ERIC Educational Resources Information Center
Pohl, Nicola; Schwarz, Kimberly
2008-01-01
We describe an experiment for the undergraduate organic laboratory curriculum in which 2-bromoacetophenone is converted to 2-fluoroacetophenone using a solid-phase nucleophilic fluorine source. The experiment introduces students to the utility of solid-phase reagents in organic synthesis, to NMR-active nuclei other than [to the first power]H…
O'Neill, J.C.; Blackwell, H. E.
2008-01-01
Diketopiperazines (DKPs) are a well-known class of heterocycles that have recently emerged as a promising biologically active scaffold. Solid-phase organic synthesis has become an important tool in the combinatorial exploration of these privileged structures, expediting the synthesis and, therefore, the discovery of active compounds. To date, certain DKPs have shown potent activities against a range of diseases and biological phenomena, including bacterial infections, various cancers, asthma, infertility, premature labor, and HIV. Recent applications of solid-phase DKP synthesis, with a particular focus on cyclative cleavage and microwave-assisted reactions, are highlighted herein. PMID:18288948
Zhang, Wei
2005-01-01
The purification of reaction mixtures is a slow process in organic synthesis, especially during the production of large numbers of analogs and compound libraries. Phase-tag methods such as solid-phase synthesis and fluorous synthesis, provide efficient ways of addressing the separation issue. Fluorous synthesis employs functionalized perfluoroalkyl groups attached to substrates or reagents. The separation of the resulting fluorous molecules can be achieved using strong and selective fluorous liquid-liquid extraction, fluorous silica gel-based solid-phase extraction or high-performance liquid chromatography. Fluorous technology is a novel solution-phase method, which has the advantages of fast reaction times in homogeneous environments, being readily adaptable to literature conditions, having easy intermediate analysis, and having flexibility in reaction scale and scope. In principle, any synthetic methods that use a solid-support could be conducted in solution-phase by replacing the polymer linker with a corresponding fluorous tag. This review summarizes the progress of fluorous tags in solution-phase synthesis of small molecules, peptides and oligosaccharides. PMID:15595439
ERIC Educational Resources Information Center
Fuller, Amelia A.
2016-01-01
A five-week, research-based experiment suitable for second-semester introductory organic laboratory students is described. Each student designs, prepares, and analyzes a combinatorial array of six aromatic oligoamides. Molecules are prepared on solid phase via a six-step synthetic sequence, and purities and identities are determined by analysis of…
Synthesis and binding studies of Alzheimer ligands on solid support.
Rzepecki, Petra; Geib, Nina; Peifer, Manuel; Biesemeier, Frank; Schrader, Thomas
2007-05-11
Aminopyrazole derivatives constitute the first class of nonpeptidic rationally designed beta-sheet ligands. Here we describe a double solid-phase protocol for both synthesis and affinity testing. The presented solid-phase synthesis of four types of hybrid compounds relies on the Fmoc strategy and circumvents subsequent HPLC purification by precipitating the final product from organic solution in pure form. Hexa- and octapeptide pendants with internal di- and tetrapeptide bridges are now amenable in high yields to combinatorial synthesis of compound libraries for high-throughput screening purposes. Solid-phase peptide synthesis (SPPS) on an acid-resistant PAM allows us, after PMB deprotection, to subject the free aminopyrazole binding sites in an immobilized state to on-bead assays with fluorescence-labeled peptides. From the fluorescence emission intensity decrease, individual binding constants can be calculated via reference curves by simple application of the law of mass action. Gratifyingly, host/guest complexation can be monitored quantitatively even for those ligands, which are almost insoluble in water.
Student-Driven Design of Peptide Mimetics: Microwave-Assisted Synthesis of Peptoid Oligomers
ERIC Educational Resources Information Center
Pohl, Nicola L. B.; Kirshenbaum, Kent; Yoo, Barney; Schulz, Nathan; Zea, Corbin J.; Streff, Jennifer M.; Schwarz, Kimberly L.
2011-01-01
An experiment for the undergraduate organic laboratory is described in which peptide mimetic oligomers called "peptoids" are built stepwise on a solid-phase resin. Students employ two modern strategies to facilitate rapid multistep syntheses: solid-phase techniques to obviate the need for intermediate purifications and microwave irradiation to…
Wiehn, Matthias S; Fürniss, Daniel; Bräse, Stefan
2009-01-01
Three small compound biaryl libraries featuring a novel fluorinating cleavage strategy for preparation of a difluoromethyl group were assembled on solid supports. The average reaction yield per step was up to 96% in a synthetic sequence over five to six steps. Key features were Suzuki coupling reactions, transesterification with potassium cyanide and amidation reaction with trimethyl aluminum on solid supports.
Synthesis of refractory organic matter in the ionized gas phase of the solar nebula.
Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent
2015-06-09
In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)-CO-N2-noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system.
Synthesis of refractory organic matter in the ionized gas phase of the solar nebula
Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent
2015-01-01
In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)−CO−N2−noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system. PMID:26039983
Solid-phase synthesis of smac peptidomimetics incorporating triazoloprolines and biarylalanines.
Le Quement, Sebastian T; Ishoey, Mette; Petersen, Mette T; Thastrup, Jacob; Hagel, Grith; Nielsen, Thomas E
2011-11-14
Apoptotic induction mechanisms are of crucial importance for the general homeostasis of multicellular organisms. In cancer the apoptotic pathways are downregulated, which, at least partly, is due to an abundance of inhibitors of apoptosis proteins (IAPs) that block the apoptotic cascade by deactivating proteolytic caspases. The Smac protein has an antagonistic effect on IAPs, thus providing structural clues for the synthesis of new pro-apoptotic compounds. Herein, we report a solid-phase approach for the synthesis of Smac-derived tetrapeptide libraries. On the basis of a common (N-Me)AVPF sequence, peptides incorporating triazoloprolines and biarylalanines were synthesized by means of Cu(I)-catalyzed azide-alkyne cycloaddition and Pd-catalyzed Suzuki cross-coupling reactions. Solid-phase procedures were optimized to high efficiency, thus accessing all products in excellent crude purities and yields (both typically above 90%). The peptides were subjected to biological evaluation in a live/dead cellular assay which revealed that structural decorations on the AVPF sequence indeed are highly important for cytotoxicity toward HeLa cells.
ERIC Educational Resources Information Center
Scott, William L.; Denton, Ryan E.; Marrs, Kathleen A.; Durrant, Jacob D.; Samaritoni, J. Geno; Abraham, Milata M.; Brown, Stephen P.; Carnahan, Jon M.; Fischer, Lindsey G.; Glos, Courtney E.; Sempsrott, Peter J.; O'Donnell, Martin J.
2015-01-01
The Distributed Drug Discovery (D3) program trains students in three drug discovery disciplines (synthesis, computational analysis, and biological screening) while addressing the important challenge of discovering drug leads for neglected diseases. This article focuses on implementation of the synthesis component in the second-semester…
Manual Solid-Phase Peptide Synthesis of Metallocene-Peptide Bioconjugates
ERIC Educational Resources Information Center
Kirin, Srecko I.; Noor, Fozia; Metzler-Nolte, Nils; Mier, Walter
2007-01-01
A simple and relatively inexpensive procedure for preparing a biologically active peptide using solid phase peptide synthesis (SPPS) is described. Fourth-year undergraduate students have gained firsthand experience from the solid-phase synthesis techniques and they have become familiar with modern analytical techniques based on the particular…
Design of Hybrid Solid Polymer Electrolytes: Structure and Properties
NASA Technical Reports Server (NTRS)
Bronstein, Lyudmila M.; Karlinsey, Robert L.; Ritter, Kyle; Joo, Chan Gyu; Stein, Barry; Zwanziger, Josef W.
2003-01-01
This paper reports synthesis, structure, and properties of novel hybrid solid polymer electrolytes (SPE's) consisting of organically modified aluminosilica (OM-ALSi), formed within a poly(ethylene oxide)-in-salt (Li triflate) phase. To alter the structure and properties we fused functionalized silanes containing poly(ethylene oxide) (PEO) tails or CN groups.
NASA Astrophysics Data System (ADS)
Soderholm, L.; Mitchell, J. F.
2016-05-01
Synthesis of inorganic extended solids is a critical starting point from which real-world functional materials and their consequent technologies originate. However, unlike the rich mechanistic foundation of organic synthesis, with its underlying rules of assembly (e.g., functional groups and their reactivities), the synthesis of inorganic materials lacks an underpinning of such robust organizing principles. In the latter case, any such rules must account for the diversity of chemical species and bonding motifs inherent to inorganic materials and the potential impact of mass transport on kinetics, among other considerations. Without such assembly rules, there is less understanding, less predictive power, and ultimately less control of properties. Despite such hurdles, developing a mechanistic understanding for synthesis of inorganic extended solids would dramatically impact the range of new material discoveries and resulting new functionalities, warranting a broad call to explore what is possible. Here we discuss our recent approaches toward a mechanistic framework for the synthesis of bulk inorganic extended solids, in which either embryonic atomic correlations or fully developed phases in solutions or melts can be identified and tracked during product selection and crystallization. The approach hinges on the application of high-energy x-rays, with their penetrating power and large Q-range, to explore reaction pathways in situ. We illustrate this process using two examples: directed assembly of Zr clusters in aqueous solution and total phase awareness during crystallization from K-Cu-S melts. These examples provide a glimpse of what we see as a larger vision, in which large scale simulations, data-driven science, and in situ studies of atomic correlations combine to accelerate materials discovery and synthesis, based on the assembly of well-defined, prenucleated atomic correlations.
Soderholm, L.; Mitchell, J. F.
2016-05-26
Synthesis of inorganic extended solids is a critical starting point from which real-world functional materials and their consequent technologies originate. However, unlike the rich mechanistic foundation of organic synthesis, with its underlying rules of assembly (e.g., functional groups and their reactivities), the synthesis of inorganic materials lacks an underpinning of such robust organizing principles. In the latter case, any such rules must account for the diversity of chemical species and bonding motifs inherent to inorganic materials and the potential impact of mass transport on kinetics, among other considerations. Without such assembly rules, there is less understanding, less predictive power, andmore » ultimately less control of properties. Despite such hurdles, developing a mechanistic understanding for synthesis of inorganic extended solids would dramatically impact the range of new material discoveries and resulting new functionalities, warranting a broad call to explore what is possible. Here we discuss our recent approaches toward a mechanistic framework for the synthesis of bulk inorganic extended solids, in which either embryonic atomic correlations or fully developed phases in solutions or melts can be identified and tracked during product selection and crystallization. The approach hinges on the application of high-energy x-rays, with their penetrating power and large Q-range, to explore reaction pathways in situ. We illustrate this process using two examples: directed assembly of Zr clusters in aqueous solution and total phase awareness during crystallization from K–Cu–S melts. These examples provide a glimpse of what we see as a larger vision, in which large scale simulations, data-driven science, and in situ studies of atomic correlations combine to accelerate materials discovery and synthesis, based on the assembly of well-defined, prenucleated atomic correlations.« less
From "Frontiers of Astronomy" to Astrobiology
NASA Astrophysics Data System (ADS)
Kwok, Sun
2011-10-01
In his book Frontiers of Astronomy, Fred Hoyle outlined a number of ideas on the stellar synthesis of solid-state materials and their ejection into the interstellar medium. He also considered the possibility of interstellar organics being integrated into the early Earth during the accretion phase of planetary formation. These organics may have played a role in the origin of life and the creation of fossil fuels. In this paper, we assess these ideas with modern observational evidence, in particular on the evidence of stellar synthesis of complex organics and their delivery to the early Solar System.
DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis.
MacConnell, Andrew B; McEnaney, Patrick J; Cavett, Valerie J; Paegel, Brian M
2015-09-14
The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the "structure elucidation problem": the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length <100 bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS's utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 10(4) molecules/bead and sequencing allowed for elucidation of each compound's synthetic history. We applied DESPS to the combinatorial synthesis of a 75,645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (<1 ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and PCR make implementation of DESPS straightforward, and may prompt the chemistry community to revisit the synthesis of more complex and diverse libraries.
The use of solid-liquid phase transfer catalysis has an advantage of carrying out reaction between two immiscible substrates, one in solid phase and the other in liquid phase, with high selectivity and at relatively low temperatures. In this study we investigated the synthesis ci...
Formation of organic compounds from simulated Titan atmosphere: perspectives of the Cassini mission.
Koike, Toshiyuki; Kaneko, Takeo; Kobayashi, Kensei; Miyakawa, Shin; Takano, Yoshinori
2003-10-01
Gas mixtures of methane and nitrogen were subjected to proton irradiation (PI), gamma irradiation (GI), UV irradiation (UV) or spark discharges (SD), and the products were analyzed to compare possible energy sources for synthesis of organics in Titan. SD mainly gave unsaturated hydrocarbons, while PI gave saturated hydrocarbons. N-containing organics were detected in PI, GI and SD, but not in UV. The formers yielded amino acids after acid-hydrolysis of solid phase products (tholin). Comparison of the present results with those by Cassini-Huygens [correction of Heygens] mission will make it possible to prove major energy sources for organic synthesis in Titan atmosphere.
A Discovery-Oriented Approach to Solid-Phase Peptide Synthesis
ERIC Educational Resources Information Center
Bockman, Matthew R.; Miedema, Christopher J.; Brennan, Brian B.
2012-01-01
In this discovery-oriented laboratory experiment, students use solid-phase synthesis techniques to construct a dipeptide containing an unknown amino acid. Following synthesis and cleavage from the polymeric support, electrospray ionization-mass spectrometry is employed to identify the unknown amino acid that was used in the peptide coupling. This…
Gatos, D; Tzavara, C
2001-02-01
Salmon I calcitonin was synthesized using both phase-change and conventional solid-phase fragment condensation (SPFC) approaches, utilizing the Rink amide linker (Fmoc-amido-2,4-dimethoxybenzyl-4-phenoxyacetic acid) combined with 2-chlorotrityl resin and the Fmoc/tBu(Trt)-based protection scheme. Phase-change synthesis, performed by the selective detachment of the fully protected C-terminal 22-mer peptide-linker from the resin and subsequent condensation in solution with the N-terminal 1-10 fragment, gave a product of slightly less purity (85 vs. 92%) than the corresponding synthesis on the solid-phase. In both cases salmon I calcitonin was easily obtained in high purity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, R.J.; Halasyamani, P.S.; Bee, J.S.
Recently, low temperature (T < 300 C) hydrothermal reactions of inorganic precursors in the presence of organic cations have proven highly productive for the synthesis of novel solid-state materials. Interest in these materials is driven by the astonishingly diverse range of structures produced, as well as by their many potential materials chemistry applications. This report describes the high yield, phase pure hydrothermal syntheses of three new uranium fluoride phases with unprecedented structure types. Through the systematic control of the synthesis conditions the authors have successfully controlled the architecture and dimensionality of the phase formed and selectively synthesized novel zero-, one-,more » and two-dimensional materials.« less
Mechanism of Formation of Li 7 P 3 S 11 Solid Electrolytes through Liquid Phase Synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuxing; Lu, Dongping; Bowden, Mark
Crystalline Li7P3S11 is a promising solid electrolyte for all solid state lithium/lithium ion batteries. A controllable liquid phase synthesis of Li7P3S11 is more desirable compared to conventional mechanochemical synthesis, but recent attempts suffer from reduced ionic conductivities. Here we elucidate the formation mechanism of crystalline Li7P3S11 synthesized in the liquid phase (acetonitrile, or ACN). We conclude that the crystalline Li7P3S11 forms through a two-step reaction: 1) formation of solid Li3PS4∙ACN and amorphous Li2S∙P2S5 phases in the liquid phase; 2) solid-state conversion of the two phases. The implication of this two-step reaction mechanism to the morphology control and the transport propertiesmore » of liquid phase synthesized Li7P3S11 is identified and discussed.« less
NASA Astrophysics Data System (ADS)
Schmidt, B.
Ion beam techniques, including conventional broad beam ion implantation, ion beam synthesis and ion irradiation of thin layers, as well as local ion implantation with fine-focused ion beams have been applied in different fields of micro- and nanotechnology. The ion beam synthesis of nanoparticles in high-dose ion-implanted solids is explained as phase separation of nanostructures from a super-saturated solid state through precipitation and Ostwald ripening during subsequent thermal treatment of the ion-implanted samples. A special topic will be addressed to self-organization processes of nanoparticles during ion irradiation of flat and curved solid-state interfaces. As an example of silicon nanocrystal application, the fabrication of silicon nanocrystal non-volatile memories will be described. Finally, the fabrication possibilities of nanostructures, such as nanowires and chains of nanoparticles (e.g. CoSi2), by ion beam synthesis using a focused Co+ ion beam will be demonstrated and possible applications will be mentioned.
Use of the 2-chlorotrityl chloride resin for microwave-assisted solid phase peptide synthesis.
Ieronymaki, Matthaia; Androutsou, Maria Eleni; Pantelia, Anna; Friligou, Irene; Crisp, Molly; High, Kirsty; Penkman, Kirsty; Gatos, Dimitrios; Tselios, Theodore
2015-09-01
A fast and efficient microwave (MW)-assisted solid-phase peptide synthesis protocol using the 2-chlorotrityl chloride resin and the Fmoc/tBu methodology, has been developed. The established protocol combines the advantages of MW irradiation and the acid labile 2-chlorotrityl chloride resin. The effect of temperature during the MW irradiation, the degree of resin substitution during the coupling of the first amino acids and the rate of racemization for each amino acid were evaluated. The suggested solid phase methodology is applicable for orthogonal peptide synthesis and for the synthesis of cyclic peptides. © 2015 Wiley Periodicals, Inc.
The Use of Aryl Hydrazide Linkers for the Solid Phase Synthesis of Chemically Modified Peptides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woo, Y; Mitchell, A R; Camarero, J A
2006-11-03
Since Merrifield introduced the concept of solid phase synthesis in 1963 for the rapid preparation of peptides, a large variety of different supports and resin-linkers have been developed that improve the efficiency of peptide assembly and expand the myriad of synthetically feasible peptides. The aryl hydrazide is one of the most useful resin-linkers for the synthesis of chemically modified peptides. This linker is completely stable during Boc- and Fmoc-based solid phase synthesis and yet it can be cleaved under very mild oxidative conditions. The present article reviews the use of this valuable linker for the rapid and efficient synthesis ofmore » C-terminal modified peptides, head-to-tail cyclic peptides and lipidated peptides.« less
Microwave-assisted synthesis of medicinally relevant indoles.
Patil, S A; Patil, R; Miller, D D
2011-01-01
Indoles represent an important structural class in medicinal chemistry with broad spectrum of biological activities. The synthesis of indoles, therefore, has attracted enormous attention from synthetic chemists. Microwave methods for the preparation of indole analogs have been developed to speed up the synthesis, therefore, microwave assisted organic synthesis (MAOS) in controlled conditions is an invaluable technique for medicinal chemistry. In this review, indole forming classical reactions such as Fischer, Madelung, Bischler-Mohlau, Batcho-Leimgruber, Hemetsberger-Knittel, Graebe-Ullmann, Diels-Alder and Wittig type reactions using microwave radiation has been summarized. In addition, metal mediated cyclizations along with solid phase synthesis of indoles have been discussed. © 2011 Bentham Science Publishers Ltd.
Brennan; Biddison; Frauendorf; Schwarcz; Keen; Ecker; Davis; Tinder; Swayze
1998-01-01
An automated, 96-well parallel array synthesizer for solid-phase organic synthesis has been designed and constructed. The instrument employs a unique reagent array delivery format, in which each reagent utilized has a dedicated plumbing system. An inert atmosphere is maintained during all phases of a synthesis, and temperature can be controlled via a thermal transfer plate which holds the injection molded reaction block. The reaction plate assembly slides in the X-axis direction, while eight nozzle blocks holding the reagent lines slide in the Y-axis direction, allowing for the extremely rapid delivery of any of 64 reagents to 96 wells. In addition, there are six banks of fixed nozzle blocks, which deliver the same reagent or solvent to eight wells at once, for a total of 72 possible reagents. The instrument is controlled by software which allows the straightforward programming of the synthesis of a larger number of compounds. This is accomplished by supplying a general synthetic procedure in the form of a command file, which calls upon certain reagents to be added to specific wells via lookup in a sequence file. The bottle position, flow rate, and concentration of each reagent is stored in a separate reagent table file. To demonstrate the utility of the parallel array synthesizer, a small combinatorial library of hydroxamic acids was prepared in high throughput mode for biological screening. Approximately 1300 compounds were prepared on a 10 μmole scale (3-5 mg) in a few weeks. The resulting crude compounds were generally >80% pure, and were utilized directly for high throughput screening in antibacterial assays. Several active wells were found, and the activity was verified by solution-phase synthesis of analytically pure material, indicating that the system described herein is an efficient means for the parallel synthesis of compounds for lead discovery. Copyright 1998 John Wiley & Sons, Inc.
Heat-enhanced peptide synthesis on Teflon-patterned paper.
Deiss, Frédérique; Yang, Yang; Matochko, Wadim L; Derda, Ratmir
2016-06-14
In this report, we describe the methodology for 96 parallel organic syntheses of peptides on Teflon-patterned paper assisted by heating with an infra-red lamp. SPOT synthesis is an important technology for production of peptide arrays on a paper-based support for rapid identification of peptide ligands, epitope mapping, and identification of bio-conjugation reactions. The major drawback of the SPOT synthesis methodology published to-date is suboptimal reaction conversion due to mass transport limitations in the unmixed reaction spot. The technology developed in this report overcomes these problems by changing the environment of the reaction from static to dynamic (flow-through), and further accelerating the reaction by selective heating of the reaction support in contact with activated amino acids. Patterning paper with Teflon allows for droplets of organic solvents to be confined in a zone on the paper array and flow through the paper at a well-defined rate and provide a convenient, power-free setup for flow-through solid-phase synthesis and efficient assembly of peptide arrays. We employed an infra-red (IR) lamp to locally heat the cellulosic support during the flow-through delivery of the reagents to each zone of the paper-based array. We demonstrate that IR-heating in solid phase peptide synthesis shortened the reaction time necessary for amide bond formation down to 3 minutes; in some couplings of alpha amino acids, conversion rates increased up to fifteen folds. The IR-heating improved the assembly of difficult sequences, such as homo-oligomers of all 20 natural amino acids.
Synthesis of solid solutions of perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dambekalne, M.Y.; Antonova, M.K.; Perro, I.T.
The authors carry out thermographic studies, using a derivatograph, in order to understand the nature of the processes taking place during the synthesis of solid solutions of perovskites. Based on the detailed studies on the phase transformations occurring in the charges of the PSN-PMN solid solutions and on the selection of the optimum conditions for carrying out their synthesis, the authors obtained a powder containing a minimum quantity of the undesirable pyrochlore phase and by sintering it using the hot pressing method, they produced single phase ceramic specimens containing the perovskite phase alone with a density close to the theoreticalmore » value and showing zero apparent porosity and water absorption.« less
Mothia, Begum; Appleyard, Antony N; Wadman, Sjoerd; Tabor, Alethea B
2011-08-19
A methodology for the solid-phase synthesis of the overlapping lanthionine bridges found in many lantibiotics has been developed. A novel Teoc/TMSE-protected lanthionine derivative has been synthesized, and this lanthionine, and an Aloc/allyl-protected lanthionine derivative, have been incorporated into a linear peptide using solid-phase peptide synthesis. Selective deprotection of the silyl protecting groups, followed by sequential cyclization, deprotection of the allyl protecting groups, and further cyclization, enabled the regioselective formation of an analogue of rings D and E of nisin. © 2011 American Chemical Society
Interfacial Effects and Organization of Inorganic-Organic Composite Solids.
1998-05-20
SITU NMR STUDY OF THE HYDROTHERMAL SYNTHESIS OF TEMPLATE-MEDIATED MICROPOROUS ALUMINOPHOSPHATE MATERIALS, Conne M Gersrdin, Pnnccton Univ, Dept...quantitatively characterize the hydrothermal medium while the synthesis proceeds can yield to a better description of the different steps of the...Inorganic-Organic Composite Solids," focused on recent applications in materials synthesis that use structure-directing agents and self-assembly
Feng, Xingli; Ma, Houyi; Huang, Shaoxin; Pan, Wei; Zhang, Xiaokai; Tian, Fang; Gao, Caixia; Cheng, Yingwen; Luo, Jingli
2006-06-29
A simple but effective aqueous-organic phase-transfer method for gold, silver, and platinum nanoparticles was developed on the basis of the decrease of the PVP's solubility in water with the temperature increase. The present method is superior in the transfer efficiency of highly stable nanoparticles to the common phase-transfer methods. The gold, silver, and platinum nanoparticles transferred to the 1-butanol phase dispersed well, especially silver and platinum particles almost kept the previous particle size. Electrochemical synthesis of gold nanoparticles in an oil-water system was achieved by controlling the reaction temperature at 80 degrees C, which provides great conveniences for collecting metal particles at the oil/water interface and especially for fabricating dense metal nanoparticle films. A technique to fabricate gold nanofilms on solid supports was also established. The shapes and sizes of gold nanoparticles as the building blocks may be controllable through changing reaction conditions.
Mon, Marta; Rivero-Crespo, Miguel A; Ferrando-Soria, Jesús; Vidal-Moya, Alejandro; Boronat, Mercedes; Leyva-Pérez, Antonio; Corma, Avelino; Hernández-Garrido, Juan C; López-Haro, Miguel; Calvino, José J; Ragazzon, Giulio; Credi, Alberto; Armentano, Donatella; Pardo, Emilio
2018-05-22
The gram-scale synthesis, stabilization, and characterization of well-defined ultrasmall subnanometric catalytic clusters on solids is a challenge. The chemical synthesis and X-ray snapshots of Pt 0 2 clusters, homogenously distributed and densely packaged within the channels of a metal-organic framework, is presented. This hybrid material catalyzes efficiently, and even more importantly from an economic and environmental viewpoint, at low temperature (25 to 140 °C), energetically costly industrial reactions in the gas phase such as HCN production, CO 2 methanation, and alkene hydrogenations. These results open the way for the design of precisely defined catalytically active ultrasmall metal clusters in solids for technically easier, cheaper, and dramatically less-dangerous industrial reactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
9-Fluorenylmethyloxycarbonyl/ tbutyl-based convergent protein synthesis.
Barlos, K; Gatos, D
1999-01-01
Besides linear solid phase peptide synthesis, segment condensation in solution and chemical ligation, convergent peptide synthesis (CPS) was developed in order to enable the efficient preparation of complex peptides and small proteins. According to this synthetic strategy, solid phase synthesized and suitably protected peptide fragments corresponding to the entire peptide/protein-sequence are condensed on a solid support or in solution, to the target protein. This review summarizes CPS performed utilizing the mild 9-fluorenylmethyloxycarbonyl/tbutyloxycarbonyl-based protecting scheme for the amino acids. Copyright 1999 John Wiley & Sons, Inc.
R. Bruce Merrifield and Solid-Phase Peptide Synthesis: A Historical Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, A R
2007-12-04
Bruce Merrifield, trained as a biochemist, had to address three major challenges related to the development and acceptance of solid-phase peptide synthesis (SPPS). The challenges were (1) to reduce the concept of peptide synthesis on a insoluble support to practice, (2) overcome the resistance of synthetic chemists to this novel approach, and (3) establish that a biochemist had the scientific credentials to effect the proposed revolutionary change in chemical synthesis. How these challenges were met is discussed in this article.
Recent Approaches Toward Solid Phase Synthesis of β-Lactams
NASA Astrophysics Data System (ADS)
Mandal, Bablee; Ghosh, Pranab; Basu, Basudeb
Since the discovery of penicillin in 1929, β-lactam antibiotics have been recognized as potentially chemotherapeutic drugs of incomparable effectiveness, conjugating a broad spectrum of activity with very low toxicity. The primary motif azetidin-2-one ring (β-lactam) has been considered as specific pharmacophores and scaffolds. With the advent of combinatorial chemistry and automated parallel synthesis coupled with ample interests from the pharmaceutical industries, recent trends have been driven mostly by adopting solid phase techniques and polymer-supported synthesis of β-lactams. The present survey will present an overview of the developments on the polymer-supported and solid phase techniques for the preparation of β-lactam ring or β-lactam containing antibiotics published over the last decade. Both unsubstituted and substitutions with different functional groups at various positions of β-lactams have been synthesized using solid phase technology. However, Wang resin and application of Staudinger [2+2] cycloaddition reaction have remained hitherto the major choice. It may be expected that other solid phase approaches involving different resins would be developed in the coming years.
Pelà, M; Del Zoppo, L; Allegri, L; Marzola, E; Ruzza, C; Calo, G; Perissutti, E; Frecentese, F; Salvadori, S; Guerrini, R
2014-07-01
The synthesis of non natural amino acid 2-amino-3,3,4-trimethyl-pentanoic acid (Ipv) ready for solid phase peptide synthesis has been developed. Copper (I) chloride Michael addition, followed by a Curtius rearrangement are the key steps for the lpv synthesis. The racemic valine/leucine chimeric amino acid was then successfully inserted in position 5 of neuropeptide S (NPS) and the diastereomeric mixture separated by reverse phase HPLC. The two diastereomeric NPS derivatives were tested for intracellular calcium mobilization using HEK293 cells stably expressing the mouse NPS receptor where they behaved as partial agonist and pure antagonist.
Discovery-Synthesis, Design, and Prediction of Chalcogenide Phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanatzidis, Mercouri G.
The discovery of new materials and their efficient syntheses is a fundamental goal of chemistry. A related objective is to identify foundational and rational approaches to enhance the art of synthesis by combining the exquisite predictability of organic synthesis with the high yields of solid-state chemistry. In contrast to so-called solid-state methods, inorganic syntheses in liquid fluxes permit bond formation, framework assembly, and crystallization at lower temperatures because of facile diffusion and chemical reactions with and within the flux itself. The fluxes are bona fide solvents similar to conventional organic or aqueous solvents. Such reactions can produce a wide rangemore » of materials, often metastable, from oxides to intermetallics, but typically the formation mechanisms are poorly understood. This article discusses how one can design, perform, observe, understand, and engineer the formation of compounds from inorganic melts. The focus is also design concepts such as "dimensional reduction", "phase homologies", and "panoramic synthesis", and their broad applicability. When well-defined building blocks are present and stable in the reaction, prospects for increased structural diversity and product control increase substantially. Common structural motifs within these materials systems may be related to structural precursors in the melt that may be controlled by tuning reaction conditions and composition. Stabilization of a particular building block is often accomplished with tuning of the flux composition, which controls the Lewis basicity and redox potential. In such tunable and dynamic fluxes, the synthesis can be directed toward new materials. Using complementary techniques of in situ X-ray diffraction, we can create time-dependent maps of reaction space and probe the mobile species present in melts. Lastly, certain thoughts toward the ultimate goal of targeted materials synthesis by controlling inorganic melt chemistry are discussed.« less
Discovery-Synthesis, Design, and Prediction of Chalcogenide Phases
Kanatzidis, Mercouri G.
2017-03-09
The discovery of new materials and their efficient syntheses is a fundamental goal of chemistry. A related objective is to identify foundational and rational approaches to enhance the art of synthesis by combining the exquisite predictability of organic synthesis with the high yields of solid-state chemistry. In contrast to so-called solid-state methods, inorganic syntheses in liquid fluxes permit bond formation, framework assembly, and crystallization at lower temperatures because of facile diffusion and chemical reactions with and within the flux itself. The fluxes are bona fide solvents similar to conventional organic or aqueous solvents. Such reactions can produce a wide rangemore » of materials, often metastable, from oxides to intermetallics, but typically the formation mechanisms are poorly understood. This article discusses how one can design, perform, observe, understand, and engineer the formation of compounds from inorganic melts. The focus is also design concepts such as "dimensional reduction", "phase homologies", and "panoramic synthesis", and their broad applicability. When well-defined building blocks are present and stable in the reaction, prospects for increased structural diversity and product control increase substantially. Common structural motifs within these materials systems may be related to structural precursors in the melt that may be controlled by tuning reaction conditions and composition. Stabilization of a particular building block is often accomplished with tuning of the flux composition, which controls the Lewis basicity and redox potential. In such tunable and dynamic fluxes, the synthesis can be directed toward new materials. Using complementary techniques of in situ X-ray diffraction, we can create time-dependent maps of reaction space and probe the mobile species present in melts. Lastly, certain thoughts toward the ultimate goal of targeted materials synthesis by controlling inorganic melt chemistry are discussed.« less
Thermo-Catalytic Reforming of municipal solid waste.
Ouadi, Miloud; Jaeger, Nils; Greenhalf, Charles; Santos, Joao; Conti, Roberto; Hornung, Andreas
2017-10-01
Municipal Solid Waste (MSW) refers to a heterogeneous mixture composed of plastics, paper, metal, food and other miscellaneous items. Local authorities commonly dispose of this waste by either landfill or incineration which are both unsustainable practices. Disposing of organic wastes via these routes is also becoming increasingly expensive due to rising landfill taxes and transport costs. The Thermo-Catalytic Reforming (TCR®) process, is a proposed valorisation route to transform organic wastes and residues, such as MSW, into sustainable energy vectors including (H 2 rich synthesis gas, liquid bio-oil and solid char). The aim herein, was to investigate the conversion of the organic fraction of MSW into fuels and chemicals utilising the TCR technology in a 2kg/h continuous pilot scale reactor. Findings show that MSW was successfully processed with the TCR after carrying out a feedstock pre-treatment step. Approximately, 25wt.% of the feedstock was converted into phase separated liquids, composed of 19wt.% aqueous phase and 6wt.% organic phase bio-oil. The analysis of the bio-oil fraction revealed physical and chemical fuel properties, higher heating value (HHV) of 38MJ/kg, oxygen content <7wt.% and water content <4wt.%. Due to the bio-oil's chemical and physical properties, the bio-oil was found to be directly miscible with fossil diesel when blended at a volume ratio of 50:50. The mass balance closure was 44wt.% synthesis gas, with a H 2 content of 36vol% and HHV of 17.23MJ/Nm 3 , and 31 wt.% char with a HHV of 17MJ/kg. The production of high quantities of H 2 gas and highly de-oxygenated organic liquids makes downstream hydrogen separation and subsequent hydro-deoxygenation of the produced bio-oil a promising upgrading step to achieve drop-in transportation fuels from MSW. Copyright © 2017 Elsevier Ltd. All rights reserved.
Current Trends in Sensors Based on Conducting Polymer Nanomaterials
Yoon, Hyeonseok
2013-01-01
Conducting polymers represent an important class of functional organic materials for next-generation electronic and optical devices. Advances in nanotechnology allow for the fabrication of various conducting polymer nanomaterials through synthesis methods such as solid-phase template synthesis, molecular template synthesis, and template-free synthesis. Nanostructured conducting polymers featuring high surface area, small dimensions, and unique physical properties have been widely used to build various sensor devices. Many remarkable examples have been reported over the past decade. The enhanced sensitivity of conducting polymer nanomaterials toward various chemical/biological species and external stimuli has made them ideal candidates for incorporation into the design of sensors. However, the selectivity and stability still leave room for improvement. PMID:28348348
Jayaprakash, K N; Peng, Chang Geng; Butler, David; Varghese, Jos P; Maier, Martin A; Rajeev, Kallanthottathil G; Manoharan, Muthiah
2010-12-03
Novel non-nucleoside alkyne monomers compatible with oligonucleotide synthesis were designed, synthesized, and efficiently incorporated into RNA and RNA analogues during solid-phase synthesis. These modifications allowed site-specific conjugation of ligands to the RNA oligonucleotides through copper-assisted (CuAAC) and copper-free strain-promoted azide-alkyne cycloaddition (SPAAC) reactions. The SPAAC click reactions of cyclooctyne-oligonucleotides with various classes of azido-functionalized ligands in solution phase and on solid phase were efficient and quantitative and occurred under mild reaction conditions. The SPAAC reaction provides a method for the synthesis of oligonucleotide-ligand conjugates uncontaminated with copper ions.
Tsuda, Shugo; Mochizuki, Masayoshi; Sakamoto, Ken; Denda, Masaya; Nishio, Hideki; Otaka, Akira; Yoshiya, Taku
2016-11-18
An N-sulfanylethylaminooxybutyramide (SEAoxy) has been developed as a novel thioester equivalent for native chemical ligation. SEAoxy peptide was straightforwardly synthesized by conventional Fmoc solid-phase peptide synthesis without a problem. Moreover, SEAoxy peptide could be directly applied to native chemical ligation owing to the intramolecular N-to-S acyl shift that releases the peptide-thioester in situ. This methodology was successfully applied to the synthesis of two bioactive peptides.
Winkler, Dirk F H; Tian, Kerry
2015-04-01
Difficult peptides are a constant challenge in solid-phase peptide synthesis. In particular, hydroxyl amino acids such as serine can cause severe breakdowns in coupling yields even several amino acids after the insertion of the critical amino acid. This paper investigates several methods of improving synthesis yields of difficult peptides including the use of different resins, activators and the incorporation of a structure-breaking pseudoproline dipeptide building block both alone and in combination with each other.
Concise solid-phase synthesis of inverse poly(amidoamine) dendrons using AB2 building blocks.
Huang, Adela Ya-Ting; Tsai, Ching-Hua; Chen, Hsing-Yin; Chen, Hui-Ting; Lu, Chi-Yu; Lin, Yu-Ting; Kao, Chai-Lin
2013-06-28
A concise solid-phase synthesis of inverse poly(amidoamine) dendrons was developed. Upon introduction of AB2-type monomers, each dendron generation was constructed via one reaction. G2 to G5 dendrons were constructed in a peptide synthesizer in 93%, 89%, 82%, and 78% yields, respectively, within 5 days.
Vasileiou, Zoe; Barlos, Kostas; Gatos, Dimitrios
2009-12-01
The RING finger domain of the Mdm2, located at the C-terminus of the protein, is necessary for regulation of p53, a tumor suppressor protein. The 48-residues long Mdm2 peptide is an important target for studying its interaction with small anticancer drug candidates. For the chemical synthesis of the Mdm2 RING finger domain, the fragment condensation on solid-phase and the fragment condensation in solution were studied. The latter method was performed using either protected or free peptides at the C-terminus as the amino component. Best results were achieved using solution condensation where the N-component was applied with the C-terminal carboxyl group left unprotected. The developed method is well suited for large-scale synthesis of Mdm2 RING finger domain, combining the advantages of both solid-phase and solution synthesis. (c) 2009 European Peptide Society and John Wiley & Sons, Ltd.
Alivisatos, A. Paul; Colvin, Vicki L.
1998-01-01
Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed.
Synthesis of sub-10 nm solid lipid nanoparticles for topical and biomarker detection applications
NASA Astrophysics Data System (ADS)
Calderón-Colón, Xiomara; Patchan, Marcia W.; Theodore, Mellisa L.; Le, Huong T.; Sample, Jennifer L.; Benkoski, Jason J.; Patrone, Julia B.
2014-02-01
Solid lipid nanoparticles (SLNs) are a promising platform for sensing in vivo biomarkers due to their biocompatibility, stability, and their ability to carry a wide range of active ingredients. The skin is a prominent target organ for numerous inflammatory and stress-related biomarkers, making it an excellent site for early detection of physiological imbalance and application of sensory nanoparticles. Though smaller particle size has generally been correlated with increased penetration of skin models, there has been little attention paid to the significance of other nanoparticle synthesis parameters with respect to their physical properties. In this study, we demonstrate the synthesis of sub-10 nm SLNs by the phase inversion temperature (PIT) method. These particles were specifically designed for topical delivery of hydrogen peroxide-detecting chemiluminescent dyes. A systematic design of experiments approach was used to investigate the role of the processing variables on SLN form and properties. The processing variables were correlated with the SLN properties (e.g., dye solubility, phase inversion temperature, particle size, polydispersity, melting point, and latent heat of melting). Statistical analysis revealed that the PIT method, while allowing total control over the thermal properties, resulted in well-controlled synthesis of ultra-small particles, while allowing great flexibility in the processing conditions and incorporated compounds.
NASA Astrophysics Data System (ADS)
Taherpour, Avat (Arman)
2010-01-01
Utilization of microwave irradiation provides an effective method for fast synthesizing of some important compounds. Microwave-assisted solid phase is an especial class in chemical synthesis. By the use of MW-irradiation on chemicals, sometimes interesting results can be seen. The synthesis of the interesting molecule ethylenetetracarboxylic dianhydride (C 6O 6) was attempted with a few different methods. In this study, the microwave-assisted solid phase conversion of Meldrum's acid to ethylenetetracarboxylic dianhydride was reported. This conversion was characterized by FT-IR, GC/MS and NMR spectroscopy results.
Poma, Alessandro; Guerreiro, Antonio; Caygill, Sarah; Moczko, Ewa; Piletsky, Sergey
We report the development of an automated chemical reactor for solid-phase synthesis of MIP NPs in water. Operational parameters are under computer control, requiring minimal operator intervention. In this study, "ready for use" MIP NPs with sub-nanomolar affinity are prepared against pepsin A, trypsin and α-amylase in only 4 hours.
Poma, Alessandro; Guerreiro, Antonio; Caygill, Sarah; Moczko, Ewa; Piletsky, Sergey
2015-01-01
We report the development of an automated chemical reactor for solid-phase synthesis of MIP NPs in water. Operational parameters are under computer control, requiring minimal operator intervention. In this study, “ready for use” MIP NPs with sub-nanomolar affinity are prepared against pepsin A, trypsin and α-amylase in only 4 hours. PMID:26722622
Wang, Hui; Wang, Ruiling; Han, Yehong
2014-02-15
An inorganic-organic co-functional monomer, methacrylic acid-vinyltriethoxysilan (MAA-VTES) was designed for the synthesis of molecularly imprinted microspheres (MIMs). By virtue of the aqueous suspension polymerization and dummy template (pazufloxacin), the obtained MAA-VTES based MIMs exhibited good recognition and selectivity to fluoroquinolones (FQs), and were successfully applied as selective sorbents of a miniaturized home-made solid phase extraction device for the determination of ofloxacin (OFL), lomefloxacin (LOM) and ciprofloxacin (CIP) in milk samples. Under the optimum conditions of the miniaturized molecularly imprinted solid phase extraction (mini-MISPE) coupled with liquid chromatography-ultraviolet detector (LC-UV), good linearities were obtained for three FQs in a range of 0.2-20.0μgmL(-1) and the average recoveries at three spiked levels were ranged from 87.2% to 106.1% with the relative standard deviation (RSD) less than 5.4%. The presented co-functional monomer based mini-MISPE-LC-UV protocol introduced the rigidity and flexibility of inorganic silicon materials, exhibited excellent extraction performance towards targets, and could be potentially applied to the determination of FQs in milk samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Cheruvallath, Zacharia S; Kumar, R Krishna; Rentel, Claus; Cole, Douglas L; Ravikumar, Vasulinga T
2003-04-01
Diethyldithiodicarbonate (DDD), a cheap and easily prepared compound, is found to be a rapid and efficient sulfurizing reagent in solid phase synthesis of phosphorothioate oligodeoxyribonucleotides via the phosphoramidite approach. Product yield and quality based on IP-LC-MS compares well with high quality oligonucleotides synthesized using phenylacetyl disulfide (PADS) which is being used for manufacture of our antisense drugs.
Saraji, Mohammad; Mehrafza, Narges
2016-08-19
In this paper, a mesoporous carbon-ZrO2 nanocomposite was fabricated on a stainless steel wire for the first time and used as the solid-phase microextraction coating. The fiber was synthesized with the direct carbonization of a Zr-based metal organic framework. With the utilization of the metal organic framework as the precursor, no additional carbon source was used for the synthesis of the mesoporous carbon-ZrO2 nanocomposite coating. The fiber was applied for the determination of BTEX compounds (benzene, toluene, ethylbenzene and m, p-xylenes) in different water samples prior to gas chromatography-flame ionization detection. Such important experimental factors as synthesis time and temperature, salt concentration, equilibrium and extraction time, extraction temperature, desorption time and desorption temperature were studied and optimized. Good linearity in the concentration range of 0.2-200μgL(-1) and detection limits in the range of 0.05-0.56μgL(-1) was achieved for BTEX compounds. The intra- and inter-day relative standard deviations were in the range of 3.5-4.8% and 4.9-6.7%, respectively. The prepared fiber showed high capability for the analysis of BTEX compounds in different water and wastewater samples with good relative recoveries in the range of 93-107%. Copyright © 2016 Elsevier B.V. All rights reserved.
Shukla, Rakesh; Grover, Vinita; Srinivasu, Kancharlapalli; Paul, Barnita; Roy, Anushree; Gupta, Ruma; Tyagi, Avesh Kumar
2018-05-15
Rare earth indates are an interesting class of compounds with rich crystallography. The present study explores the crystallographic phases observed in REInO3 (RE: La-Yb) systems and their dependence on synthesis routes and annealing temperature. All REInO3 compositions were synthesized by a solid state route as well as gel-combustion synthesis (GC) followed by annealing at different temperatures. The systems were well characterized by powder XRD studies and were analysed by Rietveld refinement for the structural parameters. The cell parameters were observed to decrease in accordance with the trend in ionic radii on proceeding from lighter to heavier rare earth ions. Interestingly, the synthesis route and the annealing temperature had a profound bearing on the phase relationships observed in the REInO3 series. The solid state synthesized samples depicted an orthorhombic phase (Pbnm) field for LaInO3 to SmInO3, followed by a hexagonal-type phase (P63cm) for GdInO3 to DyInO3. However, the phase field distribution was greatly influenced upon employing gel-combustion (GC) wherein both single-phasic hexagonal and orthorhombic phase fields were found to shrink. Annealing the GC-synthesized compositions to still higher temperatures (1250 °C) further evolved the phase boundaries. An important outcome of the study is observance of polymorphism in SmInO3 which crystallized in the hexagonal phase when synthesized by GC and orthorhombic phase by solid state synthesis. This reveals the all-important role played by synthesis conditions. The existence and energetics of the two polymorphs have been elucidated and discussed with the aid of theoretical studies.
Alivisatos, A.P.; Colvin, V.L.
1998-05-12
Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed. 10 figs.
Barlos, K; Gatos, D; Kapolos, S; Poulos, C; Schäfer, W; Yao, W Q
1991-12-01
The carboxyl terminal dipeptide amide, Fmoc-Asp-Phe-NH2, of gastrin and cholecystokinin (CCK) has been attached in high yield through its free side chain carboxyl group to the acid labile 2-chlorotrityl resin. The obtained peptide resin ester has been applied in the solid phase synthesis of partially protected (Leu15)-gastrin I utilising Fmoc-amino acids. Quantitative cleavage of this peptide from resin, with the t-butyl type side chain protection intact is achieved using mixtures of acetic acid/trifluoroethanol/dichloromethane. Under the same conditions complete detritylation of the tyrosine phenoxy function occurs simultaneously. Thus, the solid-phase synthesis of peptides selectively deprotected at the side chain of tyrosine is rendered possible by the use of 2-chlorotrityl resin and Fmoc-Tyr(Trt)-OH. The efficiency of this approach has been proved by the subsequent high-yield synthesis of three model peptides and the CCK-octapeptide.
Kumar, Ashwini; Gaurav; Malik, Ashok Kumar; Tewary, Dhananjay Kumar; Singh, Baldev
2008-03-03
Solid phase microextraction (SPME) is an innovative, solvent free technology that is fast, economical and versatile. SPME is a fiber coated with a liquid (polymer), a solid (sorbent) or a combination of both. The fiber coating takes up the compounds from the sample by absorption in the case of liquid coatings or adsorption in the case of solid coatings. The SPME fiber is then transferred with the help of a syringe like device into the analytical instrument for desorption and analysis of the target analytes. The sol-gel process provides a versatile method to prepare size, shape and charge selective materials of high purity and homogeneity by means of preparation techniques different from the traditional ones, for the chemical analysis. This review is on the current state of the art and future trends in the developments of solid phase microextraction (SPME) fibers using sol-gel method. To achieve more selective determination of different compound classes, the variety of different coating material for SPME fibers has increased. Further developments in SPME as a highly efficient extraction technique, will greatly depend on new breakthroughs in the area of new coating material developments for the SPME fibers. In sol-gel approach, appropriate sol-gel precursors and other building blocks can be selected to create a stationary phase with desired structural and surface properties. This approach is efficient in integrating the advantageous properties of organic and inorganic material systems and thereby increasing and improving the extraction selectivity of the produced amalgam organic-inorganic stationary phases. This review is mainly focused on recent advanced developments in the design, synthesis, characterisation, properties and application of sol-gel in preparation of coatings for the SPME fibers.
Hamper, Bruce C; Kesselring, Allen S; Chott, Robert C; Yang, Shengtian
2009-01-01
A solid-phase organic synthesis method has been developed for the preparation of trisubstituted pyrimidin-6-one carboxylic acids 12, which allows elaboration to a 3-dimensional combinatorial library. Three substituents are introduced by initial Knoevenagel condensation of an aldehyde and malonate ester resin 7 to give resin bound 1. Cyclization of 1 with an N-substituted amidine 10, oxidation, and cleavage afforded pyrimidinone 12. The initial solid-phase reaction sequence was followed by gel-phase (19)FNMR and direct-cleavage (1)H NMR of intermediate resins to determine the optimal conditions. The scope of the method for library production was determined by investigation of a 3 x 4 pilot library of twelve compounds. Cyclocondensation of N-methylamidines and 7 followed by CAN oxidation gave mixtures of the resin bound pyrimidin-6-one 11 and the regioisomeric pyrimidin-4-one 15, which after cleavage from the resin afforded a nearly 1:1 mixture of pyrimidin-6-one and pyrimidin-4-one carboxylic acids 12 and 16, respectively. The regiochemical assignment was confirmed by ROESY1D and gHMBC NMR experiments. A library was prepared using 8 aldehydes, 3 nitriles, and 4 amines to give a full combinatorial set of 96 pyrimidinones 12. Confirmation of structural identity and purity was carried out by LCMS using coupled ELS detection and by high-throughput flow (1)H NMR.
Haddad, Mathieu; Vali, Hojatollah; Paquette, Jeanne; Guiot, Serge R.
2014-01-01
Two previously unknown modes of biomineralization observed in the presence of Carboxydothermus hydrogenoformans are presented. Following the addition of NaHCO3 and the formation of an amorphous calcium phosphate precipitate in a DSMZ medium inoculated with C. hydrogenoformans, two distinct crystalline solids were recovered after 15 and 30 days of incubation. The first of these solids occurred as micrometric clusters of blocky, angular crystals, which were associated with bacterial biofilm. The second solid occurred as 30–50 nm nanorods that were found scattered among the organic products of bacterial lysis. The biphasic mixture of solids was clearly dominated by the first phase. The X-ray diffractometry (XRD) peaks and Fourier transform infrared spectroscopy (FTIR) spectrum of this biphasic material consistently showed features characteristic of Mg-whitlockite. No organic content or protein could be identified by dissolving the solids. In both cases, the mode of biomineralization appears to be biologically induced rather than biologically controlled. Since Mg is known to be a strong inhibitor of the nucleation and growth of CaP, C. hydrogenoformans may act by providing sites that chelate Mg or form complexes with it, thus decreasing its activity as nucleation and crystal growth inhibitor. The synthesis of whitlockite and nano-HAP-like material by C. hydrogenoformans demonstrates the versatility of this organism also known for its ability to perform the water-gas shift reaction, and may have applications in bacterially mediated synthesis of CaP materials, as an environmentally friendly alternative process. PMID:24586811
Pyrrole-Imidazole Polyamides: Manual Solid-Phase Synthesis.
Pauff, Steven M; Fallows, Andrew J; Mackay, Simon P; Su, Wu; Cullis, Paul M; Burley, Glenn A
2015-12-01
Pyrrole-imidazole polyamides (PAs) are a family of DNA-binding peptides that bind in the minor groove of double-stranded DNA (dsDNA) in a sequence-selective, programmable fashion. This protocol describes a detailed manual procedure for the solid-phase synthesis of this family of compounds. The protocol entails solution-phase synthesis of the Boc-protected pyrrole (Py) and imidazole (Im) carboxylic acid building blocks. This unit also describes the importance of choosing the appropriate condensing agent to form the amide linkages between each building block. Finally, a monomeric coupling protocol and a fragment-based approach are described that delivers PAs in 13% to 30% yield in 8 days. Copyright © 2015 John Wiley & Sons, Inc.
NASA Technical Reports Server (NTRS)
Locke, Darren R.; Yazzie, Cyriah A.; Burton, Aaron S.; Niles, Paul B.; Johnson, Natasha M.
2015-01-01
Abiotic synthesis of complex organic compounds in the early solar nebula that formed our solar system is hypothesized to occur via a Fischer-Tropsch type (FTT) synthesis involving the reaction of hydrogen and carbon monoxide gases over metal and metal oxide catalysts. In general, at low temperatures (less than 200 C), FTT synthesis is expected to form abundant alkane compounds while at higher temperatures (greater than 200 C) it is expected to product lesser amounts of n-alkanes and greater amounts of alkene, alcohol, and polycyclic aromatic hydrocarbons (PAHs). Experiments utilizing a closed-gas circulation system to study the effects of FTT reaction temperature, catalysts, and number of experimental cycles on the resulting solid insoluble organic products are being performed in the laboratory at NASA Goddard Space Flight Center. These experiments aim to determine whether or not FTT reactions on grain surfaces in the protosolar nebula could be the source of the insoluble organic matter observed in meteorites. The resulting solid organic products are being analyzed at NASA Johnson Space Center by pyrolysis gas chromatography mass spectrometry (PY-GCMS). PY-GCMS yields the types and distribution of organic compounds released from the insoluble organic matter generated from the FTT reactions. Previously, exploratory work utilizing PY-GCMS to characterize the deposited organic materials from these reactions has been reported. Presented here are new organic analyses using magnetite catalyst to produce solid insoluble organic FTT products with varying reaction temperatures and number of experimental cycles.
Formation of sodium bismuth titanate-barium titanate during solid-state synthesis
Hou, Dong; Aksel, Elena; Fancher, Chris M.; ...
2017-01-12
Phase formation of sodium bismuth titanate (Na 0.5Bi 0.5TiO 3 or NBT) and its solid solution with barium titanate (BaTiO 3 or BT) during the calcination process is studied using in situ high-temperature diffraction. The reactant powders were mixed and heated to 1000°C, while X-ray diffraction patterns were recorded continuously. Phase evolutions from starting materials to final perovskite products are observed, and different transient phases are identified. The formation mechanism of NBT and NBT–xBT perovskite structures is discussed, and a reaction sequence is suggested based on the observations. The in situ study leads to a new processing approach, which ismore » the use of nano-TiO 2, and gives insights to the particle size effect for solid-state synthesis products. Lastly, it was found that the use of nano-TiO 2 as reactant powder accelerates the synthesis process, decreases the formation of transient phases, and helps to obtain phase-pure products using a lower thermal budget.« less
One Step Combustion Synthesis Of YAG:Ce Phosphor For Solid State Lighting
NASA Astrophysics Data System (ADS)
Yadav, Pooja; Gupta, K. Vijay Kumar; Muley, Aarti; Joshi, C. P.; Moharil, S. V.
2011-10-01
YAG:Ce is an important phosphor having applications in various fields ranging from solid state lighting to scintillation detectors. YAG phosphors doped with activators are mainly synthesized by solid state reaction techniques that require high sintering temperatures (above 1500°C) to eliminate YAM and YAP phases. Though several soft chemical routes have been explored for synthesis of YAG, most of these methods are complex and phase pure materials are not obtained in one step, but prolonged annealing at temperatures around 1000 C or above becomes necessary. One step combustion synthesis of YAG:Ce3+ and related phosphors carried out at 500 C furnace temperature is reported here. Activation with Ce3+ could be achieved during the synthesis without taking recourse to any post-combustion thermal treatment. LEDs prepared from the combustion synthesized YAG:Ce3+, exhibited properties comparable to those produced from the commercial phosphor.
Staderini, Matteo; Gambardella, Alessia; Lilienkampf, Annamaria; Bradley, Mark
2018-06-01
The vinyl ether benzyloxycarbonyl (VeZ) protecting group is selectively cleaved by treatment with tetrazines via an inverse electron-demand Diels-Alder reaction. This represents a new orthogonal protecting group for solid-phase peptide synthesis, with Fmoc-Lys(VeZ)-OH as a versatile alternative to Fmoc-Lys(Alloc)-OH and Fmoc-Lys(Dde)-OH, as demonstrated by the synthesis of two biologically relevant cyclic peptides.
Persistent dopants and phase segregation in organolead mixed-halide perovskites
Rosales, Bryan A.; Men, Long; Cady, Sarah D.; ...
2016-07-25
Organolead mixed-halide perovskites such as CH 3NH 3PbX 3–aX' a (X, X' = I, Br, Cl) are interesting semiconductors because of their low cost, high photovoltaic power conversion efficiencies, enhanced moisture stability, and band gap tunability. Using a combination of optical absorption spectroscopy, powder X-ray diffraction (XRD), and, for the first time, 207Pb solid state nuclear magnetic resonance (ssNMR), we probe the extent of alloying and phase segregation in these materials. Because 207Pb ssNMR chemical shifts are highly sensitive to local coordination and electronic structure, and vary linearly with halogen electronegativity and band gap, this technique can provide the truemore » chemical speciation and composition of organolead mixed-halide perovskites. We specifically investigate samples made by three different preparative methods: solution phase synthesis, thermal annealing, and solid phase synthesis. 207Pb ssNMR reveals that nonstoichiometric dopants and semicrystalline phases are prevalent in samples made by solution phase synthesis. We show that these nanodomains are persistent after thermal annealing up to 200 °C. Further, a novel solid phase synthesis that starts from the parent, single-halide perovskites can suppress phase segregation but not the formation of dopants. Our observations are consistent with the presence of miscibility gaps and spontaneous spinodal decomposition of the mixed-halide perovskites at room temperature. This underscores how strongly different synthetic procedures impact the nanostructuring and composition of organolead halide perovskites. In conclusion, better optoelectronic properties and improved device stability and performance may be achieved through careful manipulation of the different phases and nanodomains present in these materials.« less
Persistent dopants and phase segregation in organolead mixed-halide perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosales, Bryan A.; Men, Long; Cady, Sarah D.
Organolead mixed-halide perovskites such as CH 3NH 3PbX 3–aX' a (X, X' = I, Br, Cl) are interesting semiconductors because of their low cost, high photovoltaic power conversion efficiencies, enhanced moisture stability, and band gap tunability. Using a combination of optical absorption spectroscopy, powder X-ray diffraction (XRD), and, for the first time, 207Pb solid state nuclear magnetic resonance (ssNMR), we probe the extent of alloying and phase segregation in these materials. Because 207Pb ssNMR chemical shifts are highly sensitive to local coordination and electronic structure, and vary linearly with halogen electronegativity and band gap, this technique can provide the truemore » chemical speciation and composition of organolead mixed-halide perovskites. We specifically investigate samples made by three different preparative methods: solution phase synthesis, thermal annealing, and solid phase synthesis. 207Pb ssNMR reveals that nonstoichiometric dopants and semicrystalline phases are prevalent in samples made by solution phase synthesis. We show that these nanodomains are persistent after thermal annealing up to 200 °C. Further, a novel solid phase synthesis that starts from the parent, single-halide perovskites can suppress phase segregation but not the formation of dopants. Our observations are consistent with the presence of miscibility gaps and spontaneous spinodal decomposition of the mixed-halide perovskites at room temperature. This underscores how strongly different synthetic procedures impact the nanostructuring and composition of organolead halide perovskites. In conclusion, better optoelectronic properties and improved device stability and performance may be achieved through careful manipulation of the different phases and nanodomains present in these materials.« less
ERIC Educational Resources Information Center
Sichula, Vincent A.
2015-01-01
A multistep synthesis of 10-ethyl flavin was developed as an organic chemistry laboratory experiment for upper-division undergraduate students. Students synthesize 10-ethyl flavin as a bright yellow solid via a five-step sequence. The experiment introduces students to various hands-on experimental organic synthetic techniques, such as column…
Colorimetric monitoring of solid-phase aldehydes using 2,4-dinitrophenylhydrazine.
Shannon, Simon K; Barany, George
2004-01-01
A simple and rapid method to achieve colorimetric monitoring of resin-bound aldehydes, based on ambient temperature reaction with 2,4-dinitrophenylhydrazine (DNPH) in the presence of dilute acid, has been developed as an adjunct to solid-phase organic synthesis and combinatorial chemistry. By this test, the presence of aldehydes is indicated by a red to dark-orange appearance, within a minute. Alternatively, resins that are free of aldehydes or in which aldehyde functions have reacted completely retain their original color. The DNPH test was demonstrated for poly(ethylene glycol)-polystyrene (PEG-PS), aminomethyl polystyrene (AMP), cross-linked ethoxylate acrylate resin (CLEAR), and acryloylated O,O'-bis(2-aminopropyl)poly(ethylene glycol) (PEGA) supports and gave results visible to the naked eye at levels as low as 18 micromol of aldehyde per gram of resin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramkumar, Shwetha; Fan, Liang-Shih
A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H.sub.2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO.sub.2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO.sub.3, CaS and CaX.sub.2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO bymore » calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO.sub.2, in the presence of synthesis gas, in the presence of H.sub.2 and O.sub.2, under partial vacuum, and combinations thereof.« less
Immobilization methods for the rapid total chemical synthesis of proteins on microtiter plates.
Zitterbart, Robert; Krumrey, Michael; Seitz, Oliver
2017-07-01
The chemical synthesis of proteins typically involves the solid-phase peptide synthesis of unprotected peptide fragments that are stitched together in solution by native chemical ligation (NCL). The process is slow, and throughput is limited because of the need for repeated high performance liquid chromatography purification steps after both solid-phase peptide synthesis and NCL. With an aim to provide faster access to functional proteins and to accelerate the functional analysis of synthetic proteins by parallelization, we developed a method for the high performance liquid chromatography-free synthesis of proteins on the surface of microtiter plates. The method relies on solid-phase synthesis of unprotected peptide fragments, immobilization of the C-terminal fragment and on-surface NCL with an unprotected peptide thioester in crude form. Herein, we describe the development of a suitable immobilization chemistry. We compared (i) formation of nickel(II)-oligohistidine complexes, (ii) Cu-based [2 + 3] alkine-azide cycloaddition and (iii) hydrazone ligation. The comparative study identified the hydrazone ligation as most suitable. The sequence of immobilization via hydrazone ligation, on-surface NCL and radical desulfurization furnished the targeted SH3 domains in near quantitative yield. The synthetic proteins were functional as demonstrated by an on-surface fluorescence-based saturation binding analysis. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Mahale, Rajashree Y.; Dharmapurikar, Satej S.; Chini, Mrinmoy Kumar
2018-03-01
Solution processability of the precursor molecules is a major issue owing to their limited solubility for the synthesis of conjugated polymers. Therefore, we favour the solvent free solid state chemical oxidative polymerization route for the synthesis of diketopyrrolopyrrole (DPP) based donor-acceptor (D-A) type conjugated polymers. D-A type polymer Poly(S-OD-EDOT) which contains DPP coupled with EDOT donor units is synthesized via solid state polymerization method. The polymer is employed as an active layer for organic field-effect transistors to measure charge transport properties. The Polymer shows good hole mobility 3.1 × 10-2 cm2 V-1 s-1, with a on/off ratio of 1.1 × 103.
NASA Astrophysics Data System (ADS)
Ridder, Barbara; Foertsch, Tobias C.; Welle, Alexander; Mattes, Daniela S.; von Bojnicic-Kninski, Clemens M.; Loeffler, Felix F.; Nesterov-Mueller, Alexander; Meier, Michael A. R.; Breitling, Frank
2016-12-01
Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a ;solid; solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm2, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.
The use of solid supports to generate nucleic acid carriers.
Unciti-Broceta, Asier; Díaz-Mochón, Juan José; Sánchez-Martín, Rosario M; Bradley, Mark
2012-07-17
Nucleic acids are the foundation stone of all cellular processes. Consequently, the use of DNA or RNA to treat genetic and acquired disorders (so called gene therapy) offers enormous potential benefits. The restitution of defective genes or the suppression of malignant genes could target a range of diseases, including cancers, inherited diseases (cystic fibrosis, muscular dystrophy, etc.), and viral infections. However, this strategy has a major barrier: the size and charge of nucleic acids largely restricts their transit into eukaryotic cells. Potential strategies to solve this problem include the use of a variety of natural and synthetic nucleic acid carriers. Driven by the aim and ambition of translating this promising therapeutic approach into the clinic, researchers have been actively developing advanced delivery systems for nucleic acids for more than 20 years. A decade ago we began our investigations of solid-phase techniques to construct families of novel nucleic acid carriers for transfection. We envisaged that the solid-phase synthesis of polycationic dendrimers and derivatized polyamimes would offer distinct advantages over solution phase techniques. Notably in solid phase synthesis we could take advantage of mass action and streamlined purification procedures, while simplifying the handling of compounds with high polarities and plurality of functional groups. Parallel synthesis methods would also allow rapid access to libraries of compounds with improved purities and yields over comparable solution methodologies and facilitate the development of structure activity relationships. We also twisted the concept of the solid-phase support on its head: we devised miniaturized solid supports that provided an innovative cell delivery vehicle in their own right, carrying covalently conjugated cargos (biomolecules) into cells. In this Account, we summarize the main outcomes of this series of chemically related projects.
Schmidt, Deborah; Schuhmacher, Frank; Geissner, Andreas; Seeberger, Peter H; Pfrengle, Fabian
2015-04-07
Monoclonal antibodies that recognize plant cell wall glycans are used for high-resolution imaging, providing important information about the structure and function of cell wall polysaccharides. To characterize the binding epitopes of these powerful molecular probes a library of eleven plant arabinoxylan oligosaccharides was produced by automated solid-phase synthesis. Modular assembly of oligoarabinoxylans from few building blocks was enabled by adding (2-naphthyl)methyl (Nap) to the toolbox of orthogonal protecting groups for solid-phase synthesis. Conjugation-ready oligosaccharides were obtained and the binding specificities of xylan-directed antibodies were determined on microarrays. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dreef-Tromp, C M; van der Maarel, J C; van den Elst, H; van der Marel, G A; van Boom, J H
1992-01-01
The naturally occurring DNA-nucleopeptide H-Asp-Ser[5'-pAAAGTAAGCC-3']-Glu-OH was prepared via a solid-phase phosphite triester approach using N-2-(tert-butyldiphenylsilyloxymethyl)benzoyl protected nucleosides. The oligonucleotide was linked via the extremely base-labile oxalyl ester anchor to the solid support. PMID:1508685
Dutour, Raphael; Maltais, Rene; Perreault, Martin; Roy, Jenny; Poirier, Donald
2018-03-07
RM-133 belongs to a new family of aminosteroid derivatives demonstrating interesting anticancer properties, as confirmed in vivo in four mouse cancer xenograft models. However, the metabolic stability of RM-133 needs to be improved. After investigation, the replacement of its androstane scaffold by a more stable estrane scaffold led to the development of the mestranol derivative RM-581. Using solid-phase strategy involving five steps, we quickly synthesized a series of RM-581 analogs using the recently-developed diethylsilyl acetylenic linker. To establish structure-activity relationships, we then investigated their antiproliferative potency on a panel of cancer cell lines from various cancers (breast, prostate, ovarian and pancreatic). Some of the mestranol derivatives have shown in vitro anticancer activities that are close to, or better than those observed for RM-581. Compound 23, a mestranol derivative having a ((3,5-dimethylbenzoyl)-L-prolyl)piperazine side chain at position C2, was found to be active as an antiproliferative agent (IC50 = 0.38 ± 0.34 to 3.17 ± 0.10 µM) and to be twice as active as RM-581 on LNCaP, PC-3, MCF-7, PANC-1 and OVCAR-3 cancer cells (IC50 = 0.56 ± 0.30, 0.89 ± 0.63, 1.36 ± 0.31, 2.47 ± 0.91 and 3.17 ± 0.10 µM, respectively). Easily synthesized in good yields by both solid-phase organic synthesis and classic solution-phase chemistry, this promising candidate could be used as an antiproliferative agent on a variety of cancers, notably pancreatic and ovarian cancers, both having very bad prognoses. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Hauser, Frank M; Hulshof, Janneke W; Rößler, Thorsten; Zimmermann, Ralf; Pütz, Michael
2018-04-18
Chemical waste from the clandestine production of amphetamine is of forensic and environmental importance due to its illegal nature which often leads to dumping into the environment. In this study, 27 aqueous amphetamine waste samples from controlled Leuckart reactions performed in Germany, the Netherlands, and Poland were characterised to increase knowledge about the chemical composition and physicochemical characteristics of such waste. Aqueous waste samples from different reaction steps were analysed to determine characteristic patterns which could be used for classification. Conductivity, pH, density, ionic load, and organic compounds were determined using different analytical methods. Conductivity values ranged from 1 to over 200 mS/cm, pH values from 0 to 14, and densities from 1.0 to 1.3 g/cm 3 . A capillary electrophoresis method with contactless conductivity detection (CE-C 4 D) was developed and validated to quantify chloride, sulphate, formate, ammonium, and sodium ions which were the most abundant ions in the investigated waste samples. A solid-phase extraction sample preparation was used prior to gas chromatography-mass spectrometry analysis to determine the organic compounds. Using the characterisation data of the known samples, it was possible to assign 16 seized clandestine waste samples from an amphetamine production to the corresponding synthesis step. The data also allowed us to draw conclusions about the synthesis procedure and used chemicals. The presented data and methods could support forensic investigations by showing the probative value of synthesis waste when investigating the illegal production of amphetamine. It can also act as starting point to develop new approaches to tackle the problem of clandestine waste dumping. Copyright © 2018 John Wiley & Sons, Ltd.
Synthesis of 3'-, or 5'-, or internal methacrylamido-modified oligonucleotides
Golova, Julia B.; Chernov, Boris K.
2010-04-27
New modifiers were synthesized for incorporation of a methacrylic function in 3'-, 5'- and internal positions of oligonucleotides during solid phase synthesis. A modifier was used for synthesis of 5'-methacrylated oligonucleotides for preparation of microarrays by a co-polymerization method.
Microwave-Assisted Hydantoins Synthesis on Solid Support
ERIC Educational Resources Information Center
Coursindel, Thibault; Martinez, Jean; Parrot, Isabelle
2010-01-01
In this laboratory activity, students are introduced to a three-step synthesis of hydantoin (imidazolidine-2,4-dione), a moiety that is found in many biologically active compounds. Using a microwave oven and solid-support technology, this synthetic experiment is designed for masters-degree candidates working in organic chemistry or upper-level…
Effect of synthesis methods on the Ca{sub 3}Co{sub 4}O{sub 9} thermoelectric ceramic performances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sotelo, A.; Rasekh, Sh.; Torres, M.A.
2015-01-15
Three different synthesis methods producing nanometric grain sizes, coprecipitation with ammonium carbonate, oxalic acid, and by attrition milling have been studied to produce Ca{sub 3}Co{sub 4}O{sub 9} ceramics and compared with the classical solid state route. These three processes have produced high reactive precursors and all the organic material and CaCO{sub 3}·have been decomposed in a single thermal treatment. Coprecipitation leads to pure Ca{sub 3}Co{sub 4}O{sub 9} phase, while attrition milling and classical solid state produce small amounts of Ca{sub 3}Co{sub 2}O{sub 6} secondary phase. Power factor values are similar for all three samples, being slightly lower for the onesmore » produced by attrition milling. These values are much higher than the obtained in samples prepared by the classical solid state method, used as reference. The maximum power factor values determined at 800 °C (∼0.43 mW/K{sup 2} m) are slightly higher than the best reported values obtained in textured ones which also show much higher density values. - Graphical abstract: Impressive raise of PF in Ca{sub 3}Co{sub 4}O{sub 9} thermoelectric materials obtained from nanometric grains. - Highlights: • Ca{sub 3}Co{sub 4}O{sub 9} has been produced by four different methods. • Precursors particle sizes influences on the final performances. • Coprecipitation methods produce single Ca{sub 3}Co{sub 4}O{sub 9} phase. • Power factor reaches values comparable to high density textured materials.« less
Organic compounds in circumstellar and interstellar environments.
Kwok, Sun
2015-06-01
Recent research has discovered that complex organic matter is prevalent throughout the Universe. In the Solar System, it is found in meteorites, comets, interplanetary dust particles, and planetary satellites. Spectroscopic signatures of organics with aromatic/aliphatic structures are also found in stellar ejecta, diffuse interstellar medium, and external galaxies. From space infrared spectroscopic observations, we have found that complex organics can be synthesized in the late stages of stellar evolution. Shortly after the nuclear synthesis of the element carbon, organic gas-phase molecules are formed in the stellar winds, which later condense into solid organic particles. This organic synthesis occurs over very short time scales of about a thousand years. In order to determine the chemical structures of these stellar organics, comparisons are made with particles produced in the laboratory. Using the technique of chemical vapor deposition, artificial organic particles have been created by injecting energy into gas-phase hydrocarbon molecules. These comparisons led us to believe that the stellar organics are best described as amorphous carbonaceous nanoparticles with mixed aromatic and aliphatic components. The chemical structures of the stellar organics show strong similarity to the insoluble organic matter found in meteorites. Isotopic analysis of meteorites and interplanetary dust collected in the upper atmospheres have revealed the presence of pre-solar grains similar to those formed in old stars. This provides a direct link between star dust and the Solar System and raises the possibility that the early Solar System was chemically enriched by stellar ejecta with the potential of influencing the origin of life on Earth.
Tailhades, Julien; Takizawa, Hotake; Gait, Michael J.; Wellings, Don A.; Wade, John D.; Aoki, Yoshitsugu; Shabanpoor, Fazel
2017-01-01
Antisense oligonucleotide (ASO)-based drug development is gaining significant momentum following the recent FDA approval of Eteplirsen (an ASO based on phosphorodiamidate morpholino) and Spinraza (2′-O-methoxyethyl-phosphorothioate) in late 2016. Their attractiveness is mainly due to the backbone modifications which have improved the in vivo characteristics of oligonucleotide drugs. Another class of ASO, based on peptide nucleic acid (PNA) chemistry, is also gaining popularity as a platform for development of gene-specific therapy for various disorders. However, the chemical synthesis of long PNAs, which are more target-specific, remains an ongoing challenge. Most of the reported methodology for the solid-phase synthesis of PNA suffer from poor coupling efficiency which limits production to short PNA sequences of less than 15 residues. Here, we have studied the effect of backbone modifications with Hmb (2-hydroxy-4-methoxybenzyl) and Dmb (2,4-dimethoxybenzyl) to ameliorate difficult couplings and reduce “on-resin” aggregation. We firstly synthesized a library of PNA dimers incorporating either Hmb or Dmb and identified that Hmb is superior to Dmb in terms of its ease of removal. Subsequently, we used Hmb backbone modification to synthesize a 22-mer purine-rich PNA, targeting dystrophin RNA splicing, which could not be synthesized by standard coupling methodology. Hmb backbone modification allowed this difficult PNA to be synthesized as well as to be continued to include a cell-penetrating peptide on the same solid support. This approach provides a novel and straightforward strategy for facile solid-phase synthesis of difficult purine-rich PNA sequences. PMID:29094037
Tailhades, Julien; Takizawa, Hotake; Gait, Michael J; Wellings, Don A; Wade, John D; Aoki, Yoshitsugu; Shabanpoor, Fazel
2017-01-01
Antisense oligonucleotide (ASO)-based drug development is gaining significant momentum following the recent FDA approval of Eteplirsen (an ASO based on phosphorodiamidate morpholino) and Spinraza (2'- O -methoxyethyl-phosphorothioate) in late 2016. Their attractiveness is mainly due to the backbone modifications which have improved the in vivo characteristics of oligonucleotide drugs. Another class of ASO, based on peptide nucleic acid (PNA) chemistry, is also gaining popularity as a platform for development of gene-specific therapy for various disorders. However, the chemical synthesis of long PNAs, which are more target-specific, remains an ongoing challenge. Most of the reported methodology for the solid-phase synthesis of PNA suffer from poor coupling efficiency which limits production to short PNA sequences of less than 15 residues. Here, we have studied the effect of backbone modifications with Hmb (2-hydroxy-4-methoxybenzyl) and Dmb (2,4-dimethoxybenzyl) to ameliorate difficult couplings and reduce "on-resin" aggregation. We firstly synthesized a library of PNA dimers incorporating either Hmb or Dmb and identified that Hmb is superior to Dmb in terms of its ease of removal. Subsequently, we used Hmb backbone modification to synthesize a 22-mer purine-rich PNA, targeting dystrophin RNA splicing, which could not be synthesized by standard coupling methodology. Hmb backbone modification allowed this difficult PNA to be synthesized as well as to be continued to include a cell-penetrating peptide on the same solid support. This approach provides a novel and straightforward strategy for facile solid-phase synthesis of difficult purine-rich PNA sequences.
NASA Astrophysics Data System (ADS)
Tailhades, Julien; Takizawa, Hotake; Gait, Michael J.; Wellings, Don A.; Wade, John D.; Aoki, Yoshitsugu; Shabanpoor, Fazel
2017-10-01
Antisense oligonucleotide (ASO)-based drug development is gaining significant momentum following the recent FDA approval of Eteplirsen (an ASO based on phosphorodiamidate morpholino) and Spinraza (2’-O-methoxyethyl-phosphorothioate) in late 2016. Their attractiveness is mainly due to the backbone modifications which have improved the in vivo characteristics of oligonucleotide drugs. Another class of ASO, based on peptide nucleic acid (PNA) chemistry, is also gaining popularity as a platform for development of gene-specific therapy for various disorders. However, the chemical synthesis of long PNAs, which are more target-specific, remains an ongoing challenge. Most of the reported methodology for the solid-phase synthesis of PNA suffer from poor coupling efficiency which limits production to short PNA sequences of less than 15 residues. Here we have studied the effect of backbone modifications with Hmb (2-hydroxy-4-methoxybenzyl) and Dmb (2,4-dimethoxybenzyl) to ameliorate difficult couplings and reduce “on-resin” aggregation. We firstly synthesized a library of PNA dimers incorporating either Hmb or Dmb and identified that Hmb is superior to Dmb in terms of its ease of removal. Subsequently, we used Hmb backbone modification to synthesize a 22-mer purine-rich PNA, targeting dystrophin RNA splicing, which could not be synthesized by standard coupling methodology. Hmb backbone modification allowed this difficult PNA to be synthesized as well as to be continued to include a cell-penetrating peptide on the same solid support. This approach provides a novel and straightforward strategy for facile solid-phase synthesis of difficult purine-rich PNA sequences.
Rodenko, Boris; Detz, Remko J; Pinas, Victorine A; Lambertucci, Catia; Brun, Reto; Wanner, Martin J; Koomen, Gerrit-Jan
2006-03-01
The rapid increase of resistance to drugs commonly used in the treatment of tropical diseases such as malaria and African sleeping sickness calls for the prompt development of new safe and efficacious drugs. The pathogenic protozoan parasites lack the capability of synthesising purines de novo and they take up preformed purines from their host through various transmembrane transporters. Adenosine derivatives constitute a class of potential therapeutics due to their selective internalisation by these transporters. Automated solid-phase synthesis can speed up the process of lead finding and we pursued the solid-phase synthesis of di- and trisubstituted 5'-carboxamidoadenosine derivatives by using a safety-catch approach. While efforts with Kenner's sulfonamide linker remained fruitless, successful application of the hydrazide safety-catch linker allowed the construction of two representative combinatorial libraries. Their antiprotozoal evaluation identified two compounds with promising activity: N(6)-benzyl-5'-N-phenylcarboxamidoadenosine with an IC(50) value of 0.91 microM against Trypanosoma brucei rhodesiense and N(6)-diphenylethyl-5'-phenylcarboxamidoadenosine with an IC(50) value of 1.8 microM against chloroquine resistant Plasmodium falciparum.
Ramkumar, Shwetha; Fan, Liang-Shih
2013-07-30
A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H.sub.2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO.sub.2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO.sub.3, CaS and CaX.sub.2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO.sub.2, in the presence of synthesis gas, in the presence of H.sub.2 and O.sub.2, under partial vacuum, and combinations thereof.
NASA Astrophysics Data System (ADS)
Afanasiev, Pavel
2018-02-01
A novel inorganic-organic hybrid barium tungstate - ethylene glycol Ba(C2H6O2)W2O7 phase has been prepared by non-aqueous precipitation and characterized. According to powder X-ray diffraction, the solid has an orthorhombic lattice (a = b = 6.415 Å, c = 13.05 Å) and represents a derivative of the H2W2O7 lamellar acid. The Ba(C2H6O2)W2O7 hybrid material is a layered solid and crystallizes as thin plates, which can be further topotacticaly transformed to few-layer WS2 nanoplates. Tungsten sulfide as obtained possesses high specific surface area and increased defectness of layers. Thin-layer WS2 materials as prepared show advantageous properties as hydrogen evolution electrocatalysts, or in combination with TiO2 as co-catalysts for photo catalytic hydrogen production from methanol.
Domene, Xavier; Alcañiz, Josep M; Andrés, Pilar
2008-02-01
Development of methodologies to assess the safety of reusing polluted organic wastes in soil is a priority in Europe. In this study, and coupled with chemical analysis, seven organic wastes were subjected to different aquatic and soil bioassays. Tests were carried out with solid-phase waste and three different waste eluates (water, methanol, and dichloromethane). Solid-phase assays were indicated as the most suitable for waste testing not only in terms of relevance for real situations, but also because toxicity in eluates was generally not representative of the chronic effects in solid-phase. No general correlations were found between toxicity and waste pollutant burden, neither in solid-phase nor in eluate assays, showing the inability of chemical methods to predict the ecotoxicological risks of wastes. On the contrary, several physicochemical parameters reflecting the degree of low organic matter stability in wastes were the main contributors to the acute toxicity seen in collembolans and daphnids.
Solid-Phase Synthesis of Diverse Peptide Tertiary Amides By Reductive Amination
Pels, Kevin; Kodadek, Thomas
2015-01-01
The synthesis of libraries of conformationally-constrained peptide-like oligomers is an important goal in combinatorial chemistry. In this regard an attractive building block is the N-alkylated peptide, also known as peptide tertiary amide (PTA). PTAs are strongly biased conformationally due to allylic 1,3 strain interactions. We report here an improved synthesis of these species on solid supports through the use of reductive amination chemistry using amino acid-terminated, bead-displayed oligomers and diverse aldehydes. The utility of this chemistry is demonstrated by the synthesis of a library of 10,000 mixed peptoid-PTA oligomers. PMID:25695359
Solid-phase synthesis of diverse peptide tertiary amides by reductive amination.
Pels, Kevin; Kodadek, Thomas
2015-03-09
The synthesis of libraries of conformationally constrained peptide-like oligomers is an important goal in combinatorial chemistry. In this regard an attractive building block is the N-alkylated peptide, also known as a peptide tertiary amide (PTA). PTAs are conformationally constrained because of allylic 1,3 strain interactions. We report here an improved synthesis of these species on solid supports through the use of reductive amination chemistry using amino acid-terminated, bead-displayed oligomers and diverse aldehydes. The utility of this chemistry is demonstrated by the synthesis of a library of 10,000 mixed peptoid-PTA oligomers.
Silicon nanowire synthesis by a vapor-liquid-solid approach.
Mao, Aaron; Ng, H T; Nguyen, Pho; McNeil, Melanie; Meyyappan, M
2005-05-01
Synthesis of silicon nanowires is studied by using a vapor-liquid-solid growth technique. Silicon tetrachloride reduction with hydrogen in the gas phase is used with gold serving as catalyst to facilitate growth. Only a narrow set of conditions of SiCl4 concentration and temperature yield straight nanowires. High concentrations and temperatures generally result in particulates, catalyst coverage and deactivation, and coatinglike materials.
Silicon nanowire synthesis by a vapor-liquid-solid approach
NASA Technical Reports Server (NTRS)
Mao, Aaron; Ng, H. T.; Nguyen, Pho; McNeil, Melanie; Meyyappan, M.
2005-01-01
Synthesis of silicon nanowires is studied by using a vapor-liquid-solid growth technique. Silicon tetrachloride reduction with hydrogen in the gas phase is used with gold serving as catalyst to facilitate growth. Only a narrow set of conditions of SiCl4 concentration and temperature yield straight nanowires. High concentrations and temperatures generally result in particulates, catalyst coverage and deactivation, and coatinglike materials.
Cavalli, Gabriel; Banu, Shahanara; Ranasinghe, Rohan T; Broder, Graham R; Martins, Hugo F P; Neylon, Cameron; Morgan, Hywel; Bradley, Mark; Roach, Peter L
2007-01-01
SU-8 is an epoxy-novolac resin and a well-established negative photoresist for microfabrication and microengineering. The photopolymerized resist is an extremely highly crosslinked polymer showing outstanding chemical and physical robustness with residual surface epoxy groups amenable for chemical functionalization. In this paper we describe, for the first time, the preparation and surface modification of SU-8 particles shaped as microbars, the attachment of appropriate linkers, and the successful application of these particles to multistep solid-phase synthesis leading to oligonucleotides and peptides attached in an unambiguous manner to the support surface.
Robles, J; Pedroso, E; Grandas, A
1995-01-01
The synthesis of a nucleopeptide with the sequence -Ser(p5'CATCAT)-Gly-Asp- has been undertaken by either convergent or stepwise solid-phase strategies, both of which use base-labile permanent protecting groups. The coupling of phosphitylated protected peptides onto oligonucleotide-resins did not afford the desired nucleopeptide, which was nevertheless obtained after oligonucleotide elongation at the hydroxyl group of the resin-bound peptide and deprotection under mild basic conditions. A preliminary study on the stability of different nucleopeptides to bases is also reported. PMID:7479079
Zhou, Y; Ts'o, P O
1996-01-01
A synthetic method was developed for the synthesis of oligodeoxyribonucleotides and oligodeoxyribonucleoside methylphosphonates comprised exclusively of the fluorescent 2-pyrimidinone base for the first time. The method utilized the solid-phase 2-cyanoethylphosphoramidite and methylphosphonamidite chemistry for internucleotide couplings and a baselabile oxalyl linkage to anchor the oligomers onto the CPG support. Cleavage of the oligomers from the support was effected by a short treatment of the support with 5% ammonium hydroxide in methanol at room temperature, without any degradation of the base-sensitive 2-pyrimidinone residues or the base-sensitive methylphosphonate backbone. PMID:8758991
Ma, Vu; Bannon, Anthony W; Baumgartner, Jamie; Hale, Clarence; Hsieh, Faye; Hulme, Christopher; Rorrer, Kirk; Salon, John; van Staden, Carlo; Tempest, Paul
2006-10-01
Melanin-concentrating hormone (MCH) is a cyclic 19 amino acid orexigenic neuropeptide. The action of MCH on feeding is thought to involve the activation of its respective G protein-coupled receptor MCH-R1. Consequently, antagonists that block MCH regulated MCH-R1 activity may provide a viable approach to the treatment of diet-induced obesity. This communication reports the discovery of a novel MCH-R1 receptor antagonist, the biarylether 7, identified through high throughput screening. The solid-phase synthesis and structure-activity relationship of related analogs is described.
Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor.
Brzozowski, Martin; O'Brien, Matthew; Ley, Steven V; Polyzos, Anastasios
2015-02-17
CONSPECTUS: The previous decade has witnessed the expeditious uptake of flow chemistry techniques in modern synthesis laboratories, and flow-based chemistry is poised to significantly impact our approach to chemical preparation. The advantages of moving from classical batch synthesis to flow mode, in order to address the limitations of traditional approaches, particularly within the context of organic synthesis are now well established. Flow chemistry methodology has led to measurable improvements in safety and reduced energy consumption and has enabled the expansion of available reaction conditions. Contributions from our own laboratories have focused on the establishment of flow chemistry methods to address challenges associated with the assembly of complex targets through the development of multistep methods employing supported reagents and in-line monitoring of reaction intermediates to ensure the delivery of high quality target compounds. Recently, flow chemistry approaches have addressed the challenges associated with reactions utilizing reactive gases in classical batch synthesis. The small volumes of microreactors ameliorate the hazards of high-pressure gas reactions and enable improved mixing with the liquid phase. Established strategies for gas-liquid reactions in flow have relied on plug-flow (or segmented flow) regimes in which the gas plugs are introduced to a liquid stream and dissolution of gas relies on interfacial contact of the gas bubble with the liquid phase. This approach confers limited control over gas concentration within the liquid phase and is unsuitable for multistep methods requiring heterogeneous catalysis or solid supported reagents. We have identified the use of a gas-permeable fluoropolymer, Teflon AF-2400, as a simple method of achieving efficient gas-liquid contact to afford homogeneous solutions of reactive gases in flow. The membrane permits the transport of a wide range of gases with significant control of the stoichiometry of reactive gas in a given reaction mixture. We have developed a tube-in-tube reactor device consisting of a pair of concentric capillaries in which pressurized gas permeates through an inner Teflon AF-2400 tube and reacts with dissolved substrate within a liquid phase that flows within a second gas impermeable tube. This Account examines our efforts toward the development of a simple, unified methodology for the processing of gaseous reagents in flow by way of development of a tube-in-tube reactor device and applications to key C-C, C-N, and C-O bond forming and hydrogenation reactions. We further describe the application to multistep reactions using solid-supported reagents and extend the technology to processes utilizing multiple gas reagents. A key feature of our work is the development of computer-aided imaging techniques to allow automated in-line monitoring of gas concentration and stoichiometry in real time. We anticipate that this Account will illustrate the convenience and benefits of membrane tube-in-tube reactor technology to improve and concomitantly broaden the scope of gas/liquid/solid reactions in organic synthesis.
Organic synthesis in a changing world.
Ley, Steven V; Baxendale, Ian R
2002-01-01
This article is based on a lecture presented to the Chemical Society of Japan at Wasada University on March 27, 2002, by Professor Steven V. Ley. The lecture, "Organic Synthesis in a Changing World," was a comprehensive account of the ongoing research efforts of professor Ley's group in the development and application of solid-supported reagents and scavengers for use in organic synthesis. Copyright 2002 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Qvit, Nir; Barda, Yaniv; Gilon, Chaim; Shalev, Deborah E.
2007-01-01
This laboratory experiment provides a unique opportunity for students to synthesize three analogues of aspartame, a commonly used artificial sweetener. The students are introduced to the powerful and useful method of parallel synthesis while synthesizing three dipeptides in parallel using solid-phase peptide synthesis (SPPS) and simultaneous…
Combinatorial synthesis of phosphors using arc-imaging furnace
Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo
2011-01-01
We have applied a novel ‘melt synthesis technique’ rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10–60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1–5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10–60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions. PMID:27877432
Combinatorial synthesis of phosphors using arc-imaging furnace
NASA Astrophysics Data System (ADS)
Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo
2011-10-01
We have applied a novel 'melt synthesis technique' rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10-60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1-5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10-60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions.
NASA Astrophysics Data System (ADS)
Krzton-Maziopa, Anna; Pesko, Edyta; Puzniak, Roman
2018-06-01
Layered iron-based superconducting chalcogenides intercalated with molecular species are the subject of intensive studies, especially in the field of solid state chemistry and condensed matter physics, because of their intriguing chemistry and tunable electric and magnetic properties. Considerable progress in the research, revealing superconducting inorganic–organic hybrid materials with transition temperatures to superconducting state, T c, up to 46 K, has been brought in recent years. These novel materials are synthesized by low-temperature intercalation of molecular species, such as solvates of alkali metals and nitrogen-containing donor compounds, into layered FeSe-type structure. Both the chemical nature as well as orientation of organic molecules between the layers of inorganic host, play an important role in structural modifications and may be used for fine tuning of superconducting properties. Furthermore, a variety of donor species compatible with alkali metals, as well as the possibility of doping also in the host structure (either on Fe or Se sites), makes this system quite flexible and gives a vast array of new materials with tunable electric and magnetic properties. In this review, the main aspects of intercalation chemistry are discussed with a particular attention paid to the influence of the unique nature of intercalating species on the crystal structure and physical properties of the hybrid inorganic–organic materials. To get a full picture of these materials, a comprehensive description of the most effective chemical and electrochemical methods, utilized for synthesis of intercalated species, with critical evaluation of their strong and weak points, related to feasibility of synthesis, phase purity, crystal size and morphology of final products, is included as well.
Synthesis of high-oxidation Y-Ba-Cu-O phases in superoxygenated thin films
NASA Astrophysics Data System (ADS)
Zhang, H.; Gauquelin, N.; McMahon, C.; Hawthorn, D. G.; Botton, G. A.; Wei, J. Y. T.
2018-03-01
It is known that solid-state reaction in high-pressure oxygen can stabilize high-oxidation phases of Y-Ba-Cu-O superconductors in powder form. We extend this superoxygenation concept of synthesis to thin films which, due to their large surface-to-volume ratio, are more reactive thermodynamically. Epitaxial thin films of YBa2Cu3O7 -δ grown by pulsed laser deposition are annealed at up to 700 atm O2 and 900 ∘C , in conjunction with Cu enrichment by solid-state diffusion. The films show the clear formation of Y2Ba4Cu7O15 -δ and Y2Ba4Cu8O16 as well as regions of YBa2Cu5O9 -δ and YBa2Cu6O10 -δ phases, according to scanning transmission electron microscopy, x-ray diffraction, and x-ray absorption spectroscopy. Similarly annealed YBa2Cu3O7 -δ powders show no phase conversion. Our results demonstrate a route of synthesis towards discovering more complex phases of cuprates and other superconducting oxides.
Synthesis of N-peptide-6-amino-D-luciferin Conjugates.
Kovács, Anita K; Hegyes, Péter; Szebeni, Gábor J; Nagy, Lajos I; Puskás, László G; Tóth, Gábor K
2018-01-01
A general strategy for the synthesis of N -peptide-6-amino-D-luciferin conjugates has been developed. The applicability of the strategy was demonstrated with the preparation of a known substrate, N -Z-Asp-Glu-Val-Asp-6-amino-D-luciferin ( N -Z-DEVD-aLuc). N -Z-DEVD-aLuc was obtained via a hybrid liquid/solid phase synthesis method, in which the appropriately protected C-terminal amino acid was coupled to 6-amino-2-cyanobenzothiazole and the resulting conjugate was reacted with D-cysteine in order to get the protected amino acid-6-amino-D-luciferin conjugate, which was then attached to resin. The resulting loaded resin was used for the solid-phase synthesis of the desired N -peptide-6-amino-D-luciferin conjugate without difficulties, which was then attested with NMR spectroscopy and LC-MS, and successfully tested in a bioluminescent system.
Synthesis of N-peptide-6-amino-D-luciferin Conjugates
Kovács, Anita K.; Hegyes, Péter; Szebeni, Gábor J.; Nagy, Lajos I.; Puskás, László G.; Tóth, Gábor K.
2018-01-01
A general strategy for the synthesis of N-peptide-6-amino-D-luciferin conjugates has been developed. The applicability of the strategy was demonstrated with the preparation of a known substrate, N-Z-Asp-Glu-Val-Asp-6-amino-D-luciferin (N-Z-DEVD-aLuc). N-Z-DEVD-aLuc was obtained via a hybrid liquid/solid phase synthesis method, in which the appropriately protected C-terminal amino acid was coupled to 6-amino-2-cyanobenzothiazole and the resulting conjugate was reacted with D-cysteine in order to get the protected amino acid-6-amino-D-luciferin conjugate, which was then attached to resin. The resulting loaded resin was used for the solid-phase synthesis of the desired N-peptide-6-amino-D-luciferin conjugate without difficulties, which was then attested with NMR spectroscopy and LC-MS, and successfully tested in a bioluminescent system. PMID:29725588
Defects in electro-optically active polymer solids
NASA Technical Reports Server (NTRS)
Martin, David C.
1993-01-01
There is considerable current interest in the application of organic and polymeric materials for electronic and photonic devices. The rapid, non-linear optical (NLO) response of these materials makes them attractive candidates for waveguides, interferometers, and frequency doublers. In order to realize the full potential of these systems, it is necessary to develop processing schemes which can fabricate these molecules into ordered arrangements. There is enormous potential for introducing well-defined, local variations in microstructure to control the photonic properties of organic materials by rational 'defect engineering.' This effort may eventually become as technologically important as the manipulation of the electronic structure of solid-state silicon based devices is at present. The success of this endeavor will require complimentary efforts in the synthesis, processing, and characterization of new materials. Detailed information about local microstructure will be necessary to understand the influence of symmetry breaking of the solid phases near point, line, and planar defects. In metallic and inorganic polycrystalline materials, defects play an important role in modifying macroscopic properties. To understand the influence of particular defects on the properties of materials, it has proven useful to isolate the defect by creating bicrystals between two-component single crystals. In this way the geometry of a grain boundary defect and its effect on macroscopic properties can be determined unambiguously. In crystalline polymers it would be valuable to establish a similar depth of understanding about the relationship between defect structure and macroscopic properties. Conventionally processed crystalline polymers have small crystallites (10-20 nm), which implies a large defect density in the solid state. Although this means that defects may play an important or even dominant role in crystalline or liquid crystalline polymer systems, it also makes it difficult to isolate the effect of a particular boundary on a macroscopically observed property. However, the development of solid-state and thin-film polymerization mechanisms have facilitated the synthesis of highly organized and ordered polymers. These systems provide a unique opportunity to isolate and investigate in detail the structure of covalently bonded solids near defects and the effect of these defects on the properties of the material. The study of defects in solid polymers has been the subject of a recent review (Martin, 1993).
Solid-phase synthesis of molecularly imprinted nanoparticles.
Canfarotta, Francesco; Poma, Alessandro; Guerreiro, Antonio; Piletsky, Sergey
2016-03-01
Molecularly imprinted polymers (MIPs) are synthetic materials, generally based on acrylic or methacrylic monomers, that are polymerized in the presence of a specific target molecule called the 'template' and capable of rebinding selectively to this target molecule. They have the potential to be low-cost and robust alternatives to biomolecules such as antibodies and receptors. When prepared by traditional synthetic methods (i.e., with free template in solution), their usefulness has been limited by high binding site heterogeneity, the presence of residual template and the fact that the production methods are complex and difficult to standardize. To overcome some of these limitations, we developed a method for the synthesis of MIP nanoparticles (nanoMIPs) using an innovative solid-phase approach, which relies on the covalent immobilization of the template molecules onto the surface of a solid support (glass beads). The obtained nanoMIPs are virtually free of template and demonstrate high affinity for the target molecule (e.g., melamine and trypsin in our published work). Because of an affinity separation step performed on the solid phase after polymerization, poor binders and unproductive polymer are removed, so the final product has more uniform binding characteristics. The overall protocol, starting from the immobilization of the template onto the solid phase and including the purification and characterization of the nanoparticles, takes up to 1 week.
Fast conventional Fmoc solid-phase peptide synthesis with HCTU.
Hood, Christina A; Fuentes, German; Patel, Hirendra; Page, Karen; Menakuru, Mahendra; Park, Jae H
2008-01-01
1H-Benzotriazolium 1-[bis(dimethyl-amino)methylene]-5-chloro-hexafluorophosphate (1-),3-oxide (HCTU) is a nontoxic, nonirritating and noncorrosive coupling reagent. Seven biologically active peptides (GHRP-6, (65-74)ACP, oxytocin, G-LHRH, C-peptide, hAmylin(1-37), and beta-amyloid(1-42)) were synthesized with reaction times reduced to deprotection times of 3 min or less and coupling times of 5 min or less using HCTU as the coupling reagent. Expensive coupling reagents or special techniques were not used. Total peptide synthesis times were dramatically reduced by as much as 42.5 h (1.8 days) without reducing the crude peptide purities. It was shown that HCTU can be used as an affordable, efficient coupling reagent for fast Fmoc solid-phase peptide synthesis.
Rocío-Bautista, Priscilla; Pacheco-Fernández, Idaira; Pasán, Jorge; Pino, Verónica
2016-10-05
Solid-phase microextraction (SPME) is a powerful technique commonly used in sample preparation for extraction/preconcentration of analytes from a wide variety of samples. Among the trends in improving SPME applications, current investigations are focused on the development of novel coatings able to improve the extraction efficiency, sensitivity, and thermal and mechanical stability, within other properties, of current commercial SPME fibers. Metal-organic frameworks (MOFs) merit to be highlighted as promising sorbent materials in SPME schemes. MOFs are porous hybrid materials composed by metal ions and organic linkers, presenting the highest surface areas known, with ease synthesis and high tuneability, together with adequate chemical and thermal stability. For MOF based-SPME fibers, it results important to pretreat adequately the SPME supports to ensure the correct formation of the MOF onto the fiber or the attachment MOF-support. This, in turn, will increase the final stability of the fiber while generating uniform coatings. This review provides a critical overview of the current state of the use of MOFs as SPME coatings, not only highlighting the advantages of these materials versus commercial SPME coatings in terms of stability, selectivity, and sensitivity; but also insightfully describing the current methods to obtain reproducible MOF-based SPME coatings. Copyright © 2016 Elsevier B.V. All rights reserved.
Zou, Jianhua; Dai, Qiu; Wang, Jinhai; Liu, Xiong; Huo, Qun
2007-07-01
A solid phase modification method using anionic exchange resin as polymer support was developed for the synthesis of monofunctional gold nanoparticles. Based on a "catch and release" mechanism to control the number of functional groups attached to the nanoparticle surface, bifunctional thiol ligands with a carboxylic acid end group were first immobilized at a controlled density on anionic exchange resin through electrostatic interactions. Gold nanoparticles were then immobilized to the anionic exchange resin by a one-to-one place exchange reaction between resin-bound thiol ligands and butanethiol-protected gold nanoparticles in solution. After cleaving off from the resin under mild conditions, gold nanoparticles with a single carboxyl group attached to the surface were obtained as the major product. Experimental conditions such as the solvents used for ligand loading and solid phase place exchange reaction, and the loading density of the ligands, were found to play a critical role towards the successful synthesis of monofunctional nanoparticles. Overall, the noncovalent bond-based ligand immobilization technique reported here greatly simplified the process of solid phase monofunctionalization of nanoparticles compared to a previously reported covalent bond-based ligand immobilization technique.
NASA Astrophysics Data System (ADS)
Zhang, Yongliang; Cai, Jing; Yang, Lijun; Wu, Qiang; Wang, Xizhang; Hu, Zheng
2017-09-01
Nanomaterial synthesis is experiencing a profound evolution from empirical science ("cook-and-look") to prediction and design, which depends on the deep insight into the growth mechanism. Herein, we report a generalized prediction of the growth of S i3N4 nanowires by nitriding F e28S i72 alloy particles across different phase regions based on our finding of the phase-equilibrium-dominated vapor-liquid-solid (PED-VLS) mechanism. All the predictions about the growth of S i3N4 nanowires, and the associated evolutions of lattice parameters and geometries of the coexisting Fe -Si alloy phases, are experimentally confirmed quantitatively. This progress corroborates the general validity of the PED-VLS mechanism, which could be applied to the design and controllable synthesis of various one-dimensional nanomaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, Katsuhisa, E-mail: k.murakami@bk.tsukuba.ac.jp; Dong, Tianchen; Kajiwara, Yuya
2014-06-16
Single- and double-layer graphene nanoribbons (GNRs) with widths of around 10 nm were synthesized directly onto an insulating substrate by solid-phase graphitization using a gallium vapor catalyst and carbon templates made of amyloid fibrils. Subsequent investigation revealed that the crystallinity, conductivity, and carrier mobility were all improved by increasing the temperature of synthesis. The carrier mobility of the GNR synthesized at 1050 °C was 0.83 cm{sup 2}/V s, which is lower than that of mechanically exfoliated graphene. This is considered to be most likely due to electron scattering by the defects and edges of the GNRs.
Synthesis and characterization of vanadiumoxidecatalysts supported on copper orthophosphates
NASA Astrophysics Data System (ADS)
Ouchabi, M.; Baalala, M.; Elaissi, A.; Loulidi, I.; Bensitel, M.
2017-03-01
Synthesis of a pure copper orthophosphate (CuP) prepared by Coprecipitation, and CuP modified by impregnation of vanadium (2-12 wt % of V2O5) have been carried out. The solids obtained were investigated as synthesized or after calcination by various physico-chemical techniques such as X-Ray Diffraction (XRD), Infrared Spectroscopy (IR), Thermogravimetric analysis (TGA), and differential thermal analysis (DTA). The results revealed that the solids V/CuP consisted of copper orthophosphate Cu3(PO4)2 as major phases, together with V2O5 as minor phase. The diffraction lines of V2O5 increase by increasing the vanadium content.
Francis, Andrew J; Resendiz, Marino J E
2017-07-28
Solid-phase synthesis has been used to obtain canonical and modified polymers of nucleic acids, specifically of DNA or RNA, which has made it a popular methodology for applications in various fields and for different research purposes. The procedure described herein focuses on the synthesis, purification, and characterization of dodecamers of RNA 5'-[CUA CGG AAU CAU]-3' containing zero, one, or two modifications located at the C2'-O-position. The probes are based on 2-thiophenylmethyl groups, incorporated into RNA nucleotides via standard organic synthesis and introduced into the corresponding oligonucleotides via their respective phosphoramidites. This report makes use of phosphoramidite chemistry via the four canonical nucleobases (Uridine (U), Cytosine (C), Guanosine (G), Adenosine (A)), as well as 2-thiophenylmethyl functionalized nucleotides modified at the 2'-O-position; however, the methodology is amenable for a large variety of modifications that have been developed over the years. The oligonucleotides were synthesized on a controlled-pore glass (CPG) support followed by cleavage from the resin and deprotection under standard conditions, i.e., a mixture of ammonia and methylamine (AMA) followed by hydrogen fluoride/triethylamine/N-methylpyrrolidinone. The corresponding oligonucleotides were purified via polyacrylamide electrophoresis (20% denaturing) followed by elution, desalting, and isolation via reversed-phase chromatography (Sep-pak, C18-column). Quantification and structural parameters were assessed via ultraviolet-visible (UV-vis) and circular dichroism (CD) photometric analysis, respectively. This report aims to serve as a resource and guide for beginner and expert researchers interested in embarking in this field. It is expected to serve as a work-in-progress as new technologies and methodologies are developed. The description of the methodologies and techniques within this document correspond to a DNA/RNA synthesizer (refurbished and purchased in 2013) that uses phosphoramidite chemistry.
Organ, Michael G; Mayer, Stanislas
2003-01-01
An effective synthesis of 4-(5-iodo-3-methylpyrazolyl) phenylsulfonamide has been developed. This aromatic iodide template served as an efficient oxidative addition partner for the preparation of a solution-phase library of Celecoxib analogues via Suzuki coupling using Pd/C, a readily filterable catalyst.
Elucidation of the surface characteristics and electrochemistry of high-performance LiNiO 2
Xu, Jing; Lin, Feng; Nordlund, Dennis; ...
2016-02-25
Phase pure LiNiO 2 was prepared using a solid-state method and the optimal synthesis conditions led to a remarkably high capacity of 200 mA h g $-$1 with excellent retention. The combination of bulk and surface characterization elucidated an essential role of the excess Li in phase formation during synthesis and the subsequent electrochemical performance.
ISOLATING AND FRACTIONATING ORGANIC TOXICANTS IN SEDIMENTS: EVALUATION OF AN EXPERIMENTAL APPROACH
Most solid-phase sediment TIE techniques for organic chemicals have been focused on solid phase sorptive techniques, such as amending contaminated sediments with the carbonaceousresin, Ambersorb coconut charcoal, or XAD resin to reduce toxicity caused by organic contaminants. Cha...
ERIC Educational Resources Information Center
Marchetti, Louis; DeBoef, Brenton
2015-01-01
A contemporary approach to the synthesis and purification of several UV-active dipeptides has been developed for the second-year organic laboratory. This experiment exposes students to the important technique of solution-phase peptide synthesis and allows an instructor to highlight the parallel between what they are accomplishing in the laboratory…
Lan, Hangzhen; Pan, Daodong; Sun, Yangying; Guo, Yuxing; Wu, Zhen
2016-09-21
Cathodic electrodeposition (CED) has received great attention in metal-organic frameworks (MOFs) synthesis due to its distinguished properties including simplicity, controllability, mild synthesis conditions, and product continuously. Here, we report the fabrication of thin (Et3NH)2Zn3(BDC)4 (E-MOF-5) film coated solid phase microextraction (SPME) fiber by a one-step in situ cathodic electrodeposition strategy. Several etched stainless steel fibers were placed in parallel in order to achieve simultaneously electrochemical polymerization. The influence of different polymerization parameters Et3NHCl concentration and polymerization time were evaluated. The proposed method requires only 20 min for the preparation of E-MOF-5 coating. The optimum coating showed excellent thermal stability and mechanical durability with a long lifetime of more than 120 repetitions SPME operations, and also exhibited higher extraction selectivity and capacity to four estrogens than commonly-used commercial PDMS coating. The limits of detection for the estrogens were 0.17-0.56 ng mL(-1). Fiber-to-fiber reproducibility (n = 8) was in the respective ranges of 3.5%-6.1% relative standard deviation (RSD) for four estrogens for triplicate measurements at 200 ng mL(-1). Finally, the (E-MOF-5) coated fiber was evaluated for ethinylestradiol (EE2), bisphenol A (BPA), diethylstilbestrol (DES), and hexestrol (HEX) extraction in the spiked milk samples. The extraction performance of this new coating was satisfied enough for repeatable use without obvious decline. Copyright © 2016 Elsevier B.V. All rights reserved.
Self-assembly of large-scale crack-free gold nanoparticle films using a ‘drain-to-deposit’ strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Guang; Hallinan, Daniel T.
2016-04-26
Gold nanoparticles are widely studied due to the ease of controlled synthesis, facile surface modification, and interesting physical properties. However, a technique for depositing large-area, crack-free monolayers on solid substrates is lacking. Herein is presented a method for accomplishing this. Spherical gold nanoparticles were synthesized as an aqueous dispersion. Assembly into monolayers and ligand exchange occurred simultaneously at an organic/aqueous interface. Then the monolayer film was deposited onto arbitrary solid substrates by slowly pumping out the lower, aqueous phase. This allowed the monolayer film (and liquid–liquid interface) to descend without significant disturbance, eventually reaching substrates contained in the aqueous phase.more » The resulting macroscopic quality of the films was found to be superior to films transferred by Langmuir techniques. The surface plasmon resonance and Raman enhancement of the films were evaluated and found to be uniform across the surface of each film.« less
Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids
NASA Astrophysics Data System (ADS)
Liu, Mengxia; Voznyy, Oleksandr; Sabatini, Randy; García de Arquer, F. Pelayo; Munir, Rahim; Balawi, Ahmed Hesham; Lan, Xinzheng; Fan, Fengjia; Walters, Grant; Kirmani, Ahmad R.; Hoogland, Sjoerd; Laquai, Frédéric; Amassian, Aram; Sargent, Edward H.
2017-02-01
Bandtail states in disordered semiconductor materials result in losses in open-circuit voltage (Voc) and inhibit carrier transport in photovoltaics. For colloidal quantum dot (CQD) films that promise low-cost, large-area, air-stable photovoltaics, bandtails are determined by CQD synthetic polydispersity and inhomogeneous aggregation during the ligand-exchange process. Here we introduce a new method for the synthesis of solution-phase ligand-exchanged CQD inks that enable a flat energy landscape and an advantageously high packing density. In the solid state, these materials exhibit a sharper bandtail and reduced energy funnelling compared with the previous best CQD thin films for photovoltaics. Consequently, we demonstrate solar cells with higher Voc and more efficient charge injection into the electron acceptor, allowing the use of a closer-to-optimum bandgap to absorb more light. These enable the fabrication of CQD solar cells made via a solution-phase ligand exchange, with a certified power conversion efficiency of 11.28%. The devices are stable when stored in air, unencapsulated, for over 1,000 h.
Structural studies of the crystallisation of microporous materials
NASA Astrophysics Data System (ADS)
Davies, Andrew Treharne
A range of powerful synchrotron radiation characterisation techniques have been used to study fundamental aspects of the fonnation of microporous solids, specifically alumi nosilicates, heteroatom substituted aluminophosphates and titanosilicates. This work has been performed with the aim of investigating in situ the structural changes occurring during crystallisation and post synthetic treatment. In situ EDXRD was used to follow the crystallisation of these materials under a wide range of synthesis conditions using a hydrothermal cell and a solid-state detector array. A quantitative analysis of the crystallisation kinetics was performed for the large pore aluminosilicate, zeolite A, using a simple mathematical model to calculate the activation energy of formation. The results obtained were found to closely agree with both the experimental results and theoretical models of others. A qualitative study of the effect of altering the synthesis conditions was also investigated for this material. Similar kinetic studies were then performed for a range of microporous aluminophosphates and their cobalt substituted derivatives in order to follow the effects of varying synthesis conditions such as the synthesis temperature, organic template type, and cobalt concentration. Distinct trends were noted in the formation times, stability and nature of the resulting crystalline phases as conditions were varied. The relationship between the cobalt and organic template molecules during crystallisation was considered in some detail with reference to other experimental data and theoretical models. The alumi nophosphate studies were subsequently extended to a range of other heteroatom substituted aluminophosphates, using in situ EDXRD, complimented by EXAFS, which allowed investigation of the local environments around the heteroatoms within the microporous structure. EDXRD and EXAFS studies have been performed on the microporous titanosilicate, ETS-10, while the thermal stability of this material has also been investigated in situ using synchrotron X-ray diffraction in conjunction with a high temperature environmental cell.
Wiehn, Matthias S; Lindell, Stephen D; Bräse, Stefan
2009-01-01
An efficient method to synthesize gem-difluorinated compounds on solid supports is described. The strategy is based on the design of a novel sulfur linker system that enables, to the best of our knowledge for the first time, the release of target structures from the resin under simultaneous fluorination. Starting from an immobilized dithiol, coupling with an excess of aldehyde or ketone furnished dithianes. These can be further functionalized prior to release from the resin using our newly developed fluorinating cleavage conditions. Amide forming reactions, palladium-catalyzed reactions (Heck, Suzuki, and Sonogashira couplings), reductions, alkylations, and olefinations were successfully explored on the linker. The difluorinated target substances were obtained in modest to excellent yields and in high purities.
Vivar-Ocampo, Rodrigo; Pardo, Lorena; Ávila, David; Morán, Emilio; González, Amador M.; Bucio, Lauro; Villafuerte-Castrejón, María-Elena
2017-01-01
Research and development of lead-free piezoelectric materials are still the hottest topics in the field of piezoelectricity. One of the most promising lead-free family of compounds to replace lead zirconate–titanate for actuators is that of Bi0.50Na0.50TiO3 (BNT) based solid solutions. The pseudo-binary (1 − x)Bi0.50Na0.50TiO3–xBa1 − yCayTiO3 system has been proposed for high temperature capacitors and not yet fully explored as piezoelectric material. In this work, the solid solution with x = 0.06 and y = 0.10 was obtained by two different synthesis routes: solid state and Pechini, aiming at using reduced temperatures, both in synthesis (<800 °C) and sintering (<1150 °C), while maintaining appropriated piezoelectric performance. Crystal structure, ceramic grain size, and morphology depend on the synthesis route and were analyzed by X-ray diffraction, together with scanning and transmission electron microscopy. The effects of processing and ceramic microstructure on the structural, dielectric, ferroelectric, and piezoelectric properties were discussed in terms of a shift of the Morphotropic Phase Boundary, chemically induced by the synthesis route. PMID:28773096
Vivar-Ocampo, Rodrigo; Pardo, Lorena; Ávila, David; Morán, Emilio; González, Amador M; Bucio, Lauro; Villafuerte-Castrejón, María-Elena
2017-07-01
Research and development of lead-free piezoelectric materials are still the hottest topics in the field of piezoelectricity. One of the most promising lead-free family of compounds to replace lead zirconate-titanate for actuators is that of Bi 0.50 Na 0.50 TiO₃ (BNT) based solid solutions. The pseudo-binary (1 - x )Bi 0.50 Na 0.50 TiO₃- x Ba 1 - y Ca y TiO₃ system has been proposed for high temperature capacitors and not yet fully explored as piezoelectric material. In this work, the solid solution with x = 0.06 and y = 0.10 was obtained by two different synthesis routes: solid state and Pechini, aiming at using reduced temperatures, both in synthesis (<800 °C) and sintering (<1150 °C), while maintaining appropriated piezoelectric performance. Crystal structure, ceramic grain size, and morphology depend on the synthesis route and were analyzed by X-ray diffraction, together with scanning and transmission electron microscopy. The effects of processing and ceramic microstructure on the structural, dielectric, ferroelectric, and piezoelectric properties were discussed in terms of a shift of the Morphotropic Phase Boundary, chemically induced by the synthesis route.
The Gaseous Phase as a Probe of the Astrophysical Solid Phase Chemistry
NASA Astrophysics Data System (ADS)
Abou Mrad, Ninette; Duvernay, Fabrice; Isnard, Robin; Chiavassa, Thierry; Danger, Grégoire
2017-09-01
In support of space missions and spectroscopic observations, laboratory experiments on ice analogs enable a better understanding of organic matter formation and evolution in astrophysical environments. Herein, we report the monitoring of the gaseous phase of processed astrophysical ice analogs to determine if the gaseous phase can elucidate the chemical mechanisms and dominant reaction pathways occurring in the solid ice subjected to vacuum ultra-violet (VUV) irradiation at low temperature and subsequently warmed. Simple (CH3OH), binary (H2O:CH3OH, CH3OH:NH3), and ternary ice analogs (H2O:CH3OH:NH3) were VUV-processed and warmed. The evolution of volatile organic compounds in the gaseous phase shows a direct link between their relative abundances in the gaseous phase, and the radical and thermal chemistries modifying the initial ice composition. The correlation between the gaseous and solid phases may play a crucial role in deciphering the organic composition of astrophysical objects. As an example, possible solid compositions of the comet Lovejoy are suggested using the abundances of organics in its comae.
Solid-phase synthesis and chemical space analysis of a 190-membered alkaloid/terpenoid-like library
Moura-Letts, Gustavo; DiBlasi, Christine M.; Bauer, Renato A.; Tan, Derek S.
2011-01-01
Alkaloid and terpenoid natural products display an extensive array of chemical frameworks and biological activities. However such scaffolds remain underrepresented in current screening collections and are, thus, attractive targets for the synthesis of natural product-based libraries that access underexploited regions of chemical space. Recently, we reported a systematic approach to the stereoselective synthesis of multiple alkaloid/terpenoid-like scaffolds using transition metal-mediated cycloaddition and cyclization reactions of enyne and diyne substrates assembled on a tert-butylsulfinamide lynchpin. We report herein the synthesis of a 190-membered library of alkaloid/terpenoid-like molecules using this synthetic approach. Translation to solid-phase synthesis was facilitated by the use of a tert-butyldiarylsilyl (TBDAS) linker that closely mimics the tert-butyldiphenysilyl protecting group used in the original solution-phase route development work. Unexpected differences in stereoselectivity and regioselectivity were observed in some reactions when carried out on solid support. Further, the sulfinamide moiety could be hydrolyzed or oxidized efficiently without compromising the TBDAS linker to provide additional amine and sulfonamide functionalities. Principal component analysis of the structural and physicochemical properties of these molecules confirmed that they access regions of chemical space that overlap with bona fide natural products and are distinct from areas addressed by conventional synthetic drugs and drug-like molecules. The influences of scaffolds and substituents were also evaluated, with both found to have significant impacts on location in chemical space and three-dimensional shape. Broad biological evaluation of this library will provide valuable insights into the abilities of natural product-based libraries to access similarly underexploited regions of biological space. PMID:21451137
Nagel, Lilly; Plattner, Carolin; Budke, Carsten; Majer, Zsuzsanna; DeVries, Arthur L; Berkemeier, Thomas; Koop, Thomas; Sewald, Norbert
2011-08-01
In Arctic and Antarctic marine regions, where the temperature declines below the colligative freezing point of physiological fluids, efficient biological antifreeze agents are crucial for the survival of polar fish. One group of such agents is classified as antifreeze glycoproteins (AFGP) that usually consist of a varying number (n = 4-55) of [AAT]( n )-repeating units. The threonine side chain of each unit is glycosidically linked to β-D: -galactosyl-(1 → 3)-α-N-acetyl-D: -galactosamine. These biopolymers can be considered as biological antifreeze foldamers. A preparative route for stepwise synthesis of AFGP allows for efficient synthesis. The diglycosylated threonine building block was introduced into the peptide using microwave-enhanced solid phase synthesis. By this versatile solid phase approach, glycosylated peptides of varying sequences and lengths could be obtained. Conformational studies of the synthetic AFGP analogs were performed by circular dichroism experiments (CD). Furthermore, the foldamers were analysed microphysically according to their inhibiting effect on ice recrystallization and influence on the crystal habit.
Structure Evolution and Reactivity of the Sc(2- x)V xO3+δ (0 ≤ x ≤ 2.0) System.
Lussier, Joey A; Simon, Fabian J; Whitfield, Pamela S; Singh, Kalpana; Thangadurai, Venkataraman; Bieringer, Mario
2018-05-07
Solid oxide fuel cells (SOFCs) are solid-state electrochemical devices that directly convert chemical energy of fuels into electricity with high efficiency. Because of their fuel flexibility, low emissions, high conversion efficiency, no moving parts, and quiet operation, they are considered as a promising energy conversion technology for low carbon future needs. Solid-state oxide and proton conducting electrolytes play a crucial role in improving the performance and market acceptability of SOFCs. Defect fluorite phases are some of the most promising fast oxide ion conductors for use as electrolytes in SOFCs. We report the synthesis, structure, phase diagram, and high-temperature reactivity of the Sc (2- x) V x O 3+δ (0 ≤ x ≤ 2.00) oxide defect model system. For all Sc (2- x) V x O 3.0 phases with x ≤ 1.08 phase-pure bixbyite-type structures are found, whereas for x ≥ 1.68 phase-pure corundum structures are reported, with a miscibility gap found for 1.08 < x < 1.68. Structural details obtained from the simultaneous Rietveld refinements using powder neutron and X-ray diffraction data are reported for the bixbyite phases, demonstrating a slight V 3+ preference toward the 8b site. In situ X-ray diffraction experiments were used to explore the oxidation of the Sc (2- x) V x O 3.0 phases. In all cases ScVO 4 was found as a final product, accompanied by Sc 2 O 3 for x < 1.0 and V 2 O 5 when x > 1.0; however, the oxidative pathway varied greatly throughout the series. Comments are made on different synthesis strategies, including the effect on crystallinity, reaction times, rate-limiting steps, and reaction pathways. This work provides insight into the mechanisms of solid-state reactions and strategic guidelines for targeted materials synthesis.
Alternative synthetic approaches for metal-organic frameworks: transformation from solid matters.
Zhan, Guowu; Zeng, Hua Chun
2016-12-20
Developing economic and sustainable synthetic strategies for metal-organic frameworks (MOFs) is imperative for promoting MOF materials into large scale industrial use. Very recently, an alternative strategy for MOF synthesis by using solvent-insoluble "solid matters" as cation reservoirs and/or templates has been developed to accomplish this goal, in which the solid matters often refer to metals, metal oxides, hydroxides, carbonates, and so forth, but excluding the soluble metal salts which have been prevailingly used in MOF synthesis. Although most of the pioneering activities in this field have just started in the past 5 years, remarkable achievements have been made covering the synthesis, functionalization, positioning, and applications. A great number of MOFs in powder form, thin-films, or membranes, have been prepared through such solid-to-MOF transformations. This field is rapidly developing and expanding, and the number of related scientific publications has strikingly increased over the last few years. The aim of this review is to summarise the latest developments, highlight the present state-of-the-art, and also provide an overview for future research directions.
NASA Astrophysics Data System (ADS)
Wang, Xiangqin; Yu, Zengliang
2003-08-01
In this paper, samples of solid organic sodium salts (sodium formate, sodium acetate and sodium benzoate) were irradiated by low-energy N+ ions. The induced damage was detected by infrared (FT-IR). It is shown that a new cyano group (-CN) and amino group (-NH2) were formed in the irradiated sodium carbroxylic sample with N+ ion irradiation. The experimental results examined the effect of N+ ion irradiation by reacting with sodium salt molecules, and presented a new way for the synthesis of nitrogenous compound by low-energy ion irradiation.
New immobilisation protocol for the template used in solid-phase synthesis of MIP nanoparticles
NASA Astrophysics Data System (ADS)
Chen, Lu; Muhammad, Turghun; Yakup, Burabiye; Piletsky, Sergey A.
2017-06-01
As a novel imprinting method, solid-phase synthesis has proven to be a promising approach to prepare polymer nanoparticles with specific recognition sites for a template molecule. In this method, imprinted polymer nanoparticles were synthesized using template immobilized on a solid support. Herein, preparation of immobilized templates on quartz chips through homogeneous route was reported as an efficient alternative strategy to heterogeneous one. The template molecule indole-3-butyric acid (IBA) was reacted with 3-aminopropyltriethoxysilane (APTES) to produce silylated template (IBA-APTES), and it was characterized by IR, 1H NMR and GC-MS. Then, the silylated template molecule was grafted onto the activated surfaces of quartz chip to prepare immobilized template (SiO2@IBA-APTES). The immobilization was confirmed by contact angle, XPS, UV and fluorescence measurement. Immobilization protocol has shown good reproducibility and stability of the immobilized template. MIP nanoparticles were prepared with high selectivity toward the molecule immobilized onto the solid surface. This provides a new approach for the development of molecularly imprinted nanoparticles.
Wang, Chaoli; Hu, Xiaoling; Guan, Ping; Wu, Danfeng; Qian, Liwei; Li, Ji; Song, Renyuan
2015-01-01
The synthesis and performance of molecularly imprinted membranes (MIMs) as a solid phase extraction packing materials for the separation and purification of thymopentin from crude samples was described. In order to increase structural selectivity and imprinting efficiency, surface-initiated ATRP and ionic liquid (1-vinyl-3-ethyl acetate imidazolium chloride) were used to prepare molecularly imprinting membranes. The results demonstrated that solid phase extraction disks stuffed by MIMs with ionic liquids as functional monomer demonstrated high isolation and purification of performance to the thymopentin. The molecular recognition of thymopentin was analyzed by using molecular modeling software. Copyright © 2014 Elsevier B.V. All rights reserved.
Poma, Alessandro; Guerreiro, Antonio; Whitcombe, Michael J; Piletska, Elena V; Turner, Anthony P F; Piletsky, Sergey A
2013-06-13
Molecularly Imprinted Polymers (MIPs) are generic alternatives to antibodies in sensors, diagnostics and separations. To displace biomolecules without radical changes in infrastructure in device manufacture, MIPs should share their characteristics (solubility, size, specificity and affinity, localized binding domain) whilst maintaining the advantages of MIPs (low-cost, short development time and high stability) hence the interest in MIP nanoparticles. Herein we report a reusable solid-phase template approach (fully compatible with automation) for the synthesis of MIP nanoparticles and their precise manufacture using a prototype automated UV photochemical reactor. Batches of nanoparticles (30-400 nm) with narrow size distributions imprinted with: melamine (d = 60 nm, K d = 6.3 × 10 -8 m), vancomycin (d = 250 nm, K d = 3.4 × 10 -9 m), a peptide (d = 350 nm, K d = 4.8 × 10 -8 m) and proteins have been produced. Our instrument uses a column packed with glass beads, bearing the template. Process parameters are under computer control, requiring minimal manual intervention. For the first time we demonstrate the reliable re-use of molecular templates in the synthesis of MIPs (≥ 30 batches of nanoMIPs without loss of performance). NanoMIPs are produced template-free and the solid-phase acts both as template and affinity separation medium.
Poma, Alessandro; Guerreiro, Antonio; Whitcombe, Michael J.; Piletska, Elena V.; Turner, Anthony P.F.; Piletsky, Sergey A.
2016-01-01
Molecularly Imprinted Polymers (MIPs) are generic alternatives to antibodies in sensors, diagnostics and separations. To displace biomolecules without radical changes in infrastructure in device manufacture, MIPs should share their characteristics (solubility, size, specificity and affinity, localized binding domain) whilst maintaining the advantages of MIPs (low-cost, short development time and high stability) hence the interest in MIP nanoparticles. Herein we report a reusable solid-phase template approach (fully compatible with automation) for the synthesis of MIP nanoparticles and their precise manufacture using a prototype automated UV photochemical reactor. Batches of nanoparticles (30-400 nm) with narrow size distributions imprinted with: melamine (d = 60 nm, Kd = 6.3 × 10−8 m), vancomycin (d = 250 nm, Kd = 3.4 × 10−9 m), a peptide (d = 350 nm, Kd = 4.8 × 10−8 m) and proteins have been produced. Our instrument uses a column packed with glass beads, bearing the template. Process parameters are under computer control, requiring minimal manual intervention. For the first time we demonstrate the reliable re-use of molecular templates in the synthesis of MIPs (≥ 30 batches of nanoMIPs without loss of performance). NanoMIPs are produced template-free and the solid-phase acts both as template and affinity separation medium. PMID:26869870
NASA Astrophysics Data System (ADS)
Kumar, Sumit; Das, Aloke
2013-06-01
Non-covalent interactions play a key role in governing the specific functional structures of biomolecules as well as materials. Thus molecular level understanding of these intermolecular interactions can help in efficient drug design and material synthesis. It has been found from X-ray crystallography that pure hydrocarbon solids (i.e. benzene, hexaflurobenzene) have mostly slanted T-shaped (herringbone) packing arrangement whereas mixed solid hydrocarbon crystals (i.e. solid formed from mixtures of benzene and hexafluorobenzene) exhibit preferentially parallel displaced (PD) π-stacked arrangement. Gas phase spectroscopy of the dimeric complexes of the building blocks of solid pure benzene and mixed benzene-hexafluorobenzene adducts exhibit similar structural motifs observed in the corresponding crystal strcutures. In this talk, I will discuss about the jet-cooled dimeric complexes of indole with hexafluorobenzene and p-xylene in the gas phase using Resonant two photon ionzation and IR-UV double resonance spectroscopy combined with quantum chemistry calculations. In stead of studying benzene...p-xylene and benzene...hexafluorobenzene dimers, we have studied corresponding indole complexes because N-H group is much more sensitive IR probe compared to C-H group. We have observed that indole...hexafluorobenzene dimer has parallel displaced (PD) π-stacked structure whereas indole...p-xylene has slanted T-shaped structure. We have shown here selective switching of dimeric structure from T-shaped to π-stacked by changing the substituent from electron donating (-CH3) to electron withdrawing group (fluorine) in one of the complexing partners. Thus, our results demonstrate that efficient engineering of the non-covalent interactions can lead to efficient drug design and material synthesis.
A novel method for the synthesis of zirconia powder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohe, A.E.; Pasquevich, D.M.
A novel method for the synthesis of zirconia powder is presented in this paper. The formation of fine particles of zirconia takes place when metallic zirconium and hematite are heated in the presence of gaseous chlorine. The overall process, which can be described by the following reaction: 3 Zr(s) + 2 Fe{sub 2}O{sub 3}(s) {r_arrow} 3 ZrO{sub 2}(s) + 4 Fe(s), occurs by a mass-transport mechanism through the vapor phase between 723 and 1223 K. The vapor-mass transport among the solid species takes place by means of zirconium and iron chlorides. The fundamentals of synthesis are discussed on the basismore » of a detailed thermodynamic analysis of reactions involved in the process, as well as by a characterization of the solid phases formed at various temperatures at XRD and SEM examinations.« less
Modified Ion-Conducting Ceramics Based on Lanthanum Gallate: Synthesis, Structure, and Properties
NASA Astrophysics Data System (ADS)
Kaleva, G. M.; Politova, E. D.; Mosunov, A. V.; Sadovskaya, N. V.
2018-06-01
A review is presented of the synthesis and complex investigation of modified ion-conducting ceramics based on heterosubstituted lanthanum gallate as a promising electrolyte material for solid oxide fuel cells. The effect the composition of multicomponent complex oxides has on the structure, microstructure, and electrophysical properties of ceramics is examined. Samples of ceramics with new compositions are produced via solid-state synthesis and modified with lithium fluoride. A drop is observed in the sintering temperature of the ceramics, caused by the liquid phase mechanism of sintering as a result of the low-melting superstoichiometric quantities of the additive. The effect lithium fluoride has on the process of phase formation, microstructure, and conductivity of the ceramics is investigated. It is found that samples modified with lithium fluoride display high density, dense grain packing, and high values of electrical conductivity at high temperatures.
Huang, Zhoubing; Liu, Shuqin; Xu, Jianqiao; Yin, Li; Zheng, Juan; Zhou, Ningbo; Ouyang, Gangfeng
2017-10-09
Adsorption capacity is the major sensitivity-limited factor in solid-phase microextraction. Due to its light-weight properties, large specific surface area and high porosity, especially tunable pore structures, the utilization of porous organic polymers as solid-phase microextraction adsorbents has attracting researchers' attentions. However, these works mostly concentrated on the utilization of specific porous organic polymers for preparing high-performance solid-phase microextraction coatings. The relationship between pore structures and adsorption performance of the porous organic polymers still remain unclear. Herein, three porous organic polymers with similar properties but different pore distributions were prepared by condensation polymerization reaction of phloroglucinol and terephthalaldehyde, which were fabricated as solid-phase microextraction coatings subsequently. The adsorption capacity of the porous organic polymers-coated fibers were evaluated by using benzene and its derivatives (i.e.,benzene, toluene, ethylbenzene and m-xylene) and polycyclic aromatic hydrocarbons as the target analytes. The results showed that the different adsorption performance of these porous organic polymers was mainly caused by their different pore volumes instead of their surface areas or pore sizes. Finally, the proposed method by using the mesoporous organic polymer coating was successfully applied to the determination of benzene and its derivatives in environmental water samples. As for analytical performance, high pre-concentration factors (74-2984), satisfactory relative recoveries (94.5 ± 18.5-116.9 ± 12.5%), intraday precision (2.44-5.34%), inter-day precision (4.62-7.02%), low limit of detections (LODs, 0.10-0.29 ng L -1 ) and limit of quantifications (LOQs, 0.33-0.96 ng L -1 ) were achieved under the optimal conditions. This study provides an important idea in the rational design of porous organic polymers for solid-phase microextraction or other adsorption applications. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Fu, Qi; Niles, Paul B.
2011-01-01
We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).
Meenashisundaram, Ganesh Kumar; Nai, Mui Hoon; Gupta, Manoj
2015-01-01
In the present study, Mg (1.98 and 2.5) vol % TiO2 nanocomposites are primarily synthesized utilizing solid-phase blend-press-sinter powder metallurgy (PM) technique and liquid-phase disintegrated melt deposition technique (DMD) followed by hot extrusion. Microstructural characterization of the synthesized Mg-TiO2 nanocomposites indicated significant grain refinement with DMD synthesized Mg nanocomposites exhibiting as high as ~47% for 2.5 vol % TiO2 NPs addition. X-ray diffraction studies indicated that texture randomization of pure Mg depends not only on the critical amount of TiO2 NPs added to the Mg matrix but also on the adopted synthesis methodology. Irrespective of the processing technique, theoretically predicted tensile yield strength of Mg-TiO2 nanocomposites was found to be primarily governed by Hall-Petch mechanism. Among the synthesized Mg materials, solid-phase synthesized Mg 1.98 vol % TiO2 nanocomposite exhibited a maximum tensile fracture strain of ~14.5%. Further, the liquid-phase synthesized Mg-TiO2 nanocomposites exhibited higher tensile and compression properties than those primarily processed by solid-phase synthesis. The tensile-compression asymmetry values of the synthesized Mg-TiO2 nanocomposite was found to be lower than that of pure Mg with solid-phase synthesized Mg 1.98 vol % TiO2 nanocomposite exhibiting as low as 1.06. PMID:28347063
Watfa, Nancy; Floquet, Sébastien; Terazzi, Emmanuel; Haouas, Mohamed; Salomon, William; Korenev, Vladimir S; Taulelle, Francis; Guénée, Laure; Hijazi, Akram; Naoufal, Daoud; Piguet, Claude; Cadot, Emmanuel
2015-02-14
A series of compounds resulting from the ionic association of a nanoscopic inorganic cluster of formula [K2NaxLiy{Mo4O4S4(OH)2(H2O)3}2(HzP8W48O184)]((34-x-y-z)-), 1, with several organic cations such as dimethyldioctadecylammonium DODA(+), trimethylhexadecylammonium TMAC16(+), alkylmethylimidazoliums mimCn(+) (n = 12-20) and alkyl-dimethylimidazoliums dmimCn(+) (n = 12 and 16) was prepared and characterized in the solid state by FT-IR, EDX, Elemental analysis, TGA and solid state NMR. The solid state NMR experiments performed on (1)H, (13)C and (31)P nuclei evidenced the interactions between the cations and 1 as well as the organization of the alkyl chains of the cations within the solid. Polarized optical microscopy, DSC and SA-XRD experiments implicated mesomorphic phases for DODA(+) and mimCn(+) salts of 1. The crystallographic parameters were determined and demonstrated that the inter-lamellar spacing could be controlled upon changing the length of the alkyl chain, a very interesting result if we consider the huge size of the inorganic cluster 1 and the simple nature of the cations.
Surface-modified multifunctional MIP nanoparticles
NASA Astrophysics Data System (ADS)
Moczko, Ewa; Poma, Alessandro; Guerreiro, Antonio; Perez de Vargas Sansalvador, Isabel; Caygill, Sarah; Canfarotta, Francesco; Whitcombe, Michael J.; Piletsky, Sergey
2013-04-01
The synthesis of core-shell molecularly imprinted polymer nanoparticles (MIP NPs) has been performed using a novel solid-phase approach on immobilised templates. The same solid phase also acts as a protective functionality for high affinity binding sites during subsequent derivatisation/shell formation. This procedure allows for the rapid synthesis, controlled separation and purification of high-affinity materials, with each production cycle taking just 2 hours. The aim of this approach is to synthesise uniformly sized imprinted materials at the nanoscale which can be readily grafted with various polymers without affecting their affinity and specificity. For demonstration purposes we grafted anti-melamine MIP NPs with coatings which introduce the following surface characteristics: high polarity (PEG methacrylate); electro-activity (vinylferrocene); fluorescence (eosin acrylate); thiol groups (pentaerythritol tetrakis(3-mercaptopropionate)). The method has broad applicability and can be used to produce multifunctional imprinted nanoparticles with potential for further application in the biosensors, diagnostics and biomedical fields and as an alternative to natural receptors.The synthesis of core-shell molecularly imprinted polymer nanoparticles (MIP NPs) has been performed using a novel solid-phase approach on immobilised templates. The same solid phase also acts as a protective functionality for high affinity binding sites during subsequent derivatisation/shell formation. This procedure allows for the rapid synthesis, controlled separation and purification of high-affinity materials, with each production cycle taking just 2 hours. The aim of this approach is to synthesise uniformly sized imprinted materials at the nanoscale which can be readily grafted with various polymers without affecting their affinity and specificity. For demonstration purposes we grafted anti-melamine MIP NPs with coatings which introduce the following surface characteristics: high polarity (PEG methacrylate); electro-activity (vinylferrocene); fluorescence (eosin acrylate); thiol groups (pentaerythritol tetrakis(3-mercaptopropionate)). The method has broad applicability and can be used to produce multifunctional imprinted nanoparticles with potential for further application in the biosensors, diagnostics and biomedical fields and as an alternative to natural receptors. Electronic supplementary information (ESI) available: Details of the synthesis of eosin O-acrylate monomer and 1H-NMR spectrum of MIP NPs post-derivatised with PEG shell. See DOI: 10.1039/c3nr00354j
2012-10-01
5e. TASK NUMBER LC90061 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT...transduction mechanism based on solid- liquid phase change nanoparticles works for the detection of multiple proteins. A series of metal and alloy...early stage. With the support from DOD-LCRP, we have proved the new signal transduction mechanism based on solid-liquid phase change nanoparticles works
Synthesis of oligonucleotides on a soluble support
2017-01-01
Oligonucleotides are usually prepared in lab scale on a solid support with the aid of a fully automated synthesizer. Scaling up of the equipment has allowed industrial synthesis up to kilogram scale. In spite of this, solution-phase synthesis has received continuous interest, on one hand as a technique that could enable synthesis of even larger amounts and, on the other hand, as a gram scale laboratory synthesis without any special equipment. The synthesis on a soluble support has been regarded as an approach that could combine the advantageous features of both the solution and solid-phase syntheses. The critical step of this approach is the separation of the support-anchored oligonucleotide chain from the monomeric building block and other small molecular reagents and byproducts after each coupling, oxidation and deprotection step. The techniques applied so far include precipitation, extraction, chromatography and nanofiltration. As regards coupling, all conventional chemistries, viz. phosphoramidite, H-phosphonate and phosphotriester strategies, have been attempted. While P(III)-based phosphoramidite and H-phosphonate chemistries are almost exclusively used on a solid support, the “outdated” P(V)-based phosphotriester chemistry still offers one major advantage for the synthesis on a soluble support; the omission of the oxidation step simplifies the coupling cycle. Several of protocols developed for the soluble-supported synthesis allow the preparation of both DNA and RNA oligomers of limited length in gram scale without any special equipment, being evidently of interest for research groups that need oligonucleotides in large amounts for research purposes. However, none of them has really tested at such a scale that the feasibility of their industrial use could be critically judged. PMID:28781703
New Approaches in Soil Organic Matter Fluorescence; A Solid Phase Fluorescence Approach
NASA Astrophysics Data System (ADS)
Bowman, M. M.; Sanclements, M.; McKnight, D. M.
2017-12-01
Fluorescence spectroscopy is a well-established technique to investigate the composition of organic matter in aquatic systems and is increasingly applied to soil organic matter (SOM). Current methods require that SOM be extracted into a liquid prior to analysis by fluorescence spectroscopy. Soil extractions introduce an additional layer of complexity as the composition of the organic matter dissolved into solution varies based upon the selected extractant. Water is one of the most commonly used extractant, but only extracts the water-soluble fraction of the SOM with the insoluble soil organic matter fluorescence remaining in the soil matrix. We propose the use of solid phase fluorescence on whole soils as a potential tool to look at the composition of organic matter without the extraction bias and gain a more complete understand of the potential for fluorescence as a tool in terrestrial studies. To date, the limited applications of solid phase fluorescence have ranged from food and agriculture to pharmaceutical with no clearly defined methods and limitations available. We are aware of no other studies that use solid phase fluorescence and thus no clear methods to look at SOM across a diverse set of soil types and ecosystems. With this new approach to fluorescence spectroscopy there are new challenges, such as blank correction, inner filter effect corrections, and sample preparation. This work outlines a novel method for analyzing soil organic matter using solid phase fluorescence across a wide range of soils collected from the National Ecological Observatory Network (NEON) eco-domains. This method has shown that organic matter content in soils must be diluted to 2% to reduce backscattering and oversaturation of the detector in forested soils. In mineral horizons (A) there is observed quenching of the humic-like organic matter, which is likely a result of organo-mineral complexation. Finally, we present preliminary comparisons between solid and liquid phase fluorescence, which provide new insights into fluorescence studies in terrestrial systems.
The Gaseous Phase as a Probe of the Astrophysical Solid Phase Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abou Mrad, Ninette; Duvernay, Fabrice; Isnard, Robin
2017-09-10
In support of space missions and spectroscopic observations, laboratory experiments on ice analogs enable a better understanding of organic matter formation and evolution in astrophysical environments. Herein, we report the monitoring of the gaseous phase of processed astrophysical ice analogs to determine if the gaseous phase can elucidate the chemical mechanisms and dominant reaction pathways occurring in the solid ice subjected to vacuum ultra-violet (VUV) irradiation at low temperature and subsequently warmed. Simple (CH{sub 3}OH), binary (H{sub 2}O:CH{sub 3}OH, CH{sub 3}OH:NH{sub 3}), and ternary ice analogs (H{sub 2}O:CH{sub 3}OH:NH{sub 3}) were VUV-processed and warmed. The evolution of volatile organic compoundsmore » in the gaseous phase shows a direct link between their relative abundances in the gaseous phase, and the radical and thermal chemistries modifying the initial ice composition. The correlation between the gaseous and solid phases may play a crucial role in deciphering the organic composition of astrophysical objects. As an example, possible solid compositions of the comet Lovejoy are suggested using the abundances of organics in its comae.« less
Deep eutectic-solvothermal synthesis of nanostructured ceria
Hammond, Oliver S.; Edler, Karen J.; Bowron, Daniel T.; Torrente-Murciano, Laura
2017-01-01
Ceria is a technologically important material with applications in catalysis, emissions control and solid-oxide fuel cells. Nanostructured ceria becomes profoundly more active due to its enhanced surface area to volume ratio, reactive surface oxygen vacancy concentration and superior oxygen storage capacity. Here we report the synthesis of nanostructured ceria using the green Deep Eutectic Solvent reline, which allows morphology and porosity control in one of the less energy-intensive routes reported to date. Using wide Q-range liquid-phase neutron diffraction, we elucidate the mechanism of reaction at a molecular scale at considerably milder conditions than the conventional hydrothermal synthetic routes. The reline solvent plays the role of a latent supramolecular catalyst where the increase in reaction rate from solvent-driven pre-organization of the reactants is most significant. This fundamental understanding of deep eutectic-solvothermal methodology will enable future developments in low-temperature synthesis of nanostructured ceria, facilitating its large-scale manufacturing using green, economic, non-toxic solvents. PMID:28120829
Hydrothermal synthesis of barium strontium titanate and bismuth titanate materials
NASA Astrophysics Data System (ADS)
Xu, Huiwen
Hydrothermal processing facilitates the synthesis of crystalline ceramic materials of varying composition or complex crystal structure. The present work can be divided into two parts. First is to study the low temperature hydrothermal synthesis of bismuth titanate. Second is to study both thermodynamic and kinetic aspects of the hydrothermally synthesized barium strontium titanate. A chelating agent was used to form a Bi-Ti gel precursor. By hydrothermally treating the Bi-Ti gel, crystalline bismuth titanate has been synthesized at 160°C for the first time. Microstructural evolution during the low temperature synthesis of bismuth titanate can be divided into two stages, including condensation of Bi-Ti gel particles and crystallization of bismuth titanate. Crystallization of bismuth titanate occurred by an in situ transformation mechanism at an early stage followed by a dissolution-reprecipitation mechanism. Phase separation was observed in hydrothermally synthesized barium strontium titanate (BST). By hydrothermally treating BST powders between 250°C--300°C, an asymmetrical miscibility gap was found in the BaTiO3-SrTiO 3 system at low temperatures (T ≤ 320°C). A subregular solid solution model was applied to calculate the equilibrium compositions and the Gibbs free energy of formation of BST solid solution at low temperatures (T ≤ 320°C). The Gibbs free energy of formation of Sr-rich BST phase is larger than that of Ba-rich BST phase. Kinetic studies of single phase BST solid solution at 80°C show that, compared to the BaTiO3 or Ba-rich BST, SrTiO3 and Sr-rich BST powders form at lower reaction rates.
ISOLATING AND EVALUATING ORGANIC TOXICANTS IN SEDIMENTS: EVALUATION OF AN EXPERIMENTAL APPROACH
Most solid-phase sediment toxicity identification and evaluation (TIE) techniques for organic chemicals have been focused on solid phase sorptive techniques, such as amending contaminated sediments with the carbonaceous resin, Ambersorb, coconut charcoal, or XAD resin to reduce t...
Chen, Wentao; Dong, Jiajia; Li, Suhua; Liu, Yu; Wang, Yujia; Yoon, Leonard; Wu, Peng; Sharpless, K Barry; Kelly, Jeffery W
2016-01-26
Tyrosine O-sulfation is a common protein post-translational modification that regulates many biological processes, including leukocyte adhesion and chemotaxis. Many peptides with therapeutic potential contain one or more sulfotyrosine residues. We report a one-step synthesis for Fmoc-fluorosulfated tyrosine. An efficient Fmoc-based solid-phase peptide synthetic strategy is then introduced for incorporating the fluorosulfated tyrosine residue into peptides of interest. Standard simultaneous peptide-resin cleavage and removal of the acid-labile side-chain protecting groups affords the crude peptides containing fluorosulfated tyrosine. Basic ethylene glycol, serving both as solvent and reactant, transforms the fluorosulfated tyrosine peptides into sulfotyrosine peptides in high yield. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Derivatization of peptides as quaternary ammonium salts for sensitive detection by ESI-MS.
Cydzik, Marzena; Rudowska, Magdalena; Stefanowicz, Piotr; Szewczuk, Zbigniew
2011-06-01
A series of model peptides in the form of quaternary ammonium salts at the N-terminus was efficiently prepared by the solid-phase synthesis. Tandem mass spectrometric analysis of the peptide quaternary ammonium derivatives was shown to provide sequence confirmation and enhanced detection. We designed the 2-(1,4-diazabicyclo[2.2.2] octylammonium)acetyl quaternary ammonium group which does not suffer from neutral losses during MS/MS experiments. The presented quaternization of 1,4-diazabicyclo[2.2.2]octane (DABCO) by iodoacetylated peptides is relatively easy and compatible with standard solid-phase peptide synthesis. This methodology offers a novel sensitive approach to analyze peptides and other compounds. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.
A new method is described for determining total gasoline-range organics
(TGRO) in water that combines solid-phase microextraction (SPME) and infrared
(IR) spectroscopy. In this method, the organic compounds are extracted from
250-mL of water into a small square (3....
Green Synthesis of a Fluorescent Natural Product
ERIC Educational Resources Information Center
Young, Douglas M.; Welker, Jacob J. C.; Doxsee, Kenneth M.
2011-01-01
Synthesis of 4-methylumbelliferone via the acid-catalyzed Pechmann condensation introduces students to several types of organic reactions: transesterification, electrophilic aromatic substitution, and alcohol dehydration. Performed with a recyclable, solid catalyst and under solvent-free conditions, the experiment illustrates many of the…
Hydrothermal Synthesis of Dicalcium Silicate Based Cement
NASA Astrophysics Data System (ADS)
Dutta, N.; Chatterjee, A.
2017-06-01
It is imperative to develop low energy alternative binders considering the large amounts of energy consumed as well as carbon dioxide emissions involved in the manufacturing of ordinary Portland cement. This study is on the synthesis of a dicalcium silicate based binder using a low temperature hydrothermal route.The process consists of synthesizing an intermediate product consisting of a calcium silicate hydrate phase with a Ca:Si ratio of 2:1 and further thermal treatment to produce the β-Ca2SiO4 (C2S) phase.Effect of various synthesis parameters like water to solid ratio, dwell time and temperature on the formation of the desired calcium silicate hydrate phase is reported along with effect of heating conditions for formation of the β-C2S phase. Around 77.45% of β-C2S phase was synthesized by thermal treatment of the intermediate phase at 820°C.
Gerritz, Samuel W; Zhai, Weixu; Shi, Shuhao; Zhu, Shirong; Toyn, Jeremy H; Meredith, Jere E; Iben, Lawrence G; Burton, Catherine R; Albright, Charles F; Good, Andrew C; Tebben, Andrew J; Muckelbauer, Jodi K; Camac, Daniel M; Metzler, William; Cook, Lynda S; Padmanabha, Ramesh; Lentz, Kimberley A; Sofia, Michael J; Poss, Michael A; Macor, John E; Thompson, Lorin A
2012-11-08
This report describes the discovery and optimization of a BACE-1 inhibitor series containing an unusual acyl guanidine chemotype that was originally synthesized as part of a 6041-membered solid-phase library. The synthesis of multiple follow-up solid- and solution-phase libraries facilitated the optimization of the original micromolar hit into a single-digit nanomolar BACE-1 inhibitor in both radioligand binding and cell-based functional assay formats. The X-ray structure of representative inhibitors bound to BACE-1 revealed a number of key ligand:protein interactions, including a hydrogen bond between the side chain amide of flap residue Gln73 and the acyl guanidine carbonyl group, and a cation-π interaction between Arg235 and the isothiazole 4-methoxyphenyl substituent. Following subcutaneous administration in rats, an acyl guanidine inhibitor with single-digit nanomolar activity in cells afforded good plasma exposures and a dose-dependent reduction in plasma Aβ levels, but poor brain exposure was observed (likely due to Pgp-mediated efflux), and significant reductions in brain Aβ levels were not obtained.
TOXICITY CHARACTERIZATION PROCEDURES FOR ORGANIC TOXICANTS IN BULK SEDIMENTS
We have been pursuing development of toxicant characterization, isolation, and identification procedures for organic toxicants that can be applied in the context of 10-d solid-phase sediment tests measuring survival and growth of freshwater in the context of 10-d solid-phase sedi...
Time Dependent Structural Evolution of Porous Organic Cage CC3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucero, Jolie; Elsaidi, Sameh; Anderson, Ryther
Porous organic cage compounds are emerged with remarkable structural diversity and functionality that have applications in gas separation, catalysis and energy storage. Fundamental understanding of nucleation and growth of such materials have significant implications for understanding molecularly directed self-assembly phenomena. Herein we followed the structural evolution of a prototypical type of porous organic cage, CC3 as a function of synthesis time. Three distinctive crystal formation stages were identified: at short synthesis times, a rapid crystal growth stage in which amorphous agglomerates transformed into larger irregular particles was observed. At intermediate synthesis times, a decrease in crystal size over time wasmore » observed presumably due to crystal fragmentation, redissolution and/or homogeneous nucleation led. Finally, at longer synthesis times, a regrowth process was observed in which particles coalesced through Ostwald ripening leading to a continuous increase in crystal size. Molecular simulation studies, based on the construction of in silico CC3 models and simulation of XRD patterns and nitrogen isotherms, confirm the samples at different synthesis times to be a mixture of CC3α and CC3 amorphous phases. The CC3α phase is found to contract at different synthesis times, and the amorphous phase is found to essentially disappear at the longest synthesis time. Nitrogen and carbon dioxide adsorption properties of these CC3 phases were evaluated, and were highly dependent on synthesis time.« less
Fluorous Parallel Synthesis of A Hydantoin/Thiohydantoin Library
Lu, Yimin; Zhang, Wei
2007-01-01
Fluorous tagging strategy is applied to solution-phase parallel synthesis of a library containing hydantoin and thiohydantoin analogs. Two perfluoroalkyl (Rf)-tagged α-amino esters each react with 6 aromatic aldehydes under reductive amination conditions. Twelve amino esters then each react with 10 isocyanates and isothiocyanates in parallel. The resulting 120 ureas and thioureas undergo spontaneous cyclization to form the corresponding hydantoins and thiohydantoins. The intermediate and final product purifications are performed with solid-phase extraction (SPE) over FluoroFlash™ cartridges, no chromatography is required. Using standard instruments and straightforward SPE technique, one chemist accomplished the 120-member library synthesis in less than 5 working days, including starting material synthesis and product analysis. PMID:15789556
A High-Throughput Process for the Solid-Phase Purification of Synthetic DNA Sequences
Grajkowski, Andrzej; Cieślak, Jacek; Beaucage, Serge L.
2017-01-01
An efficient process for the purification of synthetic phosphorothioate and native DNA sequences is presented. The process is based on the use of an aminopropylated silica gel support functionalized with aminooxyalkyl functions to enable capture of DNA sequences through an oximation reaction with the keto function of a linker conjugated to the 5′-terminus of DNA sequences. Deoxyribonucleoside phosphoramidites carrying this linker, as a 5′-hydroxyl protecting group, have been synthesized for incorporation into DNA sequences during the last coupling step of a standard solid-phase synthesis protocol executed on a controlled pore glass (CPG) support. Solid-phase capture of the nucleobase- and phosphate-deprotected DNA sequences released from the CPG support is demonstrated to proceed near quantitatively. Shorter than full-length DNA sequences are first washed away from the capture support; the solid-phase purified DNA sequences are then released from this support upon reaction with tetra-n-butylammonium fluoride in dry dimethylsulfoxide (DMSO) and precipitated in tetrahydrofuran (THF). The purity of solid-phase-purified DNA sequences exceeds 98%. The simulated high-throughput and scalability features of the solid-phase purification process are demonstrated without sacrificing purity of the DNA sequences. PMID:28628204
Magnetic solid-phase extraction using carbon nanotubes as sorbents: a review.
Herrero-Latorre, C; Barciela-García, J; García-Martín, S; Peña-Crecente, R M; Otárola-Jiménez, J
2015-09-10
Magnetic solid-phase extraction (M-SPE) is a procedure based on the use of magnetic sorbents for the separation and preconcentration of different organic and inorganic analytes from large sample volumes. The magnetic sorbent is added to the sample solution and the target analyte is adsorbed onto the surface of the magnetic sorbent particles (M-SPs). Analyte-M-SPs are separated from the sample solution by applying an external magnetic field and, after elution with the appropriate solvent, the recovered analyte is analyzed. This approach has several advantages over traditional solid phase extraction as it avoids time-consuming and tedious on-column SPE procedures and it provides a rapid and simple analyte separation that avoids the need for centrifugation or filtration steps. As a consequence, in the past few years a great deal of research has been focused on M-SPE, including the development of new sorbents and novel automation strategies. In recent years, the use of magnetic carbon nanotubes (M-CNTs) as a sorption substrate in M-SPE has become an active area of research. These materials have exceptional mechanical, electrical, optical and magnetic properties and they also have an extremely large surface area and varied possibilities for functionalization. This review covers the synthesis of M-CNTs and the different approaches for the use of these compounds in M-SPE. The performance, general characteristics and applications of M-SPE based on magnetic carbon nanotubes for organic and inorganic analysis have been evaluated on the basis of more than 110 references. Finally, some important challenges with respect the use of magnetic carbon nanotubes in M-SPE are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
High-Pressure Synthesis: A New Frontier in the Search for Next-Generation Intermetallic Compounds.
Walsh, James P S; Freedman, Danna E
2018-06-19
The application of high pressure adds an additional dimension to chemical phase space, opening up an unexplored expanse bearing tremendous potential for discovery. Our continuing mission is to explore this new frontier, to seek out new intermetallic compounds and new solid-state bonding. Simple binary elemental systems, in particular those composed of pairs of elements that do not form compounds under ambient pressures, can yield novel crystalline phases under compression. Thus, high-pressure synthesis can provide access to solid-state compounds that cannot be formed with traditional thermodynamic methods. An emerging approach for the rapid exploration of composition-pressure-temperature phase space is the use of hand-held high-pressure devices known as diamond anvil cells (DACs). These devices were originally developed by geologists as a way to study minerals under conditions relevant to the earth's interior, but they possess a host of capabilities that make them ideal for high-pressure solid-state synthesis. Of particular importance, they offer the capability for in situ spectroscopic and diffraction measurements, thereby enabling continuous reaction monitoring-a powerful capability for solid-state synthesis. In this Account, we provide an overview of this approach in the context of research we have performed in the pursuit of new intermetallic compounds. We start with a discussion of pressure as a fundamental experimental variable that enables the formation of intermetallic compounds that cannot be isolated under ambient conditions. We then introduce the DAC apparatus and explain how it can be repurposed for use as a synthetic vessel with which to explore this phase space, going to extremes of pressure where no chemist has gone before. The remainder of the Account is devoted to discussions of recent experiments we have performed with this approach that have led to the discovery of novel intermetallic compounds in the Fe-Bi, Cu-Bi, and Ni-Bi systems, with a focus on the cutting-edge methods that made these experiments possible. We review the use of in situ laser heating at high pressure, which led to the discovery of FeBi 2 , the first binary intermetallic compound in the Fe-Bi system. Our work in the Cu-Bi system is described in the context of in situ experiments carried out in the DAC to map its high-pressure phase space, which revealed two intermetallic phases (Cu 11 Bi 7 and CuBi). Finally, we review the discovery of β-NiBi, a novel high-pressure phase in the Ni-Bi system. We hope that this Account will inspire the next generation of solid-state chemists to boldly explore high-pressure phase space.
Aletras, A; Barlos, K; Gatos, D; Koutsogianni, S; Mamos, P
1995-05-01
N alpha-9-Fluorenylmethoxycarbonyl-N epsilon-4=methyltrityl-lysine, [Fmoc-Lys(Mtt)-OH], was prepared in two steps from lysine, in 42% overall yield. The N epsilon-Mtt function can be quantitatively removed upon treatment with 1% TFA in dichloromethane or with a 1:2:7 mixture of acetic acid/trifluoroethanol/dichloromethane for 30 min and 1 h at room temperature, respectively. Under these conditions, groups of the tert-butyl type and peptide ester bonds to TFA-labile resins, such as the 2-chlorodiphenylmethyl- and the Wang-resin, remained intact. The utility of the new derivative in peptide synthesis has been exemplified with the synthesis of a cyclic cholecystokinin analog. As an example of further application, five types of lysine cores suitable for the solid-phase synthesis of one, two or three epitopes containing antigenic peptides or template-assembled synthetic proteins have been synthesized on Merrifield, Wang and 2-chlorodiphenylmethyl resin.
Chen, Yan; Rangasamy, Ezhiylmurugan; dela Cruz, Clarina R.; ...
2015-09-28
Doped Li 7La 3Zr 2O 12 garnets, oxide-based solids with good Li + conductivity and compatibility, show great potential as leading electrolyte material candidates for all-solid-state lithium ion batteries. Still yet, the conductive bulk usually suffers from the presence of secondary phases and the transition towards a low-conductivity tetragonal phase during synthesis. Dopants are designed to stabilize the high-conductive cubic phase and suppress the formation of the low-conductivity phases. In situ neutron diffraction enables a direct observation of the doping effects by monitoring the phase evolutions during garnet synthesis. It reveals the reaction mechanism involving the temporary presence of intermediatemore » phases. The off-stoichiometry due to the liquid Li 2CO 3 evaporation leads to the residual of the low-conductivity intermediate phase in the as-synthesized bulk. Appropriate doping of an active element may alter the component of the intermediate phases and promote the completion of the reaction. While the dopants aid to stabilize most of the cubic phase, a small amount of tetragonal phase tends to form under a diffusion process. Lastly, the in situ observations provide the guideline of process optimization to suppress the formation of unwanted low-conductivity phases.« less
Ravikumar, Vasulinga T; Kumar, R Krishna; Capaldi, Daniel C; Cole, Douglas L
2003-01-01
Detritylation of a 5'-O-DMT-2'-deoxyadenosine moiety attached to solid support under acidic condition leads to depurination during oligonucleotide synthesis. Deprotection followed by reversed phase HPLC purification leads to desired oligonucleotide contaminated with significant levels of 3'-terminal phosphorothiaote (3'-TPT) monoester (n-1)-mer. However, it is demonstrated that attachment of dA nucleoside through its exocyclic amino group to solid support leads to substantial reduction of 3'-TPT formation thereby improving the quality of oligonucleotide synthesized.
Hydrocarbon synthesis catalyst and method of preparation
Sapienza, R.S.; Sansone, M.J.; Slegeir, W.A.R.
1983-08-02
A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint. 9 figs.
Hydrocarbon synthesis catalyst and method of preparation
Sapienza, Richard S.; Sansone, Michael J.; Slegeir, William A. R.
1983-08-02
A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint.
Global distribution of secondary organic aerosol particle phase state
NASA Astrophysics Data System (ADS)
Shiraiwa, M.; Li, Y., Sr.; Tsimpidi, A.; Karydis, V.; Berkemeier, T.; Pandis, S. N.; Lelieveld, J.; Koop, T.; Poeschl, U.
2016-12-01
Secondary organic aerosols (SOA) account for a large fraction of submicron particles in the atmosphere and play a key role in aerosol effects on climate, air quality and public health. The formation and aging of SOA proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of SOA evolution in atmospheric aerosol models. SOA particles can adopt liquid, semi-solid and amorphous solid (glassy) phase states depending on chemical composition, relative humidity and temperature. The particle phase state is crucial for various atmospheric gas-particle interactions, including SOA formation, heterogeneous and multiphase reactions and ice nucleation. We found that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. Based on the concept of molecular corridors, we develop a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, which is a key property for determination of particle phase state. We use the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the atmospheric SOA phase state. For the planetary boundary layer, global simulations indicate that SOA is mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes, and solid over dry lands. We find that in the middle and upper troposphere (>500 hPa) SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants, and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded within SOA.
Yuan, Nannan; Wang, Changhui; Pei, Yuansheng
2016-11-01
Drinking water treatment residue (DWTR) seems to be very promising for controlling lake sediment pollution. Logically, acquisition of the potential toxicity of DWTR will be beneficial for its applications. In this study, the toxicity of DWTR and sediments amended with DWTR to Aliivibrio fischeri was evaluated based on the Microtox(®) solid and leachate phase assays, in combination with flow cytometry analyses and the kinetic luminescent bacteria test. The results showed that both solid particles and aqueous/organic extracts of DWTR exhibited no toxicity to the bacterial luminescence and growth. The solid particles of DWTR even promoted bacterial luminescence, possibly because DWTR particles could act as a microbial carrier and provide nutrients for bacteria growth. Bacterial toxicity (either luminescence or growth) was observed from the solid phase and aqueous/organic extracts of sediments with or without DWTR addition. Further analysis showed that the solid phase toxicity was determined to be related mainly to the fixation of bacteria to fine particles and/or organic matter, and all of the observed inhibition resulting from aqueous/organic extracts was identified as non-significant. Moreover, DWTR addition not only had no adverse effect on the aqueous/organic extract toxicity of the sediment but also reduced the solid phase toxicity of the sediment. Overall, in practical application, the solid particles, the water-soluble substances transferred to surface water or the organic substances in DWTR had no toxicity or any delayed effect on bacteria in lakes, and DWTR can therefore be considered as a non-hazardous material. Copyright © 2016 Elsevier Ltd. All rights reserved.
Direct on-chip DNA synthesis using electrochemically modified gold electrodes as solid support
NASA Astrophysics Data System (ADS)
Levrie, Karen; Jans, Karolien; Schepers, Guy; Vos, Rita; Van Dorpe, Pol; Lagae, Liesbet; Van Hoof, Chris; Van Aerschot, Arthur; Stakenborg, Tim
2018-04-01
DNA microarrays have propelled important advancements in the field of genomic research by enabling the monitoring of thousands of genes in parallel. The throughput can be increased even further by scaling down the microarray feature size. In this respect, microelectronics-based DNA arrays are promising as they can leverage semiconductor processing techniques with lithographic resolutions. We propose a method that enables the use of metal electrodes for de novo DNA synthesis without the need for an insulating support. By electrochemically functionalizing gold electrodes, these electrodes can act as solid support for phosphoramidite-based synthesis. The proposed method relies on the electrochemical reduction of diazonium salts, enabling site-specific incorporation of hydroxyl groups onto the metal electrodes. An automated DNA synthesizer was used to couple phosphoramidite moieties directly onto the OH-modified electrodes to obtain the desired oligonucleotide sequence. Characterization was done via cyclic voltammetry and fluorescence microscopy. Our results present a valuable proof-of-concept for the integration of solid-phase DNA synthesis with microelectronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, Makoto, E-mail: waseda.ogawa@gmail.com; Department of Earth Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050; Morita, Masashi, E-mail: m-masashi@y.akane.waseda.jp
2013-10-15
A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassiummore » lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst.« less
Facile solid-state synthesis of oxidation-resistant metal nanoparticles at ambient conditions
NASA Astrophysics Data System (ADS)
Lee, Kyu Hyung; Jung, Hyuk Joon; Lee, Ju Hee; Kim, Kyungtae; Lee, Byeongno; Nam, Dohyun; Kim, Chung Man; Jung, Myung-Hwa; Hur, Nam Hwi
2018-05-01
A simple and scalable method for the synthesis of metal nanoparticles in the solid-state was developed, which can produce nanoparticles in the absence of solvents. Nanoparticles of coinage metals were synthesized by grinding solid hydrazine and the metal precursors in their acetates and oxides at 25 °C. The silver and gold acetates converted completely within 6 min into Ag and Au nanoparticles, respectively, while complete conversion of the copper acetate to the Cu sub-micrometer particles took about 2 h. Metal oxide precursors were also converted into metal nanoparticles by grinding alone. The resulting particles exhibit distinctive crystalline lattice fringes, indicating the formation of highly crystalline phases. The Cu sub-micrometer particles are better resistant to oxidation and exhibit higher conductivity compared to conventional Cu nanoparticles. This solid-state method was also applied for the synthesis of platinum group metals and intermetallic Cu3Au, which can be further extended to synthesize other metal nanoparticles.
Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids.
Liu, Mengxia; Voznyy, Oleksandr; Sabatini, Randy; García de Arquer, F Pelayo; Munir, Rahim; Balawi, Ahmed Hesham; Lan, Xinzheng; Fan, Fengjia; Walters, Grant; Kirmani, Ahmad R; Hoogland, Sjoerd; Laquai, Frédéric; Amassian, Aram; Sargent, Edward H
2017-02-01
Bandtail states in disordered semiconductor materials result in losses in open-circuit voltage (V oc ) and inhibit carrier transport in photovoltaics. For colloidal quantum dot (CQD) films that promise low-cost, large-area, air-stable photovoltaics, bandtails are determined by CQD synthetic polydispersity and inhomogeneous aggregation during the ligand-exchange process. Here we introduce a new method for the synthesis of solution-phase ligand-exchanged CQD inks that enable a flat energy landscape and an advantageously high packing density. In the solid state, these materials exhibit a sharper bandtail and reduced energy funnelling compared with the previous best CQD thin films for photovoltaics. Consequently, we demonstrate solar cells with higher V oc and more efficient charge injection into the electron acceptor, allowing the use of a closer-to-optimum bandgap to absorb more light. These enable the fabrication of CQD solar cells made via a solution-phase ligand exchange, with a certified power conversion efficiency of 11.28%. The devices are stable when stored in air, unencapsulated, for over 1,000 h.
Site-specific synthesis of Amadori-modified peptides on solid phase.
Frolov, Andrej; Singer, David; Hoffmann, Ralf
2006-06-01
Glycation of peptides and proteins is a slow chemical reaction of reducing sugars modifying the amino groups. The first intermediates of this nonenzymatic glycosylation are the Amadori products that can undergo further chemical reactions, finally leading to advanced glycation end products (AGEs). The formation of AGEs was not only linked to aging of tissues and organs in general but also to several diseases such as diabetes mellitus and Alzheimer's disease. Because of the importance of these modifications and their potential use as diagnostic markers, a global postsynthetic approach on solid phase was developed. The peptides were synthesized by Fmoc/(t)Bu-chemistry, with the lysine residue to be modified being protected with the very acid-labile methyltrityl group. Incubation of the peptides with D-glucose in DMF at elevated temperatures resulted in product yields of 35%. Neighboring residues with bulky protecting groups reduced the yields only slightly. The major by-products were the unmodified peptide and an oxidation product. Whereas the unmodified peptide eluted before the glycated peptide, all other by-products eluted later in RP-HPLC, allowing simple purification.
NASA Astrophysics Data System (ADS)
Bekaert, David V.; Derenne, Sylvie; Tissandier, Laurent; Marrocchi, Yves; Charnoz, Sebastien; Anquetil, Christelle; Marty, Bernard
2018-06-01
Biologically relevant molecules (hereafter biomolecules) have been commonly observed in extraterrestrial samples, but the mechanisms accounting for their synthesis in space are not well understood. While electron-driven production of organic solids from gas mixtures reminiscent of the photosphere of the protosolar nebula (PSN; i.e., dominated by CO–N2–H2) successfully reproduced key specific features of the chondritic insoluble organic matter (e.g., elementary and isotopic signatures of chondritic noble gases), the molecular diversity of organic materials has never been investigated. Here, we report that a large range of biomolecules detected in meteorites and comets can be synthesized under conditions typical of the irradiated gas phase of the PSN at temperatures = 800 K. Our results suggest that organic materials—including biomolecules—produced within the photosphere would have been widely dispersed in the protoplanetary disk through turbulent diffusion, providing a mechanism for the distribution of organic meteoritic precursors prior to any thermal/photoprocessing and subsequent modification by secondary parent body processes. Using a numerical model of dust transport in a turbulent disk, we propose that organic materials produced in the photosphere of the disk would likely be associated with small dust particles, which are coupled to the motion of gas within the disk and therefore preferentially lofted into the upper layers of the disk where organosynthesis occurs.
NASA Astrophysics Data System (ADS)
Liang, Danyang; Ding, Yu; Wang, Nan; Cai, Xiaomeng; Li, Jia; Han, Linyu; Wang, Shiqi; Han, Yuanyuan; Jia, Guang; Wang, Liyong
2017-09-01
A method for mixed-phase bismuth molybdate doped with Eu3+ ions was developed by solid-state reaction assisting with polyvinyl alcohol (PVA). The results of powder X-ray diffraction showed a mixed-phase structure and the microscopical characterization technology revealed the formation process with the addition of PVA. As a structure inducer, the PVA molecules played a vital role in the formation of phase structure. The as-obtained Eu3+-doped bismuth molybdates were also characterized by using different spectroscopic techniques including FTIR and photoluminescence (PL). The results show that doping concentration, PVA addition and calcination temperature affect photoluminescence properties remarkably.
Combinatorial synthesis and screening of non-biological polymers
Schultz, Peter G.; Xiang, Xiao-Dong; Goldwasser, Isy; Briceno, Gabriel; Sun, Xiao-Dong; Wang, Kai-An
2006-04-25
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Combinatorial synthesis of novel materials
Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy
1999-01-01
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Polymer arrays from the combinatorial synthesis of novel materials
Schultz, Peter G.; Xiang, Xiao-Dong; Goldwasser, Isy; Briceno, Gabriel; Sun, Xiao-Dong
2004-09-21
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Combinatorial synthesis of novel materials
Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy
2002-02-12
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Synthesis and screening combinatorial arrays of zeolites
Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy
2003-11-18
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Combinatorial synthesis of novel materials
Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy
1999-12-21
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Combinatorial synthesis of novel materials
Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy
2001-01-01
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Qi, Xue; Gao, Shuang; Ding, Guosheng; Tang, An-Na
2017-01-01
A facile, rapid and selective magnetic dispersed solid-phase extraction (dSPE) method for the extraction and enrichment of Cr (VI) prior to flame atomic absorption spectrometry (AAS) was introduced. For highly selective and efficient extraction, magnetic Cr (VI)-imprinted nanoparticles (Fe 3 O 4 @ Cr (VI) IIPs) were prepared by hyphenating surface ion-imprinted with sol-gel techniques. In the preparation process, chromate (Cr(VI)) was used as the template ion; vinylimidazole and 3-aminopropyltriethoxysilane were selected as organic functional monomer and co-monomer respectively. Another reagent, methacryloxypropyltrimethoxysilane was adopted as coupling agent to form the stable covalent bonding between organic and inorganic phases. The effects of various parameters on the extraction efficiency, such as pH of sample solution, the amount of adsorbent, extraction time, the type and concentration of eluent were systematically investigated. Furthermore, the thermodynamic and kinetic properties of the adsorption process were studied to explore the internal adsorption mechanism. Under optimized conditions, the preconcentration factor, limit of detection and linear range of the established dSPE-AAS method for Cr (VI) were found to be 98, 0.29μgL -1 and 4-140μgL -1 , respectively. The developed method was also successfully applied to the analysis of Cr (VI) in different water samples with satisfactory results, proving its reliability and feasibility in real sample analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Efficiency, error and yield in light-directed maskless synthesis of DNA microarrays
2011-01-01
Background Light-directed in situ synthesis of DNA microarrays using computer-controlled projection from a digital micromirror device--maskless array synthesis (MAS)--has proved to be successful at both commercial and laboratory scales. The chemical synthetic cycle in MAS is quite similar to that of conventional solid-phase synthesis of oligonucleotides, but the complexity of microarrays and unique synthesis kinetics on the glass substrate require a careful tuning of parameters and unique modifications to the synthesis cycle to obtain optimal deprotection and phosphoramidite coupling. In addition, unintended deprotection due to scattering and diffraction introduce insertion errors that contribute significantly to the overall error rate. Results Stepwise phosphoramidite coupling yields have been greatly improved and are now comparable to those obtained in solid phase synthesis of oligonucleotides. Extended chemical exposure in the synthesis of complex, long oligonucleotide arrays result in lower--but still high--final average yields which approach 99%. The new synthesis chemistry includes elimination of the standard oxidation until the final step, and improved coupling and light deprotection. Coupling Insertions due to stray light are the limiting factor in sequence quality for oligonucleotide synthesis for gene assembly. Diffraction and local flare are by far the largest contributors to loss of optical contrast. Conclusions Maskless array synthesis is an efficient and versatile method for synthesizing high density arrays of long oligonucleotides for hybridization- and other molecular binding-based experiments. For applications requiring high sequence purity, such as gene assembly, diffraction and flare remain significant obstacles, but can be significantly reduced with straightforward experimental strategies. PMID:22152062
Synthesis of long Prebiotic Oligomers on Mineral Surfaces
NASA Technical Reports Server (NTRS)
Ferris, James P.; Hill, Aubrey R., Jr.; Liu, Rihe; Orgel, Leslie E.
1996-01-01
Most theories of the origin of biological organization assume that polymers with lengths in the range of 30-60 monomers are needed to make a genetic system viable. But it has not proved possible to synthesize plausibly prebiotic polymers this long by condensation in aqueous solution, because hydrolysis competes with polymerization. The potential of mineral surfaces to facilitate prebiotic polymerization was pointed out long ago. Here we describe a system that models prebiotic polymerization by the oligomerization of activated monomers -both nucleotides and amino acids. We find that whereas the reactions in solution produce only short oligomers (the longest typically being a 10-mer), the presence of mineral surfaces (montmorillonite for nucleotides, illite and hydroxylapatite for amino adds) induces the formation of oligomers up to 55 monomers long. These are formed by successive "feedings" with the monomers; polymerization takes place on the mineral surfaces in a manner akin to solid-phase synthesis of biopolymers.
Bio-solid-State processes for synthesis of Li-Fe-phosphate.
Kim, Hyoung-Bum; Park, Byungno; Lee, Insung; Roh, Yul
2008-10-01
Lithium-Fe-phosphates have become of great interest as storage cathodes for rechargeable Li-batteries because of their high density, environmental friendliness, and safety. The objective of this study was to examine bio-solid-state synthesis of LiFePO4 by microbial processes at room temperature. The microbial reduction of Fe(III)-citrate using an organic carbon, glucose, as an electron donor in the presence of NaHPO4 and lithium that resulted in the formation of Li-substituted iron phosphate. Our studies showed that bacteria enriched from inter-tidal flat sediments, designated as Haejae-1, synthesized Li-substituted iron phosphate. Characterization by X-ray diffraction showed the reduction of Fe(III)-citrate in the presence of NaHPO4 and LiCl2 resulted in the precipitation of Li-substituted vivianite [Li(x)Fe(3-x)(PO4)2 x 8H2O]. SEM-EDX, FTIR, and ESCA analyses showed the chemical composition of the synthesized phases was Li, Fe, P, C, and O. Based on the chemical and physical structure of the mineral, the novel bio-nano-material may be potentially useful to the development of energy storage materials.
Přibylka, Adam; Krchňák, Viktor
2017-11-13
Here, we report the efficient solid-phase synthesis of N-propargyl peptides using Fmoc-amino acids and propargyl alcohol as key building blocks. Gold-catalyzed nucleophilic addition to the triple bond induced C-N bond formation, which triggered intramolecular cyclization, yielding 1,3,4-trisubstituted-5-methyl-3,4-dihydropyrazin-2(1H)-ones. Conformations of acyclic and constrained peptides were compared using a two-step conformer distribution analysis at the molecular mechanics level and density functional theory. The results indicated that the incorporation of heterocyclic molecular scaffold into a short peptide sequence adopted extended conformation of peptide chain. The amide bond adjacent to the constraint did not show significant preference for either cis or trans isomerism. Prepared model compounds demonstrate a proof of concept for gold-catalyzed polymer-supported synthesis of variously substituted 3,4-dihydropyrazin-2(1H)-ones for applications in drug discovery and peptide backbone constraints.
Chu, Qianli; Duncan, Andrew J E; Papaefstathiou, Giannis S; Hamilton, Tamara D; Atkinson, Manza B J; Mariappan, S V Santhana; MacGillivray, Leonard R
2018-04-11
Enlargement of a self-assembled metal-organic rhomboid is achieved via the organic solid state. The solid-state synthesis of an elongated organic ligand was achieved by a template directed [2 + 2] photodimerization in a cocrystal. Initial cocrystals obtained of resorcinol template and reactant alkene afforded a 1:2 cocrystal with the alkene in a stacked yet photostable geometry. Cocrystallization performed in the presence of excess template resulted in a 3:2 cocrystal composed of novel discrete 10-component hydrogen-bonded "superassemblies" wherein the alkenes undergo a head-to-head [2 + 2] photodimerization. Isolation and reaction of elongated photoproduct with Cu(II) ions afforded a metal-organic rhomboid of nanoscale dimensions that hosts small molecules in the solid state as guests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorokin, N. I., E-mail: nsorokin1@yandex.ru; Sobolev, B. P.
We have investigated the conductivity of some representatives of different technological forms of fluoride-conducting solid electrolytes R{sub 1–y}M{sub y}F{sub 3–y} (M = Ca, Sr, Ba; R are rare earth elements) with an LaF{sub 3} structure: single crystals, cold- and hot-pressing ceramics based on a charge prepared in different ways (mechanochemical synthesis, solid-phase synthesis, and fragmentation of single crystals), polycrystalline alloys, etc. It is shown (by impedance spectroscopy), that different technological forms of identical chemical composition (R, M, y) exhibit different electrical characteristics. The maximum conductivity is observed for the single-crystal form of R{sub 1–y}M{sub y}F{sub 3–y} tysonite phases, which providesmore » (in contrast to other technological forms) the formation of true volume ion-conducting characteristics.« less
NASA Astrophysics Data System (ADS)
Batista, J. F. N.; Cruz, J. W.; Doriguetto, A. C.; Torres, C.; de Almeida, E. T.; Camps, I.
2017-11-01
In the present paper we describe the synthesis and characterization of the Schiff's base or imine 4-Acetyl-N-(4-methoxybenzylidene)aniline (1), which provided experimental support for the theoretical calculations. The imine was characterized by infrared spectroscopy and single crystal XRD techniques. The computational studies were performed using the density functional theory (DFT) for the gaseous and solid phases. As similar compounds already shown biological activity, the pharmacokinetic properties of (1) were evaluated. Our results shown that (1), in its gaseous form, it is electronically stable and has pharmacological drug like properties. Due to its structural similarity with commercial drugs, it is a promise candidate to act as a nonsteroidal anti-inflammatory and to treat dementia, sleep disorders, alcohol dependence, and psychosis. From the solid state calculations we obtain that (1) is a low gap semiconductor and can act as an absorber for electromagnetic radiations with energy greater that ∼ 0.9eV .
Method 525.3 is an analytical method that uses solid phase extraction (SPE) and gas chromatography/mass spectrometry (GC/MS) for the identification and quantitation of 125 selected semi-volatile organic chemicals in drinking water.
Solid state phase change materials for thermal energy storage in passive solar heated buildings
NASA Astrophysics Data System (ADS)
Benson, D. K.; Christensen, C.
1983-11-01
A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.
Yang, Cheng-Xiong; Liu, Chang; Cao, Yi-Meng; Yan, Xiu-Ping
2015-08-07
A simple and facile room-temperature solution-phase synthesis was developed to fabricate a spherical covalent organic framework with large surface area, good solvent stability and high thermostability for high-resolution chromatographic separation of diverse important industrial analytes including alkanes, cyclohexane and benzene, α-pinene and β-pinene, and alcohols with high column efficiency and good precision.
Carrillo, Carlos A; Nypelö, Tiina; Rojas, Orlando J
2016-03-14
A route for the compatibilization of aqueous dispersions of cellulose nanofibrils (CNFs) with a non-polar polymer matrix is proposed to overcome a major challenge in CNF-based material synthesis. Non-ionic surfactants were used in CNF aqueous dispersions equilibrated with an organic phase (for demonstration, a polystyrene solution, PS, was used). Stable water-in-oil-in-water (W/O/W) double emulsions were produced as a result of the compromise between composition and formulation variables. Most remarkably, the proposed route for CNF integration with hydrophobic polymers removed the need for drying or solvent-exchange of the CNF aqueous dispersion prior to processing. The rheological behavior of the double emulsions showed strong shear thinning behavior and facilitated CNF-PS co-mixing in solid nanofibers upon electrospinning. The morphology and thermal properties of the resultant nanofibers revealed that CNFs were efficiently integrated in the hydrophobic matrix which was consistent with the high interfacial area of the precursor double emulsion. In addition, the morphology and quality of the composite nanofibers can be controlled by the conductivity (ionic strength) of the CNF dispersion. Overall, double emulsion systems are proposed as a novel, efficient and scalable platform for CNF co-processing with non-polar systems and they open up the possibility for the redispersion of CNFs after removal of the organic phase.
Pal, Provas; Saha, Sujoy; Banik, Ananya; Sarkar, Arka; Biswas, Kanishka
2018-02-06
All-inorganic and hybrid perovskite type halides are generally synthesized by solution-based methods, with the help of long chain organic capping ligands, complex organometallic precursors, and high boiling organic solvents. Herein, a room temperature, solvent-free, general, and scalable all-solid-state mechanochemical synthesis is demonstrated for different inorganic perovskite type halides, with versatile structural connectivity in three (3D), two (2D), and zero (0D) dimensions. 3D CsPbBr 3 , 2D CsPb 2 Br 5 , 0D Cs 4 PbBr 6 , 3D CsPbCl 3 , 2D CsPb 2 Cl 5 , 0D Cs 4 PbCl 6 , 3D CsPbI 3 , and 3D RbPbI 3 have all been synthesized by this method. The all-solid-state synthesis is materialized through an inorganic retrosynthetic approach, which directs the decision on the solid-state precursors (e.g., CsX and PbX 2 (X=Cl/Br/I) with desired stoichiometric ratios. Moreover, post-synthetic structural transformations from 3D to 2D and 0D perovskite halides were performed by the same mechanochemical synthetic approach at room temperature. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Crawford, Deborah; Casaban, José; Haydon, Robert; Giri, Nicola; McNally, Tony
2015-01-01
Grinding solid reagents under solvent-free or low-solvent conditions (mechanochemistry) is emerging as a general synthetic technique which is an alternative to conventional solvent-intensive methods. However, it is essential to find ways to scale-up this type of synthesis if its promise of cleaner manufacturing is to be realised. Here, we demonstrate the use of twin screw and single screw extruders for the continuous synthesis of various metal complexes, including Ni(salen), Ni(NCS)2(PPh3)2 as well as the commercially important metal organic frameworks (MOFs) Cu3(BTC)2 (HKUST-1), Zn(2-methylimidazolate)2 (ZIF-8, MAF-4) and Al(fumarate)(OH). Notably, Al(fumarate)(OH) has not previously been synthesised mechanochemically. Quantitative conversions occur to give products at kg h–1 rates which, after activation, exhibit surface areas and pore volumes equivalent to those of materials produced by conventional solvent-based methods. Some reactions can be performed either under completely solvent-free conditions whereas others require the addition of small amounts of solvent (typically 3–4 mol equivalents). Continuous neat melt phase synthesis is also successfully demonstrated by both twin screw and single screw extrusion for ZIF-8. The latter technique provided ZIF-8 at 4 kg h–1. The space time yields (STYs) for these methods of up to 144 × 103 kg per m3 per day are orders of magnitude greater than STYs for other methods of making MOFs. Extrusion methods clearly enable scaling of mechanochemical and melt phase synthesis under solvent-free or low-solvent conditions, and may also be applied in synthesis more generally. PMID:29308131
Armstrong, Mitchell R; Senthilnathan, Sethuraman; Balzer, Christopher J; Shan, Bohan; Chen, Liang; Mu, Bin
2017-01-01
Systematic studies of key operating parameters for the sonochemical synthesis of the metal organic framework (MOF) HKUST-1(also called CuBTC) were performed including reaction time, reactor volume, sonication amplitude, sonication tip size, solvent composition, and reactant concentrations analyzed through SEM particle size analysis. Trends in the particle size and size distributions show reproducible control of average particle sizes between 1 and 4μm. These results along with complementary studies in sonofragmentation and temperature control were conducted to compare these results to kinetic crystal growth models found in literature to develop a plausible hypothetical mechanism for ultrasound-assisted growth of metal-organic-frameworks composed of a competitive mechanism including constructive solid-on-solid (SOS) crystal growth and a deconstructive sonofragmentation. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
McMillan, Paul F.; Gryko, Jan; Bull, Craig; Arledge, Richard; Kenyon, Anthony J.; Cressey, Barbara A.
2005-03-01
A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr 2) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300 °C. Syntheses at higher temperatures gave rise to microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.
NASA Astrophysics Data System (ADS)
Mohammad, S. Noor
2017-09-01
Nanotubes are synthesized almost entirely by metal-catalyst-free and metal-catalyst-mediated non-eutectic mechanism(s). An investigation has been carried out to understand the basics of this mechanism. Various possible chemical and physical processes involved in nanotube synthesis have been researched. Various components and attributes of nanotube synthesis have been evaluated. Phase transitions, alloy formation, porosity, carrier transport and the fundamentals underlying them have been examined. Nanoparticle surfaces conducive to nanotube synthesis have been examined. The role of surface treatment, which includes oxidation, oxygenation, acid treatment, plasma treatment, water treatment, sputtering, etc in creating such surfaces, has been investigated. The role of surface treatment and phase transitions as functions of temperature, pressure, ambient, contaminants, surface amorphicity, etc in creating diffusion paths for the diffusion of growth species for supersaturation and nucleation has been explored. Interdiffusion of catalyst and source materials, and hence exchange of materials, on the nanoparticle surface, have been elucidated. This exchange of materials on catalyst surface appears to add a new dimension to the synthesis kinetics. Integrated together, they reveal a general mechanism for probably all metal-catalyst-free and metal-catalyst-mediated non-eutectic nanotube synthesis. Available experiments strongly support the proposed mechanism; they suggest that this mechanism has a broad appeal.
Chen, Ling; Dang, Xueping; Ai, Youhong; Chen, Huaixia
2018-05-07
An acryloyl β-cyclodextrin-silica hybrid monolithic column for pipette tip solid-phase extraction and high-performance liquid chromatography determination of methyl parathion and fenthion have been prepared through a sol-gel polymerization method. The synthesis conditions, including the volume of cross-linker and the ratio of inorganic solution to organic solution, were optimized. The prepared monolithic column was characterized by thermogravimetric analysis, scanning electron microscopy and Fourier transform infrared spectroscopy. The eluent type, volume and flow rate, sample volume, flow rate, acidity and ionic strength were optimized in detail. Under the optimized conditions, a simple and sensitive pipette tip solid-phase extraction with high-performance liquid chromatography method was developed for the determination of methyl parathion and fenthion in lettuce. The method yielded a linear calibration curve in the concentration ranges of 15-400 μg/kg for methyl parathion and 20-400 μg/kg for fenthion with correlation coefficients of above 0.9957. The limits of detection were 4.5 μg/kg for methyl parathion and 6.0 μg/kg for fenthion, respectively. The recoveries of methyl parathion and fenthion spiked in lettuce ranged from 96.0 to 104.2% with relative standard deviations less than 8.4%. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suharta, W. G., E-mail: wgsuharta@gmail.com; Wendri, N.; Ratini, N.
The synthesis of B{sub 2}O{sub 3} flux substituted NLBCO superconductor NdBa{sub 1.75}La{sub 0.25}Cu{sub 3}O{sub 7-∂} has been done using solid state reaction and wet-mixing methods in order to obtain homogeneous crystals and single phase. From DTA/TGA characteritations showed the synthesis process by wet-mixing requires a lower temperature than the solid state reaction in growing the superconductor NdBa{sub 1.75}La{sub 0.25}Cu{sub 3}O{sub 7-∂}. Therefore, in this research NdBa{sub 1.75}La{sub 0.25}Cu{sub 3}O{sub 7-∂} sample calcinated at 650°C for wet-mixing method and 820°C for solid state reaction methods. The all samples was sintered at 950°C for ten hours. Crystallinity of the sample was confirmedmore » using X-ray techniques and generally obtained sharp peaks that indicates the sample already well crystallized. Search match analyses for diffraction data gave weight fractions of impurity phase of the solid state reaction method higher than wet-mixing method. In this research showed decreasing the price of the lattice parameter about 1% with the addition of B{sub 2}O{sub 3} flux for the both synthesis process and 2% of wet mixing process for all samples. Characterization using scanning electron microscopy (SEM) showed the distribution of crystal zise for wet-mixing method more homogeneous than solid state reaction method, with he grain size of samples is around 150–250 nm. The results of vibrating sample magnetometer (VSM) showed the paramagnetic properties for all samples.« less
USDA-ARS?s Scientific Manuscript database
Improved approaches are needed to rapidly and accurately assess the bioavailability of persistent, hydrophobic organic compounds in soils at contaminated sites. The performance of a thin-film solid-phase extraction (TF-SPE) assay using vials coated with ethylene vinyl acetate polymer was compared to...
NASA Astrophysics Data System (ADS)
Samad, Leith L. J.
The body of work reviewed here encompasses a variety of metal dichalcogenides all synthesized using chemical vapor deposition (CVD) for solar and electronics applications. The first reported phase-pure CVD synthesis of iron pyrite thin films is presented with detailed structural and electrochemical analysis. The phase-pure thin film and improved crystal growth on a metallic backing material represents one of the best options for potential solar applications using iron pyrite. Large tin-sulfur-selenide solid solution plates with tunable bandgaps were also synthesized via CVD as single-crystals with a thin film geometry. Solid solution tin-sulfur-selenide plates were demonstrated to be a new material for solar cells with the first observed solar conversion efficiencies up to 3.1%. Finally, a low temperature molybdenum disulfide vertical heterostructure CVD synthesis with layered controlled growth was achieved with preferential growth enabled by Van der Waals epitaxy. Through recognition of additional reaction parameters, a fully regulated CVD synthesis enabled the controlled growth of 1-6 molybdenum disulfide monolayers for nanoelectronic applications. The improvements in synthesis and materials presented here were all enabled by the control afforded by CVD such that advances in phase purity, growth, and composition control of several metal dichalcogenides were achieved. Further work will be able to take full advantage of these advances for future solar and electronics technologies.
Friligou, Irene; Papadimitriou, Evangelia; Gatos, Dimitrios; Matsoukas, John; Tselios, Theodore
2011-05-01
A fast and efficient microwave-assisted solid phase peptide synthesis (MW-SPPS) of a 51mer peptide, the main heparin-binding site (60-110) of human pleiotrophin (hPTN), using 2-chlorotrityl chloride resin (CLTR-Cl) following the 9-fluorenylmethyloxycarbonyl/tert-butyl (Fmoc/tBu) methodology and with the standard N,N'-diisopropylcarbodiimide/1-hydroxybenzotriazole (DIC/HOBt) coupling reagents, is described. An MW-SPPS protocol was for the first time successfully applied to the acid labile CLTR-Cl for the faster synthesis of long peptides (51mer peptide) and with an enhanced purity in comparison to conventional SPPS protocols. The synthesis of such long peptides is not trivial and it is generally achieved by recombinant techniques. The desired linear peptide was obtained in only 30 h of total processing time and in 51% crude yield, in which 60% was the purified product obtained with 99.4% purity. The synthesized peptide was purified by reversed phase high performance liquid chromatography (RP-HPLC) and identified by electrospray ionization mass spectrometry (ESI-MS). Then, the regioselective formation of the two disulfide bridges of hPTN 60-110 was successfully achieved by a two-step procedure, involving an oxidative folding step in dimethylsulfoxide (DMSO) to form the Cys(77)-Cys(109) bond, followed by iodine oxidation to form the Cys(67)-Cys(99) bond.
NASA Astrophysics Data System (ADS)
Acree, William; Chickos, James S.
2017-03-01
The second part of this compendium concludes with a collection of phase change enthalpies of organic molecules inclusive of C11-C192 reported over the period 1880-2015. Also included are phase change enthalpies including fusion, vaporization, and sublimation enthalpies for organometallic, ionic liquids, and a few inorganic compounds. Paper I of this compendium, published separately, includes organic compounds from C1 to C10 and describes a group additivity method for evaluating solid, liquid, and gas phase heat capacities as well as temperature adjustments of phase changes. Paper II of this compendium also includes an updated version of a group additivity method for evaluating total phase change entropies which together with the fusion temperature can be useful in estimating total phase change enthalpies. Other uses include application in identifying potential substances that either form liquid or plastic crystals or exhibit additional phase changes such as undetected solid-solid transitions or behave anisotropically in the liquid state.
A study of room-temperature LixMn1.5Ni0.5O4 solid solutions
NASA Astrophysics Data System (ADS)
Saravanan, Kuppan; Jarry, Angelique; Kostecki, Robert; Chen, Guoying
2015-01-01
Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature LixMn1.5Ni0.5O4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of LixMn1.5Ni0.5O4 (0 <= x <= 1) cathode material consisting of three cubic phases: LiMn1.5Ni0.5O4 (Phase I), Li0.5Mn1.5Ni0.5O4 (Phase II) and Mn1.5Ni0.5O4 (Phase III). A phase diagram capturing the structural changes as functions of both temperature and Li content was established. The work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance.
NASA Astrophysics Data System (ADS)
Hawkes, Jeffrey A.; Rossel, Pamela E.; Stubbins, Aron; Butterfield, David; Connelly, Douglas P.; Achterberg, Eric P.; Koschinsky, Andrea; Chavagnac, Valérie; Hansen, Christian T.; Bach, Wolfgang; Dittmar, Thorsten
2015-11-01
Oceanic dissolved organic carbon (DOC) is an important carbon pool, similar in magnitude to atmospheric CO2, but the fate of its oldest forms is not well understood. Hot hydrothermal circulation may facilitate the degradation of otherwise un-reactive dissolved organic matter, playing an important role in the long-term global carbon cycle. The oldest, most recalcitrant forms of DOC, which make up most of oceanic DOC, can be recovered by solid-phase extraction. Here we present measurements of solid-phase extractable DOC from samples collected between 2009 and 2013 at seven vent sites in the Atlantic, Pacific and Southern oceans, along with magnesium concentrations, a conservative tracer of water circulation through hydrothermal systems. We find that magnesium and solid-phase extractable DOC concentrations are correlated, suggesting that solid-phase extractable DOC is almost entirely lost from solution through mineralization or deposition during circulation through hydrothermal vents with fluid temperatures of 212-401 °C. In laboratory experiments, where we heated samples to 380 °C for four days, we found a similar removal efficiency. We conclude that thermal degradation alone can account for the loss of solid-phase extractable DOC in natural hydrothermal systems, and that its maximum lifetime is constrained by the timescale of hydrothermal cycling, at about 40 million years.
Combinatorial synthesis of inorganic or composite materials
Goldwasser, Isy; Ross, Debra A.; Schultz, Peter G.; Xiang, Xiao-Dong; Briceno, Gabriel; Sun, Xian-Dong; Wang, Kai-An
2010-08-03
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
USDA-ARS?s Scientific Manuscript database
Stir bar sorptive extraction (SBSE) is a technique for extraction and analysis of organic compounds in aqueous matrices, similar in theory to solid phase microextraction (SPME). SBSE has been successfully used to analyze several organic compounds, including food matrices. When compared with SPME, ...
All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition
NASA Astrophysics Data System (ADS)
Lausund, Kristian Blindheim; Nilsen, Ola
2016-11-01
Thin films of stable metal-organic frameworks (MOFs) such as UiO-66 have enormous application potential, for instance in microelectronics. However, all-gas-phase deposition techniques are currently not available for such MOFs. We here report on thin-film deposition of the thermally and chemically stable UiO-66 in an all-gas-phase process by the aid of atomic layer deposition (ALD). Sequential reactions of ZrCl4 and 1,4-benzenedicarboxylic acid produce amorphous organic-inorganic hybrid films that are subsequently crystallized to the UiO-66 structure by treatment in acetic acid vapour. We also introduce a new approach to control the stoichiometry between metal clusters and organic linkers by modulation of the ALD growth with additional acetic acid pulses. An all-gas-phase synthesis technique for UiO-66 could enable implementations in microelectronics that are not compatible with solvothermal synthesis. Since this technique is ALD-based, it could also give enhanced thickness control and the possibility to coat irregular substrates with high aspect ratios.
Capaldi, D C; Cole, D L; Ravikumar, V T
2000-05-01
A triester method for the synthesis of deoxynucleoside phosphorodithioate dimers is described. The phosphorodithioate linkage is introduced using a new dithiophosphorylating reagent DPSE-SP(S)Cl(2)where DPSE = 2-diphenylmethylsilylethyl. This group is removed quickly using tetra-butylammonium fluoride leading to the quantitative formation of phosphorodithioate diesters uncontaminated with the corresponding phosphorothioates. The utility of this group is demonstrated by the synthesis of a penta-decathymidylic acid, [T(PS(2))T(PO(2))](7)T, which contains alternating phosphorodithioate/phosphate diester internucleotide linkages.
Global distribution of particle phase state in atmospheric secondary organic aerosols
NASA Astrophysics Data System (ADS)
Shiraiwa, Manabu; Li, Ying; Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Berkemeier, Thomas; Pandis, Spyros N.; Lelieveld, Jos; Koop, Thomas; Pöschl, Ulrich
2017-04-01
Secondary organic aerosols (SOA) are a large source of uncertainty in our current understanding of climate change and air pollution. The phase state of SOA is important for quantifying their effects on climate and air quality, but its global distribution is poorly characterized. We developed a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, and we used the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the phase state of atmospheric SOA. For the planetary boundary layer, global simulations indicate that SOA are mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes and solid over dry lands. We find that in the middle and upper troposphere SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded in SOA.
Global distribution of particle phase state in atmospheric secondary organic aerosols.
Shiraiwa, Manabu; Li, Ying; Tsimpidi, Alexandra P; Karydis, Vlassis A; Berkemeier, Thomas; Pandis, Spyros N; Lelieveld, Jos; Koop, Thomas; Pöschl, Ulrich
2017-04-21
Secondary organic aerosols (SOA) are a large source of uncertainty in our current understanding of climate change and air pollution. The phase state of SOA is important for quantifying their effects on climate and air quality, but its global distribution is poorly characterized. We developed a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, and we used the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the phase state of atmospheric SOA. For the planetary boundary layer, global simulations indicate that SOA are mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes and solid over dry lands. We find that in the middle and upper troposphere SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded in SOA.
Global distribution of particle phase state in atmospheric secondary organic aerosols
Shiraiwa, Manabu; Li, Ying; Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Berkemeier, Thomas; Pandis, Spyros N.; Lelieveld, Jos; Koop, Thomas; Pöschl, Ulrich
2017-01-01
Secondary organic aerosols (SOA) are a large source of uncertainty in our current understanding of climate change and air pollution. The phase state of SOA is important for quantifying their effects on climate and air quality, but its global distribution is poorly characterized. We developed a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, and we used the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the phase state of atmospheric SOA. For the planetary boundary layer, global simulations indicate that SOA are mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes and solid over dry lands. We find that in the middle and upper troposphere SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants and organic molecules could kinetically limit gas–particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded in SOA. PMID:28429776
Chemistry of Covalent Organic Frameworks.
Waller, Peter J; Gándara, Felipe; Yaghi, Omar M
2015-12-15
Linking organic molecules by covalent bonds into extended solids typically generates amorphous, disordered materials. The ability to develop strategies for obtaining crystals of such solids is of interest because it opens the way for precise control of the geometry and functionality of the extended structure, and the stereochemical orientation of its constituents. Covalent organic frameworks (COFs) are a new class of porous covalent organic structures whose backbone is composed entirely of light elements (B, C, N, O, Si) that represent a successful demonstration of how crystalline materials of covalent solids can be achieved. COFs are made by combination of organic building units covalently linked into extended structures to make crystalline materials. The attainment of crystals is done by several techniques in which a balance is struck between the thermodynamic reversibility of the linking reactions and their kinetics. This success has led to the expansion of COF materials to include organic units linked by these strong covalent bonds: B-O, C-N, B-N, and B-O-Si. Since the organic constituents of COFs, when linked, do not undergo significant change in their overall geometry, it has been possible to predict the structures of the resulting COFs, and this advantage has facilitated their characterization using powder X-ray diffraction (PXRD) techniques. It has also allowed for the synthesis of COF structures by design and for their formation with the desired composition, pore size, and aperture. In practice, the modeled PXRD pattern for a given expected COF is compared with the experimental one, and depending on the quality of the match, this is used as a starting point for solving and then refining the crystal structure of the target COF. These characteristics make COFs an attractive class of new porous materials. Accordingly, they have been used as gas storage materials for energy applications, solid supports for catalysis, and optoelectronic devices. A large and growing library of linkers amenable to the synthesis of COFs is now available, and new COFs and topologies made by reticular synthesis are being reported. Much research is also directed toward the development of new methods of linking organic building units to generate other crystalline COFs. These efforts promise not only new COF chemistry and materials, but also the chance to extend the precision of molecular covalent chemistry to extended solids.
Mallik, Abul K; Noguchi, Hiroki; Rahman, Mohammed Mizanur; Takafuji, Makoto; Ihara, Hirotaka
2018-06-22
The synthesis of a new alternating copolymer-grafted silica phase is described for the separation of shape-constrained isomers of polycyclic aromatic hydrocarbons (PAHs) and tocopherols in reversed-phase high-performance liquid chromatography (RP-HPLC). Telomerization of the monomers (octadecyl acrylate and N-methylmaleimide) was carried out with a silane coupling agent; 3-mercaptopropyltrimethoxysilane (MPS), and the telomer (T) was grafted onto porous silica surface to prepare the alternating copolymer-grafted silica phase (Sil-alt-T). The new hybrid material was characterized by elemental analyses, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, and solid-state 13 C and 29 Si cross-polarization magic-angle spinning (CP/MAS) NMR spectroscopy. The results of 13 C CP/MAS NMR demonstrated that the alkyl chains of the grafted polymers in Sil-alt-T remained disordered, amorphous, and mobile represented by gauche conformational form. Separation abilities and molecular-shape selectivities of the prepared organic phase were evaluated by the separation of PAHs isomers and Standard Reference Material 869b, Column Selectivity Test Mixture for Liquid Chromatography, respectively and compared with commercially available octadecylsilylated silica (ODS) and C 30 columns as well as previously reported alternating copolymer-based column. The effectiveness of this phase is also demonstrated by the separation of tocopherol isomers. Oriented functional groups along the polymer main chains and cavity formations are investigated to be the driving force for better separation with multiple-interactions with the solutes. One of the advantages of the Sil-alt-T phase to that of the previously reported phase is the synthesis of the telomer first and then immobilized onto silica surface. In this case, the telomer was characterized easily with simple spectroscopic techniques and the molecular mass and polydispersity index of the telomer were determined by size exclusion chromatography (SEC) before grafting onto silica surface. Moreover, both of the monomers were commercially available. Therefore, the technique of preparation was very facile and better separation was achieved with the Sil-alt-T phase compared to the ODS, C 30 and other previously reported alternating copolymer-based columns. Copyright © 2018 Elsevier B.V. All rights reserved.
Application of binomial-edited CPMG to shale characterization
Washburn, Kathryn E.; Birdwell, Justin E.
2014-01-01
Unconventional shale resources may contain a significant amount of hydrogen in organic solids such as kerogen, but it is not possible to directly detect these solids with many NMR systems. Binomial-edited pulse sequences capitalize on magnetization transfer between solids, semi-solids, and liquids to provide an indirect method of detecting solid organic materials in shales. When the organic solids can be directly measured, binomial-editing helps distinguish between different phases. We applied a binomial-edited CPMG pulse sequence to a range of natural and experimentally-altered shale samples. The most substantial signal loss is seen in shales rich in organic solids while fluids associated with inorganic pores seem essentially unaffected. This suggests that binomial-editing is a potential method for determining fluid locations, solid organic content, and kerogen–bitumen discrimination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, Paul F.; Gryko, Jan; Bull, Craig
A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr{sub 2}) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300{sup o}C. Syntheses at higher temperatures gave rise tomore » microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.« less
Highly Non-Linear Optical (NLO) organic crystals
NASA Technical Reports Server (NTRS)
Harris, J. Milton
1987-01-01
This research project involves the synthesis and characterization of organic materials having powerful nonlinear optical (NLO) properties and the growth of highly ordered crystals and monomolecular films of these materials. Research in four areas is discussed: theoretical design of new materials, characterization of NLO materials, synthesis of new materials and development of coupling procedures for forming layered films, and improvement of the techniques for vapor phase and solution phase growth of high quality organic crystals. Knowledge gained from these experiments will form the basis for experiments in the growth of these crystals.
Synthesis of Amino Acid Precursors with Organic Solids in Planetesimals with Liquid Water
NASA Technical Reports Server (NTRS)
Kebukawa, Y; Misawa, S.; Matsukuma, J.; Chan, Q. H. S.; Kobayashi, J.; Tachibana, S.; Zolensky, M. E.
2017-01-01
Amino acids are important ingredients of life that would have been delivered to Earth by extraterrestrial sources, e.g., comets and meteorites. Amino acids are found in aqueously altered carbonaceous chondrites in good part in the form of precursors that release amino acids after acid hydrolysis. Meanwhile, most of the organic carbon (greater than 70 weight %) in carbonaceous chondrites exists in the form of solvent insoluble organic matter (IOM) with complex macromolecular structures. Complex macromolecular organic matter can be produced by either photolysis of interstellar ices or aqueous chemistry in planetesimals. We focused on the synthesis of amino acids during aqueous alteration, and demonstrated one-pot synthesis of a complex suite of amino acids simultaneously with IOM via hydrothermal experiments simulating the aqueous processing
Confined-Pyrolysis as an Experimental Method for Hydrothermal Organic Synthesis
NASA Technical Reports Server (NTRS)
Leif, Roald N.; Simoneit, Bernd R. T.
1995-01-01
A closed pyrolysis system has been developed as a tool for studying the reactions of organic compounds under extreme hydrothermal conditions. Small high pressure stainless steel vessels in which the ratio of sediment or sample to water has been adjusted to eliminate the headspace at peak experimental conditions confines the organic components to the bulk solid matrix and eliminates the partitioning of the organic compounds away from the inorganic components during the experiment. Confined pyrolysis experiments were performed to simulate thermally driven catagenetic changes in sedimentary organic matter using a solids to water ratio of 3.4 to 1. The extent of alteration was measured by monitoring the steroid and triterpenoid biomarkers and polycyclic aromatic hydrocarbon distributions. These pyrolysis experiments duplicated the hydrothermal transformations observed in nature. Molecular probe experiments using alkadienes, alkenes and alkanes in H2O and D2O elucidated the isomerization and hydrogenation reactions of aliphatic and the competing oxidative reactions occurring under hydrothermal conditions. This confined pyrolysis technique is being applied to test experiments on organic synthesis of relevance to chemical evolution for the origin of life.
Synthesis mechanism and preparation of LaMgAl11O19 powder for plasma spraying
NASA Astrophysics Data System (ADS)
He, Mingtao; Meng, Huimin; Wang, Yuchao; Ren, Pengwei
2018-06-01
Lanthanide magnesium hexaaluminate (LaMgAl11O19) powders were successfully synthesized by the solid-state reaction method. The objective of this study was to investigate the synthesis mechanism of LaMgAl11O19 and prepare LaMgAl11O19 powders suitable for plasma spraying. The results show that LaAlO3 reacts with MgAl2O4 and Al2O3 to form LaMgAl11O19 at approximately 1300 °C. Single-phase LaMgAl11O19 powders were prepared successfully by solid-state reaction at a synthesis temperature of 1600 °C for 6 h. Unlike the particles in the synthesized powders, those of the centrifugally spray-dried powders have a spherical shape with uniform granularity and good flowability, density, and particle size distribution, making them suitable for plasma spraying. The synthesized powders and centrifugally spray-dried powders remained as a single phase after heat treatment at 1300 °C for 100 h, indicating that LaMgAl11O19 has excellent high-temperature stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong Yuping, E-mail: huabeitong@yahoo.cn; Wang Yanping
2009-11-15
Nanocrystalline Nd{sub 2}(Zr{sub 1-x}Sn{sub x}){sub 2}O{sub 7} series solid solutions were prepared by a convenient salt-assisted combustion process using glycine as fuel. The samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy and high-resolution transmission electron microscopy. The results showed the Zr ion can be partially replaced by Sn ion. The partial substituted products were still single-phase solid solutions and the crystal form remained unchanged. TEM images reveal that the products are composed of well-dispersed square-shaped nanocrystals. The method provides a convenient and low-cost route for the synthesis of nanostructures of oxide materials.
NASA Astrophysics Data System (ADS)
Saikia, Diganta; Wu, Cheng-Gang; Fang, Jason; Tsai, Li-Duan; Kao, Hsien-Ming
2014-12-01
A new type of highly conductive organic-inorganic hybrid polymer electrolytes has been synthesized by the reaction of poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether), 2,4,6-trichloro-1,3,5-triazine and alkoxysilane precursor 3-(glycidyloxypropyl)trimethoxysilane, followed by doping of LiClO4. The 13C and 29Si solid-sate NMR results confirm the successful synthesis of the organic-inorganic hybrid structure. The solid hybrid electrolyte thus obtained exhibits a maximum ionic conductivity of 1.6 × 10-4 S cm-1 at 30 °C, which is the highest among the organic-inorganic hybrid electrolytes. The hybrid electrolytes are electrochemically stable up to 4.2 V. The prototype electrochromic device with such a solid hybrid electrolyte demonstrates a good coloration efficiency value of 183 cm2 C-1 with a cycle life over 200 cycles. For the lithium-ion battery test, the salt free solid hybrid membrane is swelled with a LiPF6-containing electrolyte solution to reach an acceptable ionic conductivity value of 6.5 × 10-3 S cm-1 at 30 °C. The battery cell carries an initial discharge capacity of 100 mAh g-1 at 0.2C-rate and a coulombic efficiency of about 95% up to 30 cycles without the sign of cell failure. The present organic-inorganic hybrid electrolytes hold promise for applications in electrochromic devices and lithium ion batteries.
Glycerol derivatives of cutin and suberin monomers: synthesis and self-assembly.
Douliez, Jean-Paul; Barrault, Joël; Jerome, François; Heredia, Antonio; Navailles, Laurence; Nallet, Frédéric
2005-01-01
Glycerol derivatives of cutin and suberin monomers were synthesized by acid catalysis. Their dispersion in an aqueous solution was examined by phase contrast microscopy, neutron scattering, and solid state NMR. It is shown that the phase behavior strongly depends on the nature of the derivatives forming either lumps of aggregated membranes or well dispersed membranes.
Solid-Phase Synthesis of RNA Analogs Containing Phosphorodithioate Linkages.
Yang, Xianbin
2017-09-18
The oligoribonucleotide phosphorodithioate (PS2-RNA) modification uses two sulfur atoms to replace two non-bridging oxygen atoms at an internucleotide phosphorodiester backbone linkage. Like a natural phosphodiester RNA backbone linkage, a PS2-modified backbone linkage is achiral at phosphorus. PS2-RNAs are highly stable to nucleases and several in vitro assays have demonstrated their biological activity. For example, PS2-RNAs silenced mRNA in vitro and bound to protein targets in the form of PS2-aptamers (thioaptamers). Thus, the interest in and promise of PS2-RNAs has drawn attention to synthesizing, isolating, and characterizing these compounds. RNA-thiophosphoramidite monomers are commercially available from AM Biotechnologies and this unit describes an effective methodology for solid-phase synthesis, deprotection, and purification of RNAs having PS2 internucleotide linkages. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Exposing high-energy surfaces by rapid-anneal solid phase epitaxy
Wang, Y.; Song, Y.; Peng, R.; ...
2017-08-08
The functional design of nanoscale transition metal oxide heterostructures depends critically on the growth of atomically flat epitaxial thin films. Much of the time, improved functionality is expected for heterostructures and surfaces with orientations that do not have the lowest surface free energy. For example, crystal faces with a high surface free energy, such as rutile (001) planes, frequently exhibit higher catalytic activities but are correspondingly harder to synthesize due to energy-lowering faceting transitions. We propose a broadly applicable rapid-anneal solid phase epitaxial synthesis approach for the creation of atomically flat, high surface free energy oxide heterostructures. We also demonstratemore » its efficacy via the synthesis of atomically flat, epitaxial RuO 2(001) films with a superior oxygen evolution activity, quantified by their lower onset potential and higher current density, relative to that of more common RuO 2(110) films.« less
Defined presentation of carbohydrates on a duplex DNA scaffold.
Schlegel, Mark K; Hütter, Julia; Eriksson, Magdalena; Lepenies, Bernd; Seeberger, Peter H
2011-12-16
A new method for the spatially defined alignment of carbohydrates on a duplex DNA scaffold is presented. The use of an N-hydroxysuccinimide (NHS)-ester phosphoramidite along with carbohydrates containing an alkylamine linker allows for on-column labeling during solid-phase oligonucleotide synthesis. This modification method during solid-phase synthesis only requires the use of minimal amounts of complex carbohydrates. The covalently attached carbohydrates are presented in the major groove of the B-form duplex DNA as potential substrates for murine type II C-type lectin receptors mMGL1 and mMGL2. CD spectroscopy and thermal melting revealed only minimal disturbance of the overall helical structure. Surface plasmon resonance and cellular uptake studies with bone-marrow-derived dendritic cells were used to assess the capability of these carbohydrate-modified duplexes to bind to mMGL receptors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Surface-modified multifunctional MIP nanoparticles.
Moczko, Ewa; Poma, Alessandro; Guerreiro, Antonio; Perez de Vargas Sansalvador, Isabel; Caygill, Sarah; Canfarotta, Francesco; Whitcombe, Michael J; Piletsky, Sergey
2013-05-07
The synthesis of core-shell molecularly imprinted polymer nanoparticles (MIP NPs) has been performed using a novel solid-phase approach on immobilised templates. The same solid phase also acts as a protective functionality for high affinity binding sites during subsequent derivatisation/shell formation. This procedure allows for the rapid synthesis, controlled separation and purification of high-affinity materials, with each production cycle taking just 2 hours. The aim of this approach is to synthesise uniformly sized imprinted materials at the nanoscale which can be readily grafted with various polymers without affecting their affinity and specificity. For demonstration purposes we grafted anti-melamine MIP NPs with coatings which introduce the following surface characteristics: high polarity (PEG methacrylate); electro-activity (vinylferrocene); fluorescence (eosin acrylate); thiol groups (pentaerythritol tetrakis(3-mercaptopropionate)). The method has broad applicability and can be used to produce multifunctional imprinted nanoparticles with potential for further application in the biosensors, diagnostics and biomedical fields and as an alternative to natural receptors.
Ha, Ji-Eun; Yang, Seung-Ju; Gong, Young-Dae
2018-02-12
An efficient solid-phase synthetic route for the construction of 1,3,4-oxadiazole and 1,3,4-thiadiazole libraries based on branching diversity-oriented synthesis (DOS) has been developed in this study. The core skeleton resins, 1,3,4-oxadiazole and 1,3,4-thiadiazole, were obtained through desulfurative and dehydrative cyclizations of thiosemicarbazide resin, respectively. Various functional groups have been introduced to the core skeleton resins, such as aryl, amine, amide, urea, thiourea, and an amino acid. Most of the libraries were purified by simple trituration without extraction or column chromatography after cleavage of the products from the solid-supported resin. As a result, we obtained high yields of pure 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives (total numbers = 128). Finally, we confirmed the drug-like properties of our library by calculation of physicochemical properties, displays of the skeletal diversities of the library in 3D-space, and occupation of a broad range of areas by their functional groups.
Distribution of Dechlorinating Bacteria between the Aqueous and Solid Phases
NASA Astrophysics Data System (ADS)
Cápiro, N. L.; Hatt, J. K.; Wang, Y.; Loeffler, F. E.; Pennell, K. D.
2010-12-01
Microbial monitoring of aquifers relies on nucleic acid biomarker analysis, which is typically performed with biomass recovered from groundwater samples; however, it is unclear what fraction of the target population(s) is associated with groundwater (i.e., planktonic cells) or is attached to solid phases (i.e., biofilms). Understanding how the titer of target organism(s) in groundwater correlates with the true cell titers of the target organism in the aquifer (i.e., planktonic plus attached cells) is critical for a meaningful interpretation of the data, the prediction of bioremediation performance, and the implementation of site management strategies. To evaluate the distribution of active cells between resident solid phase and the aqueous phase, one-dimensional columns were packed under water-saturated conditions with Bio-Dechlor INOCULUM, a PCE-to ethene-dechlorinating bacterial consortium containing both multiple Dehalococcoides (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ). The columns were packed with two distinct solid matrices: a low organic content sandy Federal Fine Ottawa soil or Appling soil with higher organic matter content. Influent reduced mineral salts medium supplied at a groundwater pore-water velocity of 0.3 m/day contained both 10 mM lactate as electron donor and 0.33 mM PCE as electron acceptor. Routine collection of biomass from column side ports and effluent samples measured the titers of target cells in the aqueous phase and determined when steady state conditions had been reached. A second set of column experiments evaluated delivery and filtration effects by the solid matrix (i.e., Federal Fine Ottawa sand versus Appling soil) under the same conditions except that electron donor or acceptor were omitted (no growth conditions). Quantitative real-time PCR (qPCR) analysis using Dhc and GeoSZ 16S rRNA gene-targeted primer and probe sets determined the planktonic cell counts, and destructive sampling of the columns allowed measurement of the total cell titer (i.e., attached plus planktonic cells). The results indicate that within the higher organic matter Appling soil, the fraction of target cells associated with the solid phase was nearly 2-orders of magnitude higher compared to the fraction attached to the aqueous phase. In the sandy soil, differences were approximately 1-order of magnitude. Ongoing efforts use dynamic light scattering and electrophoretic mobility measurements over a range of ionic strengths and pH values to shed light on the parameters that control microbial attachment behavior. Knowledge of factors that affect microbial distribution between aqueous and solid phases is essential for interpreting qPCR data obtained from site groundwater where biological remedies are implemented.
Jlalia, Ibtissem; Beauvineau, Claire; Beauvière, Sophie; Onen, Esra; Aufort, Marie; Beauvineau, Aymeric; Khaba, Eihab; Herscovici, Jean; Meganem, Faouzi; Girard, Christian
2010-04-28
This article deal with the parallel synthesis of a 96 product-sized library using a polymer-based copper catalyst that we developed which can be easily separated from the products by simple filtration. This gave us the opportunity to use this catalyst in an automated chemical synthesis station (Chemspeed ASW-2000). Studies and results about the preparation of the catalyst, its use in different solvent systems, its recycling capabilities and its scope and limitations in the synthesis of this library will be addressed. The synthesis of the triazole library and the very good results obtained will finally be discussed.
Data is presented on the development of a new automated system combining solid phase extraction (SPE) with GC/MS spectrometry for the single-run analysis of water samples containing a broad range of organic compounds. The system uses commercially available automated in-line 10-m...
Solid-phase synthesis of self-assembling multivalent π-conjugated peptides
Sanders, Allix M.; Kale, Tejaswini S.; Katz, Howard E.; ...
2017-02-07
Here, we present a completely solid-phase synthetic strategy to create three- and four-fold peptide-appended π-electron molecules, where the multivalent oligopeptide presentation is dictated by the symmetries of reactive handles placed on discotic π-conjugated cores. Carboxylic acid and anhydride groups were viable amidation and imidation partners, respectively, and oligomeric π-electron discotic cores were prepared through Pd-catalyzed cross-couplings. Due to intermolecular hydrogen bonding between the three or four peptide axes, these π-peptide hybrids self-assemble into robust one-dimensional nanostructures with high aspect ratios in aqueous solution. The preparation of these systems via solid-phase methods will be detailed along with their self-assembly properties, asmore » revealed by steady-state spectroscopy and transmission electron microscopy and electrical characterization using field-effect transistor measurements.« less
NASA Astrophysics Data System (ADS)
Nefedov, R. A.; Ferapontov, Yu A.; Kozlova, N. P.
2016-01-01
Using solubility method the decay kinetics of peroxide products contained in liquid phase of LiOH - H2O2 - H2O trinary system with 2 to 6% by wt hydrogen peroxide content in liquid phase in 21 to 33 °C temperature range has been studied. Conducted studies have allowed to determine temperature and concentration limits of solid phase existence of Li2O2·H2O content, distinctness of which has been confirmed using chemical and qualitative X- ray phase analysis. Stabilizing effect of solid phase of Li2O2·H2O content on hydrogen peroxide decay contained in liquid phase of LiOH - H2O2 - H2O trinary system under conditions of experiments conducted has been shown.
Method of lift-off patterning thin films in situ employing phase change resists
Bahlke, Matthias Erhard; Baldo, Marc A; Mendoza, Hiroshi Antonio
2014-09-23
Method for making a patterned thin film of an organic semiconductor. The method includes condensing a resist gas into a solid film onto a substrate cooled to a temperature below the condensation point of the resist gas. The condensed solid film is heated selectively with a patterned stamp to cause local direct sublimation from solid to vapor of selected portions of the solid film thereby creating a patterned resist film. An organic semiconductor film is coated on the patterned resist film and the patterned resist film is heated to cause it to sublime away and to lift off because of the phase change.
Tomabechi, Yusuke; Katoh, Toshihiko; Kunishima, Munetaka; Inazu, Toshiyuki; Yamamoto, Kenji
2017-08-01
For chemo-enzymatic synthesis of a glycosylated peptide, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) was used for the synthesis of a N-acetylglucosaminyl peptide and a pseudoglycopeptide by solid-phase peptide synthesis without the requirement of protecting groups on the carbohydrate. We also performed transglycosylation of an N-glycan to the N-acetylglucosaminyl peptide using endo-β-N-acetylglucosaminidase from Mucor hiemalis (Endo-M) to synthesize a glycopeptide containing a complex N-glycan.
Kostov, Ondřej; Páv, Ondřej; Rosenberg, Ivan
2017-09-18
This unit comprises the straightforward synthesis of protected 2'-deoxyribonucleoside-O-methyl-(H)-phosphinates in both 3'- and 5'-series. These compounds represent a new class of monomers compatible with the solid-phase synthesis of oligonucleotides using H-phosphonate chemistry and are suitable for the preparation of both 3'- and 5'-O-methylphosphonate oligonucleotides. The synthesis of 4-toluenesulfonyloxymethyl-(H)-phosphinic acid as a new reagent for the preparation of O-methyl-(H)-phosphinic acid derivatives is described. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Iwamoto, T; Grove, A; Montal, M O; Montal, M; Tomich, J M
1994-06-01
A strategy for the synthesis of peptides and oligomeric proteins designed to form transmembrane ion channels is described. A folding motif that exhibits a functional ionic pore encompasses amphipathic alpha-helices organized as a four-helix bundle around a central hydrophilic pore. The channel-forming activity of monomeric amphipathic peptides may be examined after reconstitution in lipid bilayers in which peptides self-assemble into conductive oligomers. The covalent attachment of channel-forming peptides to the lysine epsilon-amino groups of a template molecule (KKKPGKEKG) specifies oligomeric number and facilitates the study of ionic permeation and channel blockade. Here we describe detailed protocols for the total synthesis of peptides and template-assembled four-helix bundle proteins, exemplified with the sequence of M2 delta (EKM-STAISVLLAQAVFLLLTSQR), considered involved in lining the pore of the nicotinic acetylcholine receptor channel. For comparison, the synthesis of a second four-helix bundle, T4CaIVS3 with the sequence of predicted transmembrane segment S3 (DPWNVFDFLIVIGSIIDVILSE) of the fourth repeat of the L-type voltage-gated calcium channel, is included. Peptides and proteins are synthesized step-wise by solid-phase methods, purified by reversed-phase HPLC, and homogeneity ascertained by analytical HPLC, capillary zone electrophoresis, SDS/PAGE, amino acid analysis and sequencing. Optimization of synthetic procedures for hydrophobic molecules include reducing resin substitution to avoid steric hindrance and aggregation of the final product. Protocols for the preparation of the samples prior to HPLC purification as well as the conditions and columns required for successful purification are presented. The methods developed are generally applicable for the chemical synthesis, purification and characterization of amphipathic peptides and template directed helical bundle proteins.
NASA Astrophysics Data System (ADS)
Potter, Sally L.; Chan, Marjorie A.; Petersen, Erich U.; Dyar, M. Darby; Sklute, Elizabeth
2011-01-01
The eolian Jurassic Navajo Sandstone spheroidal hydrous ferric oxide (HFO) concretions are divided into two size classes: macro-concretions of > 5 mm diameter and micro-concretions of < 5 mm diameter. Three internal structural end-members of macro-concretions are described as rind, layered, and solid. Two end-members of micro-concretions are rind and solid. Chemical and mineralogical gradients (μm- to mm-scale) are identified with QEMSCAN (Quantitative Elemental Mineralogy using a SCANning electron microscope) and visible to near infrared (VNIR) reflectance spectroscopy. Three HFO phases are identified using VNIR reflectance spectroscopy. An amorphous HFO phase is typically located in the rinds. Goethite is present along interior edges of rinds and throughout the interiors of layered and solid concretions. Hematite is present in the centers of rind concretions. A synthesis of petrographic, mineralogical and chemical analyses suggests that concretions grow pervasively (as opposed to radially expanding). Our model proposes that concretions precipitate initially as an amorphous HFO that sets the radius and retains some original porosity. Subsequent precipitation fills remaining pore space with younger mineral phases. Inward digitate cement crystal growth corroborates concretion growth from a set radius toward the centers. Internal structure is modified during late stage precipitation that diffuses reactants through semi-permeable rinds and overprints the interiors with younger cements. Physical characterization of textures and minerals provides diagnostic criteria for understanding how similar concretions ("blueberries") form in Meridiani Planum, Mars. The analogous Navajo Sandstone concretions show similar characteristics of in situ self-organized spacing, spheroidal geometries, internal structures, conjoined forms, and precursor HFO phases that dehydrate to goethite or hematite. These characteristics indicate a common origin via groundwater diagenesis.
Library design practices for success in lead generation with small molecule libraries.
Goodnow, R A; Guba, W; Haap, W
2003-11-01
The generation of novel structures amenable to rapid and efficient lead optimization comprises an emerging strategy for success in modern drug discovery. Small molecule libraries of sufficient size and diversity to increase the chances of discovery of novel structures make the high throughput synthesis approach the method of choice for lead generation. Despite an industry trend for smaller, more focused libraries, the need to generate novel lead structures makes larger libraries a necessary strategy. For libraries of a several thousand or more members, solid phase synthesis approaches are the most suitable. While the technology and chemistry necessary for small molecule library synthesis continue to advance, success in lead generation requires rigorous consideration in the library design process to ensure the synthesis of molecules possessing the proper characteristics for subsequent lead optimization. Without proper selection of library templates and building blocks, solid phase synthesis methods often generate molecules which are too heavy, too lipophilic and too complex to be useful for lead optimization. The appropriate filtering of virtual library designs with multiple computational tools allows the generation of information-rich libraries within a drug-like molecular property space. An understanding of the hit-to-lead process provides a practical guide to molecular design characteristics. Examples of leads generated from library approaches also provide a benchmarking of successes as well as aspects for continued development of library design practices.
Roy, Kanchan Sinha; Purohit, Ajay Kumar; Chandra, Buddhadeb; Goud, D Raghavender; Pardasani, Deepak; Dubey, Devendra Kumar
2018-06-05
Extraction and identification of lethal nerve agents and their markers in complex organic background have a prime importance from the forensic and verification viewpoint of the Chemical Weapons Convention (CWC). Liquid-liquid extraction with acetonitrile and commercially available solid phase silica cartridges are extensively used for this purpose. Silica cartridges exhibit limited applicability for relatively polar analytes, and acetonitrile extraction shows limited efficacy toward relatively nonpolar analytes. The present study describes the synthesis of polymeric sorbents with tunable surface polarity, their application as a solid-phase extraction (SPE) material against nerve agents and their polar as well as nonpolar markers from nonpolar organic matrices. In comparison with the acetonitrile extraction and commercial silica cartridges, the new sorbent showed better extraction efficiency toward analytes of varying polarity. The extraction parameters were optimized for the proposed method, which included ethyl acetate as an extraction solvent and n-hexane as a washing solvent. Under optimized conditions, method linearity ranged from 0.10 to 10 μg mL -1 ( r 2 = 0.9327-0.9988) for organophosphorus esters and 0.05-20 μg mL -1 ( r 2 = 0.9976-0.9991) for nerve agents. Limits of detection (S:N = 3:1) in the SIM mode were found in the range of 0.03-0.075 μg mL -1 for organophosphorus esters and 0.015-0.025 μg mL -1 for nerve agents. Limits of quantification (S:N = 10:1) were found in the range of 0.100-0.25 μg mL -1 for organophosphorus esters and 0.05-0.100 μg mL -1 for nerve agents in the SIM mode. The recoveries of the nerve agents and their markers ranged from 90.0 to 98.0% and 75.0 to 95.0% respectively. The repeatability and reproducibility (with relative standard deviations (RSDs) %) for organophosphorus esters were found in the range of 1.35-8.61% and 2.30-9.25% respectively. For nerve agents, the repeatability range from 1.00 to 7.75% and reproducibility were found in the range of 2.17-6.90%.
Controlled functionalization of nanoparticles & practical applications
NASA Astrophysics Data System (ADS)
Rashwan, Khaled
With the increasing use of nanoparticles in both science and industry, their chemical modification became a significant part of nanotechnology. Unfortunately, most commonly used procedures provide just randomly functionalized materials. The long-term objective of our work is site- and stoichiometrically-controlled functionalization of nanoparticles with the utilization of solid supports and other nanostructures. On the examples of silica nanoparticles and titanium dioxide nanorods, we have obtained results on the solid-phase chemistry, method development, and modeling, which advanced us toward this goal. At the same time, we explored several applications of nanoparticles that will benefit from the controlled functionalization: imaging of titanium-dioxide-based photocatalysts, bioimaging by fluorescent nanoparticles, drug delivery, assembling of bone implants, and dental compositions. Titanium dioxide-based catalysts are known for their catalytic activity and their application in solar energy utilization such as photosplitting of water. Functionalization of titanium dioxide is essential for enhancing bone-titanium dioxide nanotube adhesion, and, therefore, for its application as an interface between titanium implants and bones. Controlled functionalization of nanoparticles should enhance sensitivity and selectivity of nanoassemblies for imaging and drug delivery applications. Along those lines, we studied the relationship between morphology and surface chemistry of nanoparticles, and their affinity to organic molecules (salicylic and caffeic acid) using Langmuir adsorption isotherms, and toward material surfaces using SEM- and TEM-imaging. We focused on commercial samples of titanium dioxide, titanium dioxide nanorods with and without oleic acid ligands, and differently functionalized silica nanoparticles. My work included synthesis, functionalization, and characterization of several types of nanoparticles, exploring their application in imaging, dentistry, and bone implant construction. Significant part of my experimental efforts was devoted to the solid-phase method development using model organic molecules, as well as affinity of nanoparticles to the functional groups and surfaces that can be used as linkages for constructing functional nanodevices.
Synthesis of Natural Cyclopentapeptides Isolated from Dianthus chinensis.
Zhang, Shengping; Amso, Zaid; De Leon Rodriguez, Luis M; Kaur, Harveen; Brimble, Margaret A
2016-07-22
The first syntheses of the naturally occurring cyclic peptides dianthin I (1), pseudostellarin A (2), and heterophyllin J (3) are described. The linear protected peptide precursors were prepared efficiently via Fmoc-solid-phase synthesis and subsequently cyclized in solution under dilute conditions. The structures of the synthetic cyclopentapeptides were confirmed by NMR spectroscopy and mass spectrometry and were in agreement with the literature data reported for the natural products.
NASA Astrophysics Data System (ADS)
Sharma, K. P.; Reddi, R. S. B.; Bhattacharya, S.; Rai, R. N.
2012-06-01
The solid-state reaction, which is solvent free and green synthesis, has been adopted to explore the novel compound. The phase diagram of 4-chloroaniline (CA) and 3-hydroxy-4-methoxybenzaldehyde (HMB) system shows the formation of a novel 1:1 molecular complex, and two eutectics on either sides of complex. Thermochemical studies of complex and eutectics have been carried out for various properties such as heat of fusion, entropy of fusion, Jackson's parameters, interfacial energy and excess thermodynamic functions. The formation of molecular complex was also studied by IR, NMR, elemental analysis and UV-Vis absorption spectra. The single crystal of molecular complex was grown and its XRD study confirms the formation of complex and identifies the crystal structure and atomic packing of crystal of complex. Transmission spectra of grown crystal of the complex show 70% transmittance efficiency with cut off wavelength 412 nm. The band gap and refractive index of the crystal of complex have also been studied.
Functionalized coronenes: synthesis, solid structure, and properties.
Wu, Di; Zhang, Hua; Liang, Jinhua; Ge, Haojie; Chi, Chunyan; Wu, Jishan; Liu, Sheng Hua; Yin, Jun
2012-12-21
The construction of coronenes using simple building blocks is a challenging task. In this work, triphenylene was used as a building block to construct functionalized coronenes, and their solid structures and optoelectronic properties were investigated. The single crystal structures showed that coronenes have different packing motifs. Their good solubility and photostability make them potential solution-processable candidates for organic devices.
Flemer, Stevenson; Wurthmann, Alexander; Mamai, Ahmed; Madalengoitia, José S
2008-10-03
A strategy for the solid-phase diversification of PPII mimic scaffolds through guanidinylation is presented. The approach involves the synthesis N-Pmc-N'-alkyl thioureas as diversification reagents. Analogues of Fmoc-Orn(Mtt)-OH can be incorporated into a growing peptide chain on Wang resin. Side chain deprotection with 1% TFA/CH2Cl2 followed by EDCI-mediated reaction of N-Pmc-N'-alkyl thioureas with the side chain amine affords arginine analogues with modified guanidine head groups. The scope, limitations, and incidental chemistry are discussed.
A template-free solid-state synthesis of a morphologically controlled and highly organized iron(III)oxide micro–mesoporous Fenton catalyst has been engineered through a simple two-step synthetic procedure. The 3D nanoassembly of hematite nanoparticles (5–7 nm) organized into a ro...
Tafazoli, Zahra; Azar, Parviz Aberoomand; Tehrani, Mohammad Saber; Husain, Syed Waqif
2018-04-20
The aim of this study the synthesis of a highly efficient organic-inorganic nanocomposite. In this research, the carbon nanotube/magnetite/polyaniline nanocomposite was successfully prepared through a facile route. Monodisperse magnetite nanospheres were prepared through the coprecipitation route, and polyaniline nanolayer as a modified shell with a high surface area was synthesized by an in situ growth route and characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and energy dispersive X-ray spectroscopy. The prepared nanocomposite was immobilized on a stainless-steel wire for the fabrication of the solid-phase microextraction fiber. The combination of headspace solid-phase microextraction using carbon nanotube/magnetite/polyaniline nanocomposite fiber with gas chromatography and mass spectrometry can achieve a low limit of detection and can be applied to determine phenolic compounds in water samples. The effects of the extraction and desorption parameters including extraction temperature and time, ionic strength, stirring rate, pH, and desorption temperature and time have been studied. Under the optimum conditions, the dynamic linear range was 0.01-500 ng mL -1 and the limits of detection of phenol, 4-chlorophenol, 2,6-dichlorophenol, and 2,4,6-trichlorophenol were the lowest (0.008 ng mL -1 ) for three times. The coefficient of determination of all calibration curves was more than 0.990. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
A study of room-temperature LixMn1.5Ni0.5O4 solid solutions
Saravanan, Kuppan; Jarry, Angelique; Kostecki, Robert; Chen, Guoying
2015-01-01
Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature LixMn1.5Ni0.5O4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of LixMn1.5Ni0.5O4 (0 ≤ x ≤ 1) cathode material consisting of three cubic phases: LiMn1.5Ni0.5O4 (Phase I), Li0.5Mn1.5Ni0.5O4 (Phase II) and Mn1.5Ni0.5O4 (Phase III). A phase diagram capturing the structural changes as functions of both temperature and Li content was established. The work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance. PMID:25619504
A study of room-temperature Li xMn 1.5Ni 0.5O 4 solid solutions
Saravanan, Kuppan; Jarry, Angelique; Kostecki, Robert; ...
2015-01-26
Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature Li xMn 1.5Ni 0.5O 4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of Li xMn 1.5Ni 0.5O 4 (0 ≤ x ≤ 1) cathode material consisting of three cubic phases: LiMn 1.5Ni 0.5O 4 (Phase I), Li 0.5Mnmore » 1.5Ni 0.5O 4 (Phase II) and Mn 1.5Ni 0.5O 4 (Phase III). A phase diagram capturing the structural changes as functions of both temperature and Li content was established. In conclusion, the work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance.« less
Bae, Seo-Yoon; Kim, Dongwook; Shin, Dongbin; Mahmood, Javeed; Jeon, In-Yup; Jung, Sun-Min; Shin, Sun-Hee; Kim, Seok-Jin; Park, Noejung; Lah, Myoung Soo; Baek, Jong-Beom
2017-11-17
Solid-state reaction of organic molecules holds a considerable advantage over liquid-phase processes in the manufacturing industry. However, the research progress in exploring this benefit is largely staggering, which leaves few liquid-phase systems to work with. Here, we show a synthetic protocol for the formation of a three-dimensional porous organic network via solid-state explosion of organic single crystals. The explosive reaction is realized by the Bergman reaction (cycloaromatization) of three enediyne groups on 2,3,6,7,14,15-hexaethynyl-9,10-dihydro-9,10-[1,2]benzenoanthracene. The origin of the explosion is systematically studied using single-crystal X-ray diffraction and differential scanning calorimetry, along with high-speed camera and density functional theory calculations. The results suggest that the solid-state explosion is triggered by an abrupt change in lattice energy induced by release of primer molecules in the 2,3,6,7,14,15-hexaethynyl-9,10-dihydro-9,10-[1,2]benzenoanthracene crystal lattice.
NASA Astrophysics Data System (ADS)
Jaafar, Hassen; Aymard, Luc; Dachraoui, Walid; Demortière, Arnaud; Abdellaoui, Mohieddine
2018-04-01
We developed in the present paper the synthesis of a new AB3-type compound LaMg2Ni5Al4 by mechanical alloying (MA) process. X-ray diffraction analysis (XRD) was used to determine the structural properties and the phase evolution of the powder mixtures. Two different synthesis pathways have been investigated. The first starting from elemental metals and the second from a mixture of two binary compounds LaNi5 (CaCu5-type structure, P6/mmm space group) and Al(Mg) solid solution (cubic Fm-3 m space group). The results show multiphase alloys which contain LaMg2Ni5Al4 main phase with hexagonal PuNi3-type structure (R-3 m space group). Rietveld analysis shows that using a planetary ball mill, we obtain a good yield of LaMg2Ni5Al4 compound after 5 h of mechanical alloying for both synthesis pathways. TEM analysis confirmed XRD results. SEM-EDX analysis of the final product was in agreement with the nominal chemical formula. A setup of possible solid-gaz hydrogenation reaction will be described so far at the end of this work. Electrochemical results demonstrate evidence on hydrogen absorption in the AB3 material and the discharge capacity was equal to 5.9 H/f.u.
The role of zinc on the chemistry of complex intermetallic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Weiwei
2014-01-01
Combining experiments and electronic structure theory provides the framework to design and discover new families of complex intermetallic phases and to understand factors that stabilize both new and known phases. Using solid state synthesis and multiple structural determinations, ferromagnetic β-Mn type Co 8+xZn 12–x was analyzed for their crystal and electronic structures.
Du, Junyi; Sabatini, David A; Butler, Elizabeth C
2014-04-01
Simple aluminum (hydr)oxides and layered double hydroxides were synthesized using common chemicals and equipment by varying synthesis temperature, concentrations of extra sulfate and citrate, and metal oxide amendments. Aluminum (hydr)oxide samples were aged at either 25 or 200°C during synthesis and, in some cases, calcined at 600 °C. Despite yielding increased crystallinity and mineral phase changes, higher temperatures had a generally negative effect on fluoride adsorption. Addition of extra sulfate during synthesis of aluminum (hydr)oxides led to significantly higher fluoride adsorption capacity compared to aluminum (hydr)oxides prepared with extra citrate or no extra ligands. X-ray diffraction results suggest that extra sulfate led to the formation of both pseudoboehmite (γ-AlOOH) and basaluminite (Al4SO4(OH)10⋅4H2O) at 200 °C; energy dispersive X-ray spectroscopy confirmed the presence of sulfur in this solid. Treatment of aluminum (hydr)oxides with magnesium, manganese, and iron oxides did not significantly impact fluoride adsorption. While layered double hydroxides exhibited high maximum fluoride adsorption capacities, their adsorption capacities at dissolved fluoride concentrations close to the World Health Organization drinking water guideline of 1.5 mg L(-1) were much lower than those for the aluminum (hydr)oxides. Copyright © 2013 Elsevier Ltd. All rights reserved.
Materials research for passive solar systems: Solid-state phase-change materials
NASA Astrophysics Data System (ADS)
Benson, D. K.; Webb, J. D.; Burrows, R. W.; McFadden, J. D. O.; Christensen, C.
1985-03-01
A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C5H12O4), pentaglycerinve (C5H12O3), and neopentyl glycol (C5H12O2). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature between 25 C and 188 C, and have latent heats of transformation etween 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier.
Ghazaghi, Mehri; Mousavi, Hassan Zavvar; Shirkhanloo, Hamid; Rashidi, Alimorad
2017-01-25
A specific technique is introduced to overcome limitations of classical solidification of floating organic drop microextraction, such as tedious and time-consuming centrifuge step and using disperser solvent, by facile and efficient participation of solid and liquid phases. In this proposed method of stirring-controlled solidified floating solid-liquid drop microextraction (SC-SF-SLDME), magnetic carbon nanotube-nickel hybrid (MNi-CNT) as a solid part of the extractors are dispersed ultrasonically in sample solution, and the procedure followed by dispersion of liquid phase (1-undecanol) through high-rate stirring and easily recollection of MNi-CNT in organic solvent droplets through hydrophobic force. With the reduction in speed of stirring, one solid-liquid drop is formed on top of the solution. MNi-CNT acts as both extractor and the coalescence helper between organic droplets for a facile recollection. MNi-CNT was prepared by spray pyrolysis of nickel oleate/toluene mixture at 1000 °C. Four tyrosine kinase inhibitors were selected as model analytes and the effecting parameters were investigated. The results confirmed that magnetic nanoadsorbent has an important role in the procedure and complete collection of dispersed solvent is not achieved in the absence of the solid phase. Also, short extraction time exhibited success of the proposed method and effect of dispersed solid/liquid phases. The limits of quantification (LOQs) for imatinib, sunitinib, erlotinib, and nilotinib were determined to be as low as 0.7, 1.7, 0.6, and 1.0 μg L -1 , respectively. The intra-day precisions (RSDs) were lower than 4.5%. Method performance was investigated by determination of mentioned tyrosine kinase inhibitors (TKIs) in human serum and cerebrospinal fluid samples with good recoveries in the range of 93-98%. Copyright © 2016 Elsevier B.V. All rights reserved.
Solid state synthesis of poly(dichlorophosphazene)
Allen, Christopher W.; Hneihen, Azzam S.; Peterson, Eric S.
2001-01-01
A method for making poly(dichlorophosphazene) using solid state reactants is disclosed and described. The present invention improves upon previous methods by removing the need for chlorinated hydrocarbon solvents, eliminating complicated equipment and simplifying the overall process by providing a "single pot" two step reaction sequence. This may be accomplished by the condensation reaction of raw materials in the melt phase of the reactants and in the absence of an environmentally damaging solvent.
Capaldi, Daniel C.; Cole, Douglas L.; Ravikumar, Vasulinga T.
2000-01-01
A triester method for the synthesis of deoxynucleoside phosphorodithioate dimers is described. The phosphorodithioate linkage is introduced using a new dithiophosphorylating reagent DPSE-SP(S)Cl2 where DPSE = 2-diphenylmethylsilylethyl. This group is removed quickly using tetra-butylammonium fluoride leading to the quantitative formation of phosphorodithioate diesters uncontaminated with the corresponding phosphorothioates. The utility of this group is demonstrated by the synthesis of a pentadecathymidylic acid, [T(PS2)T(PO2)]7T, which contains alternating phosphorodithioate/phosphate diester internucleotide linkages. PMID:10756207
Lowe, Jason T; Lee, Maurice D; Akella, Lakshmi B; Davoine, Emeline; Donckele, Etienne J; Durak, Landon; Duvall, Jeremy R; Gerard, Baudouin; Holson, Edward B; Joliton, Adrien; Kesavan, Sarathy; Lemercier, Berenice C; Liu, Haibo; Marié, Jean-Charles; Mulrooney, Carol A; Muncipinto, Giovanni; Welzel-O'Shea, Morgan; Panko, Laura M; Rowley, Ann; Suh, Byung-Chul; Thomas, Meryl; Wagner, Florence F; Wei, Jingqiang; Foley, Michael A; Marcaurelle, Lisa A
2012-09-07
The synthesis and diversification of a densely functionalized azetidine ring system to gain access to a wide variety of fused, bridged, and spirocyclic ring systems is described. The in vitro physicochemical and pharmacokinetic properties of representative library members are measured in order to evaluate the use of these scaffolds for the generation of lead-like molecules to be used in targeting the central nervous system. The solid-phase synthesis of a 1976-membered library of spirocyclic azetidines is also described.
Extendable nickel complex tapes that reach NIR absorptions.
Audi, Hassib; Chen, Zhongrui; Charaf-Eddin, Azzam; D'Aléo, Anthony; Canard, Gabriel; Jacquemin, Denis; Siri, Olivier
2014-12-14
Stepwise synthesis of linear nickel complex oligomer tapes with no need for solid-phase support has been achieved. The control of the length in flat arrays allows a fine-tuning of the absorption properties from the UV to the NIR region.
Nzeteu, Corine Orline; Trego, Anna Christine; Abram, Florence; O'Flaherty, Vincent
2018-01-01
Nowadays, the vast majority of chemicals are either synthesised from fossil fuels or are extracted from agricultural commodities. However, these production approaches are not environmentally and economically sustainable, as they result in the emission of greenhouse gases and they may also compete with food production. Because of the global agreement to reduce greenhouse gas emissions, there is an urgent interest in developing alternative sustainable sources of chemicals. In recent years, organic waste streams have been investigated as attractive and sustainable feedstock alternatives. In particular, attention has recently focused on the production of caproate from mixed culture fermentation of low-grade organic residues. The current approaches for caproate synthesis from organic waste are not economically attractive, as they involve the use of two-stage anaerobic digestion systems and the supplementation of external electron donors, both of which increase its production costs. This study investigates the feasibility of producing caproate from food waste (FW) without the supplementation of external electron donors using a single-phase reactor system. Replicate leach-bed reactors were operated on a semi-continuous mode at organic loading of 80 g VS FW l -1 and at solid retention times of 14 and 7 days. Fermentation, rather than hydrolysis, was the limiting step for caproate production. A higher caproate production yield 21.86 ± 0.57 g COD l -1 was achieved by diluting the inoculating leachate at the beginning of each run and by applying a leachate recirculation regime. The mixed culture batch fermentation of the FW leachate was able to generate 23 g caproate COD l -1 (10 g caproate l -1 ), at a maximum rate of 3 g caproate l -1 day -1 under high H 2 pressure. Lactate served as the electron donor and carbon source for the synthesis of caproate. Microbial community analysis suggested that neither Clostridium kluyveri nor Megasphaera elsdenii, which are well-characterised caproate producers in bioreactors systems, were strongly implicated in the synthesis of caproate, but that rather Clostridium sp. with 99% similarity to Ruminococcaceae bacterium CPB6 and Clostridium sp . MT1 likely played key roles in the synthesis of caproate. This finding indicates that the microbial community capable of caproate synthesis could be diverse and may therefore help in maintaining a stable and robust process. These results indicate that future, full-scale, high-rate caproate production from carbohydrate-rich wastes, associated with biogas recovery, could be envisaged.
A review on solid phase extraction of actinides and lanthanides with amide based extractants.
Ansari, Seraj A; Mohapatra, Prasanta K
2017-05-26
Solid phase extraction is gaining attention from separation scientists due to its high chromatographic utility. Though both grafted and impregnated forms of solid phase extraction resins are popular, the later is easy to make by impregnating a given organic extractant on to an inert solid support. Solid phase extraction on an impregnated support, also known as extraction chromatography, combines the advantages of liquid-liquid extraction and the ion exchange chromatography methods. On the flip side, the impregnated extraction chromatographic resins are less stable against leaching out of the organic extractant from the pores of the support material. Grafted resins, on the other hand, have a higher stability, which allows their prolong use. The goal of this article is a brief literature review on reported actinide and lanthanide separation methods based on solid phase extractants of both the types, i.e., (i) ligand impregnation on the solid support or (ii) ligand functionalized polymers (chemically bonded resins). Though the literature survey reveals an enormous volume of studies on the extraction chromatographic separation of actinides and lanthanides using several extractants, the focus of the present article is limited to the work carried out with amide based ligands, viz. monoamides, diamides and diglycolamides. The emphasis will be on reported applied experimental results rather than on data pertaining fundamental metal complexation. Copyright © 2017 Elsevier B.V. All rights reserved.
Precursor Ion–Ion Aggregation in the Brust–Schiffrin Synthesis of Alkanethiol Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Trent R.; Renslow, Ryan; Govind, Niranjan
Tetraoctylammonium bromide is used in the Brust-Schiffrin nanoparticle synthesis to phase-transfer chloroaurate ions from the aqueous phase to the organic phase. While it is established that the quaternary ammonium complex self-associates in the organic phase, the actual self-assembled structure is debated. We have confirmed the presence of ion-ion aggregates through quantitative 1H Nuclear Magnetic Resonance spectroscopy (NMR), pulsed field gradient, diffusion-ordered NMR (DOSY-NMR) and density functional theory (DFT) based NMR shift calculations. Tetraoctylammonium complexes (TOA-X, where X = Br, Cl, AuCl4-xBrx, AuBr4/Br and AuCl4-xBrx/Br) were investigated to measure the extraction of water into the organic phase. 1H NMR and DFTmore » based NMR shielding calculations indicated that deshielding of water is due to hydration of the anion and not the formation of the aqueous core of a reverse micelle. DOSYNMR results were consistent with the formation of small aggregates at typical Brust-Schiffrin synthesis concentrations. The extent of aggregation correlated with the size and electronegativity of the anion and was analyzed with a modified, isodesmic, indefinite aggregation model. The substitution of bromoauric acid for chlororoauric acid at conditions emulating the Brust-Schiffrin synthesis increased the aggregation of the quaternary ammonium complex. The increase in aggregation corresponded with an increase in the size of the produced nanoparticles from 4.3 to 4.6 nm. Understanding the selfassembly and supramolecular structure of precursors in the Brust-Schiffrin synthesis will enable further refinement of models that predict the growth of noble metal nanoparticles.« less
Solid-phase extraction versus matrix solid-phase dispersion: Application to white grapes.
Dopico-García, M S; Valentão, P; Jagodziñska, A; Klepczyñska, J; Guerra, L; Andrade, P B; Seabra, R M
2007-11-15
The use of matrix solid-phase dispersion (MSPD) was tested to, separately, extract phenolic compounds and organic acids from white grapes. This method was compared with a more conventional analytical method previously developed that combines solid liquid extraction (SL) to simultaneously extract phenolic compounds and organic acids followed by a solid-phase extraction (SPE) to separate the two types of compounds. Although the results were qualitatively similar for both techniques, the levels of extracted compounds were in general quite lower on using MSPD, especially for organic acids. Therefore, SL-SPE method was preferred to analyse white "Vinho Verde" grapes. Twenty samples of 10 different varieties (Alvarinho, Avesso, Asal-Branco, Batoca, Douradinha, Esganoso de Castelo Paiva, Loureiro, Pedernã, Rabigato and Trajadura) from four different locations in Minho (Portugal) were analysed in order to study the effects of variety and origin on the profile of the above mentioned compounds. Principal component analysis (PCA) was applied separately to establish the main sources of variability present in the data sets for phenolic compounds, organic acids and for the global data. PCA of phenolic compounds accounted for the highest variability (77.9%) with two PCs, enabling characterization of the varieties of samples according to their higher content in flavonol derivatives or epicatechin. Additionally, a strong effect of sample origin was observed. Stepwise linear discriminant analysis (SLDA) was used for differentiation of grapes according to the origin and variety, resulting in a correct classification of 100 and 70%, respectively.
MODELING MULTICOMPONENT ORGANIC CHEMICAL TRANSPORT IN THREE-FLUID-PHASE POROUS MEDIA
A two dimensional finite-element model was developed to predict coupled transient flow and multicomponent transport of organic chemicals which can partition between NAPL, water, gas and solid phases in porous media under the assumption of local chemical equilibrium. as-phase pres...
MODELING MULTICOMPONENT ORGANIC CHEMICAL TRANSPORT IN THREE FLUID PHASE POROUS MEDIA
A two-dimensional finite-element model was developed to predict coupled transient flow and multicomponent transport of organic chemicals which can partition between nonaqueous phase liquid, water, gas and solid phases in porous media under the assumption of local chemical equilib...
Preparation of Conjugates of Cytotoxic Lupane Triterpenes with Biotin.
Soural, Miroslav; Hodon, Jiri; Dickinson, Niall J; Sidova, Veronika; Gurska, Sona; Dzubak, Petr; Hajduch, Marian; Sarek, Jan; Urban, Milan
2015-12-16
To better understand the mechanism of action of antitumor triterpenes, we are developing methods to identify their molecular targets. A promising method is based on combination of quantitative proteomics with SILAC and uses active compounds anchored to magnetic beads via biotin-streptavidin interaction. We developed a simple and fast solid-phase synthetic technique to connect terpenes to biotin through a linker. Betulinic acid was biotinylated from three different conjugation sites for use as a standard validation tool since many molecular targets of this triterpene are already known. Then, a set of four other cytotoxic triterpenoids was biotinylated. Biotinylated terpenes were similarly cytotoxic to their nonbiotinylated parents, which suggests that the target identification should not be influenced by linker or biotin. The developed solid-phase synthetic approach is the first attempt to use solid-phase synthesis to connect active triterpenes to biotin and is applicable as a general procedure for routine conjugation of triterpenes with other molecules of choice.
Maltais, René; Hospital, Audrey; Delhomme, Audrey; Roy, Jenny; Poirier, Donald
2014-04-01
The aminosteroid derivative RM-133 has been reported to be a promising pro-apoptotic agent showing activity on various cancer cell lines. Following the development of solid-phase synthesis that generated a series of libraries of aminosteroid derivatives, we now report the development of a convenient liquid phase chemical synthesis of RM-133, the most promising candidate, in order to obtain sufficient quantities to proceed with the first preclinical assays. A simple and convergent six-step synthesis was designed and allowed the preparation of a gram-quantity scale of RM-133. This aminosteroid derivative was also fully characterized by NMR experiments which revealed an interesting mixture of conformers. Finally, the in vivo potency of RM-133 was evaluated on a xenograft model in nude mice with HL-60 tumors, which has resulted in the blocking of tumor progression by 57%. Copyright © 2014 Elsevier Inc. All rights reserved.
Phase formation and UV luminescence of Gd3+ doped perovskite-type YScO3
NASA Astrophysics Data System (ADS)
Shimizu, Yuhei; Ueda, Kazushige
2016-10-01
Synthesis of pure and Gd3+doped perovskite-type YScO3 was attempted by a polymerized complex (PC) method and solid state reaction (SSR) method. Crystalline phases and UV luminescence of samples were examined with varying heating temperatures. The perovskite-type single phase was not simply formed in the SSR method, as reported in some literatures, and two cubic C-type phases of starting oxide materials remained forming slightly mixed solid solutions. UV luminescence of Gd3+ doped samples increased with an increase in heating temperatures and volume of the perovskite-type phase. In contrast, a non-crystalline precursor was crystallized to a single C-type phase at 800 °C in the PC method forming a completely mixed solid solution. Then, the phase of perovskite-type YScO3 formed at 1200 °C and its single phase was obtained at 1400 °C. It was revealed that high homogeneousness of cations was essential to generate the single perovskite-phase of YScO3. Because Gd3+ ions were also dissolved into the single C-type phase in Gd3+ doped samples, intense UV luminescence was observed above 800 °C in both C-type phase and perovskite-type phase.
First principles materials design of novel functional oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Valentino R.; Voas, Brian K.; Bridges, Craig A.
2016-05-31
We review our efforts to develop and implement robust computational approaches for exploring phase stability to facilitate the prediction-to-synthesis process of novel functional oxides. These efforts focus on a synergy between (i) electronic structure calculations for properties predictions, (ii) phenomenological/empirical methods for examining phase stability as related to both phase segregation and temperature-dependent transitions and (iii) experimental validation through synthesis and characterization. We illustrate this philosophy by examining an inaugural study that seeks to discover novel functional oxides with high piezoelectric responses. Lastly, our results show progress towards developing a framework through which solid solutions can be studied to predictmore » materials with enhanced properties that can be synthesized and remain active under device relevant conditions.« less
Yang, Xun; Wang, Ruiling; Wang, Weihua; Yan, Hongyuan; Qiu, Mande; Song, Yanxue
2014-01-15
A novel molecularly imprinted organic-inorganic hybrid polymer (MI-MAA/APTS) based on a dummy molecular imprinting technique and an organic-inorganic hybrid material technique was synthesised and used as a sorbent in solid-phase extraction for the selective isolation and determination of ofloxacin (OFL), lomefloxacin (LOM), and ciprofloxacin (CIP) in tilapia samples. The MI-MAA/APTS sorbent was prepared from 3-aminopropyltriethoxysilanes (APTS) as an inorganic source and methacrylic acid (MAA) as an organic source and exhibited high mechanical strength and special affinities to the analytes. A comparison of MI-MAA/APTS with other conventional sorbents (C18 and HLB) showed that MI-MAA/APTS displayed good selectivity and affinity for OFL, LOM, and CIP, and the recoveries of the analytes at three spiked levels were in the range of 85.1-101.0%, with the relative standard deviations ≤5.1%. The presented MI-MAA/APTS-SPE-HPLC method could be potentially applied to the determination of fluoroquinolones (FQs) in complex fish samples. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luz, Ignacio; Soukri, Mustapha; Lail, Marty
Solid-state synthesis ensures a high loading and well dispersed growth of a large collection of metal–organic framework (MOF) nanostructures within a series of commercially available mesoporous silica allowing to render MOFs into fluidized solid sorbents for CO 2 capture from post-combustion flue gas in a fluidized-bed reactor.
Luz, Ignacio; Soukri, Mustapha; Lail, Marty
2018-01-01
Solid-state synthesis ensures a high loading and well dispersed growth of a large collection of metal–organic framework (MOF) nanostructures within a series of commercially available mesoporous silica allowing to render MOFs into fluidized solid sorbents for CO 2 capture from post-combustion flue gas in a fluidized-bed reactor.
Kitagawa, K; Aida, C; Fujiwara, H; Yagami, T; Futaki, S; Kogire, M; Ida, J; Inoue, K
2001-01-12
Chemical synthesis of tyrosine O-sulfated peptides is still a laborious task for peptide chemists because of the intrinsic acid-lability of the sulfate moiety. An efficient cleavage/deprotection procedure without loss of the sulfate is the critical difficulty remaining to be solved for fluoren-9-ylmethoxycarbonyl (Fmoc)-based solid-phase synthesis of sulfated peptides. To overcome the difficulty, TFA-mediated solvolysis rates of a tyrosine O-sulfate [Tyr(SO3H)] residue and two protecting groups, tBu for the hydroxyl group of Ser and 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl (Pbf) for the guanidino group of Arg, were examined in detail. The desulfation obeyed first-order kinetics with a large entropy (59.6 J.K-1.mol-1) and enthalpy (110.5 kJ.mol-1) of activation. These values substantiated that the desulfation rate of the rigidly solvated Tyr(SO3H) residue was strongly temperature-dependent. By contrast, the SN1-type deprotections were less temperature-dependent and proceeded smoothly in TFA of a high ionizing power. Based on the large rate difference between the desulfation and the SN1-type deprotections in cold TFA, an efficient deprotection protocol for the sulfated peptides was developed. Our synthetic strategy for Tyr(SO3H)-containing peptides with this effective deprotection protocol is as follows: (i) a sulfated peptide chain is directly constructed on 2-chlorotrityl resin with Fmoc-based solid-phase chemistry using Fmoc-Tyr(SO3Na)-OH as a building block; (ii) the protected peptide-resin is treated with 90% aqueous TFA at 0 degree C for an appropriate period of time for the cleavage and deprotection. Human cholecystokinin (CCK)-12, mini gastrin-II (14 residues), and little gastrin-II (17 residues) were synthesized with this method in 26-38% yields without any difficulties. This method was further applied to the stepwise synthesis of human big gastrin-II (34 residues), CCK-33 and -39. Despite the prolonged acid treatment (15-18 h at 0 degree C), the ratios of the desulfated peptides were less than 15%, and the pure sulfated peptides were obtained in around 10% yields.
Lan, Hangzhen; Salmi, Leo D; Rönkkö, Tuukka; Parshintsev, Jevgeni; Jussila, Matti; Hartonen, Kari; Kemell, Marianna; Riekkola, Marja-Liisa
2018-09-18
New chemical vapor reaction (CVR) and atomic layer deposition (ALD)-conversion methods were utilized for preparation of metal organic frameworks (MOFs) coatings of solid phase microextraction (SPME) Arrow for the first time. With simple, easy and convenient one-step reaction or conversion, four MOF coatings were made by suspend ALD iron oxide (Fe 2 O 3 ) film or aluminum oxide (Al 2 O 3 ) film above terephthalic acid (H 2 BDC) or trimesic acid (H 3 BTC) vapor. UIO-66 coating was made by zirconium (Zr)-BDC film in acetic acid vapor. As the first documented instance of all-gas phase synthesis of SPME Arrow coatings, preparation parameters including CVR/conversion time and temperature, acetic acid volume, and metal oxide film/metal-ligand films thickness were investigated. The optimal coatings exhibited crystalline structures, excellent uniformity, satisfactory thickness (2-7.5 μm), and high robustness (>80 times usage). To study the practical usefulness of the coatings for the extraction, several analytes with different chemical properties were tested. The Fe-BDC coating was found to be the most selective and sensitive for the determination of benzene ring contained compounds due to its highly hydrophobic surface and unsaturated metal site. UIO-66 coating was best for small polar, aromatic, and long chain polar compounds owing to its high porosity. The usefulness of new coatings were evaluated for gas chromatography-mass spectrometer (GC-MS) determination of several analytes, present in wastewater samples at three levels of concentration, and satisfactory results were achieved. Copyright © 2018 Elsevier B.V. All rights reserved.
Uncovering a reconstructive solid-solid phase transition in a metal-organic framework.
Longley, L; Li, N; Wei, F; Bennett, T D
2017-11-01
A nanoporous three-dimensional metal-organic framework (MOF), ZnPurBr undergoes a transition to a previously unreported high-temperature phase, ZnPurBr-ht. The transition, which proceeds without mass loss, is uncovered through the use of differential scanning calorimetry (DSC). The new crystal structure was solved using single-crystal X-ray diffraction, and the mechanical properties of both phases investigated by nanoindentation and density functional theory. The anisotropy of the calculated Young's moduli showed good agreement with the crystallographic alignment of the stiff purinate organic linker. The results provide a prototypical example of the importance of the use of DSC in the MOF field, where its use is not currently standard in characterization.
Sun, Yunyun; Tian, Jing; Wang, Lu; Yan, Hongyuan; Qiao, Fengxia; Qiao, Xiaoqiang
2015-11-27
A simple and time-saving one pot synthesis of magnetic graphene/carbon nanotube composites (M-G/CNTs) was developed that could avoid the tedious drying process of graphite oxide, and G/CNTs were modified by Fe3O4 nanoparticles in the reduction procedure. It contributed to a shorten duration of the synthesis process of M-G/CNTs. The obtained M-G/CNTs were characterized and the results indicated that CNTs and Fe3O4 nanoparticles were served as spacer distributing to the layers of graphene, which was beneficial for enlarging surface area and improving extraction efficiency. Moreover, M-G/CNTs showed good magnetic property and outstanding thermal stability. Then M-G/CNTs were applied as adsorbent of magnetic dispersive solid-phase extraction for rapid extraction and determination of oxytetracycline in sewage water. Under the optimum conditions, good linearity was obtained in the range of 20-800ngmL(-1) and the recoveries were ranged from 95.5% to 112.5% with relative standard deviations less than 5.8%. Copyright © 2015 Elsevier B.V. All rights reserved.
Supramolecular Assembly of Single-Source Metal-Chalcogenide Nanocrystal Precursors.
Smith, Stephanie C; Bryks, Whitney; Tao, Andrea R
2018-05-28
In this Feature Article, we discuss our recent work in the synthesis of novel supramolecular precursors for semiconductor nanocrystals. Metal chalcogenolates that adopt liquid crystalline phases are employed as single-source precursors that template the growth of shaped solid-state nanocrystals. Supramolecular assembly is programmed by both precursor chemical composition and molecular parameters such alkyl chain length, steric bulk, and the intercalation of halide ions. Here, we explore the various design principles that enable the rational synthesis of these single-source precursors, their liquid crystalline phases, and the various semiconductor nanocrystal products that can be generated by thermolysis, ranging from highly anisotropic two-dimensional nanosheets and nanodisks to spheres.
Monosaccharides as Scaffolds for the Synthesis of Novel Compounds
NASA Astrophysics Data System (ADS)
Murphy, Paul V.; Velasco-Torrijos, Trinidad
This chapter focuses on monosaccharides and scaffolds their derivatives as scaffolds for the synthesis of primarily bioactive compounds. Such carbohydrate derivatives have been designed to modulate mainly protein-protein and peptide-protein interactions although modulators of carbohydrate-protein and carbohydrate-nucleic acid interactions have also been of interest. The multiple hydroxyl groups that are present on saccharides have made pyranose, furanose and iminosugars ideal templates or scaffolds to which recognition or pharmacophoric groups can be grafted to generate novel compounds for medicinal chemistry. The synthesis of compounds for evaluations require strategies for regioselective reactions of saccharide hydroxyl groups and use of orthogonally stable protecting groups. Syntheses have been carried out on the solid phase and in solution. Also the use of uronic acids, amino sugars and sugar amino acids has facilitated the synthesis of peptidomimetics and prospecting libraries as they enable, through presence of amino or carboxylic acid groups, chemoselective approaches to be employed in solution and on solid phase. Sugar amino acids are readily incorporated, as peptide isosteres, to generate sugar-peptide hybrids or for the synthesis of novel carbopeptoids . The synthesis of new cyclic compounds, derived in part from saccharides, and their application as scaffolds is an emerging area and recent examples include spirocyclic compounds, benzodiazepine-saccharide hybrids and macrolide-saccharide hybrids. Potent bioactive saccharide derivatives have been identified that include enzyme inhibitors , somatostatin receptor ligands, integrin ligands, anti-viral compounds, shiga toxin inhibitors and cell growth inhibitors. Some saccharide derivatives have demonstrated improved cellular permeability when compared with peptides and are in clinical trials.
A new laboratory approach to shale analysis using NMR relaxometry
Washburn, Kathryn E.; Birdwell, Justin E.; Baez, Luis; Beeney, Ken; Sonnenberg, Steve
2013-01-01
Low-field nuclear magnetic resonance (LF-NMR) relaxometry is a non-invasive technique commonly used to assess hydrogen-bearing fluids in petroleum reservoir rocks. Measurements made using LF-NMR provide information on rock porosity, pore-size distributions, and in some cases, fluid types and saturations (Timur, 1967; Kenyon et al., 1986; Straley et al., 1994; Brown, 2001; Jackson, 2001; Kleinberg, 2001; Hurlimann et al., 2002). Recent improvements in LF-NMR instrument electronics have made it possible to apply methods used to measure pore fluids to assess highly viscous and even solid organic phases within reservoir rocks. T1 and T2 relaxation responses behave very differently in solids and liquids; therefore the relationship between these two modes of relaxation can be used to differentiate organic phases in rock samples or to characterize extracted organic materials. Using T1-T2 correlation data, organic components present in shales, such as kerogen and bitumen, can be examined in laboratory relaxometry measurements. In addition, implementation of a solid-echo pulse sequence to refocus T2 relaxation caused by homonuclear dipolar coupling during correlation measurements allows for improved resolution of solid-phase protons. LF-NMR measurements of T1 and T2 relaxation time distributions were carried out on raw oil shale samples from the Eocene Green River Formation and pyrolyzed samples of these shales processed by hydrous pyrolysis and techniques meant to mimic surface and in-situ retorting. Samples processed using the In Situ Simulator approach ranged from bitumen and early oil generation through to depletion of petroleum generating potential. The standard T1-T2 correlation plots revealed distinct peaks representative of solid- and liquid-like organic phases; results on the pyrolyzed shales reflect changes that occurred during thermal processing. The solid-echo T1 and T2 measurements were used to improve assessment of the solid organic phases, specifically kerogen, thermally degraded kerogen, and char. Integrated peak areas from the LF-NMR results representative of kerogen and bitumen were found to be well correlated with S1 and S2 parameters from Rock-Eval programmed pyrolysis. This study demonstrates that LFNMR relaxometry can provide a wide range of information on shales and other reservoir rocks that goes well beyond porosity and pore-fluid analysis.
Synthesis of Ca(BH4)2 from Synthetic Colemanite Used in Hydrogen Storage by Mechanochemical Reaction
NASA Astrophysics Data System (ADS)
Karabulut, Ahmet F.; Guru, Metin; Boynueğri, Tuğba A.; Aydin, Mustafa Yasir
2016-08-01
In this study, synthesis of Ca(BH4)2 has been carried out with a solid phase reaction in which synthetic colemanite has been used as a raw material. Three dimensional high energy spex collider was selected for this mechanochemical reaction. Calcium borohydride is one of the most valuable metal borohydrides. In order to produce calcium borohydride economically, anhydrous colemanite mineral has been used as reactant. Calcium borohydride has been directly manufactured from anhydrous colemanite in spex-type ball milling without the need for any intermediate product. Thus, the advantages of this method over wet chemical procedure (such as having no intermediate product, no azeotropic limitations and no need of regaining product from solution after production by using evaporation, crystallization and drying processes) have made it possible to achieve the desired economical gains. Parametric experiments were conducted to determine the best conditions for the highest yield of solid phase reaction in the spex-type ball milling. Best results have been determined by using areas of related peaks in spectra of Fourier transform infrared spectroscopy (FT-IR). In order to use peaks area for determining Ca(BH4)2 concentration, a calibration graph of FT-IR absorbance peak areas has been created by using samples with known different concentrations of commercial Ca(BH4)2. Optimum amounts of calcium hydride and synthesis reaction time were found to be 2.1 times the stoichiometric ratio and 2500 min, respectively. As a result of these optimizations, the maximum yield of the solid phase reaction carried out by the spex-type ball milling has been determined as 93%.
Carbon and Hydrogen Isotope Measurements of Alcohols and Organic Acids by Online Pyroprobe-GC-IRMS
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Fu, Qi; Niles, Paul B.; Gibson, Everett K., Jr.
2012-01-01
The detection of methane in the atmosphere of Mars, combined with evidence showing widespread water-rock interaction during martian history, suggests that the production of methane on Mars may be the result of mineral surface-catalyzed CO2 and or CO reduction during Fisher-Tropsch Type (FTT) reactions. A better understanding of these reaction pathways and corresponding C and H isotope fractionations is critical to deciphering the synthesis of organic compounds produced under abiotic hydrothermal conditions. Described here is a technique for the extraction and analysis of both C and H isotopes from alcohols (C1-C4) and organic acids (C1-C6). This work is meant to provide a "proof of concept" for making meaningful isotope measurements on complex mixtures of solid-phase hydrocarbons and other intermediary products produced during high-temperature and high-pressure synthesis on mineral-catalyzed surfaces. These analyses are conducted entirely "on-line" utilizing a CDS model 5000 Pyroprobe connected to a Thermo Trace GC Ultra that is interfaced with a Thermo MAT 253 isotope ratio mass spectrometer operating in continuous flow mode. Also, this technique is designed to carry a split of the GC-separated product to a DSQ II quadrupole mass spectrometer as a means of making semi-quantitative compositional measurements. Therefore, both chemical and isotopic measurements can be carried out on the same sample.
Subeutectic Synthesis of Epitaxial Si-NWs with Diverse Catalysts Using a Novel Si Precursor
2010-01-01
The applicability of a novel silicon precursor with respect to reasonable nanowire (NW) growth rates, feasibility of epitaxial NW growth and versatility with respect to diverse catalysts was investigated. Epitaxial growth of Si-NWs was achieved using octochlorotrisilane (OCTS) as Si precursor and Au as catalyst. In contrast to the synthesis approach with SiCl4 as precursor, OCTS provides Si without the addition of H2. By optimizing the growth conditions, effective NW synthesis is shown for alternative catalysts, in particular, Cu, Ag, Ni, and Pt with the latter two being compatible to complementary metal-oxide-semiconductor technology. As for these catalysts, the growth temperatures are lower than the lowest liquid eutectic; we suggest that the catalyst particle is in the solid state during NW growth and that a solid-phase diffusion process, either in the bulk, on the surface, or both, must be responsible for NW nucleation. PMID:20843058
2014-01-01
A novel optimized protocol for solid-state synthesis of molecularly imprinted polymer nanoparticles (nanoMIPs) with specificity for antibiotic vancomycin is described. The experimental objective was optimization of the synthesis parameters (factors) affecting the yield of obtained nanoparticles which have been synthesized using the first prototype of an automated solid-phase synthesizer. Applications of experimental design (or design of experiments) in optimization of nanoMIP yield were carried out using MODDE 9.0 software. The factors chosen in the model were the amount of functional monomers in the polymerization mixture, irradiation time, temperature during polymerization, and elution temperature. In general, it could be concluded that the irradiation time is the most important and the temperature was the least important factor which influences the yield of nanoparticles. Overall, the response surface methodology proved to be an effective tool in reducing time required for optimization of complex experimental conditions. PMID:24685151
Muzyka, Kateryna; Karim, Khalku; Guerreiro, Antonio; Poma, Alessandro; Piletsky, Sergey
2014-03-31
A novel optimized protocol for solid-state synthesis of molecularly imprinted polymer nanoparticles (nanoMIPs) with specificity for antibiotic vancomycin is described. The experimental objective was optimization of the synthesis parameters (factors) affecting the yield of obtained nanoparticles which have been synthesized using the first prototype of an automated solid-phase synthesizer. Applications of experimental design (or design of experiments) in optimization of nanoMIP yield were carried out using MODDE 9.0 software. The factors chosen in the model were the amount of functional monomers in the polymerization mixture, irradiation time, temperature during polymerization, and elution temperature. In general, it could be concluded that the irradiation time is the most important and the temperature was the least important factor which influences the yield of nanoparticles. Overall, the response surface methodology proved to be an effective tool in reducing time required for optimization of complex experimental conditions.
NASA Astrophysics Data System (ADS)
Muzyka, Kateryna; Karim, Khalku; Guerreiro, Antonio; Poma, Alessandro; Piletsky, Sergey
2014-03-01
A novel optimized protocol for solid-state synthesis of molecularly imprinted polymer nanoparticles (nanoMIPs) with specificity for antibiotic vancomycin is described. The experimental objective was optimization of the synthesis parameters (factors) affecting the yield of obtained nanoparticles which have been synthesized using the first prototype of an automated solid-phase synthesizer. Applications of experimental design (or design of experiments) in optimization of nanoMIP yield were carried out using MODDE 9.0 software. The factors chosen in the model were the amount of functional monomers in the polymerization mixture, irradiation time, temperature during polymerization, and elution temperature. In general, it could be concluded that the irradiation time is the most important and the temperature was the least important factor which influences the yield of nanoparticles. Overall, the response surface methodology proved to be an effective tool in reducing time required for optimization of complex experimental conditions.
NASA Astrophysics Data System (ADS)
Choi, Sunho; Lee, Sewook; Park, Jongyeop; Nichols, William T.; Shin, Dongwook
2018-06-01
A lithium ion conductive 75Li2Sṡ25P2S5 glass-ceramics electrolyte is, for the first time, successfully synthesized via a new low-temperature solution technique (LTST) and compared to the conventional mechanical-milling technique. Both samples are composed of the highly lithium ion conductive thio-LISICON III analog phase. Due to the uniform dispersion of reactants in an organic liquid, the use of LTST produced significantly smaller and more uniform particle sizes (2.2 ± 1.68 μm) resulting in a 6.5 times higher specific surface area compared to the mechanically-milled sample. A pronounced enhancement of both the rate capability and cyclability is demonstrated for the LTST solid electrolyte sample due to the more intimate contact with the LiCoO2 active material. Furthermore, the LTST sample shows excellent electrochemical stability throughout the potential range of -1 to 5 V. These results suggest that the proposed technique using the optimized LTST process is promising for the preparation of 75Li2Sṡ25P2S5 solid electrolytes for use in advanced Li-ion batteries.
Advances in covalent organic frameworks in separation science.
Qian, Hai-Long; Yang, Cheng-Xiong; Wang, Wen-Long; Yang, Cheng; Yan, Xiu-Ping
2018-03-23
Covalent organic frameworks (COFs) are a new class of multifunctional crystalline organic polymer constructed with organic monomers via robust covalent bonds. The unique properties such as convenient modification, low densities, large specific surface areas, good stability and permanent porosity make COFs great potential in separation science. This review shows the state-of-the art for the application of COFs and their composites in analytical separation science. COFs and their composites have been explored as promising sorbents for solid phase extraction, potential coatings for solid phase microextraction, and novel stationary phases for gas chromatography, high-performance liquid chromatography and capillary electrochromatography. The prospects of COFs for separation science are also presented, which can offer an outlook and reference for further study on the applications of COFs. Copyright © 2018 Elsevier B.V. All rights reserved.
King, C. Judson; Husson, Scott M.
1999-01-01
Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with an organic solution of alkylamine thus forming an alkylamine/carboxylic acid complex which is decomposed with improved efficiency to the desired carboxylic acid and the alkylamine. Carbon dioxide addition can be used to improve the adsorption or the carboxylic acids by the solid phase sorbent.
Solid materials for removing metals and fabrication method
Coronado, Paul R.; Reynolds, John G.; Coleman, Sabre J.
2004-10-19
Solid materials have been developed to remove contaminating metals and organic compounds from aqueous media. The contaminants are removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the metals and the organics leaving a purified aqueous stream. The materials are sol-gel and or sol-gel and granulated activated carbon (GAC) mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards the contaminant(s). The contaminated solid materials can then be disposed of or the contaminant can be removed and the solids recycled.
NASA Astrophysics Data System (ADS)
Li, Shi-na; Ma, Rui-xin; Wang, Cheng-yan
2018-03-01
The Cu2MoS4 nanoparticles were prepared using a relatively simple and convenient solid-phase process, which was applied for the first time. The crystalline structure, morphology, and optical properties of Cu2MoS4 nanoparticles were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and UV-vis spectrophotometry. Cu2MoS4 nanoparticles having a band gap of 1.66 eV exhibits good photocatalytic activity in the degradation of methylene blue, which indicates that this simple process may be critical to facilitate the cheap production of photocatalysts.
NASA Technical Reports Server (NTRS)
Gertner, E. R.
1980-01-01
Techniques used for liquid and vapor phase epitaxy of gallium indium arsenide are described and the difficulties encountered are examined. Results show that the growth of bulk III-V solid solution single crystals in a low gravity environment will not have a major technological impact. The float zone technique in a low gravity environment is demonstrated using cadmium telluride. It is shown that this approach can result in the synthesis of a class of semiconductors that can not be grown in normal gravity because of growth problems rooted in the nature of their phase diagrams.
Performance of planar single cell lanthanum gallate based solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Maffei, N.; Kuriakose, A. K.
A novel synthesis of high purity, single phase strontium-magnesium doped lanthanum gallate through a nitrate route is described. The prepared powder is formed into planar monolithic elements by uniaxial pressing followed by isostatic pressing and sintering. XRD analysis of the sintered elements reveal no detectable secondary phases. The performance of the electrolyte in solid oxide fuel cells (SOFC) with three different anode/cathode combinations tested at 700°C with respect to the J- V and power density is reported. The data show that the characteristics of this SOFC are strongly dependent on the particular anode/cathode system chosen.
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Andras, Maria T.; Bailey, Sheila G.; Duraj, Stan A.
1992-01-01
A novel two-phase synthesis of CuInSe2 at 25 C from Cu2Se and Cp3In in 4-methylpyridine has been discovered. Characterization of the material produced shows it to be platelet-shaped crystallites with an average particle size of 10 microns, less than 2 percent C and H, with a small amount of unidentified crystalline impurity. The results demonstrate that it is possible to produce from solution a material that is ordinarily synthesized in bulk or films at much higher temperatures or using extraneous reagents and/or electrons. The use of a solid-state reagent as a starting material which is converted to another solid-state compound by an organometallic reagent has tremendous potential to produce precursors for a wide range of solid-state materials of interest to the electronics, defense, and aerospace communities.
USDA-ARS?s Scientific Manuscript database
Analysis of biological fluids and waste material is difficult and tedious given the sample matrix. A rapid automated method for the determination of volatile fatty acids and phenolic and indole compounds was developed using a multipurpose sampler (MPS) with solid phase microextraction (SPME) and GC-...
The solid-phase diffusion coefficient (Dm) and material-air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to es...
Determination of Plant Volatiles Using Solid Phase Microextraction GC-MS
ERIC Educational Resources Information Center
Van Bramer, Scott; Goodrich, Katherine R.
2015-01-01
This experiment combines analytical techniques of solid phase microextraction and gas chromatography-mass spectrometry with easily relatable and accessible plant volatile chemistry (floral and vegetative scents of local/available plants). The biosynthesis and structure of these chemicals are of interest in the areas of organic chemistry,…
AUTOMATED SOLID PHASE EXTRACTION GC/MS FOR ANALYSIS OF SEMIVOLATILES IN WATER AND SEDIMENTS
Data is presented on the development of a new automated system combining solid phase extraction (SPE) with GC/MS spectrometry for the single-run analysis of water samples containing a broad range of organic compounds. The system uses commercially available automated in-line sampl...
Shiraiwa, Manabu; Zuend, Andreas; Bertram, Allan K; Seinfeld, John H
2013-07-21
Atmospheric aerosols, comprising organic compounds and inorganic salts, play a key role in air quality and climate. Mounting evidence exists that these particles frequently exhibit phase separation into predominantly organic and aqueous electrolyte-rich phases. As well, the presence of amorphous semi-solid or glassy particle phases has been established. Using the canonical system of ammonium sulfate mixed with organics from the ozone oxidation of α-pinene, we illustrate theoretically the interplay of physical state, non-ideality, and particle morphology affecting aerosol mass concentration and the characteristic timescale of gas-particle mass transfer. Phase separation can significantly affect overall particle mass and chemical composition. Semi-solid or glassy phases can kinetically inhibit the partitioning of semivolatile components and hygroscopic growth, in contrast to the traditional assumption that organic compounds exist in quasi-instantaneous gas-particle equilibrium. These effects have significant implications for the interpretation of laboratory data and the development of improved atmospheric air quality and climate models.
Surface-modified multifunctional MIP nanoparticles
Moczko, Ewa; Poma, Alessandro; Guerreiro, Antonio; de Vargas Sansalvador, Isabel Perez; Caygill, Sarah; Canfarotta, Francesco; Whitcombe, Michael J.; Piletsky, Sergey
2015-01-01
The synthesis of core-shell molecularly imprinted polymer nanoparticles (MIP NPs) has been performed using a novel solid-phase approach on immobilised templates. The same solid phase also acts as protective functionality for high affinity binding sites during subsequent derivatisation/shell formation. This procedure allows for the rapid synthesis, controlled separation and purification of high-affinity materials, with each production cycle taking just 2 hours. The aim of this approach is to synthesise uniformly-sized imprinted materials at the nanoscale which can be readily grafted with various polymers without affecting their affinity and specificity. For demonstration purposes we grafted anti-melamine MIP NPs with coatings which introduce the following surface characteristics: high polarity (PEG methacrylate); electro-activity (vinyl ferrocene); fluorescence (eosin acrylate); thiol groups (pentaerythritol tetrakis(3-mercaptopropionate)). The method has broad applicability and can be used to produce multifunctional imprinted nanoparticles with potential for further application in the biosensors, diagnostics and biomedical fields and as an alternative to natural receptors. PMID:23503559
Capriotti, Anna Laura; Cavaliere, Chiara; Foglia, Patrizia; La Barbera, Giorgia; Samperi, Roberto; Ventura, Salvatore; Laganà, Aldo
2016-12-01
Recently, magnetic solid-phase extraction has gained interest because it presents various operational advantages over classical solid-phase extraction. Furthermore, magnetic nanoparticles are easy to prepare, and various materials can be used in their synthesis. In the literature, there are only few studies on the determination of mycoestrogens in milk, although their carryover in milk has occurred. In this work, we wanted to develop the first (to the best of our knowledge) magnetic solid-phase extraction protocol for six mycoestrogens from milk, followed by liquid chromatography and tandem mass spectrometry analysis. Magnetic graphitized carbon black was chosen as the adsorbent, as this carbonaceous material, which is very different from the most diffuse graphene and carbon nanotubes, had already shown selectivity towards estrogenic compounds in milk. The graphitized carbon black was decorated with Fe 3 O 4 , which was confirmed by the characterization analyses. A milk deproteinization step was avoided, using only a suitable dilution in phosphate buffer as sample pretreatment. The overall process efficiency ranged between 52 and 102%, whereas the matrix effect considered as signal suppression was below 33% for all the analytes even at the lowest spiking level. The obtained method limits of quantification were below those of other published methods that employ classical solid-phase extraction protocols. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huber, Patrick
2015-03-18
Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.
NASA Astrophysics Data System (ADS)
Huber, Patrick
2015-03-01
Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.
A non-classical view of the modulation of mineral precipitation by organic additives
NASA Astrophysics Data System (ADS)
Ruiz-Agudo, Encarnacion; Ruiz-Agudo, Cristina; Burgos-Cara, Alejandro; Putnis, Christine; Rodriguez-Navarro, Carlos; Putnis, Andrew
2016-04-01
Questions persist on the mechanisms of crystallization of sparingly soluble minerals such as calcium carbonate, calcium oxalate or barium sulphate. Compared to CaCO3, the mechanisms of nucleation and growth in the CaC2O4-H2O or BaSO4-H2O systems have received less attention. These phases are important due to their relevance as biominerals and/or unwanted mineral deposits in technological applications. Growing evidence suggests that sparingly soluble salts form by non-classical nucleation and growth pathways, where pre-nucleation ion associates and amorphous (solid or liquid) precursor phase(s) play a critical role (e.g. Rodríguez-Navarro et al. (2015), Ruiz-Agudo et al. (2015)). Indeed the identification of pre-nucleation species in these systems and their strong interactions with organic compounds (Verch et al. 2011) raises the possibility that the control of organics on biomineralization may begin even earlier than previously thought. A sound knowledge of the physical mechanisms by which acidic macromolecules affect nucleation and early growth may offer general insights concerning the molecular control of biomineralization, as well as being critical for improving strategies to control unwanted mineral deposition or for the synthesis of biomimetic materials. Here we present investigations on the initial stages of the precipitation of these relevant minerals in organic-free solutions to identify the precipitation pathway and to look for any potential precursor phase(s) to the final, crystalline polymorph. As well, we explore the effects that several acidic organic compounds have on the different precipitation stages identified. We find that organic additives such as citric acid, polyacrilic acid or a commercial copolymer of maleic acid/allyl sulfonic acid with phosphonate groups can be active at modifying pre-nucleation stages (destabilizing of pre-nucleation species or hampering the aggregation and growth of pre-nucleation associates) and subsequently strongly inhibit the nucleation of solid phases. These effects are linked to the influence of these molecules on polymorph selection. As well, these additives can affect non-classical growth by oriented assembly of nanoparticles. REFERENCES Rodriguez-Navarro, C., Kudłacz, K., Cizer, Ö., Ruiz-Agudo, E., 2015. Formation of amorphous calcium carbonate and its transformation into mesostructured calcite. CrystEngComm 17 (1), 58-72. Ruiz Agudo, C; Ruiz Agudo, E; Putnis, C.V.; Putnis, A., 2015. Mechanistic principles of barite formation: from nanoparticles to micron-sized crystals. Crystal Growth & Design 15, 3724-3733. Verch, A., Gebauer, D., Antonietti, M., Cölfen, H., 2011. How to control the scaling of CaCO3: a "fingerprinting technique" to classify additives. Physical chemistry chemical physics: PCCP 13 (37), 16811-16820.
NASA Astrophysics Data System (ADS)
Cassidy, Daniel H.; Irvine, Robert L.
1995-10-01
Both slurry-phase and solid-phase bioremediation are effective ex situ soil decontamination methods. Slurrying is energy intensive relative to solid-phase treatment, but provides homogenization and uniform nutrient distribution. Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rates and renders solid phase bioremediation more cost effective than complete treatment in a bio-slurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. A biological treatment system consisting of slurrying followed by aeration in solid phase bioreactors was developed and tested in the laboratory using a silty clay loam contaminated with diesel fuel. The first set of experiments was designed to determine the impact of the water content and mixing time during slurrying on the rate an extent of contaminant removal in continuously aerated solid phase bioreactors. The second set of experiments compared the volatile and total diesel fuel removal in solid phase bioreactors using periodic and continuous aeration strategies. Results showed that slurrying for 1.5 hours at a water content less than saturation markedly increased the rate and extent of contaminant biodegradation in the solid phase bioreactors compared with soil having no slurry pretreatment. Slurrying the soil at or above its saturation moisture content resulted in lengthy dewatering times which prohibited aeration, thereby delaying the onset of biological treatment in the solid phase bioreactors. Results also showed that properly operated periodic aeration can provide less volatile contaminant removal and a grater fraction of biological contaminant removal than continuous aeration.
Endogeneous sources: atmospheric organic syntheses, tholins and ground trust
NASA Astrophysics Data System (ADS)
Raulin, F.; Bernard, J.; Coll, P.; Nna Mvondo, D.; Ramirez, S.; Navarro-Gonzalez, R.
From the many simulation experiments which have been carried out for the last 50 years on gas phase organic synthesis but also from several theoretical modeling works, it is clear today that in situ production of organic molecules in planetary atmosphere is efficient only if the starting atmosphere is chemically reduced. In that case many simple organics can be produced like formaldehyde, (HCHO), hydrogen cyanide (HCN), cyanoacetylene (HC3N) and other nitriles, but also more complex refractory organics - usually named "tholins" - are obtained. Those tholins are still of very poorly known composition, but are of great exobiological interest since they are the precursors of many compounds of biological interest, in particular amino acids, purines and pyrimidines bases. How realistic are those experimental as well as theoretical simulations? The many planetary data which have been obtained until now on the so diversified planetary atmospheres of the solar system provide a fantastic opportunity to answer such question and validate the laboratory data with "ground trust". Indeed, at the exception of the Earth atmosphere (in which Life is the essential source of organics), any organic compound has been detected in the inner planets. On the contrary, all the outer planets, from Jupiter to Neptune (and even Pluto) involve organic chemical processes, through the chemistry of their atmosphere, and methane photochemistry. They are also present in the dense atmosphere of Titan, the largest satellite of Saturn, (in the gas and aerosol phases), in the much thinner atmosphere of Triton, the largest satellite of Neptune (mainly in the solid phase, on its surface), and on the surface of many of the other satellites of the outer planets. Thus, although we have so far no real direct evidence for this assumption, laboratory data strongly suggest that extraterrestrial organic chemistry systematically involves tholins-like matter. The different aspects of extraterrestrial atmospheric organic chemistry will be presented and discussed, on the basis of recent laboratory data, in particular from simulation experiments related to oxidized and reduced atmospheres and planetary observations.
ERIC Educational Resources Information Center
Cheney, Miranda L.; Zaworotko, Michael J.; Beaton, Steve; Singer, Robert D.
2008-01-01
Green chemistry has become an important area of concern for all chemists from practitioners in the pharmaceutical industry to professors and the students they teach and is now being incorporated into lectures of general and organic chemistry courses. However, there are relatively few green chemistry experiments that are easily incorporated into…
NASA Astrophysics Data System (ADS)
Silalahi, Alfriska O.; Sukmawati, Nissa; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.
2017-07-01
The thermophysical parameters of organic phase change material (PCM) of coconut oil (co_oil) have been studied by analyzing the temperature vs time data during liquid-solid phase transition (solidification process) based on T-history method, adopting the original version and its modified form to extract the values of mean specific heats of the solid and liquid co_oil and the heat of fusion related to phase transition of co_oil. We found that the liquid-solid phase transition occurs rather gradually, which might be due to the fact that co_oil consists of many kinds of fatty acids with the largest amount of lauric acid (about 50%), with relatively small supercooling degree. For this reason, the end of phase transition region become smeared out, although the inflection point in the temperature derivative is clearly observed signifying the drastic temperature variation between the phase transition and solid phase periods. The data have led to the values of mean specific heat of the solid and liquid co_oil that are comparable to the pure lauric acid, while the value for heat of fusion is resemble to those of the DSC result, both from references data. The advantage of co_oil as the potential sensible and latent TES for room-temperature conditioning application in Indonesia is discussed in terms of its rather broad working temperature range due to its mixture composition characteristic.
NASA Astrophysics Data System (ADS)
Watanabe, Mebae; Fujihara, Shinobu
2014-02-01
Inorganic-organic layered rare-earth compounds were synthesized on the basis of a biphasic liquid-liquid system in one pot. Layered yttrium hydroxides (LYHs) were chosen as a host material for the intercalation of hydrophobic organic guest anions such as benzoate, sebacate, or laurate. In a typical synthesis, an organic phase dissolving carboxylic acid was placed in contact with an equal amount of an aqueous phase dissolving yttrium nitrate n-hydrate and urea. At elevated temperatures up to 80 °C, urea was hydrolyzed to release hydroxyl anions which were used to form yttrium hydroxide layers. LYHs were then precipitated with the intercalation of carboxylate anions delivered from the organic phase under the distribution law. The structure and the morphology of the LYHs could be modulated by the intercalated anions. Doped with Eu3+ ions, the LYHs exhibited red photoluminescence which was enhanced by the intercalated anions due to the antenna effect.
Britton, Robert G; Fong, Isabel; Saad, Shaban; Brown, Karen; Steward, William P; Gescher, Andreas; Sale, Stewart
2009-04-01
3',4',5'-Trimethoxyflavonol (TMFol) was synthesized as a potential colorectal cancer chemopreventive agent. An HPLC method for determination for TMFol in murine plasma and tissues was developed and validated using human plasma. Analyte was separated (C(18) column; fluorescence detection 330nm excitation, 440nm emission) using 69% methanol and 0.1M ammonium acetate buffer (pH 5.1) as mobile phase. The method was linear for 50-2500ng/ml plasma and 0.05-10microg/g tissue (r>0.99). TMFol was recovered from plasma or tissues using solid phase columns or organic solvent protein precipitation, respectively. Recovery at low, medium and high concentrations was 97.6-107.3%, with inter- and intra-day coefficients of variation of <10%. The lower limit of quantitation for plasma was 50ng/ml. The method was applied to measure steady-state TMFol plasma and tissue levels in mice which received dietary TMFol (0.2%).
Herrero Latorre, C; Barciela García, J; García Martín, S; Peña Crecente, R M
2013-12-04
Selenium is an essential element for the normal cellular function of living organisms. However, selenium is toxic at concentrations of only three to five times higher than the essential concentration. The inorganic forms (mainly selenite and selenate) present in environmental water generally exhibit higher toxicity (up to 40 times) than organic forms. Therefore, the determination of low levels of different inorganic selenium species in water is an analytical challenge. Solid-phase extraction has been used as a separation and/or preconcentration technique prior to the determination of selenium species due to the need for accurate measurements for Se species in water at extremely low levels. The present paper provides a critical review of the published methods for inorganic selenium speciation in water samples using solid phase extraction as a preconcentration procedure. On the basis of more than 75 references, the different speciation strategies used for this task have been highlighted and classified. The solid-phase extraction sorbents and the performance and analytical characteristics of the developed methods for Se speciation are also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Leonetti, Francesco; Capaldi, Carmelida; Pisani, Leonardo; Nicolotti, Orazio; Muncipinto, Giovanni; Stefanachi, Angela; Cellamare, Saverio; Caccia, Carla; Carotti, Angelo
2007-10-04
Safinamide, (S)-N2-{4-[(3-fluorobenzyl)oxy]benzyl}alaninamide methanesulfonate, which is in phase III clinical trials as an anti-Parkinson drug, and a library of alkanamidic analogues were prepared through an expeditious solid-phase synthesis and evaluated for their monoamine oxidase B (MAO-B) and monoamine oxidase A (MAO-A) inhibitory activity and selectivity. (S)-3-Chlorobenzyloxyalaninamide (8) and (S)-3-chlorobenzyloxyserinamide (13) derivatives proved to be more potent MAO-B inhibitors than safinamide (IC50 = 33 and 43 nM, respectively, vs 98 nM) but with a lower MAO-B selectivity (SI = 3455 and 1967, respectively, vs 5918). The highest MAO-B inhibitory potency (IC50 = 17 nM) and a good selectivity (SI = 2941) were displayed by (R)-21, a tetrahydroisoquinoline analogue of safinamide. Structure-affinity relationships and docking simulations pointed out strong negative steric effects of alpha-aminoamide side chains and para substituents of the benzyloxy groups and favorable hydrophobic interactions of meta substituents. The significantly diverse MAO-B affinities of a number of R and S alpha-aminoamide enantiomers, including the two rigid analogues (21) of safinamide, indicated likely enantioselective interactions at the enzymatic binding sites.
Sol-Gel-Synthesis of Nanoscopic Complex Metal Fluorides
Rehmer, Alexander; Scheurell, Kerstin; Scholz, Gudrun; Kemnitz, Erhard
2017-01-01
The fluorolytic sol-gel synthesis for binary metal fluorides (AlF3, CaF2, MgF2) has been extended to ternary and quaternary alkaline earth metal fluorides (CaAlF5, Ca2AlF7, LiMgAlF6). The formation and crystallization of nanoscopic ternary CaAlF5 and Ca2AlF7 sols in ethanol were studied by 19F liquid and solid state NMR (nuclear magnetic resonance) spectroscopy, as well as transmission electron microscopy (TEM). The crystalline phases of the annealed CaAlF5, Ca2AlF7, and LiMgAlF6 xerogels between 500 and 700 °C could be determined by X-ray powder diffraction (XRD) and 19F solid state NMR spectroscopy. The thermal behavior of un-annealed nanoscopic ternary and quaternary metal fluoride xerogels was ascertained by thermal analysis (TG/DTA). The obtained crystalline phases of CaAlF5 and Ca2AlF7 derived from non-aqueous sol-gel process were compared to crystalline phases from the literature. The corresponding nanoscopic complex metal fluoride could provide a new approach in ceramic and luminescence applications. PMID:29099086
Molten salt synthesis of nanocrystalline phase of high dielectric constant material CaCu3Ti4O12.
Prakash, B Shri; Varma, K B R
2008-11-01
Nanocrystalline powders of giant dielectric constant material, CaCu3Ti4O12 (CCTO), have been prepared successfully by the molten salt synthesis (MSS) using KCl at 750 degrees C/10 h, which is significantly lower than the calcination temperature (approximately 1000 degrees C) that is employed to obtain phase pure CCTO in the conventional solid-state reaction route. The water washed molten salt synthesized powder, characterized by X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM) confirmed to be a phase pure CCTO associated with approximately 150 nm sized crystallites of nearly spherical shape. The decrease in the formation temperature/duration of CCTO in MSS method was attributed to an increase in the diffusion rate or a decrease in the diffusion length of reacting ions in the molten salt medium. As a consequence of liquid phase sintering, pellets of as-synthesized KCl containing CCTO powder exhibited higher sinterability and grain size than that of KCl free CCTO samples prepared by both MSS method and conventional solid-state reaction route. The grain size and the dielectric constant of KCl containing CCTO ceramics increased with increasing sintering temperature (900 degrees C-1050 degrees C). Indeed the dielectric constants of these ceramics were higher than that of KCl free CCTO samples prepared by both MSS method and those obtained via the solid-state reaction route and sintered at the same temperature. Internal barrier layer capacitance (IBLC) model was invoked to correlate the observed dielectric constant with the grain size in these samples.
Carbothermal shock synthesis of high-entropy-alloy nanoparticles
NASA Astrophysics Data System (ADS)
Yao, Yonggang; Huang, Zhennan; Xie, Pengfei; Lacey, Steven D.; Jacob, Rohit Jiji; Xie, Hua; Chen, Fengjuan; Nie, Anmin; Pu, Tiancheng; Rehwoldt, Miles; Yu, Daiwei; Zachariah, Michael R.; Wang, Chao; Shahbazian-Yassar, Reza; Li, Ju; Hu, Liangbing
2018-03-01
The controllable incorporation of multiple immiscible elements into a single nanoparticle merits untold scientific and technological potential, yet remains a challenge using conventional synthetic techniques. We present a general route for alloying up to eight dissimilar elements into single-phase solid-solution nanoparticles, referred to as high-entropy-alloy nanoparticles (HEA-NPs), by thermally shocking precursor metal salt mixtures loaded onto carbon supports [temperature ~2000 kelvin (K), 55-millisecond duration, rate of ~105 K per second]. We synthesized a wide range of multicomponent nanoparticles with a desired chemistry (composition), size, and phase (solid solution, phase-separated) by controlling the carbothermal shock (CTS) parameters (substrate, temperature, shock duration, and heating/cooling rate). To prove utility, we synthesized quinary HEA-NPs as ammonia oxidation catalysts with ~100% conversion and >99% nitrogen oxide selectivity over prolonged operations.
Evaluating structure selection in the hydrothermal growth of FeS 2 pyrite and marcasite
Kitchaev, Daniil A.; Ceder, Gerbrand
2016-12-14
While the ab initio prediction of the properties of solids and their optimization towards new proposed materials is becoming established, little predictive theory exists as to which metastable materials can be made and how, impeding their experimental realization. Here we propose a quasi-thermodynamic framework for predicting the hydrothermal synthetic accessibility of metastable materials and apply this model to understanding the phase selection between the pyrite and marcasite polymorphs of FeS 2. We demonstrate that phase selection in this system can be explained by the surface stability of the two phases as a function of ambient pH within nano-size regimes relevantmore » to nucleation. This result suggests that a first-principles understanding of nano-size phase stability in realistic synthesis environments can serve to explain or predict the synthetic accessibility of structural polymorphs, providing a guideline to experimental synthesis via efficient computational materials design.« less
Agrawal, S; Christodoulou, C; Gait, M J
1986-01-01
The syntheses are described of two types of linker molecule useful for the specific attachment of non-radioactive labels such as biotin and fluorophores to the 5' terminus of synthetic oligodeoxyribonucleotides. The linkers are designed such that they can be coupled to the oligonucleotide as a final step in solid-phase synthesis using commercial DNA synthesis machines. Increased sensitivity of biotin detection was possible using an anti-biotin hybridoma/peroxidase detection system. PMID:3748808
One-Pot Isomerization–Cross Metathesis–Reduction (ICMR) Synthesis of Lipophilic Tetrapeptides
2015-01-01
An efficient, versatile and rapid method toward homologue series of lipophilic tetrapeptide derivatives (herein, the opioid peptides H-TIPP-OH and H-DIPP-OH) is reported. High atom economy and a minimal number of synthetic steps resulted from a one-pot tandem isomerization-cross metathesis-reduction sequence (ICMR), applicable both in solution and solid phase methodology. The broadly applicable synthesis proceeds with short reaction times and simple work-up, as illustrated in this work for alkylated opioid tetrapeptides. PMID:24906051
High-rate synthesis of Cu-BTC metal-organic frameworks.
Kim, Ki-Joong; Li, Yong Jun; Kreider, Peter B; Chang, Chih-Hung; Wannenmacher, Nick; Thallapally, Praveen K; Ahn, Ho-Geun
2013-12-21
The reaction conditions for the synthesis of Cu-BTC (BTC = benzene-1,3,5-tricarboxylic acid) were elucidated using a continuous-flow microreactor-assisted solvothermal system to achieve crystal size and phase control. A high-rate synthesis of Cu-BTC metal-organic frameworks with a BET surface area of more than 1600 m(2) g(-1) (Langmuir surface area of more than 2000 m(2) g(-1)) and with a 97% production yield could be achieved with a total reaction time of 5 minutes.
Jia, Xiuna; Zhao, Pan; Ye, Xiu; Zhang, Lianjun; Wang, Ting; Chen, Qinyu; Hou, Xiaohong
2017-07-01
As a novel material, metal-organic framework/graphite oxide (MIL-101(Cr)@GO) has great potential for the pretreatment of trace analytes. In the present study, MIL-101(Cr)@GO was synthesized using a solvothermal synthesis method at the nanoscale and was applied as sorbent in the dispersive micro-solid phase extraction (DMSPE) for the enrichment of the trace sulfonamides (SAs) from milk samples for the first time. Several experimental parameters including kinds of sorbents, the effect of pH, the amount of MIL-101(Cr)@GO, ionic strength, adsorption time, desorption solvent and desorption time were investigated. Under the optimal conditions, the linear ranges were from 0.1 to 10μg/L, 0.2-20μg/L or 0.5-50μg/L for the analytes with regression coefficients (r) from 0.9942 to 0.9999. The limits of detection were between 0.012 and 0.145μg/L. The recoveries ranged from 79.83% to 103.8% with relative standard deviations (RSDs)<10% (n=3). MIL-101(Cr)@GO exhibited remarkable advantages compared to MIL-101(Cr), MIL-100(Fe), activated carbon and other sorbent materials used in pretreatment methods. A simple, rapid, sensitive, inexpensive and less solvent consuming method of DMSPE-ultra-high performance liquid chromatography-tandem mass spectrometry (DMSPE-UHPLC-MS/MS) was successfully applied to the pre-concentration and determination of twelve SAs in milk samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Xiaoqiong; Wang, Peiyi; Han, Qiang; Li, Hengzhen; Wang, Tong; Ding, Mingyu
2018-04-01
In-syringe solid-phase extraction is a promising sample pretreatment method for the on-site sampling of water samples because of its outstanding advantages of portability, simple operation, short extraction time, and low cost. In this work, a novel in-syringe solid-phase extraction device using metal-organic frameworks as the adsorbent was fabricated for the on-site sampling of polycyclic aromatic hydrocarbons from environmental waters. Trace polycyclic aromatic hydrocarbons were effectively extracted through the self-made device followed by gas chromatography with mass spectrometry analysis. Owing to the excellent adsorption performance of metal-organic frameworks, the analytes could be completely adsorbed during one adsorption cycle, thus effectively shortening the extraction time. Moreover, the adsorbed analytes could remain stable on the device for at least 7 days, revealing the potential of the self-made device for on-site sampling of degradable compounds in remote regions. The limit of detection ranged from 0.20 to 1.9 ng/L under the optimum conditions. Satisfactory recoveries varying from 84.4 to 104.5% and relative standard deviations below 9.7% were obtained in real samples analysis. The results of this study promote the application of metal-organic frameworks in sample preparation and demonstrate the great potential of in-syringe solid-phase extraction for the on-site sampling of trace contaminants in environmental waters. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanochemical Synthesis of Carbon Nanothread Single Crystals.
Li, Xiang; Baldini, Maria; Wang, Tao; Chen, Bo; Xu, En-Shi; Vermilyea, Brian; Crespi, Vincent H; Hoffmann, Roald; Molaison, Jamie J; Tulk, Christopher A; Guthrie, Malcolm; Sinogeikin, Stanislav; Badding, John V
2017-11-15
Synthesis of well-ordered reduced dimensional carbon solids with extended bonding remains a challenge. For example, few single-crystal organic monomers react under topochemical control to produce single-crystal extended solids. We report a mechanochemical synthesis in which slow compression at room temperature under uniaxial stress can convert polycrystalline or single-crystal benzene monomer into single-crystalline packings of carbon nanothreads, a one-dimensional sp 3 carbon nanomaterial. The long-range order over hundreds of microns of these crystals allows them to readily exfoliate into fibers. The mechanochemical reaction produces macroscopic single crystals despite large dimensional changes caused by the formation of multiple strong, covalent C-C bonds to each monomer and a lack of reactant single-crystal order. Therefore, it appears not to follow a topochemical pathway, but rather one guided by uniaxial stress, to which the nanothreads consistently align. Slow-compression room-temperature synthesis may allow diverse molecular monomers to form single-crystalline packings of polymers, threads, and higher dimensional carbon networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hruby, V.J.; Upson, D.A.; Agarwal, N.S.
1977-10-28
Specifically deuterated derivatives of the peptide hormone oxytocin were synthesized by the solid-phase method of peptide synthesis using either the standard chloromethylated resin or the benzhydrylamine resin as the support for the syntheses, and a comparison of the overall efficiency of the syntheses on the two resins was made. (1-Hemi-DL-(..beta..,..beta..-/sup 2/H/sub 2/) cystine) oxytocin was synthesized using the standard chloromethylated resin, and the two diastereomers were separated and purified by partition chromatography and gel filtration in an overall yield of about 30%. (1-Hemi-DL-(..cap alpha..-/sup 2/H/sub 1/) cystine) oxytocin was prepared using the benzhydrylamine resin to prepare the nonapeptide resin precursor,more » but otherwise using essentially identical conditions as used for the synthesis on the chloromethylated resin. Again the two diastereomers were separated and purified by partition chromatography and gel filtration. The overall yield of purified diastereomers under the best conditions was about 49%. For the synthesis of the latter compounds, S-3,4-dimethylbenzyl protecting groups were used to introduce the cysteine residues. The overall yields of the peptide hormone derivatives prepared on the benzhydrylamine resin were substantially improved if HF reactions were run at lower temperatures (0/sup 0/C rather than 25/sup 0/C), and if the S-3,4-dimethylbenzyl rather than the S-benzyl group was used for cysteine protection. Reproducible procedures for preparing benzhydrylamine resins with amino substitution levels of 0.15-0.45 mmol of amino group/g of resin were developed.« less
NASA Astrophysics Data System (ADS)
Bartlome, Richard; Fischer, Cornelia; Sigrist, Markus W.
2005-08-01
There is a great need for a low cost and sensitive method to measure infrared spectra of solid organic compounds in the gas phase. To record such spectra, we propose an optical parametric generator-based photoacoustic spectrometer, which emits in the mid-infrared fingerprint region between 3 and 4 microns. In this system, the sample is heated in a vessel before entering a home built photoacoustic cell, where the gaseous molecules are excited by a tunable laser source with a frequency repetition rate that matches the first longitudinal resonance frequency of the photocaoustic cell. In a first phase, we have focused on low-melting point stimulants such as Nikethamide, Mephentermine sulfate, Methylephedrine, Ephedrine and Pseudoephedrine. The vapor-phase spectra of these doping substances were measured between 2800 and 3100 cm-1, where fundamental C-H stretching vibrations take place. Our spectra show notable differences with commercially available condensed phase spectra. Our scheme enables to measure very low vapor pressures of low-melting point (<160 °C) solid organic compounds. Furthermore, the optical resolution of 8 cm-1 is good enough to distinguish closely related chemical structures such as the Ephedra alkaloids Ephedrine and Methylephedrine, but doesn't allow to differentiate diastereoisomeric pairs such as Ephedrine and Pseudoephedrine, two important neurotransmitters which reveal different biological activities. Therefore, higher resolution and a system capable of measuring organic compounds with higher melting points are required.
Proton conduction in metal-organic frameworks and related modularly built porous solids.
Yoon, Minyoung; Suh, Kyungwon; Natarajan, Srinivasan; Kim, Kimoon
2013-03-04
Proton-conducting materials are an important component of fuel cells. Development of new types of proton-conducting materials is one of the most important issues in fuel-cell technology. Herein, we present newly developed proton-conducting materials, modularly built porous solids, including coordination polymers (CPs) or metal-organic frameworks (MOFs). The designable and tunable nature of the porous materials allows for fast development in this research field. Design and synthesis of the new types of proton-conducting materials and their unique proton-conduction properties are discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pal, Nabanita; Bhaumik, Asim
2013-03-01
With the discovery of MCM-41 by Mobil researchers in 1992 the journey of the research on mesoporous materials started and in the 21st century this area of scientific investigation have extended into numerous branches, many of which contribute significantly in emerging areas like catalysis, energy, environment and biomedical research. As a consequence thousands of publications came out in large varieties of national and international journals. In this review, we have tried to summarize the published works on various synthetic pathways and formation mechanisms of different mesoporous materials viz. inorganic, organic-inorganic hybrid and purely organic solids via soft templating pathways. Generation of nanoscale porosity in a solid material usually requires participation of organic template (more specifically surfactants and their supramolecular assemblies) called structure-directing agent (SDA) in the bottom-up chemical reaction process. Different techniques employed for the syntheses of inorganic mesoporous solids, like silicas, metal doped silicas, transition and non-transition metal oxides, mixed oxides, metallophosphates, organic-inorganic hybrids as well as purely organic mesoporous materials like carbons, polymers etc. using surfactants are depicted schematically and elaborately in this paper. Moreover, some of the frontline applications of these mesoporous solids, which are directly related to their functionality, composition and surface properties are discussed at the appropriate places. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yeboah, Douglas; Singh, Jai
2017-11-01
Recently, the dependence of exciton diffusion length (LD ) on some photophysical parameters of organic solids has been experimentally demonstrated, however no systematic theoretical analysis of this phenomenon has been carried out. We have conducted a theoretical study by using the Förster resonance energy transfer and Dexter carrier transfer mechanisms together with the Einstein-Smoluchowski diffusion equation to derive analytical models for the diffusion lengths (LD ) and diffusion coefficients (D) of singlet (S) and triplet (T) excitons in organic solids as functions of spectral overlap integral (J) , photoluminescence (PL) quantum yield (φD ) , dipole moment (μT ) and refractive index (n) of the photoactive material. The exciton diffusion lengths and diffusion coefficients in some selected organic solids were calculated, and we found that the singlet exciton diffusion length (LDS ) increases with φD and J, and decreases with n. Also, the triplet exciton diffusion length (LDT ) increases with φD and decreases with μT . These may be achieved through doping the organic solids into broad optical energy gap host materials as observed in previous experiments. The calculated exciton diffusion lengths are compared with experimental values and a reasonably good agreement is found between them. The results presented are expected to provide insight relevant to the synthesis of new organic solids for fabrication of bulk heterojunction organic solar cells characterized by better power conversion efficiency.
Waller, Christopher C; McLeod, Malcolm D
2014-12-01
Steroid sulfates are a major class of steroid metabolite that are of growing importance in fields such as anti-doping analysis, the detection of residues in agricultural produce or medicine. Despite this, many steroid sulfate reference materials may have limited or no availability hampering the development of analytical methods. We report simple protocols for the rapid synthesis and purification of steroid sulfates that are suitable for adoption by analytical laboratories. Central to this approach is the use of solid-phase extraction (SPE) for purification, a technique routinely used for sample preparation in analytical laboratories around the world. The sulfate conjugates of sixteen steroid compounds encompassing a wide range of steroid substitution patterns and configurations are prepared, including the previously unreported sulfate conjugates of the designer steroids furazadrol (17β-hydroxyandrostan[2,3-d]isoxazole), isofurazadrol (17β-hydroxyandrostan[3,2-c]isoxazole) and trenazone (17β-hydroxyestra-4,9-dien-3-one). Structural characterization data, together with NMR and mass spectra are reported for all steroid sulfates, often for the first time. The scope of this approach for small scale synthesis is highlighted by the sulfation of 1μg of testosterone (17β-hydroxyandrost-4-en-3-one) as monitored by liquid chromatography-mass spectrometry (LCMS). Copyright © 2014 Elsevier Inc. All rights reserved.
Ge, Aimin; Peng, Qiling; Qiao, Lin; Yepuri, Nageshwar R; Darwish, Tamim A; Matsusaki, Michiya; Akashi, Mitsuru; Ye, Shen
2015-07-21
Broadband phase-sensitive vibrational sum frequency generation (SFG) spectroscopy was utilized to study the molecular orientation of molecules adsorbed on dielectric solid substrates. A gold thin film was employed to generate a SFG signal as a local oscillator (LO). To simplify the phase measurement, a self-assembled monolayer (SAM) of octadecyltrichlorosilane (OTS) was used as a standard sample for phase correction of the phase-sensitive SFG measurements on the solid/air interface. It was demonstrated that the absolute orientation of molecules in the LB films on a fused quartz surface can be clearly distinguished by phase-sensitive SFG measurement. In addition, the observation on the SAM of d35-OTS reveals that the two C-H stretching modes for α-CH2 group are in opposite phase. Furthermore, by using the present phase-sensitive SFG setup, the orientation flipping of water molecules on positively and negatively charged solid/liquid interface can be distinguished.
NASA Astrophysics Data System (ADS)
Yang, Ting
Lithium-ion batteries can fail and catch fire when overcharged, exposed to high temperatures or short-circuited due to the highly flammable organic liquid used in the electrolyte. Using inorganic solid electrolyte materials can potentially improve the safety factor. Additionally, nanostructured electrolyte materials may further enhanced performance by taking advantage of their large aspect ratio. In this work, the synthesis of two promising nanostructured solid electrolyte materials was explored. Amorphous lithium niobate nanowires were synthesized through the decomposition of a niobium-containing complex in a structure-directing solvent using a reflux method. Lithium lanthanum titanate was obtained via solid state reaction with titanium oxide nanowires as the titanium precursor, but the nanowire morphology could not be preserved due to high temperature sintering. Hyperbranched potassium lanthanum titanate was synthesized through hydrothermal route. This was the first time that hyperbranched nanowires with perovskite structure were made without any catalyst or substrate. This result has the potential to be applied to other perovskite materials.
NASA Astrophysics Data System (ADS)
Hwang, Nong M.; Yoon, Duk Y.
1996-03-01
In spite of the critical handicap from the thermodynamic point of view, the atomic hydrogen hypothesis is strongly supported by experimental observations of diamond deposition with simultaneous graphite etching. Thermodynamic analysis of the CH system showed that at ˜ 1500 K, carbon solubility in the gas phase is minimal and thus, the equilibrium fraction of solid carbon is maximal. Depending on whether gas phase nucleation takes place or not, the driving force is for deposition or for etching of solid carbon below ˜ 1500 K for the input gas of the typical mixture of 1% CH 499% H 2. The previous observation of etching of the graphite substrate is not expected unless solid carbon precipitated in the gas phase. By rigorous thermodynamic analysis of the previous experimental observations of diamond deposition with simultaneous graphite etching, we suggested that the previous implicit assumption that diamond deposits by an atomic unit should be the weakest point leading to the thermodynamic paradox. The experimental observations could be successfully explained without violating thermodynamics by assuming that the diamond phase had nucleated in the gas phase as fine clusters.
ERIC Educational Resources Information Center
Esteb, John J.; Hohman, Nathan J.; Schlamandinger, Diana E.; Wilson, Anne M.
2005-01-01
The solvent-free or solid-state reaction systems like the Baeyer-Villiger rearrangement have become popular in the synthetic organic community and viable option for undergraduate laboratory series to reduce waste and cost and simplify reaction process. The reaction is an efficient method to transform ketones to esters and lactones.
A Microwave-Assisted Reduction of Cyclohexanone Using Solid-State-Supported Sodium Borohydride
ERIC Educational Resources Information Center
White, Lori L.; Kittredge, Kevin W.
2005-01-01
The reduction of carbonyl groups by sodium borohydride though is a well-known reaction in most organic lab texts, a difficulty for an instructor adopting this reaction in a student lab is that it is too long. Using a microwave assisted organic synthesis solves this difficulty and one such reaction, which is the microwave-assisted reduction of…
Yang, Shenghong; Chen, Xiao; Liu, Shuqin; Wang, Fuxin; Ouyang, Gangfeng
2018-08-15
Fluorescent carbon nanoparticles (FCNPs) have been deeply researched and widely applied in recent years due to their good optics performance, chemical stability and biocompatibility. Herein, a green and rapid microwave-assisted solid-phase synthesis (solvent-free) approach was proposed for the fabrication of highly FCNPs in a very short period of time, 4 min. The as-prepared FCNPs can emit a blue emission with quantum yield of up to 63.2% in water solution and show yellow fluorescence in the solid state. The FCNPs also exhibit special solvent effect that the fluorescence emission can be adjusted by controlling the solvent ratio of ethanol and water. Most importantly, the FCNPs possess a narrow-range pH response. The probe responds linearly and rapidly to minor pH fluctuations within the range of 3.47-5.10 and the correlation coefficient is above 0.99. The proposed FCNPs also exhibit high photostability and reusability. As expected, the cell imaging and intracellular pH monitoring was achieved successfully in living SMMC 7721 hepatoma cells by this probe. The FCNPs is promising as a convenient and general fluorescent pH sensor for bioimaging applications. Copyright © 2018. Published by Elsevier B.V.
Synthesis, structural and semiconducting properties of Ba(Cu1/3 Sb2/3)O3-PbTiO3 solid solutions
NASA Astrophysics Data System (ADS)
Singh, Chandra Bhal; Kumar, Dinesh; Prashant, Verma, Narendra Kumar; Singh, Akhilesh Kumar
2018-05-01
We report the synthesis and properties of a new solid solution 0.05Ba(Cu1/3Sb2/3)O3-0.95PbTiO3 (BCS-PT) which shows the semiconducting properties. In this study, we have designed new perovskite-type (ABO3) solid solution of BCS-PT that have tunable optical band gap. BCS-PT compounds were prepared by conventional solid-state reaction method and their structural, micro-structural and optical properties were analyzed. The calcination temperature for BCS-PT solid solutions has been optimized to obtain a phase pure system. The Reitveld analysis of X-ray data show that all samples crystallize in tetragonal crystal structure with space group P4mm. X-ray investigation revealed that increase in calcination temperature led to increase of lattice parameter `a' while `c' parameter value lowered. The band gap of PbTiO3 is reduced from 3.2 eV to 2.8 eV with BCS doping and with increasing calcination temperature it further reduces to 2.56 eV. The reduced band gap indicated that the compounds are semiconducting and can be used for photovoltaic device applications.
A novel hybrid metal-organic framework-polymeric monolith for solid-phase microextraction.
Lin, Chen-Lan; Lirio, Stephen; Chen, Ya-Ting; Lin, Chia-Her; Huang, Hsi-Ya
2014-03-17
This study describes the fabrication of a novel hybrid metal-organic framework- organic polymer (MOF-polymer) for use as a stationary phase in fritless solid-phase microextraction (SPME) for validating analytical methods. The MOF-polymer was prepared by using ethylene dimethacrylate (EDMA), butyl methacrylate (BMA), and an imidazolium-based ionic liquid as porogenic solvent followed by microwave-assisted polymerization with the addition of 25 % MOF. This novel hybrid MOF-polymer was used to extract penicillin (penicillin G, penicillin V, oxacillin, cloxacillin, nafcillin, dicloxacillin) under different conditions. Quantitative analysis of the extracted penicillin samples using the MOF-organic polymer for SPME was conducted by using capillary electrochromatography (CEC) coupled with UV analysis. The penicillin recovery was 63-96.2 % with high reproducibility, sensitivity, and reusability. The extraction time with the proposed fabricated SPME was only 34 min. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Arynes and Heteroarynes in the Synthesis of Dibenzocinnolines, Diazaxanthyledenes, and Triptycenes
NASA Astrophysics Data System (ADS)
Suh, Sung-Eun
Arynes are known as useful synthons in organic synthesis. In particular, reactions accompanying multiple arynes have been employed for the construction of arenes and heteroarenes of complex molecules. Employing known reactivity modes of arynes such as cycloadditions, nucleophilic addition, bond insertion, Alder-ene, annulation, desaturation, and polymerization, a wide variety of transformation of reactive starting materials led to the development of novel fluorophores and energy materials, as well as the synthesis of natural products. Harnessing the highly reactive arynes, the triple aryne-tetrazine (TAT) reaction was disclosed as a novel metal-free synthetic method for the preparation of dibenzo[de,g]cinnoline derivatives in a single operation. Dibenzo[de,g]cinnolines have been shown as potential fluorescent probes in cells. For the mechanism, multiple mechanistic steps of the TAT reaction were scrutinized by isolation of intermediates and byproducts as well as a computational study on the transition states and the competitive reactions pathways. A facile two-step synthesis of the reported structure of xylopyridine A was developed from a pyridyne precursor and 2-fluorobenzoic acid utilizing a pyridyne insertion reaction followed by reductive coupling. Simple transformation of the reported xylopyridine A structure have given photoactivatable dyes and specific organelle staining probes in either live or fixed cells and tissues, exhibiting high quantum yields, photostability, cell permeability and low toxicity. On the basis of these results, the synthesis of multistage photoactivatable dyes was designed and studied. Utilization of arynes allowed access to the synthesis of 9-substituted triptycene derivatives which have been recognized as three-way junction binders. Accompanying solid-phase peptide synthesis, the rapid diversification of the triptycene scaffold was achieved for screening in a nucleic acid junction binding assay.
Enzymatic Glycosylation by Transferases
NASA Astrophysics Data System (ADS)
Blixt, Ola; Razi, Nahid
Glycosyltransferases are important biological catalysts in cellular systems generating complex cell surface glycans involved in adhesion and signaling processes. Recent advances in glycoscience have increased the demands to access significant amount of glycans representing the glycome. Glycosyltransferases are now playing a key role for in vitro synthesis of oligosaccharides and the bacterial genome are increasingly utilized for cloning and over expression of active transferases in glycosylation reactions. This chapter highlights the recent progress towards preparative synthesis of oligosaccharides representing terminal sequences of glycoproteins and glycolipids using recombinant transferases. Transferases are also being explored in the context of solid-phase synthesis, immobilized on resins and over expression in vivo by engineered bacteria.
2-Methyltetrahydrofuran and cyclopentyl methyl ether for green solid-phase peptide synthesis.
Jad, Yahya E; Acosta, Gerardo A; Khattab, Sherine N; de la Torre, Beatriz G; Govender, Thavendran; Kruger, Hendrik G; El-Faham, Ayman; Albericio, Fernando
2016-02-01
2-MeTHF and CPME were evaluated as greener alternatives for the most employed solvents in peptide synthesis. The ability of these solvents to dissolve amino acid derivatives and a range of coupling reagents were evaluated as well as the swelling of polystyrene and polyethylene glycol resins. In addition, racemization and coupling efficiencies were also determined. We concluded that the use of 2-MeTHF with combination of DIC/OxymaPure gave the lowest racemization level during stepwise synthesis of Z-Phg-Pro-NH2 and the highest purity during SPPS of Aib-enkephalin pentapeptide (H-Tyr-Aib-Aib-Phe-Leu-NH2).
Roh, Dong Kyu; Chi, Won Seok; Ahn, Sung Hoon; Jeon, Harim; Kim, Jong Hak
2013-08-01
Herein, we report a facile synthesis of high-density anatase-phase vertically aligned thornbush-like TiO2 nanowires (TBWs) on transparent conducting oxide glasses. Morphologically controllable TBW arrays of 9 μm in length are generated through a one-step hydrothermal reaction at 200 °C over 11 h using potassium titanium oxide oxalate dehydrate, diethylene glycol (DEG), and water. The TBWs consist of a large number of nanoplates or nanorods, as confirmed by SEM and TEM imaging. The morphologies of TBWs are controllable by adjusting DEG/water ratios. TBW diameters gradually decrease from 600 (TBW600) to 400 (TBW400) to 200 nm (TBW200) and morphologies change from nanoplates to nanorods with an increase in DEG content. TBWs are utilized as photoanodes for quasi-solid-state dye-sensitized solar cells (qssDSSCs) and solid-state DSSCs (ssDSSCs). The energy-conversion efficiency of qssDSSCs is in the order: TBW200 (5.2%)>TBW400 (4.5%)>TBW600 (3.4%). These results can be attributed to the different surface areas, light-scattering effects, and charge transport rates, as confirmed by dye-loading measurements, reflectance spectroscopy, and incident photon-to-electron conversion efficiency and intensity-modulated photovoltage spectroscopy/intensity-modulated photocurrent spectroscopy analyses. TBW200 is further treated with a graft-copolymer-directed organized mesoporous TiO2 to increase the surface area and interconnectivity of TBWs. As a result, the energy-conversion efficiency of the ssDSSC increases to 6.7% at 100 mW cm(-2) , which is among the highest values for N719-dye-based ssDSSCs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis and superconductivity of highly underdoped HgBa2CuO4+δ
NASA Astrophysics Data System (ADS)
Edwards, P. P.; Gameson, I.; Fletcher, A.; Peacock, G. B.
1998-05-01
The highest transition temperature superconductors are found within the complex homologous series HgBa2Can-1CunO2n+2+δ (n=1-7), with the third member, HgBa2Ca2Cu3O8+δ possessing the record-high transition temperature (Tc) of 135 K at room pressure. The first member of this family, HgBa2CuO4+δ having a Tc of up to 97 K, displays the highest transition temperature for any analogous compounds with a single copper-layer. The chemical reaction for the formation of this material is intrinsically complex due to the natural high volatility of mercury-bearing compounds; chemical synthesis has been postulated to proceed via a solid-vapour reaction. With this in mind, we have developed a mixed solid/vapour phase synthesis for HgBa2CuO4+δ using what one might term a `remote' source of mercury, in this case elemental Hg itself. Interestingly, because of the zero oxidation state of elemental mercury in the reagent mixture, the synthesis reaction proceeds under reducing conditions. By this route, a highly underdoped state (Tc<=35 K) of the superconducting phase HgBa2CuO4+δ is readily obtained. This level of underdoping is extremely difficult to achieve by more conventional synthetic routes. We comment on the unusually high oxygen affinity of the resulting underdoped compound, in relation to other cuprate superconductors, and the implied mobility of oxygen defects within the crystal structure.
Two-phase anaerobic digestion within a solid waste/wastewater integrated management system
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Gioannis, G.; Diaz, L.F.; Muntoni, A.
2008-07-01
A two-phase, wet anaerobic digestion process was tested at laboratory scale using mechanically pre-treated municipal solid waste (MSW) as the substrate. The proposed process scheme differs from others due to the integration of the MSW and wastewater treatment cycles, which makes it possible to avoid the recirculation of process effluent. The results obtained show that the supplying of facultative biomass, drawn from the wastewater aeration tank, to the solid waste acidogenic reactor allows an improvement of the performance of the first phase of the process which is positively reflected on the second one. The proposed process performed successfully, adopting mesophilicmore » conditions and a relatively short hydraulic retention time in the methanogenic reactor, as well as high values of organic loading rate. Significant VS removal efficiency and biogas production were achieved. Moreover, the methanogenic reactor quickly reached optimal conditions for a stable methanogenic phase. Studies conducted elsewhere also confirm the feasibility of integrating the treatment of the organic fraction of MSW with that of wastewater.« less
Huang, Zhongping; Zhang, Jie; Zhang, Peipei; Wang, Hong; Pan, Zaifa; Wang, Lili
2016-07-01
Headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry was applied to the analysis of volatile organic compounds in pleural effusions. The highly volatile organic compounds were separated successfully with high sensitivity by the employment of a cryotrap device, with the construction of a cold column head by freezing a segment of metal capillary with liquid nitrogen. A total of 76 volatile organic compounds were identified in 50 pleural effusion samples (20 malignant effusions and 30 benign effusions). Among them, 34 more volatile organic compounds were detected with the retention time less than 8 min, by comparing with the normal headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry method. Furthermore, 24 volatile organic compounds with high occurrence frequency in pleural effusion samples, 18 of which with the retention time less than 8 min, were selected for the comparative analysis. The results of average peak area comparison and box-plot analysis showed that except for cyclohexanone, 2-ethyl-1-hexanol, and tetramethylbenzene, which have been reported as potential cancer biomarkers, cyclohexanol, dichloromethane, ethyl acetate, n-heptane, ethylbenzene, and xylene also had differential expression between malignant and benign effusions. Therefore, the proposed approach was valuable for the comprehensive characterization of volatile organic compounds in pleural effusions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Xianjiang; Xing, Jiawei; Chang, Cuilan; Wang, Xin; Bai, Yu; Yan, Xiuping; Liu, Huwei
2014-06-01
MIL-101(Cr) is an excellent metal-organic framework with high surface area and nanoscale cavities, making it promising in solid-phase extraction. Herein, we used MIL-101(Cr) as a solid-phase extraction packing material combined with fast detection of direct analysis in real time mass spectrometry (DART-MS) for the analysis of triazine herbicides. After systematic optimization of the operation parameters, including the gas temperature of DART, the moving speed of the 1D platform, solvent for desorption, amount of MIL-101(Cr) extraction time, eluent volume and salt concentration, this method can realize the simultaneous detection of five kinds of triazine herbicides. The limits of detection were 0.1∼0.2 ng/mL and the linear ranges covered more than two orders of magnitude with the quantitation limits of 0.5∼1 ng/mL. Moreover, the developed method has been applied for the analysis of lake water samples and the recoveries for spiked analytes were in the range of 85∼110%. These results showed that solid-phase extraction with metal-organic frameworks is an efficient sample preparation approach for DART-MS analysis and could find more applications in environmental analysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition
Lausund, Kristian Blindheim; Nilsen, Ola
2016-01-01
Thin films of stable metal-organic frameworks (MOFs) such as UiO-66 have enormous application potential, for instance in microelectronics. However, all-gas-phase deposition techniques are currently not available for such MOFs. We here report on thin-film deposition of the thermally and chemically stable UiO-66 in an all-gas-phase process by the aid of atomic layer deposition (ALD). Sequential reactions of ZrCl4 and 1,4-benzenedicarboxylic acid produce amorphous organic–inorganic hybrid films that are subsequently crystallized to the UiO-66 structure by treatment in acetic acid vapour. We also introduce a new approach to control the stoichiometry between metal clusters and organic linkers by modulation of the ALD growth with additional acetic acid pulses. An all-gas-phase synthesis technique for UiO-66 could enable implementations in microelectronics that are not compatible with solvothermal synthesis. Since this technique is ALD-based, it could also give enhanced thickness control and the possibility to coat irregular substrates with high aspect ratios. PMID:27876797
Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide
NASA Astrophysics Data System (ADS)
Song, Zhibo; Wang, Qixing; Li, Ming-Yang; Li, Lain-Jong; Zheng, Yu Jie; Wang, Zhuo; Lin, Tingting; Chi, Dongzhi; Ding, Zijing; Huang, Yu Li; Thye Shen Wee, Andrew
2018-04-01
Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48 ) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.
Design and synthesis of the superionic conductor Na10SnP2S12
NASA Astrophysics Data System (ADS)
Richards, William D.; Tsujimura, Tomoyuki; Miara, Lincoln J.; Wang, Yan; Kim, Jae Chul; Ong, Shyue Ping; Uechi, Ichiro; Suzuki, Naoki; Ceder, Gerbrand
2016-03-01
Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-state batteries with ionic electrolytes eliminates this concern, while also allowing novel device architectures and potentially improving cycle life. Here we report the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity of 0.4 mS cm-1 rivalling the conductivity of the best sodium sulfide solid electrolytes to date. We also computationally investigate the variants of this compound where tin is substituted by germanium or silicon and find that the latter may achieve even higher conductivity.
Design and synthesis of the superionic conductor Na10SnP2S12.
Richards, William D; Tsujimura, Tomoyuki; Miara, Lincoln J; Wang, Yan; Kim, Jae Chul; Ong, Shyue Ping; Uechi, Ichiro; Suzuki, Naoki; Ceder, Gerbrand
2016-03-17
Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-state batteries with ionic electrolytes eliminates this concern, while also allowing novel device architectures and potentially improving cycle life. Here we report the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity of 0.4 mS cm(-1) rivalling the conductivity of the best sodium sulfide solid electrolytes to date. We also computationally investigate the variants of this compound where tin is substituted by germanium or silicon and find that the latter may achieve even higher conductivity.
Formation of organoclays by a one step synthesis
NASA Astrophysics Data System (ADS)
Jaber, Maguy; Miéhé-Brendlé, Jocelyne; Delmotte, Luc; Le Dred, Ronan
2005-05-01
Different lamellar hybrid inorganic-organic materials having as inorganic parent 2:1 (T.O.T.) phyllosilicates such as talc, saponite, pyrophyllite, beidellite and montmorillonite were prepared by a one step synthesis. The solids were characterized by X-ray diffraction, solid state 29Si, 27Al, and 19F nuclear magnetic resonance and transmission electron microscopy. XRD patterns show that solids with inorganic parents having octahedral sheet based on aluminium exhibit a lamellar structure similar to MCM-50, whereas those with magnesium have an organophyllosilicate structure. In the first case, the absence of hexacoordinated aluminium was confirmed by 27Al NMR and an ordered stacking of the layers is observed on TEM micrographs. In opposite, a disorder is observed on the TEM images of organophyllosilicates. The formation of the 2:1 structure was found to be controlled mainly by the insertion of silicic species in the interlamellar space of brucite like layers.
Doi, Takayuki
2014-01-01
This paper describes the synthetic studies conducted on a marine natural product, cyclodepsipeptide apratoxin A. Total synthesis of the oxazoline analogue of apratoxin A was achieved. The conversion of oxazoline to thioamide, as well as thioamide formation from a serine-derived compound, were both unsuccessful. However, thiazoline formation from a cysteine-derived compound led to the total synthesis of apratoxin A. An in vivo study on synthetic apratoxin A revealed that it has potent antitumor activity, but with significant toxicity. Solid-phase synthesis of apratoxin A was accomplished using a preformed thiazoline derivative as a coupling unit. This method was used to synthesize several azido-containing analogues as precursors of molecular probes, and these analogues exhibited potent biological activity.
Synthesis of ion-exchange resin for selective thorium and uranyl ions sorption
NASA Astrophysics Data System (ADS)
Konovalov, Konstantin; Sachkov, Victor
2017-11-01
In this work, the method of ion-exchange resin synthesis selective to radionuclides (uranium and thorium) is presented. The method includes synthesis of polymeric styrene-divinylbenzene macroporous matrix with size of 0.1-0.2 mm, and its subsequent transformation by nitration and then reduction by tin (II) chloride. For passivation of active primary amines partially oxidation by oxygen from air is used. Obtained ion-exchange resin has ratio of sorption sum U+Th to sorption sum of other total rare-earth elements as 1:1.88 at ratio of solid to liquid phase 1:200. The proposed method of ion-exchange resin synthesis is scaled-up for laboratory reactors with volume of 5 and 50 liters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murgia, Fabrizio; Antitomaso, Philippe; Stievano, Lorenzo
The ternary Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} was successfully synthetized using a simple and cost-effective solid-state microwave-assisted reaction. While solid-state routes require days of high-temperature treatment under inert atmosphere, highly pure and crystalline Cu{sub 2}Mo{sub 6}S{sub 8} could be obtained in only 400 s from this precursor, the Chevrel binary phase Mo{sub 6}S{sub 8} was then obtained by copper removal through acidic leaching, and was evaluated as a positive electrode material for Mg-battery. The electrochemical performance in half-cell configuration shows reversible capacity exceeding 80 mAh/g, which is comparable to previous works carried out with materials synthesized by conventional high-temperaturemore » solid-state routes. - Graphical abstract: Ultrafast micro-wave synthesis of Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} towards Mo{sub 6}S{sub 8} as positive electrode of Mg-battery. - Highlights: • Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} is synthesized by fast microwave-assisted solid-state reaction. • Highly-pure and well-crystalline Cu{sub 2}Mo{sub 6}S{sub 8} is obtained. • Mo{sub 6}S{sub 8} obtained from leaching is tested as a positive electrode for Mg batteries.« less
Martha J.M. Wells; Jerry L. Michael
1987-01-01
Extensive preparation of samples before chromatographic analysis is usually the most time-consuming process in the determination of many organic compounds in environmental matrices. In the past, removal of some organic from aqueous solution was commonly done by liquid/liquid extraction. However, the introduction of stable, covalently bonded reversed-phase sorbents now...
Kinetic model of excess activated sludge thermohydrolysis.
Imbierowicz, Mirosław; Chacuk, Andrzej
2012-11-01
Thermal hydrolysis of excess activated sludge suspensions was carried at temperatures ranging from 423 K to 523 K and under pressure 0.2-4.0 MPa. Changes of total organic carbon (TOC) concentration in a solid and liquid phase were measured during these studies. At the temperature 423 K, after 2 h of the process, TOC concentration in the reaction mixture decreased by 15-18% of the initial value. At 473 K total organic carbon removal from activated sludge suspension increased to 30%. It was also found that the solubilisation of particulate organic matter strongly depended on the process temperature. At 423 K the transfer of TOC from solid particles into liquid phase after 1 h of the process reached 25% of the initial value, however, at the temperature of 523 K the conversion degree of 'solid' TOC attained 50% just after 15 min of the process. In the article a lumped kinetic model of the process of activated sludge thermohydrolysis has been proposed. It was assumed that during heating of the activated sludge suspension to a temperature in the range of 423-523 K two parallel reactions occurred. One, connected with thermal destruction of activated sludge particles, caused solubilisation of organic carbon and an increase of dissolved organic carbon concentration in the liquid phase (hydrolysate). The parallel reaction led to a new kind of unsolvable solid phase, which was further decomposed into gaseous products (CO(2)). The collected experimental data were used to identify unknown parameters of the model, i.e. activation energies and pre-exponential factors of elementary reactions. The mathematical model of activated sludge thermohydrolysis appropriately describes the kinetics of reactions occurring in the studied system. Copyright © 2012 Elsevier Ltd. All rights reserved.
Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors.
Zhang, Chunli; Yin, Huanhuan; Han, Min; Dai, Zhihui; Pang, Huan; Zheng, Yulin; Lan, Ya-Qian; Bao, Jianchun; Zhu, Jianmin
2014-04-22
Due to their unique electronic and optoelectronic properties, tin selenide nanostructures show great promise for applications in energy storage and photovoltaic devices. Despite the great progress that has been achieved, the phase-controlled synthesis of two-dimensional (2D) tin selenide nanostructures remains a challenge, and their use in supercapacitors has not been explored. In this paper, 2D tin selenide nanostructures, including pure SnSe2 nanodisks (NDs), mixed-phase SnSe-SnSe2 NDs, and pure SnSe nanosheets (NSs), have been synthesized by reacting SnCl2 and trioctylphosphine (TOP)-Se with borane-tert-butylamine complex (BTBC) and 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone. Utilizing the interplay of TOP and BTBC and changing only the amount of BTBC, the phase-controlled synthesis of 2D tin selenide nanostructures is realized for the first time. Phase-dependent pseudocapacitive behavior is observed for the resulting 2D nanostructures. The specific capacitances of pure SnSe2 NDs (168 F g(-1)) and SnSe NSs (228 F g(-1)) are much higher than those of other reported materials (e.g., graphene-Mn3O4 nanorods and TiN mesoporous spheres); thus, these tin selenide materials were used to fabricate flexible, all-solid-state supercapacitors. Devices fabricated with these two tin selenide materials exhibited high areal capacitances, good cycling stabilities, excellent flexibilities, and desirable mechanical stabilities, which were comparable to or better than those reported recently for other solid-state devices based on graphene and 3D GeSe2 nanostructures. Additionally, the rate capability of the SnSe2 NDs device was much better than that of the SnSe NS device, indicating that SnSe2 NDs are promising active materials for use in high-performance, flexible, all-solid-state supercapacitors.
Culver, Sean P.; Greaney, Matthew J.; Tinoco, Antonio; ...
2015-07-24
Here, a series of compositionally complex scheelite-structured nanocrystals of the formula A 1-xA’ xWO 4 (A = Ca, Sr, Ba) have been prepared under benign synthesis conditions using the vapor diffusion sol–gel method. Discrete nanocrystals with sub-20 nm mean diameters were obtained after kinetically controlled hydro- lysis and polycondensation at room temperature, followed by composition-dependent thermal aging at or below 60 °C. Rietveld analysis of X-ray diffraction data and Raman spectroscopy verified the synthesis of continuous and phase-pure nanocrystal solid solutions across the entire composition space for A 1-xA’ xWO 4, where 0 ≤ x ≤ 1. Elemental analysis bymore » X-ray photoelectron and inductively coupled plasma- atomic emission spectroscopies demonstrated excellent agreement between the nominal and experi- mentally determined elemental stoichiometries, while energy dispersive X-ray spectroscopy illustrated good spatial elemental homogeneity within these nanocrystals synthesized under benign conditions.« less
Font, David; Heras, Montserrat; Villalgordo, José M
2003-01-01
A simple and straightforward methodology toward the synthesis of novel 2,6-disubstituted-4-alkoxypyrimidine derivatives of type 16 and 19 has been developed. This methodology, initially developed in solution, can be perfectly adapted to the solid support under analogous conditions, taking full advantage of automated parallel synthesis systems. This successful methodology benefits from the key role played by the thioether linkage placed at the 2-position in 3, 9, or 13 in a double manner: on one side, the steric effect exerted by the thioether linkage is likely to be responsible for the very high observed selectivity toward the formation of the O-alkylation products. On the other side, this sulfur linkage can serve not only as a robust point of attachment for the heterocycle, stable to a number of reaction conditions, but also as a means of introducing a new element of diversity through activation to the corresponding sulfone (safety-catch linker concept) and subsequent ipso-substitution reaction with a variety of different N-nucleophiles.
Parisis, Nikolaos A; Giokas, Dimosthenis L; Vlessidis, Athanasios G; Evmiridis, Nicholaos P
2005-12-02
The ability of vesicle-coated silica to aid the extraction of organic compounds from water prior to liquid chromatographic analysis is presented for the first time. The method is based on the formation of silica supported cationic multi-lamellar vesicles of gemini surfactants inherently ensuring the presence of hydrophilic and hydrophobic sites for the partitioning of analytes bearing different properties. Method development is illustrated by studying the adsolubilization of UV absorbing chemicals from swimming pool water. Due to the requirement for external energy input (intense shearing) a method based on solid-phase dispersion (SPD) was applied producing better results than off-line solid-phase extraction (SPE). Meticulous investigation of the experimental parameters was conducted in order to elucidate the mechanisms behind the proposed extraction pattern. Analyte recoveries were quantitative under the optimum experimental conditions offering recoveries higher than 96% with RSD values below 5%.
Fifty years of solid-phase extraction in water analysis--historical development and overview.
Liska, I
2000-07-14
The use of an appropriate sample handling technique is a must in an analysis of organic micropollutants in water. The efforts to use a solid phase for the recovery of analytes from a water matrix prior to their detection have a long history. Since the first experimental trials using activated carbon filters that were performed 50 years ago, solid-phase extraction (SPE) has become an established sample preparation technique. The initial experimental applications of SPE resulted in widespread use of this technique in current water analysis and also to adoption of SPE into standardized analytical methods. During the decades of its evolution, chromatographers became aware of the advantages of SPE and, despite many innovations that appeared in the last decade, new SPE developments are still expected in the future. A brief overview of 50 years of the history of the use of SPE in organic trace analysis of water is given in presented paper.
Molecular processes from the AGB to the PN stage
NASA Astrophysics Data System (ADS)
García-Hernández, D. Anibal
2012-08-01
Many complex organic molecules and inorganic solid-state compounds have been observed in the circumstellar shell of stars (both C-rich and O-rich) in the transition phase between Asymptotic Giant Branch (AGB) stars and Planetary Nebulae (PNe). This short (~102-104 years) phase of stellar evolution represents a wonderful laboratory for astrochemistry and provides severe constraints on any model of gas-phase and solid-state chemistry. One of the major challenges of present day astrophysics and astrochemistry is to understand the formation pathways of these complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene in the case of a C-rich chemistry and oxides and crystalline silicates in O-rich environments) in space. In this review, I present an observational review of the molecular processes in the late stages of stellar evolution with a special emphasis on the first detections of fullerenes and graphene in PNe.
Zhu, Baoning; Zhang, Ruihong; Gikas, Petros; Rapport, Joshua; Jenkins, Bryan; Li, Xiujin
2010-08-01
This research was conducted to develop an integrated rotary drum reactor (RDR)-anaerobic-phased solids (APS) digester system for the treatment of municipal solid waste (MSW) to produce biogas energy and achieve waste reduction. A commercial RDR facility was used to provide a 3-d pretreatment and sufficient separation of the organics from MSW and then the organics were digested in a laboratory APS-digester system for biogas production. The organics generated from the RDR contained 50% total solids (TS) and 36% volatile solids (VS) on wet basis. The APS-digester was started at an organic loading rate (OLR) of 3.1 gVS L(-1) d(-1) and operated at three higher OLRs of 4.6, 7.7 and 9.2 gVS L(-1) d(-1). At the OLR of 9.2 gVS L(-1) d(-1) the system biogas production rate was 3.5 L L(-1) d(-1) and the biogas and methane yields were 0.38 and 0.19 L gVS(-1), respectively. Anaerobic digestion resulted in 38% TS reduction and 53% VS reduction in the organic solids. It was found that the total VFA concentration reached a peak value of 15,000 mg L(-1) as acetic acid in the first 3d of batch digestion and later decreased to about 500 mg L(-1). The APS-digester system remained stable at each OLRs for over 100d with the pH in the hydrolysis reactors in the range of 7.3-7.8 and the pH in the biogasification reactor in 7.9-8.1. The residual solids after the digestion had a high heating value of 14.7 kJ gTS(-1). Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schill, G. P.; Tolbert, M. A.
2013-05-01
Atmospheric ice nucleation on aerosol particles relevant to cirrus clouds remains one of the least understood processes in the atmosphere. Upper tropospheric aerosols as well as sub-visible cirrus residues are known to be enhanced in both sulfates and organics. The hygroscopic phase transitions of organic-sulfate particles can have an impact on both the cirrus cloud formation mechanism and resulting cloud microphysical properties. In addition to deliquescence and efflorescence, organic-sulfate particles are known to undergo another phase transition known as liquid-liquid phase separation. The ice nucleation properties of particles that have undergone liquid-liquid phase separation are unknown. Here, Raman microscopy coupled with an environmental cell was used to study the low temperature deliquescence, efflorescence, and liquid-liquid phase separation behavior of 2 : 1 mixtures of organic polyols (1,2,6-hexanetriol and 1 : 1 1,2,6-hexanetriol + 2,2,6,6-tetrakis(hydroxymethyl)cyclohexanol) and ammonium sulfate from 240-265 K. Further, the ice nucleation efficiency of these organic-sulfate systems after liquid-liquid phase separation and efflorescence was investigated from 210-235 K. Raman mapping and volume-geometry analysis indicate that these particles contain solid ammonium sulfate cores fully engulfed in organic shells. For the ice nucleation experiments, we find that if the organic coatings are liquid, water vapor diffuses through the shell and ice nucleates on the ammonium sulfate core. In this case, the coatings minimally affect the ice nucleation efficiency of ammonium sulfate. In contrast, if the coatings become semi-solid or glassy, ice instead nucleates on the organic shell. Consistent with recent findings that glasses can be efficient ice nuclei, the phase-separated particles are nearly as efficient at ice nucleation as pure crystalline ammonium sulfate.
NASA Astrophysics Data System (ADS)
Schill, G. P.; Tolbert, M. A.
2012-12-01
Atmospheric ice nucleation on aerosol particles relevant to cirrus clouds remains one of the least understood processes in the atmosphere. Upper tropospheric aerosols as well as sub-visible cirrus residues are known to be enhanced in both sulfates and organics. The hygroscopic phase transitions of organic-sulfate particles can have an impact on both the cirrus cloud formation mechanism and resulting cloud microphysical properties. In addition to deliquescence and efflorescence, organic-sulfate particles are known to undergo another phase transition known as liquid-liquid phase separation. The ice nucleation properties of particles that have undergone liquid-liquid phase separation are unknown. Here, Raman microscopy coupled with an environmental cell was used to study the low temperature deliquescence, efflorescence, and liquid-liquid phase separation behavior of 2:1 mixtures of organic polyols (1,2,6-hexanetriol, and 1:1 1,2,6-hexanetriol +2,2,6,6-tetrakis(hydroxymethyl)cycohexanol) and ammonium sulfate from 240-265 K. Further, the ice nucleation efficiency of these organic-sulfate systems after liquid-liquid phase separation and efflorescence was investigated from 210-235 K. Raman mapping and volume-geometry analysis indicates that these particles contain solid ammonium sulfate cores fully engulfed in organic shells. For the ice nucleation experiments, we find that if the organic coatings are liquid, water vapor diffuses through the shell and ice nucleates on the ammonium sulfate core. In this case, the coatings minimally affect the ice nucleation efficiency of ammonium sulfate. In contrast, if the coatings become semi-solid or glassy, ice instead nucleates on the organic shell. Consistent with recent findings that glasses can be efficient ice nuclei, the phase separated particles are nearly as efficient at ice nucleation as pure crystalline ammonium sulfate.
Materials research at Stanford University. [composite materials, crystal structure, acoustics
NASA Technical Reports Server (NTRS)
1975-01-01
Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.
NASA Astrophysics Data System (ADS)
Tripathi, Biranchi M.; Mohanty, Trupti; Prakash, Deep; Tyagi, A. K.; Sinha, P. K.
2017-07-01
Pure phase monoclinic nano-crystalline Li2TiO3 powder was synthesized by a novel urea assisted solid state synthesis method using readily available and economical precursors. A single phase and well crystalline Li2TiO3 powder has been obtained at slightly lower temperature (600-700 °C) and shorter duration (2 h) as compared to the conventional solid state method. The proposed method has significant advantages in comparison to other viable methods mainly in terms of phase purity, powder properties and sinterability. Analysis of chemical composition using inductively coupled plasma atomic emission spectroscopy (ICP-AES) shows no loss of lithium from Li2TiO3 in the proposed method. The emergence of monoclinic Li2TiO3 phase was confirmed by X-ray diffraction (XRD) pattern of as-synthesized powder. The crystallite size of Li2TiO3 powder was calculated to be in the range of 15-80 nm, which varied as a function of urea composition and temperature. The morphology of as-prepared Li2TiO3 powders was examined by scanning electron microscope (SEM). The effect of urea composition on phase and morphology was investigated so as to delineate the role of urea. Upon sintering at < 1000 °C temperature, the Li2TiO3 powder compact attained about 98% of the theoretical density with fine grained (grain size: 2-3 μm) microstructure. It indicates excellent sinter-ability of Li2TiO3 powder synthesized by the proposed method. The fine grained structure is desirable for better tritium breeding performance of Li2TiO3. Electrochemical impedance spectroscopy at variable temperature showed good electrical properties of Li2TiO3. The proposed method is simple, anticipated to be cost effective and convenient to realise for large scale production of phase pure nanocrystalline and having significantly enhanced sinter-ability Li2TiO3 powder.
Reyes-Gallardo, Emilia M; Lucena, R; Cárdenas, S; Valcárcel, M
2014-06-06
In this article, the easy synthesis of magnetic nanoparticles-nylon 6 composite is presented, characterized and applied in the microextraction field. The one-step synthesis of the composite is performed by a solvent changeover playing with the different solubility of the polymeric network in formic acid and water. The new material has been characterized by different techniques including infrared spectroscopy, transmission and scanning microscopy. The extraction performance of the composite under a dispersive micro solid phase extraction format has been evaluated by determining four polycyclic aromatic hydrocarbons (benzo[b]fluoranthene, fluoranthene, indeno[1,2,3-cd]pyrene and phenanthrene) in water using ultra performance liquid chromatography (UPLC) combined with photo diode array detection. The developed methodology allows the determination of the analytes with limits of detection in the range from 0.05 μg/L (benzo[b]fluoranthene) to 0.58 μg/L (phenanthrene). The repeatability of the method was better than 6.9% at the limit of quantification level. The relative recoveries varied in the interval 80-111%. Copyright © 2014 Elsevier B.V. All rights reserved.
Martin, Irene; Dohmen, Christian; Mas-Moruno, Carlos; Troiber, Christina; Kos, Petra; Schaffert, David; Lächelt, Ulrich; Teixidó, Meritxell; Günther, Michael; Kessler, Horst; Giralt, Ernest; Wagner, Ernst
2012-04-28
In the forthcoming era of cancer gene therapy, efforts will be devoted to the development of new efficient and non-toxic gene delivery vectors. In this regard, the use of Fmoc/Boc-protected oligo(ethane amino)acids as building blocks for solid-phase-supported assembly represents a novel promising approach towards fully controlled syntheses of effective gene vectors. Here we report on the synthesis of defined polymers containing the following: (i) a plasmid DNA (pDNA) binding domain of eight succinoyl-tetraethylenpentamine (Stp) units and two terminal cysteine residues; (ii) a central polyethylene glycol (PEG) chain (with twenty-four oxyethylene units) for shielding; and (iii) specific peptides for targeting towards cancer cells. Peptides B6 and c(RGDfK), which bind transferrin receptor and α(v)β(3) integrin, respectively, were chosen because of the high expression of these receptors in many tumoral cells. This study shows the feasibility of designing these kinds of fully controlled vectors and their success for targeted pDNA-based gene transfer. This journal is © The Royal Society of Chemistry 2012
NASA Astrophysics Data System (ADS)
Ma, Ruixin; Yang, Fan; Li, Shina; Zhang, Xiaoyong; Li, Xiang; Cheng, Shiyao; Liu, Zilin
2016-04-01
CZTSSe is an important earth abundant collection of materials for the development of low cost and high efficiency thin film solar cells. This work developed a simple non-vacuum-based route to fabricate CZTSSe absorber films. This was demonstrated by first synthesizing Cu2ZnSnS4 (CZTS) nano-crystalline based on solid-phase synthesis. Then a stable colloidal ink composed of CZTS nano-crystalline was blade coated on Mo-coated substrates followed by an annealing process under Ar atmosphere. After CZTS films formation, the films were sintered into CZTSSe absorber films by exposing them under Selenium vapor. The formation of a kesterite type CZTS was confirmed using X-ray diffraction and Raman scattering measurements. The band gap of CZTSSe absorber films was determined to be 1.26 eV, which was appropriate for use as an absorber layer in thin film solar cells. The CZTSSe absorber films showed a good photovoltatic performance, demonstrating this simple approach had great potential for CZTSSe solar cell production.
A nickel tripeptide as a metallodithiolate ligand anchor for resin-bound organometallics.
Green, Kayla N; Jeffery, Stephen P; Reibenspies, Joseph H; Darensbourg, Marcetta Y
2006-05-17
The molecular structure of the acetyl CoA synthase enzyme has clarified the role of individual nickel atoms in the dinickel active site which mediates C-C and C-S coupling reactions. The NiN2S2 portion of the biocatalyst (N2S2 = a cysteine-glycine-cysteine or CGC4- tripeptide ligand) serves as an S-donor ligand comparable to classical bidentate ligands operative in organometallic chemistry, ligating the second nickel which is redox and catalytically active. Inspired by this biological catalyst, the synthesis of NiN2S2 metalloligands, including the solid-phase synthesis of resin-bound Ni(CGC)2-, and sulfur-based derivatization with W(CO)5 and Rh(CO)2+ have been carried out. Through comparison to analogous well-characterized, solution-phase complexes, Attenuated Total Reflectance FTIR spectroscopy establishes the presence of unique heterobimetallic complexes, of the form [Ni(CGC)]M(CO)x, both in solution and immobilized on resin beads. This work provides the initial step toward exploitation of such an evolutionarily optimized nickel peptide as a solid support anchor for hybrid bioinorganic-organometallic catalysts.
Mende, Franziska; Beisswenger, Michael; Seitz, Oliver
2010-08-18
Peptide thioesters are important building blocks in the total synthesis of proteins and protein domains via fragment ligation. However, synthetic access of peptide thioesters still is a bottleneck of this powerful ligation chemistry. The commonly used methods for the Fmoc-based synthesis of peptide thioesters involve nonautomated solution steps that have to be performed after the solid-phase assembly of the peptide. Usually, HPLC purification is required. Herein, a method that enables crude peptides to be used in divergent native chemical ligations reactions is described. We present an Fmoc-based solid-phase synthesis of peptide thioesters with self-purification which facilitates access to these important building blocks, since the often cumbersome HPLC purification can be avoided. Fmoc-protected amino acids are coupled on a safety catch sulfonamide resin. The self-purifying effect is achieved through the combination of (a) N-terminal coupling of a cleavable cyclization linker and subsequent backbone-to-side chain cyclization, (b) activation of the sulfonamide linkage by alkylation, (c) thiolysis for the selective detachment of truncation products, and (d) TFA cleavage for the liberation of the desired peptide thioester in unprotected form. We have previously shown a method wherein cyclization was performed after carboxymethylation of the sulfonamide. However, the automation of this method was difficult and side reactions at methionine residues hampered the general applicability. The new design involves peptide synthesis on a modified carboxy-functionalized sulfonamide linker, a substantially milder activation of the sulfonamide bond and the use of monomethoxytrityl as well as 2-phenyl-isopropyl protecting groups. This approach solved the problems with methionine containing peptides and enabled the complete automation of the self-purifying synthesis of peptide thioesters. The study also addressed problems in the synthesis of difficult peptides. Aggregated truncation products can resist extraction and contaminate full-length thioesters obtained after TFA cleavage. It is shown that significant enhancements of the purity were achieved when mild acidic extractions were included in the wash protocols after thiolysis. The potential of the method was demonstrated in the parallel synthesis of 20-40 amino acid long peptide thioesters, which were obtained in excellent purities. The thioesters and cysteinyl peptides were used without purification in the assembly of immobilized SH3 protein domains of SHO1 in yeast. A cysteine scan by native chemical ligation suggested single amino acid to cysteine substitutions that (a) confer useful ligation yields, (b) support correct folding, and (c) sustain the function of the folded protein domain. The chemical synthesis of the SH3-domain of SHO1 succeeded in highest yields when cysteine placements at positions S23, F24, and E36 were avoided. The synthetic SH3 mutants were examined in a binding assay, which indicated that N27C, L30C, and D34C mutations provide functional SH3-domain.
2014-06-12
Duck Young Kim. Synthesis of Mg2C: A Magnesium Methanide, Angewandte Chemie International Edition, (08 2013): 0. doi: 10.1002/anie.201303463 TOTAL...Polymorph of2 Magnesium Sesquicarbide, Inorganic Chemistry (02 2014) DuckYoung Kim, Stevce Stefanoski, Oleksandr O. Kurakevych, Timothy A. Strobel...new phase was discovered in the Li+C system. Figure 6 shows x‐ray diffraction and Raman spectra obtained from this phase, which cannot be
Phase transitions of sodium niobate powder and ceramics, prepared by solid state synthesis
NASA Astrophysics Data System (ADS)
Koruza, J.; Tellier, J.; Malič, B.; Bobnar, V.; Kosec, M.
2010-12-01
Phase transitions of sodium niobate, prepared by the solid state synthesis method, were examined using dielectric measurements, differential scanning calorimetry, and high temperature x-ray diffraction, in order to contribute to the clarification of its structural behavior below 400 °C. Four phase transitions were detected in the ceramic sample using dielectric measurements and differential scanning calorimetry and the obtained temperatures were in a good agreement with previous reports for the transitions of the P polymorph. The anomaly observed by dielectric measurements in the vicinity of 150 °C was frequency dependent and could be related to the dynamics of the ferroelectric nanoregions. The phase transitions of the as-synthesized NaNbO3 powder were investigated using differential scanning calorimetry and high temperature x-ray diffraction. The results show the existence of the Q polymorph at room temperature, not previously reported for the powder, which undergoes a transition to the R polymorph upon heating through a temperature region between 265 and 326.5 °C. This transition is mainly related to the displacement of Na into a more symmetric position and a minor change in the tilting system. The structures at room temperature, 250, 300, and 420 °C were refined by the Rietveld method and the evolution of the tilting system of the octahedral network and cationic displacement are reported.
Czaplicka, Marianna; Kurowski, Ryszard; Jaworek, Katarzyna; Bratek, Łukasz
2013-01-01
The paper presents results of studies into advanced oxidation processes in 03 and 03/UV systems. An advanced oxidation process (AOP) was conducted to reduce the load of impurities in circulating waters from wet de-dusting of shaft furnace gases. Besides inorganic impurities, i.e. mainly arsenic compounds (16 g As L(-1) on average), lead, zinc, chlorides and sulphates, the waters also contain some organic material. The organic material is composed of a complex mixture that contains, amongst others, aliphatic compounds, phenol and its derivatives, pyridine bases, including pyridine, and its derivatives. The test results show degradation of organic and inorganic compounds during ozonation and photo-oxidation processes. Analysis of the solutions from the processes demonstrated that the complex organic material in the industrial water was oxidized in ozonation and in photo-oxidation, which resulted in formation of aldehydes and carboxylic acids. Kinetic degradation of selected pollutants is presented. Obtained results indicated that the O3/UV process is more effective in degradation of organic matter than ozonation. Depending on the process type, precipitation of the solid phase was observed. The efficiency of solid-phase formation was higher in photo-oxidation with ozone. It was found that the precipitated solid phase is composed mainly of arsenic, iron and oxygen.
El Malah, Tamer; Ciesielski, Artur; Piot, Luc; Troyanov, Sergey I; Mueller, Uwe; Weidner, Steffen; Samorì, Paolo; Hecht, Stefan
2012-01-21
Efficient Cu-catalyzed 1,3-dipolar cycloaddition reactions have been used to prepare two series of three regioisomers of G-1 and G-2 poly(triazole-pyridine) dendrons. The G-1 and G-2 dendrons consist of branched yet conformationally pre-organized 2,6-bis(phenyl/pyridyl-1,2,3-triazol-4-yl)pyridine (BPTP) monomeric and trimeric cores, respectively, carrying one focal and either two or four peripheral alkyl side chains. In the solid state, the conformation and supramolecular organization were studied by means of a single crystal X-ray structure analysis of one derivative. At the liquid-solid interface, the self-assembly behavior was investigated by scanning tunneling microscopy (STM) on graphite surfaces. Based on the observed supramolecular organization, it appears that the subtle balance between conformational preferences inherent in the dendritic backbone on the one side and the adsorption and packing of the alkyl side chains on the graphite substrate on the other side dictate the overall structure formation in 2D.
NASA Astrophysics Data System (ADS)
Singh, Monika; Kumar, Dinesh; Singh, Akhilesh Kumar
2018-04-01
For solid oxide fuel cell electrode material, calcium doped lanthanum manganite La0.4Ca0.6MnO3 (LCMO) and cerium-incorporated on Ca-site with composition La0.40Ca0.55Ce0.05MnO3 (LCCMO) were synthesized using most feasible and efficient glycine-nitrate method. The formation of crystalline single phase was confirmed by x-ray diffraction (XRD). The Rietveld analysis reveals that both systems crystallize into orthorhombic crystal structure with Pnma space group. Additionally, 8 mole % Y2O3 stabilized ZrO2 (8YSZ) solid electrolyte was also synthesized using high energy ball mill to check the reaction with electrode materials. It was found that the substitution of Ce+4 cations in LCMO perovskite suppressed formation of undesired insulating CaZrO3 phase.
Qian, Yong-Qiang; Han, Na; Bo, Yi-Wen; Tan, Lin-Li; Zhang, Long-Fei; Zhang, Xing-Xiang
2018-08-01
A novel solid-solid phase change materials, namely, cellulose acrylate-g-poly (n-alkyl acrylate) (CA-g-PAn) (n = 14, 16 and 18) were successfully synthesized by free radical polymerization in N, N-dimethylacetamide (DMAc). The successful grafting was confirmed by fourier transform infrared spectra (FT-IR) and nuclear magnetic resonance (NMR). The properties of the CA-g-PAn copolymers were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The phase change temperatures and the melting enthalpies of CA-g-PAn copolymers are in the range of 10.1-53.2 °C and 15-95 J/g, respectively. It can be adjusted by the contents of poly (n-alkyl acrylate) and the length of alkyl side-chain. The thermal resistant temperatures of CA-g-PA14, 16 and 18 copolymers are 308 °C, 292 °C and 273 °C, respectively. It show that all of grafting materials exhibit good thermal stability and shape stability. Therefore, it is expected to be applied in the cellulose-based thermos-regulating field. Copyright © 2018 Elsevier Ltd. All rights reserved.
279 - Xanes Studies on UV-Irradiated Interstellar Ice Analogs: A Comparison to STARDUST Samples
NASA Technical Reports Server (NTRS)
Milam, Stefanie N.; Cody, George D.; Kilcoyne, A. L. David; Nuevo, Michel; Sandford, Scott A.; Stroud, Rhonda M.; DeGregorio, Bradley T.
2010-01-01
We present C-, N-, and O-XANES (X-ray Absorption Near-Edge Spectroscopy) results of organic residues produced in the laboratory from the UV irradiation of astrophysical ice analogs containing H20, CO, CH30H, NH31 in order to mimic processes that may occur in cold icy bodies of the outer Solar System, particularly in comets, Such analyses showed that laboratory-formed organic residues mainly consist of a solid phase and an oily phase. C-XANES analysis of the solid phase suggests a rich distribution of organic functionalities, among which carbonyl groups, C=C bonds, and alcohols are present. Results from N-XANES indicate the possible presence of amide, amine, and nitrile groups, The O-XANES spectra confirmed the a-bearing groups, These results are compared with the XANES spectra obtained from STARDUST cometary samples,
Optical and AFM study of electrostatically assembled films of CdS and ZnS colloid nanoparticles
NASA Astrophysics Data System (ADS)
Suryajaya; Nabok, A.; Davis, F.; Hassan, A.; Higson, S. P. J.; Evans-Freeman, J.
2008-05-01
CdS and ZnS semiconducting colloid nanoparticles coated with the organic shell, containing either SO 3- or NH 2+ groups, were prepared using the aqueous phase synthesis. The multilayer films of CdS (or ZnS) were deposited onto glass, quartz and silicon substrates using the technique of electrostatic self-assembly. The films produced were characterized with UV-vis spectroscopy, spectroscopic ellipsometry and atomic force microscopy. A substantial blue shift of the main absorption band with respect to the bulk materials was found for both CdS and ZnS films. The Efros equation in the effective mass approximation (EMA) theoretical model allowed the evaluation of the nanoparticle radius of 1.8 nm, which corresponds well to the ellipsometry results. AFM shows the formation of larger aggregates of nanoparticles on solid surfaces.
Banothu, Janardhan; Gali, Rajitha; Velpula, Ravibabu; Bavantula, Rajitha; Crooks, Peter A.
2013-01-01
Highly efficient and eco-friendly protocol for the synthesis of bis(3-indolyl)methanes by the electrophilic substitution reaction of indole with aldehydes catalyzed by poly(4-vinylpyridinium)hydrogen sulfate was described. Excellent yields, shorter reaction times, simple work-up procedure, avoiding hazardous organic solvents, and reusability of the catalyst are the most obvious advantages of this method. PMID:24052864
1982-02-01
slightly above the level of detection. In both projects low-level accumulation of petroleum hydrocarbons was observed. Because of the complex nature of... petroleum hydrocarbons , PCB, total DDT, Cd and lig in test and control organisms surviving a 10-day, solid phlase bioassay for project A. Organisms...of petroleum hydrocarbons , PCB, total DDT, Cd and Hig in test and control organisms surviving a 10-day solid phase bioassay for project B. Organisms
Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars
Black, S.K.; Hames, B.R.; Myers, M.D.
1998-03-24
A method is described for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.
Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars
Black, Stuart K.; Hames, Bonnie R.; Myers, Michele D.
1998-01-01
A method for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.
Sampling of tar from sewage sludge gasification using solid phase adsorption.
Ortiz González, Isabel; Pérez Pastor, Rosa Ma; Sánchez Hervás, José Ma
2012-06-01
Sewage sludge is a residue from wastewater treatment plants which is considered to be harmful to the environment and all living organisms. Gasification technology is a potential source of renewable energy that converts the sewage sludge into gases that can be used to generate energy or as raw material in chemical synthesis processes. But tar produced during gasification is one of the problems for the implementation of the gasification technology. Tar can condense on pipes and filters and may cause blockage and corrosion in the engines and turbines. Consequently, to minimize tar content in syngas, the ability to quantify tar levels in process streams is essential. The aim of this work was to develop an accurate tar sampling and analysis methodology using solid phase adsorption (SPA) in order to apply it to tar sampling from sewage sludge gasification gases. Four types of commercial SPA cartridges have been tested to determine the most suitable one for the sampling of individual tar compounds in such streams. Afterwards, the capacity, breakthrough volume and sample stability of the Supelclean™ ENVI-Carb/NH(2), which is identified as the most suitable, have been determined. Basically, no significant influences from water, H(2)S or NH(3) were detected. The cartridge was used in sampling real samples, and comparable results were obtained with the present and traditional methods.
Taghvimi, Arezou; Hamishehkar, Hamed; Ebrahimi, Mahmoud
2016-01-15
This paper reports on a method based on magnetic solid phase extraction (MSPE) for the determination of pseudoephedrine. Magnetic nanographene oxide (MNGO) was applied as a new adsorbent for the extraction of pseudoephedrine from urine samples. Synthesis of MNGO was characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), powder X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The main factors influencing extraction efficiency, including the amounts of sample volume, amount of adsorbent, type and amount of extraction organic solvent, time of extraction and desorption, pH, ionic strength of extraction medium, and agitation rate, were investigated and optimized. Under optimized extraction conditions, a good linearity was observed in the range of 100-2000ng/mL with a correlation coefficient of 0.9908 (r(2)). Limit of detection (LOD) and limit of quantification (LOQ) were 25 and 82.7ng/mL, respectively. Inter-day and intra-day precision and accuracy were 6.01 and 0.34 (%), and 8.70 and 0.29 (%), respectively. The method was applied for the determination of pseudoephedrine in urine samples of volunteers receiving pseudoephedrine with the recovery of 96.42. It was concluded that the proposed method can be applied in diagnostic clinics. Copyright © 2015 Elsevier B.V. All rights reserved.
Kotoni, Dorina; Villani, Claudio; Bell, David S; Capitani, Donatella; Campiglia, Pietro; Gasparrini, Francesco
2013-07-05
A rational approach for the design and preparation of two new "Crab-like" totally synthetic, brush-type chiral stationary phases is presented. Enantiopure diamines, namely 1,2-diaminocyclohexane and 1,2-diphenyl-1,2-ethylene-diamine were treated with 3-(triethoxysilyl)propyl isocyanate, to yield reactive ureido selectors that were eventually attached to unmodified silica particles through a stable, bidentate tether, through a facile two-step one-pot procedure. A full chemical characterization of the new materials has been obtained through solid-state NMR (both (29)Si and (13)C CPMAS) spectroscopy. Columns packed with the two Crab-like chiral stationary phases allow for different mechanisms of separation: normal phase liquid chromatography, reversed phase liquid chromatography and polar organic mode and show a high stability at basic pH values. In particular, the Crab-like column containing the 1,2-diphenyl-1,2-ethylene-diamine selector proved a promising candidate for the resolution of a wide range of racemates (including benzodiazepines, N-derivatized amino acids, and free carboxylic acids) both in normal phase and polar organic mode. An Hmin of 9.57 at a μsf of 0.80mm/s (corresponding to 0.8mL/min) was obtained through van Deemter analysis, based on toluene, for the Crab-like column with the 1,2-diphenyl-1,2-ethylene-diamine selector (250mm×4.6mm I.D.), with a calculated reduced height equivalent to a theoretical plate (h) of only 1.91. Finally, comparative studies were performed with a polymeric commercially available P-CAP-DP column in order to evaluate enantioselectivity and resolution of the Crab-like columns. Copyright © 2013 Elsevier B.V. All rights reserved.
PNA-encoded chemical libraries.
Zambaldo, Claudio; Barluenga, Sofia; Winssinger, Nicolas
2015-06-01
Peptide nucleic acid (PNA)-encoded chemical libraries along with DNA-encoded libraries have provided a powerful new paradigm for library synthesis and ligand discovery. PNA-encoding stands out for its compatibility with standard solid phase synthesis and the technology has been used to prepare libraries of peptides, heterocycles and glycoconjugates. Different screening formats have now been reported including selection-based and microarray-based methods that have yielded specific ligands against diverse target classes including membrane receptors, lectins and challenging targets such as Hsp70. Copyright © 2015 Elsevier Ltd. All rights reserved.
Molten salt synthesis of La0.8Sr0.2MnO3 powders for SOFC cathode electrode
NASA Astrophysics Data System (ADS)
Gu, Sin-il; Shin, Hyo-soon; Hong, Youn-woo; Yeo, Dong-hun; Kim, Jong-hee; Nahm, Sahn; Yoon, Sang-ok
2012-08-01
For La0.8Sr0.2MnO3 (LSM) perovskite, used as the cathode material for solid oxide fuel cells (SOFC), it is known that the formation of a triple-phase-boundary is restrained due to the formation of a second phase at the YSZ/electrode interface at high temperature. To decrease the 2nd phase, lowering the sintering temperature has been used. LSM powder was synthesized by molten salt synthesis method to control its particle size, shape, and agglomeration. We have characterized the phase formation, particle size, shape, and sintering behavior of LSM in the synthesis using the variation of KCl, LiCl, KF and its mixed salts as raw materials. In the case of KCl and KCl-KF salts, the particle size and shape of the LSM was well controlled and synthesized. However, in the case of LiCl and KCl-LiCl salts, LiMnOx as 2nd phase and LSM were synthesized simultaneously. In the case of the mixed salt of KCl-KF, the growth mechanism of the LSM particle was changed from `diffusion-controlled' to `reaction-controlled' according to the amount of mixed salt. The sintering temperature can be decreased below 1000 °C by using the synthesized LSM powder.
Sorption Equilibria of Vapor Phase Organic Pollutants on Unsaturated Soils and Soil Minerals
1990-04-01
Sorbent Characterization .. ........ .......... 6 a. Description of Inorganic Solids and Soils. .... ........ 6 b. Moisture Content...compounds (TCE and toluene) is compared for a cored depth profile obtained from an unsaturated soil and for simulated profiles using inorganic solids. The...Sorbent Characterization a. Description of Inorganic Solids and Soils Inorganic solids were used for initial sorption studies to develop experimental
NASA Astrophysics Data System (ADS)
Nandiyanto, Asep Bayu Dani
2016-02-01
When synthesizing particles using a liquid-phase synthesis method, reactant components show interaction with the reaction system itself. However, current reports described successful synthesis of material with only partial information on the component-component interaction and possible self-assembly mechanism occurring during the material synthesis process. Here, self-assembly concepts in the formation of nanostructured particles are presented. Influences of self-assembly parameters (i.e., surface charge, size, and concentration of components involving the reaction) on self-organized material fabrication are described. Because understanding the interaction of the component provides significant information in regard to practical uses, this report can be relevant to further material development and fabrication.
The logic of automated glycan assembly.
Seeberger, Peter H
2015-05-19
Carbohydrates are the most abundant biopolymers on earth and part of every living creature. Glycans are essential as materials for nutrition and for information transfer in biological processes. To date, in few cases a detailed correlation between glycan structure and glycan function has been established. A molecular understanding of glycan function will require pure glycans for biological, immunological, and structural studies. Given the immense structural complexity of glycans found in living organisms and the lack of amplification methods or expression systems, chemical synthesis is the only means to access usable quantities of pure glycan molecules. While the solid-phase synthesis of DNA and peptides has become routine for decades, access to glycans has been technically difficult, time-consuming and confined to a few expert laboratories. In this Account, the development of a comprehensive approach to the automated synthesis of all classes of mammalian glycans, including glycosaminoglycans and glycosylphosphatidyl inositol (GPI) anchors, as well as bacterial and plant carbohydrates is described. A conceptual advance concerning the logic of glycan assembly was required in order to enable automated execution of the synthetic process. Based on the central glycosidic bond forming reaction, a general concept for the protecting groups and leaving groups has been developed. Building blocks that can be procured on large scale, are stable for prolonged periods of time, but upon activation result in high yields and selectivities were identified. A coupling-capping and deprotection cycle was invented that can be executed by an automated synthesis instrument. Straightforward postsynthetic protocols for cleavage from the solid support as well as purification of conjugation-ready oligosaccharides have been established. Introduction of methods to install selectively a wide variety of glycosidic linkages has enabled the rapid assembly of linear and branched oligo- and polysaccharides as large as 30-mers. Fast, reliable access to defined glycans that are ready for conjugation has given rise to glycan arrays, glycan probes, and synthetic glycoconjugate vaccines. While an ever increasing variety of glycans are accessible by automated synthesis, further methodological advances in carbohydrate chemistry are needed to make all possible glycans found in nature. These tools begin to fundamentally impact the medical but also materials aspects of the glycosciences.
Fischer-Tropsch Wastewater Utilization
Shah, Lalit S.
2003-03-18
The present invention is generally directed to handling the wastewater, or condensate, from a hydrocarbon synthesis reactor. More particularly, the present invention provides a process wherein the wastewater of a hydrocarbon synthesis reactor, such as a Fischer-Tropsch reactor, is sent to a gasifier and subsequently reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas. The wastewater may also be recycled back to a slurry preparation stage, where solid combustible organic materials are pulverized and mixed with process water and the wastewater to form a slurry, after which the slurry fed to a gasifier where it is reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas.
Rechargeable quasi-solid state lithium battery with organic crystalline cathode
Hanyu, Yuki; Honma, Itaru
2012-01-01
Utilization of metal-free low-cost high-capacity organic cathodes for lithium batteries has been a long-standing goal, but critical cyclability problems owing to dissolution of active materials into the electrolyte have been an inevitable obstacle. For practical utilisation of numerous cathode-active compounds proposed over the past decades, a novel battery construction strategy is required. We have designed a solid state cell that accommodates organic cathodic reactions in solid phase. The cell was successful at achieving high capacity exceeding 200 mAh/g with excellent cycleability. Further investigations confirmed that our strategy is effective for numerous other redox-active organic compounds. This implies hundreds of compounds dismissed before due to low cycleability would worth a re-visit under solid state design. PMID:22693655
Cottin, Hervé; Guan, Yuan Yong; Noblet, Audrey; Poch, Olivier; Saiagh, Kafila; Cloix, Mégane; Macari, Frédérique; Jérome, Murielle; Coll, Patrice; Raulin, François; Stalport, Fabien; Szopa, Cyril; Bertrand, Marylène; Chabin, Annie; Westall, Frances; Chaput, Didier; Demets, René; Brack, André
2012-05-01
The PROCESS (PRebiotic Organic ChEmistry on the Space Station) experiment was part of the EXPOSE-E payload outside the European Columbus module of the International Space Station from February 2008 to August 2009. During this interval, organic samples were exposed to space conditions to simulate their evolution in various astrophysical environments. The samples used represent organic species related to the evolution of organic matter on the small bodies of the Solar System (carbonaceous asteroids and comets), the photolysis of methane in the atmosphere of Titan, and the search for organic matter at the surface of Mars. This paper describes the hardware developed for this experiment as well as the results for the glycine solid-phase samples and the gas-phase samples that were used with regard to the atmosphere of Titan. Lessons learned from this experiment are also presented for future low-Earth orbit astrochemistry investigations.
Synthesis, microstructure and dielectric properties of zirconium doped barium titanate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rohtash; School of Physical Sciences, Jawaharlal Nehru University, New Delhi; Asokan, K.
2016-05-23
We report on synthesis, microstructural and relaxor ferroelectric properties of Zirconium(Zr) doped Barium Titanate (BT) samples with general formula Ba(Ti{sub 1-x}Zr{sub x})O{sub 3} (x=0.20, 0.35). These lead-free ceramics were prepared by solid state reaction route. The phase transition behavior and temperature dependent dielectric properties and composition dependent ferroelectric properties were investigated. XRD analysis at room temperature confirms phase purity of the samples. SEM observations revealed retarded grain growth with increasing Zr mole fraction. Dielectric properties of BZT ceramics is influenced significantly by small addition of Zr mole fraction. With increasing Zr mole fraction, dielectric constant decreases while FWHM and frequencymore » dispersion increases. Polarization vs electric field hysteresis measurements reveal ferroelectric relaxor phase at room temperature. The advantages of such substitution maneuvering towards optimizing ferroelectric properties of BaTiO{sub 3} are discussed.« less
NASA Astrophysics Data System (ADS)
Jongprateep, Oratai; Sato, Nicha
2018-04-01
Calcium titanate (CaTiO3) has been recognized as a material for fabrication of dielectric components, owing to its moderate dielectric constant and excellent microwave response. Enhancement of dielectric properties of the material can be achieved through doping, compositional and microstructural control. This study, therefore, aimed at investigating effects of powder synthesis techniques on compositions, microstructure, and dielectric properties of Mg-doped CaTiO3. Solution combustion and solid-state reaction were powder synthesis techniques employed in preparation of undoped CaTiO3 and CaTiO3 doped with 5-20 at% Mg. Compositional analysis revealed that powder synthesis techniques did not exhibit a significant effect on formation of secondary phases. When Mg concentration did not exceed 5 at%, the powders prepared by both techniques contained only a single phase. An increase of MgO secondary phase was observed as Mg concentrations increased from 10 to 20 at%. Experimental results, on the contrary, revealed that powder synthesis techniques contributed to significant differences in microstructure. Solution combustion technique produced powders with finer particle sizes, which consequently led to finer grain sizes and density enhancement. High-density specimens with fine microstructure generally exhibit improved dielectric properties. Dielectric measurements revealed that dielectric constants of all samples ranged between 231 and 327 at 1 MHz, and that superior dielectric constants were observed in samples prepared by the solution combustion technique.
IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR TRICHLOROACETIC ACID
Trichloroacetic acid is a crystalline solid with sharp, pungent odor. It is used as a soil sterilizer; and as a laboratory intermediate or reagent in the synthesis of a variety of medicinal products and organic chemicals. Trichloroacetic acid is also used industrially as an etc...
A research project was initiated to address a recurring problem of elevated detection limits above required risk-based concentrations for the determination of semivolatile organic compounds in high moisture content solid samples. This project was initiated, in cooperation with t...
Hmb(off/on) as a switchable thiol protecting group for native chemical ligation.
Qi, Yun-Kun; Tang, Shan; Huang, Yi-Chao; Pan, Man; Zheng, Ji-Shen; Liu, Lei
2016-05-04
A new thiol protecting group Hmb(off/on) is described, which has a switchable activity that may be useful in the chemical synthesis of proteins. When placed on the side chain of Cys, Cys(Hmb(off)) is stable to trifluoroacetic acid (TFA) in the process of solid-phase peptide synthesis. When Cys(Hmb(off)) is treated with neutral aqueous buffers, it is cleanly converted to acid-labile Cys(Hmb(on)), which can later be fully deprotected by TFA to generate free Cys. The utility of Cys(Hmb(off/on)) is demonstrated by the chemical synthesis of an erythropoietin segment, EPO[Cys(98)-Arg(166)]-OH through native chemical ligation.
NASA Astrophysics Data System (ADS)
Wei, Kaya; Dong, Yongkwan; Nolas, George S.
2016-05-01
A new quaternary clathrate-II composition, Cs8Na16Al24Si112, was synthesized by kinetically controlled thermal decomposition (KCTD) employing both NaSi and NaAlSi as the precursors and CsCl as a reactive flux. The crystal structure and composition of Cs8Na16Al24Si112 were investigated using both Rietveld refinement and elemental analysis, and the temperature dependent transport properties were investigated. Our results indicate that KCTD with multiple precursors is an effective method for the synthesis of multinary inorganic phases that are not easily accessible by traditional solid-state synthesis or crystal growth techniques.
De Stefano, Luca; Oliviero, Giorgia; Amato, Jussara; Borbone, Nicola; Piccialli, Gennaro; Mayol, Luciano; Rendina, Ivo; Terracciano, Monica; Rea, Ilaria
2013-01-01
Direct solid phase synthesis of peptides and oligonucleotides (ONs) requires high chemical stability of the support material. In this work, we have investigated the passivation ability of porous oxidized silicon multilayered structures by two aminosilane compounds, 3-aminopropyltriethoxysilane and 3-aminopropyldimethylethoxysilane (APDMES), for optical label-free ON biosensor fabrication. We have also studied by spectroscopic reflectometry the hybridization between a 13 bases ON, directly grown on the aminosilane modified porous oxidized silicon by in situ synthesis, and its complementary sequence. Even if the results show that both devices are stable to the chemicals (carbonate/methanol) used, the porous silica structure passivated by APDMES reveals higher functionalization degree due to less steric hindrance of pores. PMID:23536541
Synthesis and Primary Characterization of Self-Assembled Peptide-Based Hydrogels
Nagarkar, Radhika P.; Schneider, Joel P.
2009-01-01
Summary Hydrogels based on peptide self-assembly form an important class of biomaterials that find application in tissue engineering and drug delivery. It is essential to prepare peptides with high purity to achieve batch-to-batch consistency affording hydrogels with reproducible properties. Automated solid-phase peptide synthesis coupled with optimized Fmoc (9-fluorenylmethoxycarbonyl) chemistry to obtain peptides in high yield and purity is discussed. Details of isolating a desired peptide from crude synthetic mixtures and assessment of the peptide’s final purity by high-performance liquid chromatography and mass spectrometry are provided. Beyond the practical importance of synthesis and primary characterization, techniques used to investigate the properties of hydrogels are briefly discussed. PMID:19031061
Synthesis of peptide .alpha.-thioesters
Camarero, Julio A [Livermore, CA; Mitchell, Alexander R [Livermore, CA; De Yoreo, James J [Clayton, CA
2008-08-19
Disclosed herein is a new method for the solid phase peptide synthesis (SPPS) of C-terminal peptide .alpha. thioesters using Fmoc/t-Bu chemistry. This method is based on the use of an aryl hydrazine linker, which is totally stable to conditions required for Fmoc-SPPS. When the peptide synthesis has been completed, activation of the linker is achieved by mild oxidation. The oxidation step converts the acyl-hydrazine group into a highly reactive acyl-diazene intermediate which reacts with an .alpha.-amino acid alkylthioester (H-AA-SR) to yield the corresponding peptide .alpha.-thioester in good yield. A variety of peptide thioesters, cyclic peptides and a fully functional Src homology 3 (SH3) protein domain have been successfully prepared.
Zhang, Pengfei; Wang, Li; Yang, Shize; Schott, Jennifer A.; Liu, Xiaofei; Mahurin, Shannon M.; Huang, Caili; Zhang, Yu; Fulvio, Pasquale F.; Chisholm, Matthew F.; Dai, Sheng
2017-01-01
Ordered mesoporous carbons (OMCs) have demonstrated great potential in catalysis, and as supercapacitors and adsorbents. Since the introduction of the organic–organic self-assembly approach in 2004/2005 until now, the direct synthesis of OMCs is still limited to the wet processing of phenol-formaldehyde polycondensation, which involves soluble toxic precursors, and acid or alkali catalysts, and requires multiple synthesis steps, thus restricting the widespread application of OMCs. Herein, we report a simple, general, scalable and sustainable solid-state synthesis of OMCs and nickel OMCs with uniform and tunable mesopores (∼4–10 nm), large pore volumes (up to 0.96 cm3 g−1) and high-surface areas exceeding 1,000 m2 g−1, based on a mechanochemical assembly between polyphenol-metal complexes and triblock co-polymers. Nickel nanoparticles (∼5.40 nm) confined in the cylindrical nanochannels show great thermal stability at 600 °C. Moreover, the nickel OMCs offer exceptional activity in the hydrogenation of bulky molecules (∼2 nm). PMID:28452357
Synthesis, Structure, and Thermal Properties of Ca5Ga6O14
NASA Astrophysics Data System (ADS)
Tolkacheva, A. S.; Shkerin, S. N.; Kuzmin, A. V.; Plaksin, S. V.; Korzun, I. V.; Kochedykov, V. A.; Yaroslavtseva, T. V.; Vovkotrub, E. G.
2018-07-01
Calcium gallate Ca5Ga6O14 is synthesized by solid-phase means. Its melting point is 1325 ± 2°C. A phase transition of the second kind is observed in the temperature interval of 750-800°C. The temperature dependence of a thermal linear expansion coefficient within 200-900°C is given. Vibrational spectroscopy data confirm that Ca5Ga6O14 contains not only GaO4 tetrahedra but also GaO6 octahedra.
Environmental information volume: Liquid Phase Methanol (LPMEOH{trademark}) project
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-05-01
The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature.
NASA Astrophysics Data System (ADS)
Bera, Ganesh; Reddy, V. R.; Mal, Priyanath; Das, Pradip; Turpu, G. R.
2018-05-01
The novel hetero-structures Fe1-xBixVO4 solid solutions (0 ≤ x ≤ 1.0) with the two dissimilar end member of FeVO4 - BiVO4, were successfully synthesized by the standard solid state reaction method. The structural and chemical properties of as prepared photo-catalyst samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and UV-visible absorption spectroscopy techniques. It is confirmed from the results of XRD, Raman and FT-IR that FeVO4 and BiVO4 are in triclinic (space group P-1 (2)) and monoclinic (space group I2/b (15)) phases respectively. The Bi incorporation into Fe site of FeVO4 emerges as hetero-structures of both the end members of the solid solutions. In addition, the photocatalytic activity in the degradation of methylene blue (MB) dye under visible light irradiation was carried out through UV-visible spectroscopy measurement of photo-catalysts FeVO4, BiVO4 and mixed phases of both photo-catalyst. The results indicate that under visible light irradiation the photocatalytic activity of mixed phases were very effective and higher than the both single phases of the solid solutions. The composition x= 0.25 exhibits an excellent photocatalytic property for the degradation of MB solution under visible light irradiation rather than other.
Chen, Ru; Miao, Lei; Liu, Chengyan; Zhou, Jianhua; Cheng, Haoliang; Asaka, Toru; Iwamoto, Yuji; Tanemura, Sakae
2015-01-01
Monoclinic VO2(M) in nanostructure is a prototype material for interpreting correlation effects in solids with fully reversible phase transition and for the advanced applications to smart devices. Here, we report a facile one-step hydrothermal method for the controlled growth of single crystalline VO2(M/R) nanorods. Through tuning the hydrothermal temperature, duration of the hydrothermal time and W-doped level, single crystalline VO2(M/R) nanorods with controlled aspect ratio can be synthesized in large quantities, and the crucial parameter for the shape-controlled synthesis is the W-doped content. The dopant greatly promotes the preferential growth of (110) to form pure phase VO2(R) nanorods with high aspect ratio for the W-doped level = 2.0 at% sample. The shape-controlled process of VO2(M/R) nanorods upon W-doping are systematically studied. Moreover, the phase transition temperature (Tc) of VO2 depending on oxygen nonstoichiometry is investigated in detail. PMID:26373612
Perovskite solid solutions with multiferroic morphotropic phase boundaries and property enhancement
NASA Astrophysics Data System (ADS)
Algueró, M.; Amorín, H.; Fernández-Posada, C. M.; Peña, O.; Ramos, P.; Vila, E.; Castro, A.
2016-05-01
Recently, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of phases in the BiFeO3-BiCoO3 perovskite binary system, associated with the existence of a discontinuous morphotropic phase boundary (MPB) between multiferroic polymorphs of rhombohedral and tetragonal symmetries. This might be a general property of multiferroic phase instabilities, and a novel promising approach for room temperature magnetoelectricity. We review here our current investigations on the identification and study of additional material systems, alternative to BiFeO3-BiCoO3 that has only been obtained by high pressure synthesis. Three systems, whose phase diagrams were, in principle, liable to show multiferroic MPBs have been addressed: the BiMnO3-PbTiO3 and BiFeO3-PbTiO3 binary systems, and the BiFeO3-BiMnO3-PbTiO3 ternary one. A comprehensive study of multiferroism across different solid solutions was carried out based on electrical and magnetic characterizations, complemented with mechanical and electromechanical measurements. An in-depth structural analysis was also accomplished when necessary.
NASA Technical Reports Server (NTRS)
Nanjundaswamy, K. S.; Standlee, D.; Kelly, C. O.; Whiteley, R. V., Jr.
1997-01-01
A new method of synthesis for the solid solution cathode materials LiNi(x)Co(1-x)O2 (0 less than x less than 1) involving enhanced reactions at temperatures less than or equal to 700 deg. C, between metal oxy-hydroxide precursors MOOH (M = Ni, Co) and Li-salts (Li2CO3, LiOH, and LiNO3) has been investigated. The effects of synthesis conditions and sources of Li, on phase purity, microstructure, and theoretical electrochemical capacity (total M(3+) content) are characterized by powder X-ray diffraction analysis, scanning electron microscopy, chemical analysis and room temperature magnetic susceptibility. An attempt has been made to correlate the electrochemical properties with the synthesis conditions and microstructure.
Combustion synthesis of advanced materials. [using in-situ infiltration technique
NASA Technical Reports Server (NTRS)
Moore, J. J.; Feng, H. J.; Perkins, N.; Readey, D. W.
1992-01-01
The combustion synthesis of ceramic-metal composites using an in-situ liquid infiltration technique is described. The effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e. solids, liquids and gases, with varying physical properties e.g. thermal conductivity, on the microstructure and morphology of synthesized products is also described. Alternatively, conducting the combustion synthesis reaction in a reactive gas environment is also discussed, in which advantages can be gained from the synergistic effects of combustion synthesis and vapor phase transport. In each case, the effect of the presence or absence of gravity (density) driven fluid flow and vapor transport is discussed as is the potential for producing new and perhaps unique materials by conducting these SHS reactions under microgravity conditions.
Rapid Flow-Based Peptide Synthesis
Simon, Mark D.; Heider, Patrick L.; Adamo, Andrea; Vinogradov, Alexander A.; Mong, Surin K.; Li, Xiyuan; Berger, Tatiana; Policarpo, Rocco L.; Zhang, Chi; Zou, Yekui; Liao, Xiaoli; Spokoyny, Alexander M.; Jensen, Klavs F.
2014-01-01
A flow-based solid phase peptide synthesis methodology that enables the incorporation of an amino acid residue every 1.8 minutes under automatic control, or every three minutes under manual control, is described. This is accomplished by passing a stream of reagent through a heat exchanger, into a low volume, low backpressure reaction vessel, and through a UV detector. These features enable the continuous delivery of heated solvents and reagents to the solid support at high flow rate, maintaining a maximal concentration of reagents in the reaction vessel, quickly exchanging reagents, and eliminating the need to rapidly heat reagents after they have been added to the vessel. The UV detector enables continuous monitoring of the process. To demonstrate the broad applicability and reliability of this method, it was employed in the total synthesis of a small protein, as well as dozens of peptides. The quality of the material obtained with this method is comparable to traditional batch methods, and, in all cases, the desired material was readily purifiable via RP-HPLC. The application of this method to the synthesis of the 113 residue B. amyloliquefaciens RNase and the 130 residue pE59 DARPin is described in the accompanying manuscript. PMID:24616230
Low-field nuclear magnetic resonance characterization of organic content in shales
Washburn, Kathryn E.; Birdwell, Justin E.; Seymour, Joseph D.; Kirkland, Catherine; Vogt, Sarah J.
2013-01-01
Low-field nuclear magnetic resonance (LF-NMR) relaxometry is a non-invasive technique commonly used to assess hydrogen-bearing fluids in petroleum reservoir rocks. Longitudinal T1 and transverse T2 relaxation time measurements made using LF-NMR on conventional reservoir systems provides information on rock porosity, pore size distributions, and fluid types and saturations in some cases. Recent improvements in LF-SNMR instrument electronics have made it possible to apply these methods to assess highly viscous and even solid organic phases within reservoir rocks. T1 and T2 relaxation responses behave very differently in solids and liquids, therefore the relationship between these two modes of relaxation can be used to differentiate organic phases in rock samples or to characterize extracted organic materials. Using T1-T2 correlation data, organic components present in shales, such as kerogen and bitumen, can be examined in laboratory relaxometry measurements. In addition, implementation of a solid-echo pulse sequence to refocus some types of T2 relaxation during correlation measurements allows for improved resolution of solid phase photons. LF-NMR measurements of T1 and T2 relaxation time correlations were carried out on raw oil shale samples from resources around the world. These shales vary widely in mineralogy, total organic carbon (TOC) content and kerogen type. NMR results were correlcated with Leco TOC and geochemical data obtained from Rock-Eval. There is excellent correlation between NMR data and programmed pyrolysis parameters, particularly TOC and S2, and predictive capability is also good. To better understand the NMR response, the 2D NMR spectra were compared to similar NMR measurements made using high-field (HF) NMR equipment.
Tan, Davin; Loots, Leigh; Friščić, Tomislav
2016-06-14
This overview highlights the emergent area of mechanochemical reactions for making active pharmaceutical ingredients (APIs), and covers the latest advances in the recently established area of mechanochemical screening and synthesis of pharmaceutical solid forms, specifically polymorphs, cocrystals, salts and salt cocrystals. We also provide an overview of the most recent developments in pharmaceutical uses of mechanochemistry, including real-time reaction monitoring, techniques for polymorph control and approaches for continuous manufacture using twin screw extrusion, and more. Most importantly, we show how the overlap of previously unrelated areas of mechanochemical screening for API solid forms, organic synthesis by milling, and mechanochemical screening for molecular recognition, enables the emergence of a new research discipline in which different aspects of pharmaceutical and medicinal chemistry are addressed through mechanochemistry rather than through conventional solution-based routes. The emergence of such medicinal mechanochemistry is likely to have a strong impact on future pharmaceutical and medicinal chemistry, as it offers not only access to materials and reactivity that are sometimes difficult or even impossible to access from solution, but can also provide a general answer to the demands of the pharmaceutical industry for cleaner, safer and efficient synthetic solutions.
On the formation of molecules and solid-state compounds from the AGB to the PN phases
NASA Astrophysics Data System (ADS)
García-Hernández, D. A.; Manchado, A.
2016-07-01
During the asymptoyic giant branch (AGB) phase, different elements are dredge- up to the stellar surface depending on progenitor mass and metallicity. When the mass loss increases at the end of the AGB, a circumstellar dust shell is formed, where different (C-rich or O-rich) molecules and solid-state compounds are formed. These are further processed in the transition phase between AGB stars and planetary nebulae (PNe) to create more complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors in C-rich environments and oxides and crystalline silicates in O-rich ones). We present an observational review of the different molecules and solid-state materials that are formed from the AGB to the PN phases. We focus on the formation routes of complex fullerene (and fullerene-based) molecules as well as on the level of dust processing depending on metallicity.
Kuroda, Noritaka; Hird, Nick; Cork, David G
2006-01-01
During further improvement of a high-throughput, solution-phase synthesis system, new workup tools and apparatus for parallel liquid-liquid extraction and evaporation have been developed. A combination of in-house design and collaboration with external manufacturers has been used to address (1) environmental issues concerning solvent emissions and (2) sample tracking errors arising from manual intervention. A parallel liquid-liquid extraction unit, containing miniature high-speed magnetic stirrers for efficient mixing of organic and aqueous phases, has been developed for use on a multichannel liquid handler. Separation of the phases is achieved by dispensing them into a newly patented filter tube containing a vertical hydrophobic porous membrane, which allows only the organic phase to pass into collection vials positioned below. The vertical positioning of the membrane overcomes the hitherto dependence on the use of heavier-than-water, bottom-phase, organic solvents such as dichloromethane, which are restricted due to environmental concerns. Both small (6-mL) and large (60-mL) filter tubes were developed for parallel phase separation in library and template synthesis, respectively. In addition, an apparatus for parallel solvent evaporation was developed to (1) remove solvent from the above samples with highly efficient recovery and (2) avoid the movement of individual samples between their collection on a liquid handler and registration to prevent sample identification errors. The apparatus uses a diaphragm pump to achieve a dynamic circulating closed system with a heating block for the rack of 96 sample vials and an efficient condenser to trap the solvents. Solvent recovery is typically >98%, and convenient operation and monitoring has made the apparatus the first choice for removal of volatile solvents.
Glavinović, Martin; Qi, Feng; Katsenis, Athanassios D.
2016-01-01
We develop an associative synthesis of metal–organic materials that combines solid-state metal oxidation and coordination-driven self-assembly into a one-step, waste-free transformation. The methodology hinges on the unique reactivity of ortho-quinones, which we introduce as versatile oxidants for mechanochemical synthesis. Our strategy opens a previously unexplored route to paramagnetic metal–organic materials from elementary metals. PMID:28791114
Wang, Na; Liao, Yuan; Wang, Jiamin; Tang, Sheng; Shao, Shijun
2015-12-01
A novel bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes sorbent for solid-phase extraction was designed and synthesized by chemical immobilization of nitro-substituted 3,3'-bis(indolyl)methane on silica modified with multiwalled carbon nanotubes. Coupled with high-performance liquid chromatography analysis, the extraction properties of the sorbent were evaluated for flavonoids and aromatic organic acid compounds. Under optimum conditions, the sorbent can simultaneously extract five flavonoids and two aromatic organic acid preservatives in aqueous solutions in a single-step solid-phase extraction procedure. Wide linear ranges were obtained with correlation coefficients (R(2) ) ranging from 0.9843 to 0.9976, and the limits of detection were in the range of 0.5-5 μg/L for the compounds tested. Compared with the silica modified with multiwalled carbon nanotubes sorbent and the nitro-substituted 3,3'-bis(indolyl)methane-modified silica sorbent, the developed sorbent exhibited higher extraction efficiency toward the selected analytes. The synergistic effect of nitro-substituted 3,3'-bis(indolyl)methane and multiwalled carbon nanotubes not only improved the surface-to-volume ratio but also enhanced multiple intermolecular interactions, such as hydrogen bonds, π-π, and hydrophobic interactions, between the new sorbent and the selected analytes. The as-established solid-phase extraction with high-performance liquid chromatography and diode array detection method was successfully applied to the simultaneous determination of flavonoids and aromatic organic acid preservatives in grape juices with recoveries ranging from 83.9 to 112% for all the selected analytes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pig manure treatment by filtration.
Kowalski, Zygmunt; Makara, Agnieszka; Matýsek, Dalibor; Hoffmann, Józef; Hoffmann, Krystyna
2013-01-01
A study of new pig manure treatment and filtration process was carried out. The advantage of the worked out technology is the method of incorporation of crystalline phase into solid organic part of manure. The obtained new solid phase of manure contains about 50% of crystalline phase forming a filtration aid that enables high effectiveness of manure filtration. The filtration rate of manure separation into solid and liquid fractions with pressure filter may achieve 1300-3000 kg/m(2)/h. The method makes it possible to maintain an overall average pollutant removal performance 90% for the chemical oxygen demand COD, > 99% for the suspended solids SS, to 47% for the total nitrogen content. The obtained results showed that the proposed technology being efficient and simple offers a possible solution to pig manure problems.
NASA Astrophysics Data System (ADS)
Dan, Wen-Yan; Di, You-Ying; He, Dong-Hua; Liu, Yu-Pu
2011-02-01
1-Decylammonium hydrochloride was synthesized by the method of liquid phase synthesis. Chemical analysis, elemental analysis, and X-ray single crystal diffraction techniques were applied to characterize its composition and structure. Low-temperature heat capacities of the compounds were measured with a precision automated adiabatic calorimeter over the temperature range from 78 to 380 K. Three solid-solid phase transitions have been observed at the peak temperatures of 307.52 ± 0.13, 325.02 ± 0.19, and 327.26 ± 0.07 K. The molar enthalpies and entropies of three phase transitions were determined based on the analysis of heat capacity curves. Experimental molar heat capacities were fitted to two polynomial equations of the heat capacities as a function of temperature by least square method. Smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were calculated and tabulated at intervals of 5 K based on the fitted polynomials.
NASA Astrophysics Data System (ADS)
Hadef, Fatma
2016-12-01
The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe-Al-X systems, in order to improve mainly Fe-Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems.
Solution based synthesis of mixed-phase materials in the Li2TiO3-Li4SiO4 system
NASA Astrophysics Data System (ADS)
Hanaor, Dorian A. H.; Kolb, Matthias H. H.; Gan, Yixiang; Kamlah, Marc; Knitter, Regina
2015-01-01
As candidate tritium breeder materials for use in the ITER helium cooled pebble bed, ceramic multiphasic compounds lying in the region of the quasi-binary lithium metatitanate-lithium orthosilicate system may exhibit mechanical and physical advantages relative to single phase materials. Here we present an organometallic solution-based synthesis procedure for the low-temperature fabrication of compounds in the Li2TiO3-Li4SiO4 region and investigate phase stability and transformations through temperature varied X-ray diffraction and scanning calorimetry. Results demonstrate that the metatitanate and metasilicate phases Li2TiO3 and Li2SiO3 readily crystallise in nanocrystalline form at temperatures below 180 °C. Lithium deficiency in the region of 5% results from Li sublimation from Li4SiO4 and/or from excess Li incorporation in the metatitanate phase and brings about a stoichiometry shift, with product compounds exhibiting mixed lithium orthosilicate/metasilicate content towards the Si rich region and predominantly Li2TiO3 content towards the Ti rich region. Above 1150 °C the transformation of monoclinic to cubic γ-Li2TiO3 disordered solid-solution occurs while the melting of silicate phases indicates a likely monotectic type system with a solidus line in the region 1050-1100 °C. Synthesis procedures involving a lithium chloride precursor are not likely to be a viable option for breeder pebble synthesis as this route was found to yield materials with a more significant Li-deficiency exhibiting the crystallisation of the Li2TiSiO5 phase at intermediate compositions.
Designing, Describing and Disseminating New Materials by using the Network Topology Approach.
Öhrström, Lars
2016-09-19
This Concept article describes how network topology analysis is applied to different fields of solid-state chemistry. Its usefulness is demonstrated by examples from metal-organic frameworks, group 14 allotropes and related compounds, ice polymorphs, zeolites, supramolecular (organic) solid-state chemistry, Zintl phases, and cathode materials for Li-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A New Energy Source for Organic Synthesis in Europa's Surface Ice
NASA Technical Reports Server (NTRS)
Borucki, Jerome G.; Khare, Bishun; Cruikshank, Dale P.; DeVincenzi, D. (Technical Monitor)
2002-01-01
Colored regions on Jupiter's satellite Europa and other icy bodies in the outer Solar System may be contaminated by organic macromolecular solid material that is produced when surface ices are exposed to electrical energy. Hypervelocity meteorite impacts and fracture release tidal and tectonic stresses in icy crusts in the form of electrical discharges, which provide the energy for in situ synthesis of the organic solids. We report measurements of electrical discharge, light emission, and magnetic phenomena in hypervelocity impacts into ice with projectiles with V approx. 5 km/s. Part of the projectile's kinetic energy is converted into electrical potential, while the mechanical disruption of the impact also releases stress energy as light, heat, electrical, and magnetic fields as secondary emissions. These newly recognized energy sources suggest that the dark material in the area of impact craters are tholins generated from the energy of the impacts and that well up from the fracture zone. Large pools of liquid water would persist under the meteorite crater for thousands of years, with the potential for prebiotic chemistry to take place at an accelerated rate due to energy pumped in from the secondary emissions.
Memarian, Elham; Hosseiny Davarani, Saied Saeed; Nojavan, Saeed; Movahed, Siyavash Kazemi
2016-09-07
In this work, a new solid-phase microextraction fiber was prepared based on nitrogen-doped graphene (N-doped G). Moreover, a new strategy was proposed to solve problems dealt in direct coating of N-doped G. For this purpose, first, Graphene oxide (GO) was coated on Pt wire by electrophoretic deposition method. Then, chemical reduction of coated GO to N-doped G was accomplished by hydrazine and NH3. The prepared fiber showed good mechanical and thermal stabilities. The obtained fiber was used in two different modes (conventional headspace solid-phase microextraction and cold-fiber headspace solid-phase microextraction (CF-HS-SPME)). Both modes were optimized and applied for the extraction of benzene and xylenes from different aqueous samples. All effective parameters including extraction time, salt content, stirring rate, and desorption time were optimized. The optimized CF-HS-SPME combined with GC-FID showed good limit of detections (LODs) (0.3-2.3 μg/L), limit of quantifications (LOQs) (1.0-7.0 μg/L) and linear ranges (1.0-5000 μg/L). The developed method was applied for the analysis of benzene and xylenes in rainwater and some wastewater samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Sintering of Lead-Free Piezoelectric Sodium Potassium Niobate Ceramics
Malič, Barbara; Koruza, Jurij; Hreščak, Jitka; Bernard, Janez; Wang, Ke; Fisher, John G.; Benčan, Andreja
2015-01-01
The potassium sodium niobate, K0.5Na0.5NbO3, solid solution (KNN) is considered as one of the most promising, environment-friendly, lead-free candidates to replace highly efficient, lead-based piezoelectrics. Since the first reports of KNN, it has been recognized that obtaining phase-pure materials with a high density and a uniform, fine-grained microstructure is a major challenge. For this reason the present paper reviews the different methods for consolidating KNN ceramics. The difficulties involved in the solid-state synthesis of KNN powder, i.e., obtaining phase purity, the stoichiometry of the perovskite phase, and the chemical homogeneity, are discussed. The solid-state sintering of stoichiometric KNN is characterized by poor densification and an extremely narrow sintering-temperature range, which is close to the solidus temperature. A study of the initial sintering stage revealed that coarsening of the microstructure without densification contributes to a reduction of the driving force for sintering. The influences of the (K + Na)/Nb molar ratio, the presence of a liquid phase, chemical modifications (doping, complex solid solutions) and different atmospheres (i.e., defect chemistry) on the sintering are discussed. Special sintering techniques, such as pressure-assisted sintering and spark-plasma sintering, can be effective methods for enhancing the density of KNN ceramics. The sintering behavior of KNN is compared to that of a representative piezoelectric lead zirconate titanate (PZT). PMID:28793702
Sun, Hui; Lai, Jia-Ping; Chen, Fang; Zhu, De-Rong
2015-02-01
A simple, fast, and universal suspension polymerization method was used to synthesize the molecularly imprinted microspheres (MIMs) for the topical anesthetic benzocaine (BZC). The desired diameter (10-20 μm) and uniform morphology of the MIMs were obtained easily by changing one or more of the synthesis conditions, including type and amount of surfactant, stirring rate, and ratio of organic to water phase. The MIMs obtained were used as a molecular-imprinting solid-phase-extraction (MISPE) material for extraction of BZC in human serum and fish tissues. The MISPE results revealed that the BZC in these biosamples could be enriched effectively after the MISPE operation. The recoveries of BZC on MIMs cartridges were higher than 90% (n = 3). Finally, an MISPE-HPLC method with UV detection was developed for highly selective extraction and fast detection of trace BZC in human serum and fish tissues. The developed method could also be used for the enrichment and detection of BZC in other complex biosamples.
Containerless synthesis of amorphous and nanophase organic materials
Benmore, Chris J.; Weber, Johann R.
2016-05-03
The invention provides a method for producing a mixture of amorphous compounds, the method comprising supplying a solution containing the compounds; and allowing at least a portion of the solvent of the solution to evaporate while preventing the solute of the solution from contacting a nucleation point. Also provided is a method for transforming solids to amorphous material, the method comprising heating the solids in an environment to form a melt, wherein the environment contains no nucleation points; and cooling the melt in the environment.
Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules.
Holade, Yaovi; Servat, Karine; Tingry, Sophie; Napporn, Teko W; Remita, Hynd; Cornu, David; Kokoh, K Boniface
2017-10-06
Ubiquitous electrochemistry is expected to play a major role for reliable energy supply as well as for production of sustainable fuels and chemicals. The fundamental understanding of organics-based electrocatalysis in alkaline media at the solid-liquid interface involves complex mechanisms and performance descriptors (from the electrolyte and reaction intermediates), which undermine the roads towards advance and breakthroughs. Here, we review and diagnose recently designed strategies for the electrochemical conversion of organics into electricity and/or higher-value chemicals. To tune the mysterious workings of nanocatalysts in electrochemical devices, we examine the guiding principles by which the performance of a particular electrode material is governed, thus highlighting various tactics for the development of synthesis methods for nanomaterials with specific properties. We end by examining the production of chemicals by using electrochemical methods, from selective oxidation to reduction reactions. The intricate relationship between electrode and selectivity encourages both of the communities of electrocatalysis and organic synthesis to move forward together toward the renaissance of electrosynthesis methods. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Tianyuan; Xu, Gui -Liang; Zeng, Xiaoqiao
In situ high energy X-ray diffraction (HEXRD) and in situ X-ray absorption near edge spectroscopy (XANES) were carried out to understand the soild state synthesis of Na xMnO 2, with particular interest on the synthesis of P2 type Na 2/3MnO 2. It was found that there were multi intermediate phases formed before NaMnO 2 appeared at about 600 °C. And the final product after cooling process is a combination of O'3 NaMnO 2 with P2 Na 2/3MnO 2. A P2 type Na 2/3MnO 2 was synthesized at reduced temperature (600 °C). The influence of Na 2CO 3 impurity on themore » electrochemical performance of P2 Na 2/3MnO 2 was thoroughly investigated in our work. It was found that the content of Na 2CO 3 can be reduced by optimizing Na 2CO 3/MnCO 3 ratio during the solid state reaction or other post treatment such as washing with water. Lastly, we expected our results could provide a good guide for future development of high performance cathode materials for sodium-ion batteries.« less
Ma, Tianyuan; Xu, Gui -Liang; Zeng, Xiaoqiao; ...
2016-12-07
In situ high energy X-ray diffraction (HEXRD) and in situ X-ray absorption near edge spectroscopy (XANES) were carried out to understand the soild state synthesis of Na xMnO 2, with particular interest on the synthesis of P2 type Na 2/3MnO 2. It was found that there were multi intermediate phases formed before NaMnO 2 appeared at about 600 °C. And the final product after cooling process is a combination of O'3 NaMnO 2 with P2 Na 2/3MnO 2. A P2 type Na 2/3MnO 2 was synthesized at reduced temperature (600 °C). The influence of Na 2CO 3 impurity on themore » electrochemical performance of P2 Na 2/3MnO 2 was thoroughly investigated in our work. It was found that the content of Na 2CO 3 can be reduced by optimizing Na 2CO 3/MnCO 3 ratio during the solid state reaction or other post treatment such as washing with water. Lastly, we expected our results could provide a good guide for future development of high performance cathode materials for sodium-ion batteries.« less
Krüger, Hans
2010-05-01
A new method for complete separation of steam-volatile organic compounds is described using the example of chamomile flowers. This method is based on the direct combination of hydrodistillation and solid-phase extraction in a circulation apparatus. In contrast to hydrodistillation and simultaneous distillation extraction (SDE), an RP-18 solid phase as adsorptive material is used rather than a water-insoluble solvent. Therefore, a prompt and complete fixation of all volatiles takes place, and the circulation of water-soluble bisabololoxides as well as water-soluble and thermolabile en-yne-spiroethers is inhibited. This so-called simultaneous distillation solid-phase extraction (SD-SPE) provides extracts that better characterise the real composition of the vapour phase, as well as the composition of inhalation vapours, than do SDE extracts or essential oils obtained by hydrodistillation. The data indicate that during inhalation therapy with chamomile, the bisabololoxides and spiroethers are more strongly involved in the inhaling activity than so far assumed. Georg Thieme Verlag KG Stuttgart New York.
Loibl, S. F.; Harpaz, Z.; Zitterbart, R.
2016-01-01
The total chemical synthesis of proteins is a tedious and time-consuming endeavour. The typical steps involve solid phase synthesis of peptide thioesters and cysteinyl peptides, native chemical ligation (NCL) in solution, desulfurization or removal of ligation auxiliaries in the case of extended NCL as well as many intermediary and final HPLC purification steps. With an aim to facilitate and improve the throughput of protein synthesis we developed the first method for the rapid chemical total on-resin synthesis of proteins that proceeds without a single HPLC-purification step. The method relies on the combination of three orthogonal protein tags that allow sequential immobilization (via the N-terminal and C-terminal ends), extended native chemical ligation and release reactions. The peptide fragments to be ligated are prepared by conventional solid phase synthesis and used as crude materials in the subsequent steps. An N-terminal His6 unit permits selective immobilization of the full length peptide thioester onto Ni-NTA agarose beads. The C-terminal peptide fragment carries a C-terminal peptide hydrazide and an N-terminal 2-mercapto-2-phenyl-ethyl ligation auxiliary, which serves as a reactivity tag for the full length peptide. As a result, only full length peptides, not truncation products, react in the subsequent on-bead extended NCL. After auxiliary removal the ligation product is liberated into solution upon treatment with mild acid, and is concomitantly captured by an aldehyde-modified resin. This step allows the removal of the most frequently observed by-product in NCL chemistry, i.e. the hydrolysed peptide thioester (which does not contain a C-terminal peptide hydrazide). Finally, the target protein is released with diluted hydrazine or acid. We applied the method in the synthesis of 46 to 126 amino acid long MUC1 proteins comprising 2–6 copies of a 20mer tandem repeat sequence. Only three days were required for the parallel synthesis of 9 MUC1 proteins which were obtained in 8–33% overall yield with 90–98% purity despite the omission of HPLC purification. PMID:28451120
Prevalence of Chagas Disease among Solid Organ-Transplanted Patients in a Nonendemic Country.
Salvador, Fernando; Sánchez-Montalvá, Adrián; Sulleiro, Elena; Moreso, Francesc; Berastegui, Cristina; Caralt, Mireia; Pinazo, María-Jesús; Moure, Zaira; Los-Arcos, Ibai; Len, Oscar; Gavaldà, Joan; Molina, Israel
2018-03-01
Reactivation of Chagas disease in the chronic phase may occur after solid organ transplantation, which may result in high parasitemia and severe clinical manifestations such as myocarditis and meningoencephalitis. The aim of the present study is to describe the prevalence of Chagas disease among solid organ-transplanted patients in a tertiary hospital from a nonendemic country. A cross-sectional study was performed at Vall d'Hebron University Hospital (Barcelona, Spain) from April to September 2016. Chagas disease screening was performed through serological tests in adult patients coming from endemic areas that had received solid organ transplantation and were being controlled in our hospital during the study period. Overall, 42 patients were included, 20 (47.6%) were male and median age was 50.5 (23-73) years. Transplanted organs were as follows: 18 kidneys, 17 lungs, and 7 livers. Three patients had Chagas disease, corresponding to a prevalence among this group of solid organ-transplanted patients of 7.1%. All three patients were born in Bolivia, had been diagnosed with Chagas disease and received specific treatment before the organ transplantation. We highly recommend providing screening tests for Chagas disease in patients with or candidates for solid organ transplantation coming from endemic areas, early treatment with benznidazole, and close follow-up to prevent clinical reactivations.
Andrade, Natasha A.; Centofanti, Tiziana; McConnell, Laura L.; Hapeman, Cathleen J.; Torrents, Alba; Anh, Nguyen; Beyer, W. Nelson; Chaney, Rufus L.; Novak, Jeffrey M.; Anderson, Marya O.; Cantrell, Keri B.
2014-01-01
Improved approaches are needed to assess bioavailability of hydrophobic organic compounds in contaminated soils. Performance of thin-film solid-phase extraction (TF-SPE) using vials coated with ethylene vinyl acetate was compared to earthworm bioassay (Lumbricus terrestris). A DDT and dieldrin contaminated soil was amended with four organic carbon materials to assess the change in bioavailability. Addition of organic carbon significantly lowered bioavailability for all compounds except for 4,4′-DDT. Equilibrium concentrations of compounds in the polymer were correlated with uptake by earthworms after 48d exposure (R2 = 0.97; p 40yr of aging. Results show that TF-SPE can be useful in examining potential risks associated with contaminated soils and to test effectiveness of remediation efforts.
Antimicrobial activities of amphiphilic peptides covalently bonded to a water-insoluble resin.
Haynie, S L; Crum, G A; Doele, B A
1995-01-01
A series of polymer-bound antimicrobial peptides was prepared, and the peptides were tested for their antimicrobial activities. The immobilized peptides were prepared by a strategy that used solid-phase peptide synthesis that linked the carboxy-terminal amino acid with an ethylenediamine-modified polyamide resin (PepsynK). The acid-stable, permanent amide bond between the support and the nascent peptide renders the peptide resistant to cleavage from the support during the final acid-catalyzed deprotection step in the synthesis. Select immobilized peptides containing amino acid sequences that ranged from the naturally occurring magainin to simpler synthetic sequences with idealized secondary structures were excellent antimicrobial agents against several organisms. The immobilized peptides typically reduced the number of viable cells by > or = 5 log units. We show that the reduction in cell numbers cannot be explained by the action of a soluble component. We observed no leached or hydrolyzed peptide from the resin, nor did we observe any antimicrobial activity in soluble extracts from the immobilized peptide. The immobilized peptides were washed and reused for repeated microbial contact and killing. These results suggest that the surface actions by magainins and structurally related antimicrobial peptides are sufficient for their lethal activities. PMID:7726486
Enzymatic and chemical synthesis of new anticoagulant peptides.
Origone, Anabella; Bersi, Grisel; Illanes, Andrés; Sturniolo, Héctor; Liggieri, Constanza; Guzmán, Fanny; Barberis, Sonia
2018-06-08
In this study we report the enzymatic synthesis of N-α-[Carbobenzyloxy]-Tyr-Gln-Gln (Z-YQQ), a new anticoagulant tripeptide. It was obtained using phytoproteases from the stems and petioles of Asclepias curassavica L. as catalyst in an aqueous-organic biphasic system formed by 50% (v/v) ethyl acetate and 0.1 M Tris - HCl buffer pH 8. The resulting peptide was compared with the analogous peptide Tyr-Gln-Gln (YQQ) produced by solid-phase chemical synthesis. The in vitro anticoagulant activity of the above mentioned peptides was determined using Wiener Lab Test (Wiener, Argentina). The toxicological activity of the peptides was also determined. The enzymatically synthesized Z-YQQ peptide acted on the extrinsic pathway of the coagulation cascade, delaying the conversion time of prothrombin to thrombin and fibrinogen to fibrin by 136% and 50%, respectively, with respect to the controls. The chemically synthesized YQQ peptide acted specifically on the intrinsic pathway of the coagulation cascade, affecting factors VIII, IX, XI and XII from such cascade, and increasing the coagulation time by 105% with respect to the control. The results suggest that two new anticoagulant peptides (Z-YQQ and YQQ) can be useful for safe pharmaceutical applications. Nevertheless, some aspects related to peptide production should be optimized. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.
Ultrasound assisted combustion synthesis of TiC in Al-Ti-C system.
Liu, Zhiwei; Rakita, Milan; Xu, Wilson; Wang, Xiaoming; Han, Qingyou
2015-11-01
This research investigated the effects of high-intensity ultrasound on the combustion synthesis of TiC particles in Al-Ti-C system. The process involved that high-intensity ultrasound was applied on the surface of a compacted Al-Ti-C pellet directly through a Nb probe during the thermal explosion reaction. By comparing with the sample without ultrasonic treatment, it was found that the thermal explosion reaction for synthesizing TiC phase could take place thoroughly in the ultrasonically treated sample. During the process of synthesizing TiC phase, the dissolution of solid graphite particles into the Al-Ti melt, as well as the nucleation and growth of TiC particles could be promoted effectively due to the effects of ultrasound, leading to an enhancement of the formation of TiC particles. Ultrasound assisted combustion synthesis as a simple and effective approach was proposed for synthesizing materials in this research. Copyright © 2015 Elsevier B.V. All rights reserved.
Steele, Brad A.; Stavrou, Elissaios; Crowhurst, Jonathan C.; ...
2016-12-06
The pentazolates, the last all-nitrogen members of the azole series, have been notoriously elusive for the last hundred years despite enormous efforts to make these compounds in either gas or condensed phases. Here, we report a successful synthesis of a solid state compound consisting of isolated pentazolate anions N 5 –, which is achieved by compressing and laser heating cesium azide (CsN 3) mixed with N 2 cryogenic liquid in a diamond anvil cell. The experiment was guided by theory, which predicted the transformation of the mixture at high pressures to a new compound, cesium pentazolate salt (CsN 5). Electronmore » transfer from Cs atoms to N 5 rings enables both aromaticity in the pentazolates as well as ionic bonding in the CsN 5 crystal. As a result, this work provides critical insight into the role of extreme conditions in exploring unusual bonding routes that ultimately lead to the formation of novel high nitrogen content species.« less
Barker, S A; Littlefield-Chabaud, M A; David, C
2001-02-10
A method for the solid-phase extraction (SPE) and liquid chromatographic-atmospheric pressure chemical ionization-mass spectrometric-mass spectrometric-isotope dilution (LC-APcI-MS-MS-ID) analysis of the indole hallucinogens N,N-dimethyltryptamine (DMT) and 5-methoxy DMT (or O-methyl bufotenin, OMB) from rat brain tissue is reported. Rats were administered DMT or OMB by the intraperitoneal route at a dose of 5 mg/kg and sacrificed 15 min post treatment. Brains were dissected into discrete areas and analyzed by the methods described as a demonstration of the procedure's applicability. The synthesis and use of two new deuterated internal standards for these purposes are also reported.
Zhou, Dong; Chu, Wenhua; Peng, Xin; ...
2014-11-04
In this paper, a facile method was developed to purify 2-[ 18F]fluoroethyl azide ([ 18F]FEA) using a C18 cartridge and an Oasis® HLB cartridge in series, in which [18F]FEA was exclusively trapped on the HLB cartridge. [ 18F]FEA can be eluted for reactions in solution; alternatively click labeling can be carried out on the HLB cartridge itself by loading an alkyne substrate and copper (I) catalyst dissolved in DMF onto the cartridge. Finally, this solid phase extraction methodology for purification and click labeling with [ 18F]FEA, either in solution or on the cartridge, is safe, simple, reproducible in high yield,more » and compatible with automated synthesis of 18F-labeled PET tracers.« less
Synthesis of MAX Phases in the Zr-Ti-Al-C System.
Tunca, Bensu; Lapauw, Thomas; Karakulina, Olesia M; Batuk, Maria; Cabioc'h, Thierry; Hadermann, Joke; Delville, Rémi; Lambrinou, Konstantina; Vleugels, Jozef
2017-03-20
This study reports on the synthesis and characterization of MAX phases in the (Zr,Ti) n+1 AlC n system. The MAX phases were synthesized by reactive hot pressing and pressureless sintering in the 1350-1700 °C temperature range. The produced ceramics contained large fractions of 211 and 312 (n = 1, 2) MAX phases, while strong evidence of a 413 (n = 3) stacking was found. Moreover, (Zr,Ti)C, ZrAl 2 , ZrAl 3 , and Zr 2 Al 3 were present as secondary phases. In general, the lattice parameters of the hexagonal 211 and 312 phases followed Vegard's law over the complete Zr-Ti solid solution range, but the 312 phase showed a non-negligible deviation from Vegard's law around the (Zr 0.33 ,Ti 0.67 ) 3 Al 1.2 C 1.6 stoichiometry. High-resolution scanning transmission electron microscopy combined with X-ray diffraction demonstrated ordering of the Zr and Ti atoms in the 312 phase, whereby Zr atoms occupied preferentially the central position in the close-packed M 6 X octahedral layers. The same ordering was also observed in 413 stackings present within the 312 phase. The decomposition of the secondary (Zr,Ti)C phase was attributed to the miscibility gap in the ZrC-TiC system.
Gotthardt, Meike A; Schoch, Roland; Wolf, Silke; Bauer, Matthias; Kleist, Wolfgang
2015-02-07
The bimetallic metal-organic framework Cu-Ru-BTC with the stoichiometric formula Cu2.75Ru0.25(BTC)2·xH2O, which is isoreticular to HKUST-1, was successfully prepared in a direct synthesis using mild reaction conditions. The partial substitution of Cu(2+) by Ru(3+) centers in the paddlewheel structure and the absence of other Ru-containing phases was proven using X-ray absorption spectroscopy.
Many-Body Perturbation Theory for Understanding Optical Excitations in Organic Molecules and Solids
NASA Astrophysics Data System (ADS)
Sharifzadeh, Sahar
Organic semiconductors are promising as light-weight, flexible, and strongly absorbing materials for next-generation optoelectronics. The advancement of such technologies relies on understanding the fundamental excited-state properties of organic molecules and solids, motivating the development of accurate computational approaches for this purpose. Here, I will present first-principles many-body perturbation theory (MBPT) calculations aimed at understanding the spectroscopic properties of select organic molecules and crystalline semiconductors, and improving these properties for enhanced photovoltaic performance. We show that for both gas-phase molecules and condensed-phase crystals, MBPT within the GW/BSE approximation provides quantitative accuracy of transport gaps extracted from photoemission spectroscopy and conductance measurements, as well as with measured polarization-dependent optical absorption spectra. We discuss the implications of standard approximations within GW/BSE on accuracy of these results. Additionally, we demonstrate significant exciton binding energies and charge-transfer character in the crystalline systems, which can be controlled through solid-state morphology or change of conjugation length, suggesting a new strategy for the design of optoelectronic materials. We acknowledge NSF for financial support; NERSC and Boston University for computational resources.
Lattuati-Derieux, Agnès; Bonnassies-Termes, Sylvette; Lavédrine, Bertrand
2004-02-13
Solid-phase microextraction (SPME) coupled to gas chromatography/mass spectrometry (GC/MS) has been applied to the analysis of volatile organic compounds emitted from a naturally aged groundwood pulp paper originating from an old book in order to access the products produced through the decomposition reactions occurring in paper upon ageing. Two different extraction methods were developed and compared: headspace SPME and contact SPME. The influence of few extraction parameters were tested in order to define the best extraction conditions. An optimised non-destructive contact SPME method was elaborated and allowed the characterisation of more than 50 individual constituents.
Burman, Lina; Albertsson, Ann-Christine; Höglund, Anders
2005-07-08
Low molecular weight aromatic substances may migrate out from plastic packaging to their contents, especially if they consist of organic aqueous solutions or oils. It is, therefore, extremely important to be able to identify and quantify any migrated substances in such solutions, even at very low concentrations. We have in this work investigated and evaluated the use of solid-phase microextraction for the specific task of extraction from an organic aqueous solution such as a simulated pharmaceutical solution consisting of 10 vol.% ethanol in water. The goal was furthermore to investigate the possibility of simultaneously identifying and quantifying the substances in spite of differences in their chemical structures. Methods were developed and evaluated for extraction both with direct sampling and with headspace sampling. Difficulties appeared due to the ethanol in the solution and the minute amounts of substances present. We have shown that a simultaneous quantification of migrated low molecular weight degradation products of antioxidants using only one fibre is possible if the extraction method and temperature are adjusted in relation to the concentration levels of the analytes. Comparions were made with solid-phase extraction.
Design and synthesis of the superionic conductor Na10SnP2S12
Richards, William D.; Tsujimura, Tomoyuki; Miara, Lincoln J.; Wang, Yan; Kim, Jae Chul; Ong, Shyue Ping; Uechi, Ichiro; Suzuki, Naoki; Ceder, Gerbrand
2016-01-01
Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-state batteries with ionic electrolytes eliminates this concern, while also allowing novel device architectures and potentially improving cycle life. Here we report the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity of 0.4 mS cm−1 rivalling the conductivity of the best sodium sulfide solid electrolytes to date. We also computationally investigate the variants of this compound where tin is substituted by germanium or silicon and find that the latter may achieve even higher conductivity. PMID:26984102
Screening combinatorial arrays of inorganic materials with spectroscopy or microscopy
Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy
2004-02-03
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Combinatorial sythesis of organometallic materials
Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy
2002-07-16
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Giant magnetoresistive cobalt oxide compounds
Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy
1998-01-01
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Giant magnetoresistive cobalt oxide compounds
Schultz, P.G.; Xiang, X.; Goldwasser, I.
1998-07-07
Methods and apparatus are disclosed for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties. 58 figs.
Preparation and screening of crystalline inorganic materials
Schultz, Peter G [La Jolla, CA; Xiang, Xiaodong [Danville, CA; Goldwasser, Isy [Palo Alto, CA; Brice{hacek over }o, Gabriel; Sun, Xiao-Dong [Fremont, CA; Wang, Kai-An [Cupertino, CA
2008-10-28
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Combinatorial screening of inorganic and organometallic materials
Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy
2002-01-01
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
Preparation and screening of crystalline zeolite and hydrothermally-synthesized materials
Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy; Briceno, Gabriel; Sun, Xiao-Dong; Wang, Kai-An
2005-03-08
Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.
NASA Astrophysics Data System (ADS)
Li, Rui; Li, Dandan; Fei, Wenwen; Tan, Jingyun; Li, Shengli; Zhou, Hongping; Zhang, Shengyi; Wu, Jieying; Tian, Yupeng
2014-06-01
A series of triphenylamine-based chromophores (L1-3) with donor-π-donor (D-π-D) model have been designed and synthesized via solid phase Wittig reaction. Their one/two-photon fluorescence and electrochemical properties have been investigated. The results show that L2 and L3 exhibited strong and wide-dispersed two-photon-excited fluorescence (TPEF) in different solvents. Chromophore L3 displays the strongest intensity two-photon absorption activity and large cross-sections (>3600 GM) in the range of 680-840 nm in THF, the largest δ up to 8899 GM in the near-IR range, and the measured maximum TPA cross-sections per molecular weight (δmax/MW) is 8.64 GM/g (L3) in THF. Significantly, it also exhibits good solubility in common organic solvents when the chromophore was modified by polyether units as peripheral groups.
Abrantes, Marta; Amarante, Tatiana R; Antunes, Margarida M; Gago, Sandra; Paz, Filipe A Almeida; Margiolaki, Irene; Rodrigues, Alírio E; Pillinger, Martyn; Valente, Anabela A; Gonçalves, Isabel S
2010-08-02
The reaction of [MoO(2)Cl(2)(bipy)] (1) (bipy = 2,2'-bipyridine) with water in a Teflon-lined stainless steel autoclave (100 degrees C, 19 h), in an open reflux system with oil bath heating (12 h) or in a microwave synthesis system (120 degrees C, 4 h), gave the molybdenum oxide/bipyridine hybrid material {[MoO(3)(bipy)][MoO(3)(H(2)O)]}(n) (2) as a microcrystalline powder in yields of 72-92%. The crystal structure of 2 determined from synchrotron X-ray powder diffraction data is composed of two distinct neutral one-dimensional polymers: an organic-inorganic polymer, [MoO(3)(bipy)](n), and a purely inorganic chain, [MoO(3)(H(2)O)](n), which are interconnected by O-H...O hydrogen bonding interactions. Compound 2 is a moderately active, stable, and selective catalyst for the epoxidation of cis-cyclooctene at 55 degrees C with tert-butylhydroperoxide (tBuOOH, 5.5 M in decane or 70% aqueous) as the oxidant. Biphasic solid-liquid or triphasic solid-organic-aqueous mixtures are formed, and 1,2-epoxycyclooctane is the only reaction product. When n-hexane is employed as a cosolvent and tBuOOH(decane) is the oxidant, the catalytic reaction is heterogeneous in nature, and the solid catalyst can be recycled and reused without a loss of activity. For comparison, the catalytic performance of the precursor 1 was also investigated. The IR spectra of solids recovered after catalysis indicate that 1 transforms into the organic-inorganic polymer [MoO(3)(bipy)] when the oxidant is tBuOOH(decane) and compound 2 when the oxidant is 70% aqueous tBuOOH.
Volumetric flame synthesis of well-defined molybdenum oxide nanocrystals.
Merchan-Merchan, Wilson; Saveliev, Alexei V; Desai, Milind
2009-11-25
Well-defined faceted inorganic Mo oxide nanocrystals are synthesized in the gas phase using a solid-fed-precursor flame synthesis method. The solid crystals have rectangular cross-section with characteristic size of 10-20 nm and with lengths ranging from 50 nm to a few hundred nanometres. A 1 mm diameter high purity Mo probe introduced in the oxygen-rich part of the flame serves as the material source. A combination of the strong temperature gradient and varying chemical species concentrations within the flame volume provides the ideal conditions for the rapid and direct formation of these unique nanocrystals. Oxidation and evaporation of MoO3 in the oxygen-rich zone are followed by reduction to MoO2 in the lower temperature, more fuel-rich zone. The MoO3 vapours formed are pushed in the direction of the gas flow and transformed into mature well-defined convex polyhedron nanocrystals bounded with six faces resembling rectangular parallelepipeds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clikeman, Tyler T.; Bukovsky, Eric V.; Wang, Xue-Bin
2015-09-22
We developed an efficient solvent- and catalyst-free direct polytrifluoromethylation of solid perylene-3,4,9,10-tetracarboxylic dianhydride that produced a new family of (poly)perfluoroalkyl bay- and ortho-substituted PDIs with two different imide substituents. Direct hydrogen substitution with CN group led to the synthesis of a cyanated perfluoroalkyl PDI derivative for the first time. Absorption, steady-state and time-resolved emission, X-ray diffraction, electrochemical, and gas-phase electron affinity data allowed for systematic studies of substitution effects at bay, ortho, and imide positions in the new PDIs. Solid-state packing showed remarkable variations in the intermolecular interactions that are important for charge transport and photophysical properties. Moreover, analysis ofmore » the electrochemical data for 143 electron poor PDIs, including newly reported compounds, revealed some general trends and peculiar effects from substituting electron-withdrawing groups at all three positions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clikeman, Tyler T.; Bukovsky, Eric V.; Wang, Xue B.
2015-09-22
We developed an efficient solvent- and catalyst-free direct polytrifluoromethylation of solid perylene-3,4,9,10-tetracarboxylic dianhydride that produced a new family of (poly)perfluoroalkyl bay and ortho substituted PDIs with two different imide substituents. Direct hydrogen substitution with CN group led to the synthesis of a cyanated perfluoroalkyl PDI derivative for the first time. Absorption, steady-state and time-resolved emission, X-ray diffraction, electrochemical, and gas-phase electron affinity data allowed for systematic studies of substitution effects at bay, ortho, and imide positions in the new PDIs. Solid-state packing showed remarkable variations in the intermolecular interactions that are important for charge transport and photophysical properties. Analysis ofmore » the electrochemical data for 143 electron poor PDIs, including newly reported compounds, revealed some general trends and peculiar effects of electron withdrawing group substitution at all three positions.« less
Zhang, Wenhua; Chen, Zhihao; Al-Naji, Majd; Guo, Penghu; Cwik, Stefan; Halbherr, Olesia; Wang, Yuemin; Muhler, Martin; Wilde, Nicole; Gläser, Roger; Fischer, Roland A
2016-10-14
Simultaneous incorporation of palladium within Pd-Pd and/or Pd-Cu paddlewheels as framework-nodes and Pd nanoparticle (NP) dispersion into MOF have been achieved for the first time via one-pot synthesis. In particular, the framework substitution of Cu(2+) by Pd(2+) as well as the pore loading with PdNPs have been confirmed and characterized by XPS. The obtained solids featuring such multiple Pd-sites show enhanced catalytic activity in the aqueous-phase hydrogenation of p-nitrophenol (PNP) with NaBH4 to p-aminophenol (PAP).
Lelièvre, Dominique; Terrier, Victor P; Delmas, Agnès F; Aucagne, Vincent
2016-03-04
The Fmoc-based solid phase synthesis of C-terminal cysteine-containing peptides is problematic, due to side reactions provoked by the pronounced acidity of the Cα proton of cysteine esters. We herein describe a general strategy consisting of the postsynthetic introduction of the C-terminal Cys through a key chemoselective native chemical ligation reaction with N-Hnb-Cys peptide crypto-thioesters. This method was successfully applied to the demanding peptide sequences of two natural products of biological interest, giving remarkably high overall yields compared to that of a state of the art strategy.
Schneider, Séverine; Ftouni, Hussein; Niu, Songlin; Schmitt, Martine; Simonin, Frédéric; Bihel, Frédéric
2015-07-07
We report a selective ruthenium catalyzed reduction of tertiary amides on the side chain of Fmoc-Gln-OtBu derivatives, leading to innovative unnatural α,β or γ-amino acids functionalized with tertiary amines. Rapid and scalable, this process allowed us to build a library of basic unnatural amino acids at the gram-scale and directly usable for liquid- or solid-phase peptide synthesis. The diversity of available tertiary amines allows us to modulate the physicochemical properties of the resulting amino acids, such as basicity or hydrophobicity.
Facile rhenium-peptide conjugate synthesis using a one-pot derived Re(CO)3 reagent.
Chanawanno, Kullapa; Kondeti, Vinay; Caporoso, Joel; Paruchuri, Sailaja; Leeper, Thomas C; Herrick, Richard S; Ziegler, Christopher J
2016-03-21
We have synthesized two Re(CO)3-modified lysine complexes (1 and 2), where the metal is attached to the amino acid at the Nε position, via a one-pot Schiff base formation reaction. These compounds can be used in the solid phase synthesis of peptides, and to date we have produced four conjugate systems incorporating neurotensin, bombesin, leutenizing hormone releasing hormone, and a nuclear localization sequence. We observed uptake into human umbilical vascular endothelial cells as well as differential uptake depending on peptide sequence identity, as characterized by fluorescence and rhenium elemental analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woerner, William R.; Qian, Guang-Rui; Oganov, Artem R.
2016-04-04
The application of pressure in solid-state synthesis provides a route for the creation of new and exciting materials. However, the onerous nature of high-pressure techniques limits their utility in materials discovery. The systematic search for novel oxynitrides—semiconductors for photocatalytic overall water splitting—is a representative case where quench high-pressure synthesis is useful and necessary in order to obtain target compounds. We utilize state of the art crystal structure prediction theory (USPEX) and in situ synchrotron-based X-ray scattering to speed up the discovery and optimization of novel compounds using high-pressure synthesis. Using this approach, two novel oxynitride phases were discovered in themore » GaN–Nb2O5 system. The (Nb2O5)0.84:(NbO2)0.32:(GaN)0.82 rutile structured phase was formed at 1 GPa and 900 °C and gradually transformed to a α-PbO2-related structure above 2.8 GPa and 1000 °C. The low-pressure rutile type phase was found to have a direct optical band gap of 0.84 eV and an indirect gap of 0.51 eV.« less
Woerner, William R.; Qian, Guang-Rui; Oganov, Artem R.; ...
2016-03-22
The application of pressure in solid-state synthesis provides a route for the creation of new and exciting materials. However, the onerous nature of high-pressure techniques limits their utility in materials discovery. The systematic search for novel oxynitrides—semiconductors for photocatalytic overall water splitting—is a representative case where quench high-pressure synthesis is useful and necessary in order to obtain target compounds. In this paper, we utilize state of the art crystal structure prediction theory (USPEX) and in situ synchrotron-based X-ray scattering to speed up the discovery and optimization of novel compounds using high-pressure synthesis. Using this approach, two novel oxynitride phases weremore » discovered in the GaN–Nb 2O 5 system. The (Nb 2O 5) 0.84:(NbO 2) 0.32:(GaN) 0.82 rutile structured phase was formed at 1 GPa and 900°C and gradually transformed to a α-PbO 2-related structure above 2.8 GPa and 1000°C. The low-pressure rutile type phase was found to have a direct optical band gap of 0.84 eV and an indirect gap of 0.51 eV.« less
Development of nanostructured EuAl2O4 phosphors with strong long-UV excitation.
Hirata, Gustavo A; Bosze, Eric J; McKittrick, Joanna
2008-12-01
Fueled by the need to develop novel materials for applications in solid state white-emitting lamps we have improved a new low-cost, clean and efficient technique to produce high luminescence phosphors with strong excitation in the long-UV range (350-400 nm) which makes them useful for applications in GaN-based solid state lamps. In this work, pressurized combustion synthesis has been successfully used to develop EuAl2O4 (europium aluminate), a new green photoluminescent material with monoclinic structure. The combustion synthesis reaction conditions can be adjusted to produce either the AlEuO3 orthorhombic phase at low pressures (0.1 MPa), or the new monoclinic EuAl2O4 phase, which is apparently more thermodynamically favorable at higher combustion reaction pressures (1.4 MPa). The luminescent material is a high surface area powder (approximately 50 m2/g) composed mainly of nanostructured needles and plates with 5-10 nm in diameter and 100-150 nm in length. A broad emission peak centered at 530 nm with a decay time of 1.5 approximately 2 ms is obtained at the maximum excitation wavelength lambda(exc) = 370 nm.
Bi, Wentao; Wang, Man; Yang, Xiaodi; Row, Kyung Ho
2014-07-01
Poly(ionic liquid)-bonded magnetic nanospheres were easily synthesized and applied to the pretreatment and determination of phenolic compounds in water samples, which have detrimental effects on water quality and the health of living beings. The high affinity of poly(ionic liquid)s toward the target compounds as well as the magnetic behavior of Fe3 O4 were combined in this material to provide an efficient and simple magnetic solid-phase extraction approach. The adsorption behavior of the poly(ionic liquid)-bonded magnetic nanospheres was examined to optimize the synthesis. Different parameters affecting the magnetic solid-phase extraction of phenolic compounds were assessed in terms of adsorption and recovery. Under the optimal conditions, the proposed method showed excellent detection sensitivity with limits of detection in the range of 0.3-0.8 ng/mL and precision in the range of 1.2-3.3%. This method was also applied successfully to the analysis of real water samples; good spiked recoveries over the range of 82.5-99.2% were obtained. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Zhanjun; Zhang, Yuanwei; Wu, Xiang; ...
2015-04-02
Near-infrared (NIR) persistent luminescence nanoparticles (PLNPs), possessing unique NIR PL properties, have recently emerged as important materials for a wide variety of applications in chemistry and biology, for which they must endure high-temperature solid-state annealing reactions and subsequent complicated physical post-treatments. Herein, we report on a first direct aqueous-phase chemical synthesis route to NIR PLNPs and present their enhanced in vivo renewable NIR PL. Our method leads to monodisperse PLNPs as small as ca. 8 nm. Such sub-10 nm nanocrystals are readily dispersed and functionalized, and can form stable colloidal solutions in aqueous solution and cell culture medium for biologicalmore » applications. Under biotissue-penetrable red-light excitation, we found that such nanocrystals possess superior renewable PL photoluminescence in vitro and in vivo compared to their larger counterparts currently made by existing methods. In conclusion, we believe that this solid-state-reaction-free chemical approach overcomes the current key roadblock in regard to PLNP development, and thus will pave the way to broad use of these advanced miniature “luminous pearls” in photonics and biophotonics.« less
Detection of antibodies to proteases used in laundry detergents by the radioallergosorbent test.
Dor, P J; Agarwal, M K; Gleich, M C; Welsh, P W; Dunnette, S L; Adolphson, C R; Gleich, G J
1986-11-01
Two proteases, Esperase and Alcalase, derived from Bacillus licheniformis and B. subtilis, respectively, are used in laundry products. In testing for the prevalence of IgE antibodies to these enzymes in sera among 300 laundry product workers, we experienced two problems in the establishment of a reliable RAST for these antigens. The first problem was the propensity of the allergen, Esperase, to undergo autolysis, suggesting that solid-phase Esperase might also lose reactivity through degradation. Treatment of Esperase with phenylmethylsulfonyl fluoride stabilized the enzyme and permitted the synthesis of a stable solid-phase antigen. The second problem was the finding that sera reactive with Esperase in the RAST were also reactive with Savinase, an enzyme from B. licheniformis to which the workers were not exposed. Immunochemical analyses of the three enzymes with specific rabbit antisera by gel diffusion and by two-site immunoradiometric assay demonstrated that they were not cross contaminated to any appreciable extent. RAST inhibition demonstrated that solid-phase Esperase possessed unique allergenic determinants in that the reactivity of IgE antibodies was inhibited by low concentrations of Esperase and only by very high concentrations of Alcalase and Savinase. In contrast, the reactivity of solid-phase Alcalase was occasionally inhibited equally well by Esperase and Alcalase. Most strikingly, the reaction of IgE antibodies with solid-phase Savinase was always inhibited by comparable quantities of Esperase, Alcalase, and Savinase. Thus, the establishment of the RAST for these proteases appears to require the use of phenylmethylsulfonyl fluoride to retard autolysis, and the results must be interpreted with caution because IgE antibodies in certain sera demonstrate cross-reactivity with Alcalase and Savinase.
Sustainable steric stabilization of colloidal titania nanoparticles
NASA Astrophysics Data System (ADS)
Elbasuney, Sherif
2017-07-01
A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180-240 °C to ensure DDSA ring opening and binding to titania nanoparticles. Organic-modified titania demonstrated complete change in surface properties from hydrophilic to hydrophobic and exhibited phase transfer from the aqueous phase to the organic phase. Exclusive surface modification in the reactor was found to be an effective approach; it demonstrated surfactant loading level 2.2 times that of post synthesis surface modification. Titania was also stabilized in aqueous media using poly acrylic acid (PAA) as polar polymeric dispersant. PAA-titania nanoparticles demonstrated a durable amorphous polymeric layer of 2 nm thickness. This manuscript revealed the state of the art for the real development of stable colloidal mono-dispersed particles with controlled surface properties.
Hunt, Sarah J; Cliffe, Matthew J; Hill, Joshua A; Cairns, Andrew B; Funnell, Nicholas P; Goodwin, Andrew L
2015-01-14
The metal-organic framework copper(i) tricyanomethanide, Cu(tcm), undergoes a ferroelastic transition on cooling below T f = 240 K. Thermal expansion measurements reveal an order-of-magnitude variation in framework flexibility across T f . The low-temperature phase α-Cu(tcm) exhibits colossal positive and negative thermal expansion that is the strongest ever reported for a framework material. On exposure to acetonitrile, Cu(tcm) undergoes a reconstructive solid-phase transition to acetonitrilocopper(i) tricyanomethanide. This transition can be reversed by heating under vacuum. Infrared spectroscopy measurements are sensitive to the phase change, suggesting that Cu(tcm) may find application in solid-phase acetonitrile sensing.
Designing a multiroute synthesis scheme in combinatorial chemistry.
Akavia, Adi; Senderowitz, Hanoch; Lerner, Alon; Shamir, Ron
2004-01-01
Solid-phase mix-and-split combinatorial synthesis is often used to produce large arrays of compounds to be tested during the various stages of the drug development process. This method can be represented by a synthesis graph in which nodes correspond to grow operations and arcs to beads transferred among the different reaction vessels. In this work, we address the problem of designing such a graph which maximizes the number of produced target compounds (namely, compounds out of an input library of desired molecules), given constraints on the number of beads used for library synthesis and on the number of reaction vessels available for concurrent grow steps. We present a heuristic based on a discrete search for solving this problem, test our solution on several data sets, explore its behavior, and show that it achieves good performance.
A study of the effects of synthesis conditions on Li5FeO4/carbon nanotube composites
Lee, Suk-Woo; Kim, Hyun-Kyung; Kim, Myeong-Seong; Roh, Kwang Chul; Kim, Kwang-Bum
2017-01-01
Li5FeO4/carbon nanotube (LFO/CNT) composites composed of sub-micron sized LFO and a nanocarbon with high electrical conductivity were successfully synthesized for the use as lithium ion predoping source in lithium ion cells. The phase of LFO in the composite was found to be very sensitive to the synthesis conditions, such as the heat treatment temperature, type of lithium salt, and physical state of the precursors (powder or pellet), due to the carbothermic reduction of Fe3O4 by CNTs during high temperature solid state reaction. Under optimized synthesis conditions, LFO/CNT composites could be synthesized without the formation of impurities. To the best of our knowledge, this is the first report on the synthesis and characterization of a sub-micron sized LFO/CNT composites. PMID:28422146
A study of the effects of synthesis conditions on Li5FeO4/carbon nanotube composites.
Lee, Suk-Woo; Kim, Hyun-Kyung; Kim, Myeong-Seong; Roh, Kwang Chul; Kim, Kwang-Bum
2017-04-19
Li 5 FeO 4 /carbon nanotube (LFO/CNT) composites composed of sub-micron sized LFO and a nanocarbon with high electrical conductivity were successfully synthesized for the use as lithium ion predoping source in lithium ion cells. The phase of LFO in the composite was found to be very sensitive to the synthesis conditions, such as the heat treatment temperature, type of lithium salt, and physical state of the precursors (powder or pellet), due to the carbothermic reduction of Fe 3 O 4 by CNTs during high temperature solid state reaction. Under optimized synthesis conditions, LFO/CNT composites could be synthesized without the formation of impurities. To the best of our knowledge, this is the first report on the synthesis and characterization of a sub-micron sized LFO/CNT composites.
Airborne soil organic particles generated by precipitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bingbing; Harder, Tristan H.; Kelly, Stephen T.
Airborne organic particles play a critical role in the Earth’s climate1, public health2, air quality3, and hydrological and carbon cycles4. These particles exist in liquid, amorphous semi-solid, or solid (glassy) phase states depending on their composition and ambient conditions5. However, sources and formation mechanisms for semi- solid and solid organic particles are poorly understood and typically neglected in atmospheric models6. Here we report field evidence for airborne solid organic particles generated by a “raindrop” mechanism7 pertinent to atmosphere – land surface interactions (Fig. 1). We find that after rain events at Southern Great Plains, Oklahoma, USA, submicron solid particles, withmore » a composition consistent with soil organic matter, contributed up to 60% of atmospheric particles in number. Subsequent experiments indicate that airborne soil organic particles are ejected from the surface of soils caused by intensive rains or irrigation. Our observations suggest that formation of these particles may be a widespread phenomenon in ecosystems where soils are exposed to strong, episodic precipitation events such as agricultural systems and grasslands8. Chemical imaging and micro-spectroscopy analysis of their physico-chemical properties suggests that airborne soil organic particles may have important impacts on cloud formation and efficiently absorb solar radiation and hence, are an important type of particles.« less
Processing and Synthesis of Pre-Biotic Chemicals in Hypervelocity Impacts
NASA Technical Reports Server (NTRS)
Brickerhoff, W. B.; Managadze, G. G.; Chumikov, A. E.; Managadze, N. G.
2005-01-01
Hypervelocity impacts (HVIs) may have played a significant role in establishing the initial organic inventory for pre-biotic chemistry on the Earth and other planetary bodies. In addition to the delivery of organic compounds intact to planetary surfaces, generally at velocities below approx.20 km/s, HVIs also enable synthesis of new molecules. The cooling post-impact plasma plumes of HVIs in the interstellar medium (ISM), the protosolar nebula (PSN), and the early solar system comprise pervasive conditions for organic synthesis. Such plasma synthesis (PS) can operate over many length scales (from nm-scale dust to planets) and energy scales (from molecular rearrangement to atomization and recondensation). HVI experiments with the flexibility to probe the highest velocities and distinguish synthetic routes are a high priority to understand the relevance of PS to exobiology. We describe here recent studies of PS at small spatial scales and extremely high velocities with pulsed laser ablation (PLA). PLA can simulate the extreme plasma conditions generated in impacts of dust particles at speeds of up to 100 km/s or more. When applied to carbonaceous solids, new and pre-biotically relevant molecular species are formed with high efficiency [1,2].
Molecular ways to nanoscale particles and films
NASA Astrophysics Data System (ADS)
Shen, H.; Mathur, S.
2002-06-01
Chemical routes for the synthesis of nanoparticles and films are proving to be highly efficient and versatile in tailoring the elemental combination and intrinsic properties of the target materials. The use of molecular compounds allows a controlled interaction of atoms or molecules, when compared to the solid-state methods, resulting in the formation of compositionally homogeneous deposits or uniform solid particles. Assembling all the elements forming the material in a single molecular compound, the so-called single-source approach augments the formation of nanocrystalline phases at low temperatures with atomically precise structures. To this end, we have shown that predefined reaction (decomposition) chemistry of precursors enforces a molecular level homogeneity in the obtained materials. Following the single-step conversions of appropriate molecular sources, we have obtained films and nanoparticles of oxides (Fe3O4, BaTiO3, ZnAl2O4, CoAl2O4), metal/oxide composites (Ge/GeO2) and ceramic-ceramic composites (LnAIO3/AI2O3; Ln = Pr, Nd). For a comparative evaluation, CoAl2O4 nanoparticles were prepared by both single- and multi-component routes; whereas the single-source approach yielded monophasic high purity spinels, phase contamination, due to monometal phases, was observed in the ceramic obtained from multicomponent mixture. An account of the size-controlled synthesis and characterisation of the new ceramics and composites is presented.
Caisso, Marie; Picart, Sébastien; Belin, Renaud C; Lebreton, Florent; Martin, Philippe M; Dardenne, Kathy; Rothe, Jörg; Neuville, Daniel R; Delahaye, Thibaud; Ayral, André
2015-04-14
Transmutation of americium in heterogeneous mode through the use of U1-xAmxO2±δ ceramic pellets, also known as Americium Bearing Blankets (AmBB), has become a major research axis. Nevertheless, in order to consider future large-scale deployment, the processes involved in AmBB fabrication have to minimize fine particle dissemination, due to the presence of americium, which considerably increases the risk of contamination. New synthesis routes avoiding the use of pulverulent precursors are thus currently under development, such as the Calcined Resin Microsphere Pelletization (CRMP) process. It is based on the use of weak-acid resin (WAR) microspheres as precursors, loaded with actinide cations. After two specific calcinations under controlled atmospheres, resin microspheres are converted into oxide microspheres composed of a monophasic U1-xAmxO2±δ phase. Understanding the different mechanisms during thermal conversion, that lead to the release of organic matter and the formation of a solid solution, appear essential. By combining in situ techniques such as XRD and XAS, it has become possible to identify the key temperatures for oxide formation, and the corresponding oxidation states taken by uranium and americium during mineralization. This paper thus presents the first results on the mineralization of (U,Am) loaded resin microspheres into a solid solution, through in situ XAS analysis correlated with HT-XRD.
Modified resins for solid-phase extraction
Fritz, James S.; Sun, Jeffrey J.
1993-07-27
A process of treating aqueous solutions to remove organic solute contaminants by contacting an aqueous solution containing polar organic solute contaminants with a functionalized polystyrene-divinyl benzene adsorbent resin, with the functionalization of said resin being accomplished by organic hydrophilic groups such as hydroxymethyl, acetyl and cyanomethyl.
Modified resins for solid-phase extraction
Fritz, James S.; Sun, Jeffrey J.
1991-12-10
A process of treating aqueous solutions to remove organic solute contaminants by contacting an aqueous solution containing polar organic solute contaminants with a functionalized polystyrene-divinyl benzene adsorbent resin, with the functionalization of said resin being accomplished by organic hydrophilic groups such as hydroxymethyl, acetyl and cyanomethyl.
Solid-phase fullerene-like nanostructures as singlet oxygen photosensitizers in liquid media
NASA Astrophysics Data System (ADS)
Belousova, I. M.; Danilov, O. B.; Kiselev, V. M.; Kislyakov, I. M.; Kris'ko, T. K.; Murav'eva, T. D.; Videnichev, D. A.
2007-04-01
Singlet oxygen generation by fullerene and astralen containing surfaces and powders under visible irradiation was studied in water and organic liquids by means of 1Δ g state luminescence and chemical scavenger transmittance measurements. The chemical method, pioneered for solid photosensitizers of 10 II, allowed to measure the singlet oxygen concentration in the aqueous medium down to 10 8 cm -3. The singlet oxygen sensitizing by the solid-phase fullerene-containing systems was found to be 100 times less effective then by fullerene in solution. The results obtained confirm the applicability of these structures in biology and medicine.
NASA Astrophysics Data System (ADS)
Engelmann, Yannick; Bogaerts, Annemie; Neyts, Erik C.
2014-09-01
Using reactive molecular dynamics simulations, the melting behavior of nickel-carbon nanoclusters is examined. The phase diagrams of icosahedral and Wulff polyhedron clusters are determined using both the Lindemann index and the potential energy. Formulae are derived for calculating the equilibrium constants and the solid and liquid fractions during a phase transition, allowing more rational determination of the melting temperature with respect to the arbitrary Lindemann value. These results give more insight into the properties of nickel-carbon nanoclusters in general and can specifically be very useful for a better understanding of the synthesis of carbon nanotubes using the catalytic chemical vapor deposition method.
ERIC Educational Resources Information Center
Wixtrom, Alex; Buhler, Jessica; Abdel-Fattah, Tarek
2014-01-01
Mechanochemical syntheses avoid or considerably reduce the use of reaction solvents, thus providing green chemistry synthetic alternatives that are both environmentally friendly and economically advantageous. The increased solid-state reactivity generated by mechanical energy imparted to the reactants by grinding or milling can offer alternative…
Zhang, Chengjiang; Li, Gongke; Zhang, Zhuomin
2015-11-06
Covalent organic polymers (COPs) connected by covalent bonds are a new class of porous network materials with large surface area and potential superiority in sample pretreatment. In this study, a new hydrazone linked covalent organic polymer (HL-COP) adsorbent was well-designed and synthesized based on a simple Schiff-base reaction. The condensation of 1,4-phthalaldehyde and 1,3,5-benzenetricarbohydrazide as organic building blocks led to the synthesis of HL-COP with uniform particle size and good adsorption performance. This HL-COP adsorbent with high hydrophobic property and rich stacking π electrons contained abundant phenyl rings and imine (CN) groups throughout the entire molecular framework. The adsorption mechanism was explored and discussed based on π-π affinity, hydrophobic effect, hydrogen bonding and electron-donor-acceptor (EDA) interaction, which contributed to its strong recognition affinity to target compounds. Enrichment factors were 305-757 for six Sudan dyes by HL-COP micro-solid phase extraction (μ-SPE), indicating its remarkable preconcentration ability. Furthermore, the adsorption amounts by HL-COP μ-SPE were 1.0-11.0 folds as those by three commonly used commercial adsorbents. Then, HL-COP was applied as adsorbent of online μ-SPE coupled with high performance liquid chromatography (HPLC) for enrichment and analysis of trace Sudan dyes in food samples with detection limit of 0.03-0.15μg/L. The method was successfully applied for online analysis of chilli powder and sausage samples. Sudan II and Sudan III in one positive chilli powder sample were actually found and determined with concentrations of 8.3 and 6.8μg/kg, respectively. The recoveries of chilli powder and sausage samples were in range of 75.8-108.2% and 73.8-112.6% with relative standard deviations of 1.2-8.5% and 1.9-9.4% (n=5), respectively. The proposed method was accurate, reliable and convenient for the online simultaneous analysis of trace Sudan dyes in food samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Changing vacancy balance in ZnO by tuning synthesis between zinc/oxygen lean conditions
NASA Astrophysics Data System (ADS)
Venkatachalapathy, Vishnukanthan; Galeckas, Augustinas; Zubiaga, Asier; Tuomisto, Filip; Kuznetsov, Andrej Yu.
2010-08-01
The nature of intrinsic defects in ZnO films grown by metal organic vapor phase epitaxy was studied by positron annihilation and photoluminescence spectroscopy techniques. The supply of Zn and O during the film synthesis was varied by applying different growth temperatures (325-485 °C), affecting decomposition of the metal organic precursors. The microscopic identification of vacancy complexes was derived from a systematic variation in the defect balance in accordance with Zn/O supply trends.
Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles
NASA Astrophysics Data System (ADS)
Kuga, Maïa; Carrasco, Nathalie; Marty, Bernard; Marrocchi, Yves; Bernard, Sylvain; Rigaudier, Thomas; Fleury, Benjamin; Tissandier, Laurent
2014-05-01
The formation of organic compounds is generally assumed to result from abiotic processes in the Solar System, with the exception of biogenic organics on Earth. Nitrogen-bearing organics are of particular interest, notably for prebiotic perspectives but also for overall comprehension of organic formation in the young Solar System and in planetary atmospheres. We have investigated abiotic synthesis of organics upon plasma discharge, with special attention to N isotope fractionation. Organic aerosols were synthesized from N2-CH4 and N2-CO gaseous mixtures using low-pressure plasma discharge experiments, aimed at simulating chemistry occurring in Titan's atmosphere and in the protosolar nebula, respectively. The nitrogen content, the N speciation and the N isotopic composition were analyzed in the resulting organic aerosols. Nitrogen is efficiently incorporated into the synthesized solids, independently of the oxidation degree, of the N2 content of the starting gas mixture, and of the nitrogen speciation in the aerosols. The aerosols are depleted in 15N by 15-25‰ relative to the initial N2 gas, whatever the experimental setup is. Such an isotopic fractionation is attributed to mass-dependent kinetic effect(s). Nitrogen isotope fractionation upon electric discharge cannot account for the large N isotope variations observed among Solar System objects and reservoirs. Extreme N isotope signatures in the Solar System are more likely the result of self-shielding during N2 photodissociation, exotic effect during photodissociation of N2 and/or low temperature ion-molecule isotope exchange. Kinetic N isotope fractionation may play a significant role in the Titan's atmosphere. On the Titan's night side, 15N-depletion resulting from electron driven reactions may counterbalance photo-induced 15N enrichments occurring on the day's side. We also suggest that the low δ15N values of Archaean organic matter (Beaumont and Robert, 1999) are partly the result of abiotic synthesis of organics that occurred at that time, and that the subsequent development of the biosphere resulted in shifts of δ15N towards higher values.
Stephenson, Karin A; Banerjee, Sangeeta Ray; Sogbein, Oyebola O; Levadala, Murali K; McFarlane, Nicole; Boreham, Douglas R; Maresca, Kevin P; Babich, John W; Zubieta, Jon; Valliant, John F
2005-01-01
A new solid-phase synthetic methodology was developed that enables libraries of peptide-based Tc(I)/Re(I) radiopharmaceuticals to be prepared using a conventional automated peptide synthesizer. Through the use of a tridentate ligand derived from N-alpha-Fmoc-l-lysine, which we refer to as a single amino acid chelate (SAAC), a series of 12 novel bioconjugates [R-NH(CO)ZLF(SAAC)G, R = ethyl, isopropyl, n-propyl, tert-butyl, n-butyl, benzyl; Z = Met, Nle] that are designed to target the formyl peptide receptor (FPR) were prepared. Construction of the library was carried out in a multiwell format on an Advanced ChemTech 348 peptide synthesizer where multi-milligram quantities of each peptide were isolated in high purity without HPLC purification. After characterization, the library components were screened for their affinity for the FPR receptor using flow cytometry where the K(d) values were found to be in the low micromolar range (0.5-3.0 microM). Compound 5j was subsequently labeled with (99m)Tc(I) and the product isolated in high radiochemical yield using a simple Sep-Pak purification procedure. The retention time of the labeled compound matched that of the fully characterized Re-analogue which was prepared through the use of the same solid-phase synthesis methodology that was used to construct the library. The work reported here is a rare example of a method by which libraries of peptide-ligand conjugates and their rhenium complexes can be prepared.
NASA Astrophysics Data System (ADS)
Mirzaei, Ali; Ham, Heon; Na, Han Gil; Kwon, Yong Jung; Kang, Sung Yong; Choi, Myung Sik; Bang, Jae Hoon; Park, No-Hyung; Kang, Inpil; Kim, Hyoun Woo
2016-10-01
Nanodiamond (ND) was successfully synthesized using single-walled carbon nanotubes (SWCNTs) as a pure solid carbon source by means of a spark plasma sintering process. Raman spectra and X-ray diffraction patterns revealed the generation of the cubic diamond phase by means of the SPS process. Lattice-resolved TEM images confirmed that diamond nanoparticles with a diameter of about ˜10 nm existed in the products. The NDs were generated mainly through the gas-phase nucleation of carbon atoms evaporated from the SWCNTs. [Figure not available: see fulltext.
Zhang, Ming; Tang, Fangliang; Yu, Yayun; Chen, Feng; Xu, Jianfen; Ye, Yonggen
2014-05-01
A high-throughput detection method has been developed for the determination of sixteen perfluorinated organic compounds (PFCs) in surface water by solid phase extraction-ultra performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (SPE-UPLC-ESI-MS/MS). The water samples were concentrated and purified through WAX solid phase extraction cartridges. The UPLC separation was performed on an ACQUITY UPLC BEH C18 column utilizing a gradient elution program of methanol (containing 2 mmol/L ammonium acetate) and water (containing 2 mmol/L ammonium acetate) as the mobile phases at a flow rate of 0.4 mL/min. The MS/MS detection was performed under negative electrospray ionization ( ESI ) in multiple reaction monitoring (MRM) mode. Good linearities were observed in the range of 0.5-100 gg/L or 1.0 - 100 microg/L with correlation coefficients from 0.998 7 to 0.999 9. The limits of detection (LODs) for the sixteen perfluorinated organic compounds were in the range of 0.06-0.46 ng/L. The recoveries ranged from 67.6% to 103% with the relative standard deviations between 2.94% and 12.0%. This method was characterized by high sensitivity and precision, extensive range and high speed, and can be applied for the analysis of PFC contaminants in surface water.
NASA Astrophysics Data System (ADS)
Jacobs, K.; Bugge, F.; Butzke, G.; Lehmann, L.; Schimko, R.
1988-11-01
Metal-organic vapor phase epitaxy was used to grow stripe heterolaser diodes that were hitherto fabricated by liquid phase epitaxy. The main relationships between the growth parameters (partial input pressures, temperatures) and the properties of materials (thicknesses, solid-solution compositions, carrier densities) were investigated. The results were in full agreement with the mechanism of growth controlled by a vapor-phase diffusion. The results achieved routinely in the growth of GaAs are reported. It is shown that double heterostructure laser diodes fabricated by metal-organic vapor phase epitaxy compete favorably with those grown so far by liquid phase epitaxy, including their degradation and reliability.
NASA Astrophysics Data System (ADS)
Lassoued, Mohamed Saber; Abdelbaky, Mohammed S. M.; Lassoued, Abdelmajid; Ammar, Salah; Gadri, Abdellatif; Ben Salah, Abdelhamid; García-Granda, Santiago
2018-03-01
The present paper undertakes the study of (C6H16N2) SnCl6·3H2O which is a new hybrid compound. It was prepared and characterized by single crystal X-ray diffraction, X-ray powder, Hirshfeld surface, Spectroscopy measurement, thermal study and photoluminescence properties. The single crystal X-ray diffraction studies revealed that the compound crystallizes in monoclinic Cc space group with cell parameters a = 8.3309(9) Å, b = 22.956(2) Å, c = 9.8381(9) Å, β = 101.334(9) ° and Z = 4. The atomic arrangement shows an alternation of organic and inorganic entities. The cohesion between these entities is performed via Nsbnd H⋯Cl, Nsbnd H⋯O, Osbnd H⋯Cl and Osbnd H⋯O hydrogen bonding to form a three-dimensional network. Hirshfeld surface analysis was used to investigate intermolecular interactions, as well 2D finger plots were conducted to reveal the contribution of these interactions in the crystal structure quantitatively. The X-ray powder is in agreement with the X-ray structure. Scanning electron microscope (SEM) was carried out. Furthermore, the room temperature infrared (IR) spectrum of the title compound was recorded and analyzed on the basis of data found in the literature. Solid state 13C NMR spectrum shows four signals, confirming the solid state structure determined by X-ray diffraction. Besides, the thermal analysis studies were performed, but no phase transition was found in the temperature range between 30 and 450 °C. The optical and PL properties of the compound were investigated in the solid state at room temperature and exhibited three bands at 348 and 401 cm-1 and a strong fluorescence at 480 nm.
Grace Dearborn's DARAMEND™ Bioremediation Technology was developed to treat soils/sediment contaminated with organic contaminants using solid-phase organic amendments. The amendments increase the soil’s ability to supply biologically available water/nutrients to micro...
SITE TECHNOLOGY CAPSULE: GRACE DEARBORN INC.'S DARAMEND BIOREMEDIATION TECHNOLOGY
Grace Dearborn's DARAMEND Bioremediation Technology was developed to treat soils/sediment contaminated with organic contaminants using solid-phase organic amendments. The amendments increase the soil's ability to supply biologically available water/nutrients to microorganisms and...
NASA Astrophysics Data System (ADS)
Chang, E. I.; Pankow, J. F.
2008-01-01
Secondary organic aerosol (SOA) formation in the atmosphere is currently often modeled using a multiple lumped "two-product" (N·2p) approach. The N·2p approach neglects: 1) variation of activity coefficient (ζi) values and mean molecular weight MW in the particulate matter (PM) phase; 2) water uptake into the PM; and 3) the possibility of phase separation in the PM. This study considers these effects by adopting an (N·2p)ζ, MW ,θ approach (θ is a phase index). Specific chemical structures are assigned to 25 lumped SOA compounds and to 15 representative primary organic aerosol (POA) compounds to allow calculation of ζi and MW values. The SOA structure assignments are based on chamber-derived 2p gas/particle partition coefficient values coupled with known effects of structure on vapor pressure pL,i° (atm). To facilitate adoption of the (N·2p)ζ, MW, θ approach in large-scale models, this study also develops CP-Wilson.1, a group-contribution ζi-prediction method that is more computationally economical than the UNIFAC model of Fredenslund et al. (1975). Group parameter values required by CP-Wilson.1 are obtained by fitting ζi values to predictions from UNIFAC. The (N·2p)ζ,MW, θ approach is applied (using CP-Wilson.1) to several real α-pinene/O3 chamber cases for high reacted hydrocarbon levels (ΔHC≍400 to 1000 μg m-3) when relative humidity (RH) ≍50%. Good agreement between the chamber and predicted results is obtained using both the (N·2p)ζ, MW, θ and N·2p approaches, indicating relatively small water effects under these conditions. However, for a hypothetical α-pinene/O3 case at ΔHC=30 μg m-3 and RH=50%, the (N·2p)ζ, MW, θ approach predicts that water uptake will lead to an organic PM level that is more double that predicted by the N·2p approach. Adoption of the (N·2p)ζ, MW, θ approach using reasonable lumped structures for SOA and POA compounds is recommended for ambient PM modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, K M; K Kukkadapu, R K; Qafoku, N P
2012-05-23
Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology and redox processes that occur in these zones, several cores from a region of naturally occurring reducing conditions in a U-contaminated aquifer (Rifle, CO) were examined. Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for U and Fe content, oxidation state, and mineralogy; reduced S phases; and solid-phase organic C content using a suite of analyticalmore » and spectroscopic techniques on bulk sediment and size fractions. Solid-phase U concentrations were higher in the naturally reduced zone, with a high proportion of the U present as U(IV). The sediments were also elevated in reduced S phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and SO4 reduction has occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentrations of solid-phase organic C and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic C concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic C for maintaining reducing conditions and U immobilization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Kate M.; Kukkadapu, Ravi K.; Qafoku, Nikolla
2012-05-23
Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology, and redox processes that occur in these zones, we examined several cores from a region of naturally occurring reducing conditions in a uranium-contaminated aquifer (Rifle, CO). Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for uranium and iron content, oxidation state, and mineralogy, reduced sulfur phases, and solid phase organic carbon content using a suite ofmore » analytical and spectroscopic techniques on bulk sediment and size fractions. Solid-phase uranium concentrations were higher in the naturally reduced zone, with a high proportion of the uranium present as reduced U(IV). The sediments were also elevated in reduced sulfur phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and sulfate reduction occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentration of solid phase organic carbon and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic carbon concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic carbon for maintaining reducing conditions and uranium immobilization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, K. M.; Kukkadapu, R. K.; Qafoku, N. P.
2012-08-01
Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology and redox processes that occur in these zones, several cores from a region of naturally occurring reducing conditions in a U-contaminated aquifer (Rifle, CO) were examined. Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for U and Fe content, oxidation state, and mineralogy; reduced S phases; and solid-phase organic C content using a suite of analyticalmore » and spectroscopic techniques on bulk sediment and size fractions. Solid-phase U concentrations were higher in the naturally reduced zone, with a high proportion of the U present as U(IV). The sediments were also elevated in reduced S phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and SO 4 reduction has occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentrations of solid-phase organic C and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic C concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic C for maintaining reducing conditions and U immobilization.« less