carbon dioxide (CO{sub 2}) emissions. Two melting modes are involved in melting of capsules. One is close-contact melting between the solid bulk and the capsule wall, and another is natural convection melting in the liquid region. Close-contact melting processes for a single enclosure have been solved using several numerical methods (e.g., Saitoh and Kato (1994)). In additionmore » close-contact melting heat transfer characteristics including melt flow in the liquid film under inner wall temperature distribution were analyzed and simple approximate equations were already presented by Saitoh and Hoshi (1997). The effects of Stefan number and variable temperature profile etc. were clarified in detail. And the melting velocity of the solid bulk under various conditions was also studied theoretically. In addition the effects of variable inner wall temperature on molten mass fraction were investigated. The present paper reports analytical solutions for combined close-contact and natural convection melting in horizontal cylindrical capsule. Moreover, natural convection melting in the liquid region were analyzed in this report. The upper interface shape of the solid bulk is approximated by a circular arc throughout the melting process. For the sake of verification, close-contact melting heat-transfer characteristics including natural convection in the liquid region were studied experimentally. Apparent shift of upper solid-liquid interface is good agreement with the experiment. The present simple approximate solutions will be useful to facilitate designing of the practical capsule bed LHTES systems.« less
Synthesis of nanostructures in nanowires using sequential catalyst reactions
Panciera, F.; Chou, Y.-C.; Reuter, M.C.; Zakharov, D.; Stach, E.A.; Hofmann, S.; Ross, F.M.
2016-01-01
Nanowire growth by the vapor-liquid-solid process enables a high level of control over nanowire composition, diameter, growth direction, branching and kinking, periodic twinning, and crystal structure. The tremendous impact of VLS-grown nanowires is due to this structural versatility, generating applications ranging from solid state lighting and single photon sources to thermoelectric devices. Here we show that the morphology of these nanostructures can be further tailored by using the liquid droplets that catalyze nanowire growth as a “mixing bowl”, in which growth materials are sequentially supplied to nucleate new phases. Growing within the liquid, these phases adopt the shape of faceted nanocrystals that are then incorporated into the nanowires by further growth. We demonstrate this concept by epitaxially incorporating metal silicide nanocrystals into Si nanowires with defect-free interfaces, and discuss how this process can be generalized to create complex nanowire-based heterostructures. PMID:26168344
Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy
Chen, Zhan
2010-01-01
This paper reviews recent progress in the studies of buried polymer interfaces using sum frequency generation (SFG) vibrational spectroscopy. Both buried solid/liquid and solid/solid interfaces involving polymeric materials are discussed. SFG studies of polymer/water interfaces show that different polymers exhibit varied surface restructuring behavior in water, indicating the importance of probing polymer/water interfaces in situ. SFG has also been applied to the investigation of interfaces between polymers and other liquids. It has been found that molecular interactions at such polymer/liquid interfaces dictate interfacial polymer structures. The molecular structures of silane molecules, which are widely used as adhesion promoters, have been investigated using SFG at buried polymer/silane and polymer/polymer interfaces, providing molecular-level understanding of polymer adhesion promotion. The molecular structures of polymer/solid interfaces have been examined using SFG with several different experimental geometries. These results have provided molecular-level information about polymer friction, adhesion, interfacial chemical reactions, interfacial electronic properties, and the structure of layer-by-layer deposited polymers. Such research has demonstrated that SFG is a powerful tool to probe buried interfaces involving polymeric materials, which are difficult to study by conventional surface sensitive analytical techniques. PMID:21113334
Deformation of a free interface pierced by a tilted cylinder
NASA Astrophysics Data System (ADS)
Raufaste, C.; Kirstetter, G.; Celestini, F.; Cox, S. J.
2012-07-01
We investigate the interaction between an infinite cylinder and a free fluid-fluid interface governed only by its surface tension. We study the deformation of an initially flat interface when it is deformed by the presence of a cylindrical object, tilted at an arbitrary angle, that the interface “totally wets”. Our simulations predict all significant quantities such as the interface shape, the position of the contact line, and the force exerted by the interface on the cylinder. These results are compared with an experimental study of the penetration of a soap film by a cylindrical liquid jet. This dynamic situation exhibits all the characteristics of a totally wetting interface. We show that whatever the inclination, the force is always perpendicular to the plane of the interface, and its amplitude diverges as the inclination angle increases. Such results should bring new insights in both fluid and solid mechanics, from animal locomotion to surface micro-processing.
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Kaukler, William
1999-01-01
Experimental data on Al-0.8Au horizontal solidification of a 1 mm thick specimen in a BN crucible shows the effect of growth rate on the solidification interface shape. For translation rates below 0.5 micron/s the interface maintains a plain and flat shape. When the translation rate is 3 to 5 micron/s or more, the interface appearance changes to two planar zones, with the zone closer to the bottom having higher inclination. The interface shapes were measured by first quenching in place during growth. X-ray microscopy shows the interface shape within the quenched sample by viewing through the side of the specimen. In order to provide theoretical explanation of the phenomena, numerical modeling was undertaken using finite element code FIDAP. Double diffusion convection in Al-0.8Au melt and crystal-melt interface curvature during directional solidification was analyzed numerically. Actual thermophysical properties of Al-0.8Au including the binary Al-Au phase diagram were used. Although convection in the sample is weak, for the slower translation rate convection and diffusion is sufficient for the redistribution of initial compositional stratification caused by gravity. When translation rate is raised, neither convection nor diffusion can provide proper mixing so that solidification temperatures differ significantly near the bottom within the bulk of the sample. As a result, the solid-liquid interface appears to have two planar zones with different inclination.
NASA Astrophysics Data System (ADS)
Dang, Hongli; Xue, Wenhua; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu
2014-03-01
We report first-principles density-functional calculations and ab initio molecular dynamics (MD) simulations for the reactions involving furfural, which is an important intermediate in biomass conversion, at the catalytic liquid-solid interfaces. The different dynamic processes of furfural at the water-Cu(111) and water-Pd(111) interfaces suggest different catalytic reaction mechanisms for the conversion of furfural. Simulations for the dynamic processes with and without hydrogen demonstrate the importance of the liquid-solid interface as well as the presence of hydrogen in possible catalytic reactions including hydrogenation and decarbonylation of furfural. Supported by DOE (DE-SC0004600). This research used the supercomputer resources of the XSEDE, the NERSC Center, and the Tandy Supercomputing Center.
Liu, Xuejun; Piao, Xianglan; Wang, Yujun; Zhu, Shenlin
2010-03-25
Modeling of the transesterification of vegetable oils to biodiesel using a solid base as a catalyst is very important because the mutual solubilities of oil and methanol will increase with the increasing biodiesel yield. The heterogeneous liquid-liquid-solid reaction system would become a liquid-solid system when the biodiesel reaches a certain content. In this work, we adopted a two-film theory and a steady state approximation assumption, then established a heterogeneous liquid-liquid-solid model in the first stage. After the diffusion coefficients on the liquid-liquid interface and the liquid-solid interface were calculated on the basis of the properties of the system, the theoretical value of biodiesel productivity changing with time was obtained. The predicted values were very near the experimental data, which indicated that the proposed models were suitable for the transesterification of soybean oil to biodiesel when solid bases were used as catalysts. Meanwhile, the model indicated that the transesterification reaction was controlled by both mass transfer and reaction. The total resistance will decrease with the increase in biodiesel yield in the liquid-liquid-solid stage. The solid base catalyst exhibited an activation energy range of 9-20 kcal/mol, which was consistent with the reported activation energy range of homogeneous catalysts.
Healy, Thomas W; Fuerstenau, Douglas W
2007-05-01
From our previous work on the role of the electrostatic field strength in controlling the pH of the iso-electric point (iep)/point-of-zero-charge (pzc) of polar solids we have extended the analysis to predict that the pH of the iep/pzc of a nonpolar solid, liquid or gas-aqueous interface should occur at pH 1.0-3.0, dependent on the value assigned to water molecules or clusters at the interface. Consideration of a wide range of experimental results covering nonpolar solids such as molybdenite, stibnite, paraffin, etc. as well as hydrocarbon liquids such as xylene, decalin, and long chain (>C8) alkane oils, as well as nitrogen and hydrogen gases, all in various simple 1:1 electrolyte solutions confirm the general validity of the result. We further consider various models of the origin of the charge on nonpolar material-water interfaces.
Leroy, Frédéric; Müller-Plathe, Florian
2015-08-04
We introduce a methodology, referred to as the dry-surface method, to calculate the work of adhesion of heterogeneous solid-liquid interfaces by molecular simulation. This method employs a straightforward thermodynamic integration approach to calculate the work of adhesion as the reversible work to turn off the attractive part of the actual solid-liquid interaction potential. It is formulated in such a way that it may be used either to evaluate the ability of force fields to reproduce reference values of the work of adhesion or to optimize force-field parameters with reference values of the work of adhesion as target quantities. The methodology is tested in the case of water on a generic model of nonpolar substrates with the structure of gold. It is validated through a quantitative comparison to phantom-wall calculations and against a previous characterization of the thermodynamics of the gold-water interface. It is found that the work of adhesion of water on nonpolar substrates is a nonlinear function of the microscopic solid-liquid interaction energy parameter. We also comment on the ability of mean-field approaches to predict the work of adhesion of water on nonpolar substrates. In addition, we discuss in detail the information on the solid-liquid interfacial thermodynamics delivered by the phantom-wall approach. We show that phantom-wall calculations yield the solid-liquid interfacial tension relative to the solid surface tension rather than the absolute solid-liquid interfacial tension as previously believed.
Molecular Momentum Transport at Fluid-Solid Interfaces in MEMS/NEMS: A Review
Cao, Bing-Yang; Sun, Jun; Chen, Min; Guo, Zeng-Yuan
2009-01-01
This review is focused on molecular momentum transport at fluid-solid interfaces mainly related to microfluidics and nanofluidics in micro-/nano-electro-mechanical systems (MEMS/NEMS). This broad subject covers molecular dynamics behaviors, boundary conditions, molecular momentum accommodations, theoretical and phenomenological models in terms of gas-solid and liquid-solid interfaces affected by various physical factors, such as fluid and solid species, surface roughness, surface patterns, wettability, temperature, pressure, fluid viscosity and polarity. This review offers an overview of the major achievements, including experiments, theories and molecular dynamics simulations, in the field with particular emphasis on the effects on microfluidics and nanofluidics in nanoscience and nanotechnology. In Section 1 we present a brief introduction on the backgrounds, history and concepts. Sections 2 and 3 are focused on molecular momentum transport at gas-solid and liquid-solid interfaces, respectively. Summary and conclusions are finally presented in Section 4. PMID:20087458
NASA Astrophysics Data System (ADS)
Page, Alister J.; Elbourne, Aaron; Stefanovic, Ryan; Addicoat, Matthew A.; Warr, Gregory G.; Voïtchovsky, Kislon; Atkin, Rob
2014-06-01
In situ amplitude modulated atomic force microscopy (AM-AFM) and quantum chemical simulations are used to resolve the structure of the highly ordered pyrolytic graphite (HOPG)-bulk propylammonium nitrate (PAN) interface with resolution comparable with that achieved for frozen ionic liquid (IL) monolayers using STM. This is the first time that (a) molecular resolution images of bulk IL-solid interfaces have been achieved, (b) the lateral structure of the IL graphite interface has been imaged for any IL, (c) AM-AFM has elucidated molecular level structure immersed in a viscous liquid and (d) it has been demonstrated that the IL structure at solid surfaces is a consequence of both thermodynamic and kinetic effects. The lateral structure of the PAN-graphite interface is highly ordered and consists of remarkably well-defined domains of a rhomboidal superstructure composed of propylammonium cations preferentially aligned along two of the three directions in the underlying graphite lattice. The nanostructure is primarily determined by the cation. Van der Waals interactions between the propylammonium chains and the surface mean that the cation is enriched in the surface layer, and is much less mobile than the anion. The presence of a heterogeneous lateral structure at an ionic liquid-solid interface has wide ranging ramifications for ionic liquid applications, including lubrication, capacitive charge storage and electrodeposition.In situ amplitude modulated atomic force microscopy (AM-AFM) and quantum chemical simulations are used to resolve the structure of the highly ordered pyrolytic graphite (HOPG)-bulk propylammonium nitrate (PAN) interface with resolution comparable with that achieved for frozen ionic liquid (IL) monolayers using STM. This is the first time that (a) molecular resolution images of bulk IL-solid interfaces have been achieved, (b) the lateral structure of the IL graphite interface has been imaged for any IL, (c) AM-AFM has elucidated molecular level structure immersed in a viscous liquid and (d) it has been demonstrated that the IL structure at solid surfaces is a consequence of both thermodynamic and kinetic effects. The lateral structure of the PAN-graphite interface is highly ordered and consists of remarkably well-defined domains of a rhomboidal superstructure composed of propylammonium cations preferentially aligned along two of the three directions in the underlying graphite lattice. The nanostructure is primarily determined by the cation. Van der Waals interactions between the propylammonium chains and the surface mean that the cation is enriched in the surface layer, and is much less mobile than the anion. The presence of a heterogeneous lateral structure at an ionic liquid-solid interface has wide ranging ramifications for ionic liquid applications, including lubrication, capacitive charge storage and electrodeposition. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01219d
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paumel, K.; Baque, F.; Moysan, J.
Ultrasonic inspection of sodium-cooled fast reactor requires a good acoustic coupling between the transducer and the liquid sodium. Ultrasonic transmission through a solid surface in contact with liquid sodium can be complex due to the presence of microscopic gas pockets entrapped by the surface roughness. Experiments are run using substrates with controlled roughness consisting of a network of holes and a modeling approach is then developed. In this model, a gas pocket stiffness at a partially solid-liquid interface is defined. This stiffness is then used to calculate the transmission coefficient of ultrasound at the entire interface. The gas pocket stiffnessmore » has a static, as well as an inertial component, which depends on the ultrasonic frequency and the radiative mass.« less
Lattice Boltzmann Study of Bubbles on a Patterned Superhydrophobic Surface under Shear Flow
NASA Astrophysics Data System (ADS)
Chen, Wei; Wang, Kai; Hou, Guoxiang; Leng, Wenjun
2018-01-01
This paper studies shear flow over a 2D patterned superhydrophobic surface using lattice Boltzmann method (LBM). Single component Shan-Chen multiphase model and Carnahan-Starling EOS are adopted to handle the liquid-gas flow on superhydrophobic surface with entrapped micro-bubbles. The shape of bubble interface and its influence on slip length under different shear rates are investigated. With increasing shear rate, the bubble interface deforms. Then the contact lines are depinned from the slot edges and move downstream. When the shear rate is high enough, a continuous gas layer forms. If the protrusion angle is small, the gas layer forms and collapse periodically, and accordingly the slip length changes periodically. While if the protrusion angle is large, the gas layer is steady and separates the solid wall from liquid, resulting in a very large slip length.
Salt induced reduction of lysozyme adsorption at charged interfaces
NASA Astrophysics Data System (ADS)
Göhring, Holger; Paulus, Michael; Salmen, Paul; Wirkert, Florian; Kruse, Theresa; Degen, Patrick; Stuhr, Susan; Rehage, Heinz; Tolan, Metin
2015-06-01
A study of lysozyme adsorption below a behenic acid membrane and at the solid-liquid interface between aqueous lysozyme solution and a silicon wafer in the presence of sodium chloride is presented. The salt concentration was varied between 1 mmol L-1 and 1000 mmol L-1. X-ray reflectivity data show a clear dependence of the protein adsorption on the salt concentration. Increasing salt concentrations result in a decreased protein adsorption at the interface until a complete suppression at high concentrations is reached. This effect can be attributed to a reduced attractive electrostatic interaction between the positively charged proteins and negatively charged surfaces by charge screening. The measurements at the solid-liquid interfaces show a transition from unoriented order of lysozyme in the adsorbed film to an oriented order with the short protein axis perpendicular to the solid-liquid interface with rising salt concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shun-Li; Fu, Li; Chase, Zizwe A.
Vibrational spectral lineshape contains important detailed information of molecular vibration and reports its specific interactions and couplings to its local environment. In this work, recently developed sub-1 cm-1 high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) was used to measure the -C≡N stretch vibration in the 4-n-octyl-4’-cyanobiphenyl (8CB) Langmuir or Langmuir-Blodgett (LB) monolayer as a unique vibrational probe, and the spectral lineshape analysis revealed the local environment and interactions at the air/water, air/glass, air/calcium fluoride and air/-quartz interfaces for the first time. The 8CB Langmuir or LB film is uniform and the vibrational spectral lineshape of its -C≡N group hasmore » been well characterized, making it a good choice as the surface vibrational probe. Lineshape analysis of the 8CB -C≡N stretch SFG vibrational spectra suggests the coherent vibrational dynamics and the structural and dynamic inhomogeneity of the -C≡N group at each interface are uniquely different. In addition, it is also found that there are significantly different roles for water molecules in the LB films on different substrate surfaces. These results demonstrated the novel capabilities of the surface nonlinear spectroscopy in characterization and in understanding the specific structures and chemical interactions at the liquid and solid interfaces in general.« less
Topology-independent shape modeling scheme
NASA Astrophysics Data System (ADS)
Malladi, Ravikanth; Sethian, James A.; Vemuri, Baba C.
1993-06-01
Developing shape models is an important aspect of computer vision research. Geometric and differential properties of the surface can be computed from shape models. They also aid the tasks of object representation and recognition. In this paper we present an innovative new approach for shape modeling which, while retaining important features of the existing methods, overcomes most of their limitations. Our technique can be applied to model arbitrarily complex shapes, shapes with protrusions, and to situations where no a priori assumption about the object's topology can be made. A single instance of our model, when presented with an image having more than one object of interest, has the ability to split freely to represent each object. Our method is based on the level set ideas developed by Osher & Sethian to follow propagating solid/liquid interfaces with curvature-dependent speeds. The interface is a closed, nonintersecting, hypersurface flowing along its gradient field with constant speed or a speed that depends on the curvature. We move the interface by solving a `Hamilton-Jacobi' type equation written for a function in which the interface is a particular level set. A speed function synthesized from the image is used to stop the interface in the vicinity of the object boundaries. The resulting equations of motion are solved by numerical techniques borrowed from the technology of hyperbolic conservation laws. An added advantage of this scheme is that it can easily be extended to any number of space dimensions. The efficacy of the scheme is demonstrated with numerical experiments on synthesized images and noisy medical images.
Science 101: What Is the Difference between Solids and Liquids?
ERIC Educational Resources Information Center
Robertson, Bill
2013-01-01
Figuring out the difference between liquids and solids seems like a silly question at first. After all, don't we know that liquids do not have a definite shape and therefore assume the shape of their container? Place a drop of water in a short glass. Does this water take the shape of the glass? Nope. It just sits there on the bottom of the…
Maestro, Armando; Jones, Daniel; Sánchez de Rojas Candela, Carmen; Guzman, Eduardo; Duits, Michel H G; Cicuta, Pietro
2018-06-05
By combining controlled experiments on single interfaces with measurements on solitary bubbles and liquid foams, we show that poly( N-isopropylacrylamide) (PNIPAM) microgels assembled at air/water interfaces exhibit a solid to liquid transition changing the temperature, and that this is associated with the change in the interfacial microstructure of the PNIPAM particles around their volume phase transition temperature. We show that the solid behaves as a soft 2D colloidal glass, and that the existence of this solid/liquid transition offers an ideal platform to tune the permeability of air bubbles covered by PNIPAM and to control macroscopic foam properties such as drainage, stability, and foamability. PNIPAM particles on fluid interfaces allow new tunable materials, for example foam structures with variable mechanical properties upon small temperature changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujiwara, K., E-mail: ku.fujiwara@screen.co.jp; Department of Mechanical Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871; Shibahara, M., E-mail: siba@mech.eng.osaka-u.ac.jp
A classical molecular dynamics simulation was conducted for a system composed of fluid molecules between two planar solid surfaces, and whose interactions are described by the 12-6 Lennard-Jones form. This paper presents a general description of the pressure components and interfacial tension at a fluid-solid interface obtained by the perturbative method on the basis of statistical thermodynamics, proposes a method to consider the pressure components tangential to an interface which are affected by interactions with solid atoms, and applies this method to the calculation system. The description of the perturbative method is extended to subsystems, and the local pressure componentsmore » and interfacial tension at a liquid-solid interface are obtained and examined in one- and two-dimensions. The results are compared with those obtained by two alternative methods: (a) an evaluation of the intermolecular force acting on a plane, and (b) the conventional method based on the virial expression. The accuracy of the numerical results is examined through the comparison of the results obtained by each method. The calculated local pressure components and interfacial tension of the fluid at a liquid-solid interface agreed well with the results of the two alternative methods at each local position in one dimension. In two dimensions, the results showed a characteristic profile of the tangential pressure component which depended on the direction tangential to the liquid-solid interface, which agreed with that obtained by the evaluation of the intermolecular force acting on a plane in the present study. Such good agreement suggests that the perturbative method on the basis of statistical thermodynamics used in this study is valid to obtain the local pressure components and interfacial tension at a liquid-solid interface.« less
Slippage on a particle-laden liquid-gas interface in textured microchannels
NASA Astrophysics Data System (ADS)
Gaddam, Anvesh; Agrawal, Amit; Joshi, Suhas S.; Thompson, Mark C.
2018-03-01
Despite numerous investigations in the literature on slip flows in textured microchannels, experimental results were seldom in agreement with the theory. It is conjectured that contamination of the liquid-gas interface by impurities might be one of the sources of this discrepancy. However, the effect of impurities on slippage at the liquid-gas interface is neither understood nor previously reported. To this end, this work presents numerical investigation on the flow past a liquid-gas interface embedded with solid particles in textured microchannels. Initially, we present numerical simulations past transverse ribs with cylindrical particles on the liquid-gas interface. A reduction in effective slip length (or slip loss) with respect to the particle-free interface as a function of gas fraction, constriction ratio, and particle position was quantified. A significant slip loss (˜20-80%) was induced, owing to acceleration-deceleration cycles experienced by the liquid advecting across the particle-laden liquid-gas interface. Even a small number of solid particles adsorbed on a liquid-gas interface were shown to reduce the effective slip length considerably. This renders a textured microchannel with the particle-laden interface to be ineffective as compared to a completely wetted textured microchannel under certain conditions. Furthermore, a flow past two bi-dimensional textures, viz. posts and holes, with their interfaces embedded with spherical particles was also simulated. Our results show that texture configurations with an unbounded liquid-gas interface can mitigate the detrimental effects of particles adsorbed at the interface. The results presented here will help guide in designing efficient textured surfaces in future.
Basic research needs and opportunities on interfaces in solar materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czanderna, A. W.; Gottschall, R. J.
1981-04-01
The workshop on research needs and recommended research programs on interfaces in solar energy conversion devices was held June 30-July 3, 1980. The papers deal mainly with solid-solid, solid-liquid, and solid-gas interfaces, sometimes involving multilayer solid-solid interfaces. They deal mainly with instrumental techniques of studying these interfaces so they can be optimized, so they can be fabricated with quality control and so changes with time can be forecast. The latter is required because a long lifetime (20 yrs is suggested) is necessary for economic reasons. Fifteen papers have been entered individually into EDB and ERA. (LTN)
Inclusion evolution in molten and solidifying steel
NASA Astrophysics Data System (ADS)
Wang, Yan
Cleanliness, with respect to impurities and nonmetallic inclusions in the melt, is an important issue in steel production. The commercial interest in controlling steel cleanliness has been growing rapidly, because clean steel exhibits a highly attractive combination of corrosion resistance, good formability, pleasing appearance, and a wide range of strength levels. In order to satisfy the requirements for the degree of cleanliness in steel, controlling the size distribution, chemistry and shape of inclusions are of great importance in the steelmaking process. A knowledge of the formation of nonmetallic inclusions and their chemical and morphological evolution during the steelmaking and casting process is necessary in order to minimize the inclusion size and also try to promote potentially beneficial properties of inclusions, such as grain-refining. In this research, the evolution of inclusions in molten and solidifying steels was investigated through in-situ observations using a high temperature Confocal Scanning Laser Microscope (CSLM). The study focused on solid Al2O3 and liquid Al 2O3-CaO inclusions on low carbon steel melt surfaces. Firstly, the agglomeration and clustering of inclusions on steel surfaces were quantified and compared to predictions according to capillary depression driven attraction forces. A strong agglomeration was observed between the solid Al2O33 particle pairs. However, the liquid Al 2O3-CaO inclusions were not prone to agglomeration due to their lens-like morphology, which causes the absence of capillary force. Secondly, the pushing vs. engulfment and entrapment of both liquid Al 2O3-CaO and solid Al2O3 inclusions by advancing planar and cellular delta-ferrite solidification fronts was studied and compared to model predictions based on the force balances acting on the inclusions at the solid/melt interface. The critical velocity, above which the inclusions get engulfed, was observed to be slower at the cellular front than at the planar interface for liquid Al2O3-CaO inclusions. This indicates that these inclusions tend to more easily get engulfed at inter-cellular boundaries. However, there was no appreciable difference observed about the critical velocity for the large solid Al2O 3 inclusion clusters at the cellular boundary with that at the planar interface. The pushed liquid Al2O3-CaO inclusions were subject to a chemical and morphological change during solidification. (Abstract shortened by UMI.)
Mono- and multilayers of molecular spoked carbazole wheels on graphite
Aggarwal, A Vikas; Kalle, Daniel; Höger, Sigurd
2014-01-01
Summary Self-assembled monolayers of a molecular spoked wheel (a shape-persistent macrocycle with an intraannular spoke/hub system) and its synthetic precursor are investigated by scanning tunneling microscopy (STM) at the liquid/solid interface of 1-octanoic acid and highly oriented pyrolytic graphite. The submolecularly resolved STM images reveal that the molecules indeed behave as more or less rigid objects of certain sizes and shapes – depending on their chemical structures. In addition, the images provide insight into the multilayer growth of the molecular spoked wheels (MSWs), where the first adlayer acts as a template for the commensurate adsorption of molecules in the second layer. PMID:25550744
Mono- and multilayers of molecular spoked carbazole wheels on graphite.
Jester, Stefan-S; Aggarwal, A Vikas; Kalle, Daniel; Höger, Sigurd
2014-01-01
Self-assembled monolayers of a molecular spoked wheel (a shape-persistent macrocycle with an intraannular spoke/hub system) and its synthetic precursor are investigated by scanning tunneling microscopy (STM) at the liquid/solid interface of 1-octanoic acid and highly oriented pyrolytic graphite. The submolecularly resolved STM images reveal that the molecules indeed behave as more or less rigid objects of certain sizes and shapes - depending on their chemical structures. In addition, the images provide insight into the multilayer growth of the molecular spoked wheels (MSWs), where the first adlayer acts as a template for the commensurate adsorption of molecules in the second layer.
Diffusive and martensitic nucleation kinetics in solid-solid transitions of colloidal crystals
NASA Astrophysics Data System (ADS)
Peng, Yi; Li, Wei; Wang, Feng; Still, Tim; Yodh, Arjun G.; Han, Yilong
2017-05-01
Solid-solid transitions between crystals follow diffusive nucleation, or various diffusionless transitions, but these kinetics are difficult to predict and observe. Here we observed the rich kinetics of transitions from square lattices to triangular lattices in tunable colloidal thin films with single-particle dynamics by video microscopy. Applying a small pressure gradient in defect-free regions or near dislocations markedly transform the diffusive nucleation with an intermediate-stage liquid into a martensitic generation and oscillation of dislocation pairs followed by a diffusive nucleus growth. This transformation is neither purely diffusive nor purely martensitic as conventionally assumed but a combination thereof, and thus presents new challenges to both theory and the empirical criterion of martensitic transformations. We studied how pressure, density, grain boundary, triple junction and interface coherency affect the nucleus growth, shape and kinetic pathways. These novel microscopic kinetics cast new light on control solid-solid transitions and microstructural evolutions in polycrystals.
NASA Technical Reports Server (NTRS)
Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.
2012-01-01
The quiescent Microgravity environment can be quite dynamic. Thermocapillary flow about "large" static bubbles on the order of 1mm in diameter was easily observed by following smaller tracer bubbles. The bubble induced flow was seen to disrupt a large dendritic array, effectively distributing free branches about the solid-liquid interface. "Small" dynamic bubbles were observed to travel at fast velocities through the mushy zone with the implication of bringing/detaching/redistributing dendrite arm fragments at the solid-liquid interface. Large and small bubbles effectively re-orient/re-distribute dendrite branches/arms/fragments at the solid liquid interface. Subsequent initiation of controlled directional solidification results in growth of dendrites having random orientations which significantly compromises the desired science.
Pressure cell for investigations of solid-liquid interfaces by neutron reflectivity.
Kreuzer, Martin; Kaltofen, Thomas; Steitz, Roland; Zehnder, Beat H; Dahint, Reiner
2011-02-01
We describe an apparatus for measuring scattering length density and structure of molecular layers at planar solid-liquid interfaces under high hydrostatic pressure conditions. The device is designed for in situ characterizations utilizing neutron reflectometry in the pressure range 0.1-100 MPa at temperatures between 5 and 60 °C. The pressure cell is constructed such that stratified molecular layers on crystalline substrates of silicon, quartz, or sapphire with a surface area of 28 cm(2) can be investigated against noncorrosive liquid phases. The large substrate surface area enables reflectivity to be measured down to 10(-5) (without background correction) and thus facilitates determination of the scattering length density profile across the interface as a function of applied load. Our current interest is on the stability of oligolamellar lipid coatings on silicon surfaces against aqueous phases as a function of applied hydrostatic pressure and temperature but the device can also be employed to probe the structure of any other solid-liquid interface.
Dependence of solid-liquid interface free energy on liquid structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, S R; Mendelev, M I
2014-09-01
The Turnbull relation is widely believed to enable prediction of solid–liquid interface (SLI) free energies from measurements of the latent heat and the solid density. Ewing proposed an additional contribution to the SLI free energy to account for variations in liquid structure near the interface. In the present study, molecular dynamics (MD) simulations were performed to investigate whether SLI free energy depends on liquid structure. Analysis of the MD simulation data for 11 fcc metals demonstrated that the Turnbull relation is only a rough approximation for highly ordered liquids, whereas much better agreement is observed with Ewing’s theory. A modificationmore » to Ewing’s relation is proposed in this study that was found to provide excellent agreement with MD simulation data.« less
NASA Technical Reports Server (NTRS)
Roberts, G. O.; Fowlis, W. W.; Miller, T. L.
1984-01-01
Numerical methods are used to design a spherical baroclinic flow model experiment of the large scale atmosphere flow for Spacelab. The dielectric simulation of radial gravity is only dominant in a low gravity environment. Computer codes are developed to study the processes at work in crystal growing systems which are also candidates for space flight. Crystalline materials rarely achieve their potential properties because of imperfections and component concentration variations. Thermosolutal convection in the liquid melt can be the cause of these imperfections. Such convection is suppressed in a low gravity environment. Two and three dimensional finite difference codes are being used for this work. Nonuniform meshes and implicit iterative methods are used. The iterative method for steady solutions is based on time stepping but has the options of different time steps for velocity and temperature and of a time step varying smoothly with position according to specified powers of the mesh spacings. This allows for more rapid convergence. The code being developed for the crystal growth studies allows for growth of the crystal as the solid-liquid interface. The moving interface is followed using finite differences; shape variations are permitted. For convenience in applying finite differences in the solid and liquid, a time dependent coordinate transformation is used to make this interface a coordinate surface.
Investigation of Artificial Forced Cooling in the Bridgman Crystal Growth of Cadmium Zinc Telluride
NASA Astrophysics Data System (ADS)
Liu, Juncheng; Li, Jiao; Zhang, Guodong; Li, Changxing; Lennon, Craig; Sivananthan, Siva
2007-08-01
The effects of artificial forced cooling on the solid liquid interface and on solute segregation were investigated by modeling the vertical Bridgman method for the single-crystal growth of CdZnTe, taking into consideration effects such as increasing the axial outward heat flux from the crucible bottom, the radial outward heat flux from the crucible wall, and the carbon film thickness on the crucible inner wall. Axial artificially forced cooling noticeably increases convection and the temperature gradient in the melt next to the solid liquid interface, and substantially reduces interface concavity at the initial solidification stage. Interface concavity increases a little when the solidification proceeds further, however. Axial artificially forced cooling reduces radial solute segregation of the initial segment of the grown crystal and slightly increases the solute iso-concentration segment. Radial artificially forced cooling enhances melt convection substantially, affects solid liquid interface concavity only slightly, and hardly affects solute segregation in the grown crystal. Doubling the carbon film thickness weakens convection of the melt in front of the interface, substantially increases interface concavity, and hardly affects solute segregation in the grown crystal.
Interface shapes during vertical Bridgman growth of (Pb, Sn)Te crystals
NASA Technical Reports Server (NTRS)
Huang, YU; Debnam, William J.; Fripp, Archibald L.
1990-01-01
Melt-solid interfaces obtained during vertical Bridgman growth of (Pb, Sn)Te crystals were investigated with a quenching technique. The shapes of these interfaces, revealed by etching longitudinally cut sections, were correlated with the composition variations determined by EMPA. These experiments demonstrated that the interface shape can be changed from concave to convex by moving its location from the edge of the cold zone into the hot zone. The metallography and microsegregation near the melt-solid interface were analyzed in detail. A sharp change in composition above the interface indicated the existence of a diffusion boundary layer 40-90 microns thick. This small diffusion boundary layer is consistent with strong convective mixing in the (Pb, Sn)Te melt.
Optical fingerprints of solid-liquid interfaces: a joint ATR-IR and first principles investigation
NASA Astrophysics Data System (ADS)
Yang, L.; Niu, F.; Tecklenburg, S.; Pander, M.; Nayak, S.; Erbe, A.; Wippermann, S.; Gygi, F.; Galli, G.
Despite the importance of understanding the structural and bonding properties of solid-liquid interfaces for a wide range of (photo-)electrochemical applications, there are presently no experimental techniques available to directly probe the microscopic structure of solid-liquid interfaces. To develop robust strategies to interpret experiments and validate theory, we carried out attenuated total internal reflection (ATR-IR) spectroscopy measurements and ab initio molecular dynamics (AIMD) simulations of the vibrational properties of interfaces between liquid water and well-controlled prototypical semiconductor substrates. We show the Ge(100)/H2O interface to feature a reversible potential-dependent surface phase transition between Ge-H and Ge-OH termination. The Si(100)/H2O interface is proposed as a model system for corrosion and oxidation processes. We performed AIMD calculations under finite electric fields, revealing different pathways for initial oxidation. These pathways are predicted to exhibit unique spectral signatures. A significant increase in surface specificity can be achieved utilizing an angle-dependent ATR-IR experiment, which allows to detect such signatures at the interfacial layer and consequently changes in the hydrogen bond network. Funding from DOE-BES Grant No. DE-SS0008939 and the Deutsche Forschungsgemeinschaft (RESOLV, EXC 1069) are gratefully acknowledged.
Choudhary, Muhammad Ajmal; Kundin, Julia; Emmerich, Heike; Oettel, Martin
2014-08-01
Phase-field-crystal (PFC) modeling has emerged as a computationally efficient tool to address crystal growth phenomena on atomistic length and diffusive time scales. We use a two-dimensional phase-field-crystal model for a binary system based on Elder et al. [Phys. Rev. B 75, 064107 (2007)] to study critical nuclei and their liquid-solid phase boundaries, in particular the nucleus size dependence of the liquid-solid interface tension as well as of the nucleation barrier. Critical nuclei are stabilized in finite systems of various sizes, however, the extracted interface tension as function of the nucleus radius r is independent of system size. We suggest a phenomenological expression to describe the dependence of the extracted interface tension on the nucleus radius r for the liquid-solid system. Moreover, the numerical PFC results show that this dependency can not be fully described by the nonclassical Tolman formula.
Object detection and imaging with acoustic time reversal mirrors
NASA Astrophysics Data System (ADS)
Fink, Mathias
1993-11-01
Focusing an acoustic wave on an object of unknown shape through an inhomogeneous medium of any geometrical shape is a challenge in underground detection. Optimal detection and imaging of objects needs the development of such focusing techniques. The use of a time reversal mirror (TRM) represents an original solution to this problem. It realizes in real time a focusing process matched to the object shape, to the geometries of the acoustic interfaces and to the geometries of the mirror. It is a self adaptative technique which compensates for any geometrical distortions of the mirror structure as well as for diffraction and refraction effects through the interfaces. Two real time 64 and 128 channel prototypes have been built in our laboratory and TRM experiments demonstrating the TRM performance through inhomogeneous solid and liquid media are presented. Applications to medical therapy (kidney stone detection and destruction) and to nondestructive testing of metallurgical samples of different geometries are described. Extension of this study to underground detection and imaging will be discussed.
The ensemble switch method for computing interfacial tensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitz, Fabian; Virnau, Peter
2015-04-14
We present a systematic thermodynamic integration approach to compute interfacial tensions for solid-liquid interfaces, which is based on the ensemble switch method. Applying Monte Carlo simulations and finite-size scaling techniques, we obtain results for hard spheres, which are in agreement with previous computations. The case of solid-liquid interfaces in a variant of the effective Asakura-Oosawa model and of liquid-vapor interfaces in the Lennard-Jones model are discussed as well. We demonstrate that a thorough finite-size analysis of the simulation data is required to obtain precise results for the interfacial tension.
Elastocapillarity: When Surface Tension Deforms Elastic Solids
NASA Astrophysics Data System (ADS)
Bico, José; Reyssat, Étienne; Roman, Benoît
2018-01-01
Although negligible at large scales, capillary forces may become dominant for submillimetric objects. Surface tension is usually associated with the spherical shape of small droplets and bubbles, wetting phenomena, imbibition, or the motion of insects at the surface of water. However, beyond liquid interfaces, capillary forces can also deform solid bodies in their bulk, as observed in recent experiments with very soft gels. Capillary interactions, which are responsible for the cohesion of sandcastles, can also bend slender structures and induce the bundling of arrays of fibers. Thin sheets can spontaneously wrap liquid droplets within the limit of the constraints dictated by differential geometry. This review aims to describe the different scaling parameters and characteristic lengths involved in elastocapillarity. We focus on three main configurations, each characterized by a specific dimension: three-dimensional (3D), deformations induced in bulk solids; 1D, bending and bundling of rod-like structures; and 2D, bending and stretching of thin sheets. Although each configuration deserves a detailed review, we hope our broad description provides a general view of elastocapillarity.
The growth of dislocation-free crystals of benzil
NASA Astrophysics Data System (ADS)
Katoh, K.; Kato, N.
1985-11-01
Dislocation-free crystals of benzil have been obtained by repeated Czochralski growth and have been characterized using X-ray diffraction topography. At each stage of growth, the parts containing the defects were etched off and the rest was used for the seed in the next growth. The growth behaviour could be interpreted in connection with the shape of the solid-liquid interface. The double image of the screw dislocation could be explained elementarily and it was concluded that the Burgers vector was c/3.
Advanced Microscopic Integrated Thermocouple Arrays
NASA Technical Reports Server (NTRS)
Pettigrew, Penny J.
1999-01-01
The purpose of this research is to develop and refine a technique for making microscopic thermocouple arrays for use in measuring the temperature gradient across a solid-liquid interface during the solidification process. Current thermocouple technology does not allow for real-time measurements across the interface due to the prohibitive size of available thermocouples. Microscopic thermocouple arrays will offer a much greater accuracy and resolution of temperature measurements across the solid-liquid interface which will lead to a better characterization of the solidification process and interface reaction which affect the properties of the resulting material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meemken, Fabian; Müller, Philipp; Hungerbühler, Konrad
Design and performance of a reactor set-up for attenuated total reflection infrared (ATR-IR) spectroscopy suitable for simultaneous reaction monitoring of bulk liquid and catalytic solid-liquid-gas interfaces under working conditions are presented. As advancement of in situ spectroscopy an operando methodology for gas-liquid-solid reaction monitoring was developed that simultaneously combines catalytic activity and molecular level detection at the catalytically active site of the same sample. Semi-batch reactor conditions are achieved with the analytical set-up by implementing the ATR-IR flow-through cell in a recycle reactor system and integrating a specifically designed gas feeding system coupled with a bubble trap. By the usemore » of only one spectrometer the design of the new ATR-IR reactor cell allows for simultaneous detection of the bulk liquid and the catalytic interface during the working reaction. Holding two internal reflection elements (IRE) the sample compartments of the horizontally movable cell are consecutively flushed with reaction solution and pneumatically actuated, rapid switching of the cell (<1 s) enables to quasi simultaneously follow the heterogeneously catalysed reaction at the catalytic interface on a catalyst-coated IRE and in the bulk liquid on a blank IRE. For a complex heterogeneous reaction, the asymmetric hydrogenation of 2,2,2-trifluoroacetophenone on chirally modified Pt catalyst the elucidation of catalytic activity/enantioselectivity coupled with simultaneous monitoring of the catalytic solid-liquid-gas interface is shown. Both catalytic activity and enantioselectivity are strongly dependent on the experimental conditions. The opportunity to gain improved understanding by coupling measurements of catalytic performance and spectroscopic detection is presented. In addition, the applicability of modulation excitation spectroscopy and phase-sensitive detection are demonstrated.« less
Li, Xi; Lu, Zhenyuan; Fautrelle, Yves; Gagnoud, Annie; Moreau, Rene; Ren, Zhongming
2016-01-01
Effect of a weak transverse magnetic field on the microstructures in directionally solidified Fe-Ni and Pb-Bi peritectic alloys has been investigated experimentally. The results indicate that the magnetic field can induce the formation of banded and island-like structures and refine the primary phase in peritectic alloys. The above results are enhanced with increasing magnetic field. Furthermore, electron probe micro analyzer (EPMA) analysis reveals that the magnetic field increases the Ni solute content on one side and enhances the solid solubility in the primary phase in the Fe-Ni alloy. The thermoelectric (TE) power difference at the liquid/solid interface of the Pb-Bi peritectic alloy is measured in situ, and the results show that a TE power difference exists at the liquid/solid interface. 3 D numerical simulations for the TE magnetic convection in the liquid are performed, and the results show that a unidirectional TE magnetic convection forms in the liquid near the liquid/solid interface during directional solidification under a transverse magnetic field and that the amplitude of the TE magnetic convection at different scales is different. The TE magnetic convections on the macroscopic interface and the cell/dendrite scales are responsible for the modification of microstructures during directional solidification under a magnetic field. PMID:27886265
Epitaxial insertion of gold silicide nanodisks during the growth of silicon nanowires.
Um, Han-Don; Jee, Sang-Won; Park, Kwang-Tae; Jung, Jin-Young; Guo, Zhongyi; Lee, Jung-Ho
2011-07-01
Nanodisk-shaped, single-crystal gold silicide heterojunctions were inserted into silicon nanowires during vapor-liquid-solid growth using Au as a catalyst within a specific range of chlorine-to-hydrogen atomic ratio. The mechanism of nanodisk formation has been investigated by changing the source gas ratio of SiCl4 to H2. We report that an over-supply of silicon into the Au-Si liquid alloy leads to highly supersaturated solution and enhances the precipitation of Au in the silicon nanowires due to the formation of unstable phases within the liquid alloy. It is shown that the gold precipitates embedded in the silicon nanowires consisted of a metastable gold silicide. Interestingly, faceting of gold silicide was observed at the Au/Si interfaces, and silicon nanowires were epitaxially grown on the top of the nanodisk by vapor-liquid-solid growth. High resolution transmission electron microscopy confirmed that gold silicide nanodisks are epitaxially connected to the silicon nanowires in the direction of growth direction. These gold silicide nanodisks would be useful as nanosized electrical junctions for future applications in nanowire interconnections.
NASA Technical Reports Server (NTRS)
Wang, J. C.
1982-01-01
Compositional segregation of solid solution semiconducting alloys in the radial direction during unidirectional solidification was investigated by calculating the effect of a curved solid liquid interface on solute concentration at the interface on the solid. The formulation is similar to that given by Coriell, Boisvert, Rehm, and Sekerka except that a more realistic cylindrical coordinate system which is moving with the interface is used. Analytical results were obtained for very small and very large values of beta with beta = VR/D, where V is the velocity of solidification, R the radius of the specimen, and D the diffusivity of solute in the liquid. For both very small and very large beta, the solute concentration at the interface in the solid C(si) approaches C(o) (original solute concentration) i.e., the deviation is minimal. The maximum deviation of C(si) from C(o) occurs for some intermediate value of beta.
Semiconductor Crystal Growth in Static and Rotating Magnetic fields
NASA Technical Reports Server (NTRS)
Volz, Martin
2004-01-01
Magnetic fields have been applied during the growth of bulk semiconductor crystals to control the convective flow behavior of the melt. A static magnetic field established Lorentz forces which tend to reduce the convective intensity in the melt. At sufficiently high magnetic field strengths, a boundary layer is established ahead of the solid-liquid interface where mass transport is dominated by diffusion. This can have a significant effect on segregation behavior and can eliminate striations in grown crystals resulting from convective instabilities. Experiments on dilute (Ge:Ga) and solid solution (Ge-Si) semiconductor systems show a transition from a completely mixed convective state to a diffusion-controlled state between 0 and 5 Tesla. In HgCdTe, radial segregation approached the diffusion limited regime and the curvature of the solid-liquid interface was reduced by a factor of 3 during growth in magnetic fields in excess of 0.5 Tesla. Convection can also be controlled during growth at reduced gravitational levels. However, the direction of the residual steady-state acceleration vector can compromise this effect if it cannot be controlled. A magnetic field in reduced gravity can suppress disturbances caused by residual transverse accelerations and by random non-steady accelerations. Indeed, a joint program between NASA and the NHMFL resulted in the construction of a prototype spaceflight magnet for crystal growth applications. An alternative to the suppression of convection by static magnetic fields and reduced gravity is the imposition of controlled steady flow generated by rotating magnetic fields (RMF)'s. The potential benefits of an RMF include homogenization of the melt temperature and concentration distribution, and control of the solid-liquid interface shape. Adjusting the strength and frequency of the applied magnetic field allows tailoring of the resultant flow field. A limitation of RMF's is that they introduce deleterious instabilities above a critical magnetic field value. Growth conditions in which static magnetic fields rotational magnetic fields, and reduced gravitational levels can have a beneficial role will be described.
Methods and systems for monitoring a solid-liquid interface
Stoddard, Nathan G.; Clark, Roger F.; Kary, Tim
2010-07-20
Methods and systems are provided for monitoring a solid-liquid interface, including providing a vessel configured to contain an at least partially melted material; detecting radiation reflected from a surface of a liquid portion of the at least partially melted material that is parallel with the liquid surface; measuring a disturbance on the surface; calculating at least one frequency associated with the disturbance; and determining a thickness of the liquid portion based on the at least one frequency, wherein the thickness is calculated based on.times. ##EQU00001## where g is the gravitational constant, w is the horizontal width of the liquid, and f is the at least one frequency.
NASA Technical Reports Server (NTRS)
Bly, J. M.; Kaforey, M. L.; Matthiesen, D. H.; Chait, A.
1997-01-01
Selenium-doped gallium arsenide, Se/GaAs, bulk crystals have been grown on earth using NASA's crystal growth furnace (CGF) in preparation for microgravity experimentation on the USML-2 spacelab mission. Peltier cooling pulses of 50 ms duration, 2040 A magnitude, and 0.0033 Hz frequency were used to successfully demark the melt-solid interface at known times during the crystal growth process. Post-growth characterization included interface shape measurement, growth rate calculation, and growth rate transient determinations. It was found that the interface shapes were always slightly concave into the solid. The curvature of the seeding interfaces was typically 1.5 mm for the 15 mm diameter samples. This was in agreement with the predicted interface shapes and positions relative to the furnace determined using a numerical model of the sample/ampoule/cartridge assembly (SACA).
Improving the growth of CZT crystals for radiation detectors: a modeling perspective
NASA Astrophysics Data System (ADS)
Derby, Jeffrey J.; Zhang, Nan; Yeckel, Andrew
2012-10-01
The availability of large, single crystals of cadmium zinc telluride (CZT) with uniform properties is key to improving the performance of gamma radiation detectors fabricated from them. Towards this goal, we discuss results obtained by computational models that provide a deeper understanding of crystal growth processes and how the growth of CZT can be improved. In particular, we discuss methods that may be implemented to lessen the deleterious interactions between the ampoule wall and the growing crystal via engineering a convex solidification interface. For vertical Bridgman growth, a novel, bell-curve furnace temperature profile is predicted to achieve macroscopically convex solid-liquid interface shapes during melt growth of CZT in a multiple-zone furnace. This approach represents a significant advance over traditional gradient-freeze profiles, which always yield concave interface shapes, and static heat transfer designs, such as pedestal design, that achieve convex interfaces over only a small portion of the growth run. Importantly, this strategy may be applied to any Bridgman configuration that utilizes multiple, controllable heating zones. Realizing a convex solidification interface via this adaptive bell-curve furnace profile is postulated to result in better crystallinity and higher yields than conventional CZT growth techniques.
NASA Astrophysics Data System (ADS)
Waner, Mark Joseph
The structure and behavior of proteins at the solid/liquid interface is of great scientific interest. It has application both to fundamental biochemical understanding, as well as to biotechnological purposes. Interfaces play a critical role in many physiological processes. The mechanism of protein adsorption to surfaces is not very well understood. The current model put forth in much of the literature assumes a two step model. In the first step of this model the protein collides with the surface and adsorbs if its energy is sufficient to overcome the free energy of desorption of surface adsorbed solvent. The second step is often assumed to involve significant conformational change of the secondary and tertiary structure of the protein or enzyme, akin to denaturation. This unfolding of the protein would tend to indicate that loss of function would occur concomitantly, but studies have found very little loss in activity upon adsorption for a number of different protein systems. The recent development of the atomic force microscope (AFM) offers another tool for the examination of protein structure at liquid/solid interfaces. For atomically flat crystals the AFM has been used to determine atomic positions to <1 A resolution. In the case of samples with topographic features larger than atoms, the probe tip of the AFM 'convolutes' with the size and shape of surface features. This has hindered the use of AFM for molecular level structural determination of proteins at the liquid/solid interface. The work presented in this dissertation covers the development of the surface oriented molecular sizing (SOMS) technique which makes use of the angstrom height resolution of the AFM and a physically based mathematical framework for the analysis of the height distribution of adsorbed protein molecules. The surface adsorption and orientation (SAO) model is developed using statistical thermodynamics to model the expected height distributions for molecules adsorbed on a surface. The SOMS technique will be shown to be viable through studies of ferritin and concanavalin A (Con A) at the water/mica interface. Using this technique we are able to determine both the three-dimensional size and the oligomerization state of the adsorbed molecules. This technique will then be utilized for the examination of denaturation of Con A at the interface, by a number of mechanisms. Further, the structural and orientational changes in Con A as a function of pH will also be presented. The final chapter of this dissertation will present an extension of these studies to the deposition and structure of Con A thin films on mica.
Oda, Shinobu; Isshiki, Kunio
2008-05-01
The asymmetric reduction of benzyl to (S)-benzoin with Penicillium claviforme IAM 7294 was applied to a liquid-liquid interface bioreactor (L-L IBR) using a unique polymeric material, ballooned microsphere (MS). The L-L IBR showed superior performance, as compared with suspension, organic-aqueous two-liquid-phase, and solid-liquid interface bioreactor (S-L IBR) systems, affording 14.4 g/l-organic phase of (S)-benzoin (99.0% ee).
The Influence of Low Frequency Mechanical Vibrations on the Growth of Single Crystals
NASA Technical Reports Server (NTRS)
Feigelson, R. S.; Elwell, D.
1985-01-01
The optimum conditions for crystal growth are usually achieved either by suppressing convective fluid flows (e.g., by the use of a low-gravity environment) or by over-riding thermal and solutal convection by the use of a strong stirring action. A novel stirring technique has been developed which involves subjecting a vertical crucible to a circle in a horizontal plane (without rotation). Use of an amplitude of 3 mm at a frequency of approx 6 Hz produced complete mixing of a non-uniform aqueous liquid in a few seconds. The mixing action involved the downward flow of liquid in the outer annulus of the liquid, driven by surface waves. When the downward flowing liquid reaches the bottom of the crucible, it is reflected in a central, upward flowing spiral. This flow pattern should be beneficial for crystal growth by the Bridgman method since it will sweep impurities away from the walls and produce a more convex solid-liquid interface. Initial attempts to apply the new stirring technique to CdTe crystal growth did not show significant improvement in the number of crystals nucleated, but the interface shape appeared to be close to that predicted.
Synthesis of nanostructures in nanowires using sequential catalyst reactions
Panciera, F.; Chou, Y. -C.; Reuter, M. C.; ...
2015-07-13
Nanowire growth by the vapour–liquid–solid (VLS) process enables a high level of control over nanowire composition, diameter, growth direction, branching and kinking, periodic twinning, and crystal structure. The tremendous impact of VLS-grown nanowires is due to this structural versatility, generating applications ranging from solid-state lighting and single-photon sources to thermoelectric devices. Here, we show that the morphology of these nanostructures can be further tailored by using the liquid droplets that catalyse nanowire growth as a ‘mixing bowl’, in which growth materials are sequentially supplied to nucleate new phases. Growing within the liquid, these phases adopt the shape of faceted nanocrystalsmore » that are then incorporated into the nanowires by further growth. Furthermore, we demonstrate this concept by epitaxially incorporating metal-silicide nanocrystals into Si nanowires with defect-free interfaces, and discuss how this process can be generalized to create complex nanowire-based heterostructures.« less
Strutwolf, Jörg; Scanlon, Micheál D; Arrigan, Damien W M
2009-01-01
Miniaturised liquid/liquid interfaces provide benefits for bioanalytical detection with electrochemical methods. In this work, microporous silicon membranes which can be used for interface miniaturisation were characterized by simulations and experiments. The microporous membranes possessed hexagonal arrays of pores with radii between 10 and 25 microm, a pore depth of 100 microm and pore centre-to-centre separations between 99 and 986 microm. Cyclic voltammetry was used to monitor ion transfer across arrays of micro-interfaces between two immiscible electrolyte solutions (microITIES) formed at these membranes, with the organic phase present as an organogel. The results were compared to computational simulations taking into account mass transport by diffusion and encompassing diffusion to recessed interfaces and overlapped diffusion zones. The simulation and experimental data were both consistent with the situation where the location of the liquid/liquid (l/l) interface was on the aqueous side of the silicon membrane and the pores were filled with the organic phase. While the current for the forward potential scan (transfer of the ion from the aqueous phase to the organic phase) was strongly dependent on the location of the l/l interface, the current peak during the reverse scan (transfer of the ion from the organic phase to the aqueous phase) was influenced by the ratio of the transferring ion's diffusion coefficients in both phases. The diffusion coefficient of the transferring ion in the gelified organic phase was ca. nine times smaller than in the aqueous phase. Asymmetric cyclic voltammogram shapes were caused by the combined effect of non-symmetrical diffusion (spherical and linear) and by the inequality of the diffusion coefficient in both phases. Overlapping diffusion zones were responsible for the observation of current peaks instead of steady-state currents during the forward scan. The characterisation of the diffusion behaviour is an important requirement for application of these silicon membranes in electroanalytical chemistry.
Charge transfer kinetics at the solid-solid interface in porous electrodes
NASA Astrophysics Data System (ADS)
Bai, Peng; Bazant, Martin Z.
2014-04-01
Interfacial charge transfer is widely assumed to obey the Butler-Volmer kinetics. For certain liquid-solid interfaces, the Marcus-Hush-Chidsey theory is more accurate and predictive, but it has not been applied to porous electrodes. Here we report a simple method to extract the charge transfer rates in carbon-coated LiFePO4 porous electrodes from chronoamperometry experiments, obtaining curved Tafel plots that contradict the Butler-Volmer equation but fit the Marcus-Hush-Chidsey prediction over a range of temperatures. The fitted reorganization energy matches the Born solvation energy for electron transfer from carbon to the iron redox site. The kinetics are thus limited by electron transfer at the solid-solid (carbon-LixFePO4) interface rather than by ion transfer at the liquid-solid interface, as previously assumed. The proposed experimental method generalizes Chidsey’s method for phase-transforming particles and porous electrodes, and the results show the need to incorporate Marcus kinetics in modelling batteries and other electrochemical systems.
The Micromechanics of the Moving Contact Line
NASA Technical Reports Server (NTRS)
Lichter, Seth
1999-01-01
A transient moving contact line is investigated experimentally. The dynamic interface shape between 20 and 800 microns from the contact line is compared with theory. A novel experiment is devised, in which the contact line is set into motion by electrically altering the solid-liquid surface tension gamma(sub SL). The contact line motion simulates that of spontaneous wetting along a vertical plate with a maximum capillary number Ca approx. = 4 x 10(exp -2). The images of the dynamic meniscus are analyzed as a funtion of Ca. For comparison, the steady-state hydrodynamic equation based on the creeping flow model in a wedge geometry and the three-region uniform perturbation expansion of Cox (1986) is adopted. The interface shape is well depicted by the uniform solutions for Ca <= 10(exp -3). However, for Ca > 10(exp -3), the uniform solution over-predicts the viscous bending. This over-prediction can be accounted for by modifying the slip coefficient within the intermediate solution. With this correction, the measured interface shape is seen to match the theoretical prediction for all capillary numbers. The amount of slip needed to fit the measurements does not scale with the capillary number.
NASA Astrophysics Data System (ADS)
Haegon, Lee; Joonsang, Lee
2017-11-01
In many multi-phase fluidic systems, there are essentially contact interfaces including liquid-vapor, liquid-solid, and solid-vapor phase. There is also a contact line where these three interfaces meet. The existence of these interfaces and contact lines has a considerable impact on the nanoscale droplet wetting behavior. However, recent studies have shown that Young's equation does not accurately represent this behavior at the nanoscale. It also emphasized the importance of the contact line effect.Therefore, We performed molecular dynamics simulation to imitate the behavior of nanoscale droplets with solid temperature condition. And we find the effect of solid temperature on the contact line motion. Furthermore, We figure out the effect of contact line force on the wetting behavior of droplet according to the different solid temperature condition. With solid temperature condition variation, the magnitude of contact line friction decreases significantly. We also divide contact line force by effect of bulk liquid, interfacial tension, and solid surface. This work was also supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2015R1A5A1037668) and BrainKorea21plus.
Hirai, Daiki; Iwao, Yasunori; Kimura, Shin-Ichiro; Noguchi, Shuji; Itai, Shigeru
2017-04-30
Metastable crystals and the amorphous state of poorly water-soluble drugs in solid dispersions (SDs), are subject to a solid-liquid interface reaction upon exposure to a solvent. The dissolution behavior during the solid-liquid interface reaction often shows that the concentration of drugs is supersaturated, with a high initial drug concentration compared with the solubility of stable crystals but finally approaching the latter solubility with time. However, a method for measuring the precipitation rate of stable crystals and/or the potential solubility of metastable crystals or amorphous drugs has not been established. In this study, a novel mathematical model that can represent the dissolution behavior of the solid-liquid interface reaction for metastable crystals or amorphous drug was developed and its validity was evaluated. The theory for this model was based on the Noyes-Whitney equation and assumes that the precipitation of stable crystals at the solid-liquid interface occurs through a first-order reaction. Moreover, two models were developed, one assuming that the surface area of the drug remains constant because of the presence of excess drug in the bulk and the other that the surface area changes in time-dependency because of agglomeration of the drug. SDs of Ibuprofen (IB)/polyvinylpyrrolidone (PVP) were prepared and their dissolution behaviors under non-sink conditions were fitted by the models to evaluate improvements in solubility. The model assuming time-dependent surface area showed good agreement with experimental values. Furthermore, by applying the model to the dissolution profile, parameters such as the precipitation rate and the potential solubility of the amorphous drug were successfully calculated. In addition, it was shown that the improvement in solubility with supersaturation was able to be evaluated quantitatively using this model. Therefore, this mathematical model would be a useful tool to quantitatively determine the supersaturation concentration of a metastable drug from solid dispersions. Copyright © 2017 Elsevier B.V. All rights reserved.
Friction at ice-Ih / water interfaces
NASA Astrophysics Data System (ADS)
Louden, Patrick B.; Gezelter, J. Daniel
We present evidence that the prismatic and secondary prism facets of ice-Ih crystals possess structural features that alter the effective hydrophilicity of the ice / water interface. This is shown through molecular dynamics simulations of solid-liquid friction, where the prismatic { 10 1 0 } , secondary prism { 11 2 0 } , basal { 0001 } , and pyramidal { 20 2 1 } facets are drawn through liquid water. We find that the two prismatic facets exhibit differential solid-liquid friction coefficients when compared with the basal and pyramidal facets. These results are complemented by a model solid/liquid interface with tunable hydrophilicity. These simulations provide evidence that the two prismatic faces have a significantly smaller effective surface area in contact with the liquid water. The ice / water interfacial widths for all four crystal facets are similar (using both structural and dynamic measures), and were found to be independent of the shear rate. Additionally, decomposition of orientational time correlation functions show position-dependence for the short- and longer-time decay components close to the interface. Support for this project was provided by the National Science Foundation under Grant CHE-1362211. Computational time was provided by the Center for Research Computing (CRC) at the University of Notre Dame.
NASA Astrophysics Data System (ADS)
Simon, Eric; Craen, Pierre; Gaton, Hilario; Jacques-Sermet, Olivier; Laune, Frédéric; Legrand, Julien; Maillard, Mathieu; Tallaron, Nicolas; Verplanck, Nicolas; Berge, Bruno
2010-05-01
A new generation of liquid lenses based on electrowetting has been developed, using a multi-electrode design, enabling to induce optical tilt and focus corrections in the same component. The basic principle is to rely on a conical shape for supporting the liquid interface, the conical shape insuring a restoring force for the liquid liquid interface to come at the center position. The multi-electrode design enables to induce an average tilt of the liquid liquid interface when a bias voltage is applied to the different electrodes. This tilt is reversible, vanishing when voltage bias is cancelled. Possible application of this new lens component is the realization of miniature camera featuring auto-focus and optical image stabilization (OIS) without any mobile mechanical part. Experimental measurements of actual performances of liquid lens component will be presented : focus and tilt amplitude, residual optical wave front error and response time.
Interface stability in a slowly rotating, low gravity tank Experiments
NASA Technical Reports Server (NTRS)
Leslie, F.; Gans, R. F.
1986-01-01
Analytical models of liquid in partially-filled rotating tanks predict both the shape of the interface between the liquid and its vapor, and the stability of that interface. The models are of necessity incomplete and experimental data are needed to assess the approximations made. Presented are preliminary experimental studies both in the laboratory and in the low-gravity environment of a free-falling aircraft. Emphasis is placed on bubbles which intersect the container boundaries. Measurements of rotating equilibrium bubble shapes are in agreement with theoretical profiles derived from Laplace's formula. The interface shape depends on the contact angle, the radius of intersection with container, and the ratio of centrifugal force to surface tension.
Towards and FVE-FAC Method for Determining Thermocapillary Effects on Weld Pool Shape
NASA Technical Reports Server (NTRS)
Canright, David; Henson, Van Emden
1996-01-01
Several practical materials processes, e.g., welding, float-zone purification, and Czochralski crystal growth, involve a pool of molten metal with a free surface, with strong temperature gradients along the surface. In some cases, the resulting thermocapillary flow is vigorous enough to convect heat toward the edges of the pool, increasing the driving force in a sort of positive feedback. In this work we examine this mechanism and its effect on the solid-liquid interface through a model problem: a half space of pure substance with concentrated axisymmetric surface heating, where surface tension is strong enough to keep the liquid free surface flat. The numerical method proposed for this problem utilizes a finite volume element (FVE) discretization in cylindrical coordinates. Because of the axisymmetric nature of the model problem, the control volumes used are torroidal prisms, formed by taking a polygonal cross-section in the (r, z) plane and sweeping it completely around the z-axis. Conservation of energy (in the solid), and conservation of energy, momentum, and mass (in the liquid) are enforced globally by integrating these quantities and enforcing conservation over each control volume. Judicious application of the Divergence Theorem and Stokes' Theorem, combined with a Crank-Nicolson time-stepping scheme leads to an implicit algebraic system to be solved at each time step. It is known that near the boundary of the pool, that is, near the solid-liquid interface, the full conduction-convection solution will require extremely fine length scales to resolve the physical behavior of the system. Furthermore, this boundary moves as a function of time. Accordingly, we develop the foundation of an adaptive refinement scheme based on the principles of Fast Adaptive Composite Grid methods (FAC). Implementation of the method and numerical results will appear in a later report.
NASA Astrophysics Data System (ADS)
Voitenko, K.; Isaiev, M.; Pastushenko, A.; Andrusenko, D.; Kuzmich, A.; Lysenko, V.; Burbelo, R.
2017-01-01
In the paper the experimental study of heat transport across the interface “porous silicon/liquid” by photoacoustic technique is reported. Two cases with and without liquid covering of porous silicon surface were considered. Thermal perturbations were excited at the surface of porous silicon as a result of absorption of the light with modulated intensity. The resulting thermal-elastic stresses arising in the system were registered with piezoelectric transducer. The amplitude-frequency dependencies of the voltage on the piezoelectric electrodes were measured. The presence of the liquid film leads to decreasing of the amplitude of photoacoustic signal as a result of the thermal energy evacuation from the porous silicon into the liquid. The experimental dependencies were fitted with the results of simulation that takes into account heat fluxes separation at the porous silicon/liquid interface. With the presented method one can precisely measure heat fluxes transferred from the solid into contacting fluid. Moreover, the presented approach can be easily adopted for the thermal conductivity study of the different nanofluids as well as thermal resistance at the interface nanostructured solid/fluid.
NASA Astrophysics Data System (ADS)
Abe, T.; Takahashi, T.; Shirai, K.
2017-02-01
In order to reveal a steady distribution structure of point defects of no growing Si on the solid-liquid interface, the crystals were grown at a high pulling rate, which Vs becomes predominant, and the pulling was suddenly stopped. After restoring the variations of the crystal by the pulling-stop, the crystals were then left in prolonged contact with the melt. Finally, the crystals were detached and rapidly cooled to freeze point defects and then a distribution of the point defects of the as-grown crystals was observed. As a result, a dislocation loop (DL) region, which is formed by the aggregation of interstitials (Is), was formed over the solid-liquid interface and was surrounded with a Vs-and-Is-free recombination region (Rc-region), although the entire crystals had been Vs rich in the beginning. It was also revealed that the crystal on the solid-liquid interface after the prolonged contact with the melt can partially have a Rc-region to be directly in contact with the melt, unlike a defect distribution of a solid-liquid interface that has been growing. This experimental result contradicts a hypothesis of Voronkov's diffusion model, which always assumes the equilibrium concentrations of Vs and Is as the boundary condition for distribution of point defects on the growth interface. The results were disscussed from a qualitative point of view of temperature distribution and thermal stress by the pulling-stop.
Thermal boundary conductance of hydrophilic and hydrophobic ionic liquids
NASA Astrophysics Data System (ADS)
Oyake, Takafumi; Sakata, Masanori; Yada, Susumu; Shiomi, Junichiro
2015-03-01
A solid/liquid interface plays a critical role for understanding mechanisms of biological and physical science. Moreover, carrier density of the surface is dramatically enhanced by electric double layer with ionic liquid, salt in the liquid state. Here, we have measured the thermal boundary conductance (TBC) across an interface of gold thin film and ionic liquid by using time-domain thermoreflectance technique. Following the prior researches, we have identified the TBC of two interfaces. One is gold and hydrophilic ionic liquid, N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate (DEME-BF4), which is a hydrophilic ionic liquid, and the other is N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide (DEME-TFSI), which is a hydrophobic ionic liquid. We found that the TBC between gold and DEME-TFIS (19 MWm-2K-1) is surprisingly lower than the interface between gold and DEME-BF4 (45 MWm-2K-1). With these data, the importance of the wetting angle and ion concentration for the thermal transport at the solid/ionic liquid interface is discussed. Part of this work is financially supported by Japan Society for the Promotion of Science (JSPS) and Japan Science and Technology Agency. The author is financially supported by JSPS Fellowship.
Malgarinos, Ilias; Nikolopoulos, Nikolaos; Marengo, Marco; Antonini, Carlo; Gavaises, Manolis
2014-10-01
In this study,a novel numerical implementation for the adhesion of liquid droplets impacting normally on solid dry surfaces is presented. The advantage of this new approach, compared to the majority of existing models, is that the dynamic contact angle forming during the surface wetting process is not inserted as a boundary condition, but is derived implicitly by the induced fluid flow characteristics (interface shape) and the adhesion physics of the gas-liquid-surface interface (triple line), starting only from the advancing and receding equilibrium contact angles. These angles are required in order to define the wetting properties of liquid phases when interacting with a solid surface. The physical model is implemented as a source term in the momentum equation of a Navier-Stokes CFD flow solver as an "adhesion-like" force which acts at the triple-phase contact line as a result of capillary interactions between the liquid drop and the solid substrate. The numerical simulations capture the liquid-air interface movement by considering the volume of fluid (VOF) method and utilizing an automatic local grid refinement technique in order to increase the accuracy of the predictions at the area of interest, and simultaneously minimize numerical diffusion of the interface. The proposed model is validated against previously reported experimental data of normal impingement of water droplets on dry surfaces at room temperature. A wide range of impact velocities, i.e. Weber numbers from as low as 0.2 up to 117, both for hydrophilic (θadv=10°-70°) and hydrophobic (θadv=105°-120°) surfaces, has been examined. Predictions include in addition to droplet spreading dynamics, the estimation of the dynamic contact angle; the latter is found in reasonable agreement against available experimental measurements. It is thus concluded that theimplementation of this model is an effective approach for overcoming the need of a pre-defined dynamic contact angle law, frequently adopted as an approximate boundary condition for such simulations. Clearly, this model is mostly influential during the spreading phase for the cases of low We number impacts (We<˜80) since for high impact velocities, inertia dominates significantly over capillary forces in the initial phase of spreading. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, J.M.
Chemical phenomena occurring at boundaries between insulating solids and liquids (adsorption, partition, monolayer self-assembly, catalysis, and chemical reactions) are important to energy-related analytical chemistry. These phenomena are central to chromatography, solid-phase extraction, immobilized analytical reagents, and optical sensors. Chemical interactions in these processes cannot generally be identified solely by equilibrium surface concentrations, since the steady-state behavior does not reveal the mechanism or rates of surface reactions. Goal therefore is to develop surface-sensitive spectroscopies by which chemical kinetics at liquid/solid interfaces can be observed on time-scales from nanoseconds to seconds. In the first year, we have used Joule-discharge heating kinetics tomore » study pore structure of silica gels; effects of pore diameter, particle size, and chemical modification on pore connectivity were investigated. Temperature-jump relaxation measurements of sorption/desorption kinetics at liquid/solid interfaces were also carried out using Joule heating; kinetic barriers to sorption of ions from solution were found for both C18 and Cl surfaces. Through a collaboration with Fritz-Haber Institute in Berlin, we were able to acquire laser temperature-jump data on kinetics at liquid/solid interfaces using a colloidal sample. We also quantified the rate of migration of covalently attached ligands on silica surfaces; from the temperature dependence, the large energy barrier to migration was estimated. A review of applications of electronic spectroscopy (absorption and fluorescence) to reversed-phase chromatographic interfaces was published.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stair, Peter C.
presentations on chemistry at solid and liquid surfaces of relevance to catalysis, synthesis, photochemistry, environmental science, and tribology. Topics include: Fundamental Surface Chemistry; Catalysis; Solid Liquid and Aerosol Interfaces; Surface Photochemistry; Synthesis of Surfaces; Environmental Interfaces; Hot Topics in Surface Chemical Reactions; Tribology; Gas-Surface Scattering and Reactions; Novel Materials and Environments.
NASA Technical Reports Server (NTRS)
Wang, Jai-Ching; Watring, D.; Lehoczky. S. L.; Su, C. H.; Gillies, D.; Szofran, F.; Sha, Y. G.; Sha, Y. G.
1999-01-01
Infrared detected materials, such as Hg(1-x)Cd(x)Te, Hg(1-x)Zn(x)Te have energy gaps almost linearly proportional to their composition. Due to the wide separation of liquidus and solidus curves of their phase diagram, there are compositional segregation in both of the axial and radial directions of these crystals grown in the Bridgman system unidirectionally with constant growth rate. It is important to understand the mechanisms, which affect lateral segregation such that large radially uniform composition crystal can be produced. Following Coriel, etc's treatment, we have developed a theory to study the effect of a curved melt-solid interface shape on lateral composition distribution. The model is considered to be a cylindrical system with azimuthal symmetry and a curved melt-solid interface shape which can be expressed as a linear combination of a series of Bessell's functions. The results show that melt-solid interface shape has a dominant effect on the lateral composition distribution of these systems. For small values of beta, the solute concentration at the melt-solid interface scales linearly with interface shape with a proportional constant of the produce of beta and (1 -k), where beta = VR/D, with V as growth velocity, R as the sample radius, D as the diffusion constant and k as the distribution constant. A detailed theory will be presented. A computer code has been developed and simulations have been performed and compared with experimental results. These will be published in another paper.
NASA Technical Reports Server (NTRS)
Wang, Jai-Ching; Watring, Dale A.; Lehoczky, Sandor L.; Su, Ching-Hua; Gillies, Don; Szofran, Frank
1999-01-01
Infrared detector materials, such as Hg(1-x)Cd(x)Te, Hg(1-x)Zn(x)Te have energy gaps almost linearly proportional to its composition. Due to the wide separation of liquidus and solidus curves of their phase diagram, there are compositional segregations in both of axial and radial directions of these crystals grown in the Bridgman system unidirectionally with constant growth rate. It is important to understand the mechanisms which affect lateral segregation such that large uniform radial composition crystal is possible. Following Coriell, etc's treatment, we have developed a theory to study the effect of a curved melt-solid interface shape on the lateral composition distribution. The system is considered to be cylindrical system with azimuthal symmetric with a curved melt-solid interface shape which can be expressed as a linear combination of a series of Bessell's functions. The results show that melt-solid interface shape has a dominate effect on lateral composition distribution of these systems. For small values of b, the solute concentration at the melt-solid interface scales linearly with interface shape with a proportional constant of the product of b and (1 - k), where b = VR/D, with V as growth velocity, R as sample radius, D as diffusion constant and k as distribution constant. A detailed theory will be presented. A computer code has been developed and simulations have been performed and compared with experimental results. These will be published in another paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greg Sitz
2011-08-12
The 2011 Gordon Conference on Dynamics at Surfaces is the 32nd anniversary of a meeting held every two years that is attended by leading researchers in the area of experimental and theoretical dynamics at liquid and solid surfaces. The conference focuses on the dynamics of the interaction of molecules with either liquid or solid surfaces, the dynamics of the outermost layer of liquid and solid surfaces and the dynamics at the liquid-solid interface. Specific topics that are featured include state-to-state scattering dynamics, chemical reaction dynamics, non-adiabatic effects in reactive and inelastic scattering of molecules from surfaces, single molecule dynamics atmore » surfaces, surface photochemistry, ultrafast dynamics at surfaces, and dynamics at water interfaces. The conference brings together investigators from a variety of scientific disciplines including chemistry, physics, materials science, geology, biophysics, and astronomy.« less
Diffusive and martensitic nucleation kinetics in solid-solid transitions of colloidal crystals
Peng, Yi; Li, Wei; Wang, Feng; Still, Tim; Yodh, Arjun G.; Han, Yilong
2017-01-01
Solid–solid transitions between crystals follow diffusive nucleation, or various diffusionless transitions, but these kinetics are difficult to predict and observe. Here we observed the rich kinetics of transitions from square lattices to triangular lattices in tunable colloidal thin films with single-particle dynamics by video microscopy. Applying a small pressure gradient in defect-free regions or near dislocations markedly transform the diffusive nucleation with an intermediate-stage liquid into a martensitic generation and oscillation of dislocation pairs followed by a diffusive nucleus growth. This transformation is neither purely diffusive nor purely martensitic as conventionally assumed but a combination thereof, and thus presents new challenges to both theory and the empirical criterion of martensitic transformations. We studied how pressure, density, grain boundary, triple junction and interface coherency affect the nucleus growth, shape and kinetic pathways. These novel microscopic kinetics cast new light on control solid–solid transitions and microstructural evolutions in polycrystals. PMID:28504246
Ab initio study on the dynamics of furfural at the liquid-solid interfaces
NASA Astrophysics Data System (ADS)
Dang, Hongli; Xue, Wenhua; Shields, Darwin; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu
2013-03-01
Catalytic biomass conversion sometimes occurs at the liquid-solid interfaces. We report ab initio molecular dynamics simulations at finite temperatures for the catalytic reactions involving furfural at the water-Pd and water-Cu interfaces. We found that, during the dynamic process, the furan ring of furfural prefers to be parallel to the Pd surface and the aldehyde group tends to be away from the Pd surface. On the other hand, at the water-Cu(111) interface, furfural prefers to be tilted to the Cu surface while the aldehyde group is bonded to the surface. In both cases, interaction of liquid water and furfural is identified. The difference of dynamic process of furfural at the two interfaces suggests different catalytic reaction mechanisms for the conversion of furfural, consistent with the experimental investigations. Supported by DOE (DE-SC0004600). Simulations and calculations were performed on XSED's and NERSC's supercomputers
Wen, C-Y; Reuter, M C; Tersoff, J; Stach, E A; Ross, F M
2010-02-10
We use real-time observations of the growth of copper-catalyzed silicon nanowires to determine the nanowire growth mechanism directly and to quantify the growth kinetics of individual wires. Nanowires were grown in a transmission electron microscope using chemical vapor deposition on a copper-coated Si substrate. We show that the initial reaction is the formation of a silicide, eta'-Cu(3)Si, and that this solid silicide remains on the wire tips during growth so that growth is by the vapor-solid-solid mechanism. Individual wire directions and growth rates are related to the details of orientation relation and catalyst shape, leading to a rich morphology compared to vapor-liquid-solid grown nanowires. Furthermore, growth occurs by ledge propagation at the silicide/silicon interface, and the ledge propagation kinetics suggest that the solubility of precursor atoms in the catalyst is small, which is relevant to the fabrication of abrupt heterojunctions in nanowires.
Han, Haoxue; Schlawitschek, Christiane; Katyal, Naman; Stephan, Peter; Gambaryan-Roisman, Tatiana; Leroy, Frédéric; Müller-Plathe, Florian
2017-05-30
We study the role of solid-liquid interface thermal resistance (Kapitza resistance) on the evaporation rate of droplets on a heated surface by using a multiscale combination of molecular dynamics (MD) simulations and analytical continuum theory. We parametrize the nonbonded interaction potential between perfluorohexane (C 6 F 14 ) and a face-centered-cubic solid surface to reproduce the experimental wetting behavior of C 6 F 14 on black chromium through the solid-liquid work of adhesion (quantity directly related to the wetting angle). The thermal conductances between C 6 F 14 and (100) and (111) solid substrates are evaluated by a nonequilibrium molecular dynamics approach for a liquid pressure lower than 2 MPa. Finally, we examine the influence of the Kapitza resistance on evaporation of droplets in the vicinity of a three-phase contact line with continuum theory, where the thermal resistance of liquid layer is comparable with the Kapitza resistance. We determine the thermodynamic conditions under which the Kapitza resistance plays an important role in correctly predicting the evaporation heat flux.
Nanoparticle Assemblies at Fluid Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Thomas P.
2015-03-10
A systematic study of the structure and dynamics of nanoparticles (NP) and NP-surfactants was performed. The ligands attached to both the NPs and NP-surfactants dictate the manner in which the nanoscopic materials assemble at fluid interfaces. Studies have shown that a single layer of the nanoscpic materials form at the interface to reduce the interactions between the two immiscible fluids. The shape of the NP is, also, important, where for spherical particles, a disordered, liquid-like monolayer forms, and, for nanorods, ordered domains at the interface is found and, if the monolayers are compressed, the orientation of the nanorods with respectmore » to the interface can change. By associating end-functionalized polymers to the NPs assembled at the interface, NP-surfactants are formed that increase the energetic gain in segregating each NP at the interface which allows the NP-surfactants to jam at the interface when compressed. This has opened the possibility of structuring the two liquids by freezing in shape changes of the liquids.« less
ELECTRON TRANSFER MECHANISM AT THE SOLID-LIQUID INTERFACE OF PHYLLOSILICATES
Interfacial electron transfer processes on clay minerals have significant impact in natural environments and geochemical systems. Nitrobenzene was used as molecular probes to study the electron transfer mechanism at the solid-water interfaces of Fe-containing phyllosicates. For...
Strongly nonlinear theory of rapid solidification near absolute stability
NASA Astrophysics Data System (ADS)
Kowal, Katarzyna N.; Altieri, Anthony L.; Davis, Stephen H.
2017-10-01
We investigate the nonlinear evolution of the morphological deformation of a solid-liquid interface of a binary melt under rapid solidification conditions near two absolute stability limits. The first of these involves the complete stabilization of the system to cellular instabilities as a result of large enough surface energy. We derive nonlinear evolution equations in several limits in this scenario and investigate the effect of interfacial disequilibrium on the nonlinear deformations that arise. In contrast to the morphological stability problem in equilibrium, in which only cellular instabilities appear and only one absolute stability boundary exists, in disequilibrium the system is prone to oscillatory instabilities and a second absolute stability boundary involving attachment kinetics arises. Large enough attachment kinetics stabilize the oscillatory instabilities. We derive a nonlinear evolution equation to describe the nonlinear development of the solid-liquid interface near this oscillatory absolute stability limit. We find that strong asymmetries develop with time. For uniform oscillations, the evolution equation for the interface reduces to the simple form f''+(βf')2+f =0 , where β is the disequilibrium parameter. Lastly, we investigate a distinguished limit near both absolute stability limits in which the system is prone to both cellular and oscillatory instabilities and derive a nonlinear evolution equation that captures the nonlinear deformations in this limit. Common to all these scenarios is the emergence of larger asymmetries in the resulting shapes of the solid-liquid interface with greater departures from equilibrium and larger morphological numbers. The disturbances additionally sharpen near the oscillatory absolute stability boundary, where the interface becomes deep-rooted. The oscillations are time-periodic only for small-enough initial amplitudes and their frequency depends on a single combination of physical parameters, including the morphological number, as well as the amplitude. The critical amplitude, at which solutions loose periodicity, depends on a single combination of parameters independent of the morphological number that indicate that non-periodic growth is most commonly present for moderate disequilibrium parameters. The spatial distribution of the interface develops deepening roots at late times. Similar spatial distributions are also seen in the limit in which both the cellular and oscillatory modes are close to absolute stability, and the roots deepen with larger departures from the two absolute stability boundaries.
Solid-State Ionic Diodes Demonstrated in Conical Nanopores
Plett, Timothy S.; Cai, Wenjia; Le Thai, Mya; ...
2017-02-27
Ionic transport at the nanoscale features phenomena that are not observed in larger systems. Nonlinear current–voltage curves characteristic of ionic diodes as well as ion selectivity are examples of effects observed at the nanoscale. Many man-made nanopore systems are inspired by biological channels in a cell membrane, thus measurements are often performed in aqueous solutions. Consequently, much less is known about ionic transport in nonaqueous systems, especially in solid-state electrolytes. Here we show ionic transport through single pores filled with gel electrolyte of poly(methyl methacrylate) (PMMA) doped with LiClO 4 in propylene carbonate. The system has no liquid interface andmore » the ionic transport occurs through the porous gel structure. We demonstrate that a conically shaped nanopore filled with the gel rectifies the current and works as a solid-state ionic diode.« less
Calculation of a solid/liquid surface tension: A methodological study
NASA Astrophysics Data System (ADS)
Dreher, T.; Lemarchand, C.; Soulard, L.; Bourasseau, E.; Malfreyt, P.; Pineau, N.
2018-01-01
The surface tension of a model solid/liquid interface constituted of a graphene sheet surrounded by liquid methane has been computed using molecular dynamics in the Kirkwood-Buff formalism. We show that contrary to the fluid/fluid case, the solid/liquid case can lead to different structurations of the first fluid layer, leading to significantly different values of surface tension. Therefore we present a statistical approach that consists in running a series of molecular simulations of similar systems with different initial conditions, leading to a distribution of surface tensions from which an average value and uncertainty can be extracted. Our results suggest that these distributions converge as the system size increases. Besides we show that surface tension is not particularly sensitive to the choice of the potential energy cutoff and that long-range corrections can be neglected contrary to what we observed in the liquid/vapour interfaces. We have not observed the previously reported commensurability effect.
Free energy of steps using atomistic simulations
NASA Astrophysics Data System (ADS)
Freitas, Rodrigo; Frolov, Timofey; Asta, Mark
The properties of solid-liquid interfaces are known to play critical roles in solidification processes. Particularly special importance is given to thermodynamic quantities that describe the equilibrium state of these surfaces. For example, on the solid-liquid-vapor heteroepitaxial growth of semiconductor nanowires the crystal nucleation process on the faceted solid-liquid interface is influenced by the solid-liquid and vapor-solid interfacial free energies, and also by the free energies of associated steps at these faceted interfaces. Crystal-growth theories and mesoscale simulation methods depend on quantitative information about these properties, which are often poorly characterized from experimental measurements. In this work we propose an extension of the capillary fluctuation method for calculation of the free energy of steps on faceted crystal surfaces. From equilibrium atomistic simulations of steps on (111) surfaces of Copper we computed accurately the step free energy for different step orientations. We show that the step free energy remains finite at all temperature up to the melting point and that the results obtained agree with the more well established method of thermodynamic integration if finite size effects are taken into account. The research of RF and MA at UC Berkeley were supported by the US National Science Foundation (Grant No. DMR-1105409). TF acknowledges support through a postdoctoral fellowship from the Miller Institute for Basic Research in Science.
Vollmeyer, Joscha; Eberhagen, Friederike; Höger, Sigurd; Jester, Stefan-S
2014-01-01
Three shape-persistent naphthylene-phenylene-acetylene macrocycles of identical backbone structures and extraannular substitution patterns but different (empty, apolar, polar) nanopore fillings are self-assembled at the solid/liquid interface of highly oriented pyrolytic graphite and 1,2,4-trichlorobenzene. Submolecularly resolved images of the resulting two-dimensional (2D) crystalline monolayer patterns are obtained by in situ scanning tunneling microscopy. A concentration-dependent conformational polymorphism is found, and open and more dense packing motifs are observed. For all three compounds alike lattice parameters are found, therefore the intermolecular macrocycle distances are mainly determined by their size and symmetry. This is an excellent example that the graphite acts as a template for the macrocycle organization independent from their specific interior.
Soft beams: When capillarity induces axial compression
NASA Astrophysics Data System (ADS)
Neukirch, S.; Antkowiak, A.; Marigo, J.-J.
2014-01-01
We study the interaction of an elastic beam with a liquid drop in the case where bending and extensional effects are both present. We use a variational approach to derive equilibrium equations and constitutive relation for the beam. This relation is shown to include a term due to surface energy in addition to the classical Young's modulus term, leading to a modification of Hooke's law. At the triple point where solid, liquid, and vapor phases meet, we find that the external force applied on the beam is parallel to the liquid-vapor interface. Moreover, in the case where solid-vapor and solid-liquid interface energies do not depend on the extension state of the beam, we show that the extension in the beam is continuous at the triple point and that the wetting angle satisfies the classical Young-Dupré relation.
Soft beams: when capillarity induces axial compression.
Neukirch, S; Antkowiak, A; Marigo, J-J
2014-01-01
We study the interaction of an elastic beam with a liquid drop in the case where bending and extensional effects are both present. We use a variational approach to derive equilibrium equations and constitutive relation for the beam. This relation is shown to include a term due to surface energy in addition to the classical Young's modulus term, leading to a modification of Hooke's law. At the triple point where solid, liquid, and vapor phases meet, we find that the external force applied on the beam is parallel to the liquid-vapor interface. Moreover, in the case where solid-vapor and solid-liquid interface energies do not depend on the extension state of the beam, we show that the extension in the beam is continuous at the triple point and that the wetting angle satisfies the classical Young-Dupré relation.
Probing alpha-helical and beta-sheet structures of peptides at solid/liquid interfaces with SFG.
Chen, Xiaoyun; Wang, Jie; Sniadecki, Jason J; Even, Mark A; Chen, Zhan
2005-03-29
We demonstrated that sum frequency generation (SFG) vibrational spectroscopy can distinguish different secondary structures of proteins or peptides adsorbed at solid/liquid interfaces. The SFG spectrum for tachyplesin I at the polystyrene (PS)/solution interface has a fingerprint peak corresponding to the B1/B3 mode of the antiparallel beta-sheet. This peak disappeared upon the addition of dithiothreitol, which can disrupt the beta-sheet structure. The SFG spectrum indicative of the MSI594 alpha-helical structure was observed at the PS/MSI594 solution interface. This research validates SFG as a powerful technique for revealing detailed secondary structures of interfacial proteins and peptides.
NASA Technical Reports Server (NTRS)
Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.
2013-01-01
Pore Formation and Mobility Investigation (PFMI) experiments were conducted in the microgravity environment aboard the International Space Station with the intent of better understanding the role entrained porosity/bubbles play during controlled directional solidification. The planar interface in a slowing growing succinonitrile - 0.24 wt% water alloy was being observed when a nitrogen bubble traversed the mushy zone and remained at the solid-liquid interface. Breakdown of the interface to shallow cells subsequently occurred, and was later evaluated using down-linked data from a nearby thermocouple. These results and other detrimental effects due to the presence of bubbles during solidification processing in a microgravity environment are presented and discussed.
Liu, Qing; He, Ya-Ling; Li, Qing
2017-08-01
In this paper, an enthalpy-based multiple-relaxation-time (MRT) lattice Boltzmann (LB) method is developed for solid-liquid phase-change heat transfer in metal foams under the local thermal nonequilibrium (LTNE) condition. The enthalpy-based MRT-LB method consists of three different MRT-LB models: one for flow field based on the generalized non-Darcy model, and the other two for phase-change material (PCM) and metal-foam temperature fields described by the LTNE model. The moving solid-liquid phase interface is implicitly tracked through the liquid fraction, which is simultaneously obtained when the energy equations of PCM and metal foam are solved. The present method has several distinctive features. First, as compared with previous studies, the present method avoids the iteration procedure; thus it retains the inherent merits of the standard LB method and is superior to the iteration method in terms of accuracy and computational efficiency. Second, a volumetric LB scheme instead of the bounce-back scheme is employed to realize the no-slip velocity condition in the interface and solid phase regions, which is consistent with the actual situation. Last but not least, the MRT collision model is employed, and with additional degrees of freedom, it has the ability to reduce the numerical diffusion across the phase interface induced by solid-liquid phase change. Numerical tests demonstrate that the present method can serve as an accurate and efficient numerical tool for studying metal-foam enhanced solid-liquid phase-change heat transfer in latent heat storage. Finally, comparisons and discussions are made to offer useful information for practical applications of the present method.
NASA Astrophysics Data System (ADS)
Liu, Qing; He, Ya-Ling; Li, Qing
2017-08-01
In this paper, an enthalpy-based multiple-relaxation-time (MRT) lattice Boltzmann (LB) method is developed for solid-liquid phase-change heat transfer in metal foams under the local thermal nonequilibrium (LTNE) condition. The enthalpy-based MRT-LB method consists of three different MRT-LB models: one for flow field based on the generalized non-Darcy model, and the other two for phase-change material (PCM) and metal-foam temperature fields described by the LTNE model. The moving solid-liquid phase interface is implicitly tracked through the liquid fraction, which is simultaneously obtained when the energy equations of PCM and metal foam are solved. The present method has several distinctive features. First, as compared with previous studies, the present method avoids the iteration procedure; thus it retains the inherent merits of the standard LB method and is superior to the iteration method in terms of accuracy and computational efficiency. Second, a volumetric LB scheme instead of the bounce-back scheme is employed to realize the no-slip velocity condition in the interface and solid phase regions, which is consistent with the actual situation. Last but not least, the MRT collision model is employed, and with additional degrees of freedom, it has the ability to reduce the numerical diffusion across the phase interface induced by solid-liquid phase change. Numerical tests demonstrate that the present method can serve as an accurate and efficient numerical tool for studying metal-foam enhanced solid-liquid phase-change heat transfer in latent heat storage. Finally, comparisons and discussions are made to offer useful information for practical applications of the present method.
Ultrasound Flow Mapping for the Investigation of Crystal Growth.
Thieme, Norman; Bonisch, Paul; Meier, Dagmar; Nauber, Richard; Buttner, Lars; Dadzis, Kaspars; Patzold, Olf; Sylla, Lamine; Czarske, Jurgen
2017-04-01
A high energy conversion and cost efficiency are keys for the transition to renewable energy sources, e.g., solar cells. The efficiency of multicrystalline solar cells can be improved by enhancing the understanding of its crystallization process, especially the directional solidification. In this paper, a novel measurement system for the characterization of flow phenomena and solidification processes in low-temperature model experiments on the basis of ultrasound (US) Doppler velocimetry is described. It captures turbulent flow phenomena in two planes with a frame rate of 3.5 Hz and tracks the shape of the solid-liquid interface during multihour experiments. Time-resolved flow mapping is performed using four linear US arrays with a total of 168 transducer elements. Long duration measurements are enabled through an online, field-programmable gate array (FPGA)-based signal processing. Nine single US transducers allow for in situ tracking of a solid-liquid interface. Results of flow and solidification experiments in the model experiment are presented and compared with numerical simulation. The potential of the developed US system for measuring turbulent flows and for tracking the solidification front during a directional crystallization process is demonstrated. The results of the model experiments are in good agreement with numerical calculations and can be used for the validation of numerical models, especially the selection of the turbulence model.
Contribution to study of interfaces instabilities in plane, cylindrical and spherical geometry
NASA Astrophysics Data System (ADS)
Toque, Nathalie
1996-12-01
This thesis proposes several experiments of hydrodynamical instabilities which are studied, numerically and theoretically. The experiments are in plane and cylindrical geometry. Their X-ray radiographies show the evolution of an interface between two solid media crossed by a detonation wave. These materials are initially solid. They become liquide under shock wave or stay between two phases, solid and liquid. The numerical study aims at simulating with the codes EAD and Ouranos, the interfaces instabilities which appear in the experiments. The experimental radiographies and the numerical pictures are in quite good agreement. The theoretical study suggests to modelise a spatio-temporal part of the experiments to obtain the quantitative development of perturbations at the interfaces and in the flows. The models are linear and in plane, cylindrical and spherical geometry. They preceed the inoming study of transition between linear and non linear development of instabilities in multifluids flows crossed by shock waves.
Characterisation of Pellicles Formed by Acinetobacter baumannii at the Air-Liquid Interface
Nait Chabane, Yassine; Marti, Sara; Rihouey, Christophe; Alexandre, Stéphane; Hardouin, Julie; Lesouhaitier, Olivier; Vila, Jordi; Kaplan, Jeffrey B.; Jouenne, Thierry; Dé, Emmanuelle
2014-01-01
The clinical importance of Acinetobacter baumannii is partly due to its natural ability to survive in the hospital environment. This persistence may be explained by its capacity to form biofilms and, interestingly, A. baumannii can form pellicles at the air-liquid interface more readily than other less pathogenic Acinetobacter species. Pellicles from twenty-six strains were morphologically classified into three groups: I) egg-shaped (27%); II) ball-shaped (50%); and III) irregular pellicles (23%). One strain representative of each group was further analysed by Brewster’s Angle Microscopy to follow pellicle development, demonstrating that their formation did not require anchoring to a solid surface. Total carbohydrate analysis of the matrix showed three main components: Glucose, GlcNAc and Kdo. Dispersin B, an enzyme that hydrolyzes poly-N-acetylglucosamine (PNAG) polysaccharide, inhibited A. baumannii pellicle formation, suggesting that this exopolysaccharide contributes to pellicle formation. Also associated with the pellicle matrix were three subunits of pili assembled by chaperon-usher systems: the major CsuA/B, A1S_1510 (presented 45% of identity with the main pilin F17-A from enterotoxigenic Escherichia coli pili) and A1S_2091. The presence of both PNAG polysaccharide and pili systems in matrix of pellicles might contribute to the virulence of this emerging pathogen. PMID:25360550
NASA Astrophysics Data System (ADS)
Furuta, Yuma; Surblys, Donatas; Yamaguchi, Yastaka
2016-11-01
Molecular dynamics simulations of the equilibrium wetting behavior of hemi-cylindrical argon droplets on solid surfaces with a periodic roughness were carried out. The rough solid surface is located at the bottom of the calculation cell with periodic boundary conditions in surface lateral directions and mirror boundary condition at the top boundary. Similar to on a smooth surface, the change of the cosine of the droplet contact angle was linearly correlated to the potential well depth of the inter-atomic interaction between liquid and solid on a surface with a short roughness period while the correlation was deviated on one with a long roughness period. To further investigate this feature, solid-liquid, solid-vapor interfacial free energies per unit projected area of solid surface were evaluated by using the thermodynamic integration method in independent quasi-one-dimensional simulation systems with a liquid-solid interface or vapor-solid interface on various rough solid surfaces at a constant pressure. The cosine of the apparent contact angles estimated from the density profile of the droplet systems corresponded well with ones calculated from Young's equation using the interfacial energies evaluated in the quasi-one dimensional systems.
Studies on interface curvature during vertical Bridgman growth of InP in a flat-bottom container
NASA Astrophysics Data System (ADS)
Rudolph, P.; Matsumoto, F.; Fukuda, T.
1996-01-01
A simplified numerical simulation of the dynamic behaviour of the solid-liquid interface curvature during modified vertical Bridgman growth of 2 inch InP single crystals, in a flat-bottom container, with a seed of the same diameter is presented. The results agree with striation patterns observed by transmission X-ray topography. A nearly flat interface with slightly constant concavity has been ascertained in the front half of the grown ingots. It can be assumed that such a steady interface morphology is one of the basic requirements for the observed twin-free and reduced dislocation growth in this region. In an attempt to optimize the shape of the melting point isotherm in the last-to-freeze part of the crystals, the axial temperature gradient, the seed length, the growth velocity, the melt temperature and the conditions of heat transfer (different ambient atmospheres and plugs) as well as the temperature profile in the top region above the encapsulant have been varied in the model.
NASA Astrophysics Data System (ADS)
Sui, Mao; Pandey, Puran; Li, Ming-Yu; Zhang, Quanzhen; Kunwar, Sundar; Lee, Jihoon
2017-01-01
Nanoscale patterning of sapphires is a challenging task due to the high mechanical strength, chemical stability as well as thermal durability. In this paper, we demonstrate a gold droplet assisted approach of nano-hole fabrication on c-plane sapphire via a thermal treatment. Uniformly distributed nano-holes are fabricated on the sapphire surface guided by dome shaped Au nanoparticles (NPs) as catalysts and the patterning process is discussed based on the disequilibrium of vapor, liquid, solid interface energies at the Au NP/sapphire interface induced by the Au evaporation at high temperature. Followed by the re-equilibration of interface energy, transport of alumina from the beneath of NPs to the sapphire surface can occur along the NP/sapphire interface resulting in the formation of nano-holes. The fabrication of nano-holes using Au NPs as catalysts is a flexible, economical and convenient approach and can find applications in various optoelectronics.
Computational Simulations of the Lateral-Photovoltage-Scanning-Method
NASA Astrophysics Data System (ADS)
Kayser, S.; Lüdge, A.; Böttcher, K.
2018-05-01
The major task for the Lateral-Photovoltage-Scanning-Method is to detect doping striations and the shape of the solid-liquid-interface of an indirect semiconductor crystal. This method is sensitive to the gradient of the charge carrier density. Attempting to simulate the signal generation of the LPS-Method, we are using a three dimensional Finite Volume approach for solving the van Roosbroeck equations with COMSOL Multiphysics in a silicon sample. We show that the simulated LPS-voltage is directly proportional to the gradient of a given doping distribution, which is also the case for the measured LPS-voltage.
Drop splashing is independent of substrate wetting
NASA Astrophysics Data System (ADS)
Latka, Andrzej; Boelens, Arnout M. P.; Nagel, Sidney R.; de Pablo, Juan J.
2018-02-01
A liquid drop impacting a dry solid surface with sufficient kinetic energy will splash, breaking apart into numerous secondary droplets. This phenomenon shows many similarities to forced wetting, including the entrainment of air at the contact line. Because of these similarities and the fact that forced wetting has been shown to depend on the wetting properties of the surface, existing theories predict splashing to depend on wetting properties as well. However, using high-speed interference imaging, we observe that at high capillary numbers wetting properties have no effect on splashing for various liquid-surface combinations. Additionally, by fully resolving the Navier-Stokes equations at length and time scales inaccessible to experiments, we find that the shape and motion of the air-liquid interface at the contact line/edge of the droplet are independent of wettability. We use these findings to evaluate existing theories and to compare splashing with forced wetting.
Improving the Molecular Ion Signal Intensity for In Situ Liquid SIMS Analysis.
Zhou, Yufan; Yao, Juan; Ding, Yuanzhao; Yu, Jiachao; Hua, Xin; Evans, James E; Yu, Xiaofei; Lao, David B; Heldebrant, David J; Nune, Satish K; Cao, Bin; Bowden, Mark E; Yu, Xiao-Ying; Wang, Xue-Lin; Zhu, Zihua
2016-12-01
In situ liquid secondary ion mass spectrometry (SIMS) enabled by system for analysis at the liquid vacuum interface (SALVI) has proven to be a promising new tool to provide molecular information at solid-liquid and liquid-vacuum interfaces. However, the initial data showed that useful signals in positive ion spectra are too weak to be meaningful in most cases. In addition, it is difficult to obtain strong negative molecular ion signals when m/z>200. These two drawbacks have been the biggest obstacle towards practical use of this new analytical approach. In this study, we report that strong and reliable positive and negative molecular signals are achievable after optimizing the SIMS experimental conditions. Four model systems, including a 1,8-diazabicycloundec-7-ene (DBU)-base switchable ionic liquid, a live Shewanella oneidensis biofilm, a hydrated mammalian epithelia cell, and an electrolyte popularly used in Li ion batteries were studied. A signal enhancement of about two orders of magnitude was obtained in comparison with non-optimized conditions. Therefore, molecular ion signal intensity has become very acceptable for use of in situ liquid SIMS to study solid-liquid and liquid-vacuum interfaces. Graphical Abstract ᅟ.
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Sen, Subhayu; Mukherjee, Sundeep; Catalina, Adrian; Stefanescu, Doru M.
1999-01-01
Numerical modeling was undertaken to analyze the influence of radial thermal gradient on solid/liquid (s/1) interface shape and convection patterns during solidification of pure Al and Al-4 wt% Cu alloy. The objective of the numerical task was to predict the influence of convective velocity on an insoluble particle near a s/l interface. These predictions would then be used to define the minimum gravity level (g) required to investigate the fundamental physics of interaction between a particle and a s/I interface. To satisfy this objective, steady state calculations were performed for different gravity levels and orientations with the gravity vector. ne furnace configuration used in this analysis is the proposed International Space Station Furnace, Quench Module Insert (QMI) 1. Results from a thermal model of the furnace core were used as initial boundary conditions for solidification modeling. General model of binary alloy solidification was based on the finite element code FIDAP. It was found that for the worst case orientation of 90 degrees with the gravity vector and a g level of 10(exp -4)g(sub o) (g(sub o) = 9.8 m/s(exp 2)) the dominant forces acting on the particle would be the fundamental drag and interfacial forces.
Björneholm, Olle; Hansen, Martin H; Hodgson, Andrew; Liu, Li-Min; Limmer, David T; Michaelides, Angelos; Pedevilla, Philipp; Rossmeisl, Jan; Shen, Huaze; Tocci, Gabriele; Tyrode, Eric; Walz, Marie-Madeleine; Werner, Josephina; Bluhm, Hendrik
2016-07-13
The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives many electrochemical reactions, and the liquid/vapor interface, which governs the uptake and release of trace gases by the oceans and cloud droplets. In this article we review some of the recent experimental and theoretical advances in our knowledge of the properties of aqueous interfaces and discuss open questions and gaps in our understanding.
Iritani, Kohei; Tahara, Kazukuni; De Feyter, Steven; Tobe, Yoshito
2017-05-16
Host-guest chemistry in two-dimensional (2D) space, that is, physisorbed monolayers of a single atom or a single molecular thickness on surfaces, has become a subject of intense current interest because of perspectives for various applications in molecular-scale electronics, selective sensors, and tailored catalysis. Scanning tunneling microscopy has been used as a powerful tool for the visualization of molecules in real space on a conducting substrate surface. For more than a decade, we have been investigating the self-assembly of a series of triangle-shaped phenylene-ethynylene macrocycles called dehydrobenzo[12]annulenes (DBAs). These molecules are substituted with six alkyl chains and are capable of forming hexagonal porous 2D molecular networks via van der Waals interactions between interdigitated alkyl chains at the interface of organic solvents and graphite. The dimension of the nanoporous space or nanowell formed by the self-assembly of DBAs can be controlled from 1.6 to 4.7 nm by simply changing the alkyl chain length from C 6 to C 20 . Single molecules as well as homoclusters and heteroclusters are capable of coadsorbing within the host matrix using shape- and size-complementarity principles. Moreover, on the basis of the versatility of the DBA molecules that allows chemical modification of the alkyl chain terminals, we were able to decorate the interior space of the nanoporous networks with functional groups such as azobenzenedicarboxylic acid for photoresponsive guest adsorption/desorption or fluoroalkanes and tetraethylene glycol groups for selective guest binding by electrostatic interactions and zinc-porphyrin units for complexation with a guest by charge-transfer interactions. In this Feature Article, we describe the general aspects of molecular self-assembly at liquid/solid interfaces, followed by the formation of programmed porous molecular networks using rationally designed molecular building blocks. We focus on our own work involving host-guest chemistry in integrated nanoporous space that is modified for specific purposes.
Surface charge-induced EDL interaction on the contact angle of surface nanobubbles.
Jing, Dalei; Li, Dayong; Pan, Yunlu; Bhushan, Bharat
2016-11-01
The contact angle (CA) of surface nanobubbles is believed to affect the stability of nanobubbles and fluid drag in micro/nanofluidic systems. The CA of nanobubbles is dependent on size and is believed to be affected by the surface charge-induced electrical double layer (EDL). However, neither of these of attributes are well understood. In this paper, by introducing an EDL-induced electrostatic wetting tension, a theoretical model is first established to study the effect of EDLs formed near the solid-liquid interface and the liquid-nanobubble interface on the gas phase CA of nanobubbles. The size-dependence of this EDL interaction is studied as well. Next, by using atomic force microscopy (AFM), the effect of the EDL on nanobubbles' gas phase CA is studied with variable electrical potential at the solid-liquid interface, which is adjusted by an applied voltage. Both the theoretical and the experimental results show that the EDLs formed near the solid-liquid interface and the liquid-nanobubble interface lead to a reduction of gas phase CA of the surface nanobubbles because of an electrostatic wetting tension on the nanobubble due to the attractive electrostatic interaction between the liquid and nanobubble within the EDL, which is in the nanobubbles' outward direction. An EDL with a larger zeta potential magnitude leads to a larger gas phase CA reduction. Furthermore, the effect of EDL on the nanobubbles' gas phase CA shows a significant size-dependence considering the size dependence of the electrostatic wetting tension. The gas phase CA reduction due to the EDL decreases with increasing nanobubble height and increases with the nanobubble's increasing curvature radius, indicating that a surface charge-induced EDL could possibly explain the size dependence of the gas phase CA of nanobubbles.
Rapidly moving contact lines and damping contributions
NASA Astrophysics Data System (ADS)
Xia, Yi; Daniel, Susan; Steen, Paul
2017-11-01
Contact angle varies dynamically with contact line (CL) speed when a liquid moves across a solid support, as when a liquid spreads rapidly. For sufficiently rapid spreading, inertia competes with capillarity to influence the interface shape near the support. We use resonant-mode plane-normal support oscillations of droplets to drive lateral contact-line motion. Reynolds numbers based on CL speeds are high and capillary numbers are low. These are inertial-capillary motions. By scanning the driving frequency, we locate the frequency at peak amplification (resonance), obtain the scaled peak height (amplification factor) and a measure of band-width (damping ratio). We report how a parameter for CL mobility depends on these scanning metrics, with the goal of distinguishing contributions from the bulk- and CL-dissipation to overall damping.
Interface structure between tetraglyme and graphite
NASA Astrophysics Data System (ADS)
Minato, Taketoshi; Araki, Yuki; Umeda, Kenichi; Yamanaka, Toshiro; Okazaki, Ken-ichi; Onishi, Hiroshi; Abe, Takeshi; Ogumi, Zempachi
2017-09-01
Clarification of the details of the interface structure between liquids and solids is crucial for understanding the fundamental processes of physical functions. Herein, we investigate the structure of the interface between tetraglyme and graphite and propose a model for the interface structure based on the observation of frequency-modulation atomic force microscopy in liquids. The ordering and distorted adsorption of tetraglyme on graphite were observed. It is found that tetraglyme stably adsorbs on graphite. Density functional theory calculations supported the adsorption structure. In the liquid phase, there is a layered structure of the molecular distribution with an average distance of 0.60 nm between layers.
Methods and systems for monitoring a solid-liquid interface
Stoddard, Nathan G [Gettysburg, PA; Clark, Roger F [Frederick, MD
2011-10-04
Methods and systems are provided for monitoring a solid-liquid interface, including providing a vessel configured to contain an at least partially melted material; detecting radiation reflected from a surface of a liquid portion of the at least partially melted material; providing sound energy to the surface; measuring a disturbance on the surface; calculating at least one frequency associated with the disturbance; and determining a thickness of the liquid portion based on the at least one frequency, wherein the thickness is calculated based on L=(2m-1)v.sub.s/4f, where f is the frequency where the disturbance has an amplitude maximum, v.sub.s is the speed of sound in the material, and m is a positive integer (1, 2, 3, . . . ).
Suppressing the cellular breakdown in silicon supersaturated with titanium
NASA Astrophysics Data System (ADS)
Liu, Fang; Prucnal, S.; Hübner, R.; Yuan, Ye; Skorupa, W.; Helm, M.; Zhou, Shengqiang
2016-06-01
Hyper doping Si with up to 6 at.% Ti in solid solution was performed by ion implantation followed by pulsed laser annealing and flash lamp annealing. In both cases, the implanted Si layer can be well recrystallized by liquid phase epitaxy and solid phase epitaxy, respectively. Cross-sectional transmission electron microscopy of Ti-implanted Si after liquid phase epitaxy shows the so-called growth interface breakdown or cellular breakdown owing to the occurrence of constitutional supercooling in the melt. The appearance of cellular breakdown prevents further recrystallization. However, the out-diffusion and cellular breakdown can be effectively suppressed by solid phase epitaxy during flash lamp annealing due to the high velocity of amorphous-crystalline interface and the low diffusion velocity for Ti in the solid phase.
Lekesiz, Huseyin; Katsube, Noriko; Rokhlin, Stanislav I.; Seghi, Robert R.
2013-01-01
An effective spring stiffness approximation is proposed for a hexagonal array of coplanar penny shaped cracks located at the interface between two dissimilar solids. The approximation is based on the factorization of the solution on the material dissimilarity factor, the crack interaction factor and the effective spring stiffness solution for non-interacting cracks in a homogeneous material. Such factorization is exact and was validated for 2D collinear cracks between two dissimilar solids. The crack interaction factor is obtained using a recently developed model for stress intensity factors for an array of coplanar penny shaped cracks in a homogeneous material; also the material dissimilarity function recently obtained for non-interacting penny shaped crack at the interface between two dissimilar materials is employed. The obtained solution is useful for an assessment by ultrasonic measurements of the interface stiffness in bonded structures for monitoring the interfacial microdamage growth due to mechanical loading and environmental factors. PMID:27175036
Lekesiz, Huseyin; Katsube, Noriko; Rokhlin, Stanislav I; Seghi, Robert R
2013-08-15
An effective spring stiffness approximation is proposed for a hexagonal array of coplanar penny shaped cracks located at the interface between two dissimilar solids. The approximation is based on the factorization of the solution on the material dissimilarity factor, the crack interaction factor and the effective spring stiffness solution for non-interacting cracks in a homogeneous material. Such factorization is exact and was validated for 2D collinear cracks between two dissimilar solids. The crack interaction factor is obtained using a recently developed model for stress intensity factors for an array of coplanar penny shaped cracks in a homogeneous material; also the material dissimilarity function recently obtained for non-interacting penny shaped crack at the interface between two dissimilar materials is employed. The obtained solution is useful for an assessment by ultrasonic measurements of the interface stiffness in bonded structures for monitoring the interfacial microdamage growth due to mechanical loading and environmental factors.
NASA Astrophysics Data System (ADS)
Yumoto, Hisami; Hasiguti, Ryukiti R.
1984-07-01
Hexagonal prismatic Cd crystals having {10\\bar{1}0} prismatic planes, or occasionally having {11\\bar{2}0} prismatic planes, were grown as high-temperature-type Cd crystals by the thin layer VLS mechanism at Ts (growth temperature) ≥ Tt (transition temperature range: 250-260°C). Pencil-shaped Cd crystals (low-temperature-type Cd crystals) were grown, having {10\\bar{1}0} and {11\\bar{2}0} prismatic planes and {10\\bar{1}1} pyramidal planes by the mixed-type VLS mechanism at Ts≤Tt. When the growth temperature was decreased below Tt, the shape of the solid-liquid interface changed from rounded to faceted. Three processes for the termination of the mixed-type VLS growth are proposed.
Moriya, Yoshio; Hasegawa, Takeshi; Okada, Tetsuo; Ogawa, Nobuaki; Kawai, Erika; Abe, Kosuke; Ogasawara, Masataka; Kato, Sumio; Nakata, Shinichi
2006-11-15
Gibbs monolayers of lipophilic tetraphenylporphyrinatomanganese(III) and hydrophilic diacid of meso-tetrakis(4-sulfonatopheny)porphyrin adsorbed at the liquid-liquid interface have been analyzed by UV-visible external reflection (ER) and partial internal reflection (PIR) spectra measured at different angles of incidence. The angle-dependent ER and PIR spectra over the Brewster angles (thetaERB and thetaIRB) have readily been measured at the toluene/water interface. As preliminarily expected in our previous study, the present study has first proved that the reflection-absorbance of UV-visible PIR spectra quantitatively agrees with the theoretical calculations for the Gibbs monolayer over thetaIRB. In addition, it has also been proved that the absorbance of the PIR spectra is greatly enhanced in comparison to that of the ATR spectra. The enhancement is caused by an optical effect in the monolayer sandwiched between two phases of toluene and water that have different but refractive indices close to each other. This optical enhancement requires an optically perfect contact between the phases, which is difficult to prepare for a solid-solid contact. At the liquid/liquid interface, however, an ideal optical contact is easily realized, which makes the enhancement as much as the theoretical expectation. The PIR spectrometry will be recognized to be a new high-sensitive analytical tool to study Gibbs monolayer at the liquid/liquid interface.
NASA Astrophysics Data System (ADS)
Perron, Aurelien; Roehling, John D.; Turchi, Patrice E. A.; Fattebert, Jean-Luc; McKeown, Joseph T.
2018-01-01
A combination of dynamic transmission electron microscopy (DTEM) experiments and CALPHAD-informed phase-field simulations was used to study rapid solidification in Cu-Ni thin-film alloys. Experiments—conducted in the DTEM—consisted of in situ laser melting and determination of the solidification kinetics by monitoring the solid-liquid interface and the overall microstructure evolution (time-resolved measurements) during the solidification process. Modelling of the Cu-Ni alloy microstructure evolution was based on a phase-field model that included realistic Gibbs energies and diffusion coefficients from the CALPHAD framework (thermodynamic and mobility databases). DTEM and post mortem experiments highlighted the formation of microsegregation-free columnar grains with interface velocities varying from ˜0.1 to ˜0.6 m s-1. After an ‘incubation’ time, the velocity of the planar solid-liquid interface accelerated until solidification was complete. In addition, a decrease of the temperature gradient induced a decrease in the interface velocity. The modelling strategy permitted the simulation (in 1D and 2D) of the solidification process from the initially diffusion-controlled to the nearly partitionless regimes. Finally, results of DTEM experiments and phase-field simulations (grain morphology, solute distribution, and solid-liquid interface velocity) were consistent at similar time (μs) and spatial scales (μm).
How holes can reinforce soft solids
NASA Astrophysics Data System (ADS)
Style, Robert
Normally embedding holes in a solid makes it softer. However, when the solid is small enough, the opposite can be true. We show this with soft composites (consisting of liquid droplets embedded in a soft silicone gel) which stiffen as the volume fraction of droplets increases. This is due to the surface stress of the gel/liquid interface. We also discuss the time-dependent behaviour of these materials.
Critical viewpoints on the methods of realizing the metal freezing points of the ITS-90
NASA Astrophysics Data System (ADS)
Ma, C. K.
1995-08-01
The time-honored method for realizing the freezing point tf of a metal (in practice necessarily a dilute alloy) is that of continuous, slow freezing where the plateau temperature (which is the result of solidifying material's being so pure that its phase-transition temperature is observably constant) is measured. The freezing point being an equilibrium temperature, Ancsin considers this method to be inappropriate in principle: equilibrium between the solid and liquid phases cannot be achieved while the solid is being cooled to dispose of the releasing latent heat and while it is accreting at the expense of the liquid. In place of the continuous freezing method he has employed the pulse-heating method (in which the sample is allowed to approach equilibrium after each heat pulse) in his study of Ag; his measurements suggest that freezing can produce non-negligible errors. Here we examine both methods and conclude that the freezing method, employing an inside solid-liquid interface thermally isolated by an outside interface, can provide realizations of the highest accuracy; in either method, perturbation, by inducing solid-liquid phase transition continuously or intermittently, is essential for detecting equilibrium thermally. The respective merits and disadvantages of these two methods and also of the inner-melt method are discussed. We conclude that in a freezing-point measurement what is being measured is in effect the however minutely varying phase transition, and nonconstitutional equilibrium, temperature ti at the solid-liquid interface. The objective is then to measure the ti that is the best measure of tf, which is, normally, the plateau temperature.
Thermodynamic and kinetic anisotropies in octane thin films.
Haji-Akbari, Amir; Debenedetti, Pablo G
2015-12-07
Confinement breaks the translational symmetry of materials, making all thermodynamic and kinetic quantities functions of position. Such symmetry breaking can be used to obtain configurations that are not otherwise accessible in the bulk. Here, we use computer simulations to explore the effect of substrate-liquid interactions on thermodynamic and kinetic anisotropies induced by a solid substrate. We consider n-octane nano-films that are in contact with substrates with varying degrees of attraction, parameterized by an interaction parameter ϵS. Complete freezing of octane nano-films is observed at low temperatures, irrespective of ϵS, while at intermediate temperatures, a frozen monolayer emerges at solid-liquid and vapor-liquid interfaces. By carefully inspecting the profiles of translational and orientational relaxation times, we confirm that the translational and orientational degrees of freedom are decoupled at these frozen monolayers. At sufficiently high temperatures, however, free interfaces and solid-liquid interfaces close to loose (low-ϵS) substrates undergo "pre-freezing," characterized by mild peaks in several thermodynamic quantities. Two distinct dynamic regimes are observed at solid-liquid interfaces. The dynamics is accelerated in the vicinity of loose substrates, while sticky (high-ϵS) substrates decelerate dynamics, sometimes by as much as two orders of magnitude. These two distinct dynamical regimes have been previously reported by Haji-Akbari and Debenedetti [J. Chem. Phys. 141, 024506 (2014)] for a model atomic glass-forming liquid. We also confirm the existence of two correlations-proposed in the above-mentioned work-in solid-liquid subsurface regions of octane thin films, i.e., a correlation between atomic density and normal stress, and between atomic translational relaxation time and lateral stress. Finally, we inspect the ability of different regions of an octane film to explore the potential energy landscape by performing inherent structure calculations, and observe no noticeable difference between the free surface and the bulk in efficiently exploring the potential energy landscape. This is unlike the films of model atomic glass formers that tend to sample their respective landscape more efficiently at free surfaces. We discuss the implications of this finding to the ability of octane-and other n-alkanes-to form ultrastable glasses.
Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
Liu, Mingjie; Zheng, Yongmei; Zhai, Jin; Jiang, Lei
2010-03-16
Super-antiwetting interfaces, such as superhydrophobic and superamphiphobic surfaces in air and superoleophobic interfaces in water, with special liquid-solid adhesion have recently attracted worldwide attention. Through tuning surface microstructures and compositions to achieve certain solid/liquid contact modes, we can effectively control the liquid-solid adhesion in a super-antiwetting state. In this Account, we review our recent progress in the design and fabrication of these bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Low-adhesion superhydrophobic surfaces are biologically inspired, typically by the lotus leaf. Wettability investigated at micro- and nanoscale reveals that the low adhesion of the lotus surface originates from the composite contact mode, a microdroplet bridging several contacts, within the hierarchical structures. Recently high-adhesion superhydrophobic surfaces have also attracted research attention. These surfaces are inspired by the surfaces of gecko feet and rose petals. Accordingly, we propose two biomimetic approaches for the fabrication of high-adhesion superhydrophobic surfaces. First, to mimic a sticky gecko's foot, we designed structures with nanoscale pores that could trap air isolated from the atmosphere. In this case, the negative pressure induced by the volume change of sealed air as the droplet is pulled away from surface can produce a normal adhesive force. Second, we constructed microstructures with size and topography similar to that of a rose petal. The resulting materials hold air gaps in their nanoscale folds, controlling the superhydrophobicity in a Wenzel state on the microscale. Furthermore, we can tune the liquid-solid adhesion on the same superhydrophobic surface by dynamically controlling the orientations of microstructures without altering the surface composition. The superhydrophobic wings of the butterfly (Morpho aega) show directional adhesion: a droplet easily rolls off the surface of wings along one direction but is pinned tightly against rolling in the opposite direction. Through coordinating the stimuli-responsive materials and appropriate surface-geometry structures, we developed materials with reversible transitions between a low-adhesive rolling state and a high-adhesive pinning state for water droplets on the superhydrophobic surfaces, which were controlled by temperature and magnetic and electric fields. In addition to the experiments done in air, we also demonstrated bioinspired superoleophobic water/solid interfaces with special adhesion to underwater oil droplets and platelets. In these experiments, the high content of water trapped in the micro- and nanostructures played a key role in reducing the adhesion of the oil droplets and platelets. These findings will offer innovative insights into the design of novel antibioadhesion materials.
NASA Astrophysics Data System (ADS)
Jin, H.; Kozdras, M. S.; Amirkhiz, B. Shalchi; Winkler, S. L.
2018-05-01
The liquid-solid interaction during brazing at 592 °C to 605 °C and its effects on mechanical properties were investigated in a series of Al-Si/Al-Mn-Cu-Mg brazing sheets with different Mg contents. Depending on the Mg level in core alloy and the brazing temperature, critical changes of local chemistry and microstructure related to the liquid-solid interaction occur, including solid-state diffusion, uniform clad-core interface migration, and grain boundary penetration (GBP). When the Mg in core alloy is below 1 wt pct, the interaction is limited and the formation of a dense precipitation band due to solid-state diffusion of Si from the clad to the core is dominant. As the Mg exceeds 1 wt pct, very extensive interaction occurs resulting in clad-core interface migration and GBP of Si into the core, both involving local melting and re-solidification of the core alloy. Whenever Si from the clad encounters Mg in the core due to the interaction, Mg2Si precipitates are formed leading to significant improvement of strength. However, the interface migration and GBP drastically reduce the ductility, due to the segregation of coarse secondary phase particles along the newly formed grain boundaries.
NASA Astrophysics Data System (ADS)
Jin, H.; Kozdras, M. S.; Amirkhiz, B. Shalchi; Winkler, S. L.
2018-07-01
The liquid-solid interaction during brazing at 592 °C to 605 °C and its effects on mechanical properties were investigated in a series of Al-Si/Al-Mn-Cu-Mg brazing sheets with different Mg contents. Depending on the Mg level in core alloy and the brazing temperature, critical changes of local chemistry and microstructure related to the liquid-solid interaction occur, including solid-state diffusion, uniform clad-core interface migration, and grain boundary penetration (GBP). When the Mg in core alloy is below 1 wt pct, the interaction is limited and the formation of a dense precipitation band due to solid-state diffusion of Si from the clad to the core is dominant. As the Mg exceeds 1 wt pct, very extensive interaction occurs resulting in clad-core interface migration and GBP of Si into the core, both involving local melting and re-solidification of the core alloy. Whenever Si from the clad encounters Mg in the core due to the interaction, Mg2Si precipitates are formed leading to significant improvement of strength. However, the interface migration and GBP drastically reduce the ductility, due to the segregation of coarse secondary phase particles along the newly formed grain boundaries.
Nonlinear vibrational spectroscopy of surfactants at liquid interfaces
NASA Astrophysics Data System (ADS)
Miranda, Paulo Barbeitas
Surfactants are widely used to modify physical and chemical properties of interfaces. They play an important role in many technological problems. Surfactant monolayers are also of great scientific interest because they are two-dimensional systems that may exhibit a very rich phase transition behavior and can also be considered as a model system for biological interfaces. In this Thesis, we use a second-order nonlinear optical technique (Sum-Frequency Generation - SFG) to obtain vibrational spectra of surfactant monolayers at liquid/vapor and solid/liquid interfaces. The technique has several advantages: it is intrinsically surface-specific, can be applied to buried interfaces, has submonolayer sensitivity and is remarkably sensitive to the conformational order of surfactant monolayers. The first part of the Thesis is concerned with surfactant monolayers at the air/water interface (Langmuir films). Surface crystallization of an alcohol Langmuir film and of liquid alkanes are studied and their phase transition behaviors are found to be of different nature, although driven by similar intermolecular interactions. The effect of crystalline order of Langmuir monolayers on the interfacial water structure is also investigated. It is shown that water forms a well-ordered hydrogen-bonded network underneath an alcohol monolayer, in contrast to a fatty acid monolayer which induces a more disordered structure. In the latter case, ionization of the monolayer becomes more significant with increase of the water pH value, leading to an electric-field-induced ordering of interfacial water molecules. We also show that the orientation and conformation of fairly complicated molecules in a Langmuir monolayer can be completely mapped out using a combination of SFG and second harmonic generation (SHG). For a quantitative analysis of molecular orientation at an interface, local-field corrections must be included. The second part is a study of self-assembled surfactant monolayers at the solid/liquid interface. It is shown that the conformation of a monolayer adsorbed onto a solid substrate and immersed in a liquid is highly dependent on the monolayer surface density and on the nature of intermolecular interactions in the liquid. Fully packed monolayers are well ordered in any environment due to strong surfactant-surfactant interactions and limited liquid penetration into the monolayer. In contrast, loosely packed monolayers are very sensitive to the liquid environment. Non-polar liquids cause a mild increase in the surfactant conformational disorder. Polar liquids induce more disorder and hydrogen-bonding liquids produce highly disordered conformations due to the hydrophobic effect. When immersed in alkanes, under certain conditions the surfactant chains may become highly ordered due to their interaction with the liquid molecules (chain-chain interaction). In the case of long-chain alcohols, competition between the hydrophobic effect and chain-chain interaction is observed.
Estimation of the curvature of the solid liquid interface during Bridgman crystal growth
NASA Astrophysics Data System (ADS)
Barat, Catherine; Duffar, Thierry; Garandet, Jean-Paul
1998-11-01
An approximate solution for the solid/liquid interface curvature due to the crucible effect in crystal growth is derived from simple heat flux considerations. The numerical modelling of the problem carried out with the help of the finite element code FIDAP supports the predictions of our analytical expression and allows to identify its range of validity. Experimental interface curvatures, measured in gallium antimonide samples grown by the vertical Bridgman method, are seen to compare satisfactorily to analytical and numerical results. Other literature data are also in fair agreement with the predictions of our models in the case where the amount of heat carried by the crucible is small compared to the overall heat flux.
ERIC Educational Resources Information Center
VanCleave, Janice
2000-01-01
Describes a science activity in which students make a non-Newtonian fluid (slime), which has both solid and liquid properties. After reviewing the shape and volume of solids and volume of liquids, students make the slime using glue, liquid starch, and food coloring. They can experiment by rolling and dropping slime balls and by pulling the slime…
Thermal Design, Analysis, and Testing of the Quench Module Insert Bread Board
NASA Technical Reports Server (NTRS)
Breeding Shawn; Khodabandeh, Julia; Turner, Larry D. (Technical Monitor)
2001-01-01
The science requirements for materials processing is to provide the desired PI requirements of thermal gradient, solid/liquid interface front velocity for a given processing temperature desired by the PI. Processing is performed by translating the furnace with the sample in a stationary position to minimize any disturbances to the solid/liquid interface front during steady state processing. Typical sample materials for this metals and alloys furnace are lead-tin alloys, lead-antimony alloys, and aluminum alloys. Samples must be safe to process and therefore typically are contained with hermetically sealed cartridge tubes (gas tight) with inner ceramic liners (liquid tight) to prevent contamination and/or reaction of the sample material with the cartridge tube.
Effect of interfaces on the nearby Brownian motion.
Huang, Kai; Szlufarska, Izabela
2015-10-06
Near-boundary Brownian motion is a classic hydrodynamic problem of great importance in a variety of fields, from biophysics to micro-/nanofluidics. However, owing to challenges in experimental measurements of near-boundary dynamics, the effect of interfaces on Brownian motion has remained elusive. Here we report a computational study of this effect using μs-long large-scale molecular dynamics simulations and our newly developed Green-Kubo relation for friction at the liquid-solid interface. Our computer experiment unambiguously reveals that the t(-3/2) long-time decay of the velocity autocorrelation function of a Brownian particle in bulk liquid is replaced by a t(-5/2) decay near a boundary. We discover a general breakdown of traditional no-slip boundary condition at short time scales and we show that this breakdown has a profound impact on the near-boundary Brownian motion. Our results demonstrate the potential of Brownian-particle-based micro-/nanosonar to probe the local wettability of liquid-solid interfaces.
Liquid-liquid phase transformations and the shape of the melting curve.
Makov, G; Yahel, E
2011-05-28
The phase diagram of elemental liquids has been found to be surprisingly rich, including variations in the melting curve and transitions in the liquid phase. The effect of these transitions in the liquid state on the shape of the melting curve is analyzed. First-order phase transitions intersecting the melting curve imply piecewise continuous melting curves, with solid-solid transitions generating upward kinks or minima and liquid-liquid transitions generating downward kinks or maxima. For liquid-liquid phase transitions proposed for carbon, phosphorous selenium, and possibly nitrogen, we find that the melting curve exhibits a kink. Continuous transitions imply smooth extrema in the melting curve, the curvature of which is described by an exact thermodynamic relation. This expression indicates that a minimum in the melting curve requires the solid compressibility to be greater than that of the liquid, a very unusual situation. This relation is employed to predict the loci of smooth maxima at negative pressures for liquids with anomalous melting curves. The relation between the location of the melting curve maximum and the two-state model of continuous liquid-liquid transitions is discussed and illustrated by the case of tellurium. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Sun, Shoutian; Ramu Ramachandran, Bala; Wick, Collin D.
2018-02-01
New interatomic potentials for pure Ti and Al, and binary TiAl were developed utilizing the second nearest neighbour modified embedded-atom method (MEAM) formalism. The potentials were parameterized to reproduce multiple properties spanning bulk solids, solid surfaces, solid/liquid phase changes, and liquid interfacial properties. This was carried out using a newly developed optimization procedure that combined the simple minimization of a fitness function with a genetic algorithm to efficiently span the parameter space. The resulting MEAM potentials gave good agreement with experimental and DFT solid and liquid properties, and reproduced the melting points for Ti, Al, and TiAl. However, the surface tensions from the model consistently underestimated experimental values. Liquid TiAl’s surface was found to be mostly covered with Al atoms, showing that Al has a significant propensity for the liquid/air interface.
Sun, Shoutian; Ramachandran, Bala Ramu; Wick, Collin D
2018-02-21
New interatomic potentials for pure Ti and Al, and binary TiAl were developed utilizing the second nearest neighbour modified embedded-atom method (MEAM) formalism. The potentials were parameterized to reproduce multiple properties spanning bulk solids, solid surfaces, solid/liquid phase changes, and liquid interfacial properties. This was carried out using a newly developed optimization procedure that combined the simple minimization of a fitness function with a genetic algorithm to efficiently span the parameter space. The resulting MEAM potentials gave good agreement with experimental and DFT solid and liquid properties, and reproduced the melting points for Ti, Al, and TiAl. However, the surface tensions from the model consistently underestimated experimental values. Liquid TiAl's surface was found to be mostly covered with Al atoms, showing that Al has a significant propensity for the liquid/air interface.
Space- and Ground-Based Crystal Growth Using a Baffle (CGB)
NASA Technical Reports Server (NTRS)
Ostrogorsky, A. G.; Marin, C.; Peignier, T.; Duffar, T.; Volz, M.; Jeter, L.; Luz, P.
2001-01-01
The composition of semiconductor crystals produced in space by conventional melt-growth processes (directional solidification and zone melting) is affected by minute levels of residual micro-acceleration, which causes natural convection. The residual acceleration has random magnitude, direction and frequency. Therefore, the velocity field in the melt is apriori unpredictable. As a result, the composition of the crystals grown in space can not be predicted and reproduced. The method for directional solidification with a submerged heater or a baffle was developed under NASA sponsorship. The disk-shaped baffle acts as a partition, creating a small melt zone at the solid-liquid interface. As a result, in ground based experiment the level of buoyancy-driven convection at the interface is significantly reduced. In several experiments with Te-doped GaSb, nearly diffusion controlled segregation was achieved.
Biomechanical ordering and buckling due to microbial growth confined at oil-water interfaces
NASA Astrophysics Data System (ADS)
Juarez, Gabriel; Stocker, Roman
2015-11-01
Bacteria are unicellular organisms that often exist as densely populated, surface-associated communities. Bacteria are also environmental colloids and spontaneously attach and self-assemble at liquid-liquid interfaces. Here, we present results on the growth dynamics of individual rod-shaped bacteria confined to finite oil-water interfaces of varying curvature. Through experiments using microfluidic chambers and time-lapse microscopy, we study the formation of macroscopic structures observed as adsorbed bacteria grow, divide, and self-assemble in a nematic phase due to biomechanical interactions. The continued growth at the interface leads to a jammed monolayer of cells, which then causes the interface to buckle and undergo large deformations including wrinkling and tubulation. These observations highlight the interplay between physical environment, such as confinement and interface curvature, and active biological processes, such as growth, at the scale of individual agents and shape our understanding of macroscale processes such as microbial degradation of oil in the ocean.
Application of interface waves for near surface damage detection in hybrid structures
NASA Astrophysics Data System (ADS)
Jahanbin, M.; Santhanam, S.; Ihn, J.-B.; Cox, A.
2017-04-01
Guided waves are acoustic waves that are guided by boundaries. Depending on the structural geometry, guided waves can either propagate between boundaries, known as plate waves, or propagate on the surface of the objects. Many different types of surface waves exist based on the material property of the boundary. For example Rayleigh wave in solid - air, Scholte wave in solid - liquid, Stoneley in solid - solid interface and many other different forms like Love wave on inhomogeneous surfaces, creeping waves, etc. This research work is demonstrating the application of surface and interface waves for detection of interfacial damages in hybrid bonded structures.
Surface chemistry of carbon dioxide revisited
NASA Astrophysics Data System (ADS)
Taifan, William; Boily, Jean-François; Baltrusaitis, Jonas
2016-12-01
This review discusses modern developments in CO2 surface chemistry by focusing on the work published since the original review by H.J. Freund and M.W. Roberts two decades ago (Surface Science Reports 25 (1996) 225-273). It includes relevant fundamentals pertaining to the topics covered in that earlier review, such as conventional metal and metal oxide surfaces and CO2 interactions thereon. While UHV spectroscopy has routinely been applied for CO2 gas-solid interface analysis, the present work goes further by describing surface-CO2 interactions under elevated CO2 pressure on non-oxide surfaces, such as zeolites, sulfides, carbides and nitrides. Furthermore, it describes additional salient in situ techniques relevant to the resolution of the interfacial chemistry of CO2, notably infrared spectroscopy and state-of-the-art theoretical methods, currently used in the resolution of solid and soluble carbonate species in liquid-water vapor, liquid-solid and liquid-liquid interfaces. These techniques are directly relevant to fundamental, natural and technological settings, such as heterogeneous and environmental catalysis and CO2 sequestration.
Liquid-solid joining of bulk metallic glasses
NASA Astrophysics Data System (ADS)
Huang, Yongjiang; Xue, Peng; Guo, Shu; Wu, Yang; Cheng, Xiang; Fan, Hongbo; Ning, Zhiliang; Cao, Fuyang; Xing, Dawei; Sun, Jianfei; Liaw, Peter K.
2016-07-01
Here, we successfully welded two bulk metallic glass (BMG) materials, Zr51Ti5Ni10Cu25Al9 and Zr50.7Cu28Ni9Al12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. The liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components.
Liquid-solid joining of bulk metallic glasses
Huang, Yongjiang; Xue, Peng; Guo, Shu; Wu, Yang; Cheng, Xiang; Fan, Hongbo; Ning, Zhiliang; Cao, Fuyang; Xing, Dawei; Sun, Jianfei; Liaw, Peter K.
2016-01-01
Here, we successfully welded two bulk metallic glass (BMG) materials, Zr51Ti5Ni10Cu25Al9 and Zr50.7Cu28Ni9Al12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. The liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components. PMID:27471073
Liquid-solid joining of bulk metallic glasses.
Huang, Yongjiang; Xue, Peng; Guo, Shu; Wu, Yang; Cheng, Xiang; Fan, Hongbo; Ning, Zhiliang; Cao, Fuyang; Xing, Dawei; Sun, Jianfei; Liaw, Peter K
2016-07-29
Here, we successfully welded two bulk metallic glass (BMG) materials, Zr51Ti5Ni10Cu25Al9 and Zr50.7Cu28Ni9Al12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. The liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components.
Liquid-solid joining of bulk metallic glasses
Huang, Yongjiang; Xue, Peng; Guo, Shu; ...
2016-07-29
Here, we successfully welded two bulk metallic glass (BMG) materials, Zr 51Ti 5Ni 10Cu 25Al 9 and Zr 50.7Cu 28Ni 9Al 12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. In conclusion, the liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components.
From Two-Phase to Three-Phase: The New Electrochemical Interface by Oxide Electrocatalysts
NASA Astrophysics Data System (ADS)
Xu, Zhichuan J.
2018-03-01
Electrochemical reactions typically occur at the interface between a solid electrode and a liquid electrolyte. The charge exchange behaviour between these two phases determines the kinetics of electrochemical reactions. In the past few years, significant advances have been made in the development of metal oxide electrocatalysts for fuel cell and electrolyser reactions. However, considerable gaps remain in the fundamental understanding of the charge transfer pathways and the interaction between the metal oxides and the conducting substrate on which they are located. In particular, the electrochemical interfaces of metal oxides are significantly different from the traditional (metal) ones, where only a conductive solid electrode and a liquid electrolyte are considered. Oxides are insulating and have to be combined with carbon as a conductive mediator. This electrode configuration results in a three-phase electrochemical interface, consisting of the insulating oxide, the conductive carbon, and the liquid electrolyte. To date, the mechanistic insights into this kind of non-traditional electrochemical interface remain unclear. Consequently conventional electrochemistry concepts, established on classical electrode materials and their two-phase interfaces, are facing challenges when employed for explaining these new electrode materials. [Figure not available: see fulltext.
Peljo, Pekka; Scanlon, Micheál D; Olaya, Astrid J; Rivier, Lucie; Smirnov, Evgeny; Girault, Hubert H
2017-08-03
Redox electrocatalysis (catalysis of electron-transfer reactions by floating conductive particles) is discussed from the point-of-view of Fermi level equilibration, and an overall theoretical framework is given. Examples of redox electrocatalysis in solution, in bipolar configuration, and at liquid-liquid interfaces are provided, highlighting that bipolar and liquid-liquid interfacial systems allow the study of the electrocatalytic properties of particles without effects from the support, but only liquid-liquid interfaces allow measurement of the electrocatalytic current directly. Additionally, photoinduced redox electrocatalysis will be of interest, for example, to achieve water splitting.
Active oil-water interfaces: buckling and deformation of oil drops by bacteria
NASA Astrophysics Data System (ADS)
Juarez, Gabriel; Stocker, Roman
2014-11-01
Bacteria are unicellular organisms that seek nutrients and energy for growth, division, and self-propulsion. Bacteria are also natural colloidal particles that attach and self-assemble at liquid-liquid interfaces. Here, we present experimental results on active oil-water interfaces that spontaneously form when bacteria accumulate or grow on the interface. Using phase-contrast and fluorescence microscopy, we simultaneously observed the dynamics of adsorbed Alcanivorax bacteria and the oil-water interface within microfluidic devices. We find that, by growing and dividing, adsorbed bacteria form a jammed monolayer of cells that encapsulates the entire oil drop. As bacteria continue to grow at the interface, the drop buckles and the interface undergoes strong deformations. The bacteria act to stabilize non-equilibrium shapes of the oil-phase such wrinkling and tubulation. In addition to presenting a natural example of a living interface, these findings shape our understanding of microbial degradation of oil and may have important repercussions on engineering interventions for oil bioremediation.
NASA Astrophysics Data System (ADS)
Yeckel, Andrew; Patrick Doty, F.; Derby, Jeffrey J.
1999-05-01
Three-dimensional axisymmetric, time-dependent simulations of the high-pressure vertical Bridgman growth of large-diameter cadmium zinc telluride are performed to study the effect of steady crucible rotation on axial and radial segregation in the grown crystal. The model includes details of heat transfer, melt convection, solid-liquid interface shape, and pseudo-binary zinc segregation. Imposing a moderate rotation rate of 10 rpm on the system slightly improves axial segregation but makes radial segregation much worse. Moreover, values of dimensionless thermal Rossby and Taylor numbers calculated for this system indicate that the baroclinic instability may occur at the rotation rates studied.
Direct-write liquid phase transformations with a scanning transmission electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unocic, Raymond R.; Lupini, Andrew R.; Borisevich, Albina Y.
The highly energetic electron beam from a scanning transmission electron microscope (STEM) can induce local changes in the state of matter, ranging from local knock-out and atomic movement, to amorphization/crystallization, and chemical/electrochemical reactions occuring at localized liquid-solid and gas-solid interfaces. To date, fundamental studies of e-beam induced phenomena and practical applications have been limited by conventional e-beam rastering modes that allow only for uniform e-beam exposures. Here we develop an automated liquid phase nanolithography method that is capable of directly writing nanometer scaled features within silicon nitride encapsulated liquid cells. An external beam control system, connected to the scan coilsmore » of an aberration-corrected STEM, is used to precisely control the position, dwell time, and scan velocity of a sub-nanometer STEM probe. Site-specific locations in a sealed liquid cell containing an aqueous solution of H 2PdCl 4 are irradiated to controllably deposit palladium onto silicon nitride membranes. We determine the threshold electron dose required for the radiolytic deposition of metallic palladium, explore the influence of electron dose on the feature size and morphology of nanolithographically patterned nanostructures, and propose a feedback-controlled monitoring method for active control of the nanofabricated structures through STEM detector signal monitoring. As a result, this approach enables both fundamental studies of electron beam induced interactions with matter, as well as opens a pathway to fabricate nanostructures with tailored architectures and chemistries via shape-controlled nanolithographic patterning from liquid phase precursors.« less
Direct-write liquid phase transformations with a scanning transmission electron microscope
Unocic, Raymond R.; Lupini, Andrew R.; Borisevich, Albina Y.; ...
2016-08-03
The highly energetic electron beam from a scanning transmission electron microscope (STEM) can induce local changes in the state of matter, ranging from local knock-out and atomic movement, to amorphization/crystallization, and chemical/electrochemical reactions occuring at localized liquid-solid and gas-solid interfaces. To date, fundamental studies of e-beam induced phenomena and practical applications have been limited by conventional e-beam rastering modes that allow only for uniform e-beam exposures. Here we develop an automated liquid phase nanolithography method that is capable of directly writing nanometer scaled features within silicon nitride encapsulated liquid cells. An external beam control system, connected to the scan coilsmore » of an aberration-corrected STEM, is used to precisely control the position, dwell time, and scan velocity of a sub-nanometer STEM probe. Site-specific locations in a sealed liquid cell containing an aqueous solution of H 2PdCl 4 are irradiated to controllably deposit palladium onto silicon nitride membranes. We determine the threshold electron dose required for the radiolytic deposition of metallic palladium, explore the influence of electron dose on the feature size and morphology of nanolithographically patterned nanostructures, and propose a feedback-controlled monitoring method for active control of the nanofabricated structures through STEM detector signal monitoring. As a result, this approach enables both fundamental studies of electron beam induced interactions with matter, as well as opens a pathway to fabricate nanostructures with tailored architectures and chemistries via shape-controlled nanolithographic patterning from liquid phase precursors.« less
Domain and network aggregation of CdTe quantum rods within Langmuir Blodgett monolayers
NASA Astrophysics Data System (ADS)
Zimnitsky, Dmitry; Xu, Jun; Lin, Zhiqun; Tsukruk, Vladimir V.
2008-05-01
Control over the organization of quantum rods was demonstrated by changing the surface area at the air-liquid interface by means of the Langmuir-Blodgett (LB) technique. The LB isotherm of CdTe quantum rods capped with a mixture of alkylphosphines shows a transition point in the liquid-solid state, which is caused by the inter-rod reorganization. As we observed, at low surface pressure the quantum rods are assembled into round-shaped aggregates composed of a monolayer of nanorods packed in limited-size clusters with random orientation. The increase of the surface pressure leads to the rearrangement of these aggregates into elongated bundles composed of uniformly oriented nanorod clusters. Further compression results in denser packing of nanorods aggregates and in the transformation of monolayered domains into a continuous network of locally ordered quantum rods.
NASA Astrophysics Data System (ADS)
Gaigeot, Marie-Pierre; Sulpizi, Marialore
2012-03-01
Liquid-solid interfaces play an important role in a number of phenomena encountered in biological, chemical and physical processes. Surface-induced changes of the material properties are not only important for the solid support but also for the liquid itself. In particular, it is now well established that water at the interface is substantially different from bulk water, even in the proximity of apparently inert surfaces such as a simple metal. The complex chemistry at liquid-solid interfaces is typically fundamental to heterogeneous catalysis and electrochemistry, and has become especially topical in connection with the search for new materials for energy production. A quite remarkable example is the development of cheap yet efficient solar cells, whose basic components are dye molecules grafted to the surface of an oxide material and in contact with an electrolytic solution. In life science, the most important liquid-solid interfaces are the water-cell-membrane interfaces. Phenomena occurring at the surface of phospholipid bilayers control the docking of proteins, the transmission of signals as well as transport of molecules in and out of the cell. Recently the development of bio-compatible materials has lead to research on the interface between bio-compatible material and lipid/proteins in aqueous solution. Gaining a microscopic insight into the processes occurring at liquid-solid interfaces is therefore fundamental to a wide range of disciplines. This special section collects some contributions to the CECAM Workshop 'Liquid/Solid interfaces: Structure and Dynamics from Spectroscopy and Simulations' which took place in Lausanne, Switzerland in June 2011. Our main aim was to bring together knowledge and expertise from different communities in order to advance our microscopic understanding of the structure and dynamics of liquids at interfaces. In particular, one of our ambitions was to foster discussion between the experimental and theoretical/computational communities. On the experimental side, surface specific techniques, such as non-linear optical spectroscopy (sum frequency generation spectroscopy (SFG) and second harmonic generation (SHG)), surface sensitive x-ray scattering, in situ scanning tunneling microscopy (STM) and infrared reflection absorption spectroscopy provide information on layers of nanometric thickness at the interface. On the other hand, it is quite clear that the experiments require theoretical modelling in order to dissect the experimental results and to rationalize the different factors that contribute to the interfacial properties. In this respect molecular dynamics simulations are a major tool. While many successes have already been achieved with molecular dynamics simulations based on empirical force fields, first principles molecular dynamics simulations are now emerging as the other major approach where structure and reactivity are treated in a consistent way. Recent progress within the past 3-5 years on efficient treatments of basis sets and long range interactions in density functional theory (DFT) indeed extend such simulation capabilities to hundreds and thousands of atoms, thus allowing realistic models for interfaces to be tackled, maintaining first principles quality. Most of these simulations bring information on the structural organization of the solvent in the interfacial region between the solid and the liquid, but very few investigate the supplementary challenge of extracting vibrational spectroscopic fingerprints of the interface and, in particular, the direct modeling of the vibrational sum frequency generation (VSFG) non-linear spectra. The present special section reports an interesting contribution from the group of R Y Shen who pioneered VSFG optical experiments. They show how VSFG measurements can be used to unravel the behavior of interfacial water on alumina Al2O3 as a function of pH. The groups of A Hodgson and C Busse respectively provide complementary experiments based on low energy electron diffraction (LEED), He atom scattering (HAS) and STM, to investigate the organization of water on metal, namely Pd(111) and Pt(111). Direct measurements of hyperpolarizabilities for non-linear spectroscopy can be made through hyper-Rayleigh scattering experiments, which are presented here by the group of P F Brevet on gold and silver nanoparticles. From the point of view of molecular dynamics simulations of interfaces, complementary levels of calculations are presented in this special section. The groups of K Leung, M-P Gaigeot, M Sulpizi and M Sprik provide theoretical investigations with DFT-based molecular dynamics simulations. Leung et al and Gaigeot et al address the hot topic issue of the reactivity of oxides surface sites and especially reliable methods to calculate pKas of these sites, with simulations taking into account both the solid and the liquid explicitly, and at the same first principles level of theory. Gaigeot, Sprik and Sulpizi furthermore combine the information on the structural organization of liquid water at the interface with quartz and alumina via pKa calculations and vibrational features (and their microscopic assignments). Mixed quantum/classical molecular dynamics (QM/MM) simulations are presented by Ishiyama and Morita for the investigation of another topical interface, i.e. the liquid-air interface. They provide the theoretical VSFG spectrum of the water-vapor interface and some understanding at the microscopic level of the experimental vibrational features. Molecular dynamics simulations based on empirical force fields have been applied to investigate hydrophobic interfaces by the groups of B Space and P Carloni. Carloni et al address salt effects at water-hydrophobic interfaces, investigating how the salts affect the structural organization of water at these interfaces. Space et al provide theoretical approximations to VSFG calculations in the special case of the carbon tetrachloride-water interface and the assignments of the experimental recorded signatures. 'More traditional' DFT static calculations can be applied to complex objects at interfaces, providing their vibrational spectra, and two papers in this special section illustrate such approaches. Ceccet et al extract first hyperpolarizability tensors from DFT calculations on aliphatic chains and simulate the related VSFG spectra. They also investigate the effect of different functionals on the final signatures. Liegeois et al investigate functionalized surfaces, mainly focusing on IR and Raman spectral features, and provide very precise vibrational assignments depending on chemisorption or physisorption of the adsorbed molecules. We are grateful to all the authors for their contributions to this special section and we hope that readers will enjoy this collection of papers and that they will find further motivation to investigate and understand the complex phenomena occurring at interfaces. Liquid-solid interfaces contents The interfacial structure of water/protonated α-Al2O3 (112¯0) as a function of pHJ Sung, Y R Shen and G A Waychunas Strain relief and disorder in commensurate water layers formed on Pd(111)F McBride, A Omer, C M Clay, L Cummings, G R Darling and A Hodgson H2O on Pt(111): structure and stability of the first wetting layer Sebastian Standop, Markus Morgenstern, Thomas Michely and Carsten Busse Effect of a thioalkane capping layer on the first hyperpolarizabilities of gold and silver nanoparticles Yara El Harfouch, Emmanuel Benichou, Franck Bertorelle, Isabelle Russier-Antoine, Christian Jonin, Noelle Lascoux and Pierre F Brevet Predicting the acidity constant of a goethite hydroxyl group from first principlesKevin Leung and Louise J Criscenti Oxide/water interfaces: how the surface chemistry modifies interfacial water properties Marie-Pierre Gaigeot, Michiel Sprik and Marialore Sulpizi Vibrational spectrum at a water surface: a hybrid quantum mechanics/molecular mechanics molecular dynamics approach Tatsuya Ishiyama, Hideaki Takahashi and Akihiro Morita A theoretical study of the sum frequency vibrational spectroscopy of the carbon tetrachloride/water interface Anthony J Green, Angela Perry, Preston B Moore and Brian Space Salt effects on water/hydrophobic liquid interfaces: a molecular dynamics study Chao Zhang and Paolo Carloni Density functional theory-based simulations of sum frequency generation spectra involving methyl stretching vibrations: effect of the molecular model on the deduced molecular orientation and comparison with an analytical approach F Cecchet, D Lis, Y Caudano, A A Mani, A Peremans, B Champagne and J Guthmuller Towards modelling the vibrational signatures of functionalized surfaces: carboxylic acids on H-Si(111) surfaces Conrard Giresse Tetsassi Feugmo, Benoît Champagne, Yves Caudano, Francesca Cecchet, Yves J Chabal and Vincent Liégeois
Zhang, Jianguo; Milzetti, Jasmin; Leroy, Frédéric; Müller-Plathe, Florian
2017-03-21
When droplets of nanoparticle suspension evaporate from surfaces, they leave behind a deposit of nanoparticles. The mechanism of evaporation-induced pattern formation in the deposit is studied by molecular dynamics simulations for sessile nanodroplets. The influence of the interaction between nanoparticles and liquid molecules and the influence of the evaporation rate on the final deposition pattern are addressed. When the nanoparticle-liquid interaction is weaker than the liquid-liquid interaction, an interaction-driven or evaporation-induced layer of nanoparticles appears at the liquid-vapor interface and eventually collapses onto the solid surface to form a uniform deposit independently of the evaporation rate. When the nanoparticle-liquid and liquid-liquid interactions are comparable, the nanoparticles are dispersed inside the droplet and evaporation takes place with the contact line pinned at a surface defect. In such a case, a pattern with an approximate ring-like shape is found with fast evaporation, while a more uniform distribution is observed with slower evaporation. When the liquid-nanoparticle interaction is stronger than the liquid-liquid interaction, evaporation always occurs with receding contact line. The final deposition pattern changes from volcano-like to pancake-like with decreasing evaporation rate. These findings might help to design nanoscale structures like nanopatterns or nanowires on surface through controlled solvent evaporation.
NASA Astrophysics Data System (ADS)
Zhang, Jianguo; Milzetti, Jasmin; Leroy, Frédéric; Müller-Plathe, Florian
2017-03-01
When droplets of nanoparticle suspension evaporate from surfaces, they leave behind a deposit of nanoparticles. The mechanism of evaporation-induced pattern formation in the deposit is studied by molecular dynamics simulations for sessile nanodroplets. The influence of the interaction between nanoparticles and liquid molecules and the influence of the evaporation rate on the final deposition pattern are addressed. When the nanoparticle-liquid interaction is weaker than the liquid-liquid interaction, an interaction-driven or evaporation-induced layer of nanoparticles appears at the liquid-vapor interface and eventually collapses onto the solid surface to form a uniform deposit independently of the evaporation rate. When the nanoparticle-liquid and liquid-liquid interactions are comparable, the nanoparticles are dispersed inside the droplet and evaporation takes place with the contact line pinned at a surface defect. In such a case, a pattern with an approximate ring-like shape is found with fast evaporation, while a more uniform distribution is observed with slower evaporation. When the liquid-nanoparticle interaction is stronger than the liquid-liquid interaction, evaporation always occurs with receding contact line. The final deposition pattern changes from volcano-like to pancake-like with decreasing evaporation rate. These findings might help to design nanoscale structures like nanopatterns or nanowires on surface through controlled solvent evaporation.
Elasto-capillary interactions of drops and particles
NASA Astrophysics Data System (ADS)
Snoeijer, Jacco; Pandey, Anupam; Karpitschka, Stefan; Nawijn, Charlotte; Botto, Lorenzo; Andreotti, Bruno
2017-11-01
The interaction of solid particles floating on a liquid interface is popularly known as the Cheerios effect. Here we present similar interactions for particles and droplets on elastic surfaces, mediated by elastic deformation. We start with the Inverted Cheerios effect, by considering liquid drops on a solid gel. Remarkably, the interaction can be tuned from attractive to repulsive, as shown experimentally and theoretically. We then turn to more general cases of particles on elastic layers, for which new interaction laws are derived. An overview is given on the various regimes, including the crossover from purely elastic to purely capillary interfaces. ERC Consolidator Grant 616918.
Why droplet dimension can be larger than, equal to, or smaller than the nanowire dimension
NASA Astrophysics Data System (ADS)
Mohammad, S. Noor
2009-11-01
Droplets play central roles in the nanowire (NW) growth by vapor phase mechanisms. These mechanisms include vapor-liquid-solid (VLS), vapor-solid-solid or vapor-solid (VSS), vapor-quasisolid-solid or vapor-quasiliquid-solid (VQS), oxide-assisted growth (OAG), and self-catalytic growth (SCG) mechanisms. Fundamentals of the shape, size, characteristics, and dynamics of droplets and the impacts of them on the NW growth, have been studied. The influence of growth techniques, growth parameters (e.g., growth temperature, partial pressure, gas flow rates, etc.), thermodynamic conditions, surface and interface energy, molar volume, chemical potentials, etc. have been considered on the shapes and sizes of droplets. A model has been presented to explain why droplets can be larger than, equal to, or smaller than the associated NWs. Various growth techniques have been analyzed to understand defects created in NWs. Photoluminescence characteristics have been presented to quantify the roles of droplets in the creation of NW defects. The study highlights the importance of the purity of the droplet material. It attests to the superiority of the SCG mechanism, and clarifies the differences between the VSS, VQS, VLS, and SCG mechanisms. It explains why droplets produced by some mechanisms are visible but droplets produced by some other mechanisms are not visible. It elucidates the formation mechanisms of very large and very small droplets, and discusses the ground rules for droplets creating necked NWs. It puts forth reasons to demonstrate that very large droplets may not behave as droplets.
Variable focus photographic lens without mechanical movements
NASA Astrophysics Data System (ADS)
Chen, Jiabi; Peng, Runling; Zhuang, Songlin
2007-09-01
A novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two double-liquid variable-focus lenses. The liquid lenses, made out of two immiscible liquids, are based on the principle of electrowetting: an effect controlling the wetting properties of a liquid on a solid by modifying the applied voltage at the solid-liquid interface. The structure and principle of the lens system are introduced in this paper. And detailed calculations and simulation examples are presented to predict how two liquid lenses are related to meet the basic requirements of zoom lenses.
Nanoscale structure of the oil-water interface
Fukuto, M.; Ocko, B. M.; Bonthuis, D. J.; ...
2016-12-15
X-ray reflectivity (XR) and atomistic molecular dynamics (MD) simulations, carried out to determine the structure of the oil-water interface, provide new insight into the simplest liquid-liquid interface. For several oils (hexane, dodecane, and hexadecane) the XR shows very good agreement with a monotonic interface-normal electron density profile (EDP) broadened only by capillary waves. Similar agreement is also found for an EDP including a sub-Å thick electron depletion layer separating the oil and the water. As a result, the XR and MD derived depletions are much smaller than reported for the interface between solid-supported hydrophobic monolayers and water.
Corner wetting during the vapor-liquid-solid growth of faceted nanowires
NASA Astrophysics Data System (ADS)
Spencer, Brian; Davis, Stephen
2016-11-01
We consider the corner wetting of liquid drops in the context of vapor-liquid-solid growth of nanowires. Specifically, we construct numerical solutions for the equilibrium shape of a liquid drop on top of a faceted nanowire by solving the Laplace-Young equation with a free boundary determined by mixed boundary conditions. A key result for nanowire growth is that for a range of contact angles there is no equilibrium drop shape that completely wets the corner of the faceted nanowire. Based on our numerical solutions we determine the scaling behavior for the singular surface behavior near corners of the nanowire in terms of the Young contact angle and drop volume.
Stability of the Solid Electrolyte Interface on the Li Electrode in Li–S Batteries
Zheng, Dong; Yang, Xiao-Qing; Qu, Deyang
2016-04-05
In this study, by means of high performance liquid chromatography–mass spectroscopy, the concentration of sulfur and polysulfides was determined in nonaqueous electrolytes. The stability of sulfur and Li in eight electrolytes was studied quantitatively. It was found that sulfur reacted with Li in most of the commonly used electrolytes for lithium–sulfur batteries. The reaction products between sulfur and Li were qualitatively identified. In some cases, the solid electrolyte interface on the Li can successfully prevent the interaction between S and Li; however, it was found that the solid electrolyte interface was damaged by polysulfide ions.
NASA Technical Reports Server (NTRS)
Zeng, X. C.; Stroud, D.
1989-01-01
The previously developed Ginzburg-Landau theory for calculating the crystal-melt interfacial tension of bcc elements to treat the classical one-component plasma (OCP), the charged fermion system, and the Bose crystal. For the OCP, a direct application of the theory of Shih et al. (1987) yields for the surface tension 0.0012(Z-squared e-squared/a-cubed), where Ze is the ionic charge and a is the radius of the ionic sphere. Bose crystal-melt interface is treated by a quantum extension of the classical density-functional theory, using the Feynman formalism to estimate the relevant correlation functions. The theory is applied to the metastable He-4 solid-superfluid interface at T = 0, with a resulting surface tension of 0.085 erg/sq cm, in reasonable agreement with the value extrapolated from the measured surface tension of the bcc solid in the range 1.46-1.76 K. These results suggest that the density-functional approach is a satisfactory mean-field theory for estimating the equilibrium properties of liquid-solid interfaces, given knowledge of the uniform phases.
NASA Astrophysics Data System (ADS)
Divya, Velpula; Sangaranarayanan, M. V.
2018-04-01
Nanostructured conducting polymers have received immense attention during the past few decades on account of their phenomenal usefulness in diverse contexts, while the interface between two immiscible liquids is of great interest in chemical and biological applications. Here we propose a novel Electrode(solid)/Electrolyte(aqueous)/Electrolyte(organic) Interfacial assembly for the synthesis of polymeric nanostructures using a novel concept of three diffuse double layers. There exist remarkable differences between the morphologies of the polymers synthesized using the conventional electrode/electrolyte method and that of the new approach. In contrast to the commonly employed electrodeposition at liquid/liquid interfaces, these polymer modified electrodes can be directly employed in diverse applications such as sensors, supercapacitors etc.
Verch, Andreas; Pfaff, Marina; de Jonge, Niels
2015-06-30
Gold nanoparticles were observed to move at a liquid/solid interface 3 orders of magnitude slower than expected for the movement in a bulk liquid by Brownian motion. The nanoscale movement was studied with scanning transmission electron microscopy (STEM) using a liquid enclosure consisting of microchips with silicon nitride windows. The experiments involved a variation of the electron dose, the coating of the nanoparticles, the surface charge of the enclosing membrane, the viscosity, and the liquid thickness. The observed slow movement was not a result of hydrodynamic hindrance near a wall but instead explained by the presence of a layer of ordered liquid exhibiting a viscosity 5 orders of magnitude larger than a bulk liquid. The increased viscosity presumably led to a dramatic slowdown of the movement. The layer was formed as a result of the surface charge of the silicon nitride windows. The exceptionally slow motion is a crucial aspect of electron microscopy of specimens in liquid, enabling a direct observation of the movement and agglomeration of nanoscale objects in liquid.
Grundke, K; Pöschel, K; Synytska, A; Frenzel, R; Drechsler, A; Nitschke, M; Cordeiro, A L; Uhlmann, P; Welzel, P B
2015-08-01
Contact angle hysteresis phenomena on polymer surfaces have been studied by contact angle measurements using sessile liquid droplets and captive air bubbles in conjunction with a drop shape method known as Axisymmetric Drop Shape Analysis - Profile (ADSA-P). In addition, commercially available sessile drop goniometer techniques were used. The polymer surfaces were characterized with respect to their surface structure (morphology, roughness, swelling) and surface chemistry (elemental surface composition, acid-base characteristics) by scanning electron microscopy (SEM), scanning force microscopy (SFM), ellipsometry, X-ray photoelectron spectroscopy (XPS) and streaming potential measurements. Heterogeneous polymer surfaces with controlled roughness and chemical composition were prepared by different routes using plasma etching and subsequent dip coating or grafting of polymer brushes, anodic oxidation of aluminium substrates coated with thin polymer films, deposition techniques to create regular patterned and rough fractal surfaces from core-shell particles, and block copolymers. To reveal the effects of swelling and reorientation at the solid/liquid interface contact angle hysteresis phenomena on polyimide surfaces, cellulose membranes, and thermo-responsive hydrogels have been studied. The effect of different solutes in the liquid (electrolytes, surfactants) and their impact on contact angle hysteresis were characterized for solid polymers without and with ionizable functional surface groups in aqueous electrolyte solutions of different ion concentrations and pH and for photoresist surfaces in cationic aqueous surfactant solutions. The work is an attempt toward the understanding of contact angle hysteresis phenomena on polymer surfaces aimed at the control of wettability for different applications. Copyright © 2014 Elsevier B.V. All rights reserved.
An Experimental and Computational Study of Directional Solidification in Transparent Materials
NASA Technical Reports Server (NTRS)
Simpson, James E.; deGroh, Henry C., III; Garimella, Suresh V.
1999-01-01
An experimental and numerical study of the horizontal Bridgman growth of pure succinonitrile (SCN) and of a succinonitrile- 1.0 mol.% acetone alloy (SCN- 1.0 mol.% ACE) has been performed. Experiments at growth rates of 0, 2 and 40 micron/s were investigated. The solid/liquid interface was stable (non-dendritic and non-cellular); however, it was not flat. Rather, it was significantly distorted by the influence of convection in the melt and, for the growth cases, by the moving temperature boundary conditions along the ampoule. For the alloy, the interface was.determined to be unstable at growth rates greater than 2.8 micron/s, but stable for the no-growth and 2 micron/s growth cases. When compared to the pure SCN interface, the alloy interface forms closer to the cold zone, indicating that the melting temperature has been suppressed by the addition of the alloying element. Two-dimensional computer simulations were performed for the no-growth case for both the pure and alloy materials. These simulations indicate that a primary longitudinal convective cell is formed in the melt. The maximum magnitude of velocity was calculated to be 1.515 mm/s for pure SCN and 1.724 mm/s for the alloy. The interface shape predicted by the computer simulation agrees well with the experimentally determined shape for the pure SCN case. In ongoing work, numerical simulations of the process during growth conditions are being performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grunwaldt, Jan-Dierk; Ramin, Michael; Rohr, Markus
2005-05-15
A high pressure in situ x-ray absorption spectroscopy cell with two different path lengths and path positions is presented for studying element-specifically both the liquid phase and the solid-liquid interface at pressures up to 250 bar and temperatures up to 220 deg. C. For this purpose, one x-ray path probes the bottom, while the other x-ray path penetrates through the middle of the in situ cell. The basic design of the cell resembles a 10 ml volume batch reactor, which is equipped with in- and outlet lines to dose compressed gases and liquids as well as a stirrer for goodmore » mixing. Due to the use of a polyetheretherketone inset it is also suitable for measurements under corrosive conditions. The characteristic features of the cell are illustrated using case studies from catalysis and solid state chemistry: (a) the ruthenium-catalyzed formylation of an amine in 'supercritical' carbon dioxide in the presence of hydrogen; (b) the cycloaddition of carbon dioxide to propylene oxide in the presence of a solid Zn-based catalyst, and (c) the solvothermal synthesis of MoO{sub 3} nanorods from MoO{sub 3}-2H{sub 2}O.« less
Attoliter Control of Microliquid
NASA Astrophysics Data System (ADS)
Imura, Fumito; Kuroiwa, Hiroyuki; Nakada, Akira; Kosaka, Kouji; Kubota, Hiroshi
2007-11-01
The technology of the sub-femtoliter volume control of liquids in nanometer range pipettes (nanopipettes) has been developed for carrying out surgical operations on living cells. We focus attention on an interface forming between oil and water in a nanopipette. The interface position can be moved by increasing or decreasing the input pressure. If the volume of liquid in the nanopipette can be controlled by moving the position of the interface, cell organelles can be discharged or suctioned and a drug-solution can be injected into the cell. Quantity volume control in the pico-attoliter range using a tapered nanopipette is controlled by the condition of an interface with a convex shape toward the top of the nanopipette. The volume can be controlled by the input pressure corresponding to the interfacial radius without the use of a microscope by preliminarily preparing the pipette shape and the interface radius as a function of the input pressure.
Evaporation of Nanosuspensions on Substrates with Different Hydrophobicity.
Perrin, Lionel; Pajor-Swierzy, Anna; Magdassi, Shlomo; Kamyshny, Alexander; Ortega, Francisco; Rubio, Ramón G
2018-01-24
Liquid drop evaporation on surfaces is present in many industrial and medical applications, e.g., printed electronics, spraying of pesticides, DNA mapping, etc. Despite this strong interest, a theoretical description of the dynamic of the evaporation of complex liquid mixtures and nanosuspensions is still lacking. Indeed, one of the aspects that have not been included in the current theoretical descriptions is the competition between the kinetics of evaporation and the adsorption of surfactants and/or particles at the liquid/vapor and liquid/solid interfaces. Materials formed by an electrically isolating solid on which a patterned conducting layer was formed by the deposits left after drop evaporation have been considered as very promising for building electrical circuits on flexible plastic substrates. In this work, we have done an exhaustive study of the evaporation of nanosuspensions of latex and hydrophobized silver nanoparticles on four substrates of different hydrophobicity. The advancing and receding contact angles as well as the time dependence of the volume of the droplets have been measured over a broad range of particle concentrations. Also, mixtures of silver particles and a surfactant, commonly used in industrial printing, have been examined. Furthermore, the adsorption kinetics at both the air/liquid and solid/liquid interfaces have been measured. Whereas the latex particles do not adsorb at the solid/liquid and only slightly reduce the surface tension, the silver particles strongly adsorb at both interfaces. The experimental results of the evaporation process were compared with the predictions of the theory of Semenov et al. (Evaporation of Sessile Water Droplets: Universal Behavior in the Presence of Contact Angle Hysteresis. Colloids Surf. Physicochem. Eng. Asp. 2011, 391 (1-3), 135-144) and showed surprisingly good agreement despite that the theory was developed for pure liquids. The morphology of the deposits left by the droplets after total evaporation was studied by scanning electronic microscopy, and the effects of the substrate, the particle nature, and their concentrations on these patterns are discussed.
Surface waves on floating liquids induced by ultrasound field
NASA Astrophysics Data System (ADS)
Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B.
2013-01-01
We demonstrate a kind of wave pattern on the surface of floating liquids in a modulated ultrasound field. The waves are related to the liquid/solid phase transformation process. The nucleation sites of the eutectics locate at the center of these waves, and the eutectic growth direction is parallel to the propagation direction of the waves. It is revealed that such wave phenomenon can be ascribed to the interaction between ultrasound and eutectic growth at the liquid/solid interface. This result may provide a potential method for fabricating wave patterned surfaces on eutectic alloys.
Thermal analysis of Bridgman-Stockbarger growth. [mercury cadmium telluride single crystals
NASA Technical Reports Server (NTRS)
Knopf, F. W.
1979-01-01
A thermal analysis of a cylindrical HgCdTe sample in a Bridgman-Stockbarger crystal growth configuration was conducted with emphasis on the thermal profile, interface shape and position, and the thermal gradients at the liquid-solid interface. Alloys of HgTe and CdTe with compositions approximating 20 percent CdTe, 80 percent HgTe were used. This composition results in a bandgap suited for the detection of 10.6 micron CO2 radiation. The sensitivity of the sample thermal characteristics to important growth parameters, such as thermal diffusivities, thermal conductivities, furnace temperature profile, ampoule dimensions, and growth velocity was assessed. Numerical techniques and associated computational models necessary to analyze the heat transfer process within the sample and the Bridgman-Stockbarger boundary conditions were developed. This thermal analysis mode was programmed in FORTRAN V, and is currently operational on the MSFC Univac 1100 system.
Design of a zoom lens without motorized optical elements
NASA Astrophysics Data System (ADS)
Peng, Runling; Chen, Jiabi; Zhu, Cheng; Zhuang, Songlin
2007-05-01
A novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two double-liquid variable-focus lenses. The liquid lenses, made out of two immiscible liquids, are based on the principle of electrowetting: an effect controlling the wetting properties of a liquid on a solid by modifying the applied voltage at the solid-liquid interface. The structure and principle of the lens system are introduced in this paper. Detailed calculations and simulation examples are presented to show that this zoom lens system appears viable as the next-generation zoom lens.
Design of a zoom lens without motorized optical elements.
Peng, Runling; Chen, Jiabi; Zhu, Cheng; Zhuang, Songlin
2007-05-28
A novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two double-liquid variable-focus lenses. The liquid lenses, made out of two immiscible liquids, are based on the principle of electrowetting: an effect controlling the wetting properties of a liquid on a solid by modifying the applied voltage at the solid-liquid interface. The structure and principle of the lens system are introduced in this paper. Detailed calculations and simulation examples are presented to show that this zoom lens system appears viable as the next-generation zoom lens.
Microstructure and property of directionally solidified Ni-Si hypereutectic alloy
NASA Astrophysics Data System (ADS)
Cui, Chunjuan; Tian, Lulu; Zhang, Jun; Yu, Shengnan; Liu, Lin; Fu, Hengzhi
2016-03-01
This paper investigates the influence of the solidification rate on the microstructure, solid/liquid interface, and micro-hardness of the directionally solidified Ni-Si hypereutectic alloy. Microstructure of the Ni-Si hypereutectic alloy is refined with the increase of the solidification rate. The Ni-Si hypereutectic composite is mainly composed of α-Ni matrix, Ni-Ni3Si eutectic phase, and metastable Ni31Si12 phase. The solid/liquid interface always keeps planar interface no matter how high the solidification rate is increased. This is proved by the calculation in terms of M-S interface stability criterion. Moreover, the Ni-Si hypereutectic composites present higher micro-hardness as compared with that of the pure Ni3Si compound. This is caused by the formation of the metastable Ni31Si12 phase and NiSi phase during the directional solidification process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niedermaier, Inga; Kolbeck, Claudia; Steinrück, Hans-Peter
The investigation of liquid surfaces and interfaces with the powerful toolbox of ultra-high vacuum (UHV)-based surface science techniques generally has to overcome the issue of liquid evaporation within the vacuum system. In the last decade, however, new classes of liquids with negligible vapor pressure at room temperature—in particular, ionic liquids (ILs)—have emerged for surface science studies. It has been demonstrated that particularly angle-resolved X-ray Photoelectron Spectroscopy (ARXPS) allows for investigating phenomena that occur at gas-liquid and liquid-solid interfaces on the molecular level. The results are not only relevant for IL systems but also for liquids in general. In all ofmore » these previous ARXPS studies, the sample holder had to be tilted in order to change the polar detection angle of emitted photoelectrons, which restricted the liquid systems to very thin viscous IL films coating a flat solid support. We now report on the concept and realization of a new and unique laboratory “Dual Analyzer System for Surface Analysis (DASSA)” which enables fast ARXPS, UV photoelectron spectroscopy, imaging XPS, and low-energy ion scattering at the horizontal surface plane of macroscopically thick non-volatile liquid samples. It comprises a UHV chamber equipped with two electron analyzers mounted for simultaneous measurements in 0° and 80° emission relative to the surface normal. The performance of DASSA on a first macroscopic liquid system will be demonstrated.« less
Drop Ejection From an Oscillating Rod
NASA Technical Reports Server (NTRS)
Wilkes, E. D.; Basaran, O. A.
1999-01-01
The dynamics of a drop of a Newtonian liquid that is pendant from or sessile on a solid rod that is forced to undergo time-periodic oscillations along its axis is studied theoretically. The free boundary problem governing the time evolution of the shape of the drop and the flow field inside it is solved by a method of lines using a finite element algorithm incorporating an adaptive mesh. When the forcing amplitude is small, the drop approaches a limit cycle at large times and undergoes steady oscillations thereafter. However, drop breakup is the consequence if the forcing amplitude exceeds a critical value. Over a wide range of amplitudes above this critical value, drop ejection from the rod occurs during the second oscillation period from the commencement of rod motion. Remarkably, the shape of the interface at breakup and the volume of the primary drop formed are insensitive to changes in forcing amplitude. The interface shape at times close to and at breakup is a multi-valued function of distance measured along the rod axis and hence cannot be described by recently popularized one-dimensional approximations. The computations show that drop ejection occurs without the formation of a long neck. Therefore, this method of drop formation holds promise of preventing formation of undesirable satellite droplets.
Real Space Imaging of Nanoparticle Assembly at Liquid-Liquid Interfaces with Nanoscale Resolution.
Costa, Luca; Li-Destri, Giovanni; Thomson, Neil H; Konovalov, Oleg; Pontoni, Diego
2016-09-14
Bottom up self-assembly of functional materials at liquid-liquid interfaces has recently emerged as method to design and produce novel two-dimensional (2D) nanostructured membranes and devices with tailored properties. Liquid-liquid interfaces can be seen as a "factory floor" for nanoparticle (NP) self-assembly, because NPs are driven there by a reduction of interfacial energy. Such 2D assembly can be characterized by reciprocal space techniques, namely X-ray and neutron scattering or reflectivity. These techniques have drawbacks, however, as the structural information is averaged over the finite size of the radiation beam and nonperiodic isolated assemblies in 3D or defects may not be easily detected. Real-space in situ imaging methods are more appropriate in this context, but they often suffer from limited resolution and underperform or fail when applied to challenging liquid-liquid interfaces. Here, we study the surfactant-induced assembly of SiO2 nanoparticle monolayers at a water-oil interface using in situ atomic force microscopy (AFM) achieving nanoscale resolved imaging capabilities. Hitherto, AFM imaging has been restricted to solid-liquid interfaces because applications to liquid interfaces have been hindered by their softness and intrinsic dynamics, requiring accurate sample preparation methods and nonconventional AFM operational schemes. Comparing both AFM and grazing incidence X-ray small angle scattering data, we unambiguously demonstrate correlation between real and reciprocal space structure determination showing that the average interfacial NP density is found to vary with surfactant concentration. Additionally, the interaction between the tip and the interface can be exploited to locally determine the acting interfacial interactions. This work opens up the way to studying complex nanostructure formation and phase behavior in a range of liquid-liquid and complex liquid interfaces.
Controlling the Accumulation of Water at Oil-Solid Interfaces with Gradient Coating.
Li, Yan; Yang, Qiaomu; Mei, Ran Andy; Cai, Meirong; Heng, Jerry Y Y; Yang, Zhongqiang
2017-07-13
In this work, we demonstrate a strategy to control the accumulation of water in the oil-solid interface using a gradient coating. Gradient chemistry on glass surface is created by vapor diffusion of organosilanes, leading to a range of contact angles from 110 to 20°. Hexadecane is placed on the gradient substrate as an oil layer, forming a "water/hexadecane/gradient solid substrate" sandwich structure. During incubation, water molecules spontaneously migrate through the micrometer-thick oil layer and result in the formation of micrometer-sized water droplets at the oil-solid interface. It turns out that water droplets at more hydrophobic regions tend to be closer to a regular spherical shape, which is attributed to their higher contact angle with the hydrophobic substrate. However, along the gradient from hydrophobic to hydrophilic, the water droplets gradually form more irregular shapes, as hydrophilic surfaces pin the edges of droplets to form a distorted morphology. It indicates that more hydrophilic surfaces containing more Si-OH groups lead to a higher electrostatic interaction with water and a higher growth rate of interfacial water droplets. This work provides further insights into the mechanism of spontaneous water accumulation at oil-solid interfaces and assists in the rational design for controlling such interfacial phenomenon.
Shape dependence of slip length on patterned hydrophobic surfaces
NASA Astrophysics Data System (ADS)
Gu, Xiaokun; Chen, Min
2011-08-01
The effects of solid-liquid interfacial shape on the boundary velocity slip of patterned hydrophobic surfaces are investigated. The scaling law in literature is extended to demonstrate the role of such shape, indicating a decrease of the effective slip length with increasing interfacial roughness. A patterned surface with horizontally aligned carbon nanotube arrays reaches an effective slip length of 83 nm, by utilizing large intrinsic slippage of carbon nanotube while keeping away from the negative effects of interfacial curvature through the flow direction. The results emphasize the importance of avoiding the solid-liquid interfacial roughness in low-friction patterned surface design and manufacture.
Wirkert, Florian J; Paulus, Michael; Nase, Julia; Möller, Johannes; Kujawski, Simon; Sternemann, Christian; Tolan, Metin
2014-01-01
A high-pressure cell for in situ X-ray reflectivity measurements of liquid/solid interfaces at hydrostatic pressures up to 500 MPa (5 kbar), a pressure regime that is particularly important for the study of protein unfolding, is presented. The original set-up of this hydrostatic high-pressure cell is discussed and its unique properties are demonstrated by the investigation of pressure-induced adsorption of the protein lysozyme onto hydrophobic silicon wafers. The presented results emphasize the enormous potential of X-ray reflectivity studies under high hydrostatic pressure conditions for the in situ investigation of adsorption phenomena in biological systems.
How to distinguish various components of the SHG signal recorded from the solid/liquid interface?
NASA Astrophysics Data System (ADS)
Gassin, Pierre-Marie; Martin-Gassin, Gaelle; Prelot, Benedicte; Zajac, Jerzy
2016-11-01
Second harmonic generation (SHG) may be an important tool to probe buried solid/liquid interfaces because of its inherent surface sensitivity. A detailed interpretation of dye adsorption onto Si-SiO2 wafer is not straightforward because both adsorbent and adsorbate contribute to the overall SHG signal. The polarization resolved SHG analysis points out that the adsorbent and adsorbate contributions are out of phase by π/2 in the present system. The surface nonlinear susceptibility χ(2) represents thus a complex tensor in which its real part is related to the adsorbent contribution and its imaginary part to the adsorbate one.
Multivalent-Ion-Activated Protein Adsorption Reflecting Bulk Reentrant Behavior.
Fries, Madeleine R; Stopper, Daniel; Braun, Michal K; Hinderhofer, Alexander; Zhang, Fajun; Jacobs, Robert M J; Skoda, Maximilian W A; Hansen-Goos, Hendrik; Roth, Roland; Schreiber, Frank
2017-12-01
Protein adsorption at the solid-liquid interface is an important phenomenon that often can be observed as a first step in biological processes. Despite its inherent importance, still relatively little is known about the underlying microscopic mechanisms. Here, using multivalent ions, we demonstrate the control of the interactions and the corresponding adsorption of net-negatively charged proteins (bovine serum albumin) at a solid-liquid interface. This is demonstrated by ellipsometry and corroborated by neutron reflectivity and quartz-crystal microbalance experiments. We show that the reentrant condensation observed within the rich bulk phase behavior of the system featuring a nonmonotonic dependence of the second virial coefficient on salt concentration c_{s} is reflected in an intriguing way in the protein adsorption d(c_{s}) at the interface. Our findings are successfully described and understood by a model of ion-activated patchy interactions within the framework of the classical density functional theory. In addition to the general challenge of connecting bulk and interface behavior, our work has implications for, inter alia, nucleation at interfaces.
Multivalent-Ion-Activated Protein Adsorption Reflecting Bulk Reentrant Behavior
NASA Astrophysics Data System (ADS)
Fries, Madeleine R.; Stopper, Daniel; Braun, Michal K.; Hinderhofer, Alexander; Zhang, Fajun; Jacobs, Robert M. J.; Skoda, Maximilian W. A.; Hansen-Goos, Hendrik; Roth, Roland; Schreiber, Frank
2017-12-01
Protein adsorption at the solid-liquid interface is an important phenomenon that often can be observed as a first step in biological processes. Despite its inherent importance, still relatively little is known about the underlying microscopic mechanisms. Here, using multivalent ions, we demonstrate the control of the interactions and the corresponding adsorption of net-negatively charged proteins (bovine serum albumin) at a solid-liquid interface. This is demonstrated by ellipsometry and corroborated by neutron reflectivity and quartz-crystal microbalance experiments. We show that the reentrant condensation observed within the rich bulk phase behavior of the system featuring a nonmonotonic dependence of the second virial coefficient on salt concentration cs is reflected in an intriguing way in the protein adsorption d (cs) at the interface. Our findings are successfully described and understood by a model of ion-activated patchy interactions within the framework of the classical density functional theory. In addition to the general challenge of connecting bulk and interface behavior, our work has implications for, inter alia, nucleation at interfaces.
Bhatta, Umananda M; Rath, Ashutosh; Dash, Jatis K; Ghatak, Jay; Yi-Feng, Lai; Liu, Chuan-Pu; Satyam, P V
2009-11-18
Silicon nanowires grown using the vapor-liquid-solid method are promising candidates for nanoelectronics applications. The nanowires grow from an Au-Si catalyst during silicon chemical vapor deposition. In this paper, the effect of temperature, oxide at the interface and substrate orientation on the nucleation and growth kinetics during formation of nanogold silicide structures is explained using an oxide mediated liquid-solid growth mechanism. Using real time in situ high temperature transmission electron microscopy (with 40 ms time resolution), we show the formation of high aspect ratio ( approximately 15.0) aligned gold silicide nanorods in the presence of native oxide at the interface during in situ annealing of gold thin films on Si(110) substrates. Steps observed in the growth rate and real time electron diffraction show the existence of liquid Au-Si nano-alloy structures on the surface besides the un-reacted gold nanostructures. These results might enable us to engineer the growth of nanowires and similar structures with an Au-Si alloy as a catalyst.
NASA Technical Reports Server (NTRS)
Ungar, Lyle H.; Bennett, Mark J.; Brown, Robert A.
1985-01-01
The shape and stability of two-dimensional finite-amplitude cellular interfaces arising during directional solidification are compared for several solidification models that account differently for latent heat released at the interface, unequal thermal conductivities of melt and solid, and solute diffusivity in the solid. Finite-element analysis and computer-implemented perturbation methods are used to analyze the families of steadily growing cellular forms that evolve from the planar state. In all models a secondary bifurcation between different families of finite-amplitude cells exists that halves the spatial wavelength of the stable interface. The quantitative location of this transition is very dependent on the details of the model. Large amounts of solute diffusion in the solid retard the growth of large-amplitude cells.
Parallel Grand Canonical Monte Carlo (ParaGrandMC) Simulation Code
NASA Technical Reports Server (NTRS)
Yamakov, Vesselin I.
2016-01-01
This report provides an overview of the Parallel Grand Canonical Monte Carlo (ParaGrandMC) simulation code. This is a highly scalable parallel FORTRAN code for simulating the thermodynamic evolution of metal alloy systems at the atomic level, and predicting the thermodynamic state, phase diagram, chemical composition and mechanical properties. The code is designed to simulate multi-component alloy systems, predict solid-state phase transformations such as austenite-martensite transformations, precipitate formation, recrystallization, capillary effects at interfaces, surface absorption, etc., which can aid the design of novel metallic alloys. While the software is mainly tailored for modeling metal alloys, it can also be used for other types of solid-state systems, and to some degree for liquid or gaseous systems, including multiphase systems forming solid-liquid-gas interfaces.
Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces
Hao, Chonglei; Li, Jing; Liu, Yuan; Zhou, Xiaofeng; Liu, Yahua; Liu, Rong; Che, Lufeng; Zhou, Wenzhong; Sun, Dong; Li, Lawrence; Xu, Lei; Wang, Zuankai
2015-01-01
Droplet impacting on solid or liquid interfaces is a ubiquitous phenomenon in nature. Although complete rebound of droplets is widely observed on superhydrophobic surfaces, the bouncing of droplets on liquid is usually vulnerable due to easy collapse of entrapped air pocket underneath the impinging droplet. Here, we report a superhydrophobic-like bouncing regime on thin liquid film, characterized by the contact time, the spreading dynamics, and the restitution coefficient independent of underlying liquid film. Through experimental exploration and theoretical analysis, we demonstrate that the manifestation of such a superhydrophobic-like bouncing necessitates an intricate interplay between the Weber number, the thickness and viscosity of liquid film. Such insights allow us to tune the droplet behaviours in a well-controlled fashion. We anticipate that the combination of superhydrophobic-like bouncing with inherent advantages of emerging slippery liquid interfaces will find a wide range of applications. PMID:26250403
NASA Astrophysics Data System (ADS)
Huo, Hanyu; Zhao, Ning; Sun, Jiyang; Du, Fuming; Li, Yiqiu; Guo, Xiangxin
2017-12-01
Paramount attention has been paid on solid polymer electrolytes due to their potential in enhancement of energy density as well as improvement of safety. Herein, the composite electrolytes consisting of Li-salt-free polyethylene oxides and 200 nm-sized Li6.4La3Zr1.4Ta0.6O12 particles interfacially wetted by [BMIM]TF2N of 1.8 μL cm-2 have been prepared. Such wetted ionic liquid remains the solid state of membrane electrolytes and decreases the interface impedance between the electrodes and the electrolytes. There is no release of the liquid phase from the PEO matrix when the pressure of 5.0 × 104 Pa being applied for 24 h. The interfacially wetted membrane electrolytes show the conductivity of 2.2 × 10-4 S cm-1 at 20 °C, which is one order of magnitude greater than that of the membranes without the wetted ionic liquids. The conduction mechanism is related to a large number of lithium ions releasing from Li6.4La3Zr1.4Ta0.6O12 particles and the improved conductive paths along the ion-liquid-wetted interfaces between the polymer matrix and ceramic grains. When the membranes being used in the solid-state LiFePO4/Li and LiFe0.15Mn0.85PO4/Li cells at 25 °C, the excellent rate capability and superior cycle stability has been shown. The results provide a new prospect for solid polymer electrolytes used for room-temperature solid-state lithium batteries.
A robust molecular probe for Ångstrom-scale analytics in liquids
Nirmalraj, Peter; Thompson, Damien; Dimitrakopoulos, Christos; Gotsmann, Bernd; Dumcenco, Dumitru; Kis, Andras; Riel, Heike
2016-01-01
Traditionally, nanomaterial profiling using a single-molecule-terminated scanning probe is performed at the vacuum–solid interface often at a few Kelvin, but is not a notion immediately associated with liquid–solid interface at room temperature. Here, using a scanning tunnelling probe functionalized with a single C60 molecule stabilized in a high-density liquid, we resolve low-dimensional surface defects, atomic interfaces and capture Ångstrom-level bond-length variations in single-layer graphene and MoS2. Atom-by-atom controllable imaging contrast is demonstrated at room temperature and the electronic structure of the C60–metal probe complex within the encompassing liquid molecules is clarified using density functional theory. Our findings demonstrates that operating a robust single-molecular probe is not restricted to ultra-high vacuum and cryogenic settings. Hence the scope of high-precision analytics can be extended towards resolving sub-molecular features of organic elements and gauging ambient compatibility of emerging layered materials with atomic-scale sensitivity under experimentally less stringent conditions. PMID:27516157
Liu, Liang; Ma, Siyuan; Pei, Yunheng; Xiong, Xiao; Sivakumar, Preeth; Singler, Timothy J
2016-08-24
We report a method to achieve highly uniform inkjet-printed silver nitrate (AgNO3) and a reactive silver precursor patterns on rigid and flexible substrates functionalized with polydopamine (PDA) coatings. The printed AgNO3 patterns on PDA-coated substrates (glass and polyethylene terephthalate (PET)) exhibit a narrow thickness distribution ranging between 0.9 and 1 μm in the line transverse direction and uniform deposition profiles in the line axial direction. The deposited reactive silver precursor patterns on PDA-functionalized substrates also show "dome-shaped" morphology without "edge-thickened" structure due to "coffee-stain" effect. We posit that the highly uniform functional ink deposits formed on PDA-coated substrates are attributable to the strong binding interaction between the abundant catecholamine moieties at the PDA surface and the metallic silver cations (Ag(+) or Ag(NH3)(2+)) in the solutal inks. During printing of the ink rivulet and solvent evaporation, the substrate-liquid ink (S-L) interface is enriched with the silver-based cations and a solidification at the S/L interface is induced. The preferential solidification initiated at the S-L interface is further verified by the in situ visualization of the dynamic solidification process during solvent evaporation, and results suggest an enhanced crystal nucleation and growth localized at the S-L interface on PDA functionalized substrates. This interfacial interaction mediates solute transport in the liquid phase, resulting in the controlled enrichment of solute at the S-L interface and mitigated solute precipitation in both the contact line region and the liquid ink-vapor (L-V) interface due to evaporation. This mediated transport contributes to the final uniform solid deposition for both types of ink systems. This technique provides a complementary strategy for achieving highly uniform inkjet-printed crystalline structures, and can serve as an innovative foundation for high-precision additive delivery of functional materials.
Project Description and Publications List for UAH CMMR
NASA Technical Reports Server (NTRS)
Kaukler, William F.
1999-01-01
This research combines a state of the art X-ray Transmission Microscope, XTM, with a specially designed x-ray transparent horizontal Bridgman furnace to image (with resolutions up to 3 micrometers) the solidification of metal alloys in real-time. The objective is to obtain real-time dynamic data to provide direct measure of the solute profile in the liquid, phase coalescence and growth in the liquid, and the detailed interface morphology (e,g., dendrites and cells) during solidification. We are also enhancing the XTM data with precise solid-liquid interfacial temperature and the thermal gradient measurement techniques, and working on the application of this technology to the study of the fundamentals of solidification in microgravity. Over the last several years we have successfully imaged in real-time: interfacial-morphologies, phase growth, coalescence, incorporation of phases into the growing interface, and the solute boundary layer in the liquid at the solid-liquid interface. We have also measured true local growth rates and can evaluate segregation structures in the solid. Interfacial undercoolings are being measured either with a special Seebeck furnace or with micro-thermocouple arrays we are developing. These later techniques are presently being incorporated with the XTM furnace. This last year emphasized the investigation of the solute layer in the melt during solidification. Methods were developed to quantify the solute concentrations using x-ray absorption and to compare to predictions from simulations. In addition, work is being completed on a brass-board portable XTM that incorporates a vertical Bridgman furnace.
Numerical simulation of electron beam welding with beam oscillations
NASA Astrophysics Data System (ADS)
Trushnikov, D. N.; Permyakov, G. L.
2017-02-01
This research examines the process of electron-beam welding in a keyhole mode with the use of beam oscillations. We study the impact of various beam oscillations and their parameters on the shape of the keyhole, the flow of heat and mass transfer processes and weld parameters to develop methodological recommendations. A numerical three-dimensional mathematical model of electron beam welding is presented. The model was developed on the basis of a heat conduction equation and a Navier-Stokes equation taking into account phase transitions at the interface of a solid and liquid phase and thermocapillary convection (Marangoni effect). The shape of the keyhole is determined based on experimental data on the parameters of the secondary signal by using the method of a synchronous accumulation. Calculations of thermal and hydrodynamic processes were carried out based on a computer cluster, using a simulation package COMSOL Multiphysics.
NASA Astrophysics Data System (ADS)
Fujiwara, K.; Shibahara, M.
2018-02-01
Molecular evaporation processes from a vapor-liquid interface formed in a slit-like pore were examined based on the classical molecular dynamics method, in order to elucidate a molecular mechanism of local mass and energy transports in a slit. The calculation system consisted of monatomic molecules and atoms which interact through the 12-6 Lennard-Jones potential. At first, a liquid was situated in a slit with a vapor-liquid interface, and instantaneous amounts of the mass and energy fluxes defined locally in the slit were obtained in two dimensions to reveal local fluctuation properties of the fluid in equilibrium states. Then, imposing a temperature gradient in the calculation system, non-equilibrium evaporation processes in the slit were investigated in details based on the local mass and energy fluxes. In this study, we focused on the fluid which is in the vicinity of the solid surface and in contact with the vapor phase. In the non-equilibrium evaporation processes, the results revealed that the local energy transport mechanism in the vicinity of the solid surface is different from that of the vapor phase, especially in the case of the relatively strong fluid-solid interaction. The results also revealed that the local mass transport in the vicinity of the solid surface can be interpreted based on the mechanism of the local energy transport, and the mechanism provides valuable information about pictures of the evaporation phenomena especially in the vicinity of the hydrophilic surfaces. It suggests that evaluating and changing this mechanism of the local energy transport are necessary to control the local mass flux more precisely in the vicinity of the solid surface.
Direct liquid-feed fuel cell with membrane electrolyte and manufacturing thereof
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram (Inventor); Surampudi, Subbarao (Inventor); Halpert, Gerald (Inventor)
1999-01-01
An improved direct liquid-feed fuel cell having a solid membrane electrolyte for electrochemical reactions of an organic fuel. Improvements in interfacing of the catalyst layer and the membrane and activating catalyst materials are disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Long; Alamillo, Ricardo; Elliott, William A.
Liquid-phase processing of molecules using heterogeneous catalysts – an important strategy for obtaining renewable chemicals sustainably from biomass – involves reactions that occur at solid-liquid interfaces. In glucose isomerization catalyzed by basic faujasite zeolites, the catalytic activity depends strongly on the solvent composition: initially, it declines precipitously when water is mixed with a small amount of the organic co-solvent γ-valerolactone (GVL), then recovers as the GVL content increases. Using solid-state 13C NMR spectroscopy, we observed glucose isomers located inside the zeolite pores directly, and followed their transformations into fructose and mannose in real time. At low GVL concentrations, glucose ismore » depleted in the zeolite pores relative to the liquid phase, while higher GVL concentrations in solution drive glucose inside the pores, resulting in up to a 32 enhancement in the local glucose concentration. Although their populations exchange rapidly, molecules present at the reactive interface experience a significantly different environment from the bulk solution.« less
Molecular simulation of fluid mixtures in bulk and at solid-liquid interfaces
NASA Astrophysics Data System (ADS)
Kern, Jesse L.
The properties of a diverse range of mixture systems at interfaces are investigated using a variety of computational techniques. Molecular simulation is used to examine the thermodynamic, structural, and transport properties of heterogeneous systems of theoretical and practical importance. The study of binary hard-sphere mixtures at a hard wall demonstrates the high accuracy of recently developed classical-density functionals. The study of aluminum--gallium solid--liquid heterogeneous interfaces predicts a significant amount of prefreezing of the liquid by adopting the structure of the solid surface. The study of ethylene-expanded methanol within model silica mesopores shows the effect of confinement and surface functionalzation on the mixture composition and transport inside of the pores. From our molecular-dynamics study of binary hard-sphere fluid mixtures at a hard wall, we obtained high-precision calculations of the wall-fluid interfacial free energies, gamma. We have considered mixtures of varying diameter ratio, alpha = 0.7,0.8,0.9; mole fraction, x 1 = 0.25,0.50,0.75; and packing fraction, eta < 0.50. Using Gibbs-Cahn Integration, gamma is calculated from the system pressure, chemical potentials, and density profiles. Recent classical density-functional theory predictions agree very well with our results. Structural, thermodynamic, and transport properties of the aluminum--gallium solid--liquid interface at 368 K are obtained for the (100), (110), and (111) orientations using molecular dynamics. Density, potential energy, stress, and diffusion profiles perpendicular to the interface are calculated. The layers of Ga that form on the Al surface are strongly adsorbed and take the in-plane structure of the underlying crystal layers for all orientations, which results in significant compressive stress on the Ga atoms. Bulk methanol--ethylene mixtures under vapor-liquid equilibrium conditions have been characterized using Monte Carlo and molecular dynamics. The simulated vapor-liquid coexistence curves for the pure-component and binary mixtures agree well with experiment, as do the mixture volumetric expansion results. Using chemical potentials obtained from the bulk simulations, the filling of a number of model silica mesopores with ethylene and methanol is simulated. We report the compositions of the confined fluid mixtures over a range of pressures and for three degrees of nominal pore hydrophobicity.
Nonflat equilibrium liquid shapes on flat surfaces.
Starov, Victor M
2004-01-15
The hydrostatic pressure in thin liquid layers differs from the pressure in the ambient air. This difference is caused by the actions of surface forces and capillary pressure. The manifestation of the surface force action is the disjoining pressure, which has a very special S-shaped form in the case of partial wetting (aqueous thin films and thin films of aqueous electrolyte and surfactant solutions, both free films and films on solid substrates). In thin flat liquid films the disjoining pressure acts alone and determines their thickness. However, if the film surface is curved then both the disjoining and the capillary pressures act simultaneously. In the case of partial wetting their simultaneous action results in the existence of nonflat equilibrium liquid shapes. It is shown that in the case of S-shaped disjoining pressure isotherm microdrops, microdepressions, and equilibrium periodic films exist on flat solid substrates. Criteria are found for both the existence and the stability of these nonflat equilibrium liquid shapes. It is shown that a transition from thick films to thinner films can go via intermediate nonflat states, microdepressions and periodic films, which both can be more stable than flat films within some range of hydrostatic pressure. Experimental investigations of shapes of the predicted nonflat layers can open new possibilities of determination of disjoining pressure in the range of thickness in which flat films are unstable.
Incorporating contact angles in the surface tension force with the ACES interface curvature scheme
NASA Astrophysics Data System (ADS)
Owkes, Mark
2017-11-01
In simulations of gas-liquid flows interacting with solid boundaries, the contact line dynamics effect the interface motion and flow field through the surface tension force. The surface tension force is directly proportional to the interface curvature and the problem of accurately imposing a contact angle must be incorporated into the interface curvature calculation. Many commonly used algorithms to compute interface curvatures (e.g., height function method) require extrapolating the interface, with defined contact angle, into the solid to allow for the calculation of a curvature near a wall. Extrapolating can be an ill-posed problem, especially in three-dimensions or when multiple contact lines are near each other. We have developed an accurate methodology to compute interface curvatures that allows for contact angles to be easily incorporated while avoiding extrapolation and the associated challenges. The method, known as Adjustable Curvature Evaluation Scale (ACES), leverages a least squares fit of a polynomial to points computed on the volume-of-fluid (VOF) representation of the gas-liquid interface. The method is tested by simulating canonical test cases and then applied to simulate the injection and motion of water droplets in a channel (relevant to PEM fuel cells).
Tretyakov, Nikita; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen; Dünweg, Burkhard; Daoulas, Kostas Ch
2016-10-07
Classical density functional theory is applied to investigate the validity of a phenomenological force-balance description of the stability of the Cassie state of liquids on substrates with nanoscale corrugation. A bulk free-energy functional of third order in local density is combined with a square-gradient term, describing the liquid-vapor interface. The bulk free energy is parameterized to reproduce the liquid density and the compressibility of water. The square-gradient term is adjusted to model the width of the water-vapor interface. The substrate is modeled by an external potential, based upon the Lennard-Jones interactions. The three-dimensional calculation focuses on substrates patterned with nanostripes and square-shaped nanopillars. Using both the force-balance relation and density-functional theory, we locate the Cassie-to-Wenzel transition as a function of the corrugation parameters. We demonstrate that the force-balance relation gives a qualitatively reasonable description of the transition even on the nanoscale. The force balance utilizes an effective contact angle between the fluid and the vertical wall of the corrugation to parameterize the impalement pressure. This effective angle is found to have values smaller than the Young contact angle. This observation corresponds to an impalement pressure that is smaller than the value predicted by macroscopic theory. Therefore, this effective angle embodies effects specific to nanoscopically corrugated surfaces, including the finite range of the liquid-solid potential (which has both repulsive and attractive parts), line tension, and the finite interface thickness. Consistently with this picture, both patterns (stripes and pillars) yield the same effective contact angles for large periods of corrugation.
NASA Astrophysics Data System (ADS)
Zhang, Lucy
In this talk, we show a robust numerical framework to model and simulate gas-liquid-solid three-phase flows. The overall algorithm adopts a non-boundary-fitted approach that avoids frequent mesh-updating procedures by defining independent meshes and explicit interfacial points to represent each phase. In this framework, we couple the immersed finite element method (IFEM) and the connectivity-free front tracking (CFFT) method that model fluid-solid and gas-liquid interactions, respectively, for the three-phase models. The CFFT is used here to simulate gas-liquid multi-fluid flows that uses explicit interfacial points to represent the gas-liquid interface and for its easy handling of interface topology changes. Instead of defining different levels simultaneously as used in level sets, an indicator function naturally couples the two methods together to represent and track each of the three phases. Several 2-D and 3-D testing cases are performed to demonstrate the robustness and capability of the coupled numerical framework in dealing with complex three-phase problems, in particular free surfaces interacting with deformable solids. The solution technique offers accuracy and stability, which provides a means to simulate various engineering applications. The author would like to acknowledge the supports from NIH/DHHS R01-2R01DC005642-10A1 and the National Natural Science Foundation of China (NSFC) 11550110185.
NASA Astrophysics Data System (ADS)
Liu, Fencheng; Cheng, Hongmao; Yu, Xiaobin; Yang, Guang; Huang, Chunping; Lin, Xin; Chen, Jing
2018-02-01
The coarse columnar grains and special interface in laser solid formed (LSFed) Inconel 718 superalloy workpieces seriously affect their mechanical properties. To improve the microstructure and mechanical properties of LSFed Inconel 718 superalloy, electromagnetic stirring (EMS) was introduced to alter the solidification process of the molten pool during LSF. The results show that EMS could not completely eliminate the epitaxially growing columnar grains, however, the strong convection of liquid metals can effectively influence the solid-liquid interface growing mode. The segregation of alloying elements on the front of solid-liquid interface is inhibited and the degree of constitutional supercooling decreases correspondingly. Comparing the microstructures of samples formed under different process parameters, the size and amount of the γ+Laves eutectic phases formed in interdendritic area decrease along with the increasing magnetic field intensity, resulting in more uniformly distributed alloying elements. The residual stress distribution is proved to be more uniform, which is beneficial to the grain refinement after recrystallilzaiton. Mechanical properties testing results show an improvement of 100 MPa in tensile strength and 22% in elongation was obtained after EMS was used. The high cycle fatigue properties at room temperature was also improved from 4.09 × 104 cycles to 8.21 × 104 cycles for the as-deposited samples, and from 5.45 × 104 cycles to 12.73 × 104 cycles for the heat treated samples respectively.
High wettability of liquid caesium iodine with solid uranium dioxide.
Kurosaki, Ken; Suzuki, Masanori; Uno, Masayoshi; Ishii, Hiroto; Kumagai, Masaya; Anada, Keito; Murakami, Yukihiro; Ohishi, Yuji; Muta, Hiroaki; Tanaka, Toshihiro; Yamanaka, Shinsuke
2017-09-13
In March 2011, the Fukushima Daiichi Nuclear Power Plant accident caused nuclear fuel to melt and the release of high-volatility fission products into the environment. Caesium and iodine caused environmental contamination and public exposure. Certain fission-product behaviours remain unclear. We found experimentally that liquid CsI disperses extremely favourably toward solid UO 2 , exhibiting a contact angle approaching zero. We further observed the presence of CsI several tens of micrometres below the surface of the solid UO 2 sample, which would be caused by the infiltration of pores network by liquid CsI. Thus, volatile fission products released from molten nuclear fuels with complex internal composition and external structure migrate or evaporate to varying extents, depending on the nature of the solid-liquid interface and the fuel material surface, which becomes the pathway for the released fission products. Introducing the concept of the wettability of liquid chemical species of fission products in contact with solid fuels enabled developing accurate behavioural assessments of volatile fission products released by nuclear fuel.
Interactions at the planar Ag3Sn/liquid Sn interface under ultrasonic irradiation.
Shao, Huakai; Wu, Aiping; Bao, Yudian; Zhao, Yue; Liu, Lei; Zou, Guisheng
2017-11-01
The interactions at the interface between planar Ag 3 Sn and liquid Sn under ultrasonic irradiation were investigated. An intensive thermal grooving process occurred at Ag 3 Sn grain boundaries due to ultrasonic effects. Without ultrasonic application, planar shape of Ag 3 Sn layer gradually evolved into scalloped morphology after the solid-state Sn melting, due to a preferential dissolution of the intermetallic compounds from the regions at grain boundaries, which left behind the grooves embedding in the Ag 3 Sn layer. Under the effect of ultrasonic, stable grooves could be rapidly generated within an extremely short time (<10s) that was far less than the traditional soldering process (>10min). In addition, the deepened grooves leaded to the formation of necks at the roots of Ag 3 Sn grains, and further resulted in the strong detachment of intermetallic grains from the substrate. The intensive thermal grooving could promote the growth of Ag 3 Sn grains in the vertical direction but restrain their coarsening in the horizontal direction, consequently, an elongated morphology was presented. All these phenomena could be attributed to the acoustic cavitation and streaming effects of ultrasonic vibration. Copyright © 2017 Elsevier B.V. All rights reserved.
Fluid/Solid Boundary Conditions in Non-Isothermal Systems
NASA Technical Reports Server (NTRS)
Rosner, Daniel E.
1999-01-01
The existing theoretical research concerned with thermal creep at fluid/solid interfaces is briefly reviewed, and the importance of microgravity-based experimental data is then discussed. It is noted that the ultimate goal of this research is a rational molecular level theory that predicts the dependence of a dimensionless thermal creep coefficient, Ctc, on relevant dimensionless parameters describing the way fluid molecules interact with the solid surface and how they interact among themselves. The discussion covers thermophoresis of isolated solid spheres and aggregates in gases; solid sphere thermophoresis in liquids and dense vapors; thermophoresis of small immiscible liquid droplets; and applications of the direct simulation Monte Carlo method.
NASA Technical Reports Server (NTRS)
Lomax, Curtis (Inventor); Webbon, Bruce (Inventor)
1995-01-01
A cooling apparatus includes a container filled with a quantity of coolant fluid initially cooled to a solid phase, a cooling loop disposed between a heat load and the container, a pump for circulating a quantity of the same type of coolant fluid in a liquid phase through the cooling loop, and a pair of couplings for communicating the liquid phase coolant fluid into the container in a direct interface with the solid phase coolant fluid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zachman, Michael J.; Asenath-Smith, Emily; Estroff, Lara A.
Abstract Scanning transmission electron microscopy (STEM) allows atomic scale characterization of solid–solid interfaces, but has seen limited applications to solid–liquid interfaces due to the volatility of liquids in the microscope vacuum. Although cryo-electron microscopy is routinely used to characterize hydrated samples stabilized by rapid freezing, sample thinning is required to access the internal interfaces of thicker specimens. Here, we adapt cryo-focused ion beam (FIB) “lift-out,” a technique recently developed for biological specimens, to prepare intact internal solid–liquid interfaces for high-resolution structural and chemical analysis by cryo-STEM. To guide the milling process we introduce a label-freein situmethod of localizing subsurface structuresmore » in suitable materials by energy dispersive X-ray spectroscopy (EDX). Monte Carlo simulations are performed to evaluate the depth-probing capability of the technique, and show good qualitative agreement with experiment. We also detail procedures to produce homogeneously thin lamellae, which enable nanoscale structural, elemental, and chemical analysis of intact solid–liquid interfaces by analytical cryo-STEM. This work demonstrates the potential of cryo-FIB lift-out and cryo-STEM for understanding physical and chemical processes at solid–liquid interfaces.« less
Interaction of monovalent ions with the water liquid-vapor interface - A molecular dynamics study
NASA Technical Reports Server (NTRS)
Wilson, Michael A.; Pohorille, Andrew
1991-01-01
Results of molecular dynamics calculations are presented for a series of ions at infinite dilution near the water liquid-vapor interface. The free energies of ion transfer from the bulk to the interface are discussed, as are the accompanying changes of water structure at the surface and ion mobilities as a function of their proximity to the interface. It is shown that simple dielectric models do not provide an accurate description of ions at the water surface. The results of the study should be useful in the development of better models incorporating the shape and molecular structure of the interface.
Solidification of II-VI Compounds in a Rotating Magnetic Field
NASA Technical Reports Server (NTRS)
Gillies, D. C.; Volz, M. P.; Mazuruk, K.; Motakef, S.; Dudley, M.; Matyi, R.
1999-01-01
This project is aimed at using a rotating magnetic field (RMF) to control fluid flow and transport during directional solidification of elemental and compound melts. Microgravity experiments have demonstrated that small amounts of residual acceleration of less than a micro-g can initiate and prolong fluid flow, particularly when there is a static component of the field perpendicular to the liquid solid interface. Thus a true diffusion boundary layer is not formed, and it becomes difficult to verify theories of solidification or to achieve diffusion controlled solidification. The RMF superimposes a stirring effect on an electrically conducting liquid, and with appropriate field strengths and frequencies, controlled transport of material through a liquid column can be obtained. As diffusion conditions are precluded and complete mixing conditions prevail, the technique is appropriate for traveling solvent zone or float zone growth methods in which the overall composition of the liquid can be maintained throughout the growth experiment. Crystals grown by RMF techniques in microgravity in previous, unrelated missions have shown exceptional properties. The objective of the project is two-fold, namely (1) using numerical modeling to simulate the behavior of a solvent zone with applied thermal boundary conditions and demonstrate the effects of decreasing gravity levels, or an increasing applied RMF, or both, and (2) to grow elements and II-VI compounds from traveling solvent zones both with and without applied RMFs, and to determine objectively how well the modeling predicts solidification parameters. Numerical modeling has demonstrated that, in the growth of CdTe from a tellurium solution, a rotating magnetic field can advantageously modify the shape of the liquid solid interface such that the interface is convex as seen from the liquid. Under such circumstances, the defect structure is reduced as any defects which are formed tend to grow out and not propagate. The flow of liquid, however, is complex due to the competing flow induced by the rotating magnetic field and the buoyancy driven convection. When the acceleration forces are reduced to one thousandth of gravity, the flow pattern is much simplified and well controlled material transport through the solvent zone can be readily achieved. Triple axis diffractometry and x-ray synchrotron topography have demonstrated that there is no significant improvement in crystal quality for HgCdTe grown on earth from a tellurium solution when a rotating magnetic field is applied. However, modeling shows that the flow in microgravity with a rotating magnetic field would produce a superior product.
Partial liquid-penetration inside a deep trench by film flowing over it
NASA Astrophysics Data System (ADS)
Nguyen, Phuc-Khanh; Dimakopoulos, Yiannis; Tsamopoulos, John
2014-11-01
Liquid film flow along substrates featuring a deep trench may not wet the trench floor, but create a second gas-liquid interface inside the trench. The liquid penetration inside the trench depends on the location and shape of this inner interface. The penetration increases by decreasing the two three-phase contact lines between the inner interface and the two side-walls or the flow rate and depends on the liquid properties. This partial-penetration is studied by employing the Galerkin / finite element method to solve the two-dimensional steady-state Navier-Stokes equations in a physical domain that is adaptively remeshed. Multiple branches of steady solutions connected via turning points are revealed by pseudo arc-length continuation. Flow hysteresis may occur in a certain range of liquid penetration depth, when the interaction of the two interfaces changes qualitatively. This induces an abrupt jump of penetration distance and deformation amplitude of the outer interface. Work supported by the General Secretariat of Research & Technology of Greece through the program ``Excellence'' (Grant No. 1918) in the framework ``Education and Lifelong Learning'' co-funded by the ESF.
NASA Technical Reports Server (NTRS)
Ettouney, H. M.; Brown, R. A.
1982-01-01
The effects of the heat transfer environment in Edge-Defined Film-Fed Growth on melt-solid interface shape and lateral dopant segregation are studied by finite-element analysis of two-dimensional models for heat and mass transfer. Heat transfer configurations are studied that correspond to the uniform surroundings assumed in previous models and to lowand high-speed growth systems. The maximum growth rate for a silicon sheet is calculated and the range of validity of one-dimensional heat transfer models is established. The lateral segregation that results from curvature of the solidification interface is calculated for two solutes, boron and aluminum. In this way, heat transfer is linked directly to the uniformity of the product crystal.
Alonso-García, Teodoro; Rodríguez-Presa, María José; Gervasi, Claudio; Moya, Sergio; Azzaroni, Omar
2013-07-16
Devising strategies to assess the glass transition temperature (Tg) of polyelectrolyte assemblies at solid-electrolyte interfaces is very important to understand and rationalize the temperature-dependent behavior of polyelectrolyte films in a wide range of settings. Despite the evolving perception of the importance of measuring Tg under aqueous conditions in thin film configurations, its straightforward measurement poses a challenging situation that still remains elusive in polymer and materials science. Here, we describe a new method based on electrochemical impedance spectroscopy (EIS) to estimate the glass transition temperature of planar polyelectrolyte brushes at solid-liquid interfaces. To measure Tg, the charge transfer resistance (Rct) of a redox probe diffusing through the polyelectrolyte brush was measured, and the temperature corresponding to the discontinuous change in Rct was identified as Tg. Furthermore, we demonstrate that impedance measurements not only facilitate the estimation of Tg but also enable a reliable evaluation of the transport properties of the polymeric interface, i.e., determination of diffusion coefficients, close to the thermal transition. We consider that this approach bridges the gap between electrochemistry and the traditional tools used in polymer science and offers new opportunities to characterize the thermal behavior of complex polymeric interfaces and macromolecular assemblies.
Water at silica/liquid water interfaces investigated by DFT-MD simulations
NASA Astrophysics Data System (ADS)
Gaigeot, Marie-Pierre
This talk is dedicated to probing the microscopic structural organization of water at silica/liquid water interfaces including electrolytes by first principles DFT-based molecular dynamics simulations (DFT-MD). We will present our very recent DFT-MD simulations of electrolytic (KCl, NaCl, NaI) silica/liquid water interfaces in order to unravel the intertwined structural properties of water and electrolytes at the crystalline quartz/liquid water and amorphous silica/liquid water interfaces. DFT-MD simulations provide direct knowledge of the structural organization of water and the H-Bond network formed between the water molecules within the different water layers above the silica surface. One can furthermore extract vibrational signatures of the water molecules within the interfacial layers from the DFT-MD simulations, especially non-linear SFG (Sum Frequency generation) signatures that are active at solid/liquid interfaces. The strength of the simulated spectra is that a detailed analysis of the signatures in terms of the water/water H-Bond networks formed within the interfacial water layers and in terms of the water/silica or water/electrolytes H-Bond networks can be given. Comparisons of SFG spectra between quartz/water/electrolytes and amorphous silica/water/electrolytes interfaces allow us to definitely conclude on how the structural arrangements of liquid water at these electrolytic interfaces modulate the final spectroscopic signatures. Invited speaker.
Real-Time X-Ray Microscopy of Al-Cu Eutectic Solidification
NASA Technical Reports Server (NTRS)
Kaukler, William F.; Curreri, Peter A.; Sen, Subhayu
1998-01-01
Recent improvements in the resolution of the X-ray Transmission Microscope (XTM) for Solidification Studies provide microstructure feature detectability down to 5 micrometers during solidification. This presentation will show the recent results from observations made in real-time of the solid-liquid interfacial morphologies of the Al-CuAI2 eutectic alloy. Lamellar dimensions and spacings, transitions of morphology caused by growth rate changes, and eutectic grain structures are open to measurements. A unique vantage point viewing the face of the interface isotherm is possible for the first time with the XTM due to its infinite depth of field. A video of the solid-liquid interfaces seen in-situ and in real-time will be shown.
Understanding the stability of surface nanobubbles.
Wang, Shuo; Liu, Minghuan; Dong, Yaming
2013-05-08
Surface nanobubbles emerging at solid-liquid interfaces show extreme stability. In this paper, the stability of surface nanobubbles in degassed water is discussed and investigated by AFM. The result demonstrates that surface nanobubbles are kinetically stable and the liquid/gas interface is gas impermeable. The force modulation experiment further proves that there is a layer coating on nanobubbles. These critical properties suggest that surface nanobubbles may be stabilized by a layer which has a great diffusive resistance.
NASA Astrophysics Data System (ADS)
de Gennes, Pierre-Gilles
On analyse la progression d'un coin fiuide sur uo solide (dans le cas ou Tangle de contact thermodynamique θa est nul : regie d'Antonov satisfaite) en tenant compte des interactions Van der Waals a longue portee. On trouve : (a) un angle de contact apparent θa relie a la vitesse d'avancee U par θ^{3}_{a} ˜ U η/γ (η = viscosity, γ tension superficielle du liquide) d'ou une loi rayon/temps d'etalement pour une goutte r(t) 1/10. (b) un film precurseur ζ d'epaisseur ζ(x, f) decroissant asymptotiquement comme x1 ou x est la distance a la ligne triple. L'epaisseur h* d u film au voisinage de la ligne triple est h* a/θa (ou a est une distance atomique). Ceci permet de comprendre le fait (reconnu) que le film precurseur est bien visible seulement si l'angle de contact thermodynamique est nul. We analyse the shape of the liquid-air interface for a droplet spreading on a solid, in a regime where the Antonov rule is satisfied, taking into account the long range Van der Waals interactions between liquid and solid. We find: (a) an apparent contact angle θa related to the velocity U of the triple line by θ^{3}_{a} ˜ U η/γ (η = viscosity, γ surface tension of the liquid). This leads to a law of spreading (radius r/time t) for a droplet r t1/10. (b) a precursor film of thickness ζ, decreasing asymptotically like x-1, where x is the distance from the triple line. The thickness h* of the film at this line is h* a/θa where a is an atomic length: this explains why the precursor films are observed only when the thermodynamic contact angle vanishes.
Methods and apparatuses for making cathodes for high-temperature, rechargeable batteries
Meinhardt, Kerry D; Sprenkle, Vincent L; Coffey, Gregory W
2014-05-20
The approaches for fabricating cathodes can be adapted to improve control over cathode composition and to better accommodate batteries of any shape and their assembly. For example, a first solid having an alkali metal halide, a second solid having a transition metal, and a third solid having an alkali metal aluminum halide are combined into a mixture. The mixture can be heated in a vacuum to a temperature that is greater than or equal to the melting point of the third solid. When the third solid is substantially molten liquid, the mixture is compressed into a desired cathode shape and then cooled to solidify the mixture in the desired cathode shape.
Apparatuses for making cathodes for high-temperature, rechargeable batteries
Meinhardt, Kerry D.; Sprenkle, Vincent L.; Coffey, Gregory W.
2016-09-13
The approaches and apparatuses for fabricating cathodes can be adapted to improve control over cathode composition and to better accommodate batteries of any shape and their assembly. For example, a first solid having an alkali metal halide, a second solid having a transition metal, and a third solid having an alkali metal aluminum halide are combined into a mixture. The mixture can be heated in a vacuum to a temperature that is greater than or equal to the melting point of the third solid. When the third solid is substantially molten liquid, the mixture is compressed into a desired cathode shape and then cooled to solidify the mixture in the desired cathode shape.
Shape transition in nano-pits after solid-phase etching of SiO{sub 2} by Si islands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leroy, F.; Curiotto, S.; Cheynis, F.
2015-05-11
We study the nano-pits formed during the etching of a SiO{sub 2} film by reactive Si islands at T≈1000 °C. Combining low energy electron microscopy, atomic force microscopy, kinetic Monte Carlo simulations, and an analytic model based on reaction and diffusion at the solid interface, we show that the shape of the nanopits depend on the ratio R/x{sub s} with R the Si island radius and x{sub s} the oxygen diffusion-length at the Si/SiO{sub 2} interface. For small R/x{sub s}, nanopits exhibit a single-well V-shape, while a double-well W-shape is found for larger R/x{sub s}. The analysis of the transition revealsmore » that x{sub s}∼60 nm at T≈1000 °C.« less
NASA Technical Reports Server (NTRS)
Mchugh, Kevin M.; Key, James F.
1993-01-01
Spray forming is a near-net-shape fabrication technology in which a spray of finely atomized liquid droplets is deposited onto a suitably shaped substrate or mold to produce a coherent solid. The technology offers unique opportunities for simplifying materials processing without sacrificing, and oftentimes substantially improving, product quality. Spray forming can be performed with a wide range of metals and nonmetals, and offers property improvements resulting from rapid solidification (e.g., refined microstructures, extended solid solubilities and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. Researchers at the Idaho National Engineering Laboratory (INEL) are developing spray-forming technology for producing near-net-shape solids and coatings of a variety of metals, polymers, and composite materials. Results from several spray forming programs are presented to illustrate the range of capabilities of the technique as well as the accompanying technical and economic benefits. Low-carbon steel strip greater than 0.75 mm thick and polymer membranes for gas/gas and liquid/liquid separations that were spray formed are discussed; recent advances in spray forming molds, dies, and other tooling using low-melting-point metals are described.
NASA Astrophysics Data System (ADS)
Liao, Hsien-Shun; Yang, Chih-Wen; Ko, Hsien-Chen; Hwu, En-Te; Hwang, Ing-Shouh
2018-03-01
The initial formation process of nanobubbles at solid-water interfaces remains unclear because of the limitations of current imaging techniques. To directly observe the formation process, an astigmatic high-speed atomic force microscope (AFM) was modified to enable imaging in the liquid environment. By using a customized cantilever holder, the resonance of small cantilevers was effectively enhanced in water. The proposed high-speed imaging technique yielded highly dynamic quasi-two-dimensional (2D) gas structures (thickness: 20-30 nm) initially at the graphite-water interface. The 2D structures were laterally mobile mainly within certain areas, but occasionally a gas structure might extensively migrate and settle in a new area. The 2D structures were often confined by substrate step edges in one lateral dimension. Eventually, all quasi-2D gas structures were transformed into cap-shaped nanobubbles of higher heights and reduced lateral dimensions. These nanobubbles were immobile and remained stable under continuous AFM imaging. This study demonstrated that nanobubbles could be stably imaged at a scan rate of 100 lines per second (640 μm/s).
Liu, Shanliangzi; Sun, Xiaoda; Hildreth, Owen J; Rykaczewski, Konrad
2015-03-07
Room temperature liquid-metal microfluidic devices are attractive systems for hyperelastic strain sensing. These liquid-phase electronics are intrinsically soft and retain their functionality even when stretched to several times their original length. Currently two types of liquid metal-based strain sensors exist for in-plane measurements: single-microchannel resistive and two-microchannel capacitive devices. With a winding serpentine channel geometry, these sensors typically have a footprint of about a square centimeter. This large footprint of an individual device limits the number of sensors that can be embedded into, for example, electronic fabric or skin. In this work we introduce an alternative capacitor design consisting of two liquid metal electrodes separated by a liquid dielectric material within a single straight channel. Using a liquid insulator instead of a solid elastomer enables us to tailor the system's capacitance by selecting high or low dielectric constant liquids. We quantify the effects of the electrode geometry including the diameter, spacing, and meniscus shape as well as the dielectric constant of the insulating liquid on the overall system's capacitance. We also develop a procedure for fabricating the two-liquid capacitor within a single straight polydiemethylsiloxane channel and demonstrate that this device can have about 25 times higher capacitance per sensor's base area when compared to two-channel liquid metal capacitors. Lastly, we characterize the response of this compact device to strain and identify operational issues arising from complex hydrodynamics near liquid-liquid and liquid-elastomer interfaces.
Dynamics and unsteady morphologies at ice interfaces driven by D2O–H2O exchange
Holmes-Cerfon, Miranda; Kohn, Robert V.
2017-01-01
The growth dynamics of D2O ice in liquid H2O in a microfluidic device were investigated between the melting points of D2O ice (3.8 °C) and H2O ice (0 °C). As the temperature was decreased at rates between 0.002 °C/s and 0.1 °C/s, the ice front advanced but retreated immediately upon cessation of cooling, regardless of the temperature. This is a consequence of the competition between diffusion of H2O into the D2O ice, which favors melting of the interface, and the driving force for growth supplied by cooling. Raman microscopy tracked H/D exchange across the solid H2O–solid D2O interface, with diffusion coefficients consistent with transport of intact H2O molecules at the D2O ice interface. At fixed temperatures below 3 °C, the D2O ice front melted continuously, but at temperatures near 0 °C a scalloped interface morphology appeared with convex and concave sections that cycled between growth and retreat. This behavior, not observed for D2O ice in contact with D2O liquid or H2O ice in contact with H2O liquid, reflects a complex set of cooperative phenomena, including H/D exchange across the solid–liquid interface, latent heat exchange, local thermal gradients, and the Gibbs–Thomson effect on the melting points of the convex and concave features. PMID:29042511
Elettro, Hervé; Neukirch, Sébastien; Vollrath, Fritz; Antkowiak, Arnaud
2016-05-31
An essential element in the web-trap architecture, the capture silk spun by ecribellate orb spiders consists of glue droplets sitting astride a silk filament. Mechanically this thread presents a mixed solid-liquid behavior unknown to date. Under extension, capture silk behaves as a particularly stretchy solid, owing to its molecular nanosprings, but it totally switches behavior in compression to now become liquid-like: It shrinks with no apparent limit while exerting a constant tension. Here, we unravel the physics underpinning the unique behavior of this "liquid wire" and demonstrate that its mechanical response originates in the shape-switching of the silk filament induced by buckling within the droplets. Learning from this natural example of geometry and mechanics, we manufactured programmable liquid wires that present previously unidentified pathways for the design of new hybrid solid-liquid materials.
NASA Astrophysics Data System (ADS)
Elettro, Hervé; Neukirch, Sébastien; Vollrath, Fritz; Antkowiak, Arnaud
2016-05-01
An essential element in the web-trap architecture, the capture silk spun by ecribellate orb spiders consists of glue droplets sitting astride a silk filament. Mechanically this thread presents a mixed solid-liquid behavior unknown to date. Under extension, capture silk behaves as a particularly stretchy solid, owing to its molecular nanosprings, but it totally switches behavior in compression to now become liquid-like: It shrinks with no apparent limit while exerting a constant tension. Here, we unravel the physics underpinning the unique behavior of this ”liquid wire” and demonstrate that its mechanical response originates in the shape-switching of the silk filament induced by buckling within the droplets. Learning from this natural example of geometry and mechanics, we manufactured programmable liquid wires that present previously unidentified pathways for the design of new hybrid solid-liquid materials.
NASA Technical Reports Server (NTRS)
Barber, P. G.; Berry, R. F.; Debnam, W. J.; Fripp, A. L.; Woodell, G.; Simchick, R. T.
1995-01-01
Using the advanced technology developed to visualize the melt-solid interface in low Prandtl number materials, crystal growth rates and interface shapes have been measured in germanium and lead tin telluride semiconductors grown in vertical Bridgman furnaces. The experimental importance of using in-situ, real time observations to determine interface shapes, to measure crystal growth rates, and to improve furnace and ampoule designs is demonstrated. The interface shapes observed in-situ, in real-time were verified by quenching and mechanically induced interface demarcation, and they were also confirmed using machined models to ascertain the absence of geometric distortions. Interface shapes depended upon the interface position in the furnace insulation zone, varied with the nature of the crystal being grown, and were dependent on the extent of transition zones at the ends of the ampoule. Actual growth rates varied significantly from the constant translation rate in response to the thermophysical properties of the crystal and its melt and the thermal conditions existing in the furnace at the interface. In the elemental semiconductor germanium the observed rates of crystal growth exceeded the imposed translation rate, but in the compound semiconductor lead tin telluride the observed rates of growth were less than the translation rate. Finally, the extent of ampoule thermal loading influenced the interface positions, the shapes, and the growth rates.
Effect of drop volume and surface statistics on the superhydrophobicity of randomly rough substrates
NASA Astrophysics Data System (ADS)
Afferrante, L.; Carbone, G.
2018-01-01
In this paper, a simple theoretical approach is developed with the aim of evaluating shape, interfacial pressure, apparent contact angle and contact area of liquid drops gently deposed on randomly rough surfaces. This method can be useful to characterize the superhydrophobic properties of rough substrates, and to investigate the contact behavior of impacting drops. We assume that (i) the size of the apparent liquid-solid contact area is much larger than the micromorphology of the substrate, and (ii) a composite interface is always formed at the microscale. Results show apparent contact angle and liquid-solid area fraction are slightly influenced by the drop volume only at relatively high values of the root mean square roughness h rms, whereas the effect of volume is practically negligible at small h rms. The main statistical quantity affecting the superhydrophobic properties is found to be the Wenzel roughness parameter r W, which depends on the average slope of the surface heights. Moreover, transition from the Cassie-Baxter state to the Wenzel one is observed when r W reduces below a certain critical value, and theoretical predictions are found to be in good agreement with experimental data. Finally, the present method can be conveniently exploited to evaluate the occurrence of pinning phenomena in the case of impacting drops, as the Wenzel critical pressure for liquid penetration gives an estimation of the maximum impact pressure tolerated by the surface without pinning occurring.
A discrete model of Ostwald ripening based on multiple pairwise interactions
NASA Astrophysics Data System (ADS)
Di Nunzio, Paolo Emilio
2018-06-01
A discrete multi-particle model of Ostwald ripening based on direct pairwise interactions is developed for particles with incoherent interfaces as an alternative to the classical LSW mean field theory. The rate of matter exchange depends on the average surface-to-surface interparticle distance, a characteristic feature of the system which naturally incorporates the effect of volume fraction of second phase. The multi-particle diffusion is described through the definition of an interaction volume containing all the particles involved in the exchange of solute. At small volume fractions this is proportional to the size of the central particle, at higher volume fractions it gradually reduces as a consequence of diffusion screening described on a geometrical basis. The topological noise present in real systems is also included. For volume fractions below about 0.1 the model predicts broad and right-skewed stationary size distributions resembling a lognormal function. Above this value, a transition to sharper, more symmetrical but still right-skewed shapes occurs. An excellent agreement with experiments is obtained for 3D particle size distributions of solid-solid and solid-liquid systems with volume fraction 0.07, 0.30, 0.52 and 0.74. The kinetic constant of the model depends on the cube root of volume fraction up to about 0.1, then increases rapidly with an upward concavity. It is in good agreement with the available literature data on solid-liquid mixtures in the volume fraction range from 0.20 to about 0.75.
Interface colloidal robotic manipulator
Aronson, Igor; Snezhko, Oleksiy
2015-08-04
A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.
NASA Astrophysics Data System (ADS)
de Souza, Victor Hugo Rodrigues; Oliveira, Marcela Mohallem; Zarbin, Aldo José Gorgatti
2014-08-01
The present work describes for the first time the synthesis and characterization of single wall carbon nanotubes/polyaniline (SWNTs/PAni) nanocomposite thin films in a liquid-liquid interface, as well as the subsequent construction of a flexible all-solid supercapacitor. Different SWNTs/PAni nanocomposites were prepared by varying the ratio of SWNT to aniline, and the samples were characterized by scanning and transmission electron microscopy, Raman and UV-Vis spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The pseudo-capacitive behavior of the nanocomposites was evaluated by charge/discharge galvanostatic measurements. The presence of the SWNTs affected the electronic and vibrational properties of the polyaniline and also improved the pseudo-capacitive behavior of the conducting polymer. A very thin and flexible all-solid device was manufactured using two electrodes (polyethylene terephthalate-PET covered with the SWNT/PAni nanocomposite separated by a H2SO4-PVA gel electrolyte). The pseudo-capacitive behavior was characterized by a volumetric specific capacitance of approximately 76.7 F cm-3, even under mechanical deformation, indicating that this nanocomposite has considerable potential for application in new-generation energy storage devices.
The control of float zone interfaces by the use of selected boundary conditions
NASA Technical Reports Server (NTRS)
Foster, L. M.; Mcintosh, J.
1983-01-01
The main goal of the float zone crystal growth project of NASA's Materials Processing in Space Program is to thoroughly understand the molten zone/freezing crystal system and all the mechanisms that govern this system. The surface boundary conditions required to give flat float zone solid melt interfaces were studied and computed. The results provide float zone furnace designers with better methods for controlling solid melt interface shapes and for computing thermal profiles and gradients. Documentation and a user's guide were provided for the computer software.
Effect of the Thermocouple on Measuring the Temperature Discontinuity at a Liquid-Vapor Interface.
Kazemi, Mohammad Amin; Nobes, David S; Elliott, Janet A W
2017-07-18
The coupled heat and mass transfer that occurs in evaporation is of interest in a large number of fields such as evaporative cooling, distillation, drying, coating, printing, crystallization, welding, atmospheric processes, and pool fires. The temperature jump that occurs at an evaporating interface is of central importance to understanding this complex process. Over the past three decades, thermocouples have been widely used to measure the interfacial temperature jumps at a liquid-vapor interface during evaporation. However, the reliability of these measurements has not been investigated so far. In this study, a numerical simulation of a thermocouple when it measures the interfacial temperatures at a liquid-vapor interface is conducted to understand the possible effects of the thermocouple on the measured temperature and features in the temperature profile. The differential equations of heat transfer in the solid and fluids as well as the momentum transfer in the fluids are coupled together and solved numerically subject to appropriate boundary conditions between the solid and fluids. The results of the numerical simulation showed that while thermocouples can measure the interfacial temperatures in the liquid correctly, they fail to read the actual interfacial temperatures in the vapor. As the results of our numerical study suggest, the temperature jumps at a liquid-vapor interface measured experimentally by using a thermocouple are larger than what really exists at the interface. For a typical experimental study of evaporation of water at low pressure, it was found that the temperature jumps measured by a thermocouple are overestimated by almost 50%. However, the revised temperature jumps are still in agreement with the statistical rate theory of interfacial transport. As well as addressing the specific application of the liquid-vapor temperature jump, this paper provides significant insight into the role that heat transfer plays in the operation of thermocouples in general.
Novel Shapes of Miscible Interfaces Observed
NASA Technical Reports Server (NTRS)
Balasubramaniam, Ramaswamy; Rashidnia, Nasser
2001-01-01
The dynamics of miscible displacements in a cylindrical tube are being investigated experimentally and numerically, with a view to understand the complex processes that occur, for example, in enhanced oil recovery, hydrology, and filtration. We have observed complex shapes of the interface between two liquids that mix with each other when the less viscous liquid is displaced by the more viscous one in a tube. A less viscous fluid that displaces a more viscous fluid is known to propagate in the form of a "finger," and a flight experiment proposed by Maxworthy et al. to investigate the miscible-interface dynamics is currently being developed by NASA. From the current theory of miscible displacements, which was developed for a porous medium satisfying Darcy's law, it can be shown that in the absence of gravity the interface between the fluids is destabilized and thus susceptible to fingering only when a more viscous fluid is displaced by a less viscous one. Therefore, if the interface is initially flat and the more viscous fluid displaces the less viscous fluid, the interface ought to be stable and remain flat. However, numerical simulations by Chen and Meiburg for such displacement in a cylindrical tube show that the interface is unstable and a finger of the more viscous fluid is indeed formed. Preliminary experiments performed at the NASA Glenn Research Center show that not only can fingering occur when the more viscous fluid displaces a less viscous one in a cylindrical tube, but also that under certain conditions the advancing finger achieves a sinuous or snakelike shape. These experiments were performed using silicone oils in a vertical pipette of small diameter. In the initial configuration, the more viscous fluid rested on top of the less viscous one, and the interface was nominally flat. A dye was added to the upper liquid for ease of observation of the interface between the fluids. The flow was initiated by draining the lower fluid from the bottom of the pipette, at speeds less than 0.1 mm/sec.
Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant.
Song, Meirong; Ju, Jie; Luo, Siqi; Han, Yuchun; Dong, Zhichao; Wang, Yilin; Gu, Zhen; Zhang, Lingjuan; Hao, Ruiran; Jiang, Lei
2017-03-01
Deposition of liquid droplets on solid surfaces is of great importance to many fundamental scientific principles and technological applications, such as spraying, coating, and printing. For example, during the process of pesticide spraying, more than 50% of agrochemicals are lost because of the undesired bouncing and splashing behaviors on hydrophobic or superhydrophobic leaves. We show that this kind of splashing on superhydrophobic surfaces can be greatly inhibited by adding a small amount of a vesicular surfactant, Aerosol OT. Rather than reducing splashing by increasing the viscosity via polymer additives, the vesicular surfactant confines the motion of liquid with the help of wettability transition and thus inhibits the splash. Significantly, the vesicular surfactant exhibits a distinguished ability to alter the surface wettability during the first inertial spreading stage of ~2 ms because of its dense aggregates at the air/water interface. A comprehensive model proposed by this idea could help in understanding the complex interfacial interactions at the solid/liquid/air interface.
Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant
Song, Meirong; Ju, Jie; Luo, Siqi; Han, Yuchun; Dong, Zhichao; Wang, Yilin; Gu, Zhen; Zhang, Lingjuan; Hao, Ruiran; Jiang, Lei
2017-01-01
Deposition of liquid droplets on solid surfaces is of great importance to many fundamental scientific principles and technological applications, such as spraying, coating, and printing. For example, during the process of pesticide spraying, more than 50% of agrochemicals are lost because of the undesired bouncing and splashing behaviors on hydrophobic or superhydrophobic leaves. We show that this kind of splashing on superhydrophobic surfaces can be greatly inhibited by adding a small amount of a vesicular surfactant, Aerosol OT. Rather than reducing splashing by increasing the viscosity via polymer additives, the vesicular surfactant confines the motion of liquid with the help of wettability transition and thus inhibits the splash. Significantly, the vesicular surfactant exhibits a distinguished ability to alter the surface wettability during the first inertial spreading stage of ~2 ms because of its dense aggregates at the air/water interface. A comprehensive model proposed by this idea could help in understanding the complex interfacial interactions at the solid/liquid/air interface. PMID:28275735
Nucleation processes of nanobubbles at a solid/water interface
NASA Astrophysics Data System (ADS)
Fang, Chung-Kai; Ko, Hsien-Chen; Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh
2016-04-01
Experimental investigations of hydrophobic/water interfaces often return controversial results, possibly due to the unknown role of gas accumulation at the interfaces. Here, during advanced atomic force microscopy of the initial evolution of gas-containing structures at a highly ordered pyrolytic graphite/water interface, a fluid phase first appeared as a circular wetting layer ~0.3 nm in thickness and was later transformed into a cap-shaped nanostructure (an interfacial nanobubble). Two-dimensional ordered domains were nucleated and grew over time outside or at the perimeter of the fluid regions, eventually confining growth of the fluid regions to the vertical direction. We determined that interfacial nanobubbles and fluid layers have very similar mechanical properties, suggesting low interfacial tension with water and a liquid-like nature, explaining their high stability and their roles in boundary slip and bubble nucleation. These ordered domains may be the interfacial hydrophilic gas hydrates and/or the long-sought chemical surface heterogeneities responsible for contact line pinning and contact angle hysteresis. The gradual nucleation and growth of hydrophilic ordered domains renders the original homogeneous hydrophobic/water interface more heterogeneous over time, which would have great consequence for interfacial properties that affect diverse phenomena, including interactions in water, chemical reactions, and the self-assembly and function of biological molecules.
The Mechanism of Atomization Accompanying Solid Injection
NASA Technical Reports Server (NTRS)
Castleman, R A , Jr
1933-01-01
A brief historical and descriptive account of solid injection is followed by a detailed review of the available theoretical and experimental data that seem to throw light on the mechanism of this form of atomization. It is concluded that this evidence indicates that (1) the atomization accompanying solid injection occurs at the surface of the liquid after it issues as a solid stream from the orifice; and (2) that such atomization has a mechanism physically identical with the atomization which takes place in an air stream, both being due merely to the formation, at the gas-liquid interface, of fine ligaments under the influence of the relative motion of gas and liquid, and to their collapse, under the influence of surface tension, to form the drops in the spray.
Niskanen, Ilpo; Räty, Jukka; Peiponen, Kai-Erik
2010-06-15
The immersion liquid method is powerful for the measurement of the refractive index of solid particles in a liquid matrix. However, this method applies best for cases when the liquid matrix is transparent. A problem is usually how to assess the refractive index of a pigment when it is in a colored host liquid. In this article we introduce a method, and show that by combining so-called multifunction spectrophotometer, immersion liquid method and detection of light transmission and reflection we can assess the refractive index of a pigment in a colored liquid, and also the extinction or absorption coefficient of the host liquid.
Self-assembly of conjugated oligomers and polymers at the interface: structure and properties.
Xu, Lirong; Yang, Liu; Lei, Shengbin
2012-08-07
In this review, we give a brief account on the recent scanning tunneling microscopy investigation of interfacial structures and properties of π-conjugated semiconducting oligomers and polymers, either at the solid-air (including solid-vacuum) or at the solid-liquid interface. The structural aspects of the self-assembly of both oligomers and polymers are highlighted. Conjugated oligomers can form well ordered supramolecular assemblies either at the air-solid or liquid-solid interface, thanks to the relatively high mobility and structural uniformity in comparison with polymers. The backbone structure, substitution of side chains and functional groups can affect the assembling behavior significantly, which offers the opportunity to tune the supramolecular structure of these conjugated oligomers at the interface. For conjugated polymers, the large molecular weight limits the mobility on the surface and the distribution in size also prevents the formation of long range ordered supramolecular assembly. The submolecular resolution obtained on the assembling monolayers enables a detailed investigation of the chain folding at the interface, both the structural details and the effect on electronic properties. Besides the ability in studying the assembling structures at the interfaces, STM also provides a reasonable way to evaluate the distribution of the molecular weight of conjugated polymers by statistic of the contour length of the adsorbed polymer chains. Both conjugated oligomers and polymers can form composite assemblies with other materials. The ordered assembly of oligomers can act as a template to controllably disperse other molecules such as coronene or fullerene. These investigations open a new avenue to fine tune the assembling structure at the interface and in turn the properties of the composite materials. To summarize scanning tunneling microscopy has demonstrated its surprising ability in the investigation of the assembling structures and properties of conjugated oligomers and polymers. The information obtained could benefit the understanding of the elements affecting the film morphology and helps the optimization of device performance.
Influence of convection on microstructure
NASA Technical Reports Server (NTRS)
Wilcox, William R.; Caram, Rubens; Mohanty, A. P.; Seth, Jayshree
1990-01-01
In eutectic growth, as the solid phases grow they reject atoms to the liquid. This results in a variation of melt composition along the solid/liquid interface. In the past, mass transfer in eutectic solidification, in the absence of convection, was considered to be governed only by the diffusion induced by compositional gradients. However, mass transfer can also be generated by a temperature gradient. This is called thermotransport, thermomigration, thermal diffusion or the Soret effect. A theoretical model of the influence of the Soret effect on the growth of eutectic alloys is presented. A differential equation describing the compositional field near the interface during unidirectional solidification of a binary eutectic alloy was formulated by including the contributions of both compositional and thermal gradients in the liquid. A steady-state solution of the differential equation was obtained by applying appropriate boundary conditions and accounting for heat flow in the melt. Following that, the average interfacial composition was converted to a variation of undercooling at the interface, and consequently to microstructural parameters. The results obtained show that thermotransport can, under certain circumstances, be a parameter of paramount importance.
Adsorption of hydrophobin/β-casein mixtures at the solid-liquid interface.
Tucker, I M; Petkov, J T; Penfold, J; Thomas, R K; Cox, A R; Hedges, N
2016-09-15
The adsorption behaviour of mixtures of the proteins β-casein and hydrophobin at the hydrophilic solid-liquid surface have been studied by neutron reflectivity. The results of measurements from sequential adsorption and co-adsorption from solution are contrasted. The adsorption properties of protein mixtures are important for a wide range of applications. Because of competing factors the adsorption behaviour of protein mixtures at interfaces is often difficult to predict. This is particularly true for mixtures containing hydrophobin as hydrophobin possesses some unusual surface properties. At β-casein concentrations ⩾0.1wt% β-casein largely displaces a pre-adsorbed layer of hydrophobin at the interface, similar to that observed in hydrophobin-surfactant mixtures. In the composition and concentration range studied here for the co-adsorption of β-casein-hydrophobin mixtures the adsorption is dominated by the β-casein adsorption. The results provide an important insight into how the competitive adsorption in protein mixtures of hydrophobin and β-casein can impact upon the modification of solid surface properties and the potential for a wide range of colloid stabilisation applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Tocci, Gabriele; Joly, Laurent; Michaelides, Angelos
2014-12-10
Friction is one of the main sources of dissipation at liquid water/solid interfaces. Despite recent progress, a detailed understanding of water/solid friction in connection with the structure and energetics of the solid surface is lacking. Here, we show for the first time that ab initio molecular dynamics can be used to unravel the connection between the structure of nanoscale water and friction for liquid water in contact with graphene and with hexagonal boron nitride. We find that although the interface presents a very similar structure between the two sheets, the friction coefficient on boron nitride is ≈ 3 times larger than that on graphene. This comes about because of the greater corrugation of the energy landscape on boron nitride arising from specific electronic structure effects. We discuss how a subtle dependence of the friction on the atomistic details of a surface, which is not related to its wetting properties, may have a significant impact on the transport of water at the nanoscale, with implications for the development of membranes for desalination and for osmotic power harvesting.
Effect of adsorption on the surface tensions of solid-fluid interfaces.
Ward, C A; Wu, Jiyu
2007-04-12
A method is proposed for determining the surface tensions of a solid in contact with either a liquid or a vapor. Only an equilibrium adsorption isotherm at the solid-vapor interface needs to be added to Gibbsian thermodynamics to obtain the expressions for the solid-vapor and the solid-liquid surface tensions, gamma[1](SV) and gamma[1](SL), respectively. An equilibrium adsorption isotherm relation is formulated that has the essential property of not predicting an infinite amount adsorbed when the pressure is equal to the saturation-vapor pressure. Five different solid-vapor systems from the literature are examined, and found to be well described by the new isotherm relation. The surface-tension expressions obtained from the isotherm relation are examined by determining the surface tension of the solid in the absence of adsorption, gamma[1](S0), a material property of a solid surface. The value of gamma[1](S0) can be determined by adsorbing different vapors on the same solid, determining the isotherm parameters in each case, and then from the expression for gamma[1](SV) taking the limit of the pressure vanishing to determine gamma[1](S0). From previously reported measurements of benzene and of n-hexane adsorbing on graphitized carbon, the same value of gamma[1](S0) is obtained.
Perspectives on surface nanobubbles
Zhang, Xuehua; Lohse, Detlef
2014-01-01
Materials of nanoscale size exhibit properties that macroscopic materials often do not have. The same holds for bubbles on the nanoscale: nanoscale gaseous domains on a solid-liquid interface have surprising properties. These include the shape, the long life time, and even superstability. Such so-called surface nanobubbles may have wide applications. This prospective article covers the basic properties of surface nanobubbles and gives several examples of potential nanobubble applications in nanomaterials and nanodevices. For example, nanobubbles can be used as templates or nanostructures in surface functionalization. The nanobubbles produced in situ in a microfluidic system can even induce an autonomous motion of the nanoparticles on which they form. Their formation also has implications for the fluid transport in narrow channels in which they form. PMID:25379084
Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging.
Tremsin, Anton S; Perrodin, Didier; Losko, Adrian S; Vogel, Sven C; Bourke, Mark A M; Bizarri, Gregory A; Bourret, Edith D
2017-04-20
Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of "blind" processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production. This technique is widely applicable and is not limited to crystal growth processes.
Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging
NASA Astrophysics Data System (ADS)
Tremsin, Anton S.; Perrodin, Didier; Losko, Adrian S.; Vogel, Sven C.; Bourke, Mark A. M.; Bizarri, Gregory A.; Bourret, Edith D.
2017-04-01
Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of “blind” processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production. This technique is widely applicable and is not limited to crystal growth processes.
Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging
Tremsin, Anton S.; Perrodin, Didier; Losko, Adrian S.; Vogel, Sven C.; Bourke, Mark A.M.; Bizarri, Gregory A.; Bourret, Edith D.
2017-01-01
Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of “blind” processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production. This technique is widely applicable and is not limited to crystal growth processes. PMID:28425461
Thermocapillary flow and melt/solid interfaces in floating-zone crystal growth under microgravity
NASA Technical Reports Server (NTRS)
Lan, C. W.; Kou, Sindo
1990-01-01
Computer simulation of steady-state axisymmetrical heat transfer and fluid flow was conducted to study thermocapillary flow and melt/solid interfaces in floating-zone crystal growth under microgravity. The effects of key variables on the extent of thermocapillary flow in the melt zone, the shapes of melt/solid interfaces and the length of the melt zone were discussed. These variables are: (1) the temperature coefficient of surface tension (or the Marangoni number), (2) the pulling speed (or the Peclet number), (3) the feed rod radius, (4) the ambient temperature distribution, (5) the heat transfer coefficient (or the Biot number), and (6) the thermal diffusivity of the material (or the Prandtl number).
A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals.
Wilson, S R; Mendelev, M I
2016-04-14
We study correlations between the solid-liquid interface (SLI) free energy and bulk material properties (melting temperature, latent heat, and liquid structure) through the determination of SLI free energies for bcc and hcp metals from molecular dynamics (MD) simulation. Values obtained for the bcc metals in this study were compared to values predicted by the Turnbull, Laird, and Ewing relations on the basis of previously published MD simulation data. We found that of these three empirical relations, the Ewing relation better describes the MD simulation data. Moreover, whereas the original Ewing relation contains two constants for a particular crystal structure, we found that the first coefficient in the Ewing relation does not depend on crystal structure, taking a common value for all three phases, at least for the class of the systems described by embedded-atom method potentials (which are considered to provide a reasonable approximation for metals).
A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals
NASA Astrophysics Data System (ADS)
Wilson, S. R.; Mendelev, M. I.
2016-04-01
We study correlations between the solid-liquid interface (SLI) free energy and bulk material properties (melting temperature, latent heat, and liquid structure) through the determination of SLI free energies for bcc and hcp metals from molecular dynamics (MD) simulation. Values obtained for the bcc metals in this study were compared to values predicted by the Turnbull, Laird, and Ewing relations on the basis of previously published MD simulation data. We found that of these three empirical relations, the Ewing relation better describes the MD simulation data. Moreover, whereas the original Ewing relation contains two constants for a particular crystal structure, we found that the first coefficient in the Ewing relation does not depend on crystal structure, taking a common value for all three phases, at least for the class of the systems described by embedded-atom method potentials (which are considered to provide a reasonable approximation for metals).
Wetting failure of hydrophilic surfaces promoted by surface roughness
Zhao, Meng-Hua; Chen, Xiao-Peng; Wang, Qing
2014-01-01
Wetting failure is of vital importance to many physical phenomena, such as industrial coating and drop emission. Here we show when and how the surface roughness promotes the destabilization of a moving contact line on a hydrophilic surface. Beyond the balance of the driving force and viscous resistance where a stable wetting interface is sustained, wetting failure occurs and is modified by the roughness of the surface. The promoting effect arises only when the wetting velocity is high enough to create a gas-liquid-solid composite interface in the vicinity of the moving contact line, and it is a function of the intrinsic contact angle and proportion of solid tops. We propose a model to explain splashes of rough solid spheres impacting into liquids. It reveals a novel concept that dynamic wetting on hydrophilic rough surfaces can be similar to that on hydrophobic surfaces, and brings a new way to design surfaces with specific wetting properties. PMID:24948390
Chen, Xuwei; Yang, Xu; Zeng, Wanying; Wang, Jianhua
2015-08-04
Protein transfer from aqueous medium into ionic liquid is an important approach for the isolation of proteins of interest from complex biological samples. We hereby report a solid-cladding/liquid-core/liquid-cladding sandwich optical waveguide system for the purpose of monitoring the dynamic mass-transfer behaviors of hemoglobin (Hb) at the aqueous/ionic liquid interface. The optical waveguide system is fabricated by using a hydrophobic IL (1,3-dibutylimidazolium hexafluorophosphate, BBimPF6) as the core, and protein solution as one of the cladding layer. UV-vis spectra are recorded with a CCD spectrophotometer via optical fibers. The recorded spectra suggest that the mass transfer of Hb molecules between the aqueous and ionic liquid media involve accumulation of Hb on the aqueous/IL interface followed by dynamic extraction/transfer of Hb into the ionic liquid phase. A part of Hb molecules remain at the interface even after the accomplishment of the extraction/transfer process. Further investigations indicate that the mass transfer of Hb from aqueous medium into the ionic liquid phase is mainly driven by the coordination interaction between heme group of Hb and the cationic moiety of ionic liquid, for example, imidazolium cation in this particular case. In addition, hydrophobic interactions also contribute to the transfer of Hb.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yuntao; Dibble, Collin J.; Petrik, Nikolay G.
2016-04-26
A pulsed laser heating system has been developed that enables investigations of the dynamics and kinetics of nanoscale liquid films and liquid/solid interfaces on the nanosecond timescale in ultrahigh vacuum (UHV). Details of the design, implementation and characterization of a nanosecond pulsed laser system for transiently heating nanoscale films are described. Nanosecond pulses from a Nd:YAG laser are used to rapidly heat thin films of adsorbed water or other volatile materials on a clean, well-characterized Pt(111) crystal in UHV. Heating rates of ~1010 K/s for temperature increases of ~100 – 200 K are obtained. Subsequent rapid cooling (~5 × 109more » K/s) quenches the film, permitting in-situ, post-mortem analysis using a variety of surface science techniques. Lateral variations in the laser pulse energy are ~ ± 3% leading to a temperature uncertainty of ~ ± 5 K for a temperature jump of 200 K. Initial experiments with the apparatus demonstrate that crystalline ice films initially held at 90 K can be rapidly transformed into liquid water films with T > 273 K. No discernable recrystallization occurs during the rapid cooling back to cryogenic temperatures. In contrast, amorphous solid water films heated below the melting point rapidly crystallize. The nanosecond pulsed laser heating system can prepare nanoscale liquid and supercooled liquid films that persist for nanoseconds per heat pulse in an UHV environment, enabling experimental studies of a wide range of phenomena in liquids and at liquid/solid interfaces.« less
Xu, Yuntao; Dibble, Collin J; Petrik, Nikolay G; Smith, R Scott; Joly, Alan G; Tonkyn, Russell G; Kay, Bruce D; Kimmel, Greg A
2016-04-28
A pulsed laser heating system has been developed that enables investigations of the dynamics and kinetics of nanoscale liquid films and liquid/solid interfaces on the nanosecond time scale in ultrahigh vacuum (UHV). Details of the design, implementation, and characterization of a nanosecond pulsed laser system for transiently heating nanoscale films are described. Nanosecond pulses from a Nd:YAG laser are used to rapidly heat thin films of adsorbed water or other volatile materials on a clean, well-characterized Pt(111) crystal in UHV. Heating rates of ∼10(10) K/s for temperature increases of ∼100-200 K are obtained. Subsequent rapid cooling (∼5 × 10(9) K/s) quenches the film, permitting in-situ, post-heating analysis using a variety of surface science techniques. Lateral variations in the laser pulse energy are ∼±2.7% leading to a temperature uncertainty of ∼±4.4 K for a temperature jump of 200 K. Initial experiments with the apparatus demonstrate that crystalline ice films initially held at 90 K can be rapidly transformed into liquid water films with T > 273 K. No discernable recrystallization occurs during the rapid cooling back to cryogenic temperatures. In contrast, amorphous solid water films heated below the melting point rapidly crystallize. The nanosecond pulsed laser heating system can prepare nanoscale liquid and supercooled liquid films that persist for nanoseconds per heat pulse in an UHV environment, enabling experimental studies of a wide range of phenomena in liquids and at liquid/solid interfaces.
Davis, Hyman R.; Long, R. H.; Simone, A. A.
1979-01-01
Solids are separated from a liquid in a gravity settler provided with inclined solid intercepting surfaces to intercept the solid settling path to coalesce the solids and increase the settling rate. The intercepting surfaces are inverted V-shaped plates, each formed from first and second downwardly inclined upwardly curved intersecting conical sections having their apices at the vessel wall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rioux, Robert M.
In this work, we have primarily utilized isothermal titration calorimetry (ITC) and complimentary catalyst characterization techniques to study and assess the impact of solution conditions (i.e., solid-liquid) interface on the synthesis of heterogeneous and electro-catalysts. Isothermal titration calorimetry is well-known technique from biochemistry/physics, but has been applied to a far lesser extent to characterize buried solid-liquid interfaces in materials science. We demonstrate the utility and unique information provided by ITC for two distinct catalytic systems. We explored the thermodynamics associated catalyst synthesis for two systems: (i) ion-exchange or strong electrostatic adsorption for Pt and Pd salts on silica and aluminamore » materials (ii) adsorption to provide covalent attachment of metal and metal-oxo clusters to Dion-Jacobsen perovskite materials.« less
NASA Astrophysics Data System (ADS)
Zhao, Huiling; Li, Yinli; Chen, Dong; Liu, Bo
2016-12-01
The co-adsorption behavior of nucleic-acid base (thymine; cytosine) and melamine was investigated by scanning tunneling microscopy (STM) technique at liquid/solid (1-octanol/graphite) interface. STM characterization results indicate that phase separation happened after dropping the mixed solution of thymine-melamine onto highly oriented pyrolytic graphite (HOPG) surface, while the hetero-component cluster-like structure was observed when cytosine-melamine binary assembly system is used. From the viewpoints of non-covalent interactions calculated by using density functional theory (DFT) method, the formation mechanisms of these assembled structures were explored in detail. This work will supply a methodology to design the supramolecular assembled structures and the hetero-component materials composed by biological and chemical compound.
Equilibrium Fluid Interface Behavior Under Low- and Zero-Gravity Conditions. 2
NASA Technical Reports Server (NTRS)
Concus, Paul; Finn, Robert
1996-01-01
The mathematical basis for the forthcoming Angular Liquid Bridge investigation on board Mir is described. Our mathematical work is based on the classical Young-Laplace-Gauss formulation for an equilibrium free surface of liquid partly filling a container or otherwise in contact with solid support surfaces. The anticipated liquid behavior used in the apparatus design is also illustrated.
NASA Astrophysics Data System (ADS)
Peterson, Jeffrey H.; Derby, Jeffrey J.
2017-06-01
A unifying idea is presented for the engineering of convex melt-solid interface shapes in Bridgman crystal growth systems. Previous approaches to interface control are discussed with particular attention paid to the idea of a "booster" heater. Proceeding from the idea that a booster heater promotes a converging heat flux geometry and from the energy conservation equation, we show that a convex interface shape will naturally result when the interface is located in regions of the furnace where the axial thermal profile exhibits negative curvature, i.e., where d2 T / dz2 < 0 . This criterion is effective in explaining prior literature results on interface control and promising for the evaluation of new furnace designs. We posit that the negative curvature criterion may be applicable to the characterization of growth systems via temperature measurements in an empty furnace, providing insight about the potential for achieving a convex interface shape, without growing a crystal or conducting simulations.
A Study of Nucleate Boiling with Forced Convection in Microgravity
NASA Technical Reports Server (NTRS)
Merte, Herman, Jr.
1996-01-01
Boiling is a rather imprecise term applied to the process of evaporation in which the rate of liquid-vapor phase change is large. In seeking to determine the role and significance of body forces on the process, of which buoyancy or gravity is just one agent, it becomes necessary to define the term more precisely. It is generally characterized by the formation and growth of individual vapor bubbles arising from heat transfer to the liquid, either at a solid/liquid or liquid/liquid interface, or volumetrically. The terms 'bubble' boiling and 'nucleate' boiling are frequently used, in recognition of the interactions of surface tension and other forces in producing discrete bubbles at distinctive locations (although not always). Primary considerations are that evaporation can occur only at existing liquid-vapor interfaces, so that attention must be given to the formation of an interface (the nucleation process), and that the latent heat for this evaporation can come only from the superheated liquid, so that attention must also be given to the temperature distributions in the liquid.
Amorphous SiC/c-ZnO-Based Quasi-Lamb Mode Sensor for Liquid Environments.
Caliendo, Cinzia; Hamidullah, Muhammad; Laidoudi, Farouk
2017-05-25
The propagation of the quasi-Lamb modes along a-SiC/ZnO thin composite plates was modeled and analysed with the aim to design a sensor able to detect the changes in parameters of a liquid environment, such as added mass and viscosity changes. The modes propagation was modeled by numerically solving the system of coupled electro-mechanical field equations in three media. The mode shape, the power flow, the phase velocity, and the electroacoustic coupling efficiency (K²) of the modes were calculated, specifically addressing the design of enhanced-coupling, microwave frequency sensors for applications in probing the solid/liquid interface. Three modes were identified that have predominant longitudinal polarization, high phase velocity, and quite good K²: the fundamental quasi symmetric mode (qS₀) and two higher order quasi-longitudinal modes (qL₁ and qL₂) with a dominantly longitudinal displacement component in one plate side. The velocity and attenuation of these modes were calculated for different liquid viscosities and added mass, and the gravimetric and viscosity sensitivities of both the phase velocity and attenuation were theoretically calculated. The present study highlights the feasibility of the a-SiC/ZnO acoustic waveguides for the development of high-frequency, integrated-circuit compatible electroacoustic devices suitable for working in a liquid environment.
NASA Astrophysics Data System (ADS)
Gorodilov, LV; Rasputina, TB
2018-03-01
A liquid–solid hydrodynamic model is used to determine shapes and sizes of craters generated by impact rupture of rocks. Near the impact location, rock is modeled by an ideal incompressible liquid, in the distance—by an absolute solid. The calculated data are compared with the experimental results obtained under impact treatment of marble by a wedge-shaped tool.
Prenucleation Induced by Crystalline Substrates
NASA Astrophysics Data System (ADS)
Men, H.; Fan, Z.
2018-04-01
Prenucleation refers to the phenomenon of atomic ordering in the liquid adjacent to the substrate/liquid interface at temperatures above the liquidus. In this paper, we have systematically investigated and holistically quantified the prenucleation phenomenon as a function of temperature and the lattice misfit between the substrate and the solid, using molecular dynamics (MD) simulations. Our results have confirmed that at temperatures above the liquidus, the atoms in the liquid at the interface may exhibit pronounced atomic ordering, manifested by atomic layering normal to the interface, in-plane atomic ordering parallel to the interface, and the formation of a 2-dimensional (2D) ordered structure (a few atomic layers in thickness) on the substrate surface. Holistic quantification of such atomic ordering at the interface has revealed that the atomic layering is independent of lattice misfit and is only slightly enhanced by reducing temperature while both in-plane atomic ordering and the formation of the 2D ordered structure are significantly enhanced by reducing the lattice misfit and/or temperature. This substrate-induced atomic ordering in the liquid may have a significant influence on the subsequent heterogeneous nucleation process.
NASA Astrophysics Data System (ADS)
Das, Saurish; Patel, H. V.; Milacic, E.; Deen, N. G.; Kuipers, J. A. M.
2018-01-01
We investigate the dynamics of a liquid droplet in contact with a surface of a porous structure by means of the pore-scale level, fully resolved numerical simulations. The geometrical details of the solid porous matrix are resolved by a sharp interface immersed boundary method on a Cartesian computational grid, whereas the motion of the gas-liquid interface is tracked by a mass conservative volume of fluid method. The numerical simulations are performed considering a model porous structure that is approximated by a 3D cubical scaffold with cylindrical struts. The effect of the porosity and the equilibrium contact angle (between the gas-liquid interface and the solid struts) on the spreading behavior, liquid imbibition, and apparent contact angle (between the gas-liquid interface and the porous base) are studied. We also perform several simulations for droplet spreading on a flat surface as a reference case. Gas-liquid systems of the Laplace number, La = 45 and La = 144 × 103 are considered neglecting the effect of gravity. We report the time exponent (n) and pre-factor (C) of the power law describing the evolution of the spreading diameter (S = Ctn) for different equilibrium contact angles and porosity. Our simulations reveal that the apparent or macroscopic contact angle varies linearly with the equilibrium contact angle and increases with porosity. Not necessarily for all the wetting porous structures, a continuous capillary drainage occurs, and we find that the rate of the capillary drainage very much depends on the fluid inertia. At La = 144 × 103, numerically we capture the capillary wave induced pinch-off and daughter droplet ejection. We observe that on the porous structure the pinch-off is weak compared to that on a flat plate.
James, O.B.; Floss, C.; McGee, J.J.
2002-01-01
We present results of a secondary ion mass spectrometry study of the rare earth elements (REEs) in the minerals of two samples of lunar ferroan anorthosite, and the results are applicable to studies of REEs in all igneous rocks, no matter what their planet of origin. Our pyroxene analyses are used to determine solid-solid REE distribution coefficients (D = CREE in low-Ca pyroxene/CREE in augite) in orthopyroxene-augite pairs derived by inversion of pigeonite. Our data and predictions from crystal-chemical considerations indicate that as primary pigeonite inverts to orthopyroxene plus augite and subsolidus reequilibration proceeds, the solid-solid Ds for orthopyroxene-augite pairs progressively decrease for all REEs; the decrease is greatest for the LREEs. The REE pattern of solid-solid Ds for inversion-derived pyroxene pairs is close to a straight line for Sm-Lu and turns upward for REEs lighter than Sm; the shape of this pattern is predicted by the shapes of the REE patterns for the individual minerals. Equilibrium liquids calculated for one sample from the compositions of primary phases, using measured or experimentally determined solid-liquid Ds, have chondrite-normalized REE patterns that are very slightly enriched in LREEs. The plagioclase equilibrium liquid is overall less rich in REEs than pyroxene equilibrium liquids, and the discrepancy probably arises because the calculated plagioclase equilibrium liquid represents a liquid earlier in the fractionation sequence than the pyroxene equilibrium liquids. "Equilibrium" liquids calculated from the compositions of inversion-derived pyroxenes or orthopyroxene derived by reaction of olivine are LREE depleted (in some cases substantially) in comparison with equilibrium liquids calculated from the compositions of primary phases. These discrepancies arise because the inversion-derived and reaction-derived pyroxenes did not crystallize directly from liquid, and the use of solid-liquid Ds is inappropriate. The LREE depletion of the calculated liquids is a relic of formation of these phases from primary LREE-depleted minerals. Thus, if one attempts to calculate the compositions of equilibrium liquids from pyroxene compositions, it is important to establish that the pyroxenes are primary. In addition, our data suggest that experimental studies have underestimated solid-liquid Ds for REEs in pigeonite and that REE contents of liquids calculated using these Ds are overestimates. Our results have implications for Sm-Nd age studies. Our work shows that if pigeonite inversion and/or subsolidus reequilibration between augite and orthopyroxene occured significantly after crystallization, and if pyroxene separates isolated for Sm-Nd studies do not have the bulk composition of the primary pyroxenes, then the Sm-Nd isochron age and ??Nd will be in error. Copyright ?? 2002 Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
Vella, Joseph R.; Chen, Mohan; Fürstenberg, Sven; Stillinger, Frank H.; Carter, Emily A.; Debenedetti, Pablo G.; Panagiotopoulos, Athanassios Z.
2017-11-01
An understanding of the wetting properties and a characterization of the interface between liquid lithium (Li) and solid molybdenum (Mo) are relevant to assessing the efficacy of Li as a plasma-facing component in fusion reactors. In this work, a new second-nearest neighbor modified embedded-atom method (2NN MEAM) force field is parameterized to describe the interactions between Li and Mo. The new force field reproduces several benchmark properties obtained from first-principles quantum mechanics simulations, including binding curves for Li at three different adsorption sites and the corresponding forces on Li atoms adsorbed on the Mo (1 1 0) surface. This force field is then used to study the wetting of liquid Li on the (1 1 0) surface of Mo and to examine the Li-Mo interface using molecular dynamics simulations. From droplet simulations, we find that liquid Li tends to completely wet the perfect Mo (1 1 0) surface, in contradiction with previous experimental measurements that found non-zero contact angles for liquid Li on a Mo substrate. However, these experiments were not carried out under ultra-high vacuum conditions or with a perfect (1 1 0) Mo surface, suggesting that the presence of impurities, such as oxygen, and surface structure play a crucial role in this wetting process. From thin-film simulations, it is observed that the first layer of Li on the Mo (1 1 0) surface has many solid-like properties such as a low mobility and a larger degree of ordering when compared to layers further away from the surface, even at temperatures well above the bulk melting temperature of Li. These findings are consistent with temperature-programmed desorption experiments.
Ginzburg-Landau theory for the solid-liquid interface of bcc elements
NASA Technical Reports Server (NTRS)
Shih, W. H.; Wang, Z. Q.; Zeng, X. C.; Stroud, D.
1987-01-01
Consideration is given to a simple order-parameter theory for the interfacial tension of body-centered-cubic solids in which the principal order parameter is the amplitude of the density wave at the smallest nonzero reciprocal-lattice vector of the solid. The parameters included in the theory are fitted to the measured heat of fusion, melting temperature, and solid-liquid density difference, and to the liquid structure factor and its temperature derivative at freezing. Good agreement is found with experiment for Na and Fe and the calculated anisotropy of the surface tension among different crystal faces is of the order of 2 percent. On the basis of various assumptions about the universal behavior of bcc crystals at melting, the formalism predicts that the surface tension is proportional to the heat of fusion per surface atom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strelcov, Evgheni; Cothren, Joshua E.; Leonard, Donovan N.
Progress in rational engineering of Li-ion batteries requires better understanding of the electrochemical processes and accompanying transformations in the electrode materials on multiple length scales. In spite of recent progress in utilizing transmission electron microscopy (TEM) to analyze these materials, in situ scanning electron microscopy (SEM) was mostly overlooked as a powerful tool that allows probing these phenomena on the nano and mesoscale. In this paper, we report on in situ SEM study of lithiation in a V 2O 5-based single-nanobelt battery with ionic liquid electrolyte. Coupled with cyclic voltammetry measurements, in situ SEM revealed the peculiarities of subsurface intercalation,more » formation of solid-electrolyte interface (SEI) and electromigration of liquid. We observed that single-crystalline vanadia nanobelts do not undergo large-scale amorphization or fracture during electrochemical cycling, but rather transform topochemically with only a slight shape distortion. Lastly, the SEI layer seems to have significant influence on the lithium ion diffusion and overall capacity of the single-nanobelt battery.« less
Lin, Yiliang; Liu, Yang
2017-01-01
Stable suspensions of eutectic gallium indium (EGaIn) liquid metal nanoparticles form by probe-sonicating the metal in an aqueous solution. Positively-charged molecular or macromolecular surfactants in the solution, such as cetrimonium bromide or lysozyme, respectively, stabilize the suspension by interacting with the negative charges of the surface oxide that forms on the metal. The liquid metal breaks up into nanospheres via sonication, yet can transform into rods of gallium oxide monohydroxide (GaOOH) via moderate heating in solution either during or after sonication. Whereas heating typically drives phase transitions from solid to liquid (via melting), here heating drives the transformation of particles from liquid to solid via oxidation. Interestingly, indium nanoparticles form during the process of shape transformation due to the selective removal of gallium. This dealloying provides a mechanism to create indium nanoparticles at temperatures well below the melting point of indium. To demonstrate the versatility, we show that it is possible to shape transform and dealloy other alloys of gallium including ternary liquid metal alloys. Scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDS) mapping, and X-ray diffraction (XRD) confirm the dealloying and transformation mechanism. PMID:28580116
Noninvasive method for determining the liquid level and density inside of a container
Sinha, Dipen N.
2000-01-01
Noninvasive method for determining the liquid level and density inside of a container having arbitrary dimension and shape. By generating a flexural acoustic wave in the container shell and measuring the phase difference of the detected flexural wave from that of the originally generated wave a small distance from the generated wave, while moving the generation and detection means through the liquid/vapor interface, this interface can be detected. Both the wave generation and wave detection may be achieved by transducers on the surface of the container. A change in the phase difference over the outer surface of the vessel signifies that a liquid/vapor interface has been crossed, while the magnitude of the phase difference can be related to fluid density immediately opposite the measurement position on the surface of the vessel.
Liquid behavior of cross-linked actin bundles.
Weirich, Kimberly L; Banerjee, Shiladitya; Dasbiswas, Kinjal; Witten, Thomas A; Vaikuntanathan, Suriyanarayanan; Gardel, Margaret L
2017-02-28
The actin cytoskeleton is a critical regulator of cytoplasmic architecture and mechanics, essential in a myriad of physiological processes. Here we demonstrate a liquid phase of actin filaments in the presence of the physiological cross-linker, filamin. Filamin condenses short actin filaments into spindle-shaped droplets, or tactoids, with shape dynamics consistent with a continuum model of anisotropic liquids. We find that cross-linker density controls the droplet shape and deformation timescales, consistent with a variable interfacial tension and viscosity. Near the liquid-solid transition, cross-linked actin bundles show behaviors reminiscent of fluid threads, including capillary instabilities and contraction. These data reveal a liquid droplet phase of actin, demixed from the surrounding solution and dominated by interfacial tension. These results suggest a mechanism to control organization, morphology, and dynamics of the actin cytoskeleton.
Introduction to optical methods for characterizing liquid crystals at interfaces.
Miller, Daniel S; Carlton, Rebecca J; Mushenheim, Peter C; Abbott, Nicholas L
2013-03-12
This Instructional Review describes methods and underlying principles that can be used to characterize both the orientations assumed spontaneously by liquid crystals (LCs) at interfaces and the strength with which the LCs are held in those orientations (so-called anchoring energies). The application of these methods to several different classes of LC interfaces is described, including solid and aqueous interfaces as well as planar and nonplanar interfaces (such as those that define a LC-in-water emulsion droplet). These methods, which enable fundamental studies of the ordering of LCs at polymeric, chemically functionalized, and biomolecular interfaces, are described in this Instructional Review on a level that can be easily understood by a nonexpert reader such as an undergraduate or graduate student. We focus on optical methods because they are based on instrumentation that is found widely in research and teaching laboratories.
In Situ Monitoring of Chemical Reactions at a Solid-Water Interface by Femtosecond Acoustics.
Shen, Chih-Chiang; Weng, Meng-Yu; Sheu, Jinn-Kong; Yao, Yi-Ting; Sun, Chi-Kuang
2017-11-02
Chemical reactions at a solid-liquid interface are of fundamental importance. Interfacial chemical reactions occur not only at the very interface but also in the subsurface area, while existing monitoring techniques either provide limited spatial resolution or are applicable only for the outmost atomic layer. Here, with the aid of the time-domain analysis with femtosecond acoustics, we demonstrate a subatomic-level-resolution technique to longitudinally monitor chemical reactions at solid-water interfaces, capable of in situ monitoring even the subsurface area under atmospheric conditions. Our work was proven by monitoring the already-known anode oxidation process occurring during photoelectrochemical water splitting. Furthermore, whenever the oxide layer thickness equals an integer number of the effective atomic layer thickness, the measured acoustic echo will show higher signal-to-noise ratios with reduced speckle noise, indicating the quantum-like behavior of this coherent-phonon-based technique.
Linear Stability Analysis of an Acoustically Vaporized Droplet
NASA Astrophysics Data System (ADS)
Siddiqui, Junaid; Qamar, Adnan; Samtaney, Ravi
2015-11-01
Acoustic droplet vaporization (ADV) is a phase transition phenomena of a superheat liquid (Dodecafluoropentane, C5F12) droplet to a gaseous bubble, instigated by a high-intensity acoustic pulse. This approach was first studied in imaging applications, and applicable in several therapeutic areas such as gas embolotherapy, thrombus dissolution, and drug delivery. High-speed imaging and theoretical modeling of ADV has elucidated several physical aspects, ranging from bubble nucleation to its subsequent growth. Surface instabilities are known to exist and considered responsible for evolving bubble shapes (non-spherical growth, bubble splitting and bubble droplet encapsulation). We present a linear stability analysis of the dynamically evolving interfaces of an acoustically vaporized micro-droplet (liquid A) in an infinite pool of a second liquid (liquid B). We propose a thermal ADV model for the base state. The linear analysis utilizes spherical harmonics (Ynm, of degree m and order n) and under various physical assumptions results in a time-dependent ODE of the perturbed interface amplitudes (one at the vapor/liquid A interface and the other at the liquid A/liquid B interface). The perturbation amplitudes are found to grow exponentially and do not depend on m. Supported by KAUST Baseline Research Funds.
Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S
2013-02-12
A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.
Continuous coating of silicon-on-ceramic
NASA Technical Reports Server (NTRS)
Heaps, J. D.; Schuldt, S. B.; Grung, B. L.; Zook, J. D.; Butter, C. D.
1980-01-01
Growth of sheet silicon on low-cost substrates has been demonstrated by the silicon coating with inverted meniscus (SCIM) technique. A mullite-based ceramic substrate is coated with carbon and then passed over a trough of molten silicon with a raised meniscus. Solidification occurs at the trailing edge of the downstream meniscus, producing a silicon-on-ceramic (SOC) layer. Meniscus shape and stability are controlled by varying the level of molten silicon in a reservoir connected to the trough. The thermal conditions for growth and the crystallographic texture of the SOC layers are similar to those produced by dip-coating, the original technique of meniscus-controlled growth. The thermal conditions for growth have been analyzed in some detail. The analysis correctly predicts the velocity-thickness relationship and the liquid-solid interface shape for dip-coating, and appears to be equally applicable to SCIM-coating. Solar cells made from dip-coated SOC material have demonstrated efficiencies of 10% on 4-sq cm cells and 9.9% on 10-sq cm cells.
NASA Technical Reports Server (NTRS)
El-Genk, Mohamed S.; Yang, Jae-Young
1991-01-01
The mechanisms of void formation during the cooldown and freezing of lithium coolant within the primary loop of SP-100 type systems are investigated. These mechanisms are: (1) homogeneous nucleation; (2) heterogeneous nucleation; (3) normal segregation of helium gas dissolved in liquid lithium; and (4) shrinkage of lithium during freezing. To evaluate the void formation potential due to segregation, a numerical scheme that couples the freezing and mass diffusion processes in both the solid and liquid regions is developed. The results indicated that the formation of He bubbles is unlikely by either homogeneous or heterogeneous nucleation during the cooldown process. However, homogeneous nucleation of He bubbles following the segregation of dissolved He in liquid lithium ahead of the solid-liquid interface is likely to occur. Results also show that total volume of He void is insignificant when compared to that of shrinkage voids. In viewing this, the subsequent research focuses on the effects of shrinkage void forming during freezing of lithium on subsequent thaw processes are investigated using a numerical scheme that is based on a single (solid/liquid) cell approach. The cases of lithium-fluoride are also investigated to show the effect of larger volume shrinkage upon freezing on the freeze and thaw processes. Results show that a void forming at the wall appreciably reduces the solid-liquid interface velocity, during both freeze and thaw, and causes a substantial rise in the wall temperature during thaw. However, in the case of Li, the maximum wall temperature was much lower than the melting temperature of PWC-11, which is used as the structure material in the SP-100 system. Hence, it is included that a formation of hot spots is unlikely during the startup or restart of the SP-100 system.
Modes of surface premelting in colloidal crystals composed of attractive particles
NASA Astrophysics Data System (ADS)
Li, Bo; Wang, Feng; Zhou, Di; Peng, Yi; Ni, Ran; Han, Yilong
2016-03-01
Crystal surfaces typically melt into a thin liquid layer at temperatures slightly below the melting point of the crystal. Such surface premelting is prevalent in all classes of solids and is important in a variety of metallurgical, geological and meteorological phenomena. Premelting has been studied using X-ray diffraction and differential scanning calorimetry, but the lack of single-particle resolution makes it hard to elucidate the underlying mechanisms. Colloids are good model systems for studying phase transitions because the thermal motions of individual micrometre-sized particles can be tracked directly using optical microscopy. Here we use colloidal spheres with tunable attractions to form equilibrium crystal-vapour interfaces, and study their surface premelting behaviour at the single-particle level. We find that monolayer colloidal crystals exhibit incomplete premelting at their perimeter, with a constant liquid-layer thickness. In contrast, two- and three-layer crystals exhibit conventional complete melting, with the thickness of the surface liquid diverging as the melting point is approached. The microstructures of the surface liquids differ in certain aspects from what would be predicted by conventional premelting theories. Incomplete premelting in the monolayer crystals is triggered by a bulk isostructural solid-solid transition and truncated by a mechanical instability that separately induces homogeneous melting within the bulk. This finding is in contrast to the conventional assumption that two-dimensional crystals melt heterogeneously from their free surfaces (that is, at the solid-vapour interface). The unexpected bulk melting that we observe for the monolayer crystals is accompanied by the formation of grain boundaries, which supports a previously proposed grain-boundary-mediated two-dimensional melting theory. The observed interplay between surface premelting, bulk melting and solid-solid transitions challenges existing theories of surface premelting and two-dimensional melting.
Computational study of a self-cleaning process on superhydrophobic surface
NASA Astrophysics Data System (ADS)
Farokhirad, Samaneh
All substances around us are bounded by interfaces. In general, interface between different phases of materials are categorized as fluid-fluid, solid-fluid, and solid-solid. Fluid-fluid interfaces exhibit a distinct behavior by adapting their shape in response to external stimulus. For example, a liquid droplet on a substrate can undergo different wetting morphologies depending on topography and chemical composition of the surface. Fundamentally, interfacial phenomena arise at the limit between two immiscible phases, namely interface. The interface dynamic governs, to a great extent, physical processes such as impact and spreading of two immiscible media, and stabilization of foams and emulsions from break-up and coalescence. One of the recent challenging problems in the interface-driven fluid dynamics is the self-propulsion mechanism of droplets by means of different types of external forces such as electrical potential, or thermal Marangoni effect. Rapid removal of self-propelled droplet from the surface is an essential factor in terms of expense and efficiency for many applications including self-cleaning and enhanced heat and mass transfer to save energy and natural resources. A recent study on superhydrophobic nature of micro- and nanostructures of cicada wings offers a unique way for the self-propulsion process with no external force, namely coalescence-induced self-propelled jumping of droplet which can act effectively at any orientation. The biological importance of this new mechanism is associated with protecting such surfaces from long term exposure to colloidal particles such as microbial colloids and virus particles. Different interfacial phenomena can occur after out-of-plane jumping of droplet. If the departed droplet is landed back by gravity, it may impact and spread on the surface or coalesce with another droplet and again self-peopled itself to jump away from the surface. The complete removal of the propelled droplet to a sufficient distance beyond the boundary layer of the surface can be accomplished with a surface-parallel shear flow. This thesis presents an investigation of the physics involved in the mechanism of coalescence-induced self-propelled jumping of droplet with and without particle presence, through the use of numerical simulation. (Abstract shortened by ProQuest.).
NASA Astrophysics Data System (ADS)
McHugh, K. M.; Key, J. F.
1994-06-01
Spray forming is a near- net- shape fabrication technology in which a spray of finely atomized liquid droplets is deposited onto a suitably shaped substrate or pattern to produce a coherent solid. The technology offers unique opportunities for simplifying materials processing, often while substantially improving product quality. Spray forming is applicable to a wide range of metals and nonmetals and offers property improvements resulting from rapid solidification (e.g., refined microstructures, extended solid solubilities, and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. Researchers at the Idaho National Engineering Laboratory (INEL) are developing spray forming technology for producing near- net- shape solids and coatings of a variety of metals, polymers, and composite materials using de Laval nozzles. This article briefly describes the atomization behavior of liquid metals in linear de Laval nozzles and illustrates the versatility of the process by summarizing results from two spray forming programs. In one program, low-carbon steel strip >0.75 mm thick was produced; in the other, polymer membranes ˜5 μm thick were spray formed.
Effect of a cationic surfactant on the volatilization of PAHs from soil.
Lu, Li; Zhu, Lizhong
2012-06-01
Cationic surfactants are common in soils because of their use in daily cosmetic and cleaning products, and their use as a soil amendment for the mitigation and remediation of organic contaminated soils has been proposed. Such surfactant may affect the transfer and fate of organic contaminants in the environment. This study investigated the effect of a cationic surfactant, dodecylpyridinium bromide (DDPB), on the volatilization of polycyclic aromatic hydrocarbons (PAHs) from a paddy soil. The volatilization of PAHs from moist soil amended with different concentrations of DDPB was tested in an open system. The specific effects of DDPB on the liquid-vapor and solid-vapor equilibriums of PAHs were separately investigated in closed systems by headspace analysis. DDPB affects both liquid-vapor and solid-vapor processes of PAHs in soil. At DDPB concentrations below the critical micelle concentration (CMC), movement of PAHs from the bulk solution to the gas-liquid interface appeared to be facilitated by interaction between PAHs and the surfactant monomers adsorbed at the gas-liquid interface, promoting the volatilization of PAHs from solution. However, when DDPB was greater than the CMC, volatilization was inhibited due to the solubilization of PAHs by micelles. On the other hand, the formation of sorbed surfactant significantly inhibited the solid-vapor volatilization of PAHs. The overall effect of the two simultaneous effects of DDPB on liquid-vapor and solid-vapor processes was a decreased volatilization loss of PAHs from soil. Inhibition of PAH volatilization was more significant for the soil with a lower moisture content.
Gupta, S.; Dura, J.A.; Freites, J.A.; Tobias, D.J.; Blasie, J. K.
2012-01-01
The voltage-sensor domain (VSD) is a modular 4-helix bundle component that confers voltage sensitivity to voltage-gated cation channels in biological membranes. Despite extensive biophysical studies and the recent availability of x-ray crystal structures for a few voltage-gated potassium (Kv-) channels and a voltage-gate sodium (Nav-) channel, a complete understanding of the cooperative mechanism of electromechanical coupling, interconverting the closed-to-open states (i.e. non-conducting to cation conducting) remains undetermined. Moreover, the function of these domains is highly dependent on the physical-chemical properties of the surrounding lipid membrane environment. The basis for this work was provided by a recent structural study of the VSD from a prokaryotic Kv-channel vectorially-oriented within a single phospholipid (POPC; 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane investigated by x-ray interferometry at the solid/moist He (or solid/vapor) and solid/liquid interfaces thus achieving partial to full hydration, respectively (Gupta et. al. Phys. Rev E. 2011, 84). Here, we utilize neutron interferometry to characterize this system in substantially greater structural detail at the sub-molecular level, due to its inherent advantages arising from solvent contrast variation coupled with the deuteration of selected sub-molecular membrane components, especially important for the membrane at the solid/liquid interface. We demonstrate the unique vectorial orientation of the VSD and the retention of its molecular conformation manifest in the asymmetric profile structure of the protein within the profile structure of this single bilayer membrane system. We definitively characterize the asymmetric phospholipid bilayer solvating the lateral surfaces of the VSD protein within the membrane. The profile structures of both the VSD protein and phospholipid bilayer depend upon the hydration state of the membrane. We also determine the distribution of water and exchangeable hydrogen throughout the profile structure of both the VSD itself and the VSD:POPC membrane. These two experimentally-determined water and exchangeable hydrogen distribution profiles are in good agreement with molecular dynamics simulations of the VSD protein vectorially-oriented within a fully hydrated POPC bilayer membrane, supporting the existence of the VSD’s water pore. This approach was extended to the full-length Kv-channel (KvAP) at solid/liquid interface, providing the separate profile structures of the KvAP protein and the POPC bilayer within the reconstituted KvAP:POPC membrane. PMID:22686684
Hyperthermal Carbon Dioxide Interactions with Self-Assembled Monolayer Surfaces
2013-09-08
comparison of the scattering behavior from the liquid and semi-solid surfaces to allow new insight into the pivotal initial step in gas -surface reaction...scattering dynamics of atoms and molecules on liquid and SAM surfaces, in order to deepen the understanding of gas -surface interactions at liquid and... gas - liquid and gas -SAM interface have developed a basic picture of the gas -surface collision dynamics. The previous experiments showed a bimodal
Thermal-hydraulic behaviors of vapor-liquid interface due to arrival of a pressure wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, Akira; Fujii, Yoshifumi; Matsuzaki, Mitsuo
In the vapor explosion, a pressure wave (shock wave) plays a fundamental role for triggering, propagation and enhancement of the explosion. Energy of the explosion is related to the magnitude of heat transfer rate from hot liquid to cold volatile one. This is related to an increasing rate of interface area and to an amount of transient heat flux between the liquids. In this study, the characteristics of transient heat transfer and behaviors of vapor film both on the platinum tube and on the hot melt tin drop, under same boundary conditions have been investigated. It is considered that theremore » exists a fundamental mechanism of the explosion in the initial expansion process of the hot liquid drop immediately after arrival of pressure wave. The growth rate of the vapor film is much faster on the hot liquid than that on the solid surface. Two kinds of roughness were observed, one due to the Taylor instability, by rapid growth of the explosion bubble, and another, nucleation sites were observed at the vapor-liquid interface. Based on detailed observation of early stage interface behaviors after arrival of a pressure wave, the thermal fragmentation mechanism is proposed.« less
Low temperature sulfur and sodium metal battery for grid-scale energy storage application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Gao; Wang, Dongdong
A re-chargeable battery comprising a non-dendrite forming sodium (Na)/potassium (K) liquid metal alloy anode, a sulfur and polyacrylonitrile (PAN) conductive polymer composite cathode, a polyethyleneoxide (PEO) solid electrolyte, a solid electrolyte interface (SEI) formed on the PEO solid electrolyte; and a cell housing, wherein the anode, cathode, and electrolyte are assembled into the cell housing with the PEO solid electrolyte disposed between the cathode and anode.
Cheng, H.-W.; Dienemann, J.-N.; Stock, P.; Merola, C.; Chen, Y.-J.; Valtiner, M.
2016-01-01
Tuning chemical structure and molecular layering of ionic liquids (IL) at solid interfaces offers leverage to tailor performance of ILs in applications such as super-capacitors, catalysis or lubrication. Recent experimental interpretations suggest that ILs containing cations with long hydrophobic tails form well-ordered bilayers at interfaces. Here we demonstrate that interfacial bilayer formation is not an intrinsic quality of hydrophobic ILs. In contrast, bilayer formation is triggered by boundary conditions including confinement, surface charging and humidity present in the IL. Therefore, we performed force versus distance profiles using atomic force microscopy and the surface forces apparatus. Our results support models of disperse low-density bilayer formation in confined situations, at high surface charging and/or in the presence of water. Conversely, interfacial structuring of long-chain ILs in dry environments and at low surface charging is disordered and dominated by bulk structuring. Our results demonstrate that boundary conditions such as charging, confinement and doping by impurities have decisive influence on structure formation of ILs at interfaces. As such, these results have important implications for understanding the behavior of solid/IL interfaces as they significantly extend previous interpretations. PMID:27452615
Cheng, H-W; Dienemann, J-N; Stock, P; Merola, C; Chen, Y-J; Valtiner, M
2016-07-25
Tuning chemical structure and molecular layering of ionic liquids (IL) at solid interfaces offers leverage to tailor performance of ILs in applications such as super-capacitors, catalysis or lubrication. Recent experimental interpretations suggest that ILs containing cations with long hydrophobic tails form well-ordered bilayers at interfaces. Here we demonstrate that interfacial bilayer formation is not an intrinsic quality of hydrophobic ILs. In contrast, bilayer formation is triggered by boundary conditions including confinement, surface charging and humidity present in the IL. Therefore, we performed force versus distance profiles using atomic force microscopy and the surface forces apparatus. Our results support models of disperse low-density bilayer formation in confined situations, at high surface charging and/or in the presence of water. Conversely, interfacial structuring of long-chain ILs in dry environments and at low surface charging is disordered and dominated by bulk structuring. Our results demonstrate that boundary conditions such as charging, confinement and doping by impurities have decisive influence on structure formation of ILs at interfaces. As such, these results have important implications for understanding the behavior of solid/IL interfaces as they significantly extend previous interpretations.
NASA Technical Reports Server (NTRS)
Abbaschian, Reza; Balikci, Ercan; Deal, Andrew; Gonik, Michael; Golyshev, Viladimir D.; Leonardi, Eddie; deVahlDavis, G.; Chen, P. Y. P.; Timchenko, V.
2003-01-01
Successful processing of homogeneous semiconductor single crystals from their melts depends strongly on precise control of thermal and fluid flow conditions near the solid/liquid interface. In this project, we utilize a novel crystal growth technique called Axial Heat Processing (AHP) that uses a baffle, positioned inside the melt near the interface, to supply and/or conduct heat axially to the interface. The baffle, which may or may not have a heater encased in it, can promote more stable and planar growth as well as reduce buoyancy driven convection. The latter is because the baffle reduces the aspect ratio of the melt as it separates the melt into three sections, above the baffle, in the feed gap between the baffle and the crucible wall, and below the baffle between the baffle base and the interface. AHP also enables a close monitoring and/or control of thermal boundaries near the solid/liquid interface during crystal growth by means of thermocouples placed in the baffle. The interface is kept planar when a heating element in the baffle is used. However, a proper choice of melt height is necessary to keep the interface planar when using the baffle without a heater. This study addresses the influence of melt height and growth velocity on the segregation profile of AHP-grown Sb doped Ge single crystals.
Fluid flow in solidifying monotectic alloys
NASA Technical Reports Server (NTRS)
Ecker, A.; Frazier, D. O.; Alexander, J. Iwan D.
1989-01-01
Use of a two-wavelength holographic technique results in a simultaneous determination of temperature and composition profiles during directional solidification in a system with a miscibility gap. The relationships among fluid flow, phase separation, and mass transport during the solidification of the monotectic alloy are discussed. The primary sources of fluid motion in this system are buoyancy and thermocapillary forces. These forces act together when phase separation results in the formation of droplets (this occurs at the solid-liquid interface and in the bulk melt). In the absence of phase separation, buoyancy results from density gradients related to temperature and compositional gradients in the single-phase bulk melt. The effects of buoyancy are especially evident in association with water- or ethanol-rich volumes created at the solid-liquid growth interface.
Bellec, Amandine; Arrigoni, Claire; Douillard, Ludovic; Fiorini-Debuisschert, Céline; Mathevet, Fabrice; Kreher, David; Attias, André-Jean; Charra, Fabrice
2014-10-31
Specific molecular tectons can be designed to form molecular sieves through self-assembly at the solid-liquid interface. After demonstrating a model tecton bearing apolar alkyl chains, we then focus on a modified structure involving asymmetric functionalization of some alkyl chains with polar hydroxyl groups in order to get chemical selectivity in the sieving. As the formation of supramolecular self-assembled networks strongly depends on molecule-molecule, molecule-substrate and molecule-solvent interactions, we compared the tectons' self-assembly on graphite for two types of solvent. We demonstrate the possibility to create hydroxylated stilbenoid molecular sieves by using 1-decanol as a solvent. Interestingly, with this solvent, the porous network is developed on top of a 1-decanol monolayer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Söngen, Hagen, E-mail: soengen@uni-mainz.de; Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz; Nalbach, Martin
2016-06-15
We present the implementation of a three-dimensional mapping routine for probing solid-liquid interfaces using frequency modulation atomic force microscopy. Our implementation enables fast and flexible data acquisition of up to 20 channels simultaneously. The acquired data can be directly synchronized with commercial atomic force microscope controllers, making our routine easily extendable for related techniques that require additional data channels, e.g., Kelvin probe force microscopy. Moreover, the closest approach of the tip to the sample is limited by a user-defined threshold, providing the possibility to prevent potential damage to the tip. The performance of our setup is demonstrated by visualizing themore » hydration structure above the calcite (10.4) surface in water.« less
How interfaces affect hydrophobically driven polymer folding.
Jamadagni, Sumanth N; Godawat, Rahul; Dordick, Jonathan S; Garde, Shekhar
2009-04-02
Studies of folding-unfolding of hydrophobic polymers in water provide an excellent starting point to probe manybody hydrophobic interactions in the context of realistic self-assembly processes. Such studies in bulk water have highlighted the similarities between thermodynamics of polymer collapse and of protein folding, and emphasized the role of hydration-water structure, density, and fluctuations-in the folding kinetics. Hydrophobic polymers are interfacially active-that is, they prefer locations at aqueous interfaces relative to bulk water-consistent with their low solubility. How does the presence of a hydrophobic solid surface or an essentially hydrophobic vapor-water interface affect the structural, thermodynamic, and kinetic aspects of polymer folding? Using extensive molecular dynamics simulations, we show that the large hydrophobic driving force for polymer collapse in bulk water is reduced at a solid alkane-water interface and further reduced at a vapor-water interface. As a result, at the solid-water interface, folded structures are marginally stable, whereas the vapor-liquid interface unfolds polymers completely. Structural sampling is also significantly affected by the interface. For example, at the solid-water interface, polymer conformations are quasi-2- dimensional, with folded states being pancake-like structures. At the vapor-water interface, the hydrophobic polymer is significantly excluded from the water phase and freely samples a broad range of compact to extended structures. Interestingly, although the driving force for folding is considerably lower, kinetics of folding are faster at both interfaces, highlighting the role of enhanced water fluctuations and dynamics at a hydrophobic interface.
International Summer Institute in Surface Science (4th), (ISISS 1979).
1980-07-09
Gold crystallites growing on KC1 substrates were found, under certain conditions during the coalescence stage, to form large, irregularly shaped, very...structure up to the interface. The next part gives results issued from structural models for the crystal-melt interface of monoatomic solids. The main
Yu, Xingwen; Manthiram, Arumugam
2017-11-21
Electrode-electrolyte interfacial properties play a vital role in the cycling performance of lithium-sulfur (Li-S) batteries. The issues at an electrode-electrolyte interface include electrochemical and chemical reactions occurring at the interface, formation mechanism of interfacial layers, compositional/structural characteristics of the interfacial layers, ionic transport across the interface, and thermodynamic and kinetic behaviors at the interface. Understanding the above critical issues is paramount for the development of strategies to enhance the overall performance of Li-S batteries. Liquid electrolytes commonly used in Li-S batteries bear resemblance to those employed in traditional lithium-ion batteries, which are generally composed of a lithium salt dissolved in a solvent matrix. However, due to a series of unique features associated with sulfur or polysulfides, ether-based solvents are generally employed in Li-S batteries rather than simply adopting the carbonate-type solvents that are generally used in the traditional Li + -ion batteries. In addition, the electrolytes of Li-S batteries usually comprise an important additive, LiNO 3 . The unique electrolyte components of Li-S batteries do not allow us to directly take the interfacial theories of the traditional Li + -ion batteries and apply them to Li-S batteries. On the other hand, during charging/discharging a Li-S battery, the dissolved polysulfide species migrate through the battery separator and react with the Li anode, which magnifies the complexity of the interfacial problems of Li-S batteries. However, current Li-S battery development paths have primarily been energized by advances in sulfur cathodes. Insight into the electrode-electrolyte interfacial behaviors has relatively been overshadowed. In this Account, we first examine the state-of-the-art contributions in understanding the solid-electrolyte interphase (SEI) formed on the Li-metal anode and sulfur cathode in conventional liquid-electrolyte Li-S batteries and how the resulting chemical and physical properties of the SEI affect the overall battery performance. A few strategies recently proposed for improving the stability of SEI are briefly summarized. Solid Li + -ion conductive electrolytes have been attempted for the development of Li-S batteries to eliminate the polysulfide shuttle issues. One approach is based on a concept of "all-solid-state Li-S battery," in which all the cell components are in the solid state. Another approach is based on a "hybrid-electrolyte Li-S battery" concept, in which the solid electrolyte plays roles both as a Li + -ion conductor for the electrochemical reaction and as a separator to prevent polysulfide shuttle. However, these endeavors with the solid electrolyte are not able to provide an overall satisfactory cell performance. In addition to the low ionic conductivity of solid-state electrolytes, a critical issue lies in the poor interfacial properties between the electrode and the solid electrolyte. This Account provides a survey of the relevant research progress in understanding and manipulating the interfaces of electrode and solid electrolytes in both the "all-solid-state Li-S batteries" and the "hybrid-electrolyte Li-S batteries". A recently proposed "semi-solid-state Li-S battery" concept is also briefly discussed. Finally, future research and development directions in all the above areas are suggested.
Solid surface vs. liquid surface: nanoarchitectonics, molecular machines, and DNA origami.
Ariga, Katsuhiko; Mori, Taizo; Nakanishi, Waka; Hill, Jonathan P
2017-09-13
The investigation of molecules and materials at interfaces is critical for the accumulation of new scientific insights and technological advances in the chemical and physical sciences. Immobilization on solid surfaces permits the investigation of different properties of functional molecules or materials with high sensitivity and high spatial resolution. Liquid surfaces also present important media for physicochemical innovation and insight based on their great flexibility and dynamicity, rapid diffusion of molecular components for mixing and rearrangements, as well as drastic spatial variation in the prevailing dielectric environment. Therefore, a comparative discussion of the relative merits of the properties of materials when positioned at solid or liquid surfaces would be informative regarding present-to-future developments of surface-based technologies. In this perspective article, recent research examples of nanoarchitectonics, molecular machines, DNA nanotechnology, and DNA origami are compared with respect to the type of surface used, i.e. solid surfaces vs. liquid surfaces, for future perspectives of interfacial physics and chemistry.
ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector
2013-01-01
ZnO nanoneedle arrays were grown vertically on a fluorine-doped tin oxide-coated glass by hydrothermal method at a relatively low temperature. A self-powered photoelectrochemical cell-type UV detector was fabricated using the ZnO nanoneedles as the active photoanode and H2O as the electrolyte. This solid-liquid heterojunction offers an enlarged ZnO/water contact area and a direct pathway for electron transport simultaneously. By connecting this UV photodetector to an ammeter, the intensity of UV light can be quantified using the output short-circuit photocurrent without a power source. High photosensitivity, excellent spectral selectivity, and fast photoresponse at zero bias are observed in this UV detector. The self-powered behavior can be well explained by the formation of a space charge layer near the interface of the solid-liquid heterojunction, which results in a built-in potential and makes the solid-liquid heterojunction work in photovoltaic mode. PMID:24103153
Wetting in a Colloidal Liquid-Gas System
NASA Astrophysics Data System (ADS)
Wijting, W. K.; Besseling, N. A.; Stuart, M. A.
2003-05-01
We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.
Wetting in a colloidal liquid-gas system.
Wijting, W K; Besseling, N A M; Stuart, M A Cohen
2003-05-16
We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica-cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.
Leakiness of Pinned Neighboring Surface Nanobubbles Induced by Strong Gas-Surface Interaction.
Maheshwari, Shantanu; van der Hoef, Martin; Rodrı Guez Rodrı Guez, Javier; Lohse, Detlef
2018-03-27
The stability of two neighboring surface nanobubbles on a chemically heterogeneous surface is studied by molecular dynamics (MD) simulations of binary mixtures consisting of Lennard-Jones (LJ) particles. A diffusion equation-based stability analysis suggests that two nanobubbles sitting next to each other remain stable, provided the contact line is pinned, and that their radii of curvature are equal. However, many experimental observations seem to suggest some long-term kind of ripening or shrinking of the surface nanobubbles. In our MD simulations we find that the growth/dissolution of the nanobubbles can occur due to the transfer of gas particles from one nanobubble to another along the solid substrate. That is, if the interaction between the gas and the solid is strong enough, the solid-liquid interface can allow for the existence of a "tunnel" which connects the liquid-gas interfaces of the two nanobubbles to destabilize the system. The crucial role of the gas-solid interaction energy is a nanoscopic element that hitherto has not been considered in any macroscopic theory of surface nanobubbles and may help to explain experimental observations of the long-term ripening.
A Solid Case for Microgravity Processing
NASA Technical Reports Server (NTRS)
Grugel, Richard N.
2000-01-01
Solidification of metals, particularly alloys, is a complicated process. At some sufficiently high temperature, the components comprising an alloy fully mix, producing a single homogeneous liquid. Unfortunately, after this liquid is cast into a mold and allowed to freeze, the resulting solid is usually very inhomogeneous. In most cases the first solid to "freeze out" of the liquid has a composition very close to one of the pure metals. This initially solidifying metal usually comprises microscopic, pine-tree shaped components, collectively referred to as a dendritic array, whose distribution, alignment, and scale directly influence a materials strength and docility. During dendrite growth the adjacent liquid becomes enriched, and consequently, solidifies a much lower temperature and considerably later time. Thus, in the course of solidification, both the solid and the enriched liquid can have compositions (and local temperatures) significantly different from those of the bulk liquid. Different compositions and temperatures imply different densities that, in Earth's gravity, induce motion in the liquid. Such motion promotes formation of a casting that is denser at the bottom and lighter at the top. This condition known as macrosegregation, precludes optimized, uniform material properties.
Tribological Properties of Nanodiamonds in Aqueous Suspensions: Effect of the Surface Charge
NASA Astrophysics Data System (ADS)
Krim, J.; Liu, Zijian; Leininger, D. A.; Kooviland, A.; Smirnov, A. I.; Shendarova, O.; Brenner, D. W.
The presence of granular nanoparticulates, be they wear particles created naturally by frictional rubbing at a geological fault line or products introduced as lubricant additives, can dramatically alter friction at solid-liquid interfaces. Given the complexity of such systems, understanding system properties at a fundamental level is particularly challenging. The Quartz Crystal Microbalance (QCM) is an ideal tool for studies of material-liquid-nanoparticulate interfaces. We have employed it here to study the uptake and nanotribological properties of positively and negatively charged 5-15 nm diameter nanodiamonds dispersed in water[1] in the both the presence and absence of a macroscopic contact with the QCM electrode. The nanodiamonds were found to impact tribological performance at both nanometer and macroscopic scales. The tribological effects were highly sensitive to the sign of the charge: negatively (positively) charged particles were more weakly (strongly) bound and reduced (increased) frictional drag at the solid-liquid interface. For the macroscopic contacts, negatively charged nanodiamonds appeared to be displaced from the contact, while the positively charged ones were not. Overall, the negatively charged nanodiamonds were more stable in an aqueous dispersion for extended time periods. Work supported by NSF and DOE.
Electro-convective versus electroosmotic instability in concentration polarization.
Rubinstein, Isaak; Zaltzman, Boris
2007-10-31
Electro-convection is reviewed as a mechanism of mixing in the diffusion layer of a strong electrolyte adjacent to a charge-selective solid, such as an ion exchange (electrodialysis) membrane or an electrode. Two types of electro-convection in strong electrolytes may be distinguished: bulk electro-convection, due to the action of the electric field upon the residual space charge of a quasi-electro-neutral bulk solution, and convection induced by electroosmotic slip, due to electric forces acting in the thin electric double layer of either quasi-equilibrium or non-equilibrium type near the solid/liquid interface. According to recent studies, the latter appears to be the likely source of mixing in the diffusion layer, leading to 'over-limiting' conductance in electrodialysis. Electro-convection near a planar uniform charge selective solid/liquid interface sets on as a result of hydrodynamic instability of one-dimensional steady state electric conduction through such an interface. We compare the results of linear stability analysis obtained for instabilities of this kind appearing in the full electro-convective and limiting non-equilibrium electroosmotic formulations. The short- and long-wave aspects of these instabilities are discussed along with the wave number selection principles.
Scrap melting model for steel converter founded on interfacial solid/liquid phenomena
NASA Astrophysics Data System (ADS)
Kruskopf, Ari; Holappa, Lauri
2017-12-01
The primary goal in steel converter operation is the removal of carbon from the hot metal. This is achieved by blowing oxygen into the melt. The oxidation of carbon produces a lot of heat. To avoid too high temperatures in the melt cold scrap (recycled steel) is charged into the converter. The melting rate is affected by heat and carbon mass transfer. A process model for steel converter is in development. This model is divided into several modules, which are fluid dynamics, heat- and mass-transfer, scrap melting and chemical reactions. This article focuses on the development of the scrap melting module. A numerical model for calculating temperature and carbon concentration in the melt is presented. The melt model is connected with the solid scrap model via solid/liquid interface. The interface model can take into account solidification of iron melt, melting of solidified layer, a situation without such phase changes, and scrap melting. The aim is to predict the melting rate of the scrap including the properties of the hot metal. The model is tested by calculating the melting rates for different scrap thicknesses. All of the stages in the interface model were taking place in the test calculations.
Control of Meridional Flow by a Non-Uniform Rotational Magnetic Field
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin; Ramachandran, Narayanan
1999-01-01
The diffusive mass transfer of species during crystal growth in vertical ampoules is significantly affected by fluid flow in the liquid mother phase (melt). For electrically conductive melts, an elegant way of remotely inducing and controlling this flow is by utilizing a uniform rotational magnetic field (RMF) in the transverse direction. It induces an azimuthal flow which tends to homogenize the thermal and solutal fields. The rotating field also reduces the diffusion boundary layer, stabilizes temperature fluctuations, and promotes better overall crystal growth. For moderate strengths of the applied magnetic field (2-20 m Tesla) with frequencies of up to 400 Hz, the induced secondary meridional flow becomes significant. It typically consists of one roll at the bottom of the liquid column and a second roll (vortex) at the top. The flow along the centerline (ampoule axis) is directed from the growing solid (interface) towards the liquid (melt). In case of convex interfaces (e.g. in floating zone crystal growth) such flow behavior is beneficial since it suppresses diffusion at the center. However, for concave interfaces (e.g. vertical Bridgman crystal growth) such a flow tends to exacerbate the situation in making the interface shape more concave. It would be beneficial to have some control of this meridional flow- for example, a single recirculating cell with controllable direction and flow magnitude will make this technique even more attractive for crystal growth. Such flow control is a possibility if a non-uniform PNE field is utilized for this purpose. Although this idea has been proposed earlier, it has not been conclusively demonstrated so far. In this work, we derive the governing equations for the fluid dynamics for such a system and obtain solutions for a few important cases. Results from parallel experimental measurements of fluid flow in a mercury column subjected to non-uniform RMF will also be presented.
Stewart, Robert A; Shaw, J M
2015-09-01
The development and baseline operation of an acoustic view cell for observing fluids, and fluid-fluid and fluid-solid interfaces in porous media over the frequency range of 10-5000 Hz is described. This range includes the industrially relevant frequency range 500-5000 Hz that is not covered by existing devices. Pressure waveforms of arbitrary shape are generated in a 17.46 mm ID by 200 mm and 690.5 mm long glass tubes at flow rates up to 200 ml/min using a syringe pump. Peak-to-peak amplitudes exceeding 80 kPa are readily realized at frequencies from 10 to 5000 Hz in bubble free fluids when actuated with 20 Vpp as exemplified using castor oil. At resonant frequencies, peak-to-peak pressure amplitudes exceeding 500 kPa were obtained (castor oil at 2100 Hz when actuated with 20 Vpp). Impacts of vibration on macroscopic liquid-liquid and liquid-vapour interfaces and interface movement are illustrated. Pressure wave transmission and attenuation in a fluid saturated porous medium, randomly packed 250-330 μm spherical silica beads, is also demonstrated. Attenuation differences and frequency shifts in resonant peaks are used to detect the presence and generation of dispersed micro-bubbles (<180 μm diameter), and bubbles within porous media that are not readily visualized. Envisioned applications include assessment of the impacts of vibration on reaction, mass transfer, and flow/flow pattern outcomes. This knowledge will inform laboratory and pilot scale process studies, where nuisance vibrations may affect the interpretation of process outcomes, and large scale or in situ processes in aquifers or hydrocarbon reservoirs where imposed vibration may be deployed to improve aspects of process performance. Future work will include miscible interface observation and quantitative measurements in the bulk and in porous media where the roles of micro-bubbles comprise subjects of special interest.
Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tremsin, Anton S.; Perrodin, Didier; Losko, Adrian S.
Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of "blind" processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production.more » This technique is widely applicable and is not limited to crystal growth processes.« less
SnO 2 nanowires decorated with forsythia-like TiO 2 for photoenergy conversion
Park, Ik Jae; Park, Sangbaek; Kim, Dong Hoe; ...
2017-05-17
Here, we report forsythia-like TiO 2-decorated SnO 2 nanowires on fluorine-doped SnO 2 electrode as a photoelectrode of dye-sensitized solar cells. When SnO 2 nanowires grown via vapor-liquid-solid reaction were soaked in TiCl 4 solution, leaf-shaped rutile TiO 2 was grown onto the surface of the nanowires. The TiO 2 decoration increases the short circuit current (J sc), open circuit voltage (V oc) and fill factor (FF) of dye-sensitized solar cells. Further, electron lifetime increased by employing an atomic-layer-deposited TiO 2 nanoshell between the TiO 2 leaves and the SnO 2 nanowire, due to preventing charge recombination at the nanowire/electrolytemore » interface.« less
SnO 2 nanowires decorated with forsythia-like TiO 2 for photoenergy conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Ik Jae; Park, Sangbaek; Kim, Dong Hoe
Here, we report forsythia-like TiO 2-decorated SnO 2 nanowires on fluorine-doped SnO 2 electrode as a photoelectrode of dye-sensitized solar cells. When SnO 2 nanowires grown via vapor-liquid-solid reaction were soaked in TiCl 4 solution, leaf-shaped rutile TiO 2 was grown onto the surface of the nanowires. The TiO 2 decoration increases the short circuit current (J sc), open circuit voltage (V oc) and fill factor (FF) of dye-sensitized solar cells. Further, electron lifetime increased by employing an atomic-layer-deposited TiO 2 nanoshell between the TiO 2 leaves and the SnO 2 nanowire, due to preventing charge recombination at the nanowire/electrolytemore » interface.« less
Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging
Tremsin, Anton S.; Perrodin, Didier; Losko, Adrian S.; ...
2017-04-20
Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of "blind" processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production.more » This technique is widely applicable and is not limited to crystal growth processes.« less
Surface chemistry of liquid metals
NASA Technical Reports Server (NTRS)
Mann, J. Adin, Jr.; Peebles, Henry; Peebles, Diamond; Rye, Robert; Yost, Fred
1993-01-01
The fundamental surface chemistry of the behavior of liquid metals spreading on a solid substrate is not at all well understood. Each of these questions involves knowing the details of the structure of interfaces and their dynamics. For example the structure of a monolayer of tin oxide on pure liquid tin is unknown. This is in contrast to the relatively large amount of data available on the structure of copper oxide monolayers on solid, pure copper. However, since liquid tin has a vapor pressure below 10(exp -10)torr for a reasonable temperature range above its melting point, it is possible to use the techniques of surface science to study the geometric, electronic and vibrational structures of these monolayers. In addition, certain techniques developed by surface chemists for the study of liquid systems can be applied to the ultra-high vacuum environment. In particular we have shown that light scattering spectroscopy can be used to study the surface tension tensor of these interfaces. The tin oxide layer in particular is very interesting in that the monolayer is rigid but admits of bending. Ellipsometric microscopy allows the visualization of monolayer thick films and show whether island formation occurs at various levels of dosing.
Method for stabilizing low-level mixed wastes at room temperature
Wagh, A.S.; Singh, D.
1997-07-08
A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH){sub 4} to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set. 4 figs.
Method for stabilizing low-level mixed wastes at room temperature
Wagh, Arun S.; Singh, Dileep
1997-01-01
A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH).sub.4 to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set.
Surface Premelting Coupled with Bulk Phase Transitions in Colloidal Crystals
NASA Astrophysics Data System (ADS)
Li, Bo; Wang, Feng; Zhou, Di; Cao, Xin; Peng, Yi; Ni, Ran; Liao, Maijia; Han, Yilong
2015-03-01
Colloids have been used as outstanding model systems for the studies of various phase transitions in bulk, but not at interface yet. Here we obtained equilibrium crystal-vapor interfaces using tunable attractive colloidal spheres and studied the surface premelting at the single-particle level by video microscopy. We found that monolayer crystals exhibit a bulk isostructural solid-solid transition which triggers the surface premelting. The premelting is incomplete due to the interruption of a mechanical-instability-induced bulk melting. By contrast, two- or multilayer crystals do not have the solid-solid transition and the mechanical instability, hence they exhibit complete premelting with divergent surface-liquid thickness. These novel interplays between bulk and surface phase transitions cast new lights for both types of transitions.
NASA Astrophysics Data System (ADS)
McClelland, Arthur; Ahn, Seokhoon; Matzger, Adam J.; Chen, Zhan
2009-03-01
Supplemented by computed models, Scanning Tunneling Microscopy (STM) can provide detailed structure of 2D crystals formed at the liquid/solid interface with atomic resolution. However, some structural information such as functional group orientations in such 2D crystals needs to be tested experimentally to ensure the accuracy of the deduced structures. Due to the limited sensitivity, many other experimental techniques such as Raman and infrared spectroscopy have not been allowed to provide such structural information of 2D crystals. Here we showed that Sum Frequency Generation Vibrational Spectroscopy (SFG) can measure average orientation of functional groups in such 2D crystals, or physisorbed monolayers, providing key experimental data to aid in the modeling and interpretation of the STM images. The usefulness of combining these two techniques is demonstrated with a phthalate diesters monolayer formed at the 1-phenyloctane/ highly oriented pyrolytic graphite (HOPG) interface. The spatial orientation of the ester C=O of the monolayer was successfully determined using SFG.
Wang, Tao; Wang, Xinwei; Luo, Zhongyang; Cen, Kefa
2008-08-01
In this work, extensive equilibrium molecular dynamics simulations are conducted to explore the physics behind the oscillation of pressure tensor autocorrelation function (PTACF) for nanocolloidal dispersions, which leads to strong instability in viscosity calculation. By reducing the particle size and density, we find the intensity of the oscillation decreases while the frequency of the oscillation becomes higher. Careful analysis of the relationship between the oscillation and nanoparticle characteristics reveals that the stress wave scattering/reflection at the particle-liquid interface plays a critical role in PTACF oscillation while the Brownian motion/vibration of solid particles has little effect. Our modeling proves that it is practical to eliminate the PTACF oscillation through suppressing the acoustic mismatch at the solid-liquid interface by designing special nanoparticle materials. It is also found when the particle size is comparable with the wavelength of the stress wave, diffraction of stress wave happens at the interface. Such effect substantially reduces the PTACF oscillation and improves the stability of viscosity calculation.
NASA Astrophysics Data System (ADS)
McKeown, Joseph T.; Zweiacker, Kai; Liu, Can; Coughlin, Daniel R.; Clarke, Amy J.; Baldwin, J. Kevin; Gibbs, John W.; Roehling, John D.; Imhoff, Seth D.; Gibbs, Paul J.; Tourret, Damien; Wiezorek, Jörg M. K.; Campbell, Geoffrey H.
2016-03-01
Additive manufacturing (AM) of metals and alloys is becoming a pervasive technology in both research and industrial environments, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al-Cu and Al-Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid-liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. The observed microstructure evolution, solidification product, and presence of a morphological instability at the solid-liquid interface in the Al-4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.
Melt Convection Effects in the Bridgman Crystal Growth of an Alloy Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Simpson James E.; Garimella, Suresh V.; deGroh, Henry C., III; Abbaschian, Reza
1998-01-01
The solidification of a dilute bismuth-tin alloy under Bridgman crystal growth conditions is investigated in support of NASA's MEPHISTO space shuttle flight experiment. Computations are performed in two-dimensions with a uniform grid. The simulation includes the species-concentration, temperature and flow fields, as well as conduction in the ampoule. Fully transient simulations have been performed; no simplifying steady state approximations are used. Results are obtained under microgravity conditions for pure bismuth, and Bismuth-0.1 at.% Sn and Bi-1.0 at.% Sn alloys. The concentration dependence of the melting temperature is neglected; the solid/liquid interface temperature is assumed to be the melting temperature of pure bismuth for all cases studied. For the Bi-1.0 at.% Sn case the results indicate that a secondary convective cell, driven by solutal gradients, forms near the interface. The magnitude of the velocities in this cell increases with time; this causes increasing solute segregation at the liquid/solid interface.
NASA Astrophysics Data System (ADS)
Dobravec, Tadej; Mavrič, Boštjan; Šarler, Božidar
2017-11-01
A two-dimensional model to simulate the dendritic and eutectic growth in binary alloys is developed. A cellular automaton method is adopted to track the movement of the solid-liquid interface. The diffusion equation is solved in the solid and liquid phases by using an explicit finite volume method. The computational domain is divided into square cells that can be hierarchically refined or coarsened using an adaptive mesh based on the quadtree algorithm. Such a mesh refines the regions of the domain near the solid-liquid interface, where the highest concentration gradients are observed. In the regions where the lowest concentration gradients are observed the cells are coarsened. The originality of the work is in the novel, adaptive approach to the efficient and accurate solution of the posed multiscale problem. The model is verified and assessed by comparison with the analytical results of the Lipton-Glicksman-Kurz model for the steady growth of a dendrite tip and the Jackson-Hunt model for regular eutectic growth. Several examples of typical microstructures are simulated and the features of the method as well as further developments are discussed.
Leung, Kevin; Budzien, Joanne L
2010-07-07
The decomposition of ethylene carbonate (EC) during the initial growth of solid-electrolyte interphase (SEI) films at the solvent-graphitic anode interface is critical to lithium ion battery operations. Ab initio molecular dynamics simulations of explicit liquid EC/graphite interfaces are conducted to study these electrochemical reactions. We show that carbon edge terminations are crucial at this stage, and that achievable experimental conditions can lead to surprisingly fast EC breakdown mechanisms, yielding decomposition products seen in experiments but not previously predicted.
A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, S. R.; Mendelev, M. I., E-mail: mendelev@ameslab.gov
2016-04-14
We study correlations between the solid-liquid interface (SLI) free energy and bulk material properties (melting temperature, latent heat, and liquid structure) through the determination of SLI free energies for bcc and hcp metals from molecular dynamics (MD) simulation. Values obtained for the bcc metals in this study were compared to values predicted by the Turnbull, Laird, and Ewing relations on the basis of previously published MD simulation data. We found that of these three empirical relations, the Ewing relation better describes the MD simulation data. Moreover, whereas the original Ewing relation contains two constants for a particular crystal structure, wemore » found that the first coefficient in the Ewing relation does not depend on crystal structure, taking a common value for all three phases, at least for the class of the systems described by embedded-atom method potentials (which are considered to provide a reasonable approximation for metals).« less
Ciesielski, Artur; El Garah, Mohamed; Haar, Sébastien; Kovaříček, Petr; Lehn, Jean-Marie; Samorì, Paolo
2014-11-01
Dynamic covalent chemistry relies on the formation of reversible covalent bonds under thermodynamic control to generate dynamic combinatorial libraries. It provides access to numerous types of complex functional architectures, and thereby targets several technologically relevant applications, such as in drug discovery, (bio)sensing and dynamic materials. In liquid media it was proved that by taking advantage of the reversible nature of the bond formation it is possible to combine the error-correction capacity of supramolecular chemistry with the robustness of covalent bonding to generate adaptive systems. Here we show that double imine formation between 4-(hexadecyloxy)benzaldehyde and different α,ω-diamines as well as reversible bistransimination reactions can be achieved at the solid/liquid interface, as monitored on the submolecular scale by in situ scanning tunnelling microscopy imaging. Our modular approach enables the structurally controlled reversible incorporation of various molecular components to form sophisticated covalent architectures, which opens up perspectives towards responsive multicomponent two-dimensional materials and devices.
Ardham, Vikram Reddy; Deichmann, Gregor; van der Vegt, Nico F A; Leroy, Frédéric
2015-12-28
We address the question of how reducing the number of degrees of freedom modifies the interfacial thermodynamic properties of heterogeneous solid-liquid systems. We consider the example of n-hexane interacting with multi-layer graphene which we model both with fully atomistic and coarse-grained (CG) models. The CG models are obtained by means of the conditional reversible work (CRW) method. The interfacial thermodynamics of these models is characterized by the solid-liquid work of adhesion WSL calculated by means of the dry-surface methodology through molecular dynamics simulations. We find that the CRW potentials lead to values of WSL that are larger than the atomistic ones. Clear understanding of the relationship between the structure of n-hexane in the vicinity of the surface and WSL is elucidated through a detailed study of the energy and entropy components of WSL. We highlight the crucial role played by the solid-liquid energy fluctuations. Our approach suggests that CG potentials should be designed in such a way that they preserve the range of solid-liquid interaction energies, but also their fluctuations in order to preserve the reference atomistic value of WSL. Our study thus opens perspectives into deriving CG interaction potentials that preserve the thermodynamics of solid-liquid contacts and will find application in studies that intend to address materials driven by interfaces.
El Malah, Tamer; Ciesielski, Artur; Piot, Luc; Troyanov, Sergey I; Mueller, Uwe; Weidner, Steffen; Samorì, Paolo; Hecht, Stefan
2012-01-21
Efficient Cu-catalyzed 1,3-dipolar cycloaddition reactions have been used to prepare two series of three regioisomers of G-1 and G-2 poly(triazole-pyridine) dendrons. The G-1 and G-2 dendrons consist of branched yet conformationally pre-organized 2,6-bis(phenyl/pyridyl-1,2,3-triazol-4-yl)pyridine (BPTP) monomeric and trimeric cores, respectively, carrying one focal and either two or four peripheral alkyl side chains. In the solid state, the conformation and supramolecular organization were studied by means of a single crystal X-ray structure analysis of one derivative. At the liquid-solid interface, the self-assembly behavior was investigated by scanning tunneling microscopy (STM) on graphite surfaces. Based on the observed supramolecular organization, it appears that the subtle balance between conformational preferences inherent in the dendritic backbone on the one side and the adsorption and packing of the alkyl side chains on the graphite substrate on the other side dictate the overall structure formation in 2D.
Miller, Daniel S.; Carlton, Rebecca J.; Mushenheim, Peter C.; Abbott, Nicholas L.
2013-01-01
This Instructional Review describes methods and underlying principles that can be used to characterize both the orientations assumed spontaneously by liquid crystals (LCs) at interfaces and the strength with which the LCs are held in those orientations (so-called anchoring energies). The application of these methods to several different classes of LC interfaces is described, including solid and aqueous interfaces as well as planar and non-planar interfaces (such as those that define a LC-in-water emulsion droplet). These methods, which enable fundamental studies of the ordering of LCs at polymeric, chemically-functionalized and biomolecular interfaces, are described in this article at a level that can be easily understood by a non-expert reader such as an undergraduate or graduate student. We focus on optical methods because they are based on instrumentation that is found widely in research and teaching laboratories. PMID:23347378
FORMATION MECHANISM FOR THE NANOSCALE AMORPHOUS INTERFACE IN PULSE-WELDED AL/FE BIMETALLIC SYSTEM
Li, Jingjing; Yu, Qian; Zhang, Zijiao; ...
2016-05-20
Pulse or impact welding traditionally has been referred to as “solid-state” welding. By integrating advanced interface characterizations and diffusion calculations, we report that the nanoscale amorphous interface in the pulse-welded Al/Fe bimetallic system is formed by rapid heating and melting of a thin Al layer at the interface, diffusion of iron atoms in the liquid aluminum, and subsequent rapid quenching with diffused iron atoms in solution. This finding challenges the commonly held belief regarding the solid-state nature of the impact-based welding process for dissimilar metals. Elongated ultra-fine grains with high dislocation density and ultra-fine equiaxed grains also are observed inmore » the weld interface vicinity on the steel and aluminum sides, respectively, which further confirms that melting and the resulted recrystallization occurred on the aluminum side of the interface.« less
FORMATION MECHANISM FOR THE NANOSCALE AMORPHOUS INTERFACE IN PULSE-WELDED AL/FE BIMETALLIC SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jingjing; Yu, Qian; Zhang, Zijiao
Pulse or impact welding traditionally has been referred to as “solid-state” welding. By integrating advanced interface characterizations and diffusion calculations, we report that the nanoscale amorphous interface in the pulse-welded Al/Fe bimetallic system is formed by rapid heating and melting of a thin Al layer at the interface, diffusion of iron atoms in the liquid aluminum, and subsequent rapid quenching with diffused iron atoms in solution. This finding challenges the commonly held belief regarding the solid-state nature of the impact-based welding process for dissimilar metals. Elongated ultra-fine grains with high dislocation density and ultra-fine equiaxed grains also are observed inmore » the weld interface vicinity on the steel and aluminum sides, respectively, which further confirms that melting and the resulted recrystallization occurred on the aluminum side of the interface.« less
Formation mechanism for the nanoscale amorphous interface in pulse-welded Al/Fe bimetallic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jingjing; Yu, Qian; Zhang, Zijiao
Pulse or impact welding traditionally has been referred to as “solid-state” welding. By integrating advanced interface characterizations and diffusion calculations, we report that the nanoscale amorphous interface in the pulse-welded Al/Fe bimetallic system is formed by rapid heating and melting of a thin Al layer at the interface, diffusion of iron atoms in the liquid aluminum, and subsequent rapid quenching with diffused iron atoms in solution. This finding challenges the commonly held belief regarding the solid-state nature of the impact-based welding process for dissimilar metals. Elongated ultra-fine grains with high dislocation density and ultra-fine equiaxed grains also are observed inmore » the weld interface vicinity on the steel and aluminum sides, respectively, which further confirms that melting and the subsequent recrystallization occurred on the aluminum side of the interface.« less
Real Time Characterization of Solid/Liquid Interfaces During Directional Solidification
NASA Technical Reports Server (NTRS)
Sen, S.; Kaukler, W. K.; Curreri, P. A.; Peters, P.
1997-01-01
A X-Ray Transmission Microscope (XTM) has been developed to observe in real time and in-situ solidification phenomenon at the solid/liquid interface. Recent improvements in the horizontal Bridgman furnace design provides real-time magnification (during solidification) up to 12OX. The increased magnification has enabled for the first time the XTM imaging of real-time growth of fibers and particles with diameters of 3-6 micrometers. Further, morphological transitions from planar to cellular interfaces have also been imaged. Results from recent XTM studies on Al-Bi monotectic system, Al-Au eutectic system and interaction of insoluble particles with s/I interfaces in composite materials will be presented. An important parameter during directional solidification of molten metal is the interfacial undercooling. This parameter controls the morphology and composition at the s/I interface. Conventional probes such as thermocouples, due to their large bead size, do not have sufficient resolution for measuring undercooling at the s/I interface. Further, the intrusive nature of the thermocouples also distorts the thermal field at the s/I interface. To overcome these inherent problems we have recently developed a compact furnace which utilizes a non-intrusive technique (Seebeck) to measure undercooling at the S/I interface. Recent interfacial undercooling measurements obtained for the Pb-Sn system will be presented. The Seebeck measurement furnace in the future will be integrated with the XTM to provide the most comprehensive tool for real time characterization of s/I interfaces during solidification.
Fine-Tuning Nanoparticle Packing at Water-Oil Interfaces Using Ionic Strength.
Chai, Yu; Lukito, Alysia; Jiang, Yufeng; Ashby, Paul D; Russell, Thomas P
2017-10-11
Nanoparticle-surfactants (NPSs) assembled at water-oil interfaces can significantly lower the interfacial tension and can be used to stabilize liquids. Knowing the formation and assembly and actively tuning the packing of these NPSs is of significant fundamental interest for the interfacial behavior of nanoparticles and of interest for water purification, drug encapsulation, enhanced oil recovery, and innovative energy transduction applications. Here, we demonstrate by means of interfacial tension measurements the high ionic strength helps the adsorption of NPSs to the water-oil interface leading to a denser packing of NPSs at the interface. With the reduction of interfacial area, the phase transitions from a "gas"-like to "liquid" to "solid" states of NPSs in two dimensions are observed. Finally, we provide the first in situ real-space imaging of NPSs at the water-oil interface by atomic force microcopy.
Topology changes in a water-oil swirling flow
NASA Astrophysics Data System (ADS)
Carrión, Luis; Herrada, Miguel A.; Shtern, Vladimir N.
2017-03-01
This paper reveals the flow topology hidden in the experimental study by Fujimoto and Takeda ["Topology changes of the interface between two immiscible liquid layers by a rotating lid," Phys. Rev. E 80, 015304(R) (2009)]. Water and silicone oil fill a sealed vertical cylindrical container. The rotating top disk induces the meridional circulation and swirl of both fluids. As the rotation strength Reo increases, the interface takes shapes named, by the authors, hump, cusp, Mt. Fuji, and bell. Our numerical study reproduces the interface geometry and discloses complicated flow patterns. For example at Reo = 752, where the interface has the "Mt. Fuji" shape, the water motion has three bulk cells and the oil motion has two bulk cells. This topology helps explain the interface geometry. In addition, our study finds that the steady axisymmetric flow suffers from the shear-layer instability for Reo > 324, i.e., before the interface becomes remarkably deformed. The disturbance energy is concentrated in the water depth. This explains why the instability does not significantly affect the interface shape in the experiment.
Interfacial Effects on the Band Edges of Functionalized Si Surfaces in Liquid Water
Pham, Tuan Anh; Lee, Donghwa; Schwegler, Eric; ...
2014-11-17
By combining ab initio molecular dynamics simulations and many-body perturbation theory calculations of electronic energy levels, we determined the band edge positions of functionalized Si(111) surfaces in the presence of liquid water, with respect to vacuum and to water redox potentials. We considered surface terminations commonly used for Si photoelectrodes in water splitting experiments. We found that, when exposed to water, the semiconductor band edges were shifted by approximately 0.5 eV in the case of hydrophobic surfaces, irrespective of the termination. The effect of the liquid on band edge positions of hydrophilic surfaces was much more significant and determined bymore » a complex combination of structural and electronic effects. These include structural rearrangements of the semiconductor surfaces in the presence of water, changes in the orientation of interfacial water molecules with respect to the bulk liquid, and charge transfer at the interfaces, between the solid and the liquid. Our results showed that the use of many-body perturbation theory is key to obtain results in agreement with experiments; they also showed that the use of simple computational schemes that neglect the detailed microscopic structure of the solid–liquid interface may lead to substantial errors in predicting the alignment between the solid band edges and water redox potentials.« less
Analysis of capacitive force acting on a cantilever tip at solid/liquid interfaces
NASA Astrophysics Data System (ADS)
Umeda, Ken-ichi; Kobayashi, Kei; Oyabu, Noriaki; Hirata, Yoshiki; Matsushige, Kazumi; Yamada, Hirofumi
2013-04-01
Dielectric properties of biomolecules or biomembranes are directly related to their structures and biological activities. Capacitance force microscopy based on the cantilever deflection detection is a useful scanning probe technique that can map local dielectric constant. Here we report measurements and analysis of the capacitive force acting on a cantilever tip at solid/liquid interfaces induced by application of an alternating voltage to explore the feasibility of the measurements of local dielectric constant by the voltage modulation technique in aqueous solutions. The results presented here suggest that the local dielectric constant measurements by the conventional voltage modulation technique are basically possible even in polar liquid media. However, the cantilever deflection is not only induced by the electrostatic force, but also by the surface stress, which does not include the local dielectric information. Moreover, since the voltage applied between the tip and sample are divided by the electric double layer and the bulk polar liquid, the capacitive force acting on the apex of the tip are strongly attenuated. For these reasons, the lateral resolution in the local dielectric constant measurements is expected to be deteriorated in polar liquid media depending on the magnitude of dielectric response. Finally, we present the criteria for local dielectric constant measurements with a high lateral resolution in polar liquid media.
Tribological properties of surfaces
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1978-01-01
The real area of contact between two solid surfaces is only a small portion of the apparent area. Deformation of these areas can result in solid state contact through surface films. For clean solid to solid contact strong adhesive bonding occurs across the interface. Under these conditions many properties of the solid such as the metallurgical and chemical nature of metals can influence adhesion, friction, and wear behavior. The presence of gases, liquids, and solid films on the surface of solids alter markedly tribological characteristics. These surface films can also considerably change the mechanical effects of solid state contact on bulk material behavior.
Thermal force induced by the presence of a particle near a solidifying interface.
Hadji, L
2001-11-01
The presence of a foreign particle in the melt, ahead of a solid-liquid interface, leads to the onset of interfacial deformations if the thermal conductivity of the particle, k(p), differs from that of the melt, k(l). In this paper, the influence of the thermal conductivity contrast on the interaction between the solidifying interface and the particle is quantified. We show that the interface distortion gives rise to a thermal force whose expression is given by F(th)=2piLGa3(1-alpha)/(2+alpha)T(m), where L is the latent heat of fusion per unit volume, T(m) is the melting point, a is the particle's radius, G the thermal gradient in the liquid phase and alpha=k(p)/k(l). The derivation makes use of the following assumptions: (i) the particle is small compared to the horizontal extent of the interface, (ii) the particle is placed in the near proximity of the deformable solid-liquid interface, and (iii) the interface is practically immobile in the calculation of the thermal field, i.e., V
Dynamics of Liquids in Edges and Corners (DYLCO): IML-2 Experiment for the BDPU
NASA Technical Reports Server (NTRS)
Langbein, D.; Weislogel, M.
1998-01-01
Knowledge of the behavior of fluids possessing free surfaces is important to many fluid systems, particularly in space, where the normally subtle effects of surface wettability play a more dramatic and often surprising role. DYLCO for the IML-2 mission was proposed as a simple experiment to probe the particular behavior of capillary surfaces in containers of irregular cross section. Temperature control was utilized to vary the fluid-solid contact angle, a questionable thermodynamic parameter of the system, small changes in which can dramatically influence the configuration, stability, and flow of a capillary surface. Container shapes, test fluid, and temperature ranges were selected for observing both local changes in interface curvature as well as a global change in fluid orientation due to a critical wetting phenomenon. The experiment hardware performed beyond what was expected and fluid interfaces could be readily digitized post flight to show the dependence of the interface curvature on temperature. For each of the containers tested surfaces were observed which did not satisfy the classic equations for the prediction of interface shape with constant contact angle boundary condition. This is explained by the presence of contact angle hysteresis arising from expansion and contraction of the liquid during the heating and cooling steps of the test procedure. More importantly, surfaces exceeding the critical surface curvature required for critical wetting were measured, yet no wetting was observed. These findings are indeed curious and pose key questions concerning the role of hysteresis for this critical wetting phenomena. The stability of such surfaces was determined numerically and it is shown that stability is enhance (reduced) when a surface is in its 'advancing' ('receding') state, The analysis shows complete instability as the critical wetting condition is reached. The case of ideal dynamic wetting is addressed analytically in detail with results of significant flow characteristics presented in closed form. The solutions indicate a square root of T dependence of the capillary 'rise' rate which is corroborated by drop tower tests. The analysis clearly shows that infinite time is necessary for surfaces to reorient at the critical wetting transition.
NASA Astrophysics Data System (ADS)
Schmiele, Martin; Schindler, Torben; Unruh, Tobias; Busch, Sebastian; Morhenn, Humphrey; Westermann, Martin; Steiniger, Frank; Radulescu, Aurel; Lindner, Peter; Schweins, Ralf; Boesecke, Peter
2013-06-01
Dispersions of crystalline nanoparticles with at least one sufficiently large unit cell dimension can give rise to Bragg reflections in the small-angle scattering range. If the nanocrystals possess only a small number of unit cells along these particular crystallographic directions, the corresponding Bragg reflections will be broadened. In a previous study of phospholipid stabilized dispersions of β-tripalmitin platelets [Unruh, J. Appl. Crystallogr.JACGAR0021-889810.1107/S0021889807044378 40, 1008 (2007)], the x-ray powder pattern simulation analysis (XPPSA) was developed. The XPPSA method facilitates the interpretation of the rather complicated small-angle x-ray scattering (SAXS) curves of such dispersions of nanocrystals. The XPPSA method yields the distribution function of the platelet thicknesses and facilitates a structural characterization of the phospholipid stabilizer layer at the solid-liquid interface between the nanocrystals and the dispersion medium from the shape of the broadened 001 Bragg reflection. In this contribution an improved and extended version of the XPPSA method is presented. The SAXS and small-angle neutron scattering patterns of dilute phospholipid stabilized tripalmitin dispersions can be reproduced on the basis of a consistent simulation model for the particles and their phospholipid stabilizer layer on an absolute scale. The results indicate a surprisingly flat arrangement of the phospholipid molecules in the stabilizer layer with a total thickness of only 12 Å. The stabilizer layer can be modeled by an inner shell for the fatty acid chains and an outer shell including the head groups and additional water. The experiments support a dense packing of the phospholipid molecules on the nanocrystal surfaces rather than isolated phospholipid domains.
Sigalov, Sergey; Shpigel, Netanel; Levi, Mikhael D; Feldberg, Moshe; Daikhin, Leonid; Aurbach, Doron
2016-10-18
Using multiharmonic electrochemical quartz crystal microbalance with dissipation (EQCM-D) monitoring, a new method of characterization of porous solids in contact with liquids has been developed. The dynamic gravimetric information on the growing, dissolving, or stationary stored solid deposits is supplemented by their precise in-operando porous structure characterization on a mesoscopic scale. We present a very powerful method of quartz-crystal admittance modeling of hydrodynamic solid-liquid interactions in order to extract the porous structure parameters of solids during their formation in real time, using different deposition modes. The unique hydrodynamic spectroscopic characterization of electrolytic and rf-sputtered solid Cu coatings that we use for our "proof of concept" provides a new strategy for probing various electrochemically active thin and thick solid deposits, thereby offering inexpensive, noninvasive, and highly efficient quantitative control over their properties. A broad spectrum of applications of our method is proposed, from various metal electroplating and finishing technologies to deeper insight into dynamic build-up and subsequent development of solid-electrolyte interfaces in the operation of Li-battery electrodes, as well as monitoring hydrodynamic consequences of metal corrosion, and growth of biomass coatings (biofouling) on different solid surfaces in seawater.
Numerical study of drop spreading on a flat surface
NASA Astrophysics Data System (ADS)
Wang, Sheng; Desjardins, Olivier
2017-11-01
In this talk, we perform a numerical study of a droplet on a flat surface with special emphasis on capturing the spreading dynamics. The computational methodology employed is tailored for simulating large-scale two-phase flows within complex geometries. It combines a conservative level-set method to capture the liquid-gas interface, a conservative immersed boundary method to represent the solid-fluid interface, and a sub-grid curvature model at the triple-point to implicitly impose the contact angle of the liquid-gas interface. The performance of the approach is assessed in the inertial droplet spreading regime, the viscous spreading regime of high viscosity drops, and with the capillary oscillation of low viscosity droplets.
Elucidating the alkaline oxygen evolution reaction mechanism on platinum
Favaro, M.; Valero-Vidal, C.; Eichhorn, J.; ...
2017-03-07
Understanding the interplay between surface chemistry, electronic structure, and reaction mechanism of the catalyst at the electrified solid/liquid interface will enable the design of more efficient materials systems for sustainable energy production. The substantial progress in operando characterization, particularly using synchrotron based X-ray spectroscopies, provides the unprecedented opportunity to uncover surface chemical and structural transformations under various (electro)chemical reaction environments. In this work, we study a polycrystalline platinum surface under oxygen evolution conditions in an alkaline electrolyte by means of ambient pressure X-ray photoelectron spectroscopy performed at the electrified solid/liquid interface. We elucidate previously inaccessible aspects of the surface chemistrymore » and structure as a function of the applied potential, allowing us to propose a reaction mechanism for oxygen evolution on a platinum electrode in alkaline solutions.« less
Magneto-Hydrodynamic Damping of Convection During Vertical Bridgman-Stockbarger Growth of HgCdTe
NASA Technical Reports Server (NTRS)
Watring, D. A.; Lehoczky, S. L.
1996-01-01
In order to quantify the effects of convection on segregation, Hg(0.8)Cd(0.2)Te crystals were grown by the vertical Bridgman-Stockbarger method in the presence of an applied axial magnetic field of 50 kG. The influence of convection, by magneto-hydrodynamic damping, on mass transfer in the melt and segregation at the solid-liquid interface was investigated by measuring the axial and radial compositional variations in the grown samples. The reduction of convective mixing in the melt through the application of the magnetic field is found to decrease radial segregation to the diffusion-limited regime. It was also found that the suppression of the convective cell near the solid-liquid interface results in an increase in the slope of the diffusion-controlled solute boundary layer, which can lead to constitutional supercooling.
Adjustable Lid Aids Silicon-Ribbon Growth
NASA Technical Reports Server (NTRS)
Mchugh, J. P.; Steidensticker, R. G.; Duncan, C. S.
1985-01-01
Closely-spaced crucible cover speeds up solidification. Growth rate of dendritic-web silicon ribbon from molten silicon increased by controlling distance between crucible susceptor lid and liquid/solid interface. Lid held in relatively high position when crucible newly filled with chunks of polycrystalline silicon. As silicon melts and forms pool of liquid at lower level, lid gradually lowered.
Experimental study of the solid-liquid interface in a yield-stress fluid flow upstream of a step
NASA Astrophysics Data System (ADS)
Luu, Li-Hua; Pierre, Philippe; Guillaume, Chambon
2014-11-01
We present an experimental study where a yield-stress fluid is implemented to carefully examine the interface between a liquid-like unyielded region and a solid-like yielded region. The studied hydrodynamics consists of a rectangular pipe-flow disturbed by the presence of a step. Upstream of the step, a solid-liquid interface between a dead zone and a flow zone appears. This configuration can both model geophysical erosion phenomenon in debris flows or find applications for industrial extrusion processes. We aim to investigate the dominant physical mechanism underlying the formation of the static domain, by combining the rheological characterization of the yield-stress fluid with local measurements of the related hydrodynamic parameters. In this work, we use a model fluid, namely polymer micro-gel Carbopol, that exhibits a Hershel-Bulkley viscoplastic rheology. Exploiting the fluid transparency, the flow is monitored by Particle Image Velocimetry thanks to internal visualization technique. In particular, we demonstrate that the flow above the dead zone roughly behaves as a plug flow whose velocity profile can successfully be described by a Poiseuille equation including a Hershel-Bulkley rheology (PHB theory), with exception of a thin zone at the close vicinity of the static domain. The border inside the flow zone above which the so-called PHB flow starts, is found to be the same regardless of the flow rate and to move with a constant velocity that increases with the flow rate. We interpret this feature as a slip frontier.
NASA Astrophysics Data System (ADS)
Kundin, Julia; Choudhary, Muhammad Ajmal
2016-07-01
The phase-field crystal (PFC) technique is a widely used approach for modeling crystal growth phenomena with atomistic resolution on mesoscopic time scales. We use a two-dimensional PFC model for a binary system based on the work of Elder et al. [Phys. Rev. B 75, 064107 (2007), 10.1103/PhysRevB.75.064107] to study the effect of the curved, diffuse solid-liquid interface on the interfacial energy as well as the nucleation barrier. The calculation of the interfacial energy and the nucleation barrier certainly depends on the proper definition of the solid-liquid dividing surface and the corresponding nucleus size. We define the position of the sharp interface at which the interfacial energy is to be evaluated by using the concept of equimolar dividing surface (re) and the minimization of the interfacial energy (rs). The comparison of the results based on both radii shows that the difference re-rs is always positive and has a limit for large cluster sizes which is comparable to the Tolman length. Furthermore, we found the real nucleation barrier for small cluster sizes, which is defined as a function of the radius rs, and compared it with the classical nucleation theory. The simulation results also show that the extracted interfacial energy as function of both radii is independent of system size, and this dependence can be reasonably described by the nonclassical Tolman formula with a positive Tolman length.
NASA Astrophysics Data System (ADS)
Liang, Liu; Liu, Ya-Ling; Liu, Ya; Peng, Hao-Ping; Wang, Jian-Hua; Su, Xu-Ping
Fe/(Zn-6%Al-x%Mg) solid-liquid diffusion couples were kept at various temperatures for different periods of time to investigate the formation and growth of the Fe-Al alloy layer. Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD) were used to study the constituents and morphology of the Fe-Al alloy layer. It was found that the Fe2Al5Znx phase layer forms close to the iron sheet and the FeAl3Znx phase layer forms near the side of the melted Zn-6%Al-3%Mg in diffusion couples. When the Fe/(Zn-6%Al-3%Mg) diffusion couple is kept at 510∘C for more than 15min, a continuous Fe-Al alloy layer is formed on the interface of the diffusion couple. Among all Fe/(Zn-6%Al-x%Mg) solid-liquid diffusion couples, the Fe-Al alloy layer on the interface of the Fe/(Zn-6% Al-3% Mg) diffusion couple is the thinnest. The Fe-Al alloy layer forms only when the diffusion temperature is above 475∘. These results show that the Fe-Al alloy layer in Fe/(Zn-6%Al-x%Mg) solid-liquid diffusion couples is composed of Fe2Al5Znx and FeAl3Znx phase layers. Increasing the diffusing temperature and time period would promote the formation and growth of the Fe-Al alloy layer. When the Mg content in the Fe/(Zn-6%Al-x%Mg) diffusion couples is 3%, the growth of the Fe-Al alloy layer is inhibited. These results may explain why there is no obvious Fe-Al alloy layer formed on the interface of steel with a Zn-6%Al-3%Mg coating.
Mean-field kinetic theory approach to evaporation of a binary liquid into vacuum
NASA Astrophysics Data System (ADS)
Frezzotti, A.; Gibelli, L.; Lockerby, D. A.; Sprittles, J. E.
2018-05-01
Evaporation of a binary liquid into near-vacuum conditions has been studied using numerical solutions of a system of two coupled Enskog-Vlasov equations. Liquid-vapor coexistence curves have been mapped out for different liquid compositions. The evaporation process has been investigated at a range of liquid temperatures sufficiently lower than the critical one for the vapor not to significantly deviate from the ideal behavior. It is found that the shape of the distribution functions of evaporating atoms is well approximated by an anisotropic Maxwellian distribution with different characteristic temperatures for velocity components normal and parallel to the liquid-vapor interface. The anisotropy reduces as the evaporation temperature decreases. Evaporation coefficients are computed based on the separation temperature and the maximum concentration of the less volatile component close to the liquid-vapor interface. This choice leads to values which are almost constant in the simulation conditions.
Temperature and melt solid interface control during crystal growth
NASA Technical Reports Server (NTRS)
Batur, Celal
1990-01-01
Findings on the adaptive control of a transparent Bridgman crystal growth furnace are summarized. The task of the process controller is to establish a user specified axial temperature profile by controlling the temperatures in eight heating zones. The furnace controller is built around a computer. Adaptive PID (Proportional Integral Derivative) and Pole Placement control algorithms are applied. The need for adaptive controller stems from the fact that the zone dynamics changes with respect to time. The controller was tested extensively on the Lead Bromide crystal growth. Several different temperature profiles and ampoule's translational rates are tried. The feasibility of solid liquid interface quantification by image processing was determined. The interface is observed by a color video camera and the image data file is processed to determine if the interface is flat, convex or concave.
Ionic liquids at the surface of graphite: Wettability and structure
NASA Astrophysics Data System (ADS)
Bordes, Emilie; Douce, Laurent; Quitevis, Edward L.; Pádua, Agílio A. H.; Costa Gomes, Margarida
2018-05-01
The aim of this work is to provide a better understanding of the interface between graphite and different molecular and ionic liquids. Experimental measurements of the liquid surface tension and of the graphite-liquid contact angle for sixteen ionic liquids and three molecular liquids are reported. These experimental values allowed the calculation of the solid/liquid interfacial energy that varies, for the ionic liquids studied, between 14.5 mN m-1 for 1-ethyl-3-methylimidazolium dicyanamide and 37.8 mN m-1 for 3-dodecyl-1-(naphthalen-1-yl)-1H-imidazol-3-ium tetrafluoroborate. Imidazolium-based ionic liquids with large alkyl side-chains or functionalized with benzyl groups seem to interact more favourably with freshly peeled graphite surfaces. Even if the interfacial energy seems a good descriptor to assess the affinity of a liquid for a carbon-based solid material, we conclude that both the surface tension of the liquid and the contact angle between the liquid and the solid can be significant. Molecular dynamics simulations were used to investigate the ordering of the ions near the graphite surface. We conclude that the presence of large alkyl side-chains in the cations increases the ordering of ions at the graphite surface. Benzyl functional groups in the cations lead to a large affinity towards the graphite surface.
Ray, Bahni; Reddy, Puchalapalli Dinesh Sankar; Bandyopadhyay, Dipankar; Joo, Sang W; Sharma, Ashutosh; Qian, Shizhi; Biswas, Gautam
2011-11-01
We consider the stability of a thin liquid film with a free charged surface resting on a solid charged substrate by performing a general Orr-Sommerfeld (O-S) analysis complemented by a long-wave (LW) analysis. An externally applied field generates an electroosmotic flow (EOF) near the solid substrate and an electrophoretic flow (EPF) at the free surface. The EPF retards the EOF when both the surfaces have the same sign of the potential and can even lead to the flow reversal in a part of the film. In conjunction with the hydrodynamic stress, the Maxwell stress is also considered in the problem formulation. The electrokinetic potential at the liquid-air and solid-liquid interfaces is modelled by the Poisson-Boltzmann equation with the Debye-Hückel approximation. The O-S analysis shows a finite-wavenumber shear mode of instability when the inertial forces are strong and an LW interfacial mode of instability in the regime where the viscous force dominates. Interestingly, both the modes are found to form beyond a critical flow rate. The shear (interfacial) mode is found to be dominant when the film is thick (thin), the electric field applied is strong (weak), and the zeta-potentials on the liquid-air and solid-liquid interfaces are high (small). The LW analysis predicts the presence of the interfacial mode, but fails to capture the shear mode. The change in the propagation direction of the interfacial mode with the zeta-potential is predicted by both O-S and LW analyses. The parametric range in which the LW analysis is valid is thus demonstrated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dynamics and Stability of Capillary Surfaces: Liquid Switches at Small Scales
NASA Technical Reports Server (NTRS)
Steen, Paul H.; Bhandar, Anand; Vogel, Michael J.; Hirsa, Amir H.
2004-01-01
The dynamics and stability of systems of interfaces is central to a range of technologies related to the Human Exploration and Development of Space (HEDS). Our premise is that dramatic shape changes can be manipulated to advantage with minimal input, if the system is near instability. The primary objective is to develop the science base to allow novel approaches to liquid management in low-gravity based on this premise. HEDS requires efficient, reliable and lightweight technologies. Our poster will highlight our progress toward this goal using the capillary switch as an example. A capillary surface is a liquid/liquid or liquid/gas interface whose shape is determined by surface tension. For typical liquids (e.g., water) against gas on earth, capillary surfaces occur on the millimeterscale and smaller where shape deformation due to gravity is unimportant. In low gravity, they can occur on the centimeter scale. Capillary surfaces can be combined to make a switch a system with multiple stable states. A capillary switch can generate motion or effect force. To be practical, the energy barriers of such a switch must be tunable, its switching time (kinetics) short and its triggering mechanism reliable. We illustrate these features with a capillary switch that consists of two droplets, coupled by common pressure. As long as contact lines remained pinned, motions are inviscid, even at sub-millimeter scales, with consequent promise of low-power consumption at the device level. Predictions of theory are compared to experiment on i) a soap-film prototype at centimeter scale and ii) a liquid droplet switch at millimeter-scale.
NASA Technical Reports Server (NTRS)
Tournier, Jean-Michel; El-Genk, Mohamed S.
1995-01-01
A two-dimensional Heat Pipe Transient Analysis Model, 'HPTAM,' was developed to simulate the transient operation of fully-thawed heat pipes and the startup of heat pipes from a frozen state. The model incorporates: (a) sublimation and resolidification of working fluid; (b) melting and freezing of the working fluid in the porous wick; (c) evaporation of thawed working fluid and condensation as a thin liquid film on a frozen substrate; (d) free-molecule, transition, and continuum vapor flow regimes, using the Dusty Gas Model; (e) liquid flow and heat transfer in the porous wick; and (f) thermal and hydrodynamic couplings of phases at their respective interfaces. HPTAM predicts the radius of curvature of the liquid meniscus at the liquid-vapor interface and the radial location of the working fluid level (liquid or solid) in the wick. It also includes the transverse momentum jump condition (capillary relationship of Pascal) at the liquid-vapor interface and geometrically relates the radius of curvature of the liquid meniscus to the volume fraction of vapor in the wick. The present model predicts the capillary limit and partial liquid recess (dryout) in the evaporator wick, and incorporates a liquid pooling submodel, which simulates accumulation of the excess liquid in the vapor core at the condenser end.
Mechanisms of heterogeneous crystal growth in atomic systems: insights from computer simulations.
Gulam Razul, M S; Hendry, J G; Kusalik, P G
2005-11-22
In this paper we analyze the atomic-level structure of solid/liquid interfaces of Lennard-Jones fcc systems. The 001, 011, and 111 faces are examined during steady-state growth and melting of these crystals. The mechanisms of crystallization and melting are explored using averaged configurations generated during these steady-state runs, where subsequent tagging and labeling of particles at the interface provide many insights into the detailed atomic behavior at the freezing and melting interfaces. The interfaces are generally found to be rough and we observe the structure of freezing and melting interfaces to be very similar. Large structural fluctuations with solidlike and liquidlike characteristics are apparent in both the freezing and melting interfaces. The behavior at the interface observed under either growth or melting conditions reflects a competition between ordering and disordering processes. In addition, we observe atom hopping that imparts liquidlike characteristics to the solid side of the interfaces for all three crystal faces. Solid order is observed to extend as rough, three-dimensional protuberances through the interface, particularly for the 001 and 011 faces. We are also able to reconcile our different measures for the interfacial width and address the onset of asymmetry in the growth rates at high rates of crystal growth/melting.
Burghardt, T P; Thompson, N L
1984-01-01
We consider the effect of planar dielectric interfaces (e.g., solid/liquid) on the fluorescence emission of nearby probes. First, we derive an integral expression for the electric field radiated by an oscillating electric dipole when it is close to a dielectric interface. The electric field depends on the refractive indices of the interface, the orientation of the dipole, the distance from the dipole to the interface, and the position of observation. We numerically calculate the electric field intensity for a dipole on an interface, as a function of observation position. These results are applicable to fluorescent molecules excited by the evanescent field of a totally internally reflected laser beam and thus very close to a solid/liquid interface. Next, we derive an integral expression for the electric field radiated when a second dielectric interface is also close to the fluorescent molecule. We numerically calculate this intensity as observed through the second interface. These results are useful when the fluorescence is collected by a high-aperture microscope objective. Finally, we define and calculate a "dichroic factor," which describes the efficiency of collection, in the two-interface system, of polarized fluorescence. The limit when the first interface is removed is applicable for any high-aperture collection of polarized or unpolarized fluorescence. The limit when the second interface is removed has application in the collection of fluorescence with any aperture from molecules close to a dielectric interface. The results of this paper are required for the interpretation of order parameter measurements on fluorescent probes in supported phospholipid monolayers (Thompson, N.L., H. M. McConnell, and T. P. Burghardt, 1984, Biophys. J., 46:739-747). PMID:6518253
Normal Forces at Solid-Liquid Interface
NASA Astrophysics Data System (ADS)
Das, Ratul
Adhesion can be defined as the tendency of dissimilar particles or surfaces to cling on to one another. Fields that require knowledge about adhesion interactions at the solid-liquid interface span over a wide spectrum from biotechnological issues such as liquid adhesion to skin tissues, insect feet adhesion to solids, or contact lenses to tear fluid adhesion; filtration issues such as membrane fouling and membrane affinity to different liquids; oil and gas extraction where one needs knowledge of the adhesion of the oil and brine to the rock; fuel cells in which droplets are formed on the electrodes and need to be considered in the system's design; classic chemical engineering industry such as drop adhesion to the mist eliminators in flash drums, or to heat exchangers; and classic surface science such as nano-structured surfaces, self cleaning surfaces, and general wetting phenomena. We execute the Young-Dupre (Y-P) gedanken experiment to establish unique values of work of adhesion rather than a work of adhesion range that the contact angle hysteresis results in. We use the Centrifugal Adhesion Balance (CAB) which allows independent manipulation of normal and lateral forces to induce an increase in the normal force which pulls on a liquid drop while keeping zero lateral force. This method mimics a drop that is subjected to a gravitational force that is gradually increasing. The values obtained for the work of adhesion are independent of drop size and are in agreement with the Y-P estimate. Cyclically varying the normal force, just to prevent the drop flying away from the surface will also enable us to study the Contact Angle Hysteresis for a pendant drop. With this set up, the work of adhesion is not only calculated from experimental normal force measurements, but the found results are also used to provide a venue for calculating the Young equilibrium contact angle, theta0. According to Shanahan and de Gennes, a liquid drop with a non-zero contact angle is associated with a deformation of the solid surface at the three phase contact line, causing the triple line to protrude up and form a rim, this is due to the unsatisfied normal component of the surface tension. Such rims were demonstrated by Care et al, and by Extrand, and the stresses associated with the rims facilitate reorientation of solid molecules at the interface, and therefore result in stronger solid liquid interaction at the rim. This stronger interaction gives rise to retention forces (due to adhesion). Recently, Xu et al, wrote a force equation based on this understanding, we test the validity of this approach and the Furmidge - Dussan model and other, more empirical, retention force approaches. A liquid drop that partially wets a solid surface will slide along the plane when a force beyond a critical value is applied to it. We study the sliding pattern of such a drop. Experiments for identifying the pattern of motion of liquid drops under influence of different normal forces are performed. We use a centrifugal adhesion balance (CAB) to study the pattern of drop motion under different effective gravities. A drop on a solid surface only slides after a certain critical force is applied to it, which is dependent on the drop volume, surface heterogeneities and other factors, even after the application of force the drop doesn't continue to move uniformly, which is the subject matter of this discussion.
NASA Technical Reports Server (NTRS)
Chang, C. J.; Brown, R. A.
1983-01-01
The roles of natural convection in the melt and the shape of the melt/solid interface on radial dopant segregation are analyzed for a prototype of vertical Bridgman crystal growth system by finite element methods that solve simultaneously for the velocity field in the melt, the shape of the solidification isotherm, and the temperature distribution in both phases. Results are presented for crystal and melt with thermophysical properties similar to those of gallium-doped germanium in Bridgman configurations with melt below (thermally destabilizing) and above (stabilizing) the crystal. Steady axisymmetric flow are classified according to Rayleigh number as either being nearly the growth velocity, having a weak cellular structure or having large amplitude cellular convention. The flows in the two Bridgman configurations are driven by different temperature gradients and are in opposite directions. Finite element calculations for the transport of a dilute dopant by these flow fields reveal radial segregation levels as large as sixty percent of the mean concentration. Segregation is found most severe at an intermediate value of Rayleigh number above which the dopant distribution along the interface levels as the intensity of the flow increases.
A new method for ultrasound detection of interfacial position in gas-liquid two-phase flow.
Coutinho, Fábio Rizental; Ofuchi, César Yutaka; de Arruda, Lúcia Valéria Ramos; Neves, Flávio; Morales, Rigoberto E M
2014-05-22
Ultrasonic measurement techniques for velocity estimation are currently widely used in fluid flow studies and applications. An accurate determination of interfacial position in gas-liquid two-phase flows is still an open problem. The quality of this information directly reflects on the accuracy of void fraction measurement, and it provides a means of discriminating velocity information of both phases. The algorithm known as Velocity Matched Spectrum (VM Spectrum) is a velocity estimator that stands out from other methods by returning a spectrum of velocities for each interrogated volume sample. Interface detection of free-rising bubbles in quiescent liquid presents some difficulties for interface detection due to abrupt changes in interface inclination. In this work a method based on velocity spectrum curve shape is used to generate a spatial-temporal mapping, which, after spatial filtering, yields an accurate contour of the air-water interface. It is shown that the proposed technique yields a RMS error between 1.71 and 3.39 and a probability of detection failure and false detection between 0.89% and 11.9% in determining the spatial-temporal gas-liquid interface position in the flow of free rising bubbles in stagnant liquid. This result is valid for both free path and with transducer emitting through a metallic plate or a Plexiglas pipe.
A New Method for Ultrasound Detection of Interfacial Position in Gas-Liquid Two-Phase Flow
Coutinho, Fábio Rizental; Ofuchi, César Yutaka; de Arruda, Lúcia Valéria Ramos; Jr., Flávio Neves; Morales, Rigoberto E. M.
2014-01-01
Ultrasonic measurement techniques for velocity estimation are currently widely used in fluid flow studies and applications. An accurate determination of interfacial position in gas-liquid two-phase flows is still an open problem. The quality of this information directly reflects on the accuracy of void fraction measurement, and it provides a means of discriminating velocity information of both phases. The algorithm known as Velocity Matched Spectrum (VM Spectrum) is a velocity estimator that stands out from other methods by returning a spectrum of velocities for each interrogated volume sample. Interface detection of free-rising bubbles in quiescent liquid presents some difficulties for interface detection due to abrupt changes in interface inclination. In this work a method based on velocity spectrum curve shape is used to generate a spatial-temporal mapping, which, after spatial filtering, yields an accurate contour of the air-water interface. It is shown that the proposed technique yields a RMS error between 1.71 and 3.39 and a probability of detection failure and false detection between 0.89% and 11.9% in determining the spatial-temporal gas-liquid interface position in the flow of free rising bubbles in stagnant liquid. This result is valid for both free path and with transducer emitting through a metallic plate or a Plexiglas pipe. PMID:24858961
Phase-field crystal simulation facet and branch crystal growth
NASA Astrophysics Data System (ADS)
Chen, Zhi; Wang, Zhaoyang; Gu, Xinrui; Chen, Yufei; Hao, Limei; de Wit, Jos; Jin, Kexin
2018-05-01
Phase-field crystal model with one mode is introduced to describe morphological transition. The relationship between growth morphology and smooth density distribution was investigated. The results indicate that the pattern selection of dendrite growth is caused by the competition between interface energy anisotropy and interface kinetic anisotropy based on the 2D phase diagram. When the calculation time increases, the crystal grows to secondary dendrite at the dimensionless undercooling equal to - 0.4. Moreover, when noise is introduced in the growth progress, the symmetry is broken in the growth mode, and there becomes irregular fractal-like growth morphology. Furthermore, the single crystal shape develops into polycrystalline when the noise amplitude is large enough. When the dimensionless undercooling is less than - 0.3, the noise has a significant effect on the growth shape. In addition, the growth velocity of crystal near to liquid phase line is slow, while the shape far away from the liquid adapts to fast growth. Based on the simulation results, the method was proved to be effective, and it can easily obtain different crystal shapes by choosing the different points in 2D phase diagram.
Instant freezing of impacting wax drops
NASA Astrophysics Data System (ADS)
Ponomarenko, Alexandre; Virot, Emmanuel; Rubinstein, Shmuel
2015-11-01
We present the impact of hot liquid drops of wax on surfaces whose temperature is below the solidifying temperature of the drops. During the fall the drops remain mostly liquid, but upon impact, their temperature quickly decreases resulting in the solidification of the drop. Depending on the impact energy, drops size and the temperature difference between the drop and the surface this results in plethora of solid shapes: simple lenses, triangular drops, spherical caps and popped popcorn shapes.
Understanding the true shape of Au-catalyzed GaAs nanowires.
Jiang, Nian; Wong-Leung, Jennifer; Joyce, Hannah J; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati
2014-10-08
With increasing interest in nanowire-based devices, a thorough understanding of the nanowire shape is required to gain tight control of the quality of nanowire heterostructures and improve the performance of related devices. We present a systematic study of the sidewalls of Au-catalyzed GaAs nanowires by investigating the faceting process from the beginning with vapor-liquid-solid (VLS) nucleation, followed by the simultaneous radial growth on the sidewalls, and to the end with sidewall transformation during annealing. The VLS nucleation interface of our GaAs nanowires is revealed by examining cross sections of the nanowire, where the nanowire exhibits a Reuleaux triangular shape with three curved surfaces along {112}A. These curved surfaces are not thermodynamically stable and adopt {112}A facets during radial growth. We observe clear differences in radial growth rate between the ⟨112⟩A and ⟨112⟩B directions with {112}B facets forming due to the slower radial growth rate along ⟨112⟩B directions. These sidewalls transform to {110} facets after high temperature (>500 °C) annealing. A nucleation model is proposed to explain the origin of the Reuleaux triangular shape of the nanowires, and the sidewall evolution is explained by surface kinetic and thermodynamic limitations.
The inverse problem for definition of the shape of a molten contact bridge
NASA Astrophysics Data System (ADS)
Kharin, Stanislav N.; Sarsengeldin, Merey M.
2017-09-01
The paper presents the results of investigation of bridging phenomenon occurring at opening of electrical contacts. The mathematical model describing the dynamics of metal molten bridge takes into account the Thomson effect. It is based on the system of partial differential equations for temperature and electrical fields of the bridge in the domain containing two moving unknown boundaries. One of them is an interface between liquid and solid zones of the bridge and should be found by the solution of the corresponding Stefan problem. The second free boundary corresponds to the shape of the visible part of a bridge. Its definition is an inverse problem, for which solution it is necessary to find minimum of the energy consuming for the formation of the shape of a quasi-stationary bridge. Three components of this energy, namely surface tension, pinch effect and gravitation, are defined by the functional which minimum gives the required shape of the bridge. The solution of corresponding variation problem is found by the reduction of the problem to the solution of the system of ordinary differential equations. Calculated values of the voltage of the bridge rupture for various metals are in a good agreement with the experimental data. The criteria responsible for the mechanism of molten bridge rupture are introduced in the paper.
Ardham, Vikram Reddy; Leroy, Frédéric
2018-03-01
The high interfacial tension between two immiscible liquids can provide the necessary driving force for the self-assembly of nanoparticles at the interface. Particularly, the interface between water and oily liquids (hydrocarbon chains) has been exploited to prepare networks of highly interconnected graphene sheets of only a few layers thickness, which are well suited for industrial applications. Studying such complex systems through particle-based simulations could greatly enhance the understanding of the various driving forces in action and could possibly give more control over the self-assembly process. However, the interaction potentials used in particle-based simulations are typically derived by reproducing bulk properties and are therefore not suitable for describing systems dominated by interfaces. To address this issue, we introduce a methodology to derive solid-liquid interaction potentials that yield an accurate representation of the balance between interfacial interactions at atomistic and coarse-grained resolutions. Our approach is validated through its ability to lead to the adsorption of graphene nanoflakes at the interface between water and n-hexane. The development of accurate coarse-grained potentials that our approach enables will allow us to perform large-scale simulations to study the assembly of graphene nanoparticles at the interface between immiscible liquids. Our methodology is illustrated through a simulation of many graphene nanoflakes adsorbing at the interface.
Elasto-capillary torsion at a liquid interface
NASA Astrophysics Data System (ADS)
Oratis, Alexandros; Farmer, Timothy; Bird, James
2016-11-01
When a liquid drop wets a solid, the droplet typically spreads over the solid. By contrast, for sufficiently compliant solids, the solid can instead spread around the drop. This wrapping phenomenon has been exploited to assemble 3-dimensional structures from 2-dimensional sheets, a process often referred to as capillary origami. Although existing studies of this self-assembly have demonstrated bending and folding, methods of inducing spontaneous twisting by means of capillarity are less clear. Here we demonstrate that spontaneous twist can be initiated in a compliant solid through a combination of surface chemistry and capillarity. Experimentally, we measure the angle of twist on a surface with binary patterns of surface wettability as we vary the solid's geometric and material properties. We develop a scaling law to relate this angle of twist to the elastic and interfacial properties, which compares well with our experimental results.
Water drop dynamics on a granular layer
NASA Astrophysics Data System (ADS)
Llorens, Coraline; Biance, Anne-Laure; Ybert, Christophe; Pirat, Christophe; Liquids; Interfaces Team
2015-11-01
Liquid drop impacts, either on a solid surface or a liquid bath, have been studied for a while and are still subject of intense research. Less is known concerning impacts on granular layers that are shown to exhibit an intermediate situation between solid and liquid. In this study, we focus on water drop impacts on granular matter made of micrometer-sized spherical glass beads. In particular, we investigate the overall dynamics arising from the interplay between liquid and grains throughout the impact. Depending on the relevant parameters (impact velocity, drop and grain sizes, as well as their wetting properties), various behaviors are evidenced. In particular, the behavior of the beads at the liquid-gas interface (ball-bearing vs imbibition) is shown to greatly affect the spreading dynamics of the drop, as well as satellite droplets formation, beads ejection, and the final crater morphology.
NASA Astrophysics Data System (ADS)
Sugiyama, Atsushi; Morisaki, Shigeyoshi; Aogaki, Ryoichi
2003-08-01
When an external magnetic field is vertically imposed on a solid-liquid interface, the mass transfer process of a solute dissolving from or depositing on the interface was theoretically examined. In a heterogeneous vertical magnetic field, a material receives a magnetic force in proportion to the product of the magnetic susceptibility, the magnetic flux density B and its gradient (dB/dz). As the reaction proceeds, a diffusion layer of the solute with changing susceptibility is formed at the interface because of the difference of the the magnetic susceptibility on the concentration of the solute. In the case of an unstable condition where the dimensionless number of magneto-convection S takes a positive value, the magnetic force is applied to the layer and induces numerous minute convection cells. The mass transfer of the solute is thus accelerated, so that it is predicted that the mass flux increases with the 1/3rd order of B(dB/dz) and the 4/3rd order of the concentration. The experiment was then performed by measuring the rate of the dissolution of copper sulfate pentahydrate crystal in water.
Biofilm formation in geometries with different surface curvature and oxygen availability
NASA Astrophysics Data System (ADS)
Chang, Ya-Wen; Fragkopoulos, Alexandros A.; Marquez, Samantha M.; Kim, Harold D.; Angelini, Thomas E.; Fernández-Nieves, Alberto
2015-03-01
Bacteria in the natural environment exist as interface-associated colonies known as biofilms . Complex mechanisms are often involved in biofilm formation and development. Despite the understanding of the molecular mechanisms involved in biofilm formation, it remains unclear how physical effects in standing cultures influence biofilm development. The topology of the solid interface has been suggested as one of the physical cues influencing bacteria-surface interactions and biofilm development. Using the model organism Bacillus subtilis, we study the transformation of swimming bacteria in liquid culture into robust biofilms in a range of confinement geometries (planar, spherical and toroidal) and interfaces (air/water, silicone/water, and silicone elastomer/water). We find that B. subtilis form submerged biofilms at both solid and liquid interfaces in addition to air-water pellicles. When confined, bacteria grow on curved surfaces of both positive and negative Gaussian curvature. However, the confinement geometry does affect the resulting biofilm roughness and relative coverage. We also find that the biofilm location is governed by oxygen availability as well as by gravitational effects; these compete with each other in some situations. Overall, our results demonstrate that confinement geometry is an effective way to control oxygen availability and subsequently biofilm growth.
X-ray Radiography Measurements of Shear Coaxial Rocket Injectors
2013-05-07
injector EPL profiles have elliptical shape expected from a solid liquid jet EPL decreases as liquid core is atomized and droplets are...study diesel, swirl, gas-centered swirl-coaxial, impingers, and aerated liquid jet injectors Use a monochromatic beam of x-rays at a synchrotron...Shear coaxial jets can be found in a number of combustion devices – Turbofan engine exhaust, air blast furnaces, and liquid rocket engines
Tutorial: Determination of thermal boundary resistance by molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Liang, Zhi; Hu, Ming
2018-05-01
Due to the high surface-to-volume ratio of nanostructured components in microelectronics and other advanced devices, the thermal resistance at material interfaces can strongly affect the overall thermal behavior in these devices. Therefore, the thermal boundary resistance, R, must be taken into account in the thermal analysis of nanoscale structures and devices. This article is a tutorial on the determination of R and the analysis of interfacial thermal transport via molecular dynamics (MD) simulations. In addition to reviewing the commonly used equilibrium and non-equilibrium MD models for the determination of R, we also discuss several MD simulation methods which can be used to understand interfacial thermal transport behavior. To illustrate how these MD models work for various interfaces, we will show several examples of MD simulation results on thermal transport across solid-solid, solid-liquid, and solid-gas interfaces. The advantages and drawbacks of a few other MD models such as approach-to-equilibrium MD and first-principles MD are also discussed.
Star-shaped oscillations of Leidenfrost drops
NASA Astrophysics Data System (ADS)
Ma, Xiaolei; Liétor-Santos, Juan-José; Burton, Justin C.
2017-03-01
We experimentally investigate the self-sustained, star-shaped oscillations of Leidenfrost drops. The drops levitate on a cushion of evaporated vapor over a heated, curved surface. We observe modes with n =2 -13 lobes around the drop periphery. We find that the wavelength of the oscillations depends only on the capillary length of the liquid and is independent of the drop radius and substrate temperature. However, the number of observed modes depends sensitively on the liquid viscosity. The dominant frequency of pressure variations in the vapor layer is approximately twice the drop oscillation frequency, consistent with a parametric forcing mechanism. Our results show that the star-shaped oscillations are driven by capillary waves of a characteristic wavelength beneath the drop and that the waves are generated by a large shear stress at the liquid-vapor interface.
Krivosheeva, Olga; Dėdinaitė, Andra; Linder, Markus B; Tilton, Robert D; Claesson, Per M
2013-02-26
Hydrophobins are relatively small globular proteins produced by filamentous fungi. They display unusual high surface activity and are implied as mediators of attachment to surfaces, which has resulted in high scientific and technological interest. In this work we focus on kinetic and equilibrium aspects of adsorption and desorption properties of two representatives of class II hydrophobins, namely HFBI and HFBII, at a negatively charged hydrophilic solid/water interface and at the air/water interface. The layers formed at the air/liquid interface were examined in a Langmuir trough, whereas layers formed at the solid/liquid interface were studied using dual polarization interferometry (DPI) under different flow conditions. For comparison, another globular protein, lysozyme, was also investigated. It was found that both the adsorbed amount and the adsorption kinetics were different for HFBI and HFBII, and the adsorption behavior of both hydrophobins on the negatively charged surface displayed some unusual features. For instance, even though the adsorption rate for HFBI was slowed down with increasing adsorbed amount as expected from packing constraints at the interface, the adsorption kinetics curves for HFBII displayed a region indicating adsorption cooperativity. Further, it was found that hydrophobin layers formed under flow partly desorbed when the flow was stopped, and the desorption rate for HFBII was enhanced in the presence of hydrophobins in solution.
Recent applications of liquid metals featuring nanoscale surface oxides
NASA Astrophysics Data System (ADS)
Neumann, Taylor V.; Dickey, Michael D.
2016-05-01
This proceeding describes recent efforts from our group to control the shape and actuation of liquid metal. The liquid metal is an alloy of gallium and indium which is non-toxic, has negligible vapor pressure, and develops a thin, passivating surface oxide layer. The surface oxide allows the liquid metal to be patterned and shaped into structures that do not minimize interfacial energy. The surface oxide can be selectively removed by changes in pH or by applying a voltage. The surface oxide allows the liquid metal to be 3D printed to form free-standing structures. It also allows for the liquid metal to be injected into microfluidic channels and to maintain its shape within the channels. The selective removal of the oxide results in drastic changes in surface tension that can be used to control the flow behavior of the liquid metal. The metal can also wet thin, solid films of metal that accelerates droplets of the liquid along the metal traces .Here we discuss the properties and applications of liquid metal to make soft, reconfigurable electronics.
Monte Carlo study of molten salt with charge asymmetry near the electrode surface.
Kłos, Jacek; Lamperski, Stanisław
2014-02-07
Results of the Monte Carlo simulation of the electrode | molten salt or ionic liquid interface are reported. The system investigated is approximated by the primitive model of electrolyte being in contact with a charged hard wall. Ions differ in charges, namely anions are divalent and cations are monovalent but they are of the same diameter d = 400 pm. The temperature analysis of heat capacity at a constant volume Cv and the anion radial distribution function, g2-/2-, allowed the choice of temperature of the study, which is T = 2800 K and corresponds to T(*) = 0.34 (definition of reduced temperature T(*) in text). The differential capacitance curve of the interface with the molten salt or ionic liquid at c = 5.79 M has a distorted bell shape. It is shown that with increasing electrolyte concentration from c = 0.4 to 5 M the differential capacitance curves undergo transition from U shape to bell shape.
NASA Technical Reports Server (NTRS)
Noever, D. A.; Rosenberger, F. E.
1989-01-01
A proposed experimental program to look at a series of vapor transport properties measured along solid and liquid surfaces is described. The research objectives proposed are: (1) with accuracy otherwise unobtainable on ground, to determine the coefficient of slip measured between gases and the surfaces of liquids and solids; (2) for the first time, to classify and tabulate dominant surface effects found for a variety of solids, particularly those crystalized by vapor transport; and (3) to extend understanding of settling rates predicted for cosmic dust and condensed vapor falling through planetary atmospheres. The method used to obtain these objectives, has aided, to an order of magnitude, understanding of various liquid-gas interfaces such as oil and water. But to date, no similar characterization has proved successful for solids or liquids of uncertain densities. Likewise, no data exist in either ground-based research or as part of a microgravity program that, when collected with the high accuracy expected in low gravity, could definitely settle outstanding questions in kinetic theory, molecular dynamics, and cosmic physics.
NASA Astrophysics Data System (ADS)
Dutta, P. S.; Bhat, H. L.; Kumar, Vikram
1995-09-01
Numerical analysis has been carried out to determine the deviation of the growth rate from the ampoule lowering rate and the shape of the isotherms during the growth of gallium antimonide using the vertical Bridgman technique in a single-zone furnace. Electrical analogues have been used to model the thermal behaviour of the growth system. The standard circuit analysis technique has been used to calculate the temperature distribution in the growing crystal under various growth conditions. The effects of furnace temperature gradient near the melt-solid interface, the ampoule lowering rate, the ampoule geometry, the thermal conductivity of the melt, the mode of heat extraction from the tip of the ampoule and the extent of lateral heat loss from the side walls of the ampoule on the shape of isotherms in the crystal have been evaluated. The theoretical results presented here agree well with our previously obtained experimental results.
Macrosegregation of GeSi Alloys Grown in a Static Magnetic Field
NASA Technical Reports Server (NTRS)
Ritter, T. M.; Volz, M. P.; Cobb, S. D.; Szofran, F. R.
1999-01-01
Axial and radial macrosegregation profiles have been determined for GeSi alloy crystals grown by the vertical Bridgman technique. An axial 5 Tesla magnetic field was applied to several samples during growth to decrease the melt velocities by means of the Lorentz force. Compositions were measured with either energy dispersive X-ray spectroscopy (EDS) on a scanning electron microscope (SEM) or by wavelength dispersive X-ray spectroscopy (WDS) on a microprobe. The crystals were processed in graphite, hot-pressed boron nitride (BN), and pyrolytic boron nitride (PBN) ampoules, which produced various solid-liquid interface shapes during solidification. Those samples grown in a graphite ampoule exhibited radial profiles consistent with a highly concave interface and axial profiles indicative of complete mixing in the melt. The samples grown in BN and PBN ampoules had less radial variation. Axial macrosegregation profiles of these samples fell between the predictions for a completely mixed melt and one where solute transport is dominated by diffusion. Possible explanations for the apparent insufficiency of the magnetic field to achieve diffusion controlled growth conditions are discussed.
NASA Astrophysics Data System (ADS)
Surblys, Donatas; Leroy, Frédéric; Yamaguchi, Yasutaka; Müller-Plathe, Florian
2018-04-01
We investigated the solid-liquid work of adhesion of water on a model silica surface by molecular dynamics simulations, where a methodology previously developed to determine the work of adhesion through thermodynamic integration was extended to a system with long-range electrostatic interactions between solid and liquid. In agreement with previous studies, the work of adhesion increased when the magnitude of the surface polarity was increased. On the other hand, we found that when comparing two systems with and without solid-liquid electrostatic interactions, which were set to have approximately the same total solid-liquid interfacial energy, former had a significantly smaller work of adhesion and a broader distribution in the interfacial energies, which has not been previously reported in detail. This was explained by the entropy contribution to the adhesion free energy; i.e., the former with a broader energy distribution had a larger interfacial entropy than the latter. While the entropy contribution to the work of adhesion has already been known, as a work of adhesion itself is free energy, these results indicate that, contrary to common belief, wetting behavior such as the contact angle is not only governed by the interfacial energy but also significantly affected by the interfacial entropy. Finally, a new interpretation of interfacial entropy in the context of solid-liquid energy variance was offered, from which a fast way to qualitatively estimate the work of adhesion was also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ardham, Vikram Reddy; Leroy, Frédéric, E-mail: vandervegt@csi.tu-darmstadt.de, E-mail: f.leroy@theo.chemie.tu-darmstadt.de; Deichmann, Gregor
We address the question of how reducing the number of degrees of freedom modifies the interfacial thermodynamic properties of heterogeneous solid-liquid systems. We consider the example of n-hexane interacting with multi-layer graphene which we model both with fully atomistic and coarse-grained (CG) models. The CG models are obtained by means of the conditional reversible work (CRW) method. The interfacial thermodynamics of these models is characterized by the solid-liquid work of adhesion W{sub SL} calculated by means of the dry-surface methodology through molecular dynamics simulations. We find that the CRW potentials lead to values of W{sub SL} that are larger thanmore » the atomistic ones. Clear understanding of the relationship between the structure of n-hexane in the vicinity of the surface and W{sub SL} is elucidated through a detailed study of the energy and entropy components of W{sub SL}. We highlight the crucial role played by the solid-liquid energy fluctuations. Our approach suggests that CG potentials should be designed in such a way that they preserve the range of solid-liquid interaction energies, but also their fluctuations in order to preserve the reference atomistic value of W{sub SL}. Our study thus opens perspectives into deriving CG interaction potentials that preserve the thermodynamics of solid-liquid contacts and will find application in studies that intend to address materials driven by interfaces.« less
Van Berkel, Gary J.; Kertesz, Vilmos
2015-08-25
RATIONALE: A simple method to introduce unprocessed samples into a solvent for rapid characterization by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The continuous flow, self-cleaning open port sampling interface introduced here fills this void. METHODS: The open port sampling interface used a vertically aligned, co-axial tube arrangement enabling solvent delivery to the sampling end of the device through the tubing annulus and solvent aspiration down the center tube and into the mass spectrometer ionization source via the commercial APCI emitter probe. The solvent delivery rate to the interface was set to exceed the aspiration rate creatingmore » a continuous sampling interface along with a constant, self-cleaning spillover of solvent from the top of the probe. RESULTS: Using the open port sampling interface with positive ion mode APCI and a hybrid quadrupole time of flight mass spectrometer, rapid, direct sampling and analysis possibilities are exemplified with plastics, ballpoint and felt tip ink pens, skin, and vegetable oils. These results demonstrated that the open port sampling interface could be used as a simple, versatile and self-cleaning system to rapidly introduce multiple types of unprocessed, sometimes highly concentrated and complex, samples into a solvent flow stream for subsequent ionization and analysis by mass spectrometry. The basic setup presented here could be incorporated with any self-aspirating liquid introduction ionization source (e.g., ESI, APCI, APPI, ICP, etc.) or any type of atmospheric pressure sampling ready mass spectrometer system. CONCLUSIONS: The open port sampling interface provides a means to introduce and quickly analyze unprocessed solid or liquid samples with liquid introduction atmospheric pressure ionization source without fear of sampling interface or ionization source contamination.« less
Steady-state and dynamic models for particle engulfment during solidification
NASA Astrophysics Data System (ADS)
Tao, Yutao; Yeckel, Andrew; Derby, Jeffrey J.
2016-06-01
Steady-state and dynamic models are developed to study the physical mechanisms that determine the pushing or engulfment of a solid particle at a moving solid-liquid interface. The mathematical model formulation rigorously accounts for energy and momentum conservation, while faithfully representing the interfacial phenomena affecting solidification phase change and particle motion. A numerical solution approach is developed using the Galerkin finite element method and elliptic mesh generation in an arbitrary Lagrangian-Eulerian implementation, thus allowing for a rigorous representation of forces and dynamics previously inaccessible by approaches using analytical approximations. We demonstrate that this model accurately computes the solidification interface shape while simultaneously resolving thin fluid layers around the particle that arise from premelting during particle engulfment. We reinterpret the significance of premelting via the definition an unambiguous critical velocity for engulfment from steady-state analysis and bifurcation theory. We also explore the complicated transient behaviors that underlie the steady states of this system and posit the significance of dynamical behavior on engulfment events for many systems. We critically examine the onset of engulfment by comparing our computational predictions to those obtained using the analytical model of Rempel and Worster [29]. We assert that, while the accurate calculation of van der Waals repulsive forces remains an open issue, the computational model developed here provides a clear benefit over prior models for computing particle drag forces and other phenomena needed for the faithful simulation of particle engulfment.
NASA Astrophysics Data System (ADS)
Dietrich, Kilian; Renggli, Damian; Zanini, Michele; Volpe, Giovanni; Buttinoni, Ivo; Isa, Lucio
2017-06-01
Colloidal particles equipped with platinum patches can establish chemical gradients in H2O2-enriched solutions and undergo self-propulsion due to local diffusiophoretic migration. In bulk (3D), this class of active particles swim in the direction of the surface heterogeneities introduced by the patches and consequently reorient with the characteristic rotational diffusion time of the colloids. In this article, we present experimental and numerical evidence that planar 2D confinements defy this simple picture. Instead, the motion of active particles both on solid substrates and at flat liquid-liquid interfaces is captured by a 2D active Brownian motion model, in which rotational and translational motion are constrained in the xy-plane. This leads to an active motion that does not follow the direction of the surface heterogeneities and to timescales of reorientation that do not match the free rotational diffusion times. Furthermore, 2D-confinement at fluid-fluid interfaces gives rise to a unique distribution of swimming velocities: the patchy colloids uptake two main orientations leading to two particle populations with velocities that differ up to one order of magnitude. Our results shed new light on the behavior of active colloids in 2D, which is of interest for modeling and applications where confinements are present.
Molecular dynamics modelling of solidification in metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boercker, D.B.; Belak, J.; Glosli, J.
1997-12-31
Molecular dynamics modeling is used to study the solidification of metals at high pressure and temperature. Constant pressure MD is applied to a simulation cell initially filled with both solid and molten metal. The solid/liquid interface is tracked as a function of time, and the data are used to estimate growth rates of crystallites at high pressure and temperature in Ta and Mg.
NASA Astrophysics Data System (ADS)
Zhu, Z.; Yu, X. Y.
2017-12-01
Organo-Mineral-Microbe interactions in terrestrial ecosystems are of great interest. Quite a few models have been developed through extensive efforts in this field. However, predictions from current models are far from being accurate, and many debates still exist. One of the major reasons is that most experimental data generated from bulk analysis, and the information of molecular dynamics occurring at mineral-organic matter interface is rare. Such information has been difficult to obtain, due to lack of suitable in situ analysis tools. Recently, we have developed in situ liquid secondary ion mass spectrometry (SIMS) at Pacific Northwest National Laboratory1, and it has shown promise to provide both elemental and molecular information at vacuum-liquid and solid-liquid interfaces.2 In this presentation, we demonstrate that in situ liquid SIMS can provide critical molecular information at solid substrate-live biofilm interface.3 Shewanella oneidensis is used as a model micro-organism and silicon nitride as a model mineral surface. Of particular interest, biologically relevant water clusters have been first observed in the living biofilms. Characteristic fragments of biofilm matrix components such as proteins, polysaccharides, and lipids can be molecularly examined. Furthermore, characteristic fatty acids (e.g., palmitic acid), quinolone signal, and riboflavin fragments were found to respond after the biofilm is treated with Cr(VI), leading to biofilm dispersal. Significant changes in water clusters and quorum sensing signals indicative of intercellular communication in the aqueous environment were observed, suggesting that they might result in fatty acid synthesis and inhibition of riboflavin production. The Cr(VI) reduction seems to follow the Mtr pathway leading to Cr(III) formation. Our approach potentially opens a new avenue for in-situ understanding of mineral-organo or mineral-microbe interfaces using in situ liquid SIMS and super resolution fluorescence microscopy. References:1 Hua, X. et al. Analyst 139, 1609-1613, (2014).2 Zhou, Y. F. et al. J Am Soc Mass Spectr 27, 2006-2013, (2016).3 Ding, Y. Z. et al. Anal Chem 88, 11244-11252, (2016).
Microbial response to environmental gradients in a ceramic-based diffusion system.
Wolfaardt, G M; Hendry, M J; Birkham, T; Bressel, A; Gardner, M N; Sousa, A J; Korber, D R; Pilaski, M
2008-05-01
A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two-dimensional, finite-element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid-liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid-liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long-term investigations, making this approach preferable to conventional gel-stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel. Copyright 2008 Wiley Periodicals, Inc.
Spreading dynamics of 2D dipolar Langmuir monolayer phases.
Heinig, P; Wurlitzer, S; Fischer, Th M
2004-07-01
We study the spreading of a liquid 2D dipolar droplet in a Langmuir monolayer. Interfacial tensions (line tensions) and microscopic contact angles depend on the scale on which they are probed and obey a scaling law. Assuming rapid equilibration of the microscopic contact angle and ideal slippage of the 2D solid/liquid and solid/gas boundary, the driving force of spreading is merely expressed by the shape-dependent long-range interaction integrals. We obtain good agreement between experiment and numerical simulations using this theory.
Modeling of convection phenomena in Bridgman-Stockbarger crystal growth
NASA Technical Reports Server (NTRS)
Carlson, F. M.; Eraslan, A. H.; Sheu, J. Z.
1985-01-01
Thermal convection phenomena in a vertically oriented Bridgman-Stockbarger apparatus were modeled by computer simulations for different gravity conditions, ranging from earth conditions to extremely low gravity, approximate space conditions. The modeling results were obtained by the application of a state-of-the art, transient, multi-dimensional, completely densimetrically coupled, discrete-element computational model which was specifically developed for the simulation of flow, temperature, and species concentration conditions in two-phase (solid-liquid) systems. The computational model was applied to the simulation of the flow and the thermal conditions associated with the convection phenomena in a modified Germanium-Silicon charge enclosed in a stationary fused-silica ampoule. The results clearly indicated that the gravitational field strength influences the characteristics of the coherent vortical flow patterns, interface shape and position, maximum melt velocity, and interfacial normal temperature gradient.
Sloshing instability and electrolyte layer rupture in liquid metal batteries
NASA Astrophysics Data System (ADS)
Weber, Norbert; Beckstein, Pascal; Herreman, Wietze; Horstmann, Gerrit Maik; Nore, Caroline; Stefani, Frank; Weier, Tom
2017-05-01
Liquid metal batteries (LMBs) are discussed today as a cheap grid scale energy storage, as required for the deployment of fluctuating renewable energies. Built as stable density stratification of two liquid metals separated by a thin molten salt layer, LMBs are susceptible to short-circuit by fluid flows. Using direct numerical simulation, we study a sloshing long wave interface instability in cylindrical cells, which is already known from aluminium reduction cells. After characterising the instability mechanism, we investigate the influence of cell current, layer thickness, density, viscosity, conductivity and magnetic background field. Finally we study the shape of the interface and give a dimensionless parameter for the onset of sloshing as well as for the short-circuit.
Numerical Analysis of Coolant Flow and Heat Transfer in ITER Diagnostic First Wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khodak, A.; Loesser, G.; Zhai, Y.
2015-07-24
We performed numerical simulations of the ITER Diagnostic First Wall (DFW) using ANSYS workbench. During operation DFW will include solid main body as well as liquid coolant. Thus thermal and hydraulic analysis of the DFW was performed using conjugated heat transfer approach, in which heat transfer was resolved in both solid and liquid parts, and simultaneously fluid dynamics analysis was performed only in the liquid part. This approach includes interface between solid and liquid part of the systemAnalysis was performed using ANSYS CFX software. CFX software allows solution of heat transfer equations in solid and liquid part, and solution ofmore » the flow equations in the liquid part. Coolant flow in the DFW was assumed turbulent and was resolved using Reynolds averaged Navier-Stokes equations with Shear Stress Transport turbulence model. Meshing was performed using CFX method available within ANSYS. The data cloud for thermal loading consisting of volumetric heating and surface heating was imported into CFX Volumetric heating source was generated using Attila software. Surface heating was obtained using radiation heat transfer analysis. Our results allowed us to identify areas of excessive heating. Proposals for cooling channel relocation were made. Additional suggestions were made to improve hydraulic performance of the cooling system.« less
NASA Astrophysics Data System (ADS)
Lou, Wentao; Zhu, Miaoyong
2017-12-01
A computation fluid dynamics-population balance model-simultaneous reaction model (CFD-PBM-SRM) coupled model has been proposed to study the multiphase flow behavior and refining reaction kinetics in a ladle with bottom powder injection, and some new and important phenomena and mechanisms are presented. For the multiphase flow behavior, the effects of bubbly plume flow, powder particle motion, particle-particle collision and growth, particle-bubble collision and adhesion, and powder particle removal into top slag are considered. For the reaction kinetics, the mechanisms of multicomponent simultaneous reactions, including Al, S, Si, Mn, Fe, and O, at the multi-interface, including top slag-liquid steel interface, air-liquid steel interface, powder droplet-liquid steel interface, and bubble-liquid steel interface, are presented, and the effect of sulfur solubility in the powder droplet on the desulfurization is also taken into account. Model validation is carried out using hot tests in a 2-t induction furnace with bottom powder injection. The result shows that the powder particles gradually disperse in the entire furnace; in the vicinity of the bottom slot plugs, the desulfurization product CaS is liquid phase, while in the upper region of the furnace, the desulfurization product CaS is solid phase. The predicted sulfur contents by the present model agree well with the measured data in the 2-t furnace with bottom powder injection.
Theoretical study of strength of elastic-plastic water-saturated interface under constrained shear
NASA Astrophysics Data System (ADS)
Dimaki, Andrey V.; Shilko, Evgeny V.; Psakhie, Sergey G.
2016-11-01
This paper presents a theoretical study of shear strength of an elastic-plastic water-filled interface between elastic permeable blocks under compression. The medium is described within the discrete element method. The relationship between the stress-strain state of the solid skeleton and pore pressure of a liquid is described in the framework of the Biot's model of poroelasticity. The simulation demonstrates that shear strength of an elastic-plastic interface depends non-linearly on the values of permeability and loading to a great extent. We have proposed an empirical relation that approximates the obtained results of the numerical simulation in assumption of the interplay of dilation of the material and mass transfer of the liquid.
Coadsorbate-Induced Reversal of Solid-Liquid Interface Dynamics.
Rahn, Björn; Wen, Rui; Deuchler, Lukas; Stremme, Johannes; Franke, Andreas; Pehlke, Eckhard; Magnussen, Olaf M
2018-05-22
Coadsorbed anions are well-known to influence surface reactivity and dynamics at solid-liquid interfaces. Here we demonstrate that the chemical nature of these spectator species can entirely determine the microscopic dynamic behavior. Quantitative in situ video-STM data on the surface diffusion of adsorbed sulfur atoms on Cu(100) electrodes in aqueous solution covered by bromide and chloride spectators, respectively, reveal in both cases a strong exponential potential dependence, but with opposite sign. This reversal is highly surprising in view of the isostructural adsorbate arrangement in the two systems. Detailed DFT studies suggest an anion-induced difference in the sulfur diffusion mechanism, specifically an exchange diffusion on the Br-covered surface. Experimental evidence for the latter is provided by the observation of Cu vacancy formation in the Br system, which can be rationalized by a side reaction of the sulfur exchange diffusion. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Studies of electrochemical interfaces by TOF neutron reflectometry at the IBR-2 reactor
NASA Astrophysics Data System (ADS)
Petrenko, V. I.; Gapon, I. V.; Rulev, A. A.; Ushakova, E. E.; Kataev, E. Yu; Yashina, L. V.; Itkis, D. M.; Avdeev, M. V.
2018-03-01
The operation performance of electrochemical energy conversion and storage systems such as supercapacitors and batteries depends on the processes occurring at the electrochemical interfaces, where charge separation and chemical reactions occur. Here, we report about the tests of the neutron reflectometry cells specially designed for operando studies of structural changes at the electrochemical interfaces between solid electrodes and liquid electrolytes. The cells are compatible with anhydrous electrolytes with organic solvents, which are employed today in all lithium ion batteries and most supercapacitors. The sensitivity of neutron reflectometry applied at the time-of-flight (TOF) reflectometer at the pulsed reactor IBR-2 is discussed regarding the effect of solid electrolyte interphase (SEI) formation on metal electrode surface.
Dewetting and Segregation of Zn-Doped InSb in Microgravity Experiments
NASA Technical Reports Server (NTRS)
Ostrogorsky, A. G.; Marin, C.; Duffar, T.; Volz, M.
2009-01-01
In directional solidification, dewetting is characterized by the lack of contact between the crystal and the crucible walls, due to the existence of a liquid meniscus at the level of the solid-liquid interface. This creates a gap of a few tens of micrometers between the crystal and the crucible. One of the immediate consequences of this phenomenon is the dramatic improvement of the quality of the crystal. This improvement is partly due to the modification of the solid-liquid interface curvature and partly to the absence of sticking and spurious nucleation at the crystal-crucible interface. Dewetting has been, commonly observed during the growth of semiconductors in crucibles under microgravity conditions where it appears to be very stable: the gap between the crystal and the crucible remains constant along several centimetres of growth. The physical models of the phenomenon are well established and they predict that dewetting should not occur in microgravity, if sufficient static pressure is imposed on the melt, pushing it towards the crucible. We present the results of InSb(Zn) solidification experiments conducted at the International Space Station (ISS) where, in spite of a spring exerting a pressure on the liquid, partial dewetting did occur. This surprising result is discussed in terms of force exerted .by the spring on the liquid and of possibility that the spring did not work properly. Furthermore, it appears that the segregation of the Zn was not affected by the occurrence of the dewetting. The data suggest that there was no significant interference of convection with segregation of Zn in InSb.
Luo, Chao; Ji, Xiao; Chen, Ji; Gaskell, Karen J; He, Xinzi; Liang, Yujia; Jiang, Jianjun; Wang, Chunsheng
2018-05-23
Organic electrode materials are promising for green and sustainable lithium-ion batteries. However, the high solubility of organic materials in the liquid electrolyte results in the shuttle reaction and fast capacity decay. Herein, azo compounds are firstly applied in all-solid-state lithium batteries (ASSLB) to suppress the dissolution challenge. Due to the high compatibility of azobenzene (AB) based compounds to Li 3 PS 4 (LPS) solid electrolyte, the LPS solid electrolyte is used to prevent the dissolution and shuttle reaction of AB. To maintain the low interface resistance during the large volume change upon cycling, a carboxylate group is added into AB to provide 4-(phenylazo) benzoic acid lithium salt (PBALS), which could bond with LPS solid electrolyte via the ionic bonding between oxygen in PBALS and lithium ion in LPS. The ionic bonding between the active material and solid electrolyte stabilizes the contact interface and enables the stable cycle life of PBALS in ASSLB. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wan, Hongli; Mwizerwa, Jean Pierre; Qi, Xingguo; Xu, Xiaoxiong; Li, Hong; Zhang, Qiang; Cai, Liangting; Hu, Yong-Sheng; Yao, Xiayin
2018-04-18
Nanosized Na 3 PS 4 solid electrolyte with an ionic conductivity of 8.44 × 10 -5 S cm -1 at room temperature is synthesized by a liquid-phase reaction. The resultant all-solid-state FeS 2 /Na 3 PS 4 /Na batteries show an extraordinary high initial Coulombic efficiency of 95% and demonstrate high energy density of 611 Wh kg -1 at current density of 20 mA g -1 at room temperature. The outstanding performances of the battery can be ascribed to good interface compatibility and intimate solid-solid contact at FeS 2 electrode/nanosized Na 3 PS 4 solid electrolytes interface. Meanwhile, excellent cycling stability is achieved for the battery after cycling at 60 mA g -1 for 100 cycles, showing a high capacity of 287 mAh g -1 with the capacity retention of 80%.
Marangoni Effects on Near-Bubble Microscale Transport During Boiling of Binary Fluid Mixtures
NASA Technical Reports Server (NTRS)
V. Carey; Sun, C.; Carey, V. P.
2000-01-01
In earlier investigations, Marangoni effects were observed to be the dominant mechanism of boiling transport in 2-propanol/water mixtures under reduced gravity conditions. In this investigation we have examined the mechanisms of binary mixture boiling by exploring the transport near a single bubble generated in a binary mixture between a heated surface and cold surface. The temperature field created in the liquid around the bubble produces vaporization over the portion of its interface near the heated surface and condensation over portions of its interface near the cold surface. Experiments were conducted using different mixtures of water and 2-propanol under 1g conditions and under reduced gravity conditions aboard the KC135 aircraft. Since 2-propanol is more volatile than water, there is a lower concentration of 2-propanol near the hot surface and a higher concentration of 2-propanol near the cold plate relative to the bulk quantity. This difference in interface concentration gives rise to strong Marangoni effects that move liquid toward the hot plate in the near bubble region for 2-propanol and water mixtures. In the experiments in this study, the pressure of the test system was maintained at about 5 kPa to achieve the full spectrum of boiling behavior (nucleate boiling, critical heat flux and film boiling) at low temperature and heat flux levels. Heat transfer data and visual documentation of the bubble shape were extracted from the experimental results. In the 1-g experiments at moderate to high heat flux levels, the bubble was observed to grow into a mushroom shape with a larger top portion near the cold plate due to the buoyancy effect. The shape of the bubble was somewhat affected by the cold plate subcooling and the superheat of the heated surface. At low superheat levels for the heated surface, several active nucleation sites were observed, and the vapor stems from them merged to form a larger bubble. The generation rate of vapor is moderate in this regime and the bubble shape is cylindrical in appearance. In some instances, the bubble interface appeared to oscillate. At higher applied heat flux levels, the top of the bubble became larger, apparently to provide more condensing interface area adjacent to the cold plate. Increasing the applied heat flux ultimately led to dry-out of the heated surface, with conditions just prior to dryout corresponding to the maximum heat flux (CHF). A more stable bubble was observed when the system attained the minimum heat flux (for film boiling). In this regime, most of the surface under the bottom of the bubble was dry with nucleate boiling sometimes occuring around the contact perimeter of the bubble at heated surface. Different variations (e.g. gap between two plates, molar concentration of the liquid mixture) of the experiments were examined to determine parametric effects on the boiling process and to determine the best conditions for the KC135 reduced gravity tests. Variation of the gap was found to have a minor impact on the CHF. However, reducing the gap between the hot and cold surface was observed to significantly reduce the minimum heat flux for fixed molar concentration of 2-propanol. In the reduced gravity experiments aboard the KC135 aircraft, the bubble formed in the 6.4 mm gap was generally cylindrical or barrel shaped and it increased its extent laterally as the surface superheat increased. In reduced gravity experiments, dryout of the heated surface under the bubble was observed to occur at a lower superheated temperature than for 1g conditions. Observed features of the boiling process and heat transfer data under reduced gravity will be discussed in detail. The results of the reduced gravity experiments will also be compared to those obtained in comparable 1g experiments. In tandem with the experiments we are also developing a computational model of the transport in the liquid surrounding the bubble during the boiling process. The computational model uses a level set method to model motion of the interface. It will incorporate a macroscale treatment of the transport in the liquid gap between the surfaces and a microscale treatment of transport in the regions between the bubble interface and the solid surfaces. The features of the model will be described in detail. Future research directions suggested by the results to date will also be discussed.
Getting in shape: molten wax drop deformation and solidification at an immiscible liquid interface.
Beesabathuni, Shilpa N; Lindberg, Seth E; Caggioni, Marco; Wesner, Chris; Shen, Amy Q
2015-05-01
The controlled production of non-spherical shaped particles is important for many applications such as food processing, consumer goods, adsorbents, drug delivery, and optical sensing. In this paper, we investigated the deformation and simultaneous solidification of millimeter size molten wax drops as they impacted an immiscible liquid interface of higher density. By varying initial temperature and viscoelasticity of the molten drop, drop size, impact velocity, viscosity and temperature of the bath fluid, and the interfacial tension between the molten wax and bath fluid, spherical molten wax drops impinged on a cooling water bath and were arrested into non-spherical solidified particles in the form of ellipsoid, mushroom, disc, and flake-like shapes. We constructed cursory phase diagrams for the various particle shapes generated over a range of Weber, Capillary, Reynolds, and Stefan numbers, governed by the interfacial, inertial, viscous, and thermal effects. We solved a simplified heat transfer problem to estimate the time required to initiate the solidification at the interface of a spherical molten wax droplet and cooling aqueous bath after impact. By correlating this time with the molten wax drop deformation history captured from high speed imaging experiments, we elucidate the delicate balance of interfacial, inertial, viscous, and thermal forces that determine the final morphology of wax particles. Copyright © 2015 Elsevier Inc. All rights reserved.
Ostwald ripening of faceted Si particles in an Al-Si-Cu melt
Shahani, A. J.; Xiao, X.; Skinner, K.; ...
2016-07-04
The microstructural evolution of an Al-Si-Cu alloy during Ostwald ripening is imaged via synchrotron-based, four-dimensional (i.e., space and time resolved) X-ray tomography. Samples of composition Al-32 wt%Si-15 wt%Cu were annealed isothermally at 650 °C, in the two-phase solid-liquid regime, while tomographic projections were collected in situ over the course of five hours. Advances in experimental methods and computational approaches enable us to characterize the local interfacial curvatures and velocities during ripening. The sequence of three-dimensional reconstructions and interfacial shape distributions shows highly faceted Si particles in a copper-enriched liquid, that become increasingly isotropic or rounded over time. In addition, wemore » find that the coarsening rate constant is approximately the same in the binary and ternary systems. By coupling these experimental measurements with CALPHAD modeling and ab initio molecular dynamics simulation, we assess the influence of Cu on the coarsening process. Lastly, we find the unusual “pinning” of microstructure at the junction between rough and smooth interfaces and suggest a mechanism for this behavior.« less
In situ SEM Study of Lithium Intercalation in individual V 2O 5 Nanowires
Strelcov, Evgheni; Cothren, Joshua E.; Leonard, Donovan N.; ...
2015-01-08
Progress in rational engineering of Li-ion batteries requires better understanding of the electrochemical processes and accompanying transformations in the electrode materials on multiple length scales. In spite of recent progress in utilizing transmission electron microscopy (TEM) to analyze these materials, in situ scanning electron microscopy (SEM) was mostly overlooked as a powerful tool that allows probing these phenomena on the nano and mesoscale. In this paper, we report on in situ SEM study of lithiation in a V 2O 5-based single-nanobelt battery with ionic liquid electrolyte. Coupled with cyclic voltammetry measurements, in situ SEM revealed the peculiarities of subsurface intercalation,more » formation of solid-electrolyte interface (SEI) and electromigration of liquid. We observed that single-crystalline vanadia nanobelts do not undergo large-scale amorphization or fracture during electrochemical cycling, but rather transform topochemically with only a slight shape distortion. Lastly, the SEI layer seems to have significant influence on the lithium ion diffusion and overall capacity of the single-nanobelt battery.« less
Front tracking based modeling of the solid grain growth on the adaptive control volume grid
NASA Astrophysics Data System (ADS)
Seredyński, Mirosław; Łapka, Piotr
2017-07-01
The paper presents the micro-scale model of unconstrained solidification of the grain immersed in under-cooled liquid, based on the front tracking approach. For this length scale, the interface tracked through the domain is meant as the solid-liquid boundary. To prevent generation of huge meshes the energy transport equation is discretized on the adaptive control volume (c.v.) mesh. The coupling of dynamically changing mesh and moving front position is addressed. Preliminary results of simulation of a test case, the growth of single grain, are presented and discussed.
Subsonic leaky Rayleigh waves at liquid-solid interfaces.
Mozhaev, V G; Weihnacht, M
2002-05-01
The paper is devoted to the study of leaky Rayleigh waves at liquid-solid interfaces close to the border of the existence domain of these modes. The real and complex roots of the secular equation are computed for interface waves at the boundary between water and a binary isotropic alloy of gold and silver with continuously variable composition. The change of composition of the alloy allows one to cross a critical velocity for the existence of leaky waves. It is shown that, contrary to popular opinion, the critical velocity does not coincide with the phase velocity of bulk waves in liquid. The true threshold velocity is found to be smaller, the correction being of about 1.45%. Attention is also drawn to the fact that using the real part of the complex phase velocity as a velocity of leaky waves gives only approximate value. The most interesting feature of the waves under consideration is the presence of energy leakage in the subsonic range of the phase velocities where, at first glance, any radiation by harmonic waves is not permitted. A simple physical explanation of this radiation with due regard for inhomogeneity of radiated and radiating waves is given. The controversial question of the existence of leaky Rayleigh waves at a water/ice interface is reexamined. It is shown that the solution considered previously as a leaky wave is in fact the solution of the bulk-wave-reflection problem for inhomogeneous waves.
NASA Astrophysics Data System (ADS)
Sharifi, Hamid; Larouche, Daniel
2015-09-01
The quality of cast metal products depends on the capacity of the semi-solid metal to sustain the stresses generated during the casting. Predicting the evolution of these stresses with accuracy in the solidification interval should be highly helpful to avoid the formation of defects like hot tearing. This task is however very difficult because of the heterogeneous nature of the material. In this paper, we propose to evaluate the mechanical behaviour of a metal during solidification using a mesh generation technique of the heterogeneous semi-solid material for a finite element analysis at the microscopic level. This task is done on a two-dimensional (2D) domain in which the granular structure of the solid phase is generated surrounded by an intergranular and interdendritc liquid phase. Some basic solid grains are first constructed and projected in the 2D domain with random orientations and scale factors. Depending on their orientation, the basic grains are combined to produce larger grains or separated by a liquid film. Different basic grain shapes can produce different granular structures of the mushy zone. As a result, using this automatic grain generation procedure, we can investigate the effect of grain shapes and sizes on the thermo-mechanical behaviour of the semi-solid material. The granular models are automatically converted to the finite element meshes. The solid grains and the liquid phase are meshed properly using quadrilateral elements. This method has been used to simulate the microstructure of a binary aluminium-copper alloy (Al-5.8 wt% Cu) when the fraction solid is 0.92. Using the finite element method and the Mie-Grüneisen equation of state for the liquid phase, the transient mechanical behaviour of the mushy zone under tensile loading has been investigated. The stress distribution and the bridges, which are formed during the tensile loading, have been detected.
From in silica to in silico: retention thermodynamics at solid-liquid interfaces.
El Hage, Krystel; Bemish, Raymond J; Meuwly, Markus
2018-06-28
The dynamics of solvated molecules at the solid/liquid interface is essential for a molecular-level understanding for the solution thermodynamics in reversed phase liquid chromatography (RPLC). The heterogeneous nature of the systems and the competing intermolecular interactions makes solute retention in RPLC a surprisingly challenging problem which benefits greatly from modelling at atomistic resolution. However, the quality of the underlying computational model needs to be sufficiently accurate to provide a realistic description of the energetics and dynamics of systems, especially for solution-phase simulations. Here, the retention thermodynamics and the retention mechanism of a range of benzene-derivatives in C18 stationary-phase chains in contact with water/methanol mixtures is studied using point charge (PC) and multipole (MTP) electrostatic models. The results demonstrate that free energy simulations with a faithful MTP representation of the computational model provide quantitative and molecular level insight into the thermodynamics of adsorption/desorption in chromatographic systems while a conventional PC representation fails in doing so. This provides a rational basis to develop more quantitative and validated models for the optimization of separation systems.
Formation of surface nanobubbles on nanostructured substrates.
Wang, Lei; Wang, Xingya; Wang, Liansheng; Hu, Jun; Wang, Chun Lei; Zhao, Binyu; Zhang, Xuehua; Tai, Renzhong; He, Mengdong; Chen, Liqun; Zhang, Lijuan
2017-01-19
The nucleation and stability of nanoscale gas bubbles located at a solid/liquid interface are attracting significant research interest. It is known that the physical and chemical properties of the solid surface are crucial for the formation and properties of the surface nanobubbles. Herein, we experimentally and numerically investigated the formation of nanobubbles on nanostructured substrates. Two kinds of nanopatterned surfaces, namely, nanotrenches and nanopores, were fabricated using an electron beam lithography technique and used as substrates for the formation of nanobubbles. Atomic force microscopy images showed that all nanobubbles were selectively located on the hydrophobic domains but not on the hydrophilic domains. The sizes and contact angles of the nanobubbles became smaller with a decrease in the size of the hydrophobic domains. The results indicated that the formation and stability of the nanobubbles could be controlled by regulating the sizes and periods of confinement of the hydrophobic nanopatterns. The experimental results were also supported by molecular dynamics simulations. The present study will be very helpful for understanding the effects of surface features on the nucleation and stability of nanobubbles/nanodroplets at a solid/liquid interface.
Ion adsorption-induced wetting transition in oil-water-mineral systems.
Mugele, Frieder; Bera, Bijoyendra; Cavalli, Andrea; Siretanu, Igor; Maestro, Armando; Duits, Michel; Cohen-Stuart, Martien; van den Ende, Dirk; Stocker, Isabella; Collins, Ian
2015-05-27
The relative wettability of oil and water on solid surfaces is generally governed by a complex competition of molecular interaction forces acting in such three-phase systems. Herein, we experimentally demonstrate how the adsorption of in nature abundant divalent Ca(2+) cations to solid-liquid interfaces induces a macroscopic wetting transition from finite contact angles (≈ 10°) with to near-zero contact angles without divalent cations. We developed a quantitative model based on DLVO theory to demonstrate that this transition, which is observed on model clay surfaces, mica, but not on silica surfaces nor for monovalent K(+) and Na(+) cations is driven by charge reversal of the solid-liquid interface. Small amounts of a polar hydrocarbon, stearic acid, added to the ambient decane synergistically enhance the effect and lead to water contact angles up to 70° in the presence of Ca(2+). Our results imply that it is the removal of divalent cations that makes reservoir rocks more hydrophilic, suggesting a generalizable strategy to control wettability and an explanation for the success of so-called low salinity water flooding, a recent enhanced oil recovery technology.
Gravitational Role in Liquid Phase Sintering
NASA Technical Reports Server (NTRS)
Upadhyaya, Anish; Iacocca, Ronald G.; German, Randall M.
1998-01-01
To comprehensively understand the gravitational effects on the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 35 to 98 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. This study also shows that the pores during microgravity sintering act as a stable phase and attain anomalous shapes.
Formation of Nitrogen Bubbles During Solidification of Duplex Stainless Steels
NASA Astrophysics Data System (ADS)
Dai, Kaiju; Wang, Bo; Xue, Fei; Liu, Shanshan; Huang, Junkai; Zhang, Jieyu
2018-04-01
The nucleation and growth of nitrogen bubbles for duplex stainless steels are of great significance for the formation mechanism of bubbles during solidification. In the current study, numerical method and theoretical analysis of formula derivation were used to study the formation of nitrogen bubbles during solidification. The critical sizes of the bubble for homogeneous nucleation and heterogeneous nucleation at the solid-liquid interface during solidification were derived theoretically by the classical nucleation theory. The results show that the calculated values for the solubility of nitrogen in duplex stainless steel are in good agreement with the experimental values which are quoted by references: for example, when the temperature T = 1823 K and the nitrogen partial pressure P_{{N2 }} = 40P^{Θ} , the calculated value (0.8042 wt pct) for the solubility of Fe-12Cr alloy nitrogen in molten steel is close to the experimental value (0.780 wt pct). Moreover, the critical radii for homogeneous nucleation and heterogeneous nucleation are identical during solidification. On the one hand, with the increasing temperature or the melt depth, the critical nucleation radius of bubbles at the solid-liquid interface increases, but the bubble growth rate decreases. On the other hand, with the decreasing initial content of nitrogen or the cooling rate, the critical nucleation radius of bubbles at the solid-liquid interface increases, but the bubble growth rate decreases. Furthermore, when the melt depth is greater than the critical depth, which is determined by the technological conditions, the change in the Gibbs free energy for the nucleation is not conducive enough to form new bubbles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshii, Taiki; Niibori, Yuichi; Mimura, Hitoshi
The apparent dissolution rates of gas phase in the co-presence of solid phase were examined by in-room experiments in this study. The apparent dissolution rate of gas phase q (mol/m{sup 3}.s) was generally defined by q=aK{sub L}(γP{sub g}-c), where a (1/m) is specific surface area of the interface between gas and liquid phases, K{sub L} (m/s) is overall mass transfer coefficient, γ (mol/(Pa.m{sup 3})) is reciprocal number of Henry constant, P{sub g} (Pa) is partial pressure of gas phase, and c (mol/m{sup 3}) is the concentration of gas component in liquid phase. As a model gas, CO{sub 2} gas wasmore » used. For evaluating the values of K{sub L}, this study monitored pH or the migration rate of the interface between water/gas phases, using some experiments such as the packed beds and the micro channel consisting of granite chip and rubber sheet including a slit. In the results, the values of K{sub L} were distributed in the range from 5.0x10{sup -6} m/s to 5.0x10{sup -7} m/s. These values were small, in comparison with that (7.8x10{sup -4} m/s) obtained from the bubbling test where gas phase was continually injected into deionized water without solid phase. This means that the solid phase limits the local mixing of water phase near gas-liquid interfaces. (authors)« less
NASA Astrophysics Data System (ADS)
Wang, Huijun; White, Jesse F.; Sichen, Du
2018-04-01
A new method was developed to study the dissolution of a solid cylinder in a liquid under forced convection at elevated temperature. In the new design, a rotating cylinder was placed concentrically in a crucible fabricated by boring four holes into a blank material for creating an internal volume with a quatrefoil profile. A strong flow in the radial direction in the liquid was created, which was evidently shown by computational fluid dynamic (CFD) calculations and experiments at both room temperature and elevated temperature. The new setup was able to freeze the sample as it was at experimental temperature, particularly the interface between the solid and the liquid. This freezing was necessary to obtain reliable information for understanding the reaction mechanism. This was exemplified by the study of dissolution of a refractory in liquid slag. The absence of flow in the radial direction in the traditional setup using a symmetrical cylinder was also discussed. The differences in the findings by past investigators using the symmetrical cylinder are most likely due to the extent of misalignment of the cylinder in the containment vessel.
Thermo-Electric-Magnetic Hydrodynamics in Solidification: In Situ Observations and Theory
NASA Astrophysics Data System (ADS)
Fautrelle, Y.; Wang, J.; Salloum-Abou-Jaoude, G.; Abou-Khalil, L.; Reinhart, G.; Li, X.; Ren, Z. M.; Nguyen-Thi, H.
2018-02-01
Solidification of liquid metals contains all the ingredients for the development of the thermo-electric (TE) effect, namely liquid-solid interface and temperature gradients. The combination of TE currents with a superimposed magnetic field gives rise to thermo-electromagnetic (TEM) volume forces acting on both liquid and solid. This results in the generation of fluid flows, which considerably modifies the morphology of the solidification front as well as that of the mushy zone. TEM forces also act on the solid and cause both fragmentation of dendrite branches and a movement of equiaxed grains in suspension. These phenomena have already been unveiled by post-mortem analysis of samples, but they can be analyzed in more detail by using x-ray in situ and real-time observations. Here, we present conclusive evidence of all the aforementioned effects thanks to in situ observations of Al-Cu alloy solidification under static magnetic field.
Liquid drops attract or repel by the inverted Cheerios effect.
Karpitschka, Stefan; Pandey, Anupam; Lubbers, Luuk A; Weijs, Joost H; Botto, Lorenzo; Das, Siddhartha; Andreotti, Bruno; Snoeijer, Jacco H
2016-07-05
Solid particles floating at a liquid interface exhibit a long-ranged attraction mediated by surface tension. In the absence of bulk elasticity, this is the dominant lateral interaction of mechanical origin. Here, we show that an analogous long-range interaction occurs between adjacent droplets on solid substrates, which crucially relies on a combination of capillarity and bulk elasticity. We experimentally observe the interaction between droplets on soft gels and provide a theoretical framework that quantitatively predicts the interaction force between the droplets. Remarkably, we find that, although on thick substrates the interaction is purely attractive and leads to drop-drop coalescence, for relatively thin substrates a short-range repulsion occurs, which prevents the two drops from coming into direct contact. This versatile interaction is the liquid-on-solid analog of the "Cheerios effect." The effect will strongly influence the condensation and coarsening of drops on soft polymer films, and has potential implications for colloidal assembly and mechanobiology.
Some mechanisms for the formation of octopus-shaped iron micro-particles
NASA Astrophysics Data System (ADS)
Bica, Ioan
2004-08-01
Fluid spheres (micro-spheres or/and drops) are formed out of the metallic solid (the carbon steel semi-finished product) in the argon plasma of the transferred electric arc. For short intervals of time, the spheres are at rest with relation to vapors. The movement of the vapors around the spheres is in the same plane. It consists of a movement around a circle combined with the movement produced by a definitely located whirl. The molar concentration of the vapors is small in comparison with the molar density of the mixture formed of vapors and gas. At the intersection of the sphere and the plane of movement of the vapors, distinct stagnation point is formed. They constitute points of the beginning/and end of the current lines. Each current line is a carrier of a vapor cylinder. In time, the cylinder-gas interface reaches points of temperature equal to that of the "dew point" for iron. On this occasion a liquid membrane is formed. It delimits the vapor-gas mixture from the rest of the gas. Subsequent to the process of diffusion in non-stationary condition, the membrane becomes thicker and no vapors exist inside the tube. Needle-shaped micro-tubes are formed, in liquid phase, around the fluid sphere. By solidification, micro-particles occur, consisting of a central nucleus around which ligaments branch out.
NASA Astrophysics Data System (ADS)
Galenko, P. K.; Danilov, D. A.
2004-05-01
The interface stability against small perturbations of the planar solid-liquid interface is considered analytically in linear approximation. Following the analytical procedure of Trivedi and Kurz [
A simple level set method for solving Stefan problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S.; Merriman, B.; Osher, S.
1997-07-15
Discussed in this paper is an implicit finite difference scheme for solving a heat equation and a simple level set method for capturing the interface between solid and liquid phases which are used to solve Stefan problems.
Interface Configuration Experiments (ICE) Explore the Effects of Microgravity on Fluids
NASA Technical Reports Server (NTRS)
1996-01-01
The Interface Configuration Experiment (ICE) is actually a series of experiments that explore the striking behavior of liquid-vapor interfaces (i.e., fluid surfaces) in a low gravity environment under which major shifts in liquid position can arise from small changes in container shape or contact angle. Although these experiments are designed to test current mathematical theory, there are numerous practical applications that could result from these studies. When designing fluid management systems for space-based operations, it is important to be able to predict the locations and configurations that fluids will assume in containers under low-gravity conditions. The increased ability to predict, and hence control, fluid interfaces is vital to systems and/or processes where capillary forces play a significant role both in space and on the Earth. Some of these applications are in general coating processes (paints, pesticides, printing, etc.), fluid transport in porous media (ground water flows, oil recovery, etc.), liquid propellant systems in space (liquid fuel and oxygen), capillary-pumped loops and heat pipes, and space-based life-support systems. In space, almost every fluid system is affected, if not dominated, by capillarity. Knowledge of the liquid-vapor interface behavior, and in particular the interface shape from which any analysis must begin, is required as a foundation to predict how these fluids will react in microgravity and on Earth. With such knowledge, system designs can be optimized, thereby decreasing costs and complexity, while increasing performance and reliability. ICE has increased, and will continue to increase this knowledge, as it probes the specific peculiarities of current theory upon which our current understanding of these effects is based. Several versions of ICE were conducted in NASA Lewis Research Center's drop towers and on the space shuttle during the first and second United States Microgravity Laboratory missions (USML-1 and USML-2). Additional tests are planned for the space shuttle and for the Russian Mir space station. These studies will focus on interfacial problems concerning surface existence, uniqueness, configuration, stability, and flow characteristics.
Complete wetting near an edge of a rectangular-shaped substrate
NASA Astrophysics Data System (ADS)
Malijevský, Alexandr
2014-08-01
We consider fluid adsorption near a rectangular edge of a solid substrate that interacts with the fluid atoms via long range (dispersion) forces. The curved geometry of the liquid-vapour interface dictates that the local height of the interface above the edge ℓE must remain finite at any subcritical temperature, even when a macroscopically thick film is formed far from the edge. Using an interfacial Hamiltonian theory and a more microscopic fundamental measure density functional theory (DFT), we study the complete wetting near a single edge and show that {{\\ell}_{\\text{E}}}\\left(0\\right)-{{\\ell}_{\\text{E}}}\\left(\\delta \\mu \\right)\\sim \\delta {{\\mu}^{\\beta _{\\text{E}}^{\\text{co}}}} , as the chemical potential departure from the bulk coexistence δμ = μs(T) - μ tends to zero. The exponent \\beta _{\\text{E}}^{\\text{co}} depends on the range of the molecular forces and in particular \\beta _{\\text{E}}^{\\text{co}}=2/3 for three-dimensional systems with van der Waals forces. We further show that for a substrate model that is characterised by a finite linear dimension L, the height of the interface deviates from the one at the infinite substrate as δℓE(L) ˜ L-1 in the limit of large L. Both predictions are supported by numerical solutions of the DFT.
NASA Astrophysics Data System (ADS)
Kang, Shin-Woong; Kundu, Sudarshan; Park, Heung-Shik; Oh, Keun Chan; Lyu, Jae Jin
2017-02-01
We report the in situ creation of reactive polymer nanoparticles and resulting polymer networks formed at the interfaces of liquid crystals. It is known that polymerization-induced phase separation proceeds in two distinct regimes depending on the concentration of monomer. For a high monomer concentration, phase separation occurs mainly through the spinodal decomposition process, consequently resulting in interpenetrating polymer networks. For a dilute system, however, the phase separation mainly proceeds and completes in the binodal decomposition regime. The system resembles the aggregation process of colloidal particle. In this case, the reaction kinetics is limited by the reaction between in situ created polymer aggregates and hence the network morphologies are greatly influenced by the diffusion of reactive polymer particles. The thin polymer layers localized at the surface of substrate are inevitably observed and can be comprehended by the interfacial adsorption and further cross-linking reaction of reactive polymer aggregates at the interface. This process provides a direct perception on understanding polymer stabilized liquid crystals accomplished by the interfacial polymer layer. The detailed study has been performed for an extremely dilute condition (below 0.5 wt%) by employing systematic experimental approaches. Creation and growth of polymer nanoparticles have been measured by particle size analyzer. The interfacial localization of polymer aggregates and resulting interfacial layer formation with a tens of nanometer scale have been exploited at various interfaces such as liquid-solid, liquid-liquid, and liquid-gas interfaces. The resulting interfacial layers have been characterized by using fuorescent confocal microscope and field emission scanning electron microscope. The detailed processes of the polymer stabilized vertically aligned liquid crystals will be discussed in support of the reported study.
Analysis and calculation of macrosegregation in a casting ingot, exhibits C and E
NASA Technical Reports Server (NTRS)
Poirier, D. R.; Maples, A. L.
1984-01-01
A computer model which describes the solidification of a binary metal alloy in an insulated rectangular mold with a temperature gradient is presented. A numerical technique, applicable to a broad class of moving boundary problems, was implemented therein. The solidification model described is used to calculate the macrosegregation within the solidified casting by coupling the equations for liquid flow in the solid/liquid or mushy zone with the energy equation for heat flow throughout the ingot and thermal convection in the bulk liquid portion. The rate of development of the solid can be automatically calculated by the model. Numerical analysis of such solidification parameters as enthalpy and boundary layer flow is displayed. On-line user interface and software documentation are presented.
Lu, Chun-Yaung; Voter, Arthur F; Perez, Danny
2014-01-28
Deposition of solid material from solution is ubiquitous in nature. However, due to the inherent complexity of such systems, this process is comparatively much less understood than deposition from a gas or vacuum. Further, the accurate atomistic modeling of such systems is computationally expensive, therefore leaving many intriguing long-timescale phenomena out of reach. We present an atomistic/continuum hybrid method for extending the simulation timescales of dynamics at solid/liquid interfaces. We demonstrate the method by simulating the deposition of Ag on Ag (001) from solution with a significant speedup over standard MD. The results reveal specific features of diffusive deposition dynamics, such as a dramatic increase in the roughness of the film.
Gate-Induced Metal–Insulator Transition in MoS 2 by Solid Superionic Conductor LaF 3
Wu, Chun-Lan; Yuan, Hongtao; Li, Yanbin; ...
2018-03-23
Electric-double-layer (EDL) gating with liquid electrolyte has been a powerful tool widely used to explore emerging interfacial electronic phenomena. Due to the large EDL capacitance, a high carrier density up to 10 14 cm –2 can be induced, directly leading to the realization of field-induced insulator to metal (or superconductor) transition. However, the liquid nature of the electrolyte has created technical issues including possible side electrochemical reactions or intercalation, and the potential for huge strain at the interface during cooling. In addition, the liquid coverage of active devices also makes many surface characterizations and in situ measurements challenging. Here, wemore » demonstrate an all solid-state EDL device based on a solid superionic conductor LaF 3, which can be used as both a substrate and a fluorine ionic gate dielectric to achieve a wide tunability of carrier density without the issues of strain or electrochemical reactions and can expose the active device surface for external access. Based on LaF 3 EDL transistors (EDLTs), we observe the metal–insulator transition in MoS 2. Interestingly, the well-defined crystal lattice provides a more uniform potential distribution in the substrate, resulting in less interface electron scattering and therefore a higher mobility in MoS 2 transistors. Finally, this result shows the powerful gating capability of LaF 3 solid electrolyte for new possibilities of novel interfacial electronic phenomena.« less
Zulim Botega, Daniele C; Marangoni, Alejandro G; Smith, Alexandra K; Goff, H Douglas
2013-09-01
The development of structure in ice cream, characterized by its smooth texture and resistance to collapse during melting, depends, in part, on the presence of solid fat during the whipping and freezing steps. The objective of this study was to investigate the potential application of 10% rice bran wax (RBW) oleogel, comprised 90% high-oleic sunflower oil and 10% RBW, to replace solid fat in ice cream. A commercial blend of 80% saturated mono- and diglycerides and 20% polysorbate 80 was used as the emulsifier. Standard ice cream measurements, cryo-scanning electron microscopy (cryo-SEM), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM) were used to evaluate the formation of structure in ice cream. RBW oleogel produced higher levels of overrun when compared to a liquid oil ice cream sample, creating a lighter sample with good texture and appearance. However, those results were not associated with higher meltdown resistance. Microscopy revealed larger aggregation of RBW oleogel fat droplets at the air cell interface and distortion of the shape of air cells and fat droplets. Although the RBW oleogel did not develop sufficient structure in ice cream to maintain shape during meltdown when a mono- and diglycerides and polysorbate 80 blend was used as the emulsifier, micro- and ultrastructure investigations suggested that RBW oleogel did induce formation of a fat globule network in ice cream, suggesting that further optimization could lead to an alternative to saturated fat sources for ice cream applications. © 2013 Institute of Food Technologists®
Zepeda-Ruiz, L. A.; Sadigh, B.; Chernov, A. A.; ...
2017-11-21
Molecular dynamics simulations of an embedded atom copper system in the NPH ensemble are used to study the e ective solid-liquid interfacial free energy of quasispherical solid crystals within a liquid. This is within the larger context of MD simulations of this system undergoing solidi cation, where single individually-prepared crystallites of di erent sizes grow until they reach a thermodynamically stable nal state. The resulting equilibrium shapes possess the full structural details expected for solids with weakly anisotropic surface free energies (in these cases, ~5 % radial attening and rounded [111] octahedral faces). The simplifying assumption of sphericity and perfectmore » isotropy leads to an e ective interfacial free energy as appearing in the Gibbs-Thomson equation, which we determine to be ~179 erg/cm 2, roughly independent of crystal size for radii in the 50 - 250 A range. This quantity may be used in atomistically-informed models of solidi cation kinetics for this system.« less