Phase diagram of two-dimensional hard ellipses.
Bautista-Carbajal, Gustavo; Odriozola, Gerardo
2014-05-28
We report the phase diagram of two-dimensional hard ellipses as obtained from replica exchange Monte Carlo simulations. The replica exchange is implemented by expanding the isobaric ensemble in pressure. The phase diagram shows four regions: isotropic, nematic, plastic, and solid (letting aside the hexatic phase at the isotropic-plastic two-step transition [E. P. Bernard and W. Krauth, Phys. Rev. Lett. 107, 155704 (2011)]). At low anisotropies, the isotropic fluid turns into a plastic phase which in turn yields a solid for increasing pressure (area fraction). Intermediate anisotropies lead to a single first order transition (isotropic-solid). Finally, large anisotropies yield an isotropic-nematic transition at low pressures and a high-pressure nematic-solid transition. We obtain continuous isotropic-nematic transitions. For the transitions involving quasi-long-range positional ordering, i.e., isotropic-plastic, isotropic-solid, and nematic-solid, we observe bimodal probability density functions. This supports first order transition scenarios.
Pressure induced solid-solid reconstructive phase transition in LiGa O2 dominated by elastic strain
NASA Astrophysics Data System (ADS)
Hu, Qiwei; Yan, Xiaozhi; Lei, Li; Wang, Qiming; Feng, Leihao; Qi, Lei; Zhang, Leilei; Peng, Fang; Ohfuji, Hiroaki; He, Duanwei
2018-01-01
Pressure induced solid-solid reconstructive phase transitions for graphite-diamond, and wurtzite-rocksalt in GaN and AlN occur at significantly higher pressure than expected from equilibrium coexistence and their transition paths are always inconsistent with each other. These indicate that the underlying nucleation and growth mechanism in the solid-solid reconstructive phase transitions are poorly understood. Here, we propose an elastic-strain dominated mechanism in a reconstructive phase transition, β -LiGa O2 to γ -LiGa O2 , based on in situ high-pressure angle dispersive x-ray diffraction and single-crystal Raman scattering. This mechanism suggests that the pressure induced solid-solid reconstructive phase transition is neither purely diffusionless nor purely diffusive, as conventionally assumed, but a combination. The large elastic strains are accumulated, with the coherent nucleation, in the early stage of the transition. The elastic strains along the 〈100 〉 and 〈001 〉 directions are too large to be relaxed by the shear stress, so an intermediate structure emerges reducing the elastic strains and making the transition energetically favorable. At higher pressures, when the elastic strains become small enough to be relaxed, the phase transition to γ -LiGa O2 begins and the coherent nucleation is substituted with a semicoherent one with Li and Ga atoms disordered.
Mechanism and microstructures in Ga2O3 pseudomartensitic solid phase transition.
Zhu, Sheng-Cai; Guan, Shu-Hui; Liu, Zhi-Pan
2016-07-21
Solid-to-solid phase transition, although widely exploited in making new materials, challenges persistently our current theory for predicting its complex kinetics and rich microstructures in transition. The Ga2O3α-β phase transformation represents such a common but complex reaction with marked change in cation coordination and crystal density, which was known to yield either amorphous or crystalline products under different synthetic conditions. Here we, via recently developed stochastic surface walking (SSW) method, resolve for the first time the atomistic mechanism of Ga2O3α-β phase transformation, the pathway of which turns out to be the first reaction pathway ever determined for a new type of diffusionless solid phase transition, namely, pseudomartensitic phase transition. We demonstrate that the sensitivity of product crystallinity is caused by its multi-step, multi-type reaction pathway, which bypasses seven intermediate phases and involves all types of elementary solid phase transition steps, i.e. the shearing of O layers (martensitic type), the local diffusion of Ga atoms (reconstructive type) and the significant lattice dilation (dilation type). While the migration of Ga atoms across the close-packed O layers is the rate-determining step and yields "amorphous-like" high energy intermediates, the shearing of O layers contributes to the formation of coherent biphase junctions and the presence of a crystallographic orientation relation, (001)α//(201[combining macron])β + [120]α//[13[combining macron]2]β. Our experiment using high-resolution transmission electron microscopy further confirms the theoretical predictions on the atomic structure of biphase junction and the formation of (201[combining macron])β twin, and also discovers the late occurrence of lattice expansion in the nascent β phase that grows out from the parent α phase. By distinguishing pseudomartensitic transition from other types of mechanisms, we propose general rules to predict the product crystallinity of solid phase transition. The new knowledge on the kinetics of pseudomartensitic transition complements the theory of diffusionless solid phase transition.
Surface Premelting Coupled with Bulk Phase Transitions in Colloidal Crystals
NASA Astrophysics Data System (ADS)
Li, Bo; Wang, Feng; Zhou, Di; Cao, Xin; Peng, Yi; Ni, Ran; Liao, Maijia; Han, Yilong
2015-03-01
Colloids have been used as outstanding model systems for the studies of various phase transitions in bulk, but not at interface yet. Here we obtained equilibrium crystal-vapor interfaces using tunable attractive colloidal spheres and studied the surface premelting at the single-particle level by video microscopy. We found that monolayer crystals exhibit a bulk isostructural solid-solid transition which triggers the surface premelting. The premelting is incomplete due to the interruption of a mechanical-instability-induced bulk melting. By contrast, two- or multilayer crystals do not have the solid-solid transition and the mechanical instability, hence they exhibit complete premelting with divergent surface-liquid thickness. These novel interplays between bulk and surface phase transitions cast new lights for both types of transitions.
Solid-solid collapse transition in a two dimensional model molecular system.
Singh, Rakesh S; Bagchi, Biman
2013-11-21
Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and length scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte-Carlo simulation to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB), which, for a specific set of parameters, sustains two solid phases: honeycomb and oblique. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by increasing temperature. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common belief and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as a linear strip, followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions, which enables the dominance of stabilizing energy over destabilizing surface energy. The nucleus of stable oblique phase is wetted by intermediate order particles, which minimizes the surface free energy. In the case of pressure induced transition at low temperature the collapsed state is a disordered solid. The disordered solid phase has diverse local quasi-stable structures along with oblique-solid like domains.
Solid-solid collapse transition in a two dimensional model molecular system
NASA Astrophysics Data System (ADS)
Singh, Rakesh S.; Bagchi, Biman
2013-11-01
Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and length scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte-Carlo simulation to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB), which, for a specific set of parameters, sustains two solid phases: honeycomb and oblique. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by increasing temperature. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common belief and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as a linear strip, followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions, which enables the dominance of stabilizing energy over destabilizing surface energy. The nucleus of stable oblique phase is wetted by intermediate order particles, which minimizes the surface free energy. In the case of pressure induced transition at low temperature the collapsed state is a disordered solid. The disordered solid phase has diverse local quasi-stable structures along with oblique-solid like domains.
Universal Features of the Fluid to Solid Transition for Attractive Colloidal Particles
NASA Technical Reports Server (NTRS)
Cipelletti, L.; Prasad, V.; Dinsmore, A.; Segre, P. N.; Weitz, D. A.; Trappe, V.
2002-01-01
Attractive colloidal particles can exhibit a fluid to solid phase transition if the magnitude of the attractive interaction is sufficiently large, if the volume fraction is sufficiently high, and if the applied stress is sufficiently small. The nature of this fluid to solid transition is similar for many different colloid systems, and for many different forms of interaction. The jamming phase transition captures the common features of these fluid to solid translations, by unifying the behavior as a function of the particle volume fraction, the energy of interparticle attractions, and the applied stress. This paper describes the applicability of the jamming state diagram, and highlights those regions where the fluid to solid transition is still poorly understood. It also presents new data for gelation of colloidal particles with an attractive depletion interaction, providing more insight into the origin of the fluid to solid transition.
NASA Astrophysics Data System (ADS)
Harmand, M.; Krygier, A.; Appel, K.; Galtier, E.; Hartley, N.; Konopkova, Z.; Lee, H. J.; McBride, E. E.; Miyanishi, K.; Nagler, B.; Nemausat, R.; Vinci, T.; Zhu, D.; Ozaki, N.; Fiquet, G.
2017-12-01
An accurate knowledge of the properties of iron and iron alloys at high pressures and temperatures is crucial for understanding and modelling planetary interiors. While Earth-size and Super-Earth Exoplanets are being discovered in increasingly large numbers, access to detailed information on liquid properties, melting curves and even solid phases of iron and iron at the pressures and temperatures of their interiors is still strongly limited. In this context, XFEL sources coupled with high-energy lasers afford unique opportunities to measure microscopic structural properties at far extreme conditions. Also the achievable time resolution allows the shock history and phase transition mechanisms to be followed during laser compression, improving our understanding of the high pressure and high strain experiments. Here we present recent studies devoted to investigate the solid-solid and solid-liquid transition in laser-shocked iron and iron alloys (Fe-Si, Fe-C and Fe-O alloys) using X-ray diffraction and X-ray diffuse scattering. Experiment were performed at the MEC end-station of the LCLS facility at SLAC (USA). Detection of the diffuse scattering allowed the identification of the first liquid peak position along the Hugoniot, up to 4 Mbar. The time resolution shows ultrafast (between several tens and several hundreds of picoseconds) solid-solid and solid-liquid phase transitions. Future developments at XFEL facilities will enable detailed studies of the solid and liquid structures of iron and iron alloys as well as out-of-Hugoniot studies.
Limmer, David T; Chandler, David
2014-07-01
We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens.
Melting of Simple Solids and the Elementary Excitations of the Communal Entropy
NASA Astrophysics Data System (ADS)
Bongiorno, Angelo
2010-03-01
The melting phase transition of simple solids is addressed through the use of atomistic computer simulations. Three transition metals (Ni, Au, and Pt) and a semiconductor (Si) are considered in this study. Iso-enthalpic molecular dynamics simulations are used to compute caloric curves across the solid-to-liquid phase transition of a periodic crystalline system, to construct the free energy function of the solid and liquid phases, and thus to derive the thermodynamical limit of the melting point, latent heat and entropy of fusion of the material. The computational strategy used in this study yields accurate estimates of melting parameters, it consents to determine the superheating and supercooling temperature limits, and it gives access to the atomistic mechanisms mediating the melting process. In particular, it is found that the melting phase transition in simple solids is driven by exchange steps involving a few atoms and preserving the crystalline structure. These self-diffusion phenomena correspond to the elementary excitations of the communal entropy and, as their rate depends on the local material cohesivity, they mediate both the homogeneous and non-homogeneous melting process in simple solids.
Limmer, David T.; Chandler, David
2014-01-01
We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens. PMID:24858957
NASA Astrophysics Data System (ADS)
Sellers, Michael; Lisal, Martin; Brennan, John
2015-06-01
Investigating the ability of a molecular model to accurately represent a real material is crucial to model development and use. When the model simulates materials in extreme conditions, one such property worth evaluating is the phase transition point. However, phase transitions are often overlooked or approximated because of difficulty or inaccuracy when simulating them. Techniques such as super-heating or super-squeezing a material to induce a phase change suffer from inherent timescale limitations leading to ``over-driving,'' and dual-phase simulations require many long-time runs to seek out what frequently results in an inexact location of phase-coexistence. We present a compilation of methods for the determination of solid-solid and solid-liquid phase transition points through the accurate calculation of the chemical potential. The methods are applied to the Smith-Bharadwaj atomistic potential's representation of cyclotrimethylene trinitramine (RDX) to accurately determine its melting point (Tm) and the alpha to gamma solid phase transition pressure. We also determine Tm for a coarse-grain model of RDX, and compare its value to experiment and atomistic counterpart. All methods are employed via the LAMMPS simulator, resulting in 60-70 simulations that total 30-50 ns. Approved for public release. Distribution is unlimited.
Modulated structure and molecular dissociation of solid chlorine at high pressures
NASA Astrophysics Data System (ADS)
Li, Peifang; Gao, Guoying; Ma, Yanming
2012-08-01
Among diatomic molecular halogen solids, high pressure structures of solid chlorine (Cl2) remain elusive and least studied. We here report first-principles structural search on solid Cl2 at high pressures through our developed particle-swarm optimization algorithm. We successfully reproduced the known molecular Cmca phase (phase I) at low pressure and found that it remains stable up to a high pressure 142 GPa. At 150 GPa, our structural searches identified several energetically competitive, structurally similar, and modulated structures. Analysis of the structural results and their similarity with those in solid Br2 and I2, it was suggested that solid Cl2 adopts an incommensurate modulated structure with a modulation wave close to 2/7 in a narrow pressure range 142-157 GPa. Eventually, our simulations at >157 GPa were able to predict the molecular dissociation of solid Cl2 into monatomic phases having body centered orthorhombic (bco) and face-centered cubic (fcc) structures, respectively. One unique monatomic structural feature of solid Cl2 is the absence of intermediate body centered tetragonal (bct) structure during the bco → fcc transition, which however has been observed or theoretically predicted in solid Br2 and I2. Electron-phonon coupling calculations revealed that solid Cl2 becomes superconductors within bco and fcc phases possessing a highest superconducting temperature of 13.03 K at 380 GPa. We further probed the molecular Cmca → incommensurate phase transition mechanism and found that the softening of the Ag vibrational (rotational) Raman mode in the Cmca phase might be the driving force to initiate the transition.
p-Adic solid-on-solid model on a Cayley tree
NASA Astrophysics Data System (ADS)
Khakimov, O. N.
2017-12-01
We consider a p-adic solid-on-solid ( SOS) model with a nearest-neighbor coupling, m+1 spins, and a coupling constant J ∈ Q p on a Cayley tree. We find conditions under which a phase transition does not occur in the model. We show that if p | m + 1 for some J, then a phase transition occurs. Moreover, we formulate a criterion for the boundedness of p-adic Gibbs measures for the ( m+1)- state SOS model.
Solid H2 in the interstellar medium
NASA Astrophysics Data System (ADS)
Füglistaler, A.; Pfenniger, D.
2018-06-01
Context. Condensation of H2 in the interstellar medium (ISM) has long been seen as a possibility, either by deposition on dust grains or thanks to a phase transition combined with self-gravity. H2 condensation might explain the observed low efficiency of star formation and might help to hide baryons in spiral galaxies. Aims: Our aim is to quantify the solid fraction of H2 in the ISM due to a phase transition including self-gravity for different densities and temperatures in order to use the results in more complex simulations of the ISM as subgrid physics. Methods: We used molecular dynamics simulations of fluids at different temperatures and densities to study the formation of solids. Once the simulations reached a steady state, we calculated the solid mass fraction, energy increase, and timescales. By determining the power laws measured over several orders of magnitude, we extrapolated to lower densities the higher density fluids that can be simulated with current computers. Results: The solid fraction and energy increase of fluids in a phase transition are above 0.1 and do not follow a power law. Fluids out of a phase transition are still forming a small amount of solids due to chance encounters of molecules. The solid mass fraction and energy increase of these fluids are linearly dependent on density and can easily be extrapolated. The timescale is below one second, the condensation can be considered instantaneous. Conclusions: The presence of solid H2 grains has important dynamic implications on the ISM as they may be the building blocks for larger solid bodies when gravity is included. We provide the solid mass fraction, energy increase, and timescales for high density fluids and extrapolation laws for lower densities.
Building of Equations of State with Numerous Phase Transitions — Application to Bismuth
NASA Astrophysics Data System (ADS)
Heuzé, Olivier
2006-07-01
We propose an algorithm to build complete equation of state EOS including several solid/solid or solid/liquid phase transitions. Each phase has its own EOS and independent parameters. The phase diagram is deduced from the thermodynamic equilibrium assumption. Until now, such an approach was used in simple cases and limited to 2 or 3 phases. We have applied it in the general case to bismuth for which up to 13 phases have been identified. This study shows the great influence of binary mixtures and triple points properties in released isentropes after shock waves.
Kerr-AdS analogue of triple point and solid/liquid/gas phase transition
NASA Astrophysics Data System (ADS)
Altamirano, Natacha; Kubizňák, David; Mann, Robert B.; Sherkatghanad, Zeinab
2014-02-01
We study the thermodynamic behavior of multi-spinning d = 6 Kerr-anti de Sitter black holes in the canonical ensemble of fixed angular momenta J1 and J2. We find, dependent on the ratio q = J2/J1, qualitatively different interesting phenomena known from the ‘every day thermodynamics’ of simple substances. For q = 0 the system exhibits recently observed reentrant large/small/large black hole phase transitions, but for 0 < q ≪ 1 we find an analogue of a ‘solid/liquid’ phase transition. Furthermore, for q ∈ (0.00905, 0.0985) the system displays the presence of a large/intermediate/small black hole phase transition with two critical and one triple (or tricritical) points. This behavior is reminiscent of the solid/liquid/gas phase transition except that the coexistence line of small and intermediate black holes does not continue for an arbitrary value of pressure (similar to the solid/liquid coexistence line) but rather terminates at one of the critical points. Finally, for q > 0.0985 we observe the ‘standard liquid/gas behavior’ of the Van der Waals fluid.
NASA Astrophysics Data System (ADS)
Puertas, Ricardo; Rute, Maria A.; Salud, Josep; López, David O.; Diez, Sergio; van Miltenburg, J. Kees; Pardo, Luis C.; Tamarit, Josep Ll.; Barrio, Maria; Pérez-Jubindo, Miguel A.; de La Fuente, Maria R.
2004-06-01
The stable solid polymorphism of cyclooctanol (C8H16O, for short C8 OH) is revealed to be a complex problem and only two stable solid phases, denoted on cooling from the liquid as phases I and II, are found using static (thermodynamic and x-ray diffraction) as well as dynamic (dielectric spectroscopy) experimental techniques. Both solid phases are known to exhibit glass transitions if they are cooled down fast enough to prevent transition to ordered crystalline states. Although glass transitions corresponding to both phases had been well documented by means of specific heat measurements, x-ray measurements constitute, as far as we know, the first evidence from the structural point of view. In addition, a great amount of dielectric works devoted to phase I and its glass transition, were published in the past but next to nothing relating to the dielectric properties of phase II and its glass transition. The nature of the disorder of phase II will be discussed.
Density-functional theory for fluid-solid and solid-solid phase transitions.
Bharadwaj, Atul S; Singh, Yashwant
2017-03-01
We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u(r)=ε(σ/r)^{n}, where parameter n measures softness of the potential. We find that for 1/n<0.154 systems freeze into the face centered cubic (fcc) structure while for 1/n≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.
Modelling Phase Transition Phenomena in Fluids
2015-07-01
Sublimation line r @@I Triple point ? Vapourisation liner @@I Critical point -Fusion line Solid Liquid Gas Figure 1: Schematic of a phase diagram means that the...velocity field can be set zero, and only the balance of energy constitutes the Stefan model. In contrast to this the liquid - gas phase transitions...defined by requiring that the phase-transition line is crossed in a direction from solid to liquid or from liquid to gas (vapour) phases. The term T∗ δs is
Phase transition detection by surface photo charge effect in liquid crystals
NASA Astrophysics Data System (ADS)
Ivanov, O.; Petrov, M.; Naradikian, H.; Perez-Diaz, J. L.
2018-05-01
The surface photo charge effect (SPCE) was applied for the first time at structure and phase transitions study of hydrogen bonded in dimer liquid crystals (HBDLCs). Due to the high sensitivity of this method, besides first-order phase transitions, characteristic for the p,n-octyloxibenzoic acids (8OBA), an order transition was definitely detected within the nematic range. We state that the SPCE, arising at the solid-HBDLCs interface due to the double electrical layer, is invariably concomitant with solid surface-liquid interfaces, and indicates that the changes of the characteristics of this layer, under incident optical irradiation, induce surface charge rearrangement and alternating potential difference. A mechanism of induction of the SPCE at the interface of solid surface-anisotropic liquids is proposed. We also indicate that this mechanism can be adapted for solid surface-isotropic liquid interface, including colloids (milk) and fog (aerosols)-condensed medium.
NASA Astrophysics Data System (ADS)
Ning, Guo
1995-06-01
The solid-phase behavior of [n-C9H19NH3]2CuCl4 was investigated by infrared spectroscopy. The nature of the three solid phases (phase I, phase II, and phase III) is discussed. A temperature-dependent study of infrared spectra provides evidence for the occurrence of structural phase transitions related to the dynamics of the alkyl chains and -NH3 polar heads. The phase transition at Tc1 (22°C) arises from variation in the interaction and packing structure of the chain. The phase transition at Tc2 (34°C) is related to variation in partial conformational order-disorder at the intramolecular level. The GTG or GTG‧ and small concentration of TG structures near the CH3 group are generated in phase III (above 38°C).
Solid state phase change materials for thermal energy storage in passive solar heated buildings
NASA Astrophysics Data System (ADS)
Benson, D. K.; Christensen, C.
1983-11-01
A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.
The Effect of Molecular Orientation to Solid-Solid and Melting Transitions
NASA Astrophysics Data System (ADS)
Yazici, Mustafa; Özgan, Şükrü
The thermodynamics of solid-solid and solid-liquid transitions are investigated with an account of the number of molecular orientation. The variations of the positional and orientational orders with the reduced temperature are studied. It is found out that orientational order parameter is very sensitive to the number of allowed orientation. The reduced transition temperatures, volume changes and entropy changes of the phase transitions and theoretical phase diagrams are obtained. The entropy changes of melting transitions for different numbers of allowed orientation of the present model are compared with the theoretical results and some experimental data. The quantitative predictions of the model are compared with experimental results for plastic crystals and agreement between predictions of the model and the experimental results are approximately good. Also, different numbers of allowed orientation D correspond to different experimental results HI, HBr, H2S for D = 2; HBr, CCl4, HI for D = 4; C2H12 for D = 6; CH4, PH3 for D = 20.
NASA Astrophysics Data System (ADS)
Silalahi, Alfriska O.; Sukmawati, Nissa; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.
2017-07-01
The thermophysical parameters of organic phase change material (PCM) of coconut oil (co_oil) have been studied by analyzing the temperature vs time data during liquid-solid phase transition (solidification process) based on T-history method, adopting the original version and its modified form to extract the values of mean specific heats of the solid and liquid co_oil and the heat of fusion related to phase transition of co_oil. We found that the liquid-solid phase transition occurs rather gradually, which might be due to the fact that co_oil consists of many kinds of fatty acids with the largest amount of lauric acid (about 50%), with relatively small supercooling degree. For this reason, the end of phase transition region become smeared out, although the inflection point in the temperature derivative is clearly observed signifying the drastic temperature variation between the phase transition and solid phase periods. The data have led to the values of mean specific heat of the solid and liquid co_oil that are comparable to the pure lauric acid, while the value for heat of fusion is resemble to those of the DSC result, both from references data. The advantage of co_oil as the potential sensible and latent TES for room-temperature conditioning application in Indonesia is discussed in terms of its rather broad working temperature range due to its mixture composition characteristic.
Thermal conductivity switch: Optimal semiconductor/metal melting transition
NASA Astrophysics Data System (ADS)
Kim, Kwangnam; Kaviany, Massoud
2016-10-01
Scrutinizing distinct solid/liquid (s /l ) and solid/solid (s /s ) phase transitions (passive transitions) for large change in bulk (and homogenous) thermal conductivity, we find the s /l semiconductor/metal (S/M) transition produces the largest dimensionless thermal conductivity switch (TCS) figure of merit ZTCS (change in thermal conductivity divided by smaller conductivity). At melting temperature, the solid phonon and liquid molecular thermal conductivities are comparable and generally small, so the TCS requires localized electron solid and delocalized electron liquid states. For cyclic phase reversibility, the congruent phase transition (no change in composition) is as important as the thermal transport. We identify X Sb and X As (X =Al , Cd, Ga, In, Zn) and describe atomic-structural metrics for large ZTCS, then show the superiority of S/M phonon- to electron-dominated transport melting transition. We use existing experimental results and theoretical and ab initio calculations of the related properties for both phases (including the Kubo-Greenwood and Bridgman formulations of liquid conductivities). The 5 p orbital of Sb contributes to the semiconductor behavior in the solid-phase band gap and upon disorder and bond-length changes in the liquid phase this changes to metallic, creating the large contrast in thermal conductivity. The charge density distribution, electronic localization function, and electron density of states are used to mark this S/M transition. For optimal TCS, we examine the elemental selection from the transition, basic, and semimetals and semiconductor groups. For CdSb, addition of residual Ag suppresses the bipolar conductivity and its ZTCS is over 7, and for Zn3Sb2 it is expected to be over 14, based on the structure and transport properties of the better-known β -Zn4Sb3 . This is the highest ZTCS identified. In addition to the metallic melting, the high ZTCS is due to the electron-poor nature of II-V semiconductors, leading to the significantly low phonon conductivity.
Investigation of the kinetics and microscopic mechanism of solid-solid phase transitions in HMX
NASA Astrophysics Data System (ADS)
Bowlan, Pamela; Suvorova, Natalya; Oschwald, Dave; Bowlan, John; Rector, Kirk; Henson, Bryan; Smilowitz, Laura
2017-06-01
Although studied intensely in the 2000's, a number of important questions about solid-solid phase transitions in the energetic organic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) remain. The mechanism by which one of the four isomorphs, known as δ, γ, α and β, transforms into another, and the conditions (i.e. temperature and pressure) and rates at which these transitions take place are still not fully known, yet important for predicting and controlling energy release phenomena in HMX such as detonation. The theory of virtual melting, by which a liquid forms at the interface of a nucleation site, is necessary to explain transformations between certain of the four different phases of HMX, such as the β to δ transition. However the existence of this disordered intermediate state has never been directly proven due to the need for both spatial (<µm), temporal (the lifetime of the transient melt state is unknown) and structural information. Also, while the β to δ transition was more thoroughly studied, less is known about the other 10 possible phase transitions. We will report on our study of phase transitions in HMX using X-ray diffraction and confocal Raman and near-field infrared microscopy.
Nayhouse, Michael; Kwon, Joseph Sang-Il; Orkoulas, G
2012-05-28
In simulation studies of fluid-solid transitions, the solid phase is usually modeled as a constrained system in which each particle is confined to move in a single Wigner-Seitz cell. The constrained cell model has been used in the determination of fluid-solid coexistence via thermodynamic integration and other techniques. In the present work, the phase diagram of such a constrained system of Lennard-Jones particles is determined from constant-pressure simulations. The pressure-density isotherms exhibit inflection points which are interpreted as the mechanical stability limit of the solid phase. The phase diagram of the constrained system contains a critical and a triple point. The temperature and pressure at the critical and the triple point are both higher than those of the unconstrained system due to the reduction in the entropy caused by the single occupancy constraint.
Modeling of Shock Waves with Multiple Phase Transitions in Condensed Materials
NASA Astrophysics Data System (ADS)
Missonnier, Marc; Heuzé, Olivier
2006-07-01
When a shock wave crosses a solid material and subjects it to solid-solid or solid-liquid phase transition, related phenomena occur: shock splitting, and the corresponding released shock wave after reflection. Modelling of these phenomena raises physical and numerical issues. After shock loading, such materials can reach different kinds of states: single-phase states, binary-phase states, and triple points. The thermodynamic path can be studied and easily understood in the (V,E) or (V,S) planes. In the case of 3 phase tin (β,γ, and liquid) submitted to shock waves, seven states can occur: β,γ, liquid, β-γ, β-liquid, γ-liquid, and β-γ-liquid. After studying the thermodynamic properties with a complete 3-phase Equation of State, we show the existence of these seven states with a hydrodynamic simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiulu; Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, 621010 Mianyang, Sichuan; Liu, Zhongli
2015-02-07
The high-pressure solid phase stability of molybdenum (Mo) has been the center of a long-standing controversy on its high-pressure melting. In this work, experimental and theoretical researches have been conducted to check its solid phase stability under compression. First, we performed sound velocity measurements from 38 to 160 GPa using the two-stage light gas gun and explosive loading in backward- and forward-impact geometries, along with the high-precision velocity interferometry. From the sound velocities, we found no solid-solid phase transition in Mo before shock melting, which does not support the previous solid-solid phase transition conclusion inferred from the sharp drops of themore » longitudinal sound velocity [Hixson et al., Phys. Rev. Lett. 62, 637 (1989)]. Then, we searched its structures globally using the multi-algorithm collaborative crystal structure prediction technique combined with the density functional theory. By comparing the enthalpies of body centered cubic structure with those of the metastable structures, we found that bcc is the most stable structure in the range of 0–300 GPa. The present theoretical results together with previous ones greatly support our experimental conclusions.« less
Engineered glass seals for solid-oxide fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surdoval, Wayne; Lara-Curzio, Edgar; Stevenson, Jeffry
2017-02-07
A seal for a solid oxide fuel cell includes a glass matrix having glass percolation therethrough and having a glass transition temperature below 650.degree. C. A deformable second phase material is dispersed in the glass matrix. The second phase material can be a compliant material. The second phase material can be a crushable material. A solid oxide fuel cell, a precursor for forming a seal for a solid oxide fuel cell, and a method of making a seal for a solid oxide fuel cell are also disclosed.
NASA Astrophysics Data System (ADS)
Bera, Ganesh; Reddy, V. R.; Rambabu, P.; Mal, P.; Das, Pradip; Mohapatra, N.; Padmaja, G.; Turpu, G. R.
2017-09-01
Phase diagram of FeVO4-CrVO4 solid solutions pertinent with structural and magnetic phases is presented with unambiguous experimental evidences. Solid solutions Fe1-xCrxVO4 (0 ≤ x ≤ 1.0) were synthesized through the standard solid state route and studied by X-ray diffraction, scanning electron microscopy, energy dispersive spectra of X-rays, Raman spectroscopy, d.c. magnetization, and 57Fe Mössbauer spectroscopic studies. FeVO4 and CrVO4 were found to be in triclinic (P-1 space group) and orthorhombic structures (Cmcm space group), respectively. Cr incorporation into the FeVO4 lattice leads to the emergence of a new monoclinic phase dissimilar to the both end members of the solid solutions. In Fe1-xCrxVO4 up to x = 0.10, no discernible changes in the triclinic structure were found. A new structural monoclinic phase (C2/m space group) emerges within the triclinic phase at x = 0.125, and with the increase in Cr content, it gets stabilized with clear single phase signatures in the range of x = 0.175-0.25 as evidenced by the Rietveld analysis of the structures. Beyond x = 0.33, orthorhombic phase similar to CrVO4 (Cmcm space group) emerges and coexists with a monoclinic structure up to x = 0.85, which finally tends to stabilize in the range of x = 0.90-1.00. The Raman spectroscopic studies also confirm the structural transition. FeVO4 Raman spectra show the modes related to three nonequivalent V ions in the triclinic structure, where up to 42 Raman modes are observed in the present study. With the stabilization of structures having higher symmetry, the number of Raman modes decreases and the modes related to symmetry inequivalent sites collate into singular modes from the doublet structure. A systematic crossover from two magnetic transitions in FeVO4, at 21.5 K and 15.4 K to single magnetic transition in CrVO4, at 71 K (antiferromagnetic transition), is observed in magnetization studies. The intermediate solid solution with x = 0.15 shows two magnetic transitions, whereas in the compound with x = 0.33 one of the magnetic transitions disappears. 57Fe Mössbauer spectroscopic studies show a finger print evidence for disappearance of non-equivalent sites of Fe as the structure changes from Triclinic-Monoclinic-Orthorhombic phases with the increasing Cr content in Fe1-xCrxVO4. Comprehensive studies related to the structural changes in Fe1-xCrxVO4 solid solutions lead us to detailed phase diagrams which shall be characteristic for room temperature structural and temperature dependent magnetic transitions in these solid solutions, respectively.
NASA Astrophysics Data System (ADS)
Jiang, Yewei; Luo, Jie; Wu, Yongquan
2017-06-01
Empirical potential is vital to the classic atomic simulation, especially for the study of phase transitions, as well as the solid-interface. In this paper, we attempt to set up a uniform procedure for the validation among different potentials before the formal simulation study of phase transitions of metals. Two main steps are involved: (1) the prediction of the structures of both solid and liquid phases and their mutual transitions, i.e. melting and crystallization; (2) the prediction of vital thermodynamic (the equilibrium melting point at ambient pressure) and dynamic properties (the degrees of superheating and undercooling). We applied this procedure to the testing of seven published embedded-atom potentials (MKBA (Mendelev et al 2008 Philos. Mag. 88 1723), MFMP (Mishin et al 1999 Phys. Rev. B 59 3393), MDSL (Sturgeon and Laird 2000 Phys. Rev. B 62 14720), ZM (Zope and Mishin 2003 Phys. Rev. B 68 024102), LEA (Liu et al 2004 Model. Simul. Mater. Sci. Eng. 12 665), WKG (Winey et al 2009 Model. Simul. Mater. Sci. Eng. 17 055004) and ZJW (Zhou et al 2004 Phys. Rev. B 69 144113)) for the description of the solid-liquid transition of Al. All the predictions of structure, melting point and superheating/undercooling degrees were compared with the experiments or theoretical calculations. Then, two of them, MKBA and MDSL, were proven suitable for the study of the solid-liquid transition of Al while the residuals were unqualified. However, potential MKBA is more accurate to predict the structures of solid and liquid, while MDSL works a little better in the thermodynamic and dynamic predictions of solid-liquid transitions.
Melting along the Hugoniot and solid phase transition for Sn via sound velocity measurements
NASA Astrophysics Data System (ADS)
Song, Ping; Cai, Ling-cang; Tao, Tian-jiong; Yuan, Shuai; Chen, Hong; Huang, Jin; Zhao, Xin-wen; Wang, Xue-jun
2016-11-01
It is very important to determine the phase boundaries for materials with complex crystalline phase structures to construct their corresponding multi-phase equation of state. By measuring the sound velocity of Sn with different porosities, different shock-induced melting pressures along the solid-liquid phase boundary could be obtained. The incipient shock-induced melting of porous Sn samples with two different porosities occurred at a pressure of about 49.1 GPa for a porosity of 1.01 and 45.6 GPa for a porosity of 1.02, based on measurements of the sound velocity. The incipient shock-induced melting pressure of solid Sn was revised to 58.1 GPa using supplemental measurements of the sound velocity. Trivially, pores in Sn decreased the shock-induced melting pressure. Based on the measured longitudinal sound velocity data, a refined solid phase transition and the Hugoniot temperature-pressure curve's trend are discussed. No bcc phase transition occurs along the Hugoniot for porous Sn; further investigation is required to understand the implications of this finding.
The major volume /density/ of solid oxygen in equilibrium with vapor
NASA Technical Reports Server (NTRS)
Roder, H. M.
1979-01-01
Data from the literature on the molar volume of solid oxygen have been compiled and critically analyzed. A correlated and thermodynamically consistent set of molar volumes, including the volume changes at the various solid phase transitions, is presented. Evidence for the existence of a delta-solid phase is reviewed. Uncertainties in the data and in the recommended set of values are discussed.
Workshop Report: Fundamental Reactions in Solid Propellant Combustion
1979-05-01
combustion conditions. 6. What effect might a pressure-induced phase transition to a polymorph other than 6- HMX have on the pressure slope break during...pure HMX as well. Nevertheless, it is recommended that the high pressure polymorphs of HMX and RDX be determined. It was also felt that there...plateau burning phenomena E. Solid phase, surface, gas phase reactions F. Phase transitions : melting, vaporization, polymorphs G. Flame
Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries.
Zhu, YinBo; Wang, FengChao; Wu, HengAn
2016-08-07
Graphene confinement provides a new physical and mechanical environment with ultrahigh van der Waals pressure, resulting in new quasi-two-dimensional phases of few-layer ice. Polymorphic transition can occur in bilayer constrained water/ice system. Here, we perform a comprehensive study of the phase transition of AA-stacked bilayer water constrained within a graphene nanocapillary. The compression-limit and superheating-limit (phase) diagrams are obtained, based on the extensive molecular-dynamics simulations at numerous thermodynamic states. Liquid-to-solid, solid-to-solid, and solid-to-liquid-to-solid phase transitions are observed in the compression and superheating of bilayer water. Interestingly, there is a temperature threshold (∼275 K) in the compression-limit diagram, which indicates that the first-order and continuous-like phase transitions of bilayer water depend on the temperature. Two obviously different physical processes, compression and superheating, display similar structural evolution; that is, square ice-nanotube arrays (BL-VHDI) will bend first and then transform into bilayer triangular AA stacking ice (BL-AAI). The superheating limit of BL-VHDI exhibits local maxima, while that of BL-AAI increases monotonically. More importantly, from a mechanics point of view, we propose a novel mechanism of the transformation from BL-VHDI to BL-AAI, both for the compression and superheating limits. This structural transformation can be regarded as the "buckling failure" of the square-ice-nanotube columns, which is dominated by the lateral pressure.
NASA Astrophysics Data System (ADS)
Pradhan, Lagen Kumar; Pandey, Rabichandra; Kumar, Sunil; Supriya, Sweety; Kar, Manoranjan
2018-04-01
Effect of lattice distortion on diffuse phase transition in BNBTO solid solutions near Morphotropic phase boundary (MPB) has been investigated. Solid solutions of (Bi0.5Na0.5)1-xBaxTiO3 (with mole % of x= 0.04, 0.05, 0.06, 0.07 and 0.08) were prepared by the planetary ball mill method in ethanol medium. Rietveld refinement technique with rhombohedral (R3c) and tetragonal (P4bm) crystal symmetry has been employed for structural as well as phase analysis of the solid solutions. Both rhombohedral and tetragonal lattice distortion (c/a) tends toward the pseudo-cubic crystal symmetry with the increase of mole fraction of Ba2+ near MPB (x= 6 mole %). Also, the average crystallite size and grain size decrease with increase of mole fraction of Ba2+ in BNT ceramic are due to larger ionic radius of Ba2+ and grain boundary pinning process in the solid solutions respectively. Additionally, depolarization temperature (Td) and maximum temperature (Tm) reduces due to the lattice distortion of both the phases in BNBTO solid solutions, which is explained extensively. Significant increase of dielectric constant has been observed near MPB composition (x=6%) in BNBTO solid solutions.
Thermodynamics of water intrusion in nanoporous hydrophobic solids.
Cailliez, Fabien; Trzpit, Mickael; Soulard, Michel; Demachy, Isabelle; Boutin, Anne; Patarin, Joël; Fuchs, Alain H
2008-08-28
We report a joint experimental and molecular simulation study of water intrusion in silicalite-1 and ferrerite zeolites. The main conclusion of this study is that water condensation takes place through a genuine first-order phase transition, provided that the interconnected pores structure is 3-dimensional. In the extreme confinement situation (ferrierite zeolite), condensation takes place through a continuous transition, which is explained by a shift of both the first-order transition line and the critical point with increasing confinement. The present findings are at odds with the common belief that conventional phase transitions cannot take place in microporous solids such as zeolites. The most important features of the intrusion/extrusion process can be understood in terms of equilibrium thermodynamics considerations. We believe that these findings are very general for hydrophobic solids, i.e. for both nonwetting as well as wetting water-solid interface systems.
Phase transition thermodynamics of bisphenols.
Costa, José C S; Dávalos, Juan Z; Santos, Luís M N B F
2014-10-16
Herein we have studied, presented, and analyzed the phase equilibria thermodynamics of a bisphenols (BP-A, BP-E, BP-F, BP-AP, and BP-S) series. In particular, the heat capacities, melting temperatures, and vapor pressures at different temperatures as well as the standard enthalpies, entropies, and Gibbs energies of phase transition (fusion and sublimation) were experimentally determined. Also, we have presented the phase diagrams of each bisphenol derivative and investigated the key parameters related to the thermodynamic stability of the condensed phases. When all the bisphenol derivatives are compared at the same conditions, solids BP-AP and BP-S present lower volatilities (higher Gibbs energy of sublimation) and high melting temperatures due to the higher stability of their solid phases. Solids BP-A and BP-F present similar stabilities, whereas BP-E is more volatile. The introduction of -CH3 groups in BP-F (giving BP-E and BP-A) leads an entropic differentiation in the solid phase, whereas in the isotropic liquids the enthalpic and entropic differentiations are negligible.
Solid-Solid Phase Transition Kinetics of FOX-7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnham, A K; Weese, R K; Wang, R
Since it was developed in the late 1990s, 1,1-diamino-2,2-dinitroethene (FOX-7), with lower sensitivity and comparable performance to RDX, has received increasing interest. This paper will present our results for the phase changes of FOX-7 using DSC and HFC (Heat Flow Calorimetry). DSC thermal curves recorded at linear heating rates of 0.10, 0.35 and 1.0 C min{sup -1} show two endothermic peaks and two exothermic peaks. The two endothermic peaks represent solid-solid phase transitions, which have been observed in the literature at 114 C ({beta}-{gamma}) and 159 C ({gamma}-{delta}) by both DSC and XPD (X-ray powder diffraction) measurements. The first transitionmore » shifts from 114.5 to 115.8 C as the heating rate increases from 0.10 to 1.0 C min{sup -1}, while the second transition shifts from 158.5 to 160.4 C. Cyclical heating experiments show the endotherms and exotherms for a first heating through the {gamma} phase to the {delta} phase, a cooling and reversion to the {alpha} or {beta} phase, and a second heating to the {gamma} and {delta} phases. The data are interpreted using kinetic models with thermodynamic constraints.« less
Liquid-liquid phase transformations and the shape of the melting curve.
Makov, G; Yahel, E
2011-05-28
The phase diagram of elemental liquids has been found to be surprisingly rich, including variations in the melting curve and transitions in the liquid phase. The effect of these transitions in the liquid state on the shape of the melting curve is analyzed. First-order phase transitions intersecting the melting curve imply piecewise continuous melting curves, with solid-solid transitions generating upward kinks or minima and liquid-liquid transitions generating downward kinks or maxima. For liquid-liquid phase transitions proposed for carbon, phosphorous selenium, and possibly nitrogen, we find that the melting curve exhibits a kink. Continuous transitions imply smooth extrema in the melting curve, the curvature of which is described by an exact thermodynamic relation. This expression indicates that a minimum in the melting curve requires the solid compressibility to be greater than that of the liquid, a very unusual situation. This relation is employed to predict the loci of smooth maxima at negative pressures for liquids with anomalous melting curves. The relation between the location of the melting curve maximum and the two-state model of continuous liquid-liquid transitions is discussed and illustrated by the case of tellurium. © 2011 American Institute of Physics
Shape and Symmetry Determine Two-Dimensional Melting Transitions of Hard Regular Polygons
NASA Astrophysics Data System (ADS)
Anderson, Joshua A.; Antonaglia, James; Millan, Jaime A.; Engel, Michael; Glotzer, Sharon C.
2017-04-01
The melting transition of two-dimensional systems is a fundamental problem in condensed matter and statistical physics that has advanced significantly through the application of computational resources and algorithms. Two-dimensional systems present the opportunity for novel phases and phase transition scenarios not observed in 3D systems, but these phases depend sensitively on the system and, thus, predicting how any given 2D system will behave remains a challenge. Here, we report a comprehensive simulation study of the phase behavior near the melting transition of all hard regular polygons with 3 ≤n ≤14 vertices using massively parallel Monte Carlo simulations of up to 1 ×106 particles. By investigating this family of shapes, we show that the melting transition depends upon both particle shape and symmetry considerations, which together can predict which of three different melting scenarios will occur for a given n . We show that systems of polygons with as few as seven edges behave like hard disks; they melt continuously from a solid to a hexatic fluid and then undergo a first-order transition from the hexatic phase to the isotropic fluid phase. We show that this behavior, which holds for all 7 ≤n ≤14 , arises from weak entropic forces among the particles. Strong directional entropic forces align polygons with fewer than seven edges and impose local order in the fluid. These forces can enhance or suppress the discontinuous character of the transition depending on whether the local order in the fluid is compatible with the local order in the solid. As a result, systems of triangles, squares, and hexagons exhibit a Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) predicted continuous transition between isotropic fluid and triatic, tetratic, and hexatic phases, respectively, and a continuous transition from the appropriate x -atic to the solid. In particular, we find that systems of hexagons display continuous two-step KTHNY melting. In contrast, due to symmetry incompatibility between the ordered fluid and solid, systems of pentagons and plane-filling fourfold pentilles display a one-step first-order melting of the solid to the isotropic fluid with no intermediate phase.
Temperature-Controlled High-Speed AFM: Real-Time Observation of Ripple Phase Transitions.
Takahashi, Hirohide; Miyagi, Atsushi; Redondo-Morata, Lorena; Scheuring, Simon
2016-11-01
With nanometer lateral and Angstrom vertical resolution, atomic force microscopy (AFM) has contributed unique data improving the understanding of lipid bilayers. Lipid bilayers are found in several different temperature-dependent states, termed phases; the main phases are solid and fluid phases. The transition temperature between solid and fluid phases is lipid composition specific. Under certain conditions some lipid bilayers adopt a so-called ripple phase, a structure where solid and fluid phase domains alternate with constant periodicity. Because of its narrow regime of existence and heterogeneity ripple phase and its transition dynamics remain poorly understood. Here, a temperature control device to high-speed atomic force microscopy (HS-AFM) to observe dynamics of phase transition from ripple phase to fluid phase reversibly in real time is developed and integrated. Based on HS-AFM imaging, the phase transition processes from ripple phase to fluid phase and from ripple phase to metastable ripple phase to fluid phase could be reversibly, phenomenologically, and quantitatively studied. The results here show phase transition hysteresis in fast cooling and heating processes, while both melting and condensation occur at 24.15 °C in quasi-steady state situation. A second metastable ripple phase with larger periodicity is formed at the ripple phase to fluid phase transition when the buffer contains Ca 2+ . The presented temperature-controlled HS-AFM is a new unique experimental system to observe dynamics of temperature-sensitive processes at the nanoscopic level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The role of the "Casimir force analogue" at the microscopic processes of crystallization and melting
NASA Astrophysics Data System (ADS)
Chuvildeev, V. N.; Semenycheva, A. V.
2016-10-01
Melting (crystallization), a phase transition from a crystalline solid to a liquid state, is a common phenomenon in nature. We suggest a new factor, "the Casimir force analogue", to describe mechanisms of melting and crystallization. The Casimir force analogue is a force occurring between the surfaces of solid and liquid phases of metals caused by different energy density of phonons of these phases. It explains abrupt changes in geometry and thermodynamic parameters at a melting point. "The Casimir force analogue" helps to estimate latent melting heat and to gain an insight into a solid-liquid transition problem.
Carlsten, R.W.; Nissen, D.A.
1973-03-06
The patent describes an improved thermal battery whose novel design eliminates various disadvantages of previous such devices. Its major features include a halide cathode, a solid metal halide electrolyte which has a substantially greater electrical conductance after a phase transition at some temperature, and a means for heating its electrochemical cells to activation temperature.
Structural phase transition at high temperatures in solid molecular hydrogen and deuterium
NASA Astrophysics Data System (ADS)
Cui, T.; Takada, Y.; Cui, Q.; Ma, Y.; Zou, G.
2001-07-01
We study the effect of temperature up to 1000 K on the structure of dense molecular para-hydrogen (p-H2) and ortho-deuterium (o-D2), using the path-integral Monte Carlo method. We find a structural phase transition from orientationally disordered hexagonal close packed (hcp) to an orthorhombic structure of Cmca symmetry before melting. The transition is basically induced by thermal fluctuations, but quantum fluctuations of protons (deuterons) are important in determining the transition temperature through effectively hardening the intermolecular interaction. We estimate the phase line between hcp and Cmca phases as well as the melting line of the Cmca solid.
Experimental evidence for an absorbing phase transition underlying yielding of a soft glass
NASA Astrophysics Data System (ADS)
Nagamanasa, K. Hima; Gokhale, Shreyas; Sood, A. K.; Ganapathy, Rajesh
2014-03-01
A characteristic feature of solids ranging from foams to atomic crystals is the existence of a yield point, which marks the threshold stress beyond which a material undergoes plastic deformation. In hard materials, it is well-known that local yield events occur collectively in the form of intermittent avalanches. The avalanche size distributions exhibit power-law scaling indicating the presence of self-organized criticality. These observations led to predictions of a non-equilibrium phase transition at the yield point. By contrast, for soft solids like gels and dense suspensions, no such predictions exist. In the present work, by combining particle scale imaging with bulk rheology, we provide a direct evidence for a non-equilibrium phase transition governing yielding of an archetypal soft solid - a colloidal glass. The order parameter and the relaxation time exponents revealed that yielding is an absorbing phase transition that belongs to the conserved directed percolation universality class. We also identified a growing length scale associated with clusters of particles with high Debye-Waller factor. Our findings highlight the importance of correlations between local yield events and may well stimulate the development of a unified description of yielding of soft solids.
Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, YinBo; Wang, FengChao, E-mail: wangfc@ustc.edu.cn; Wu, HengAn
Graphene confinement provides a new physical and mechanical environment with ultrahigh van der Waals pressure, resulting in new quasi-two-dimensional phases of few-layer ice. Polymorphic transition can occur in bilayer constrained water/ice system. Here, we perform a comprehensive study of the phase transition of AA-stacked bilayer water constrained within a graphene nanocapillary. The compression-limit and superheating-limit (phase) diagrams are obtained, based on the extensive molecular-dynamics simulations at numerous thermodynamic states. Liquid-to-solid, solid-to-solid, and solid-to-liquid-to-solid phase transitions are observed in the compression and superheating of bilayer water. Interestingly, there is a temperature threshold (∼275 K) in the compression-limit diagram, which indicates thatmore » the first-order and continuous-like phase transitions of bilayer water depend on the temperature. Two obviously different physical processes, compression and superheating, display similar structural evolution; that is, square ice-nanotube arrays (BL-VHDI) will bend first and then transform into bilayer triangular AA stacking ice (BL-AAI). The superheating limit of BL-VHDI exhibits local maxima, while that of BL-AAI increases monotonically. More importantly, from a mechanics point of view, we propose a novel mechanism of the transformation from BL-VHDI to BL-AAI, both for the compression and superheating limits. This structural transformation can be regarded as the “buckling failure” of the square-ice-nanotube columns, which is dominated by the lateral pressure.« less
NASA Astrophysics Data System (ADS)
Hatke, Anthony; Engel, Lloyd; Liu, Yang; Shayegan, Mansour; Pfeiffer, Loren; West, Ken; Baldwin, Kirk
2015-03-01
The termination of the low Landau filling factor (ν) fractional quantum Hall series for a single layer two dimensional system results in the formation of a pinned Wigner solid for ν < 1 / 5. In a wide quantum well the system can support a bilayer state in which interlayer and intralayer interactions become comparable, which is measured in traditional transport as an insulating state for ν < 1 / 2. We perform microwave spectroscopic studies of this bilayer state and observe that this insulator exhibits a resonance, a signature of a solid phase. Additionally, we find that as we increase the density of the well at fixed ν this bilayer solid exhibits multiple sharp reductions in the resonance amplitude vs ν. This behavior is characteristic of multiple phase transitions, which remain hidden from dc transport measurements.
Mixed-order phase transition in a colloidal crystal.
Alert, Ricard; Tierno, Pietro; Casademunt, Jaume
2017-12-05
Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid-solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field [Formula: see text] At the transition field [Formula: see text], the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length [Formula: see text] Mean-field critical exponents are predicted, since the upper critical dimension of the transition is [Formula: see text] Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions.
Mixed-order phase transition in a colloidal crystal
NASA Astrophysics Data System (ADS)
Alert, Ricard; Tierno, Pietro; Casademunt, Jaume
2017-12-01
Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid-solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field H. At the transition field Hs, the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length ξ∝|H2-Hs2|-1/2. Mean-field critical exponents are predicted, since the upper critical dimension of the transition is du=2. Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions.
Polymorphic phase transitions and molecular motion in pyridinium chlorochromate
NASA Astrophysics Data System (ADS)
Pajaķ, Z.; Szafrańska, B.; Czarnecki, P.; Mayer, J.; Kozak, A.
1997-08-01
DTA, DSC, NMR and dielectric studies have been performed for pyridinium chlorochromate over a wide temperature range. A sequence of four solid-solid phase transitions was discovered. The in-plane complex reorientation of the cation is described by a three-well potential model with two correlation times. At higher temperatures one observes simultaneous cation tumbling and diffusion. Thus existence of a new ionic plastic phase is revealed. The domain structure observed suggests ferroelastic properties of the compound.
NASA Astrophysics Data System (ADS)
Ning, Guo; Guangfu, Zeng; Shiquan, Xi
1992-12-01
The solid-solid phase transitions in the perovskite-type layer compound [ n-C 16H 33NH 3] 2CoCl 4 have been studied by infrared spectroscopy. A new phase transition at 340 K was found by comparison with differential scanning calorimetry results. A temperature dependence study of the infrared spectra provides evidence of the occurrence of structural phase transitions related to the dynamics of the alkylammonium ions and hydrogen bonds. The main transition at 374 K corresponds to the conformational order-disorder change in the chain, which probably couples with reorientational motions of the NH 3 polar heads. GTG or GTG' defects appear in the high temperature disordered phase.
Study of Ti 4+ substitution in ZrW 2O 8 negative thermal expansion materials
NASA Astrophysics Data System (ADS)
De Buysser, Klaartje; Van Driessche, Isabel; Putte, Bart Vande; Schaubroeck, Joseph; Hoste, Serge
2007-08-01
Powder XRD-analysis and thermo-mechanical analysis on sintered TiO 2-WO 3-ZrO 2 mixtures revealed the formation of Zr 1-xTi xW 2O 8 solid solutions. A noticeable decrease in unit cell parameter ' a' and in the order-disorder transition temperature could be seen in the case of Zr 1-xTi xW 2O 8 solid solutions. Studies performed on other ZrW 2O 8 solid solutions have attributed an increase in phase transition temperature to a decrease in free lattice volume, whereas a decrease in phase transition temperature was suggested to be due to the presence of a more disordered state. Our studies indicate that the phase transition temperature in our materials is strongly influenced by the bond dissociation energy of the substituting ion-oxygen bond. A decrease in bond strength may compensate for the effect of a decrease in lattice free volume, lowering the phase transition temperature as the degree of substitution by Ti 4+ increases. This hypothesis is proved by differential scanning calorimetry.
Benzocaine polymorphism: pressure-temperature phase diagram involving forms II and III.
Gana, Inès; Barrio, Maria; Do, Bernard; Tamarit, Josep-Lluís; Céolin, René; Rietveld, Ivo B
2013-11-18
Understanding the phase behavior of an active pharmaceutical ingredient in a drug formulation is required to avoid the occurrence of sudden phase changes resulting in decrease of bioavailability in a marketed product. Benzocaine is known to possess three crystalline polymorphs, but their stability hierarchy has so far not been determined. A topological method and direct calorimetric measurements under pressure have been used to construct the topological pressure-temperature diagram of the phase relationships between the solid phases II and III, the liquid, and the vapor phase. In the process, the transition temperature between solid phases III and II and its enthalpy change have been determined. Solid phase II, which has the highest melting point, is the more stable phase under ambient conditions in this phase diagram. Surprisingly, solid phase I has not been observed during the study, even though the scarce literature data on its thermal behavior appear to indicate that it might be the most stable one of the three solid phases. Copyright © 2013 Elsevier B.V. All rights reserved.
Ultraslow Phase Transitions in an Anion-Anion Hydrogen-Bonded Ionic Liquid.
Faria, Luiz F O; Lima, Thamires A; Ferreira, Fabio F; Ribeiro, Mauro C C
2018-02-15
A Raman spectroscopy study of 1-ethyl-3-methylimidazolium hydrogen sulfate, [C 2 C 1 im][HSO 4 ], as a function of temperature, has been performed to reveal the role played by anion-anion hydrogen bond on the phase transitions of this ionic liquid. Anion-anion hydrogen bonding implies high viscosity, good glass-forming ability, and also moderate fragility of [C 2 C 1 im][HSO 4 ] in comparison with other ionic liquids. Heating [C 2 C 1 im][HSO 4 ] from the glassy phase results in cold crystallization at ∼245 K. A solid-solid transition (crystal I → crystal II) is barely discernible in calorimetric measurements at typical heating rates, but it is clearly revealed by Raman spectroscopy and X-ray diffraction. Raman spectroscopy indicates that crystal I has extended ([HSO 4 ] - ) n chains of hydrogen-bonded anions but crystal II has not. Raman spectra recorded at isothermal condition show the ultraslow dynamics of cold crystallization, solid-solid transition, and continuous melting of [C 2 C 1 im][HSO 4 ]. A brief comparison is also provided between [C 2 C 1 im][HSO 4 ] and [C 4 C 1 im][HSO 4 ], as Raman spectroscopy shows that the latter does not form the crystalline phase with extended anion-anion chains.
Liquid-solid phase transition of hydrogen and deuterium in silica aerogel
NASA Astrophysics Data System (ADS)
Van Cleve, E.; Worsley, M. A.; Kucheyev, S. O.
2014-10-01
Behavior of hydrogen isotopes confined in disordered low-density nanoporous solids remains essentially unknown. Here, we use relaxation calorimetry to study freezing and melting of H2 and D2 in an ˜85%-porous base-catalyzed silica aerogel. We find that liquid-solid transition temperatures of both isotopes inside the aerogel are depressed. The phase transition takes place over a wide temperature range of ˜4 K and non-trivially depends on the liquid filling fraction, reflecting the broad pore size distribution in the aerogel. Undercooling is observed for both H2 and D2 confined inside the aerogel monolith. Results for H2 and D2 are extrapolated to tritium-containing hydrogens with the quantum law of corresponding states.
NASA Astrophysics Data System (ADS)
Chen, Nian-Ke; Li, Xian-Bin; Bang, Junhyeok; Wang, Xue-Peng; Han, Dong; West, Damien; Zhang, Shangbai; Sun, Hong-Bo
2018-05-01
Time-dependent density-functional theory molecular dynamics reveals an unexpected effect of optical excitation in the experimentally observed rhombohedral-to-cubic transition of GeTe. The excitation induces coherent forces along [001], which may be attributed to the unique energy landscape of Peierls-distorted solids. The forces drive the A1 g optical phonon mode in which Ge and Te move out of phase. Upon damping of the A1 g mode, phase transition takes place, which involves no atomic diffusion, defect formation, or the nucleation and growth of the cubic phase.
New Density Functional Approach for Solid-Liquid-Vapor Transitions in Pure Materials
NASA Astrophysics Data System (ADS)
Kocher, Gabriel; Provatas, Nikolas
2015-04-01
A new phase field crystal (PFC) type theory is presented, which accounts for the full spectrum of solid-liquid-vapor phase transitions within the framework of a single density order parameter. Its equilibrium properties show the most quantitative features to date in PFC modeling of pure substances, and full consistency with thermodynamics in pressure-volume-temperature space is demonstrated. A method to control either the volume or the pressure of the system is also introduced. Nonequilibrium simulations show that 2- and 3-phase growth of solid, vapor, and liquid can be achieved, while our formalism also allows for a full range of pressure-induced transformations. This model opens up a new window for the study of pressure driven interactions of condensed phases with vapor, an experimentally relevant paradigm previously missing from phase field crystal theories.
Lang, Anthony J; Vyazovkin, Sergey
2008-09-11
Dissolving of ammonium nitrate in highly polar polymers such as poly(vinylpyrrolidone) and/or poly(acrylamide) can result in the formation of single-phase glassy solid materials, in which NH 4 (+) and NO 3 (-) are separated through an ion-dipole interaction with the polymer matrix. Below the glass transition temperature of the polymer matrix the resulting materials remain phase and thermally stable as demonstrated through the absence of decomposition as well as the solid-solid transitions and melting of ammonium nitrate. The structure of the materials is explored by Fourier transform infrared spectroscopy and density functional calculations. Differential scanning calorimetry, thermogravimetry, and isoconversional kinetic analysis are applied to characterize the thermal behavior of the materials.
Rosenholm, Jarl B
2018-03-01
The perfect gas law is used as a reference when selecting state variables (P, V, T, n) needed to characterize ideal gases (vapors), liquids and solids. Van der Waals equation of state is used as a reference for models characterizing interactions in liquids, solids and their mixtures. Van der Waals loop introduces meta- and unstable states between the observed gas (vapor)-liquid P-V transitions at low T. These intermediate states are shown to appear also between liquid-liquid, liquid-solid and solid-solid phase transitions. First-order phase transitions are characterized by a sharp discontinuity of first-order partial derivatives (P, S, V) of Helmholtz and Gibbs free energies. Second-order partial derivatives (K T , B, C V , C P , E) consist of a static contribution relating to second-order phase transitions and a relaxation contribution representing the degree of first-order phase transitions. Bimodal (first-order) and spinodal (second-order) phase boundaries are used to separate stable phases from metastable and unstable phases. The boundaries are identified and quantified by partial derivatives of molar Gibbs free energy or chemical potentials with respect to P, S, V and composition (mole fractions). Molecules confined to spread Langmuir monolayers or adsorbed Gibbs monolayers are characterized by equation of state and adsorption isotherms relating to a two-dimensional van der Waals equation of state. The basic work of two-dimensional wetting (cohesion, adsorption, spreading, immersion), have to be adjusted by a horizontal surface pressure in the presence of adsorbed vapor layers. If the adsorption is extended to liquid films a vertical surface pressure (Π) may be added to account for the lateral interaction, thus restoring PV = ΠAh dependence of thin films. Van der Waals attraction, Coulomb repulsion and structural hydration forces contribute to the vertical surface pressure. A van der Waals type coexistence of ordered (dispersed) and disordered (aggregated) phases is shown to exist when liquid vapor is confined in capillaries (condensation-liquefaction-evaporation and flux). This pheno-menon can be experimentally illustrated with suspended nano-sized particles (flocculation-coagulation-peptisation of colloidal sols) being confined in sample holders of varying size. The self-assembled aggregates represent critical self-similar equilibrium structures corres-ponding to rate determining complexes in kinetics. Overall, a self-consistent thermodynamic framework is established for the characterization of two- and three-dimensional phase separations in one-, two- and three-component systems. Copyright © 2018 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Yalcin, Fatma Aggul
2012-01-01
The aim of this study was to explore pre-service primary teachers' understandings of the effect of temperature and pressure on the solid-liquid phase transition of water. In the study a survey approach was used, and the sample consisted of one-hundred and three, third year pre-service primary science teachers. As a tool for data collection, a test…
Superprotonic solid acids: Structure, properties, and applications
NASA Astrophysics Data System (ADS)
Boysen, Dane Andrew
In this work, the structure and properties of superprotonic MH nXO4-type solid acids (where M = monovalent cation, X = S, Se, P, As, and n = 1, 2) have been investigated and, for the first time, applied in fuel cell devices. Several MH nXO4-type solid acids are known to undergo a "superprotonic" solid-state phase transition upon heating, in which the proton conductivity increases by several orders of magnitude and takes on values of ˜10 -2O-1cm-1. The presence of superprotonic conductivity in fully hydrogen bonded solid acids, such as CsH2PO4, has long been disputed. In these investigations, through the use of pressure, the unequivocal identification of superprotonic behavior in both RbH2PO4 and CsH2PO 4 has been demonstrated, whereas for chemically analogous compounds with smaller cations, such as KH2PO4 and NaH2PO 4, superprotonic conductivity was notably absent. Such observations have led to the adoption of radius ratio rules, in an attempt to identify a critical ion size effect on the presence of superprotonic conductivity in solid acids. It has been found that, while ionic size does play a prominent role in the presence of superprotonic behavior in solid acids, equally important are the effects of ionic and hydrogen bonding. Next, the properties of superprotonic phase transition have been investigated from a thermodynamic standpoint. With contributions from this work, a formulation has been developed that accounts for the entropy resulting from both the disordering of both hydrogen bonds and oxy-anion librations in the superprotonic phase of solid acids. This formulation, fundamentally derived from Linus Pauling's entropy rules for ice, accurately accounts for the change in entropy through a superprotonic phase transition. Lastly, the first proof-of-priniciple fuel cells based upon solid acid electrolytes have been demonstrated. Initial results based upon a sulfate electrolyte, CsHSO4, demonstrated the viability of solid acids, but poor chemical stability under the highly reducing H2 gas environment of the fuel cell anode. Later experiments employing a CsH2PO4 electrolyte proved quite successful. The results of these solid acid-based fuel cell measurements suggest solid acids could serve as an alternative to current state-of-the-art fuel cell electrolytes.
Using Peltier Cells to Study Solid-Liquid-Vapour Transitions and Supercooling
ERIC Educational Resources Information Center
Torzo, Giacomo; Soletta, Isabella; Branca, Mario
2007-01-01
We propose an apparatus for teaching experimental thermodynamics in undergraduate introductory courses, using thermoelectric modules and a real-time data acquisition system. The device may be made at low cost, still providing an easy approach to the investigation of liquid-solid and liquid-vapour phase transitions and of metastable states…
Optical absorbances of Gd3Ga5O12 single crystals under shock compression to 211 GPa
NASA Astrophysics Data System (ADS)
Liu, Q. C.; Zhou, X. M.; Luo, S. N.
2017-04-01
Shock-induced opacity in Gd3Ga5O12 (GGG) single crystals is investigated by transmission/emission measurements at 16 wavelengths (400-800 nm), as well as complementary particle velocity measurements at 1550 nm, in the pressure range of 47-211 GPa. Optical transmission spectra through the shocked samples are measured with a in-situ, shock-generated light source, and the resultant extinction coefficients of different wavelengths and shock pressures obtained. As shock strength increases, the optical opacity of the shocked GGG increases and peaks at 75 GPa (the transparent-opaque transition), drops at 75-100 GPa (the opaque-transparent transition), and then increases again. The transparency recovery coincides with a solid-solid phase transition. The microstructure changes associated with the solid-solid phase transition and plastic deformation most likely cause the loss and recovery of transparency. GGG can be useful as a high pressure window for laser velocimetry (1550 nm) or optical pyrometry (400-800 nm) in the ranges of 100-140 GPa and 80-120 GPa, respectively.
Liquid–solid phase transition of hydrogen and deuterium in silica aerogel
Van Cleve, E.; Worsley, M. A.; Kucheyev, S. O.
2014-10-30
Behavior of hydrogen isotopes confined in disordered low-density nanoporous solids remains essentially unknown. Here, we use relaxation calorimetry to study freezing and melting of H 2 and D 2 in an ~85%-porous base-catalyzed silica aerogel. In this work, we find that liquid–solid transition temperatures of both isotopes inside the aerogel are depressed. The phase transition takes place over a wide temperature range of ~4 K and non-trivially depends on the liquid filling fraction, reflecting the broad pore size distribution in the aerogel. Undercooling is observed for both H 2 and D 2 confined inside the aerogel monolith. Lastly, results formore » H 2 and D 2 are extrapolated to tritium-containing hydrogens with the quantum law of corresponding states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morelock, Cody R.; Gallington, Leighanne C.; Wilkinson, Angus P., E-mail: angus.wilkinson@chemistry.gatech.edu
2015-02-15
With the goal of thermal expansion control, the synthesis and properties of Sc{sub 1−x}Al{sub x}F{sub 3} were investigated. The solubility limit of AlF{sub 3} in ScF{sub 3} at ∼1340 K is ∼50%. Solid solutions (x≤0.50) were characterized by synchrotron powder diffraction at ambient pressure between 100 and 900 K and at pressures <0.414 GPa while heating from 298 to 523 K. A phase transition from cubic to rhombohedral is observed. The transition temperature increases smoothly with Al{sup 3+} content, approaching 500 K at the solid solubility limit, and also upon compression at fixed Al{sup 3+} content. The slope of themore » pressure–temperature phase boundary is ∼0.5 K MPa{sup −1}, which is steep relative to that for most symmetry-lowering phase transitions in perovskites. The volume coefficient of thermal expansion (CTE) for the rhombohedral phase is strongly positive, but the cubic-phase CTE varies from negative (x<0.15) to near-zero (x=0.15) to positive (x>0.20) between ∼600 and 800 K. The cubic solid solutions elastically stiffen on heating, while Al{sup 3+} substitution causes softening at a given temperature. - Graphical abstract: The cubic-phase coefficient of thermal expansion for Sc{sub 1−x}Al{sub x}F{sub 3}(solubility limit ∼50% at ∼1340 K) becomes more positive with increased Al{sup 3+} substitution, but the average isothermal bulk modulus decreases (elastic softening). - Highlights: • The solubility limit of AlF{sub 3} in ScF{sub 3} at ∼1340 K is ∼50%. • The phase transition temperature of Sc{sub 1−x}Al{sub x}F{sub 3} increases smoothly with x. • The cubic-phase volume CTE varies from negative to positive with increasing x. • The cubic solid solutions elastically stiffen on heating. • Al{sup 3+} substitution causes softening at a given temperature.« less
Method and apparatus for acoustic plate mode liquid-solid phase transition detection
Blair, Dianna S.; Freye, Gregory C.; Hughes, Robert C.; Martin, Stephen J.; Ricco, Antonio J.
1993-01-01
A method and apparatus for sensing a liquid-solid phase transition event is provided which comprises an acoustic plate mode detecting element placed in contact with a liquid or solid material which generates a high-frequency acoustic wave that is attenuated to an extent based on the physical state of the material is contact with the detecting element. The attenuation caused by the material in contact with the acoustic plate mode detecting element is used to determine the physical state of the material being detected. The method and device are particularly suited for detecting conditions such as the icing and deicing of wings of an aircraft. In another aspect of the present invention, a method is provided wherein the adhesion of a solid material to the detecting element can be measured using the apparatus of the invention.
Monotropic polymorphism in a glass-forming metallic alloy
NASA Astrophysics Data System (ADS)
Pogatscher, S.; Leutenegger, D.; Schawe, J. E. K.; Maris, P.; Schäublin, R.; Uggowitzer, P. J.; Löffler, J. F.
2018-06-01
This study investigates the crystallization and phase transition behavior of the amorphous metallic alloy Au70Cu5.5Ag7.5Si17. This alloy has been recently shown to exhibit a transition of a metastable to a more stable crystalline state, occurring via metastable melting under strong non-equilibrium conditions. Such behavior had so far not been observed in other metallic alloys. In this investigation fast differential scanning calorimetry (FDSC) is used to explore crystallization and the solid–liquid–solid transition upon linear heating and during isothermal annealing, as a function of the conditions under which the metastable phase is formed. It is shown that the occurrence of the solid–liquid–solid transformation in FDSC depends on the initial conditions; this is explained by a history-dependent nucleation of the stable crystalline phase. The microstructure was investigated by scanning and transmission electron microscopy and x-ray diffraction. Chemical mapping was performed by energy dispersive x-ray spectrometry. The relationship between the microstructure and the phase transitions observed in FSDC is discussed with respect to the possible kinetic paths of the solid–liquid–solid transition, which is a typical phenomenon in monotropic polymorphism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Brian James
There is a scientific need to obtain new data to constrain and refine next generation multi-phase equation-of-state (EOS) for metals. Experiments are needed to locate phase boundaries, determine transition kinetic times, and to obtain EOS and Hugoniot data for relevant phases. The objectives of the current work was to examine the multiphase properties for cerium including the dynamic melt boundary and the low-pressure solid-solid phase transition through the critical point. These objectives were addressed by performing plate impact experiment that used multiple experimental configuration including front-surface impact experiments to directly measure transition kinetics, multislug experiments that used the overtake methodmore » to measure sound speeds at pressure, and preheat experiments to map out phase boundaries. Preliminary data and analysis obtained for cerium will be presented.« less
Model of cohesive properties and structural phase transitions in non-metallic solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majewski, J.A.; Vogl, P.
1986-01-01
We have developed a simple, yet microscopic and universal model for cohesive properties of solids. This model explains the physical mechanisms determining the chemical and predicts semiquantitatively static and dynamic cohesive properties. It predicts a substantial softening of the long-wavelength transverse optical phonons across the pressure induced phase transition from the zincblenda to rocksalt structure in II-VI compounds. The origin of this softening is shown to be closely related to ferroelectricity.
Raman spectra of solid benzene under high pressure
NASA Technical Reports Server (NTRS)
Thiery, M.-M.; Kobashi, K.; Spain, I. L.
1985-01-01
Raman spectra of solid benzene have been measured at room temperature up to about 140 kbar, using the diamond anvil cell. Effort has been focused upon the lattice vibration spectra at pressures above that of phase II. It is found that a change in slopes occurs in the frequency-pressure curves at about 40 kbar. Furthermore, a new band appears above 90 kbar. These features probably correspond respectively to the II-III phase transition, which has been reported previously, and a III-IV phase transition, reported here for the first time.
Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio
2016-04-21
We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.
Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon
2014-11-26
We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.
NASA Astrophysics Data System (ADS)
Mitchell, Melody L.; Dluhy, Richard A.
1989-12-01
Monolayer films of dimyristoyl-phosphatidic-acid (DMPA) at neutral and basic pH exhibit first-order phase transitions in their pressure-area curves. In situ external reflection FT-IR studies in the CH, stretching bands over this phase transition region exhibit a --6 cm-1 shift similar to that observed in previous studies of dipalmitoyl-phosphotidylcholine (DPPC)1. The acid form of DMPA at pH 3.0 does not exhibit the first order phase transition, but a ~1cm-1 frequency shift is observed in the liquid condensed phase and is also present in the neutral pH form. A solid-solid phase transition is proposed. Examination of the polar headgroup region (1300-960 cm-1)for acidic, neutral, and basic forms of DMPA give characteristic bands of each protonation state of PO3.
An Experiment in Physical Chemistry: Polymorphism and Phase Stability in Acetaminophen (Paracetamol)
ERIC Educational Resources Information Center
Myrick, Michael L.; Baranowski, Megan; Profeta, Luisa T. M.
2010-01-01
Differential scanning calorimetry analyses of two easily prepared polymorphs of acetaminophen (also known as paracetamol) are recorded. The density of the forms can be found in the literature. Rules for heats of transition, heats of fusion, and density, as well as methods for determining the solid-solid transition temperature between the forms,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ustinov, E. A., E-mail: eustinov@mail.wplus.net
This paper presents a refined technique to describe two-dimensional phase transitions in dense fluids adsorbed on a crystalline surface. Prediction of parameters of 2D liquid–solid equilibrium is known to be an extremely challenging problem, which is mainly due to a small difference in thermodynamic functions of coexisting phases and lack of accuracy of numerical experiments in case of their high density. This is a serious limitation of various attempts to circumvent this problem. To improve this situation, a new methodology based on the kinetic Monte Carlo method was applied. The methodology involves analysis of equilibrium gas–liquid and gas–solid systems undergoingmore » an external potential, which allows gradual shifting parameters of the phase coexistence. The interrelation of the chemical potential and tangential pressure for each system is then treated with the Gibbs–Duhem equation to obtain the point of intersection corresponding to the liquid/solid–solid equilibrium coexistence. The methodology is demonstrated on the krypton–graphite system below and above the 2D critical temperature. Using experimental data on the liquid–solid and the commensurate–incommensurate transitions in the krypton monolayer derived from adsorption isotherms, the Kr–graphite Lennard–Jones parameters have been corrected resulting in a higher periodic potential modulation.« less
Surface-initiated phase transition in solid hydrogen under the high-pressure compression
NASA Astrophysics Data System (ADS)
Lei, Haile; Lin, Wei; Wang, Kai; Li, Xibo
2018-03-01
The large-scale molecular dynamics simulations have been performed to understand the microscopic mechanism governing the phase transition of solid hydrogen under the high-pressure compression. These results demonstrate that the face-centered-cubic-to-hexagonal close-packed phase transition is initiated first at the surfaces at a much lower pressure than in the volume and then extends gradually from the surface to volume in the solid hydrogen. The infrared spectra from the surface are revealed to exhibit a different pressure-dependent feature from those of the volume during the high-pressure compression. It is thus deduced that the weakening intramolecular H-H bonds are always accompanied by hardening surface phonons through strengthening the intermolecular H2-H2 coupling at the surfaces with respect to the counterparts in the volume at high pressures. This is just opposite to the conventional atomic crystals, in which the surface phonons are softening. The high-pressure compression has further been predicted to force the atoms or molecules to spray out of surface to degrade the pressure. These results provide a glimpse of structural properties of solid hydrogen at the early stage during the high-pressure compression.
Romanenko, Konstantin; Pringle, Jennifer M; O'Dell, Luke A; Forsyth, Maria
2015-07-15
Organic ionic plastic crystals (OIPCs) show strong potential as solid-state electrolytes for lithium battery applications, demonstrating promising electrochemical performance and eliminating the need for a volatile and flammable liquid electrolyte. The ionic conductivity (σ) in these systems has recently been shown to depend strongly on polycrystalline morphology, which is largely determined by the sample's thermal history. [K. Romanenko et al., J. Am. Chem. Soc., 2014, 136, 15638]. Tailoring this morphology could lead to conductivities sufficiently high for battery applications, so a more complete understanding of how phenomena such as solid-solid phase transitions can affect the sample morphology is of significant interest. Anisotropic relaxation of nuclear spin magnetisation provides a new MRI based approach for studies of polycrystalline materials at both a macroscopic and molecular level. In this contribution, morphology alterations induced by solid-solid phase transitions in triisobutyl(methyl)phosphonium bis(fluorosulfonyl)imide (P1444FSI) and diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate (P1224PF6) are examined using magnetic resonance imaging (MRI), alongside nuclear magnetic resonance (NMR) spectroscopy, diffusion measurements and conductivity data. These observations are linked to molecular dynamics and structural behaviour crucial for the conductive properties of OIPCs. A distinct correlation is established between the conductivity at a given temperature, σ(T), and the intensity of the narrow NMR signal that is attributed to a mobile fraction, fm(T), of ions in the OIPC. To explain these findings we propose an analogy with the well-studied relationship between permeability (k) and void fraction (θ) in porous media, with k(θ) commonly quantified by a power-law dependence that can also be employed to describe σ(fm).
The role of solid-solid phase transitions in mantle convection
NASA Astrophysics Data System (ADS)
Faccenda, Manuele; Dal Zilio, Luca
2017-01-01
With changing pressure and temperature conditions, downwelling and upwelling crustal and mantle rocks experience several solid-solid phase transitions that affect the mineral physical properties owing to structural changes in the crystal lattice and to the absorption or release of latent heat. Variations in density, together with phase boundary deflections related to the non-null reaction slope, generate important buoyancy forces that add to those induced by thermal perturbations. These buoyancy forces are proportional to the density contrast between reactant and product phases, their volume fraction, the slope and the sharpness of the reaction, and affect the style of mantle convection depending on the system composition. In a homogeneous pyrolitic mantle there is little tendency for layered convection, with slabs that may stagnate in the transition zone because of the positive buoyancy caused by post-spinel and post-ilmenite reactions, and hot plumes that are accelerated by phase transformations in the 600-800 km depth range. By adding chemical and mineralogical heterogeneities as on Earth, phase transitions introduce bulk rock and volatiles filtering effects that generate a compositional gradient throughout the entire mantle, with levels that are enriched or depleted in one or more of these components. Phase transitions often lead to mechanical softening or hardening that can be related to a different intrinsic mechanical behaviour and volatile solubility of the product phases, the heating or cooling associated with latent heat, and the transient grain size reduction in downwelling cold material. Strong variations in viscosity would enhance layered mantle convection, causing slab stagnation and plume ponding. At low temperatures and relatively dry conditions, reactions are delayed due to the sluggish kinetics, so that non-equilibrium phase aggregates can persist metastably beyond the equilibrium phase boundary. Survival of low-density metastable olivine, Ringwoodite, pyroxene and pyrope garnet in the transition zone and uppermost lower mantle produces positive buoyancy forces that decrease the subduction velocity and may lead to slab stagnation in the transition zone. The presence of deep metastable portions is still debated, and should not be associated a-priori with a completely dry slab as field observations suggest that heterogeneously hydrated oceanic plates could contain metastable dry portions surrounded by transformed wet rocks.
Liquid–solid phase transition of hydrogen and deuterium in silica aerogel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Cleve, E.; Worsley, M. A.; Kucheyev, S. O., E-mail: kucheyev@llnl.gov
2014-10-28
Behavior of hydrogen isotopes confined in disordered low-density nanoporous solids remains essentially unknown. Here, we use relaxation calorimetry to study freezing and melting of H{sub 2} and D{sub 2} in an ∼85%-porous base-catalyzed silica aerogel. We find that liquid–solid transition temperatures of both isotopes inside the aerogel are depressed. The phase transition takes place over a wide temperature range of ∼4 K and non-trivially depends on the liquid filling fraction, reflecting the broad pore size distribution in the aerogel. Undercooling is observed for both H{sub 2} and D{sub 2} confined inside the aerogel monolith. Results for H{sub 2} and D{sub 2}more » are extrapolated to tritium-containing hydrogens with the quantum law of corresponding states.« less
Phase Transition of H 2 in Subnanometer Pores Observed at 75 K
Olsen, Raina J.; Gillespie, Andrew K.; Contescu, Cristian I.; ...
2017-10-30
In this paper, we report a phase transition in H 2 adsorbed in a locally graphitic Saran carbon with subnanometer pores 0.5–0.65 nm in width, in which two layers of hydrogen can just barely squeeze, provided they pack tightly. The phase transition is observed at 75 K, temperatures far higher than other systems in which an adsorbent is known to increase phase transition temperatures: for instance, H 2 melts at 14 K in the bulk, but at 20 K on graphite because the solid H 2 is stabilized by the surface structure. Here we observe a transition at 75 Kmore » and 77–200 bar: from a low-temperature, low-density phase to a high-temperature, higher density phase. We model the low-density phase as a monolayer commensurate solid composed mostly of para-H 2 (the ground nuclear spin state, S = 0) and the high-density phase as an orientationally ordered bilayer commensurate solid composed mostly of ortho-H 2 (S = 1). We attribute the increase in density with temperature to the fact that the oblong ortho-H 2 can pack more densely. The transition is observed using two experiments. The high-density phase is associated with an increase in neutron backscatter by a factor of 7.0 ± 0.1. Normally, hydrogen produces no backscatter (scattering angle >90°). This backscatter appears along with a discontinuous increase in the excitation mass from 1.2 amu to 21.0 ± 2.3 amu, which we associate with collective nuclear spin excitations in the orientationally ordered phase. Film densities were measured using hydrogen adsorption. Finally, no phase transition was observed in H 2 adsorbed in control activated carbon materials.« less
Phase Transition of H 2 in Subnanometer Pores Observed at 75 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Raina J.; Gillespie, Andrew K.; Contescu, Cristian I.
In this paper, we report a phase transition in H 2 adsorbed in a locally graphitic Saran carbon with subnanometer pores 0.5–0.65 nm in width, in which two layers of hydrogen can just barely squeeze, provided they pack tightly. The phase transition is observed at 75 K, temperatures far higher than other systems in which an adsorbent is known to increase phase transition temperatures: for instance, H 2 melts at 14 K in the bulk, but at 20 K on graphite because the solid H 2 is stabilized by the surface structure. Here we observe a transition at 75 Kmore » and 77–200 bar: from a low-temperature, low-density phase to a high-temperature, higher density phase. We model the low-density phase as a monolayer commensurate solid composed mostly of para-H 2 (the ground nuclear spin state, S = 0) and the high-density phase as an orientationally ordered bilayer commensurate solid composed mostly of ortho-H 2 (S = 1). We attribute the increase in density with temperature to the fact that the oblong ortho-H 2 can pack more densely. The transition is observed using two experiments. The high-density phase is associated with an increase in neutron backscatter by a factor of 7.0 ± 0.1. Normally, hydrogen produces no backscatter (scattering angle >90°). This backscatter appears along with a discontinuous increase in the excitation mass from 1.2 amu to 21.0 ± 2.3 amu, which we associate with collective nuclear spin excitations in the orientationally ordered phase. Film densities were measured using hydrogen adsorption. Finally, no phase transition was observed in H 2 adsorbed in control activated carbon materials.« less
Effect of the fcc-hcp martensitic transition on the equation of state of solid krypton up to 140 GPa
NASA Astrophysics Data System (ADS)
Rosa, A. D.; Garbarino, G.; Briggs, R.; Svitlyk, V.; Morard, G.; Bouhifd, M. A.; Jacobs, J.; Irifune, T.; Mathon, O.; Pascarelli, S.
2018-03-01
Solid krypton (Kr) undergoes a pressure-induced martensitic phase transition from a face-centered cubic (fcc) to a hexagonal close-packed (hcp) structure. These two phases coexist in a very wide pressure domain inducing important modifications of the bulk properties of the resulting mixed phase system. Here, we report a detailed in situ x-ray diffraction and absorption study of the influence of the fcc-hcp phase transition on the compression behavior of solid krypton in an extended pressure domain up to 140 GPa. The onset of the hcp-fcc transformation was observed in this study at around 2.7 GPa and the coexistence of these two phases up to 140 GPa, the maximum investigated pressure. The appearance of the hcp phase is also evidenced by the pressure-induced broadening and splitting of the first peak in the XANES spectra. We demonstrate that the transition is driven by a continuous nucleation and intergrowth of nanometric hcp stacking faults that evolve in the fcc phase. These hcp stacking faults are unaffected by high-temperature annealing, suggesting that plastic deformation is not at their origin. The apparent small Gibbs free-energy differences between the two structures that decrease upon compression may explain the nucleation of hcp stacking faults and the large coexistence domain of fcc and hcp krypton. We observe a clear anomaly in the equation of state of the fcc solid at ˜20 GPa when the proportion of the hcp form reaches ˜20 % . We demonstrate that this anomaly is related to the difference in stiffness between the fcc and hcp phases and propose two distinct equation of states for the low and high-pressure regimes.
Deuterium and carbon-13 NMR of the solid polymorphism of benzenehexoyl hexa-n-hexanoate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lifshitz, E.; Goldfarb,, D.; Vega, S.
Deuterium and carbon-13 NMR of specifically labeled benzenehexoyl hexa-n-hexanoate in the various solid-state phases are reported. The spectra exhibit dynamic line shapes which change discontinuously at the phase transitions. The results are interpreted in terms of sequential melting of the side chains on going from the low-temperature solid phases IV, III, etc., toward the liquid. In phase IV the molecules are very nearly static, except for fast rotation of the methyl groups about their C/sub 3/ axes. The results in phase III were quantitatively interpreted in terms of a two-site isomerization process involving simultaneous rotation by 95/sup 0/ about C/submore » 1/-C/sub 2/ and transition from gtg to g'g't (or equivalently g'tg' to ggt) for the rest of the chain. The specific rate of this reaction at 0/sup 0/C is approx. 10/sup 5/s/sup -1/. In phase II additional chain isomerization processes set-in which were, however, not analyzed quantitatively. Further motional modes, involving reorientation of whole chains about their C/sup ar/-O bonds, appear on going to phase I. In all solid phases the benzene ring remains static.« less
Silicon Nitride Equation of State
NASA Astrophysics Data System (ADS)
Swaminathan, Pazhayannur; Brown, Robert
2015-06-01
This report presents the development a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4) . Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonalβ-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products and then combined with the single component solid models to study the global phase diagram. Sponsored by the NASA Goddard Space Flight Center Living With a Star program office.
Robert, Benoît; Perrin, Marc-Antoine; Barrio, Maria; Tamarit, Josep-Lluis; Coquerel, Gérard; Ceolin, René; Rietveld, Ivo B
2016-01-01
Two polymorphs of the 1:1 fumarate salt of 1,4-diazabicyclo[3.2.2]nonane-4-carboxylic acid 4-bromophenyl ester, developed for the treatment of cognitive symptoms of schizophrenia and Alzheimer disease, have been characterized. The 2 crystal structures have been solved, and their phase relationships have been established. The space group of form I is P2₁/c with a unit-cell volume of 1811.6 (5) Å(3) with Z = 4. The crystals of form I were 2-component nonmerohedral twins. The space group of form II is P2₁/n with a unit-cell volume of 1818.6 (3) Å(3) with Z = 4. Relative stabilities have been inferred from experimental and topological P-T diagrams exhibiting an overall enantiotropic relationship between forms I and II although the solid-solid transition has never been observed. The slope of the I-II equilibrium in the P-T diagram is negative, form II is the stable phase below the solid-solid transition temperature of 371 K, and form I exhibits a stable melting equilibrium. The I-II transition temperature has been obtained from the intersection of the sublimation curves of the 2 solid forms. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
High-pressure/high-temperature polymorphs of energetic materials by first-principles simulations
NASA Astrophysics Data System (ADS)
Le, Nam; Schweigert, Igor
2017-06-01
Energetic molecular crystals exhibit complex phase diagrams that include solid-solid phase transitions, melting, and decomposition. Sorescu and Rice have recently demonstrated that first-principles molecular dynamics (MD) simulations based on dispersion-corrected density functional theory (DFT) can capture the α to γ phase transition in hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on time scales of several picoseconds. Motivated by their work, we are using DFT-based MD to model the relative stability of solid phases in several molecular crystals. In this presentation, we report simulations of pentaerythritol tetranitrate (PETN) and 2,4,6-trinitrotoluene (TNT) under high pressures and temperatures and compare them with experimentally observed polymorphs. This work was supported by the U.S. Naval Research Laboratory via the National Research Council and by the Office of Naval Research through the U.S. Naval Research Laboratory.
Low Stretch Solid-Fuel Flame Transient Response to a Step Change in Gravity
NASA Technical Reports Server (NTRS)
Armstrong, J. B.; Olson, S. L.; T'ien, J. S.
2003-01-01
The effect of a step change in gravity level on the stability of low stretch diffusion flames over a solid fuel is studied both numerically and experimentally. Drop tower experiments have been conducted in NASA Glenn Research Center's 5.2 Zero Gravity Facility. In the experiments burning PMMA cylinders, a dynamic transition is observed when the steadily burning 1g flame is dropped and becomes a 0g flame. To understand the physics behind this dynamic transition, a transient stagnation point model has been developed which includes gas-phase radiation and solid phase coupling to describe this dynamic process. In this paper, the experimental results are compared with the model predictions. Both model and experiment show that the interior of the solid phase does not have time to change significantly in the few seconds of drop time, so the experimental results are pseudo-steady in the gas-phase, but the solid is inherently unsteady over long time scales. The model is also used to examine the importance of fractional heat losses on extinction, which clearly demonstrates that as the feedback from the flame decreases, the importance of the ongoing heat losses becomes greater, and extinction is observed when these losses represent 80% or more of the flame feedback.
Effect of transition dipole phase on high-order-harmonic generation in solid materials
NASA Astrophysics Data System (ADS)
Jiang, Shicheng; Wei, Hui; Chen, Jigen; Yu, Chao; Lu, Ruifeng; Lin, C. D.
2017-11-01
High-order harmonic spectra from solid materials driven by single-color multicycle laser fields sometimes contain even harmonics. In this work we attribute the appearance of even harmonics to the nonzero transition dipole phase (TDP) when the solid system has broken symmetry. By calculating the harmonic efficiency from graphene and gapped graphene by using the semiconductor Bloch equations under the tight-binding approximation, we demonstrate the role of the TDP, which has been ignored for a long time. When the crystal has inversion symmetry, or reflection symmetry with the symmetry plane perpendicular to the laser polarization direction, the TDP can be neglected. Without such symmetry, however, the TDP will lead to the appearance of even harmonics. We further show that the TDP is sensitive to the crystal geometry. To extract the structure information from the harmonic spectra of a solid the TDP cannot be ignored.
Viscoelasticity of nano-alumina dispersions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rand, B.; Fries, R.
1996-06-01
The flow and viscoelastic properties of electrostatically stabilized nano-alumina dispersions have been studied as a function of ionic strength and volume fraction of solids. At low ionic strength the suspensions were deflocculated and showed a transition from viscous to elastic behavior as the solid content increased associated with the onset of double layer interpenetration. The phase transition was progressively shifted to higher solids fractions with increasing ionic strength. At higher ionic strength, above the critical coagulation concentration, the suspensions formed attractive networks characterized by high elasticity. Two independent methods of estimating the effective radius of electrostatically stabilized {open_quotes}soft{close_quotes} particles, a{submore » eff}, are presented based on phase angle data and a modified Dougherty-Krieger equation. The results suggest that a{sub eff} is not constant for a given system but changes with both solids fraction and ionic strength.« less
Observation of a New High-Pressure Solid Phase in Dynamically Compressed Aluminum
NASA Astrophysics Data System (ADS)
Polsin, D. N.
2017-10-01
Aluminum is ideal for testing theoretical first-principles calculations because of the relative simplicity of its atomic structure. Density functional theory (DFT) calculations predict that Al transforms from an ambient-pressure, face-centered-cubic (fcc) crystal to the hexagonal close-packed (hcp) and body-centered-cubic (bcc) structures as it is compressed. Laser-driven experiments performed at the University of Rochester's Laboratory for Laser Energetics and the National Ignition Facility (NIF) ramp compressed Al samples to pressures up to 540 GPa without melting. Nanosecond in-situ x-ray diffraction was used to directly measure the crystal structure at pressures where the solid-solid phase transformations of Al are predicted to occur. Laser velocimetry provided the pressure in the Al. Our results show clear evidence of the fcc-hcp and hpc-bcc transformations at 216 +/- 9 GPa and 321 +/- 12 GPa, respectively. This is the first experimental in-situ observation of the bcc phase in compressed Al and a confirmation of the fcc-hcp transition previously observed under static compression at 217 GPa. The observations indicate these solid-solid phase transitions occur on the order of tens of nanoseconds time scales. In the fcc-hcp transition we find the original texture of the sample is preserved; however, the hcp-bcc transition diminishes that texture producing a structure that is more polycrystalline. The importance of this dynamic is discussed. The NIF results are the first demonstration of x-ray diffraction measurements at two different pressures in a single laser shot. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Phase Behavior of Complex Superprotonic Solid Acids
NASA Astrophysics Data System (ADS)
Panithipongwut, Chatr
Superprotonic phase transitions and thermal behaviors of three complex solid acid systems are presented, namely Rb3H(SO4) 2-RbHSO4 system, Rb3H(SeO4)2-Cs 3H(SeO4)2 solid solution system, and Cs6 (H2SO4)3(H1.5PO4) 4. These material systems present a rich set of phase transition characteristics that set them apart from other, simpler solid acids. A.C. impedance spectroscopy, high-temperature X-ray powder diffraction, and thermal analysis, as well as other characterization techniques, were employed to investigate the phase behavior of these systems. Rb3H(SO4)2 is an atypical member of the M3H(XO4)2 class of compounds (M = alkali metal or NH4+ and X = S or Se) in that a transition to a high-conductivity state involves disproportionation into two phases rather than a simple polymorphic transition [1]. In the present work, investigations of the Rb3H(SO4)2-RbHSO4 system have revealed the disproportionation products to be Rb2SO 4 and the previously unknown compound Rb5H3(SO 4)4. The new compound becomes stable at a temperature between 25 and 140 °C and is isostructural to a recently reported trigonal phase with space group P3m of Cs5H 3(SO4)4 [2]. At 185 °C the compound undergoes an apparently polymorphic transformation with a heat of transition of 23.8 kJ/mol and a slight additional increase in conductivity. The compounds Rb3H(SeO4)2 and Cs 3H(SeO4)2, though not isomorphous at ambient temperatures, are quintessential examples of superprotonic materials. Both adopt monoclinic structures at ambient temperatures and ultimately transform to a trigonal (R3m) superprotonic structure at slightly elevated temperatures, 178 and 183 °C, respectively. The compounds are completely miscible above the superprotonic transition and show extensive solubility below it. Beyond a careful determination of the phase boundaries, we find a remarkable 40-fold increase in the superprotonic conductivity in intermediate compositions rich in Rb as compared to either end-member. The compound Cs6(H2SO4)3(H 1.5PO4)4 is unusual amongst solid acid compounds in that it has a complex cubic structure at ambient temperature and apparently transforms to a simpler cubic structure of the CsCl-type (isostructural with CsH2PO4) at its transition temperature of 100-120 °C [3]. Here it is found that, depending on the level of humidification, the superprotonic transition of this material is superimposed with a decomposition reaction, which involves both exsolution of (liquid) acid and loss of H2O. This reaction can be suppressed by application of sufficiently high humidity, in which case Cs6(H2SO4)3(H 1.5PO4)4 undergoes a true superprotonic transition. It is proposed that, under conditions of low humidity, the decomposition/dehydration reaction transforms the compound to Cs6(H2-0.5xSO 4)3(H1.5PO4)4-x, also of the CsCl structure type at the temperatures of interest, but with a smaller unit cell. With increasing temperature, the decomposition/dehydration proceeds to greater and greater extent and unit cell of the solid phase decreases. This is identified to be the source of the apparent negative thermal expansion behavior. References: [1] L.A. Cowan, R.M. Morcos, N. Hatada, A. Navrotsky, S.M. Haile, Solid State Ionics 179 (2008) (9-10) 305. [2] M. Sakashita, H. Fujihisa, K.I. Suzuki, S. Hayashi, K. Honda, Solid State Ionics 178 (2007) (21-22) 1262. [3] C.R.I. Chisholm, Superprotonic Phase Transitions in Solid Acids: Parameters affecting the presence and stability of superprotonic transitions in the MHnXO4 family of compounds (X=S, Se, P, As; M=Li, Na, K, NH4, Rb, Cs), Materials Science, California Institute of Technology, Pasadena, California (2003).
Uncovering a reconstructive solid-solid phase transition in a metal-organic framework.
Longley, L; Li, N; Wei, F; Bennett, T D
2017-11-01
A nanoporous three-dimensional metal-organic framework (MOF), ZnPurBr undergoes a transition to a previously unreported high-temperature phase, ZnPurBr-ht. The transition, which proceeds without mass loss, is uncovered through the use of differential scanning calorimetry (DSC). The new crystal structure was solved using single-crystal X-ray diffraction, and the mechanical properties of both phases investigated by nanoindentation and density functional theory. The anisotropy of the calculated Young's moduli showed good agreement with the crystallographic alignment of the stiff purinate organic linker. The results provide a prototypical example of the importance of the use of DSC in the MOF field, where its use is not currently standard in characterization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Valin, R.; Morse, J.W.
The operation of an OTEC plant will result in the mixing of large volumes of seawater from different depths within the ocean. Because suspended particulate material is intimately involved in marine food webs and transition metals, such as copper, can have toxic effects, it is important to develop a sound methodology for characterizing and quantifying transition metal behavior associated with the solid material. The characterization of solid-phase-associated transition metals in the marine environment has largely been directed at marine sediments. These studies have generally indicated that it is not possible to uniquely identify the solid phases or chemical speciation ofmore » a given metal. There are many reasons for this difficulty, but the probable major analytical problems arise from the fact that many of the transition metals of interest are present only in trace concentrations as adsorbed species on amorphous oxides or as coprecipitates. In one approach transition metals are classified according to how easily they are solubilized when exposed to different types of chemical attack, as defined in chemical extraction schemes. In this study, several of the most widely accepted extraction techniques were compared for many of the most commonly measured transition metals to a variety of marine sediments. Based on the results of this study, the sequential extraction scheme of Tessler et al. (1979) is the recommended method for the characterization of solid-phase associated transition metals. An increase of the reducing agent concentration in the intermediate step and temperature decrease with an additional HCl digestion in the residual step are recommended as improvements, based on the results of the individual extraction method studies.« less
NASA Astrophysics Data System (ADS)
Jha, Pardeep K.; Jha, Priyanka A.; Singh, Vikash; Kumar, Pawan; Asokan, K.; Dwivedi, R. K.
2015-01-01
Investigations on the solid solutions (1-x) BiFeO3 - (x) Ba Zr0.025Ti0.975O3 (0.1 ≤ x ≤ 0.3) in the temperature range 300-750 K show colossal permittivity behavior and the occurrence of diffuse phase ferroelectric transition along with frequency dependent anomaly which disappears at temperature ˜450 K. For x = 0.3, these anomalies have been verified through differential scanning calorimetry and dielectric/impedance/conductivity measurements. The occurrence of peak in pyrocurrent (dPs/dT) vs. T plots also supports phase transition. With the increasing x, transition temperature decreases and diffusivity increases. This anomaly is absent at high frequencies (>100 kHz) in conductivity plots, indicating Polomska like surface phase transition, which is supported by modulus study.
Disorder-induced localization in crystalline phase-change materials.
Siegrist, T; Jost, P; Volker, H; Woda, M; Merkelbach, P; Schlockermann, C; Wuttig, M
2011-03-01
Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices.
Chen, Dong; Santore, Maria M
2014-01-07
Model phospholipid membranes and vesicles have long provided insight into the nature of confined materials and membranes while also providing a platform for drug delivery. The rich thermodynamic behavior and interesting domain shapes in these membranes have previously been mapped in extensive studies that vary temperature and composition; however, the thermodynamic impact of tension on bilayers has been restricted to recent reports of subtly reduced fluid-fluid transition temperatures. In two-component phosphatidylcholine unilamellar vesicles [1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)], we report a dramatic influence of tension on the fluid-solid transition and resulting phases: At fixed composition, systematic variations in tension produce differently shaped solid domains (striped or irregular hexagons), shift fluid-solid transition temperatures, and produce a triple-point-like intersection of coexistence curves at elevated tensions, about 3 mN/m for 30% DOPC/70% DPPC. Tension therefore represents a potential switch of microstructure in responsive engineered materials; it is an important morphology-determining variable in confined systems, and, in biological membranes, it may provide a means to regulate dynamic structure.
Lattice crossover and phase transitions in NdAlO{sub 3}-GdAlO{sub 3} system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasylechko, L., E-mail: crystal-lov@polynet.lviv.ua; Shmanko, H.; Ohon, N.
2013-02-15
Phase and structural behaviour in the (1-x)NdAlO{sub 3}-xGdAlO{sub 3} system in a whole concentration range has been studied by means of in situ high-resolution X-ray synchrotron powder diffraction technique and differential thermal analysis. Two kinds of solid solutions Nd{sub 1-x}Gd{sub x}AlO{sub 3} have been found at room temperature: one with rhombohedral (x<0.15) and one with orthorhombic (x{>=}0.20) symmetry. A morphotropic phase transition occurs at x Almost-Equal-To 0.15, where the co-existence of both phases was observed. Peculiarity of the orthorhombic solid solution is the lattice parameter crossover at the compositions with x=0.33, 0.49 and 0.62. First-order structural transition Pbnm{r_reversible}R3{sup Macron }cmore » has been detected both from in situ powder diffraction and thermal analysis data. Continuous phase transformation R3{sup Macron }c{r_reversible}Pm3{sup Macron }m above 2140 K has been predicted for Nd-rich sample Nd{sub 0.85}Gd{sub 0.15}AlO{sub 3} from the extrapolation of high-temperature behaviour of the lattice parameter ratio of the rhombohedral phase. Based on the experimental data, the phase diagram of the pseudo-binary system NdAlO{sub 3}-GdAlO{sub 3} has been constructed. - Graphical abstract: Concentration dependencies of normalized lattice parameters of Nd{sub 1-x}Gd{sub x}AlO{sub 3} perovskite solid solutions. Highlights: Black-Right-Pointing-Pointer Two kinds of solid solutions Nd{sub 1-x}Gd{sub x}AlO{sub 3} were found in the NdAlO{sub 3}-GdAlO{sub 3} system. Black-Right-Pointing-Pointer Morphotropic transition between both perovskite phases occurs at x Almost-Equal-To 0.15. Black-Right-Pointing-Pointer Lattice parameter crossover was found in orthorhombic solid solution. Black-Right-Pointing-Pointer Temperature driven first-order phase transition Pbnm{r_reversible}R3{sup Macron }c was found in Nd{sub 1-x}Gd{sub x}AlO{sub 3}. Black-Right-Pointing-Pointer Phase diagram of the pseudo-binary system NdAlO{sub 3}-GdAlO{sub 3} has been constructed.« less
Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys
Zhang, Fuxiang; Zhao, Shijun; Jin, Ke; ...
2017-01-04
In this research, pressure-induced phase transition from the fcc to a hexagonal close-packed (hcp) structure wasfound in NiCoCrFe solid solution alloy starting at 13.5 GPa. The phase transition is very sluggish and the transition did not complete at ~ 40 GPa. The hcp structure is quenchable to ambient pressure. Only a very small amount (<5%) of hcp phase was found in the isostructural NiCoCr ternary alloy up to the pressure of 45 GPa and no obvious hcp phase was found in NiCoCrFePd system till to 74 GPa. Ab initio Gibbs free energy calculations indicated the energy differences between the fccmore » and the hcp phases for the three alloys are very small, but they are sensitive to temperature. Finally, the critical transition pressure in NiCoCrFe varies from 1 GPa at room temperature to 6 GPa at 500 K.« less
Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, F. X.; Zhao, Shijun; Jin, Ke
2017-01-04
A pressure-induced phase transition from the fcc to a hexagonal close-packed (hcp) structure was found in NiCoCrFe solid solution alloy starting at 13.5 GPa. The phase transition is very sluggish and the transition did not complete at ~40 GPa. The hcp structure is quenchable to ambient pressure. Only a very small amount (<5%) of hcp phase was found in the isostructural NiCoCr ternary alloy up to the pressure of 45 GPa and no obvious hcp phase was found in NiCoCrFePd system till to 74 GPa. Ab initio Gibbs free energy calculations indicated the energy differences between the fcc and themore » hcp phases for the three alloys are very small, but they are sensitive to temperature. The critical transition pressure in NiCoCrFe varies from ~1 GPa at room temperature to ~6 GPa at 500 K.« less
Silicon nitride equation of state
NASA Astrophysics Data System (ADS)
Brown, Robert C.; Swaminathan, Pazhayannur K.
2017-01-01
This report presents the development of a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4).1 Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonal β-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data that have indicated a complex and slow time dependent phase change to the c-Si3N4 phase. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products; however, the need for a kinetic approach is suggested to combine with the single component solid models to simulate and further investigate the global phase coexistences.
Ordering-separation phase transitions in a Co3V alloy
NASA Astrophysics Data System (ADS)
Ustinovshchikov, Yu. I.
2017-01-01
The microstructure of the Co3V alloy formed by heat treatment at various temperatures is studied by transmission electron microscopy. Two ordering-separation phase transitions are revealed at temperatures of 400-450 and 800°C. At the high-temperature phase separation, the microstructure consists of bcc vanadium particles and an fcc solid solution; at the low-temperature phase separation, the microstructure is cellular. In the ordering range, the microstructure consists of chemical compound Co3V particles chaotically arranged in the solid solution. The structure of the Co3V alloy is shown not to correspond to the structures indicated in the Co-V phase diagram at any temperatures.
Order-disorder phase transition in the peroxidovanadium complex NH4[VO(O2)2(NH3)].
Schwendt, Peter; Gyepes, Róbert; Chrappová, Jana; Němec, Ivan; Vaněk, Přemysl
2018-07-05
Complex NH 4 [VO(O 2 ) 2 (NH 3 )] (1) undergoes an order-disorder phase transition at T c ~258K. This transition is accompanied by change in the space group of the orthorhombic lattice and also by significant structural rearrangements of the constituent molecules, which are pertinent mostly to their NH 4 + ions and their ammonia ligands. The low-temperature solid state IR and Raman spectra of 1 were corroborated by solid-state computations that employed Gaussian functions as the basis set. Results of these computations yielded excellent agreement with experimental data. On the curves of temperature dependence of vibrational modes, the phase transition is expressed by an abrupt change of the slope above T c . Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rodrigue, Kamiko Kouemeni Jean; Saleh, Mahamat; Thomas, Bouetou Bouetou; Kofane, Timoleon Crepin
2018-05-01
In this paper, we investigate the thermodynamics and Hawking radiation of Schwarzschild black hole with quintessence-like matter and deficit solid angle. From the metric of the black hole, we derive the expressions of temperature and specific heat using the laws of black hole thermodynamics. Using the null geodesics method and Parikh-Wilczeck tunneling method, we derive the expressions of Boltzmann factor and the change of Bekenstein-Hawking entropy for the black hole. The behaviors of the temperature, specific heat, Boltzmann factor and the change of Bekenstein entropy versus the deficit solid angle (ɛ 2) and the density of static spherically symmetric quintessence-like matter (ρ 0) were explicitly plotted. The results show that, when the deficit solid angle (ɛ 2) and the density of static spherically symmetric quintessence-like matter at r=1 (ρ 0) vanish (ρ 0=ɛ =0), these four thermodynamics quantities are reduced to those obtained for the simple case of Schwarzschild black hole. For low entropies, the presence of quintessence-like matter induces a first order phase transition of the black hole and for the higher values of the entropies, we observe the second order phase transition. When increasing ρ 0, the transition points are shifted to lower entropies. The same thing is observed when increasing ɛ 2. In the absence of quintessence-like matter (ρ 0=0), these transition phenomena disappear. Moreover the rate of radiation decreases when increasing ρ 0 or (ɛ ^2).
Freezing Transition Studies Through Constrained Cell Model Simulation
NASA Astrophysics Data System (ADS)
Nayhouse, Michael; Kwon, Joseph Sang-Il; Heng, Vincent R.; Amlani, Ankur M.; Orkoulas, G.
2014-10-01
In the present work, a simulation method based on cell models is used to deduce the fluid-solid transition of a system of particles that interact via a pair potential, , which is of the form with . The simulations are implemented under constant-pressure conditions on a generalized version of the constrained cell model. The constrained cell model is constructed by dividing the volume into Wigner-Seitz cells and confining each particle in a single cell. This model is a special case of a more general cell model which is formed by introducing an additional field variable that controls the number of particles per cell and, thus, the relative stability of the solid against the fluid phase. High field values force configurations with one particle per cell and thus favor the solid phase. Fluid-solid coexistence on the isotherm that corresponds to a reduced temperature of 2 is determined from constant-pressure simulations of the generalized cell model using tempering and histogram reweighting techniques. The entire fluid-solid phase boundary is determined through a thermodynamic integration technique based on histogram reweighting, using the previous coexistence point as a reference point. The vapor-liquid phase diagram is obtained from constant-pressure simulations of the unconstrained system using tempering and histogram reweighting. The phase diagram of the system is found to contain a stable critical point and a triple point. The phase diagram of the corresponding constrained cell model is also found to contain both a stable critical point and a triple point.
NASA Astrophysics Data System (ADS)
Acree, William; Chickos, James S.
2017-03-01
The second part of this compendium concludes with a collection of phase change enthalpies of organic molecules inclusive of C11-C192 reported over the period 1880-2015. Also included are phase change enthalpies including fusion, vaporization, and sublimation enthalpies for organometallic, ionic liquids, and a few inorganic compounds. Paper I of this compendium, published separately, includes organic compounds from C1 to C10 and describes a group additivity method for evaluating solid, liquid, and gas phase heat capacities as well as temperature adjustments of phase changes. Paper II of this compendium also includes an updated version of a group additivity method for evaluating total phase change entropies which together with the fusion temperature can be useful in estimating total phase change enthalpies. Other uses include application in identifying potential substances that either form liquid or plastic crystals or exhibit additional phase changes such as undetected solid-solid transitions or behave anisotropically in the liquid state.
Critical viewpoints on the methods of realizing the metal freezing points of the ITS-90
NASA Astrophysics Data System (ADS)
Ma, C. K.
1995-08-01
The time-honored method for realizing the freezing point tf of a metal (in practice necessarily a dilute alloy) is that of continuous, slow freezing where the plateau temperature (which is the result of solidifying material's being so pure that its phase-transition temperature is observably constant) is measured. The freezing point being an equilibrium temperature, Ancsin considers this method to be inappropriate in principle: equilibrium between the solid and liquid phases cannot be achieved while the solid is being cooled to dispose of the releasing latent heat and while it is accreting at the expense of the liquid. In place of the continuous freezing method he has employed the pulse-heating method (in which the sample is allowed to approach equilibrium after each heat pulse) in his study of Ag; his measurements suggest that freezing can produce non-negligible errors. Here we examine both methods and conclude that the freezing method, employing an inside solid-liquid interface thermally isolated by an outside interface, can provide realizations of the highest accuracy; in either method, perturbation, by inducing solid-liquid phase transition continuously or intermittently, is essential for detecting equilibrium thermally. The respective merits and disadvantages of these two methods and also of the inner-melt method are discussed. We conclude that in a freezing-point measurement what is being measured is in effect the however minutely varying phase transition, and nonconstitutional equilibrium, temperature ti at the solid-liquid interface. The objective is then to measure the ti that is the best measure of tf, which is, normally, the plateau temperature.
Physicochemical properties and solubility of alkyl-(2-hydroxyethyl)-dimethylammonium bromide.
Domańska, Urszula; Bogel-Łukasik, Rafał
2005-06-23
Quaternary ammonium salts, which are precursors of ionic liquids, have been prepared from N,N-dimethylethanolamine as a substrate. The paper includes specific basic characterization of synthesized compounds via the following procedures: nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectra, water content, mass spectroscopy (MS) spectra, temperatures of decompositions, basic thermodynamic properties of pure ionic liquids (the melting point, enthalpy of fusion, enthalpy of solid-solid phase transition, glass transition), and the difference in the solute heat capacity between the liquid and solid at the melting temperature determined by differential scanning calorimetry (DSC). The (solid + liquid) phase equilibria of binary mixtures containing (quaternary ammonium salt + water, or + 1-octanol) has been measured by a dynamic method over wide range of temperatures, from 230 K to 560 K. These data were correlated by means of the UNIQUAC ASM and modified nonrandom two-liquid NRTL1 equations utilizing parameters derived from the (solid + liquid) equilibrium. The partition coefficient of ionic liquid in the 1-octanol/water binary system has been calculated from the solubility results. Experimental partition coefficients (log P) were negative at three temperatures.
Cao, Wudi; Wang, Yanting; Saielli, Giacomo
2018-01-11
We simulate the heating process of ionic liquids [C n Mim][NO 3 ] (n = 4, 6, 8, 10, 12), abbreviated as C n , by means of molecular dynamics (MD) simulation starting from a manually constructed triclinic crystal structure composed of polar layers containing anions and cationic head groups and nonpolar regions in between containing cationic alkyl side chains. During the heating process starting from 200 K, each system undergoes first a solid-solid phase transition at a lower temperature, and then a melting phase transition at a higher temperature to an isotropic liquid state (C 4 , C 6 , and C 8 ) or to a liquid crystal state (C 10 and C 12 ). After the solid-solid phase transition, all systems keep the triclinic space symmetry, but have a different set of lattice constants. C 4 has a more significant structural change in the nonpolar regions which narrows the layer spacing, while the layer spacings of other systems change little, which can be qualitatively understood by considering that the contribution of the effective van der Waals interaction in the nonpolar regions (abbreviated as EF1) to free energy becomes stronger with increasing side-chain length, and at the same time the contribution of the effective electrostatic interaction in the polar layers (abbreviated as EF2) to free energy remains almost the same. The melting phase transitions of all systems except C 6 are found to be a two-step process with an intermediate metastable state appeared during the melting from the crystal state to the liquid or liquid crystal state. Because the contribution of EF2 to the free energy is larger than EF1, the metastable state of C 4 has the feature of having higher ordered polar layers and lower ordered side-chain orientation. By contrast, C 8 -C 12 have the feature of having lower ordered polar layers and higher ordered side-chain orientation, because for these systems, the contribution of EF2 to the free energy is smaller than EF1. No metastable state is found for C 6 because the free-energy contribution of EF1 is balanced with EF2.
Free energy change of off-eutectic binary alloys on solidification
NASA Technical Reports Server (NTRS)
Ohsaka, K.; Trinh, E. H.; Lin, J.-C.; Perepezko, J. H.
1991-01-01
A formula for the free energy difference between the undercooled liquid phase and the stable solid phase is derived for off-eutectic binary alloys in which the equilibrium solid/liquid transition takes place over a certain temperature range. The free energy change is then evaluated numerically for a Bi-25 at. pct Cd alloy modeled as a sub-subregular solution.
NASA Astrophysics Data System (ADS)
Ruggiero, Michael T.; Zhang, Wei; Bond, Andrew D.; Mittleman, Daniel M.; Zeitler, J. Axel
2018-05-01
The low-frequency motions of molecules in the condensed phase have been shown to be vital to a large number of physical properties and processes. However, in the case of disordered systems, it is often difficult to elucidate the atomic-level details surrounding these phenomena. In this work, we have performed an extensive experimental and computational study on the molecular solid camphor, which exhibits a rich and complex structure-dynamics relationship, and undergoes an order-disorder transition near ambient conditions. The combination of x-ray diffraction, variable temperature and pressure terahertz time-domain spectroscopy, ab initio molecular dynamics, and periodic density functional theory calculations enables a complete picture of the phase transition to be obtained, inclusive of mechanistic, structural, and thermodynamic phenomena. Additionally, the low-frequency vibrations of a disordered solid are characterized for the first time with atomic-level precision, uncovering a clear link between such motions and the phase transformation. Overall, this combination of methods allows for significant details to be obtained for disordered solids and the associated transformations, providing a framework that can be directly applied for a wide range of similar systems.
Ruggiero, Michael T; Zhang, Wei; Bond, Andrew D; Mittleman, Daniel M; Zeitler, J Axel
2018-05-11
The low-frequency motions of molecules in the condensed phase have been shown to be vital to a large number of physical properties and processes. However, in the case of disordered systems, it is often difficult to elucidate the atomic-level details surrounding these phenomena. In this work, we have performed an extensive experimental and computational study on the molecular solid camphor, which exhibits a rich and complex structure-dynamics relationship, and undergoes an order-disorder transition near ambient conditions. The combination of x-ray diffraction, variable temperature and pressure terahertz time-domain spectroscopy, ab initio molecular dynamics, and periodic density functional theory calculations enables a complete picture of the phase transition to be obtained, inclusive of mechanistic, structural, and thermodynamic phenomena. Additionally, the low-frequency vibrations of a disordered solid are characterized for the first time with atomic-level precision, uncovering a clear link between such motions and the phase transformation. Overall, this combination of methods allows for significant details to be obtained for disordered solids and the associated transformations, providing a framework that can be directly applied for a wide range of similar systems.
NASA Astrophysics Data System (ADS)
Gröting, Melanie; Albe, Karsten
2014-02-01
In this article we present a method based on ab initio calculations to predict compositions at morphotropic phase boundaries in lead-free perovskite solid solutions. This method utilizes the concept of flat free energy surfaces and involves the monitoring of pressure-induced phase transitions as a function of composition. As model systems, solid solutions of Na1/2Bi1/2TiO3 with the alkali substituted Li1/2Bi1/2TiO3 and K1/2Bi1/2TiO3 and the alkaline earth substituted CaTiO3 and BaTiO3 are chosen. The morphotropic compositions are identified by determining the composition at which the phase transition pressure equals zero. In addition, we discuss the different effects of hydrostatic pressure (compression and tension) and chemical substitution on the antiphase tilts about the [111] axis (a-a-a-) present in pure Na1/2Bi1/2TiO3 and how they develop in the two solid solutions Na1/2Bi1/2TiO3-CaTiO3 and Na1/2Bi1/2TiO3-BaTiO3. Finally, we discuss the advantages and shortcomings of this simple computational approach.
Hunt, Sarah J; Cliffe, Matthew J; Hill, Joshua A; Cairns, Andrew B; Funnell, Nicholas P; Goodwin, Andrew L
2015-01-14
The metal-organic framework copper(i) tricyanomethanide, Cu(tcm), undergoes a ferroelastic transition on cooling below T f = 240 K. Thermal expansion measurements reveal an order-of-magnitude variation in framework flexibility across T f . The low-temperature phase α-Cu(tcm) exhibits colossal positive and negative thermal expansion that is the strongest ever reported for a framework material. On exposure to acetonitrile, Cu(tcm) undergoes a reconstructive solid-phase transition to acetonitrilocopper(i) tricyanomethanide. This transition can be reversed by heating under vacuum. Infrared spectroscopy measurements are sensitive to the phase change, suggesting that Cu(tcm) may find application in solid-phase acetonitrile sensing.
Phase Transitions of MgO Along the Hugoniot (Invited)
NASA Astrophysics Data System (ADS)
Root, S.; Shulenburger, L.; Lemke, R. W.; Cochrane, K. R.; Mattsson, T. R.
2013-12-01
The formation of terrestrial planets and planetary structure has become of great interest because of recent exoplanet discoveries of super earths. MgO is a major constituent of Earth's mantle, the rocky cores of gas giants such as Jupiter, and likely constitutes the interiors of many exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine single crystal MgO under shock compression utilizing experimental and density functional theory (DFT) methods to determine phase transformations along the Hugoniot. We perform plate impact experiments using Sandia's Z - facility on MgO up to 11.6 Mbar. The plate impact experiments generate highly accurate Hugoniot state data. The experimental results show the B1 - B2 solid - solid phase transition occurs near 4 Mbar on the Hugoniot. The solid - liquid transition is determined to be near 7 Mbar with a large region of B2-liquid coexistence. Using DFT methods, we also determine melt along the B1 and B2 solid phase boundaries as well as along the Hugoniot. The combined experimental and DFT results have determined the phase boundaries along the Hugoniot, which can be implemented into new planetary and EOS models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000.
Dehydration of detomidine hydrochloride monohydrate.
Veldre, K; Actiņš, A; Jaunbergs, J
2011-10-09
The thermodynamic stability of detomidine hydrochloride monohydrate has been evaluated on the basis of phase transition kinetics in solid state. A method free of empirical models was used for the treatment of kinetic data, and compared to several known solid state kinetic data processing methods. Phase transitions were monitored by powder X-ray diffraction (PXRD) and thermal analysis. Full PXRD profiles were used for determining the phase content instead of single reflex intensity measurements, in order to minimize the influence of particle texture. We compared the applicability of isothermal and nonisothermal methods to our investigation of detomidine hydrochlorine monohydrate dehydration. Copyright © 2011 Elsevier B.V. All rights reserved.
The role of the “Casimir force analogue” at the microscopic processes of crystallization and melting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuvildeev, V.N., E-mail: chuvildeev@gmail.com; Semenycheva, A.V., E-mail: avsemenycheva@gmail.com
Melting (crystallization), a phase transition from a crystalline solid to a liquid state, is a common phenomenon in nature. We suggest a new factor, “the Casimir force analogue”, to describe mechanisms of melting and crystallization. The Casimir force analogue is a force occurring between the surfaces of solid and liquid phases of metals caused by different energy density of phonons of these phases. It explains abrupt changes in geometry and thermodynamic parameters at a melting point. “The Casimir force analogue” helps to estimate latent melting heat and to gain an insight into a solid–liquid transition problem.
Structural and ferroelectric phase evolution in [KNbO3]1-x[BaNi1/2Nb1/2O3 -δ] x (x =0 ,0.1 )
NASA Astrophysics Data System (ADS)
Hawley, Christopher J.; Wu, Liyan; Xiao, Geoffrey; Grinberg, Ilya; Rappe, Andrew M.; Davies, Peter K.; Spanier, Jonathan E.
2017-08-01
The phase transition evolution for [KNbO3]1-x[BaNi1/2Nb1/2O3 -δ] x(x =0 ,0.1 ) is determined via complementary dielectric permittivity and Raman-scattering measurements. Raman scattering by optical phonons over the range of 100-1000 cm-1 for 83 K
Crystalline-gel-molten phase transitions of water in calcium dipicolinate (Ca-DPA)
NASA Astrophysics Data System (ADS)
Tiwari, Subodh; Mishra, Ankit; Sheng, Chunyang; Rajak, Pankaj; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya
The heat resistance of bacterial spores directly correlates to the protoplast dehydration and presence of dipicolinic acid (DPA) and its associated metal salts at the core. Bacteria's structural integrity in moist heat conferred by high concentration of DPA and calcium DPA salts depends on the properties are additional water molecules and temperature. In our reactive MD simulations, we characterize different possible phases and the transport properties of water molecules. We observed solid-gel and gel-liquid phase transitions of the hydrated Ca-DPA system. These simulations reveal monotonically decreasing solid-gel-liquid transition temperatures with increasing cell hydration, reflecting the experimental trend of moist-heat resistance of bacterial spores. We also observed that the calcification of bacterial spores further increases the transition temperatures. This research is supported by DTRA Grant No. HDTRA1-14-1-0074.
Terahertz vibrational modes of the rigid crystal phase of succinonitrile.
Nickel, Daniel V; Delaney, Sean P; Bian, Hongtao; Zheng, Junrong; Korter, Timothy M; Mittleman, Daniel M
2014-04-03
Succinonitrile (N ≡ C-CH2-CH2-C ≡ N), an orientationally disordered molecular plastic crystal at room temperature, exhibits rich phase behavior including a solid-solid phase transition at 238 K. In cooling through this phase transition, the high-temperature rotational disorder of the plastic crystal phase is frozen out, forming a rigid crystal that is both spatially and orientationally ordered. Using temperature-dependent terahertz time-domain spectroscopy, we characterize the vibrational modes of this low-temperature crystalline phase for frequencies from 0.3 to 2.7 THz and temperatures ranging from 20 to 220 K. Vibrational modes are observed at 1.122 and 2.33 THz at 90 K. These modes are assigned by solid-state density functional theory simulations, corresponding respectively to the translation and rotation of the molecules along and about their crystallographic c-axis. In addition, we observe a suppression of the phonon modes as the concentration of dopants, in this case a lithium salt (LiTFSI), increases, indicating the importance of doping-induced disorder in these ionic conductors.
Paudel, Amrit; Nies, Erik; Van den Mooter, Guy
2012-11-05
In this work, we investigated the relationship between various intermolecular hydrogen-bonding (H-bonding) interactions and the miscibility of the model hydrophobic drug naproxen with the hydrophilic polymer polyvinylpyrrolidone (PVP) across an entire composition range of solid dispersions prepared by quasi-equilibrium film casting and nonequilibrium melt quench cooling. The binary phase behavior in solid dispersions exhibited substantial processing method dependence. The solid state solubility of crystalline naproxen in PVP to form amorphous solid dispersions was 35% and 70% w/w naproxen in solution-cast films and quench-cooled films, respectively. However, the presence of a single mixed phase glass transition indicated the amorphous miscibility to be 20% w/w naproxen for the films, beyond which amorphous-amorphous and/or crystalline phase separations were apparent. This was further supported by the solution state interactions data such as PVP globular size distribution and solution infrared spectral profiles. The borderline melt composition showed cooling rate dependence of amorphization. The glass transition and melting point depression profiles of the system were treated with the analytical expressions based on Flory-Huggins mixing theory to interpolate the equilibrium solid solubility. FTIR analysis and subsequent spectral deconvolution revealed composition and miscibility dependent variations in the strength of drug-polymer intermolecular H-bonding. Two types of H-bonded populations were evidenced from 25% w/w and 35% w/w naproxen in solution-cast films and quench-cooled films, respectively, with the higher fraction of strongly H-bonded population in the drug rich domains of phase separated amorphous film compositions and highly drug loaded amorphous quench-cooled dispersions.
Evidence of two-stage melting of Wigner solids
NASA Astrophysics Data System (ADS)
Knighton, Talbot; Wu, Zhe; Huang, Jian; Serafin, Alessandro; Xia, J. S.; Pfeiffer, L. N.; West, K. W.
2018-02-01
Ultralow carrier concentrations of two-dimensional holes down to p =1 ×109cm-2 are realized. Remarkable insulating states are found below a critical density of pc=4 ×109cm-2 or rs≈40 . Sensitive dc V-I measurement as a function of temperature and electric field reveals a two-stage phase transition supporting the melting of a Wigner solid as a two-stage first-order transition.
On the formation of molecules and solid-state compounds from the AGB to the PN phases
NASA Astrophysics Data System (ADS)
García-Hernández, D. A.; Manchado, A.
2016-07-01
During the asymptoyic giant branch (AGB) phase, different elements are dredge- up to the stellar surface depending on progenitor mass and metallicity. When the mass loss increases at the end of the AGB, a circumstellar dust shell is formed, where different (C-rich or O-rich) molecules and solid-state compounds are formed. These are further processed in the transition phase between AGB stars and planetary nebulae (PNe) to create more complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors in C-rich environments and oxides and crystalline silicates in O-rich ones). We present an observational review of the different molecules and solid-state materials that are formed from the AGB to the PN phases. We focus on the formation routes of complex fullerene (and fullerene-based) molecules as well as on the level of dust processing depending on metallicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedotov, V. K., E-mail: fedotov@issp.ac.ru; Ponyatovsky, E. G.
2011-12-15
The spontaneous amorphization of high-pressure quenched phases of the GaSb-Ge system has been studied by neutron diffraction while slowly heating the phases at atmospheric pressure. The sequence of changes in the structural parameters of the initial crystalline phase and the final amorphous phase is established. The behavior of the phases and the correlation in the structural features of the phase transitions and anomalous thermal effects exhibit signs of the inhomogeneous model of solid-state amorphization.
Superfluid--Solid Quantum Phase Transitions and Landau-Ginzburg-Wilson Paradigm
NASA Astrophysics Data System (ADS)
Kuklov, A. B.; Prokof'ev, N. V.
2005-03-01
We study superfluid (SF)--solid zero-temperature transitions in 2d lattice boson/spin models by Worm-Algorithm Monte Carlo simulations. The SF -- Valence Bond Solid (VBS) transition was recently argued to be generically of II order in violation of the Ginzburg-Landau- Wilson (GLW) paradigm [1]. We simulate the J-current model on lattices up to 64x64x64, and observe that SF- columnar VBS and SF-checkerboard solid transitions are typically weak I-order ones and in small systems they may be confused with the continuous or high-symmetry points [2]. Thus, in the simulated model, the SF-VBS transition proceeds in agreement with the GLW paradigm. We explain this by dominance of standard particle and hole excitations, as opposed to fractionalized (spinon) excitations [1]. We developed a technique based on tunneling events (instantons) in the insulating phase which reveals charges of the revelant long-wave modes. While in 1d systems spinons are clearly seen in tunneling events, in two spatial dimensions tunneling is solely controlled by particles and holes in our system. This work is supported by NSF grant ITR-405460001 and PSC-CUNY- 665560035. [1] T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M.P.A. Fisher, Science 303, 1490 (2004); [2] A.B. Kuklov, N.V. Prokof'ev, B.V. Svistunov, condmat/0406061; PRL, to be published.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sehgal, Ray M.; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu, E-mail: ford@ecs.umass.edu; Ford, David M., E-mail: maroudas@ecs.umass.edu, E-mail: ford@ecs.umass.edu
We have developed a coarse-grained description of the phase behavior of the isolated 38-atom Lennard-Jones cluster (LJ{sub 38}). The model captures both the solid-solid polymorphic transitions at low temperatures and the complex cluster breakup and melting transitions at higher temperatures. For this coarse model development, we employ the manifold learning technique of diffusion mapping. The outcome of the diffusion mapping analysis over a broad temperature range indicates that two order parameters are sufficient to describe the cluster's phase behavior; we have chosen two such appropriate order parameters that are metrics of condensation and overall crystallinity. In this well-justified coarse-variable space,more » we calculate the cluster's free energy landscape (FEL) as a function of temperature, employing Monte Carlo umbrella sampling. These FELs are used to quantify the phase behavior and onsets of phase transitions of the LJ{sub 38} cluster.« less
Ustinov, E A
2014-02-21
Freezing of gases adsorbed on open surfaces (e.g., graphite) and in narrow pores is a widespread phenomenon which is a subject of a large number of publications. Modeling of the gas/liquid-solid transition is usually accomplished with a molecular simulation technique. However, quantitative analysis of the gas/liquid-solid coexistence and thermodynamic properties of the solid layer still encounters serious difficulties. This is mainly due to the effect of simulation box size on the lattice constant. Since the lattice constant is a function of loading and temperature, once the ordering transition has occurred, the simulation box size must be corrected in the course of simulation according to the Gibbs-Duhem equation. A significant problem is also associated with accurate prediction of the two-dimensional liquid-solid coexistence because of a small difference in densities of coexisting phases. The aim of this study is thermodynamic analysis of the two-dimensional phase coexistence in systems involving crystal-like free of defects layers in narrow slit pores. A special attention was paid to the determination of triple point temperatures. It is shown that intrinsic properties of argon monolayer adsorbed on the graphite surface are similar to those of isolated monolayer accommodated in the slit pore having width of two argon collision diameters. Analysis of the latter system is shown to be clearer and less time-consuming than the former one, which has allowed for explanation of the experimentally observed two-stage melting transition of argon monolayer on graphite without invoking the periodic surface potential modulation and orientational transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ustinov, E. A., E-mail: eustinov@mail.wplus.net
Freezing of gases adsorbed on open surfaces (e.g., graphite) and in narrow pores is a widespread phenomenon which is a subject of a large number of publications. Modeling of the gas/liquid–solid transition is usually accomplished with a molecular simulation technique. However, quantitative analysis of the gas/liquid–solid coexistence and thermodynamic properties of the solid layer still encounters serious difficulties. This is mainly due to the effect of simulation box size on the lattice constant. Since the lattice constant is a function of loading and temperature, once the ordering transition has occurred, the simulation box size must be corrected in the coursemore » of simulation according to the Gibbs–Duhem equation. A significant problem is also associated with accurate prediction of the two-dimensional liquid–solid coexistence because of a small difference in densities of coexisting phases. The aim of this study is thermodynamic analysis of the two-dimensional phase coexistence in systems involving crystal-like free of defects layers in narrow slit pores. A special attention was paid to the determination of triple point temperatures. It is shown that intrinsic properties of argon monolayer adsorbed on the graphite surface are similar to those of isolated monolayer accommodated in the slit pore having width of two argon collision diameters. Analysis of the latter system is shown to be clearer and less time-consuming than the former one, which has allowed for explanation of the experimentally observed two-stage melting transition of argon monolayer on graphite without invoking the periodic surface potential modulation and orientational transition.« less
Amini, Abbas; Cheng, Chun
2013-01-01
Due to a distinct nature of thermomechanical smart materials' reaction to applied loads, a revolutionary approach is needed to measure the hardness and to understand its size effect for pseudoelastic NiTi shape memory alloys (SMAs) during the solid-state phase transition. Spherical hardness is increased with depths during the phase transition in NiTi SMAs. This behaviour is contrary to the decrease in the hardness of NiTi SMAs with depths using sharp tips and the depth-insensitive hardness of traditional metallic alloys using spherical tips. In contrast with the common dislocation theory for the hardness measurement, the nature of NiTi SMAs' hardness is explained by the balance between the interface and the bulk energy of phase transformed SMAs. Contrary to the energy balance in the indentation zone using sharp tips, the interface energy was numerically shown to be less dominant than the bulk energy of the phase transition zone using spherical tips. PMID:23963305
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamanaka, Takamitsu; Kyono, Atsushi; Nakamoto, Yuki
2013-06-12
The structural phase transition of the titanomagnetite (Fe 3–xTi xO 4) solid solution under pressures up to 60 GPa has been clarified by single-crystal and powder diffraction studies using synchrotron radiation and a diamond-anvil cell. Present Rietveld structure refinements of the solid solution prove that the prefered cation distribution is based on the crystal field preference rather than the magnetic spin ordering in the solid solution. The Ti-rich phases in 0.734 ≤ x ≤1.0 undergo a phase transformation from the cubic spinel of Fd3m to the tetragonal spinel structure of I4 1/amd with c/a < 1.0. The transition is drivenmore » by a Jahn-Teller effect of IVFe 2+ (3d 6) on the tetrahedral site. The c/a < 1 ratio is induced by lifting of the degeneracy of the e orbitals by raising the d x2-y2 orbital below the energy of the d z2 orbital. The distortion characterized by c/a < 1 is more pronounced with increasing Ti content in the Fe 3–xTi xO 4 solid solutions and with increasing pressure. An X-ray emission experiment of Fe 2TiO 4 at high pressures confirms the spin transition of FeKβ from high spin to intermediate spin (IS) state. The high spin (HS)-to-low spin (LS) transition starts at 14 GPa and the IS state gradually increases with compression. The VIFe 2+ in the octahedral site is more prone for the HS-to-LS transition, compared with Fe 2+ in the fourfold- or eightfold-coordinated site. The transition to the orthorhombic post-spinel structure with space group Cmcm has been confirmed in the whole compositional range of Fe 3–xTi xO 4. The transition pressure decreases from 25 GPa (x = 0.0) to 15 GPa (x = 1.0) with increasing Ti content. There are two cation sites in the orthorhombic phase: M1 and M2 sites of eightfold and sixfold coordination, respectively. Fe 2+ and Ti 4+ are disordered on the M2 site. This structural change is accelerated at higher pressures due to the spin transition of Fe 2+ in the octahedral site. This is because the ionic radius of VIFe 2+ becomes 20% shortened by the spin transition. At 53 GPa, the structure transforms to another high-pressure polymorph with Pmma symmetry with the ordered structure of Ti and Fe atoms in the octahedral site. This structure change results from the order-disorder transition.« less
The phase diagram of high-pressure superionic ice
Sun, Jiming; Clark, Bryan K.; Torquato, Salvatore; ...
2015-08-28
Superionic ice is a special group of ice phases at high temperature and pressure, which may exist in ice-rich planets and exoplanets. In superionic ice liquid hydrogen coexists with a crystalline oxygen sublattice. At high pressures, the properties of superionic ice are largely unknown. Here we report evidence that from 280 GPa to 1.3 TPa, there are several competing phases within the close-packed oxygen sublattice. At even higher pressure, the close-packed structure of the oxygen sublattice becomes unstable to a new unusual superionic phase in which the oxygen sublattice takes the P2 1/c symmetry. We also discover that higher pressuremore » phases have lower transition temperatures. The diffusive hydrogen in the P2 1/c superionic phase shows strong anisotropic behaviour and forms a quasi-two-dimensional liquid. The ionic conductivity changes abruptly in the solid to close-packed superionic phase transition, but continuously in the solid to P2 1/c superionic phase transition.« less
NASA Astrophysics Data System (ADS)
Kaneko, Fumitoshi; Yamazaki, Kazuhiro; Kobayashi, Masamichi; Sato, Kiyotaka; Suzuki, Masao
1994-08-01
The infrared and Raman spectra of four polymorphic phases (α, α1, γ and γ1) of erucic acid ( cis-13-docosenoic acid) and those of two polymorphic phases (α and γ) of palmitoleic acid ( cis-9-hexadecenoic acid) were investigated. The γ and γ1 phases of erucic acid were analyzed on the basis of crystal structures determined by us. There were large spectral differences between γ and γ1 phases, which could be ascribed to the differences in the conformation of cis-olefin groups and the subcell structure. Two types of reversible solid state phase transitions (γ→α and γ1→α1 transitions) were followed by the infrared and Raman spectra. It was concluded that the mechanism of the γ→α phase transition of erucic and palmitoleic acids is essentially the same as that of oleic acid previously reported by us [ J. Phys. Chem.90, 6371 (1986)], i.e. this phase transition is of order-disorder type accompanied by a conformational disordering at the methyl-terminal chain. Spectral changes on the γ1→α1 transition suggested that a similar structural change took place during this transition but there were large structural differences between α and α1.
Ultrafast studies of shock-induced melting and phase transitions at LCLS
NASA Astrophysics Data System (ADS)
McMahon, Malcolm
The study of shock-induced phase transitions, which is vital to the understanding of material response to rapid pressure changes, dates back to the 1950s, when Bankcroft et al reported a transition in iron. Since then, many transitions have been reported in a wide range of materials, but, due to the lack of sufficiently bright x-ray sources, the structural details of these new phases has been notably lacking. While the development of nanosecond in situ x-ray diffraction has meant that lattice-level studies of such phenomena have become possible, including studies of the phase transition reported 60 years ago in iron, the quality of the diffraction data from such studies is noticeably poorer than that obtained from statically-compressed samples on synchrotrons. The advent of x-ray free electron lasers (XFELs), such as the LCLS, has resulted in an unprecedented improvement in the quality of diffraction data that can be obtained from shock-compressed matter. Here I describe the results from three recent experiment at the LCLS that looked at the solid-solid and solid-liquid phase transitions in Sb, Bi and Sc using single 50 fs x-ray exposures. The results provide new insight into the structural changes and melting induced by shock compression. This work is supported by EPSRC under Grant No. EP/J017051/1. Use of the LCLS, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.
Investigation of phase diagrams and physical stability of drug-polymer solid dispersions.
Lu, Jiannan; Shah, Sejal; Jo, Seongbong; Majumdar, Soumyajit; Gryczke, Andreas; Kolter, Karl; Langley, Nigel; Repka, Michael A
2015-01-01
Solid dispersion technology has been widely explored to improve the solubility and bioavailability of poorly water-soluble compounds. One of the critical drawbacks associated with this technology is the lack of physical stability, i.e. the solid dispersion would undergo recrystallization or phase separation thus limiting a product's shelf life. In the current study, the melting point depression method was utilized to construct a complete phase diagram for felodipine (FEL)-Soluplus® (SOL) and ketoconazole (KTZ)-Soluplus® (SOL) binary systems, respectively, based on the Flory-Huggins theory. The miscibility or solubility of the two compounds in SOL was also determined. The Flory-Huggins interaction parameter χ values of both systems were calculated as positive at room temperature (25 °C), indicating either compound was miscible with SOL. In addition, the glass transition temperatures of both solid dispersion systems were theoretically predicted using three empirical equations and compared with the practical values. Furthermore, the FEL-SOL solid dispersions were subjected to accelerated stability studies for up to 3 months.
NASA Astrophysics Data System (ADS)
Sun, Jiaxing; Liu, Lei; Xu, Liang; Wang, Yuanyuan; Wu, Zhijun; Hu, Min; Shi, Zongbo; Li, Yongjie; Zhang, Xiaoye; Chen, Jianmin; Li, Weijun
2018-01-01
Ammonium sulfate (AS) and ammonium nitrate (AN) are key components of urban fine particles. Both field and model studies showed that heterogeneous reactions of SO2, NO2, and NH3 on wet aerosols accelerated the haze formation in northern China. However, little is known on phase transitions of AS-AN containing haze particles. Here hygroscopic properties of laboratory-generated AS-AN particles and individual particles collected during haze events in an urban site were investigated using an individual particle hygroscopicity system. AS-AN particles showed a two-stage deliquescence at mutual deliquescence relative humidity (MDRH) and full deliquescence relative humidity (DRH) and three physical states: solid before MDRH, solid-aqueous between MDRH and DRH, and aqueous after DRH. During hydration, urban haze particles displayed a solid core and aqueous shell at RH = 60-80% and aqueous phase at RH > 80%. Most particles were in aqueous phase at RH > 50% during dehydration. Our results show that AS content in individual particles determines their DRH and AN content determines their MDRH. AN content increase can reduce MDRH, which indicates occurrence of aqueous shell at lower RH. The humidity-dependent phase transitions of nitrate-abundant urban particles are important to provide reactive surfaces of secondary aerosol formation in the polluted air.
NASA Astrophysics Data System (ADS)
Kim, Minkyu; Chang, Jaeeon; Sandler, Stanley I.
2014-02-01
Accurate values of the free energies of C60 and C70 fullerene crystals are obtained using expanded ensemble method and acceptance ratio method combined with the Einstein-molecule approach. Both simulation methods, when tested for Lennard-Jones crystals, give accurate results of the free energy differing from each other in the fifth significant digit. The solid-solid phase transition temperature of C60 crystal is determined from free energy profiles, and found to be 260 K, which is in good agreement with experiment. For C70 crystal, using the potential model of Sprik et al. [Phys. Rev. Lett. 69, 1660 (1992)], low-temperature solid-solid phase transition temperature is found to be 160 K determined from the free energy profiles. Whereas this is somewhat lower than the experimental value, it is in agreement with conventional molecular simulations, which validates the methodological consistency of the present simulation method. From the calculations of the free energies of C60 and C70 crystals, we note the significance of symmetry number for crystal phase needed to properly account for the indistinguishability of orientationally disordered states.
Obseration of flow regime transition in CFB riser using an LDV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Paul C.; Mei, Joseph S.; Shadle, Lawrence J.
2011-01-01
The solids flow in a circulating fluidized bed (CFB) riser is often described to have a core-annular structure. For a given superficial gas velocity, at the initial introduction of solids into a riser a flow structure of dilute upflow regime exists. Continuing to increase the solids flow in the riser transitions the flow structure to the core-annular flow regime. However, with further increase of solids flow a condition is reached, depending on the superficial gas velocity, where all the solids across the riser cross section flow upwards, even those at the wall. When the solids flux, solids fraction and gasmore » velocity are relatively high, such a condition is described as the dense phase suspense upflow (DSU) regime. In this paper we report our observations of these flow regime transitions by using a laser Doppler velocimeter (LDV) to monitor the upward and downward particle flow velocities at and near the riser wall of the National Energy Technology Laboratory’s 30.4 centimeters diameter CFB cold flow model. The particles were high density polyethylene (PPE) spheres with a Sauter mean diameter of 861 micron and a density of 800 kg/m3. Three superficial gas velocities of 6.55 m/s, 10.67 m/s and 13.72 m/s were used in this study. For the case of superficial gas velocity 6.55 m/s, the experimental data show that the transition from dilute upflow to core-annular flow occurred when the solids flux was about 7 kg/m{sup 2}-s and the transition from core-annular flow to dense suspension upflow was about 147 kg/m{sup 2}-s. As the superficial gas velocity was increased to 10.67 m/s the corresponding flow regime transitions were at 34 kg/m{sup 2}-s and 205 kg/m{sup 2}-s, respectively. For the case of superficial gas velocity of 13.72 m/s the data showed no distinct transition of flow regimes. The particles were all upflow for the range of solids fluxes from 10 kg/m{sup 2}-s to 286 kg/m{sup 2}-s.« less
Broken symmetry phase transition in solid p-H 2, o-D 2 and HD: crystal field effects
NASA Astrophysics Data System (ADS)
Freiman, Yu. A.; Hemley, R. J.; Jezowski, A.; Tretyak, S. M.
1999-04-01
We report the effect of the crystal field (CF) on the broken symmetry phase transition (BSP) in solid parahydrogen, orthodeuterium, and hydrogen deuteride. The CF was calculated taking into account a distortion from the ideal HCP structure. We find that, in addition to the molecular field generated by the coupling terms in the intermolecular potential, the Hamiltonian of the system contains a crystal-field term, originating from single-molecular terms in the intermolecular potential. Ignoring the CF is the main cause of the systematic underestimation of the transition pressure, characteristic of published theories of the BSP transition. The distortion of the lattice that gives rise to the negative CF in response to the applied pressure is in accord with the general Le Chatelier-Braun principle.
Kim, Da Hye; Kim, Hyun You; Ryu, Ji Hoon; Lee, Hyuck Mo
2009-07-07
This report on the solid-to-liquid transition region of an Ag-Pd bimetallic nanocluster is based on a constant energy microcanonical ensemble molecular dynamics simulation combined with a collision method. By varying the size and composition of an Ag-Pd bimetallic cluster, we obtained a complete solid-solution type of binary phase diagram of the Ag-Pd system. Irrespective of the size and composition of the cluster, the melting temperature of Ag-Pd bimetallic clusters is lower than that of the bulk state and rises as the cluster size and the Pd composition increase. Additionally, the slope of the phase boundaries (even though not exactly linear) is lowered when the cluster size is reduced on account of the complex relations of the surface tension, the bulk melting temperature, and the heat of fusion. The melting of the cluster initially starts at the surface layer. The initiation and propagation of a five-fold icosahedron symmetry is related to the sequential melting of the cluster.
Shock Response and Phase Transitions of MgO at Planetary Impact Conditions.
Root, Seth; Shulenburger, Luke; Lemke, Raymond W; Dolan, Daniel H; Mattsson, Thomas R; Desjarlais, Michael P
2015-11-06
The moon-forming impact and the subsequent evolution of the proto-Earth is strongly dependent on the properties of materials at the extreme conditions generated by this violent collision. We examine the high pressure behavior of MgO, one of the dominant constituents in Earth's mantle, using high-precision, plate impact shock compression experiments performed on Sandia National Laboratories' Z Machine and extensive quantum calculations using density functional theory (DFT) and quantum Monte Carlo (QMC) methods. The combined data span from ambient conditions to 1.2 TPa and 42 000 K, showing solid-solid and solid-liquid phase boundaries. Furthermore our results indicate that under impact the solid and liquid phases coexist for more than 100 GPa, pushing complete melting to pressures in excess of 600 GPa. The high pressure required for complete shock melting has implications for a broad range of planetary collision events.
NASA Astrophysics Data System (ADS)
Du, Tao-Yuan; Huang, Xiao-Huan; Bian, Xue-Bin
2018-01-01
We study numerically the Bloch electron wave-packet dynamics in periodic potentials to simulate laser-solid interactions. We introduce an alternative perspective in the coordinate space combined with the motion of the Bloch electron wave packets moving at group and phase velocities under the laser fields. This model interprets the origins of the two contributions (intra- and interband transitions) in the high-order harmonic generation (HHG) processes by investigating the local and global behaviours of the wave packets. It also elucidates the underlying physical picture of the HHG intensity enhancement by means of carrier-envelope phase, chirp, and inhomogeneous fields. It provides a deep insight into the emission of high-order harmonics from solids. This model is instructive for experimental measurements and provides an alternative avenue to distinguish mechanisms of the HHG from solids in different laser fields.
Study of Diffusion Bonding of 45 Steel through the Compacted Nickel Powder Layer
NASA Astrophysics Data System (ADS)
Zeer, G. M.; Zelenkova, E. G.; Temnykh, V. I.; Tokmin, A. M.; Shubin, A. A.; Koroleva, Yu. P.; Mikheev, A. A.
2018-02-01
The microstructure of the transition zone and powder spacer, the concentration distribution of chemical elements over the width of the diffusion-bonded joint, and microhardness of 45 steel-compacted Ni powder spacer-45 steel layered composites formed by diffusion bonding have been investigated. It has been shown that the relative spacer thickness χ < 0.06 is optimal for obtaining a high-quality joint has been formed under a compacting pressure of 500 MPa. The solid-state diffusion bonding is accompanied by sintering the nickel powder spacer and the formation of the transition zone between the spacer and steel. The transition zone consists of solid solution of nickel in the α-Fe phase and ordered solid solution of iron in nickel (FeNi3).
A multiphase equation of state of three solid phases, liquid, and gas for titanium
NASA Astrophysics Data System (ADS)
Pecker, S.; Eliezer, S.; Fisher, D.; Henis, Z.; Zinamon, Z.
2005-08-01
A multiple-phase equation of state of the α phase, β phase, ω phase, liquid, and gas for titanium is presented. This equation of state is thermodynamically consistent, based on a three-term semiempirical model for the Helmholtz free energy. The parameters of the free energy are first evaluated from the experimental data and solid-state theoretical calculations. Then, the values of the parameters are adjusted using a numerical minimization scheme based on the simplex algorithm, to values that best reproduce measured phase diagrams and other experimental data. The predicted phase diagram shows a compression-induced β-ω transition, up to a β-ω-liquid triple point at ˜45GPa and ˜2200K. For pressures above this triple point, the melting occurs from the ω phase. Moreover, no β-ω transition is predicted along the Hugoniot curve starting at STP conditions.
Evidence for a Peierls phase-transition in a three-dimensional multiple charge-density waves solid
Mansart, Barbara; Cottet, Mathieu J. G.; Penfold, Thomas J.; Dugdale, Stephen B.; Tediosi, Riccardo; Chergui, Majed; Carbone, Fabrizio
2012-01-01
The effect of dimensionality on materials properties has become strikingly evident with the recent discovery of graphene. Charge ordering phenomena can be induced in one dimension by periodic distortions of a material’s crystal structure, termed Peierls ordering transition. Charge-density waves can also be induced in solids by strong coulomb repulsion between carriers, and at the extreme limit, Wigner predicted that crystallization itself can be induced in an electrons gas in free space close to the absolute zero of temperature. Similar phenomena are observed also in higher dimensions, but the microscopic description of the corresponding phase transition is often controversial, and remains an open field of research for fundamental physics. Here, we photoinduce the melting of the charge ordering in a complex three-dimensional solid and monitor the consequent charge redistribution by probing the optical response over a broad spectral range with ultrashort laser pulses. Although the photoinduced electronic temperature far exceeds the critical value, the charge-density wave is preserved until the lattice is sufficiently distorted to induce the phase transition. Combining this result with ab initio electronic structure calculations, we identified the Peierls origin of multiple charge-density waves in a three-dimensional system for the first time. PMID:22451898
NASA Astrophysics Data System (ADS)
Kadobayashi, H.; Hirai, H.; Ohfuji, H.; Kojima, Y.; Ohishi, Y.; Hirao, N.; Ohtake, M.; Yamamoto, Y.
2017-10-01
The phase transition mechanism of methane hydrate from sH to filled-ice Ih structure was examined using a combination of time-resolved X-ray diffractometry (XRD) and Raman spectroscopy in conjunction with charge-coupled device (CCD) camera observation under fixed pressure conditions. Prior to time-resolved Raman experiments, the typical C-H vibration modes and their pressure dependence of three methane hydrate structures, fluid methane and solid methane were measured using Raman spectroscopy to distinguish the phase transitions of methane hydrates from decomposition to solid methane and ice VI or VII. Experimental results by XRD, Raman spectroscopy and CCD camera observation revealed that the structural transition of sH to filled-ice Ih occurs through a collapse of the sH framework followed by the release of fluid methane that is then gradually incorporated into the filled-ice Ih to reconstruct its structure. These observations suggest that the phase transition of sH to filled-ice Ih takes place by a typical reconstructive mechanism.
Lubach, Joseph W; Hau, Jonathan
2018-02-20
To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems. Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (T g ). 13 C and 15 N solid-state NMR was utilized to investigate changes in local structure and protonation state, while 1 H T 1 and T 1ρ relaxation measurements were used to probe miscibility and phase behavior of the dispersions. T g values for IMC-EE solid dispersions showed significant positive deviations from predicted values in the drug loading range of 40-90%, indicating a relatively strong drug-excipient interaction. 15 N solid-state NMR exhibited a change in protonation state of the EE basic amine, with two distinct populations for the EE amine at -360.7 ppm (unprotonated) and -344.4 ppm (protonated). Additionally, 1 H relaxation measurements showed phase separation at high drug load, indicating an amorphous ionic complex and free IMC-rich phase. PXRD data showed all ASDs up to 90% drug load remained physically stable after 2 years. 15 N solid-state NMR experiments show a change in protonation state of EE, indicating that an ionic complex indeed forms between IMC and EE in amorphous solid dispersions. Phase behavior was determined to exhibit nanoscale phase separation at high drug load between the amorphous ionic complex and excess free IMC.
NASA Astrophysics Data System (ADS)
Furukawa, Kazuki; Yamamoto, Norifumi; Hino, Kazuyuki; Sekiya, Hiroshi
2016-01-01
The effect of intermolecular interaction on excited-state intramolecular proton transfer (ESIPT) in 4‧-N,N-dimethylamino-3-hydroxyflavone (DMHF) doped in acetonitrile crystals was investigated by measuring the temperature dependence of fluorescence excitation and fluorescence spectra. A solid/solid phase transition of DMHF-doped acetonitrile crystals occurred in the temperature between 210 and 218 K. Significant differences in the spectral profiles and shifts in the fluorescence spectra were observed in the low- and high-temperature regions of the phase transition. The temperature dependence of the ESIPT potential of DMHF is discussed.
Conformational and orientational order and disorder in solid polytetrafluoroethylene
NASA Astrophysics Data System (ADS)
Sprik, Michiel; Rothlisberger, Ursula; Klein, Michael L.
The low pressure phase diagram of solid polytetrafluoroethylene (PTFE/Teflon) has been investigated using constant temperature-constant pressure molecular dynamics techniques and a new all-atom potential model for fluorocarbons. The simulation was started in an ordered low temperature phase in which the molecules are parallel and have a helical conformation with a pitch of uniform magnitude and sign (chirality). In accordance with experiment, a transition to an orientationally disordered state is observed upon heating. The coherent helical winding of CF2 groups also disappears abruptly at the transition but short helical segments remain and become equally distributed between left and right chirality with increasing temperature. The orientational and conformational disorder is accompanied by translational diffusion along the chain direction. At a still higher temperature melting sets in. On cooling, the disordered solid phase is recovered and its structure is shown to be identical to that generated on heating. On further cooling, a spontaneous ordering transition is observed but the system fails to recover a uniform helical ground state. Instead, the high pressure ordered monoclinic all- trans (alkane-like) structure is obtained: an observation that indicates a deficiency in the potential model.
NASA Astrophysics Data System (ADS)
Fujimoto, Minoru
2017-11-01
Solitons in Crystalline Processes is an introduction to the statistical thermodynamics of phase transitions in crystallized solids. This book is written as an introductory treatise with respect to the soliton concept, from structural transitions where the crystal symmetry changes, to magnets and superconductors, describing the role of nonlinear excitations in detail.
Polymorphic phase transitions: Macroscopic theory and molecular simulation.
Anwar, Jamshed; Zahn, Dirk
2017-08-01
Transformations in the solid state are of considerable interest, both for fundamental reasons and because they underpin important technological applications. The interest spans a wide spectrum of disciplines and application domains. For pharmaceuticals, a common issue is unexpected polymorphic transformation of the drug or excipient during processing or on storage, which can result in product failure. A more ambitious goal is that of exploiting the advantages of metastable polymorphs (e.g. higher solubility and dissolution rate) while ensuring their stability with respect to solid state transformation. To address these issues and to advance technology, there is an urgent need for significant insights that can only come from a detailed molecular level understanding of the involved processes. Whilst experimental approaches at best yield time- and space-averaged structural information, molecular simulation offers unprecedented, time-resolved molecular-level resolution of the processes taking place. This review aims to provide a comprehensive and critical account of state-of-the-art methods for modelling polymorph stability and transitions between solid phases. This is flanked by revisiting the associated macroscopic theoretical framework for phase transitions, including their classification, proposed molecular mechanisms, and kinetics. The simulation methods are presented in tutorial form, focusing on their application to phase transition phenomena. We describe molecular simulation studies for crystal structure prediction and polymorph screening, phase coexistence and phase diagrams, simulations of crystal-crystal transitions of various types (displacive/martensitic, reconstructive and diffusive), effects of defects, and phase stability and transitions at the nanoscale. Our selection of literature is intended to illustrate significant insights, concepts and understanding, as well as the current scope of using molecular simulations for understanding polymorphic transitions in an accessible way, rather than claiming completeness. With exciting prospects in both simulation methods development and enhancements in computer hardware, we are on the verge of accessing an unprecedented capability for designing and developing dosage forms and drug delivery systems in silico, including tackling challenges in polymorph control on a rational basis. Copyright © 2017 Elsevier B.V. All rights reserved.
Path-integral simulation of solids.
Herrero, C P; Ramírez, R
2014-06-11
The path-integral formulation of the statistical mechanics of quantum many-body systems is described, with the purpose of introducing practical techniques for the simulation of solids. Monte Carlo and molecular dynamics methods for distinguishable quantum particles are presented, with particular attention to the isothermal-isobaric ensemble. Applications of these computational techniques to different types of solids are reviewed, including noble-gas solids (helium and heavier elements), group-IV materials (diamond and elemental semiconductors), and molecular solids (with emphasis on hydrogen and ice). Structural, vibrational, and thermodynamic properties of these materials are discussed. Applications also include point defects in solids (structure and diffusion), as well as nuclear quantum effects in solid surfaces and adsorbates. Different phenomena are discussed, as solid-to-solid and orientational phase transitions, rates of quantum processes, classical-to-quantum crossover, and various finite-temperature anharmonic effects (thermal expansion, isotopic effects, electron-phonon interactions). Nuclear quantum effects are most remarkable in the presence of light atoms, so that especial emphasis is laid on solids containing hydrogen as a constituent element or as an impurity.
Jin, Liyu; Nairn, Kate M; Forsyth, Craig M; Seeber, Aaron J; MacFarlane, Douglas R; Howlett, Patrick C; Forsyth, Maria; Pringle, Jennifer M
2012-06-13
Understanding the ion transport behavior of organic ionic plastic crystals (OIPCs) is crucial for their potential application as solid electrolytes in various electrochemical devices such as lithium batteries. In the present work, the ion transport mechanism is elucidated by analyzing experimental data (single-crystal XRD, multinuclear solid-state NMR, DSC, ionic conductivity, and SEM) as well as the theoretical simulations (second moment-based solid static NMR line width simulations) for the OIPC diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate ([P(1,2,2,4)][PF(6)]). This material displays rich phase behavior and advantageous ionic conductivities, with three solid-solid phase transitions and a highly "plastic" and conductive final solid phase in which the conductivity reaches 10(-3) S cm(-1). The crystal structure shows unique channel-like packing of the cations, which may allow the anions to diffuse more easily than the cations at lower temperatures. The strongly phase-dependent static NMR line widths of the (1)H, (19)F, and (31)P nuclei in this material have been well simulated by different levels of molecular motions in different phases. Thus, drawing together of the analytical and computational techniques has allowed the construction of a transport mechanism for [P(1,2,2,4)][PF(6)]. It is also anticipated that utilization of these techniques will allow a more detailed understanding of the transport mechanisms of other plastic crystal electrolyte materials.
New phase in solid nitrogen at high pressures
NASA Astrophysics Data System (ADS)
Grimsditch, M.
1985-07-01
A Brillouin scattering study of nitrogen up to pressures of 21 GPa shows a phase transition with pronounced hysteresis at 16.5 GPa. This phase transition is consistent with recent Raman measurements of Buchsbaum, Mills, and Schiferl [J. Phys. Chem. 88, 2522 (1984)] which could be interpreted as either a deformation of the lattice or the appearance of a new phase.
New phase in solid nitrogen at high pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimsditch, M.
1985-07-01
A Brillouin scattering study of nitrogen up to pressures of 21 GPa shows a phase transition with pronounced hysteresis at 16.5 GPa. This phase transition is consistent with recent Raman measurements of Buchsbaum, Mills, and Schiferl (J. Phys. Chem. 88, 2522 (1984)) which could be interpreted as either a deformation of the lattice or the appearance of a new phase.
Growth and melting of droplets in cold vapors.
L'Hermite, Jean-Marc
2009-11-01
A model has been developed to investigate the growth of droplets in a supersaturated cold vapor taking into account their possible solid-liquid phase transition. It is shown that the solid-liquid phase transition is nontrivially coupled, through the energy released in attachment, to the nucleation process. The model is based on the one developed by J. Feder, K. C. Russell, J. Lothe, and G. M. Pound [Adv. Phys. 15, 111 (1966)], where the nucleation process is described as a thermal diffusion motion in a two-dimensional field of force given by the derivatives of a free-energy surface. The additional dimension accounts for droplets internal energy. The solid-liquid phase transition is introduced through a bimodal internal energy distribution in a Gaussian approximation derived from small clusters physics. The coupling between nucleation and melting results in specific nonequilibrium thermodynamical properties, exemplified in the case of water droplets. Analyzing the free-energy landscapes gives an insight into the nucleation dynamics. This landscape can be complex but generally exhibits two paths: the first one can generally be ascribed to the solid state, while the other to the liquid state. Especially at high supersaturation, the growth in the liquid state is often favored, which is not unexpected since in a supersaturated vapor the droplets can stand higher internal energy than at equilibrium. From a given critical temperature that is noticeably lower than the bulk melting temperature, nucleation may end in very large liquid droplets. These features can be qualitatively generalized to systems other than water.
Raina, Shweta A; Alonzo, David E; Zhang, Geoff G Z; Gao, Yi; Taylor, Lynne S
2014-10-06
The commercial and clinical success of amorphous solid dispersions (ASD) in overcoming the low bioavailability of poorly soluble molecules has generated momentum among pharmaceutical scientists to advance the fundamental understanding of these complex systems. A major limitation of these formulations stems from the propensity of amorphous solids to crystallize upon exposure to aqueous media. This study was specifically focused on developing analytical techniques to evaluate the impact of polymers on the crystallization behavior during dissolution, which is critical in designing effective amorphous formulations. In the study, the crystallization and polymorphic conversions of a model compound, nifedipine, were explored in the absence and presence of polyvinylpyrrolidone (PVP), hydroxypropylmethyl cellulose (HPMC), and HPMC-acetate succinate (HPMC-AS). A combination of analytical approaches including Raman spectroscopy, polarized light microscopy, and chemometric techniques such as multivariate curve resolution (MCR) were used to evaluate the kinetics of crystallization and polymorphic transitions as well as to identify the primary route of crystallization, i.e., whether crystallization took place in the dissolving solid matrix or from the supersaturated solutions generated during dissolution. Pure amorphous nifedipine, when exposed to aqueous media, was found to crystallize rapidly from the amorphous matrix, even when polymers were present in the dissolution medium. Matrix crystallization was avoided when amorphous solid dispersions were prepared, however, crystallization from the solution phase was rapid. MCR was found to be an excellent data processing technique to deconvolute the complex phase transition behavior of nifedipine.
NASA Astrophysics Data System (ADS)
Totsuji, Hiroo
2008-07-01
The thermodynamics is analyzed for a system composed of particles with hard cores, interacting via the repulsive Yukawa potential (Yukawa particulates), and neutralizing ambient (background) plasma. An approximate equation of state is given with proper account of the contribution of ambient plasma and it is shown that there exists a possibility for the total isothermal compressibility of Yukawa particulates and ambient plasma to diverge when the coupling between Yukawa particulates is sufficiently strong. In this case, the system undergoes a transition into separated phases with different densities and we have a critical point for this phase separation. Examples of approximate phase diagrams related to this transition are given. It is emphasized that the critical point can be in the solid phase and we have the possibility to observe a solid-solid phase separation. The applicability of these results to fine particle plasmas is investigated. It is shown that, though the values of the characteristic parameters are semiquantitative due to the effects not described by this model, these phenomena are expected to be observed in fine particle plasmas, when approximately isotropic bulk systems are realized with a very strong coupling between fine particles.
Faroongsarng, Damrongsak
2016-06-01
Although differential scanning calorimetry (DSC) is a non-equilibrium technique, it has been used to gain energetic information that involves phase equilibria. DSC has been widely used to characterize the equilibrium melting parameters of small organic pharmaceutical compounds. An understanding of how DSC measures an equilibrium event could make for a better interpretation of the results. The aim of this mini-review was to provide a theoretical insight into the DSC measurement to obtain the equilibrium thermodynamics of a phase transition especially the melting process. It was demonstrated that the heat quantity obtained from the DSC thermogram (ΔH) was related to the thermodynamic enthalpy of the phase transition (ΔH (P) ) via: ΔH = ΔH (P) /(1 + K (- 1)) where K was the equilibrium constant. In melting, the solid and liquefied phases presumably coexist resulting in a null Gibbs free energy that produces an infinitely larger K. Thus, ΔH could be interpreted as ΔH (P). Issues of DSC investigations on melting behavior of crystalline solids including polymorphism, degradation impurity due to heating in situ, and eutectic melting were discussed. In addition, DSC has been a tool for determination of the impurity based on an ideal solution of the melt that is one of the official methods used to establish the reference standard.
NASA Astrophysics Data System (ADS)
Angot, E.; Huang, B.; Levelut, C.; Le Parc, R.; Hermet, P.; Pereira, A. S.; Aquilanti, G.; Frapper, G.; Cambon, O.; Haines, J.
2017-08-01
α -Quartz-type gallium phosphate and representative compositions in the AlP O4-GaP O4 solid solution were studied by x-ray powder diffraction and absorption spectroscopy, Raman scattering, and by first-principles calculations up to pressures of close to 30 GPa. A phase transition to a metastable orthorhombic high-pressure phase along with some of the stable orthorhombic C m c m CrV O4 -type material is found to occur beginning at 9 GPa at 320 ∘C in GaP O4 . In the case of the AlP O4-GaP O4 solid solution at room temperature, only the metastable orthorhombic phase was obtained above 10 GPa. The possible crystal structures of the high-pressure forms of GaP O4 were predicted from first-principles calculations and the evolutionary algorithm USPEX. A predicted orthorhombic structure with a P m n 21 space group with the gallium in sixfold and phosphorus in fourfold coordination was found to be in the best agreement with the combined experimental data from x-ray diffraction and absorption and Raman spectroscopy. This method is found to very powerful to better understand competition between different phase transition pathways at high pressure.
Hysteresis, nucleation and growth phenomena in spin-crossover solids
NASA Astrophysics Data System (ADS)
Ridier, Karl; Molnár, Gábor; Salmon, Lionel; Nicolazzi, William; Bousseksou, Azzedine
2017-12-01
The observation and the study of first-order phase transitions in cooperative spin-crossover (SCO) solids exhibiting hysteresis behaviours are of particular interest and currently constitute a burgeoning area in the field of bistable molecular materials. The understanding and the control of the transition mechanisms (nucleation and growth processes) and their dynamics within the hysteresis region appear to be a general and appealing problem from a fundamental point of view and for technological applications as well. This review reports on the recent progresses and most important findings made on the spatiotemporal dynamics of the spin transition in SCO solids, particularly through the universal nucleation and growth process. Both thermally induced and light-induced spin transitions are discussed. We open up this review to the central question of the evolution of the transition mechanisms and dynamics in SCO nano-objects, which constitute promising systems to reach ultra-fast switching, and the experimental issues inherent to such studies at the micro- and nanometric scale.
Maestro, Armando; Jones, Daniel; Sánchez de Rojas Candela, Carmen; Guzman, Eduardo; Duits, Michel H G; Cicuta, Pietro
2018-06-05
By combining controlled experiments on single interfaces with measurements on solitary bubbles and liquid foams, we show that poly( N-isopropylacrylamide) (PNIPAM) microgels assembled at air/water interfaces exhibit a solid to liquid transition changing the temperature, and that this is associated with the change in the interfacial microstructure of the PNIPAM particles around their volume phase transition temperature. We show that the solid behaves as a soft 2D colloidal glass, and that the existence of this solid/liquid transition offers an ideal platform to tune the permeability of air bubbles covered by PNIPAM and to control macroscopic foam properties such as drainage, stability, and foamability. PNIPAM particles on fluid interfaces allow new tunable materials, for example foam structures with variable mechanical properties upon small temperature changes.
Study of the high-pressure helium phase diagram using molecular dynamics
NASA Astrophysics Data System (ADS)
Koci, L.; Ahuja, R.; Belonoshko, A. B.; Johansson, B.
2007-01-01
The rich occurrence of helium and hydrogen in space makes their properties highly interesting. By means of molecular dynamics (MD), we have examined two interatomic potentials for 4He. Both potentials are demonstrated to reproduce high-pressure solid and liquid equation of state (EOS) data. The EOS, solid-solid transitions and melting at high pressures (P) were studied using a two-phase method. The Buckingham potential shows a good agreement with theoretical and experimental EOS, but does not reproduce experimental melting data. The Aziz potential shows a perfect match with theoretical melting data. We conclude that there is a stable body-centred-cubic (bcc) phase for 4He at temperatures (T) above 340 K and pressures above 22 GPa for the Buckingham potential, whereas no bcc phase is found for the Aziz potential in the applied PT range.
Magnetic islands modelled by a phase-field-crystal approach
NASA Astrophysics Data System (ADS)
Faghihi, Niloufar; Mkhonta, Simiso; Elder, Ken R.; Grant, Martin
2018-03-01
Using a minimal model based on the phase-field-crystal formalism, we study the coupling between the density and magnetization in ferromagnetic solids. Analytical calculations for the square phase in two dimensions are presented and the small deformation properties of the system are examined. Furthermore, numerical simulations are conducted to study the influence of an external magnetic field on various phase transitions, the anisotropic properties of the free energy functional, and the scaling behaviour of the growth of the magnetic domains in a crystalline solid. It is shown that the energy of the system can depend on the direction of the magnetic moments, with respect to the crystalline direction. Furthermore, the growth of the magnetic domains in a crystalline solid is studied and is shown that the growth of domains is in agreement with expected behaviour.
Moussa, Zeinab; Chebl, Mazhar; Patra, Digambara
2017-01-01
Stability of curcumin in neutral and alkaline buffer conditions has been a serious concern for its medicinal applications. We demonstrate that the stability of curucmin can be improved in 1,2-Dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC) liposomes. Curcumin strongly partition into liquid crystalline phase compared to solid gel phase of DSPC liposomes. Variation of fluorescence intensity of curcumin associated with liposomes with temperature successfully determines phase transition temperature of DSPC liposomes. However, at higher molar ratio curcumin can influence phase transition temperature by intercalating into deep hydrophobic layer of liposomes and facilitating fusion of two membrane phases. Rhamnolipids (RLs) are recently being applied for various biomedical applications. Here, we have explored new insight on intercalation of rhamnolipids with DSPC liposomes. Intercalation of rhamnolipids exceptionally increases partition of curcumin into solid gel phase of DSPC liposomes, whereas this increase is moderate in liquid crystalline phase. Fluorescence quenching study establishes that permeability and fluidity of the DSPC liposomes are enhanced in the presence of RLs. Membrane permeability and fluidity can be improved further by increasing the percentage of RLs in DSPC liposomes. The phase transition temperature of DSPC liposomes decreases with increase in percentage of RLs in DSPC liposomes by encouraging fusion between solid gel and liquid crystalline phases. Intercalation of RLs is found to further boost stability of drug, curcumin, in DSPC liposomes. Thus, mixing RLs with DSPC liposomes could potentially serve as a good candidate for drug delivery application. Copyright © 2016 Elsevier B.V. All rights reserved.
Thermodynamic curvature for attractive and repulsive intermolecular forces
NASA Astrophysics Data System (ADS)
May, Helge-Otmar; Mausbach, Peter; Ruppeiner, George
2013-09-01
The thermodynamic curvature scalar R for the Lennard-Jones system is evaluated in phase space, including vapor, liquid, and solid state. We paid special attention to the investigation of R along vapor-liquid, liquid-solid, and vapor-solid equilibria. Because R is a measure of interaction strength, we traced out the line R=0 dividing the phase space into regions with effectively attractive (R<0) or repulsive (R>0) interactions. Furthermore, we analyzed the dependence of R on the strength of attraction applying a perturbation ansatz proposed by Weeks-Chandler-Anderson. Our results show clearly a transition from R>0 (for poorly repulsive interaction) to R<0 when loading attraction in the intermolecular potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodward, David I., E-mail: d.i.woodward@warwick.ac.uk; Lees, Martin R.; Thomas, Pam A.
2012-08-15
The phase transitions between various structural modifications of the natrotantite-structured system xAg{sub 2}Nb{sub 4}O{sub 11}-(1-x)Na{sub 2}Nb{sub 4}O{sub 11} have been investigated and a phase diagram constructed as a function of temperature and composition. This shows three separate phase transition types: (1) paraelectric-ferroelectric, (2) rhombohedral-monoclinic and (3) a phase transition within the ferroelectric rhombohedral zone between space groups R3c and R3. The parent structure for the entire series has space group R3{sup Macron }c. Compositions with x>0.75 are rhombohedral at all temperatures whereas compositions with x<0.75 are all monoclinic at room temperature and below. At x=0.75, rhombohedral and monoclinic phases coexistmore » with the phase boundary below room temperature being virtually temperature-independent. The ferroelectric phase boundary extends into the monoclinic phase field. No evidence was found for the R3-R3c phase boundary extending into the monoclinic phase field and it is concluded that a triple point is formed. - Graphical abstract: Phase diagram for xAg{sub 2}Nb{sub 4}O{sub 11}-(1-x)Na{sub 2}Nb{sub 4}O{sub 11} solid solution showing changes in crystal symmetry as a function of temperature and composition. The crystal structure is depicted. Highlights: Black-Right-Pointing-Triangle Ferroelectric, rhombohedral Ag{sub 2}Nb{sub 4}O{sub 11} in solid solution with monoclinic Na{sub 2}Nb{sub 4}O{sub 11}. Black-Right-Pointing-Triangle Three phase boundaries were studied as a function of composition and temperature. Black-Right-Pointing-Triangle Both rhombohedral and monoclinic variants exhibit ferroelectricity. The parent phase of the series has space group R3{sup Macron }c.« less
Wetting and spreading at the molecular scale
NASA Technical Reports Server (NTRS)
Koplik, Joel; Banavar, Jayanth R.
1994-01-01
We have studied the microscopic aspects of the spreading of liquid drops on a solid surface by molecular dynamics simulations of coexisting three-phase Lennard-Jones systems of liquid, vapor and solid. We consider both spherically symmetric atoms and chain-like molecules, and a range of interaction strengths. As the attraction between liquid and solid increases we observed a smooth transition in spreading regimes, from partial to complete to terraced wetting. In the terraced case, where distinct monomolecular layers spread with different velocities, the layers are ordered but not solid, with qualitative behavior resembling recent experimental findings, but with interesting differences in the spreading rate.
Observation of solid–solid transitions in 3D crystals of colloidal superballs
Meijer, Janne-Mieke; Pal, Antara; Ouhajji, Samia; Lekkerkerker, Henk N. W.; Philipse, Albert P.; Petukhov, Andrei V.
2017-01-01
Self-organization in anisotropic colloidal suspensions leads to a fascinating range of crystal and liquid crystal phases induced by shape alone. Simulations predict the phase behaviour of a plethora of shapes while experimental realization often lags behind. Here, we present the experimental phase behaviour of superball particles with a shape in between that of a sphere and a cube. In particular, we observe the formation of a plastic crystal phase with translational order and orientational disorder, and the subsequent transformation into rhombohedral crystals. Moreover, we uncover that the phase behaviour is richer than predicted, as we find two distinct rhombohedral crystals with different stacking variants, namely hollow-site and bridge-site stacking. In addition, for slightly softer interactions we observe a solid–solid transition between the two. Our investigation brings us one step closer to ultimately controlling the experimental self-assembly of superballs into functional materials, such as photonic crystals. PMID:28186101
A metastable liquid melted from a crystalline solid under decompression
NASA Astrophysics Data System (ADS)
Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin
2017-01-01
A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid-solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure-temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.
NASA Astrophysics Data System (ADS)
Dan, Wen-Yan; Di, You-Ying; He, Dong-Hua; Liu, Yu-Pu
2011-02-01
1-Decylammonium hydrochloride was synthesized by the method of liquid phase synthesis. Chemical analysis, elemental analysis, and X-ray single crystal diffraction techniques were applied to characterize its composition and structure. Low-temperature heat capacities of the compounds were measured with a precision automated adiabatic calorimeter over the temperature range from 78 to 380 K. Three solid-solid phase transitions have been observed at the peak temperatures of 307.52 ± 0.13, 325.02 ± 0.19, and 327.26 ± 0.07 K. The molar enthalpies and entropies of three phase transitions were determined based on the analysis of heat capacity curves. Experimental molar heat capacities were fitted to two polynomial equations of the heat capacities as a function of temperature by least square method. Smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were calculated and tabulated at intervals of 5 K based on the fitted polynomials.
NASA Astrophysics Data System (ADS)
Wirunchit, S.; Vittayakorn, N.
2008-07-01
The solid solution between the antiferroelectric (AFE) PbZrO3 (PZ) and the relaxor ferroelectric (FE) Pb(Ni1/3Nb2/3)O3 (PNN) was synthesized by the columbite precursor method. The crystal structure, phase transformations, and dielectric and thermal properties of (1-x )PZ-xPNN where x =0.00-0.30 were investigated. With these data, the FE phase diagram between PZ and PNN has been established. The crystal structure data obtained from X-ray diffraction indicate that the solid solution PZ-PNN, where x =0.00-0.30, successively transforms from orthorhombic to rhombohedral symmetry with an increase in the PNN concentration. The AFE phase→FE phase transition occurs in compositions of 0.00⩽x⩽0.08. The AFE →FE phase transition shifts to lower temperatures with higher compositions of x. The FE phase temperature range width increases with increased PNN. Apparently the replacement of the Zr4+ ion by Ni2+/Nb5+ ions decreases the driving force for an antiparallel shift of Pb2+ ions because they interrupt the translational symmetry and facilitates the appearance of a rhombohedral FE phase when the amount of PNN is higher than 8mol%.
Chen, Xin; Shu, Jiapei; Chen, Qing
2017-04-24
Gas-liquid-solid phase transition behaviour of water is studied with environmental scanning electron microscopy for the first time. Abnormal phenomena are observed. At a fixed pressure of 450 Pa, with the temperature set to -7 °C, direct desublimation happens, and ice grows continuously along the substrate surface. At 550 Pa, although ice is the stable phase according to the phase diagram, metastable liquid droplets first nucleate and grow to ~100-200 μm sizes. Ice crystals nucleate within the large sized droplets, grow up and fill up the droplets. Later, the ice crystals grow continuously through desublimation. At 600 Pa, the metastable liquid grows quickly, with some ice nuclei floating in it, and the liquid-solid coexistence state exists for a long time. By lowering the vapour pressure and/or increasing the substrate temperature, ice sublimates into vapour phase, and especially, the remaining ice forms a porous structure due to preferential sublimation in the concave regions, which can be explained with surface tension effect. Interestingly, although it should be forbidden for ice to transform into liquid phase when the temperature is well below 0 °C, liquid like droplets form during the ice sublimation process, which is attributed to the surface tension effect and the quasiliquid layers.
Permeation of superoxide anion through the bilayer of vesicles of a synthetic amphiphile.
Gomes, L F; Cuccovia, I M; Chaimovich, H; Barbieri, D H; Politi, M J
1993-10-10
Large unilamellar vesicles, prepared with dioctadecyldimethylammonium chloride, entrap nitroblue tetrazolium. Addition of solid KO2, or production of superoxide anion by riboflavin photolysis, to nitroblue tetrazolium-containing dioctadecyldimethylammonium vesicles results in the formation of monoformazan above the phase-transition temperature of the bilayer. Below the phase-transition temperature the yield of monoformazan is negligible. These results demonstrate that superoxide anion permeates vesicles above the phase-transition temperature of the bilayer.
van Drooge, D J; Hinrichs, W L J; Visser, M R; Frijlink, H W
2006-03-09
The molecular distribution in fully amorphous solid dispersions consisting of poly(vinylpyrrolidone) (PVP)-diazepam and inulin-diazepam was studied. One glass transition temperature (T(g)), as determined by temperature modulated differential scanning calorimetry (TMDSC), was observed in PVP-diazepam solid dispersions prepared by fusion for all drug loads tested (10-80 wt.%). The T(g) of these solid dispersions gradually changed with composition and decreased from 177 degrees C for pure PVP to 46 degrees C for diazepam. These observations indicate that diazepam was dispersed in PVP on a molecular level. However, in PVP-diazepam solid dispersions prepared by freeze drying, two T(g)'s were observed for drug loads above 35 wt.% indicating phase separation. One T(g) indicated the presence of amorphous diazepam clusters, the other T(g) was attributed to a PVP-rich phase in which diazepam was dispersed on a molecular level. With both the value of the latter T(g) and the DeltaC(p) of the diazepam glass transition the concentrations of molecular dispersed diazepam could be calculated (27-35 wt.%). Both methods gave similar results. Water vapour sorption (DVS) experiments revealed that the PVP-matrix was hydrophobised by the incorporated diazepam. TMDSC and DVS results were used to estimate the size of diazepam clusters in freeze dried PVP-diazepam solid dispersions, which appeared to be in the nano-meter range. The inulin-diazepam solid dispersions prepared by spray freeze drying showed one T(g) for drug loads up to 35 wt.% indicating homogeneous distribution on a molecular level. However, this T(g) was independent of the drug load, which is unexpected because diazepam has a lower T(g) than inulin (46 and 155 degrees C, respectively). For higher drug loads, a T(g) of diazepam as well as a T(g) of the inulin-rich phase was observed, indicating the formation of amorphous diazepam clusters. From the DeltaC(p) of the diazepam glass transition the amount of molecularly dispersed diazepam was calculated (12-27 wt.%). In contrast to the PVP-diazepam solid dispersions, DVS-experiments revealed that inulin was not hydrophobised by diazepam. Consequently, the size of diazepam clusters could not be estimated. It was concluded that TMDSC enables characterization and quantification of the molecular distribution in amorphous solid dispersions. When the hygroscopicity of the carrier is reduced by the drug, DVS in combination with TMDSC can be used to estimate the size of amorphous drug clusters.
Measurement of a solid-state triple point at the metal-insulator transition in VO2.
Park, Jae Hyung; Coy, Jim M; Kasirga, T Serkan; Huang, Chunming; Fei, Zaiyao; Hunter, Scott; Cobden, David H
2013-08-22
First-order phase transitions in solids are notoriously challenging to study. The combination of change in unit cell shape, long range of elastic distortion and flow of latent heat leads to large energy barriers resulting in domain structure, hysteresis and cracking. The situation is worse near a triple point, where more than two phases are involved. The well-known metal-insulator transition in vanadium dioxide, a popular candidate for ultrafast optical and electrical switching applications, is a case in point. Even though VO2 is one of the simplest strongly correlated materials, experimental difficulties posed by the first-order nature of the metal-insulator transition as well as the involvement of at least two competing insulating phases have led to persistent controversy about its nature. Here we show that studying single-crystal VO2 nanobeams in a purpose-built nanomechanical strain apparatus allows investigation of this prototypical phase transition with unprecedented control and precision. Our results include the striking finding that the triple point of the metallic phase and two insulating phases is at the transition temperature, Ttr = Tc, which we determine to be 65.0 ± 0.1 °C. The findings have profound implications for the mechanism of the metal-insulator transition in VO2, but they also demonstrate the importance of this approach for mastering phase transitions in many other strongly correlated materials, such as manganites and iron-based superconductors.
NASA Astrophysics Data System (ADS)
Freiman, Yu. A.; Jodl, H. J.; Crespo, Yanier
2018-05-01
The paper provides an up-to-date review of the experimental and theoretical works on solid oxygen published over the past decade. The most important results presented in this review are the following: Detection of magnetic collapse in neutron studies under the delta-epsilon transition. Identification of the lattice structure of the ɛ phase. In this structure the O2 molecules retain their individuality, but there is an additional link leading to the formation of clusters of molecular quartets with the structural formula (O2)4. Discovery of the unique magnetic properties of the delta phase, which hosts three different magnetic structures in the domain of the same crystallographic structure. The extension of the phase diagram to the high-pressure high-temperature region which was previously beyond the reach for experiment; the molecular η and η‧ phases were found and their structures were identified. Behavior of the melting line up to 60 GPa (1750 K). Discovery of a new molecular θ phase in ultrahigh magnetic fields up to over 190 T and the construction of the thermodynamical magnetic-field-temperature H- T phase diagram on the base of the ultrahigh-field magnetization, optical magneto-transmission, and adiabatic magnetocaloric effect measurements. Prediction of the persistence of the molecular state of solid oxygen up to the pressure of 1.9 TPa which is significantly higher than the corresponding limits in solid hydrogen and nitrogen, other generic molecular solids.
Process for forming a homogeneous oxide solid phase of catalytically active material
Perry, Dale L.; Russo, Richard E.; Mao, Xianglei
1995-01-01
A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.
Wetting and Layering for Solid-on-Solid I: Identification of the Wetting Point and Critical Behavior
NASA Astrophysics Data System (ADS)
Lacoin, Hubert
2018-06-01
We provide a complete description of the low temperature wetting transition for the two dimensional solid-on-solid model. More precisely, we study the integer-valued field {(φ(x))_{x\\in Z^2}} , associated associated with the energy functional V(φ)=β \\sum_{x ˜ y}|φ(x)-φ(y)|-\\sumx ( h{1}_{φ(x)=0}-∞{1}_{φ(x) < 0} ). Since the pioneering work Chalker [15], it is known that for every {β} , there exists {hw(β) > 0} delimiting a transition between a delocalized phase ({h < hw(β)} ) where the proportion of points at level zero vanishes, and a localized phase ({h > hw(β)} ) where this proportion is positive. We prove in the present paper that for {β} sufficiently large we have h_w(β)= log (e^{4β}/e^{4β-1} ). Furthermore, we provide a sharp asymptotic for the free energy at the vicinity of the critical line: We show that close to {h_w(β)} , the free energy is approximately piecewise affine and that the points of discontinuity for the derivative of the affine approximation forms a geometric sequence accumulating on the right of {h_w(β)} . This asymptotic behavior provides strong evidence for the conjectured existence of countably many "layering transitions" at the vicinity of the wetting line, corresponding to jumps for the typical height of the field.
Glass-liquid phase separation in highly supersaturated aqueous solutions of telaprevir.
Mosquera-Giraldo, Laura I; Taylor, Lynne S
2015-02-02
Amorphous solid dispersions are of great current interest because they can improve the delivery of poorly water-soluble compounds. It has been recently noted that the highly supersaturated solutions generated by dissolution of some ASDs can undergo a phase transition to a colloidal, disordered, drug-rich phase when the concentration exceeds the "amorphous solubility" of the drug. The purpose of this study was to investigate the phase behavior of supersaturated solutions of telaprevir, which is formulated as an amorphous solid dispersion in the commercial product. Different analytical techniques including proton nuclear magnetic resonance spectroscopy (NMR), ultraviolet spectroscopy (UV), fluorescence spectroscopy and flux measurements were used to evaluate the properties of aqueous supersaturated solutions of telaprevir. It was found that highly supersaturated solutions of telaprevir underwent glass-liquid phase separation (GLPS) when the concentration exceeded 90 μg/mL, forming a water-saturated colloidal, amorphous drug-rich phase with a glass transition temperature of 52 °C. From flux measurements, it was observed that the "free" drug concentration reached a maximum at the concentration where GLPS occurred, and did not increase further as the concentration was increased. This phase behavior, which results in a precipitate and a metastable equilibrium between a supersaturated solution and a drug-rich phase, is obviously important in the context of evaluating amorphous solid dispersion formulations and their crystallization routes.
Germanium multiphase equation of state
Crockett, Scott D.; Lorenzi-Venneri, Giulia De; Kress, Joel D.; ...
2014-05-07
A new SESAME multiphase germanium equation of state (EOS) has been developed using the best available experimental data and density functional theory (DFT) calculations. The equilibrium EOS includes the Ge I (diamond), the Ge II (β-Sn) and the liquid phases. The foundation of the EOS is based on density functional theory calculations which are used to determine the cold curve and the Debye temperature. Results are compared to Hugoniot data through the solid-solid and solid-liquid transitions. We propose some experiments to better understand the dynamics of this element
NASA Astrophysics Data System (ADS)
Yan, Xiaozhi; He, Duanwei; Xu, Chao; Ren, Xiangting; Zhou, Xiaoling; Liu, Shenzuo
2012-12-01
A new method is introduced for investigating the compressibility of solids under high pressure by in situ electrical resistance measurement of a manganin wire, which is wrapped around the sample. This method does not rely on the lattice parameters measurement, and the continuous volume change of the sample versus pressure can be obtained. Therefore, it is convenient to look at the compressibility of solids, especially for the X-ray diffraction amorphous materials. The I-II and II-III phase transition of Bi accompanying with volume change of 4.5% and 3.5% has been detected using the method, respectively, while the volume change for the phase transition of Tl occurring at 3.67 GPa is determined as 0.5%. The fit of the third-order Birch-Murnaghan equation of state to our data yields a zero-pressure bulk modulus K 0=28.98±0.03 GPa for NaCl and 6.97±0.02 GPa for amorphous red phosphorus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du Hongliang; Zhou Wancheng; Luo Fa
The (1-x)(K{sub 0.5}Na{sub 0.5})NbO{sub 3}-x(Ba{sub 0.5}Sr{sub 0.5})TiO{sub 3} (KNN-BST) solid solution has been synthesized by conventional solid-state sintering in order to search for the new lead-free relaxor ferroelectrics for high temperature applications. The phase structure, dielectric properties, and relaxor behavior of the (1-x)KNN-xBST solid solution are systematically investigated. The phase structure of the (1-x)KNN-xBST solid solution gradually changes from pure perovskite phase with an orthorhombic symmetry to the tetragonal symmetry, then to the pseudocubic phase, and to the cubic phase with increasing addition of BST. The 0.90KNN-0.10BST solid solution shows a broad dielectric peak with permittivity maximum near 2500 andmore » low dielectric loss (<4%) in the temperature range of 100-250 deg. C. The result indicates that this material may have great potential for a variety of high temperature applications. The diffuse phase transition and the temperature of the maximum dielectric permittivity shifting toward higher temperature with increasing frequency, which are two typical characteristics for relaxor ferroelectrics, are observed in the (1-x)KNN-xBST solid solution. The dielectric relaxor behavior obeys a modified Curie-Weiss law and a Vogel-Fulcher relationship. The relaxor nature is attributed to the appearance of polar nanoregions owing to the formation of randon fields including local electric fields and elastic fields. These results confirm that the KNN-based relaxor ferroelectrics can be regarded as an alternative direction for the development of high temperature lead-free relaxor ferroelectrics.« less
The phase diagram and transport properties of MgO from theory and experiment
NASA Astrophysics Data System (ADS)
Shulenburger, Luke
2013-06-01
Planetary structure and the formation of terrestrial planets have received tremendous interest due to the discovery of so called super-earth exoplanets. MgO is a major constituent of Earth's mantle, the rocky cores of gas giants and is a likely component of the interiors of many of these exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine MgO under extreme conditions using experimental and theoretical methods to determine its phase diagram and transport properties. Using plate impact experiments on Sandia's Z facility the solid-solid phase transition from B1 to B2 is clearly determined. The melting transition, on the other hand, is subtle, involving little to no signal in us-up space. Theoretical work utilizing density functional theory (DFT) provides a complementary picture of the phase diagram. The solid-solid phase transition is identified through a series of quasi-harmonic phonon calculations and thermodynamic integration, while the melt boundary is found using phase coexistence calculations. One issue of particular import is the calculation of reflectivity along the Hugoniot and the influence of the ionic structure on the transport properties. Particular care is necessary because of the underestimation of the band gap and attendant overestimation of transport properties due to the use of semi-local density functional theory. We will explore the impact of this theoretical challenge and its potential solutions in this talk. The integrated use of DFT simulations and high-accuracy shock experiments together provide a comprehensive understanding of MgO under extreme conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renlund, Anita Mariana; Tappan, Alexander Smith; Miller, Jill C.
The HMX {beta}-{delta} solid-solid phase transition, which occurs as HMX is heated near 170 C, is linked to increased reactivity and sensitivity to initiation. Thermally damaged energetic materials (EMs) containing HMX therefore may present a safety concern. Information about the phase transition is vital to predictive safety models for HMX and HMX-containing EMs. We report work on monitoring the phase transition with real-time Raman spectroscopy aimed towards obtaining a better understanding of physical properties of HMX through the phase transition. HMX samples were confined in a cell of minimal free volume in a displacement-controlled or load-controlled arrangement. The cell wasmore » heated and then cooled at controlled rates while real-time Raman spectroscopic measurements were performed. Raman spectroscopy provides a clear distinction between the phases of HMX because the vibrational transitions of the molecule change with conformational changes associated with the phase transition. Temperature of phase transition versus load data are presented for both the heating and cooling cycles in the load-controlled apparatus, and general trends are discussed. A weak dependence of the temperature of phase transition on load was discovered during the heating cycle, with higher loads causing the phase transition to occur at a higher temperature. This was especially true in the temperature of completion of phase transition data as opposed to the temperature of onset of phase transition data. A stronger dependence on load was observed in the cooling cycle, with higher loads causing the reverse phase transitions to occur at a higher cooling temperature. Also, higher loads tended to cause the phase transition to occur over a longer period of time in the heating cycle and over a shorter period of time in the cooling cycle. All three of the pure HMX phases ({alpha}, {beta} and {delta}) were detected on cooling of the heated samples, either in pure form or as a mixture.« less
Thermodynamics of HMX Polymorphs and HMX/RDX Mixtures
Myint, Philip C.; Nichols, Albert L.
2016-12-09
In this paper, we present thermodynamic models for the five most commonly studied phases of the energetic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX): liquid HMX and four solid polymorphs (α-, β-, γ-, and δ-HMX). We show results for the density, heat capacity, bulk modulus, and sound speed, as well as a phase diagram that illustrates the temperature and pressure regions over which the various HMX phases are most thermodynamically stable. The models are based on the same equation of state presented in our recently published paper [Myint et al., Ind. Eng. Chem. Res., 2016, 55, 2252] on another energetic material, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Wemore » combine our HMX and RDX models together so that the equation of state can also be applied to liquid and solid mixtures of HMX/RDX. This allows us to generate an HMX/RDX phase diagram and calculate the enthalpy change associated with a few different kinds of phase transitions that these mixtures may undergo. Our paper is the first to present a single equation of state that is capable of modeling both pure HMX and HMX/RDX mixtures. A distinct feature of HMX is the strongly metastable nature of its polymorphs. This has caused some ambiguity in the literature regarding the thermodynamic stability of α-HMX. Finally, by examining possible arrangements for the relative order of the six different solid-solid transition (α–β, α–γ, α–δ, β–γ, β–δ, and γ–δ) temperatures, we conclude that α-HMX must be thermodynamically stable so that the HMX phase diagram must have an α phase region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myint, Philip C.; Nichols, Albert L.
In this paper, we present thermodynamic models for the five most commonly studied phases of the energetic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX): liquid HMX and four solid polymorphs (α-, β-, γ-, and δ-HMX). We show results for the density, heat capacity, bulk modulus, and sound speed, as well as a phase diagram that illustrates the temperature and pressure regions over which the various HMX phases are most thermodynamically stable. The models are based on the same equation of state presented in our recently published paper [Myint et al., Ind. Eng. Chem. Res., 2016, 55, 2252] on another energetic material, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Wemore » combine our HMX and RDX models together so that the equation of state can also be applied to liquid and solid mixtures of HMX/RDX. This allows us to generate an HMX/RDX phase diagram and calculate the enthalpy change associated with a few different kinds of phase transitions that these mixtures may undergo. Our paper is the first to present a single equation of state that is capable of modeling both pure HMX and HMX/RDX mixtures. A distinct feature of HMX is the strongly metastable nature of its polymorphs. This has caused some ambiguity in the literature regarding the thermodynamic stability of α-HMX. Finally, by examining possible arrangements for the relative order of the six different solid-solid transition (α–β, α–γ, α–δ, β–γ, β–δ, and γ–δ) temperatures, we conclude that α-HMX must be thermodynamically stable so that the HMX phase diagram must have an α phase region.« less
Transitiometric analysis of solid II/solid I transition in anhydrous theophylline.
Legendre, Bernard; Randzio, Stanislaw L
2007-10-01
For the first time, with the use of a high sensitivity, low heating rate, scanning transitiometry, it was possible to distinguish and characterise the polymorphic equilibrium transition between forms II and I in anhydrous theophylline. In this manner it was univocally proved, that forms II and I in theophylline are enantiotropically related. The temperature and enthalpy for that transition are as follows: T(trs)(II/I)=536.8+/-2.2K; Delta(trs)H(II/I)=1.99+/-0.09 kJ/mol. Making use of advantages of very slow heating rate and of a high energetic sensitivity of the transitiometer it was possible to observe in detail the polymorphic transition followed by melting of high temperature form I and to stop the solid I-liquid transition at a desired point of equilibrium. Such a solid I-liquid equilibrium could be stabilised and then displaced back to the crystallisation of form I with an adequate use of a precise temperature programming. In such a way a pure single phase of form I of theophylline was prepared. This fact was confirmed by X-ray powder diffraction patterns and calorimetric traces of fusion of the crystallised product. The temperature and enthalpy of the form I-liquid transition are as follows: T(fus)(I)=546.5+/-0.2K and Delta(fus)H(I)=29.37+/-0.29 kJ/mol.
Ferromagnetic ordering in superatomic solids.
Lee, Chul-Ho; Liu, Lian; Bejger, Christopher; Turkiewicz, Ari; Goko, Tatsuo; Arguello, Carlos J; Frandsen, Benjamin A; Cheung, Sky C; Medina, Teresa; Munsie, Timothy J S; D'Ortenzio, Robert; Luke, Graeme M; Besara, Tiglet; Lalancette, Roger A; Siegrist, Theo; Stephens, Peter W; Crowther, Andrew C; Brus, Louis E; Matsuo, Yutaka; Nakamura, Eiichi; Uemura, Yasutomo J; Kim, Philip; Nuckolls, Colin; Steigerwald, Michael L; Roy, Xavier
2014-12-03
In order to realize significant benefits from the assembly of solid-state materials from molecular cluster superatomic building blocks, several criteria must be met. Reproducible syntheses must reliably produce macroscopic amounts of pure material; the cluster-assembled solids must show properties that are more than simply averages of those of the constituent subunits; and rational changes to the chemical structures of the subunits must result in predictable changes in the collective properties of the solid. In this report we show that we can meet these requirements. Using a combination of magnetometry and muon spin relaxation measurements, we demonstrate that crystallographically defined superatomic solids assembled from molecular nickel telluride clusters and fullerenes undergo a ferromagnetic phase transition at low temperatures. Moreover, we show that when we modify the constituent superatoms, the cooperative magnetic properties change in predictable ways.
Buchholz, Hannes; Emel'yanenko, Vladimir N; Lorenz, Heike; Verevkin, Sergey P
2016-05-01
A detailed experimental analysis of the phase transition thermodynamics of (S)-naproxen and (RS)-naproxen is reported. Vapor pressures were determined experimentally via the transpiration method. Sublimation enthalpies were obtained from the vapor pressures and from independent TGA measurements. Thermodynamics of fusion which have been well-studied in the literature were systematically remeasured by DSC. Both sublimation and fusion enthalpies were adjusted to one reference temperature, T = 298 K, using measured heat capacities of the solid and the melt phase by DSC. Average values from the measurements and from literature data were suggested for the sublimation and fusion enthalpies. In order to prove consistency of the proposed values the vaporization enthalpies obtained by combination of both were compared to vaporization enthalpies obtained by the group-additivity method and the correlation-gas chromatography method. The importance of reliable and precise phase transition data for thermochemical calculations such as the prediction of solid/liquid phase behaviour of chiral compounds is highlighted. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Metal-semiconductor phase transition of order arrays of VO2 nanocrystals
NASA Astrophysics Data System (ADS)
Lopez, Rene; Suh, Jae; Feldman, Leonard; Haglund, Richard
2004-03-01
The study of solid-state phase transitions at nanometer length scales provides new insights into the effects of material size on the mechanisms of structural transformations. Such research also opens the door to new applications, either because materials properties are modified as a function of particle size, or because the nanoparticles interact with a surrounding matrix material, or with each other. In this paper, we describe the formation of vanadium dioxide nanoparticles in silicon substrates by pulsed laser deposition of ion beam lithographically selected sites and thermal processing. We observe the collective behavior of 50 nm diameter VO2 oblate nanoparticles, 10 nm high, and ordered in square arrays with arbitrary lattice constant. The metal-semiconductor-transition of the VO2 precipitates shows different features in each lattice spacing substrate. The materials are characterized by electron microscopy, x-ray diffraction, Rutherford backscattering. The features of the phase transition are studied via infrared optical spectroscopy. Of particular interest are the enhanced scattering and the surface plasmon resonance when the particles reach the metallic state. This resonance amplifies the optical contrast in the range of near-infrared optical communication wavelengths and it is altered by the particle-particle coupling as in the case of noble metals. In addition the VO2 nanoparticles exhibit sharp transitions with up to 50 K of hysteresis, one of the largest values ever reported for this transition. The optical properties of the VO2 nanoarrays are correlated with the size of the precipitates and their inter-particle distance. Nonlinear and ultra fast optical measurements have shown that the transition is the fastest known solid-solid transformation. The VO2 nanoparticles show the same bulk property, transforming in times shorter than 150 fs. This makes them remarkable candidates for ultrafast optical and electronic switching applications.
The metal-insulator triple point in vanadium dioxide
NASA Astrophysics Data System (ADS)
Cobden, David
2014-03-01
The metal-insulator transition (MIT) in vanadium dioxide is a candidate for optical and electrical switching applications. However, being a first-order solid-state phase transition makes it challenging to study reproducibly in any detail. The combination of the change in unit cell shape, symmetry reduction, long range of elastic distortion, and latent heat leads to domain structure, hysteresis, and cracking of even the highest quality samples. At the MIT two stable insulating phases (M1 and M2) occur in addition to the metallic phase (R), but their phase stability diagram was poorly known. To establish it precisely we studied single-crystal nanobeams of VO2 in a purpose-built nanomechanical strain apparatus. We were able to measure the transition temperature accurately to be 65.0 +- 0.1 oC, to determine the phase boundary slopes, and to detect the intermediate metastable triclinic (T) phase where it is metastable towards M2. We were surprised to find that the transition occurs precisely at the solid-state triple point of the metallic and two insulating phases, a fact that is not explained by existing theories. See J.H. Park et al, Nature 500, 431-4 (August 2013), doi:10.1038/nature12425. Supported by US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, award DE-SC0002197.
End-Member Formulation of Solid Solutions and Reactive Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lichtner, Peter C.
2015-09-01
A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed tomore » correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.« less
Self-consistent phonon theory of the crystallization and elasticity of attractive hard spheres.
Shin, Homin; Schweizer, Kenneth S
2013-02-28
We propose an Einstein-solid, self-consistent phonon theory for the crystal phase of hard spheres that interact via short-range attractions. The approach is first tested against the known behavior of hard spheres, and then applied to homogeneous particles that interact via short-range square well attractions and the Baxter adhesive hard sphere model. Given the crystal symmetry, packing fraction, and strength and range of attractive interactions, an effective harmonic potential experienced by a particle confined to its Wigner-Seitz cell and corresponding mean square vibrational amplitude are self-consistently calculated. The crystal free energy is then computed and, using separate information about the fluid phase free energy, phase diagrams constructed, including a first-order solid-solid phase transition and its associated critical point. The simple theory qualitatively captures all the many distinctive features of the phase diagram (critical and triple point, crystal-fluid re-entrancy, low-density coexistence curve) as a function of attraction range, and overall is in good semi-quantitative agreement with simulation. Knowledge of the particle localization length allows the crystal shear modulus to be estimated based on elementary ideas. Excellent predictions are obtained for the hard sphere crystal. Expanded and condensed face-centered cubic crystals are found to have qualitatively different elastic responses to varying attraction strength or temperature. As temperature increases, the expanded entropic solid stiffens, while the energy-controlled, fully-bonded dense solid softens.
NASA Astrophysics Data System (ADS)
Ustinov, E. A.
2017-07-01
The aim of this paper is to present a method of a direct evaluation of the chemical potential of fluid, liquid, and solid with kinetic Monte Carlo simulation. The method is illustrated with the 12-6 Lennard-Jones (LJ) system over a wide range of density and temperature. A distinctive feature of the methodology used in the present study is imposing an external potential on the elongated simulation box to split the system into two equilibrium phases, one of which is substantially diluted. This technique provides a reliable direct evaluation of the chemical potential of the whole non-uniform system (including that of the uniformly distributed dense phase in the central zone of the box), which, for example, is impossible in simulation of the uniform crystalline phase. The parameters of the vapor-liquid, liquid-solid, and fluid-solid transitions have been reliably determined. The chemical potential and the pressure are defined as thermodynamically consistent functions of density and temperature separately for the liquid and the solid (FCC) phases. It has been shown that in two-phase systems separated by a flat interface, the crystal melting always occurs at equilibrium conditions. It is also proved that in the limit of zero temperature, the specific heat capacity of an LJ crystal at constant volume is exactly 3Rg (where Rg is the gas constant) without resorting to harmonic oscillators.
Temperature and emissivity measurements at the sapphire single crystal fiber growth process
NASA Astrophysics Data System (ADS)
Bufetova, G. A.; Rusanov, S. Ya.; Seregin, V. F.; Pyrkov, Yu. N.; Tsvetkov, V. B.
2017-12-01
We present a new method for evaluation the absorption coefficient of the crystal melt around the phase transition zone for the spectral range of semitransparency. The emissivity distribution across the crystallization front of the sapphire crystal fiber was measured at the quasi-stationary laser heated pedestal growth (LHPG) process (Fejer et al., 1984; Feigelson, 1986) and the data for solid state, melt and phase transition zone (melt-solid interface) were obtained. The sapphire melt absorption coefficient was estimated to be 14 ± 2 cm-1 in the spectral range 1-1.4 μm around the melt point. It is consistent with data, obtained by different other methods. This method can be applied to determine the absorption coefficient for other materials.
Phase-field model of vapor-liquid-solid nanowire growth
NASA Astrophysics Data System (ADS)
Wang, Nan; Upmanyu, Moneesh; Karma, Alain
2018-03-01
We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth velocity and radius depending on the growth condition. For the basic normal growth mode, the steady-state solid-liquid interface tip shape consists of a main facet intersected by two truncated side facets ending at triple points. The ratio of truncated and main facet lengths are in quantitative agreement with the prediction of sharp-interface theory that is developed here for faceted nanowire growth in two dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yi; Cai, Zhonghou; Chen, Pice
Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase seperated regions. The ability to simultanousely track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of- the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO 2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation ismore » initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO 2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, which is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO 2. Lastly, the direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.« less
Singh, Abhishek; Bharati, Avanish; Frederiks, Pauline; Verkinderen, Olivier; Goderis, Bart; Cardinaels, Ruth; Moldenaers, Paula; Van Humbeeck, Jan; Van den Mooter, Guy
2016-06-06
Predensification and compression are unit operations imperative to the manufacture of tablets and capsules. Such stress-inducing steps can cause destabilization of solid dispersions which can alter their molecular arrangement and ultimately affect dissolution rate and bioavailability. In this study, itraconazole-Soluplus solid dispersions with 50% (w/w) drug loading prepared by hot-melt extrusion (HME) were investigated. Compression was performed at both pharmaceutically relevant and extreme compression pressures and dwell times. The starting materials, powder, and compressed solid dispersions were analyzed using modulated differential scanning calorimetry (MDSC), X-ray diffraction (XRD), small- and wide-angle X-ray scattering (SWAXS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and broadband dielectric spectroscopy (BDS). MDSC analysis revealed that compression promotes phase separation of solid dispersions as indicated by an increase in glass transition width, occurrence of a peak in the nonreversing heat flow signal, and an increase in the net heat of fusion indicating crystallinity in the systems. SWAXS analysis ruled out the presence of mesophases. BDS measurements elucidated an increase in the Soluplus-rich regions of the solid dispersion upon compression. FTIR indicated changes in the spatiotemporal architecture of the solid dispersions mediated via disruption in hydrogen bonding and ultimately altered dynamics. These changes can have significant consequences on the final stability and performance of the solid dispersions.
Solid-liquid like phase transition in a confined granular suspension
NASA Astrophysics Data System (ADS)
Sakai, Nariaki; Lechenault, Frederic; Adda Bedia, Mokhtar
We present an experimental study of a liquid-solid like phase transition in a two-dimensional granular media. Particles are placed in a vertical Hele-Show cell filled with a denser solution of cesium-chloride. Thus, when the cell is rotated around its axis, hydrostatic pressure exerts a centripetal force on the particles which confines them towards the center. This force is in competition with gravity, thus by modifying the rotation rate, it is possible to transform continuously and reversibly the sample from a disordered loose state to an ordered packed state. The system presents many similarities with thermal systems at equilibrium like density and interface fluctuations, and the transition between the two phases goes through a coexistence state, where there is nucleation and growth of locally ordered domains which are captured by the correlation function of the hexatic order parameter. We discuss the possibility to extend the grand-canonical formalism to out-of equilibrium systems, in order to uncover a state equation between the density and the pressure in the medium.
Polymorphs of Theophylline Characterized by DNP Enhanced Solid-State NMR
2015-01-01
We show how dynamic nuclear polarization (DNP) enhanced solid-state NMR spectroscopy can be used to characterize polymorphs and solvates of organic solids. We applied DNP to three polymorphs and one hydrated form of the asthma drug molecule theophylline. For some forms of theophylline, sample grinding and impregnation with the radical-containing solution, which are necessary to prepare the samples for DNP, were found to induce polymorphic transitions or desolvation between some forms. We present protocols for sample preparation for solid-state magic-angle spinning (MAS) DNP experiments that avoid the polymorphic phase transitions in theophylline. These protocols include cryogrinding, grinding under inert atmosphere, and the appropriate choice of the impregnating liquid. By applying these procedures, we subsequently demonstrate that two-dimensional correlation experiments, such as 1H–13C and 1H–15N HETCOR or 13C–13C INADEQUATE, can be obtained at natural isotopic abundance in reasonable times, thus enabling more advanced structural characterization of polymorphs. PMID:26393368
Raman effect in multiferroic Bi5Fe1+xTi3-xO15 solid solutions: A temperature study
NASA Astrophysics Data System (ADS)
Rodríguez Aranda, Ma. Del Carmen; Rodríguez-Vázquez, Ángel G.; Salazar-Kuri, Ulises; Mendoza, María Eugenia; Navarro-Contreras, Hugo R.
2018-02-01
In this work, a Raman study of powder samples of multiferroic Bi5Fe1+xTi3-xO15 solid solutions and Bi6Fe2Ti3O18 as a function of temperature from 27 °C (room temperature) to 850 °C is presented. The values of x (i.e., the Fe composition) for the solid solutions were 1.0, 1.1, 1.3, and 1.4. The temperature coefficients of eight phonon frequencies were determined for all the samples. The large observed phonon broadenings with increasing temperature precluded the observation of several of the phonon bands above defined temperatures in the range of 200-700 °C depending on the sample. These phonon broadenings were explained on the basis of the Klemens model, which considers that the broadenings are due to the thermal expansion of the lattice with a major contribution in terms of magnitude from anharmonic phonon-phonon interactions. However, some evidence for the presence of several of the phonons persisted up to 800-850 °C. These solid solutions are expected to exhibit a ferroelectric-paraelectric phase transition at 742 to 750 °C and a ferromagnetic-antiferromagnetic transition at 426 °C. We also observed changes in the slopes of the temperature dependence of the phonon frequencies for the lines at 228 cm-1 for Bi5FeTi3O15 and 330 cm-1 for Bi6Fe2Ti3O18 at temperatures of 247 °C and 347 °C, respectively. No similar temperature-frequency slope changes indicative of possible phase transitions were observed for any of the phonon lines of the other three Bi5Fe1+xTi3-xO15 solid solutions examined.
Ghosh, Indrajit; Snyder, Jennifer; Vippagunta, Radha; Alvine, Marilyn; Vakil, Ronak; Tong, Wei-Qin; Vippagunta, Sudha
2011-10-31
Preparation of amorphous solid dispersions using hot-melt extrusion process for poorly water soluble compounds which degrade on melting remains a challenge due to exposure to high temperatures. The aim of this study was to develop a physically and chemically stable amorphous solid dispersion of a poorly water-soluble compound, NVS981, which is highly thermal sensitive and degrades upon melting at 165 °C. Hydroxypropyl Methyl Cellulose (HPMC) based polymers; HPMC 3cps, HPMC phthalate (HPMCP) and HPMC acetyl succinate (HPMCAS) were selected as carriers to prepare solid dispersions using hot melt extrusion because of their relatively low glass transition temperatures. The solid dispersions were compared for their ease of manufacturing, physical stability such as recrystallization potential, phase separation, molecular mobility and enhancement of drug dissolution. Two different drug loads of 20 and 50% (w/w) were studied in each polymer system. It was interesting to note that solid dispersions with 50% (w/w) drug load were easier to process in the melt extruder compared to 20% (w/w) drug load in all three carriers, which was attributed to the plasticizing behavior of the drug substance. Upon storage at accelerated stability conditions, no phase separation was observed in HPMC 3cps and HPMCAS solid dispersions at the lower and higher drug load, whereas for HPMCP, phase separation was observed at higher drug load after 3 months. The pharmaceutical performance of these solid dispersions was evaluated by studying drug dissolution in pH 6.8 phosphate buffer. Drug release from solid dispersion prepared from polymers used for enteric coating, i.e. HPMCP and HPMCAS was faster compared with the water soluble polymer HPMC 3cps. In conclusion, of the 3 polymers studied for preparing solid dispersions of thermally sensitive compound using hot melt extrusion, HPMCAS was found to be the most promising as it was easily processible and provided stable solid dispersions with enhanced dissolution. Copyright © 2011 Elsevier B.V. All rights reserved.
Phase transformations in the reaction cell of TiNi-based sintered systems
NASA Astrophysics Data System (ADS)
Artyukhova, Nadezhda; Anikeev, Sergey; Yasenchuk, Yuriy; Chekalkin, Timofey; Gunther, Victor; Kaftaranova, Maria; Kang, Ji-Hoon; Kim, Ji-Soon
2018-05-01
The present work addresses the structural-phase state changes of porous TiNi-based compounds fabricated by reaction sintering (RS) of Ti and Ni powders with Co, Mo, and no additives introduced. The study also emphasizes the features of a reaction cell (RC) during the transition from the solid- to liquid-phase sintering. Mechanisms of phase transformations occurring in the solid phase, involving the low-melting Ti2Ni phase within the RC, have been highlighted. Also, the intermediate Ti2Ni phase had a crucial role to provide both the required RS behavior and modified phase composition of RS samples, and besides, it is found to be responsible for the near-equiatomic TiNi saturation of the melt. Both cobalt and molybdenum additives are shown to cause additional structuring of the transition zone (TZ) at the Ti2Ni‑TiNi interface and broadening of this zone. The impact of Co and Mo on the Ti2Ni phase is evident through fissuring of this phase layer, which is referred to solidified stresses increased in the layer due to post-alloying defects in the structure.
Realization of atomistic transitions with colloidal nanoparticles using an ultrafast laser
NASA Astrophysics Data System (ADS)
Akguc, Gursoy; Ilday, Serim; Ilday, Omer; Gulseren, Oguz; Makey, Ghaith; Yavuz, Koray
We report on realization of rapid atomistic transitions with colloidal nanoparticles in a setting that constitutes a dissipative far-from-equilibrium system subject to stochastic forces. Large colloidal crystals (comprising hundreds of particles) can be formed and transitions between solid-liquid-gas phases can be observed effortlessly and within seconds. Furthermore, this system allows us to form and dynamically arrest metastable phases such as glassy structures and to controllably transform a crystal pattern from square to hexagonal lattices and vice versa as well as to observe formation and propagation of crystal defects (i.e. line defects, point defects, planar defects). The mechanism largely relies on an interplay between convective forces induced by femtosecond pulses and strong Brownian motion; the former drags the colloids to form and reinforce the crystal and the latter is analogous to lattice vibrations, which makes it possible to observe phase transitions, defect formation and propagation and lattice transformation. This unique system can help us get insight into the mechanisms underlying various solid state phenomena that were previously studied under slowly evolving (within hours/days), near-equilibrium colloidal systems.
Tunable Bragg filters with a phase transition material defect layer
Wang, Xi; Gong, Zilun; Dong, Kaichen; ...
2016-01-01
We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.
Tunable Bragg filters with a phase transition material defect layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xi; Gong, Zilun; Dong, Kaichen
We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.
Condition of Development of Channeled Flow in Analogue Partially Molten Medium
NASA Astrophysics Data System (ADS)
Takashima, S.; Kumagai, I.; Kurita, K.
2003-12-01
Melt migration in partially molten medium is conceptually classified into two contrasting models; homogeneous permeable flow and localized channeled flow. The transition from homogeneous flow to localized one is promoted with advance of melting and deformation of the medium, but the physics behind this transition is not yet clarified well. Here we show two kinds of experimental results which are mutually related. One is a development of the channeled flow in a so-called Rayleigh-Taylor Instability experiments. Dense viscous fluid is poured at the top of the matrix fluid; homogeneous mixture of soft transparent gel and viscous fluid having equal density. Liquid fraction is varied for this matrix fluid to see how the fraction controls the development. At the intermediate gel fraction (between70% to about 40%) the dense fluid at first migrates through the grain boundary as permeable flow. But local heterogeneity in the gel fraction induces relative movement of solid phase, which in turns enhances the localization of the flow and deformation. We measured the motion of fluid phase and solid phase separately by PIV/PTV methods. Estimated relative motion and divergence of velocity field of the solid phase show that the state in the relative movement of the solid phase could cause heterogeneous distribution of the solid fraction. The deformation-induced compaction plays an important role. The second experimental result is rheology of the dense suspension of soft gel and viscous fluid. Deformation experiment with concentric cylinders shows that the mixture system has yield strength at the intermediate gel fraction. In the stress state above the yield strength the region where deformation rate is large has low viscosity and its internal structure evolves to the state in heterogeneous distribution of viscosity. We would like to show that this nature is critical in the development of flow from homogeneous one to localized one.
Latent heat of vehicular motion
NASA Astrophysics Data System (ADS)
Ahmadi, Farzad; Berrier, Austin; Habibi, Mohammad; Boreyko, Jonathan
2016-11-01
We have used the thermodynamic concept of latent heat, where a system loses energy due to a solid-to-liquid phase transition, to study the flow of a group of vehicles moving from rest. During traffic flow, drivers keep a large distance from the car in front of them to ensure safe driving. When a group of cars comes to a stop, for example at a red light, drivers voluntarily induce a "phase transition" from this "liquid phase" to a close-packed "solid phase." This phase transition is motivated by the intuition that maximizing displacement before stopping will minimize the overall travel time. To test the effects of latent heat on flow efficiency, a drone captured the dynamics of cars flowing through an intersection on a Smart Road where the initial spacing between cars at the red light was systematically varied. By correlating the experimental results with the Optimal Velocity Model (OVM), we find that the convention of inducing phase transitions at intersections offers no benefit, as the lag time (latent heat) of resumed flow offsets the initial increase in displacement. These findings suggest that in situations where gridlock is not an issue, drivers should not decrease their spacing during stoppages in order to maximize safety with no loss in flow efficiency.
Hexafluorobenzene under Extreme Conditions.
Pravica, Michael; Sneed, Daniel; Wang, Yonggang; Smith, Quinlan; White, Melanie
2016-03-17
We report the results from three high pressure experiments on hexafluorobenzene (C6F6). In the first experiment, Raman spectra were recorded up to 34.4 GPa. A phase transition from I → II was observed near 2 GPa. Near 8.8 GPa, a phase transition to an unreported phase (III) commenced. Above 20.6 GPa, yet another phase was observed (IV). Pressure cycling was employed to determine that, below 25.6 GPa, all pressure-induced alterations were reversible. However, at pressures above 20 GPa, dramatic spectral changes and broadening were observed at 25.6 and 34.4 GPa. The sample irreversibly changed into a soft solid with waxlike consistency when pressure was reduced to ambient and was recoverable. In the second experiment, IR spectra were collected up to 14.6 GPa. The phase transition (II → III) near 8.8 GPa was confirmed. An angular dispersive X-ray diffraction experiment was conducted to 25.6 GPa. Phase transitions above 1.4 GPa (I → II), above 5.5 GPa (II → III), above 10 GPa (III → IV), and above 15.5 GPa (IV → V) were observed. Near 25.6 GPa, long-range crystalline order was lost as the X-ray diffraction spectrum presented evidence of an amorphous solid.
Studies of phase transitions in the aripiprazole solid dosage form.
Łaszcz, Marta; Witkowska, Anna
2016-01-05
Studies of the phase transitions in an active substance contained in a solid dosage form are very complicated but essential, especially if an active substance is classified as a BCS Class IV drug. The purpose of this work was the development of sensitive methods for the detection of the phase transitions in the aripiprazole tablets containing initially its form III. Aripiprazole exhibits polymorphism and pseudopolymorphism. Powder diffraction, Raman spectroscopy and differential scanning calorimetry methods were developed for the detection of the polymorphic transition between forms III and I as well as the phase transition of form III into aripiprazole monohydrate in tablets. The study involved the initial 10 mg and 30 mg tablets, as well as those stored in Al/Al blisters, a triplex blister pack and HDPE bottles (with and without desiccant) under accelerated and long term conditions. The polymorphic transition was not observed in the initial and stored tablets but it was visible on the DSC curve of the Abilify(®) 10 mg reference tablets. The formation of the monohydrate was observed in the diffractograms and Raman spectra in the tablets stored under accelerated conditions. The monohydrate phase was not detected in the tablets stored in the Al/Al blisters under long term conditions. The results showed that the Al/Al blisters can be recommended as the packaging of the aripiprazole tablets containing form III. Copyright © 2015 Elsevier B.V. All rights reserved.
Escobedo, Fernando A
2014-03-07
In this work, a variant of the Gibbs-Duhem integration (GDI) method is proposed to trace phase coexistence lines that combines some of the advantages of the original GDI methods such as robustness in handling large system sizes, with the ability of histogram-based methods (but without using histograms) to estimate free-energies and hence avoid the need of on-the-fly corrector schemes. This is done by fitting to an appropriate polynomial function not the coexistence curve itself (as in GDI schemes) but the underlying free-energy function of each phase. The availability of a free-energy model allows the post-processing of the simulated data to obtain improved estimates of the coexistence line. The proposed method is used to elucidate the phase behavior for two non-trivial hard-core mixtures: a binary blend of spheres and cubes and a system of size-polydisperse cubes. The relative size of the spheres and cubes in the first mixture is chosen such that the resulting eutectic pressure-composition phase diagram is nearly symmetric in that the maximum solubility of cubes in the sphere-rich solid (∼20%) is comparable to the maximum solubility of spheres in the cube-rich solid. In the polydisperse cube system, the solid-liquid coexistence line is mapped out for an imposed Gaussian activity distribution, which produces near-Gaussian particle-size distributions in each phase. A terminal polydispersity of 11.3% is found, beyond which the cubic solid phase would not be stable, and near which significant size fractionation between the solid and isotropic phases is predicted.
Nanoscopic dynamics of phospholipid in unilamellar vesicles: Effect of gel to fluid phase transition
Sharma, V. K.; Mamontov, E.; Anunciado, D. B.; ...
2015-03-04
Dynamics of phospholipids in unilamellar vesicles (ULV) is of interest in biology, medical, and food sciences since these molecules are widely used as biocompatible agents and a mimic of cell membrane systems. We have investigated the nanoscopic dynamics of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) phospholipid in ULV as a function of temperature using elastic and quasielastic neutron scattering (QENS). The dependence of the signal on the scattering momentum transfer, which is a critical advantage of neutron scattering techniques, allows the detailed analysis of the lipid motions that cannot be carried out by other means. In agreement with a differential scanning calorimetry measurement, amore » sharp rise in the elastic scattering intensity below ca. 296 K indicates a phase transition from the high-temperature fluid phase to the low-temperature solid gel phase. The microscopic lipid dynamics exhibits qualitative differences between the solid gel phase (in a measurement at 280 K) and the fluid phase (in a measurement at a physiological temperature of 310 K). The data analysis invariably shows the presence of two distinct motions: the whole lipid molecule motion within a monolayer, or lateral diffusion, and the relatively faster internal motion of the DMPC molecule. The lateral diffusion of the whole lipid molecule is found to be Fickian in character, whereas the internal lipid motions are of localized character, consistent with the structure of the vesicles. The lateral motion slows down by an order of magnitude in the solid gel phase, whereas for the internal motion not only the time scale, but also the character of the motion changes upon the phase transition. In the solid gel phase, the lipids are more ordered and undergo uniaxial rotational motion. However, in the fluid phase, the hydrogen atoms of the lipid tails undergo confined translation diffusion rather than uniaxial rotational diffusion. The localized translational diffusion of the hydrogen atoms of the lipid tails is a manifestation of the flexibility of the chains acquired in the fluid phase. Because of this flexibility, both the local diffusivity and the confinement volume for the hydrogen atoms increase linearly from near the lipid s polar head group to the end of its hydrophobic tail. Our results present a quantitative and detailed picture of the effect of the gel-fluid phase transition on the nanoscopic lipid dynamics in ULV. Lastly, the data analysis approach developed here has a potential for probing the dynamic response of lipids to the presence of additional cell membrane components.« less
Shock-induced superheating and melting curves of geophysically important minerals
NASA Astrophysics Data System (ADS)
Luo, Sheng-Nian; Ahrens, Thomas J.
2004-06-01
Shock-state temperature and sound-speed measurements on crystalline materials, demonstrate superheating-melting behavior distinct from equilibrium melting. Shocked solid can be superheated to the maximum temperature, Tc'. At slightly higher pressure, Pc, shock melting occurs, and induces a lower shock temperature, Tc. The Hugoniot state, ( Pc, Tc), is inferred to lie along the equilibrium melting curve. The amount of superheating achieved on Hugoniot is, ΘH+= Tc'/ Tc-1. Shock-induced superheating for a number of silicates, alkali halides and metals agrees closely with the predictions of a systematic framework describing superheating at various heating rates [Appl. Phys. Lett. 82 (12) (2003) 1836]. High-pressure melting curves are constructed by integration from ( Pc, Tc) based on the Lindemann law. We calculate the volume and entropy changes upon melting at ( Pc, Tc) assuming the R ln 2 rule ( R is the gas constant) for the disordering entropy of melting [J. Chem. Phys. 19 (1951) 93; Sov. Phys. Usp. 117 (1975) 625; Poirier, J.P., 1991. Introduction to the Physics of the Earth's Interior. Cambridge University Press, Cambridge, 102 pp.]. ( Pc, Tc) and the Lindemann melting curves are in excellent accord with diamond-anvil cell (DAC) results for NaCl, KBr and stishovite. But significant discrepancies exist for transition metals. If we extrapolate the DAC melting data [Phys. Rev. B 63 (2001) 132104] for transition metals (Fe, V, Mo, W and Ta) to 200-400 GPa where shock melting occurs, shock temperature measurement and calculation would indicate ΘH+˜0.7-2.0. These large values of superheating are not consistent with the superheating systematics. The discrepancies could be reconciled by possible solid-solid phase transitions at high pressures. In particular, this work suggests that Fe undergoes a possible solid-solid phase transition at ˜200 GPa and melts at ˜270 GPa upon shock wave loading, and the melting temperature is ˜6300 K at 330 GPa.
Terraced spreading of simple liquids on solid surfaces
NASA Technical Reports Server (NTRS)
Yang, Ju-Xing; Koplik, Joel; Banavar, Jayanth R.
1992-01-01
We have studied the spreading of liquid drops on a solid surface by molecular-dynamics simulations of coexisting three-phase Lennard-Jones systems of liquid, vapor, and solid. We consider both spherically symmetric atoms and diatomic molecules, and a range of interaction strengths. As the attraction between liquid and solid increases we observe a smooth transition in spreading regimes, from partial to complete to terraced wetting. In the terraced case, where distinct monomolecular layers spread with different velocities, the layers are ordered but not solid, with substantial molecular diffusion both within and between layers. The quantitative behavior resembles recent experimental findings, but the detailed dynamics differ. In particular, the layers exhibit an unusual spreading law, where their radii vary in time as R-squared approximately equal to log10t, which disagrees with experiments on polymeric liquids as well as recent calculations.
Universal features of the equation of state of solids
NASA Technical Reports Server (NTRS)
Vinet, Pascal; Rose, James H.; Ferrante, John; Smith, John R.
1989-01-01
A study of the energetics of solids leads to the conclusion that the equation of state for all classes of solids in compression can be expressed in terms of a universal function. The form of this universal function is determined by scaling experimental compression data for measured isotherms of a wide variety of solids. The equation of state is thus known (in the absence of phase transitions), if zero-pressure volume and isothermal compression and its pressure derivative are known. The discovery described in this paper has two immediate consequences: first, despite the well known differences in the microscopic energetics of the various classes of solids, there is a single equation of state for all classes in compression; and second, a new method is provided for analyzing measured isotherms and extrapolating high-pressure data from low-pressure (e.g. acoustic) data.
Superradiant phase transition with graphene embedded in one dimensional optical cavity
NASA Astrophysics Data System (ADS)
Li, Benliang; Liu, Tao; Hewak, Daniel W.; Wang, Qi Jie
2018-01-01
We theoretically investigate the cavity QED of graphene embedded in an optical cavity under perpendicular magnetic field. We consider the coupling of cyclotron transition and a multimode cavity described by a multimode Dicke model. This model exhibits a superradiant quantum phase transition, which we describe exactly in an effective Hamiltonian approach. The complete excitation spectrum in both the normal phase and superradiant phase regimes is given. In contrast to the single mode case, multimode coupling of cavity photon and cyclotron transition can greatly reduce the critical vacuum Rabi frequency required for quantum phase transition, and dramatically enhance the superradiant emission by fast modulating the Hamiltonian. Our work paves a way to experimental explorations of quantum phase transitions in solid state systems.
Role of cell deformability in the two-dimensional melting of biological tissues
NASA Astrophysics Data System (ADS)
Li, Yan-Wei; Ciamarra, Massimo Pica
2018-04-01
The size and shape of a large variety of polymeric particles, including biological cells, star polymers, dendrimes, and microgels, depend on the applied stresses as the particles are extremely soft. In high-density suspensions these particles deform as stressed by their neighbors, which implies that the interparticle interaction becomes of many-body type. Investigating a two-dimensional model of cell tissue, where the single particle shear modulus is related to the cell adhesion strength, here we show that the particle deformability affects the melting scenario. On increasing the temperature, stiff particles undergo a first-order solid/liquid transition, while soft ones undergo a continuous solid/hexatic transition followed by a discontinuous hexatic/liquid transition. At zero temperature the melting transition driven by the decrease of the adhesion strength occurs through two continuous transitions as in the Kosterlitz, Thouless, Halperin, Nelson, and Young scenario. Thus, there is a range of adhesion strength values where the hexatic phase is stable at zero temperature, which suggests that the intermediate phase of the epithelial-to-mesenchymal transition could be hexatic type.
Shock Induced Phase Changes in Forsterite and Iron Silicide
NASA Astrophysics Data System (ADS)
Newman, M.; Asimow, P.; Kraus, R. G.; Smith, R.; Coppari, F.; Eggert, J. H.; Wicks, J.; Tracy, S.; Duffy, T.
2017-06-01
The equation of state of magnesium silicates and iron alloys at the pressures and temperatures near the melt curve is important for understanding the thermal evolution and interior structure of rocky planets. Here, we present a series of laser driven shock experiments on single crystal Mg2SiO4 and textured polycrystalline iron silicide (Fe-15Si), conducted at LLE. In situ x-ray diffraction measurements were used to probe the melting transition and investigate the potential decomposition of forsterite into solid MgO and silica rich liquid and Fe-15Si in to silicon rich B2 and iron rich hcp structures. This work examines kinetic effects of chemical decomposition due to the short time scale of laser-shock experiments. Preliminary results demonstrate solid-solid and solid-liquid phase transitions on both the forsterite and Fe-15Si Hugoniots. For Fe-15Si, we observe a texture preserving martensitic transformation of D03 Fe-15Si into an hcp structure and melting at 318 GPa. For forsterite, we observe diffraction consistent with B1 MgO and melting at 215 GPa. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NiTi shape memory via solid-state nudge-elastic band
NASA Astrophysics Data System (ADS)
Zarkevich, Nikolai A.; Johnson, Duane D.
2014-03-01
We determine atomic mechanisms of the shape memory effect in NiTi from a generalized solid-state nudge elastic band (SSNEB) method. We consider transformation between the austenite B2 and the ground-state base-centered orthorhombic (BCO) structures. In these pathways we obtain the R-phase and discuss its structure. We confirm that BCO is the ground state, and determine the pathways to BCO martensite, which dictate transition barriers. While ideal B2 is unstable, we find a B2-like NiTi high-temperature solid phase with significant local displacement disorder, which is B2 on average. This B2-like phase appears to be entropically stabilized. This work is supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering. Ames Laboratory is operated for the U.S. DOE by Iowa State University under contract DE-AC02-07CH11358.
Shock response and phase transitions of MgO at planetary impact conditions
Root, Seth; Shulenburger, Luke; Lemke, Raymond W.; ...
2015-11-04
The moon-forming impact and the subsequent evolution of the proto-Earth is strongly dependent on the properties of materials at the extreme conditions generated by this violent collision. We examine the high pressure behavior of MgO, one of the dominant constituents in Earth’s mantle, using high-precision, plate impact shock compression experiments performed on Sandia National Laboratories’ Z Machine and extensive quantum calculations using density functional theory (DFT) and quantum Monte Carlo (QMC) methods. The combined data span from ambient conditions to 1.2 TPa and 42,000 K, showing solid-solid and solid-liquid phase boundaries. Furthermore our results indicate that under impact the solidmore » and liquid phases coexist for more than 100 GPa, pushing complete melting to pressures in excess of 600 GPa. Furthermore, the high pressure required for complete shock melting has implications for a broad range of planetary collision events.« less
Molecular processes from the AGB to the PN stage
NASA Astrophysics Data System (ADS)
García-Hernández, D. Anibal
2012-08-01
Many complex organic molecules and inorganic solid-state compounds have been observed in the circumstellar shell of stars (both C-rich and O-rich) in the transition phase between Asymptotic Giant Branch (AGB) stars and Planetary Nebulae (PNe). This short (~102-104 years) phase of stellar evolution represents a wonderful laboratory for astrochemistry and provides severe constraints on any model of gas-phase and solid-state chemistry. One of the major challenges of present day astrophysics and astrochemistry is to understand the formation pathways of these complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene in the case of a C-rich chemistry and oxides and crystalline silicates in O-rich environments) in space. In this review, I present an observational review of the molecular processes in the late stages of stellar evolution with a special emphasis on the first detections of fullerenes and graphene in PNe.
Phase transitions of sodium niobate powder and ceramics, prepared by solid state synthesis
NASA Astrophysics Data System (ADS)
Koruza, J.; Tellier, J.; Malič, B.; Bobnar, V.; Kosec, M.
2010-12-01
Phase transitions of sodium niobate, prepared by the solid state synthesis method, were examined using dielectric measurements, differential scanning calorimetry, and high temperature x-ray diffraction, in order to contribute to the clarification of its structural behavior below 400 °C. Four phase transitions were detected in the ceramic sample using dielectric measurements and differential scanning calorimetry and the obtained temperatures were in a good agreement with previous reports for the transitions of the P polymorph. The anomaly observed by dielectric measurements in the vicinity of 150 °C was frequency dependent and could be related to the dynamics of the ferroelectric nanoregions. The phase transitions of the as-synthesized NaNbO3 powder were investigated using differential scanning calorimetry and high temperature x-ray diffraction. The results show the existence of the Q polymorph at room temperature, not previously reported for the powder, which undergoes a transition to the R polymorph upon heating through a temperature region between 265 and 326.5 °C. This transition is mainly related to the displacement of Na into a more symmetric position and a minor change in the tilting system. The structures at room temperature, 250, 300, and 420 °C were refined by the Rietveld method and the evolution of the tilting system of the octahedral network and cationic displacement are reported.
NASA Astrophysics Data System (ADS)
Dityatyev, Oleg A.; Smidt, Peer; Stefanovich, Sergey Yu; Lightfoot, Philip; Dolgikh, Valery A.; Opperman, Heinrich
2004-09-01
Phase equilibria in the Bi 2TeO 5Bi 2SeO 5 system were studied by X-ray, DTA and second harmonic generation (SHG). The samples were synthesized by solid state reactions of the Bi, Te and Se oxides. The phase diagram is interpreted as a quasibinary peritectic one with wide ranges of solid solutions on the basis of both compounds. The SHG study showed Bi 2SeO 5 to undergo a phase transition at about 250 °C. Neutron diffraction (25-650 °C) showed no major changes in the structure of Bi 2SeO 5 at high temperatures. However, the analysis of the oxygen atom thermal factors and site occupancies suggested that the mechanism of the phase transformation is an order-disorder transition involving reorientation of the SeO 3 group.
Gel phase in hydrated calcium dipicolinate
NASA Astrophysics Data System (ADS)
Rajak, Pankaj; Mishra, Ankit; Sheng, Chunyang; Tiwari, Subodh; Krishnamoorthy, Aravind; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya
2017-11-01
The mineralization of dipicolinic acid (DPA) molecules in bacterial spore cores with Ca2+ ions to form Ca-DPA is critical to the wet-heat resistance of spores. This resistance to "wet-heat" also depends on the physical properties of water and DPA in the hydrated Ca-DPA-rich protoplasm. Using reactive molecular dynamics simulations, we have determined the phase diagram of hydrated Ca-DPA as a function of temperature and water concentration, which shows the existence of a gel phase along with distinct solid-gel and gel-liquid phase transitions. Simulations reveal monotonically decreasing solid-gel-liquid transition temperatures with increasing hydration, which explains the experimental trend of wet-heat resistance of bacterial spores. Our observation of different phases of water also reconciles previous conflicting experimental findings on the state of water in bacterial spores. Further comparison with an unmineralized hydrated DPA system allows us to quantify the importance of Ca mineralization in decreasing diffusivity and increasing the heat resistance of the spore.
A Long-Lived Oscillatory Space-Time Correlation Function of Two Dimensional Colloids
NASA Astrophysics Data System (ADS)
Kim, Jeongmin; Sung, Bong June
2014-03-01
Diffusion of a colloid in solution has drawn significant attention for a century. A well-known behavior of the colloid is called Brownian motion : the particle displacement probability distribution (PDPD) is Gaussian and the mean-square displacement (MSD) is linear with time. However, recent simulation and experimental studies revealed the heterogeneous dynamics of colloids near glass transitions or in complex environments such as entangled actin, PDPD exhibited the exponential tail at a large length instead of being Gaussian at all length scales. More interestingly, PDPD is still exponential even when MSD was still linear with time. It requires a refreshing insight on the colloidal diffusion in the complex environments. In this work, we study heterogeneous dynamics of two dimensional (2D) colloids using molecular dynamics simulations. Unlike in three dimensions, 2D solids do not follow the Lindemann melting criterion. The Kosterlitz-Thouless-Halperin-Nelson-Young theory predicts two-step phase transitions with an intermediate phase, the hexatic phase between isotropic liquids and solids. Near solid-hexatic transition, PDPD shows interesting oscillatory behavior between a central Gaussian part and an exponential tail. Until 12 times longer than translational relaxation time, the oscillatory behavior still persists even after entering the Fickian regime. We also show that multi-layered kinetic clusters account for heterogeneous dynamics of 2D colloids with the long-lived anomalous oscillatory PDPD.
NASA Astrophysics Data System (ADS)
Tovbin, Yu. K.
2017-09-01
A microscopic theory of adsorption, based on a discrete continuum lattice gas model for noninert (including deformable) adsorbents that change their lattice parameters during adsorption, is presented. Cases of the complete and partial equilibrium states of the adsorbent are considered. In the former, the adsorbent consists of coexisting solid and vapor phases of adsorbent components, and the adsorbate is a mobile component of the vapor phase with an arbitrary density (up to that of the liquid adsorbate phase). The adsorptive transitioning to the bound state changes the state of the near-surface region of the adsorbent. In the latter, there are no equilibrium components of the adsorbent between the solid and vapor phases. The adsorbent state is shown to be determined by its prehistory, rather than set by chemical potentials of vapor of its components. Relations between the microscopic theory and thermodynamic interpretations are discussed: (1) adsorption on an open surface, (2) two-dimensional stratification of the adsorbate mobile phase on an open homogeneous surface, (3) small microcrystals in vacuum and the gas phase, and (4) adsorption in porous systems.
Chokshi, Rina J; Zia, Hossein; Sandhu, Harpreet K; Shah, Navnit H; Malick, Waseem A
2007-01-01
The solid dispersions with poloxamer 188 (P188) and solid solutions with polyvinylpyrrolidone K30 (PVPK30) were evaluated and compared in an effort to improve aqueous solubility and bioavailability of a model hydrophobic drug. All preparations were characterized by differential scanning calorimetry, powder X-ray diffraction, intrinsic dissolution rates, and contact angle measurements. Accelerated stability studies also were conducted to determine the effects of aging on the stability of various formulations. The selected solid dispersion and solid solution formulations were further evaluated in beagle dogs for in vivo testing. Solid dispersions were characterized to show that the drug retains its crystallinity and forms a two-phase system. Solid solutions were characterized to be an amorphous monophasic system with transition of crystalline drug to amorphous state. The evaluation of the intrinsic dissolution rates of various preparations indicated that the solid solutions have higher initial dissolution rates compared with solid dispersions. However, after storage at accelerated conditions, the dissolution rates of solid solutions were lower due to partial reversion to crystalline form. The drug in solid dispersion showed better bioavailability in comparison to solid solution. Therefore, considering physical stability and in vivo study results, the solid dispersion was the most suitable choice to improve dissolution rates and hence the bioavailability of the poorly water soluble drug.
NASA Astrophysics Data System (ADS)
Katase, Takayoshi; Endo, Kenji; Ohta, Hiromichi
2016-02-01
Compared to state-of-the-art modulation techniques, protonation is the most ideal to control the electrical and optical properties of transition metal oxides (TMOs) due to its intrinsic non-volatile operation. However, the protonation of TMOs is not typically utilized for solid-state devices because of imperative high-temperature annealing treatment in hydrogen source. Although one solution for room temperature (RT) protonation of TMOs is liquid-phase electrochemistry, it is unsuited for practical purposes due to liquid-leakage problem. Herein we demonstrate solid-state RT-protonation of vanadium dioxide (VO2), which is a well-known thermochromic TMO. We fabricated the three terminal thin-film-transistor structure on an insulating VO2 film using a water-infiltrated nanoporous glass, which serves as a solid electrolyte. For gate voltage application, water electrolysis and protonation/deprotonation of VO2 film surface occurred, leading to reversible metal-insulator phase conversion of ~11-nm-thick VO2 layer. The protonation was clearly accompanied by the structural change from an insulating monoclinic to a metallic tetragonal phase. Present results offer a new route for the development of electro-optically active solid-state devices with TMO materials by engineering RT protonation.
Extracellular ice phase transitions in insects.
Hawes, T C
2014-01-01
At temperatures below their temperature of crystallization (Tc), the extracellular body fluids of insects undergo a phase transition from liquid to solid. Insects that survive the transition to equilibrium (complete freezing of the body fluids) are designated as freeze tolerant. Although this phenomenon has been reported and described in many Insecta, current nomenclature and theory does not clearly delineate between the process of transition (freezing) and the final solid phase itself (the frozen state). Thus freeze tolerant insects are currently, by convention, described in terms of the temperature at which the crystallization of their body fluids is initiated, Tc. In fact, the correct descriptor for insects that tolerate freezing is the temperature of equilibrium freezing, Tef. The process of freezing is itself a separate physical event with unique physiological stresses that are associated with ice growth. Correspondingly there are a number of insects whose physiological cryo-limits are very specifically delineated by this transitional envelope. The distinction also has considerable significance for our understanding of insect cryobiology: firstly, because the ability to manage endogenous ice growth is a fundamental segregator of cryotype; and secondly, because our understanding of internal ice management is still largely nascent.
The use of lipids as phase change materials for thermal energy storage
USDA-ARS?s Scientific Manuscript database
Phase change materials (PCMs) are substances capable of absorbing and releasing large 2 amounts of thermal energy (heat or cold) as latent heat over constant temperature as they 3 undergo a change in state of matter (phase transition), commonly, between solid and 4 liquid phases. Since the late 194...
Lone-pair interactions and photodissociation of compressed nitrogen trifluoride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurzydłowski, D., E-mail: dkurzydlowski@uw.edu.pl; Department of Biogeochemistry, Max Planck Institute for Chemistry, 55128 Mainz; Wang, H. B.
2014-08-14
High-pressure behavior of nitrogen trifluoride (NF{sub 3}) was investigated by Raman and IR spectroscopy at pressures up to 55 GPa and room temperature, as well as by periodic calculations up to 100 GPa. Experimentally, we find three solid-solid phase transitions at 9, 18, and 39.5 GPa. Vibrational spectroscopy indicates that in all observed phases NF{sub 3} remains in the molecular form, in contrast to the behavior of compressed ammonia. This finding is confirmed by density functional theory calculations, which also indicate that the phase transitions of compressed NF{sub 3} are governed by the interplay between lone‑pair interactions and efficient moleculemore » packing. Although nitrogen trifluoride is molecular in the whole pressure range studied, we show that it can be photodissociated by mid-IR laser radiation. This finding paves the way for the use of NF{sub 3} as an oxidizing and fluorinating agent in high-pressure reactions.« less
Hydrogen and related materials at high density: Physics, chemistry and planetary implications
NASA Technical Reports Server (NTRS)
Hemley, R. J.; Mao, H. K.; Duffy, T. S.; Goncharov, A.; Vos, W.; Zha, C. S.; Eggert, J. H.; Li, M.; Hanfland, M.
1994-01-01
Recent studies of low-Z molecular materials including hydrogen to multimegabar pressures (less than 300 GPa) have uncovered a range of phenomena relevant to understanding the nature of the interiors of the outer planets and their satellites. Synchrotron x ray diffraction measurements (to 42 GPa) have been used to determine the crystal structure of the solid (hexagonal-close packed) and equation of state. Sound velocities in fluid and solid hydrogen (to 24 GPa) have been inverted to obtain elastic constants and aggregate bulk and shear moduli. In addition, an improved intermolecular potential has been determined which fits both static and shock-wave data. Use of the new potential for the molecular envelope of Jupiter suggests the need for major revisions of existing Jovian models or a reanalysis of reported free oscillations for the planet. Studies at higher pressures (greater than 100 GPa) reveal a sequence of pressure-induced symmetry-breaking transitions in molecular hydrogen, giving rise to three high-pressure phases (1, 2, and 3). Phase 1 is the rotationally disordered hcp phase which persists from low pressure to well above 100 GPa at high temperature (e.g., 300 K). Phase 2 is a low-temperature, high-pressure phase (transition at 100 GPa and 77 K in H2) with spectral features indicative of partial rotational ordering and crystallographic distortion. The transition to Phase 3 at 150 GPa is accompanied by a weakening of the molecular bond, gradual changes in orientational ordering, strong enhancement of the infrared intramolecular vibrational absorption, and strong intermolecular interactions similar to those of ambient-pressure network solids. Studies of the phase diagram reveal a triple point near 130 K and 160 GPa. Higher pressure measurements of vibrational spectra place a lower bound of approximately 250 GPa on the predicted transition pressure for dissociation of molecular hydrogen to form a monatomic metal.
In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Chenfei; Ge, Mingyuan; Luo, Langli
Here in this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li 15Si 4 phase while porous Si nanoparticles and nanowiresmore » transform to amorphous Li xSi phase, which is due to the effect of domain size on the stability of Li 15Si 4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.« less
In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Chenfei; Ge, Mingyuan; Luo, Langli
In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphousmore » LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.« less
In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures
NASA Astrophysics Data System (ADS)
Shen, Chenfei; Ge, Mingyuan; Luo, Langli; Fang, Xin; Liu, Yihang; Zhang, Anyi; Rong, Jiepeng; Wang, Chongmin; Zhou, Chongwu
2016-08-01
In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.
In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures
Shen, Chenfei; Ge, Mingyuan; Luo, Langli; Fang, Xin; Liu, Yihang; Zhang, Anyi; Rong, Jiepeng; Wang, Chongmin; Zhou, Chongwu
2016-01-01
In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires. PMID:27571919
In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures
Shen, Chenfei; Ge, Mingyuan; Luo, Langli; ...
2016-08-30
Here in this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li 15Si 4 phase while porous Si nanoparticles and nanowiresmore » transform to amorphous Li xSi phase, which is due to the effect of domain size on the stability of Li 15Si 4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.« less
Ionic Salt Effect on the Phase Transition of PS-b-P2VP Copolymers
NASA Astrophysics Data System (ADS)
Kim, Bokyung; An, Hyungju; Ryu, Du Yeol; Kim, Jehan
2009-03-01
Solid-state electrolytes have long been considered as suitable candidates owing to the simple and easy processes for rechargeable battery manufactures, compared to conventional liquid electrolyte counterparts. Especially, polymer/salt systems involving PMMA and PVP complex forms have been studied since they provide stable electrochemical characteristics as well as mechanical properties. We studied the phase behavior of PS-b-P2VP upon the salt addition by small angle x-ray scattering (SAXS) and depolarized light scattering. Transition temperatures of block copolymer were significantly influenced by the salt addition in addition to the changes of d-spacings, which is caused by the effective coordinative interaction between P2VP block and salt. This study suggests a simple approach to solid-state block copolymer electrolytes.
A metastable liquid melted from a crystalline solid under decompression
Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; ...
2017-01-23
A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid–solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. Themore » decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure–temperature region similar to where the supercooled liquid Bi is observed. Finally, akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.« less
A metastable liquid melted from a crystalline solid under decompression
Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin
2017-01-01
A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid–solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure–temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought. PMID:28112152
Superconductivity in zirconium-rhodium alloys
NASA Technical Reports Server (NTRS)
Zegler, S. T.
1969-01-01
Metallographic studies and transition temperature measurements were made with isothermally annealed and water-quenched zirconium-rhodium alloys. The results clarify both the solid-state phase relations at the Zr-rich end of the Zr-Rh alloy system and the influence upon the superconducting transition temperature of structure and composition.
Liquid crystalline phase behavior in systems of hard-sphere chains
NASA Astrophysics Data System (ADS)
Williamson, Dave C.; Jackson, George
1998-06-01
A study of the liquid crystalline phase transitions in a system of hard-sphere chains is presented. The chains comprise m=7 tangentially bonded hard-sphere segments in a linear conformation (LHSC). The isothermal-isobaric Monte Carlo simulation technique is used to obtain the equation of state of the system both by compressing the isotropic (I) liquid and by expanding the solid (K). As well as the usual isotropic and solid phases, nematic and smectic-A liquid crystalline states are seen. A large degree of hysteresis is found in the neighborhood of the I-N transition. The results for the rigid LHSC system were compared with existing data for the corresponding semiflexible hard-sphere chains (FHSC): the flexibility has a large destabilizing effect on the nematic phase and consequently it postpones the I-N transition. The results of the simulations are also compared with rescaled Onsager theories for the I-N transition. It is rather surprising to find that the Parsons approach, which has been so successful for other hard-core models such as spherocylinders and ellipsoids, gives very poor results. The related approach of Vega and Lago gives a good description of the I-N phase transition. The procedure of Vega and Lago, as with all two-body resummations of the Onsager theory, only gives a qualitative description of the nematic order.
Zhu, Yi; Cai, Zhonghou; Chen, Pice; ...
2016-02-26
Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase seperated regions. The ability to simultanousely track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of- the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO 2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation ismore » initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO 2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, which is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO 2. Lastly, the direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.« less
NASA Astrophysics Data System (ADS)
Zhu, Yi; Cai, Zhonghou; Chen, Pice; Zhang, Qingteng; Highland, Matthew J.; Jung, Il Woong; Walko, Donald A.; Dufresne, Eric M.; Jeong, Jaewoo; Samant, Mahesh G.; Parkin, Stuart S. P.; Freeland, John W.; Evans, Paul G.; Wen, Haidan
2016-02-01
Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase separated regions. The ability to simultaneously track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of-the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, and is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. The direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.
Zhu, Yi; Cai, Zhonghou; Chen, Pice; Zhang, Qingteng; Highland, Matthew J; Jung, Il Woong; Walko, Donald A; Dufresne, Eric M; Jeong, Jaewoo; Samant, Mahesh G; Parkin, Stuart S P; Freeland, John W; Evans, Paul G; Wen, Haidan
2016-02-26
Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase separated regions. The ability to simultaneously track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of-the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, and is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. The direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.
The use of solid supports to generate nucleic acid carriers.
Unciti-Broceta, Asier; Díaz-Mochón, Juan José; Sánchez-Martín, Rosario M; Bradley, Mark
2012-07-17
Nucleic acids are the foundation stone of all cellular processes. Consequently, the use of DNA or RNA to treat genetic and acquired disorders (so called gene therapy) offers enormous potential benefits. The restitution of defective genes or the suppression of malignant genes could target a range of diseases, including cancers, inherited diseases (cystic fibrosis, muscular dystrophy, etc.), and viral infections. However, this strategy has a major barrier: the size and charge of nucleic acids largely restricts their transit into eukaryotic cells. Potential strategies to solve this problem include the use of a variety of natural and synthetic nucleic acid carriers. Driven by the aim and ambition of translating this promising therapeutic approach into the clinic, researchers have been actively developing advanced delivery systems for nucleic acids for more than 20 years. A decade ago we began our investigations of solid-phase techniques to construct families of novel nucleic acid carriers for transfection. We envisaged that the solid-phase synthesis of polycationic dendrimers and derivatized polyamimes would offer distinct advantages over solution phase techniques. Notably in solid phase synthesis we could take advantage of mass action and streamlined purification procedures, while simplifying the handling of compounds with high polarities and plurality of functional groups. Parallel synthesis methods would also allow rapid access to libraries of compounds with improved purities and yields over comparable solution methodologies and facilitate the development of structure activity relationships. We also twisted the concept of the solid-phase support on its head: we devised miniaturized solid supports that provided an innovative cell delivery vehicle in their own right, carrying covalently conjugated cargos (biomolecules) into cells. In this Account, we summarize the main outcomes of this series of chemically related projects.
On the Plasticity of Amorphous Solids
NASA Astrophysics Data System (ADS)
Lin, Jie
Mechanical behaviors of amorphous materials under external stress are central to various phenomena including earthquakes and landslides. Most amorphous materials possess a well defined yield stress when thermal fluctuations are negligible. Only when the shear stress is above the yield stress, the material can flow as a fluid, otherwise it deforms as a solid. There are accumulating evidences that the yielding transition between the flowing and solid phase is a critical phenomenon, and one evidence is the long ranged correlations of plastic strain during adiabatic shear. In spite of this, we still have not fully understood the associated critical exponents and their scaling relations. In the last decade, it has been widely accepted that the elementary rearrangements in amorphous solids are not well-defined topological defects as crystals, instead they are local irreversible rearrangements of a few particles, denoted as shear transformations. Because a single shear transformation changes the local arrangement of particles, it therefore generates an elastic stress field propagating over the whole system. The resulting changes in the local stresses in other regions of the system may in turn trigger more shear transformations. A central feature that complicates the yielding transition is the long range and anisotropic stress field generated by shear transformations. This peculiar interaction between shear transformations leads to two important characteristics: 1.the mechanical noises generated by plastic deformation are broadly distributed 2.those regions that are undergoing plastic deformation has equal probability to make other parts of the material to be more stable or more unstable, depending on the direction between them. In this thesis, we show that these two important factors leads to a singular density of shear transformations, P( x) xtheta at small x, where x is a local measure of stability, namely, the extra stress one needs to add locally to reach the elastic instabilities. We denote such a singular distribution as a pseudo gap, and the theta exponent as the pseudo gap exponent. The fact that the plastic avalanche rates, i.e., number of avalanches per unit strain, during quasi-static shear is not proportional to system size implies the existence of a finite pseudo gap exponent. Arguments based on stability against local perturbations lead to a lower bound of the pseudo gap exponents. In the flowing phase, we construct the scaling description of the yielding transition of soft amorphous solids at zero temperature. The yielding transition shares similarities with another well studied dynamic phase transition, the depinning transition where an elastic interface is driven in a disordered medium, however, there are also striking differences between them. Avalanches are fractal in the yielding transition, characterized by a fractal dimension smaller than the spatial dimension, while avalanches are compact with a fractal dimension, not smaller than the spatial dimension in the depinning transition. We make connections between the Herschel-Bulkley exponent characterizing the singularity of the flow curve near the yield stress, the extension and duration of the avalanches of plasticity, and the pseudo gap exponent. On the other hand, in the solid phase, the pseudo gap also plays a significant role as one increases the shear stress adiabatically. We point out the connection between the local slope of stress-strain curve in the transient state and mean avalanche sizes as the system approaches failure. We argue that the entire solid phase below the yield stress is critical as long as there is finite amount of plastic strain, and plasticity always involves system-spanning events because of the finite pseudo gap exponent. We use the elasto-plastic model, a mesoscopic approach, to verify our theoretical predictions and obtain satisfying results. Finally, a mean field description of plastic flow in amorphous solids are proposed and solved analytically. The mean field models captures the broad distribution of mechanical noise generated by plasticity, leading to a biased Levy flight behavior of local stresses, with the elastic instabilities as the absorbing boundary. The mean field model implies an upper critical dimension as dc = 4.
Modeling dynamic beta-gamma polymorphic transition in Tin
NASA Astrophysics Data System (ADS)
Chauvin, Camille; Montheillet, Frank; Petit, Jacques; CEA Gramat Collaboration; EMSE Collaboration
2015-06-01
Solid-solid phase transitions in metals have been studied by shock waves techniques for many decades. Recent experiments have investigated the transition during isentropic compression experiments and shock-wave compression and have highlighted the strong influence of the loading rate on the transition. Complementary data obtained with velocity and temperature measurements around the polymorphic transition beta-gamma of Tin on gas gun experiments have displayed the importance of the kinetics of the transition. But, even though this phenomenon is known, modeling the kinetic remains complex and based on empirical formulations. A multiphase EOS is available in our 1D Lagrangian code Unidim. We propose to present the influence of various kinetic laws (either empirical or involving nucleation and growth mechanisms) and their parameters (Gibbs free energy, temperature, pressure) on the transformation rate. We compare experimental and calculated velocities and temperature profiles and we underline the effects of the empirical parameters of these models.
NASA Astrophysics Data System (ADS)
Givan, A.; Loewenschuss, A.
1990-12-01
Raman spectra of zero-pressure-formed N2O4 solid layers are reported. Sample composition is extremely dependent upon deposition conditions. For ordered and pure solid N2O4(D2h), produced by slow NO2 deposition, temperature cycling over the range in which the solid is stable shows no significant spectral changes and does not result in autoionization, as argued in a previous Raman study. Fast and low temperature deposited layers are amorphous and multicomponent, showing bands of disordered and isomeric molecular N2O4 and of ionic NO + NO3, nitrosonium nitrate. For nitrosonium nitrate, three solid modifications can be characterized spectroscopically. In the amorphous phase, a light induced, temperature dependent, reversible transition between molecular and ionic nitrogen tetroxide is observed below 150 K. The paths leading to nitrosonium nitrate formation are examined.
Snapshots of a solid-state transformation: coexistence of three phases trapped in one crystal
Aromí, G.; Beavers, C. M.; Sánchez Costa, J.; ...
2016-01-05
Crystal-to-crystal transformations have been crucial in the understanding of solid-state processes, since these may be studied in detail by means of single crystal X-ray diffraction (SCXRD) techniques. The description of the mechanisms and potential intermediates of those processes remains very challenging. In fact, solid-state transient states have rarely been observed, at least to a sufficient level of detail. We have investigated the process of guest extrusion from the non-porous molecular material [Fe(bpp)(H 2L)](ClO 4) 2·1.5C 3H 6O (bpp = 2,6-bis(pyrazol-3-yl)pyridine; H 2L = 2,6-bis(5-(2-methoxyphenyl)-pyrazol-3-yl)pyridine; C 3H 6O = acetone), which occurs through ordered diffusion of acetone in a crystal-to-crystal manner,more » leading to dramatic structural changes. The slow kinetics of the transition allows thermal trapping of the system at various intermediate stages. The transiting single crystal can be then examined at these points through synchrotron SCXRD, offering a window upon the mechanism of the transformation at the molecular scale. These experiments have unveiled the development of an ordered intermediate phase, distinct from the initial and the final states, coexisting as the process advances with either of these two phases or, at a certain moment with both of them. The new intermediate phase has been structurally characterized in full detail by SCXRD, providing insights into the mechanism of this diffusion triggered solid-state phenomenon. Lastly, the process has been also followed by calorimetry, optical microscopy, local Raman spectroscopy and powder X-ray diffraction. The discovery and description of an intermediate ordered state in a molecular solid-state transformation is of great interest and will help to understand the mechanistic details and reaction pathways underlying these transformations.« less
NASA Astrophysics Data System (ADS)
Kalita, Patricia; Specht, Paul; Root, Seth; Sinclair, Nicholas; Schuman, Adam; White, Melanie; Cornelius, Andrew L.; Smith, Jesse; Sinogeikin, Stanislav
2017-12-01
We report real-time observations of a phase transition in the ionic solid CaF2 , a model A B2 structure in high-pressure physics. Synchrotron x-ray diffraction coupled with dynamic loading to 27.7 GPa, and separately with static compression, follows, in situ, the fluorite to cotunnite structural phase transition, both on nanosecond and on minute time scales. Using Rietveld refinement techniques, we examine the kinetics and hysteresis of the transition. Our results give insight into the kinetic time scale of the fluorite-cotunnite phase transition under shock compression, which is relevant to a number of isomorphic compounds.
Kalita, Patricia E.; Specht, Paul Elliot; Root, Seth; ...
2017-12-21
Here, we report real-time observations of a phase transition in the ionic solid CaF 2, a model AB 2 structure in high-pressure physics. Synchrotron x-ray diffraction coupled with dynamic loading to 27.7 GPa, and separately with static compression, follows, in situ, the fluorite to cotunnite structural phase transition, both on nanosecond and on minute time scales. Using Rietveld refinement techniques, we examine the kinetics and hysteresis of the transition. Our results give insight into the kinetic time scale of the fluorite-cotunnite phase transition under shock compression, which is relevant to a number of isomorphic compounds.
Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The ultrafast laser excitation of matters leads to non-equilibrium states with complex solid-liquid phase transition dynamics. We used electron diffraction at mega-electronvolt energies to visualize the ultrafast melting of gold on the atomic scale length. For energy densities approaching the irreversible melting regime, we first observed heterogeneous melting on time scales of 100 ps to 1000 ps, transitioning to homogeneous melting that occurs catastrophically within 10-20 ps at higher energy densities. We showed evidence for the heterogeneous coexistence of solid and liquid. We determined the ion and electron temperature evolution and found superheated conditions. Our results constrain the electron-ion couplingmore » rate, determine the Debye temperature and reveal the melting sensitivity to nucleation seeds.« less
2015-02-04
their numerical solutions for solid-liquid and liquid-solid phase transition: In the third area of research we consider development of mathematical models...momentum must be equal to the sum of the forces acting on the volume of matter) in terms of a dissipative force (the third term in (I.71)). Using (I.70...case, the momentum and constitutive equations (in the absence of body forces) in the x1-coordinate direction are ρ 0 ∂2ux1 ∂t2 + ∂p ∂x1 − ∂( dσx1x1
The Phase Behavior of γ-Oryzanol and β-Sitosterol in Edible Oil.
Sawalha, Hassan; Venema, Paul; Bot, Arjen; Flöter, Eckhard; Adel, Ruud den; van der Linden, Erik
The phase behavior of binary mixtures of γ-oryzanol and β-sitosterol and ternary mixtures of γ-oryzanol and β-sitosterol in sunflower oil was studied. Binary mixtures of γ-oryzanol and β-sitosterol show double-eutectic behavior. Complex phase behavior with two intermediate mixed solid phases was derived from differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) data, in which a compound that consists of γ-oryzanol and β-sitosterol molecules at a specific ratio can be formed. SAXS shows that the organization of γ-oryzanol and β-sitosterol in the mixed phases is different from the structure of tubules in ternary systems. Ternary mixtures including sunflower oil do not show a sudden structural transition from the compound to a tubule, but a gradual transition occurs as γ-oryzanol and β-sitosterol are diluted in edible oil. The same behavior is observed when melting binary mixtures of γ-oryzanol and β-sitosterol at higher temperatures. This indicates the feasibility of having an organogelling agent in dynamic exchange between solid and liquid phase, which is an essential feature of triglyceride networks.
NASA Astrophysics Data System (ADS)
Washizu, Hitoshi; Ohmori, Toshihide; Suzuki, Atsushi
2017-06-01
All-atom molecular dynamics simulations of an elastohydrodynamic lubrication oil film are performed to study the effect of pressure. Fluid molecules of n-hexane are confined between two solid plates under a constant normal force of 0.1-8.0 GPa. Traction simulations are performed by applying relative sliding motion to the solid plates. A transition in the traction behavior is observed around 0.5-2.0 GPa, which corresponds to the viscoelastic region to the plastic-elastic region, which are experimentally observed. This phase transition is related to the suppression of the fluctuation in molecular motion.
Disordering Chain Motions in Fluoropolymers
NASA Astrophysics Data System (ADS)
Holt, David B.; Farmer, Barry L.
1998-03-01
Rotational and conformational disorder play important roles in the solid state phases of fluoropolymers such as polytetrafluoro- ethylene (PTFE). Modeling disordering processes and transitions which occur in fluoropolymers has been hampered due to a lack of force field parameters that adequately describe both the intra- and intermolecular characteristics (conformations and distances) of these polymers in the solid state. A force field has been developed which overcomes these inadequacies and has been utilized in molecular dynamics simulations on a system of PTFE oligomers to investigate two of the primary disordering processes that occur in the solid phases: rotations of chains about their helical axes and the formation and subsequent behavior of helix reversals. The simulation results confirm helix reversal activity at low temperatures and demonstrate correlations between chain segment rotations or librations and helix reversal motion. A mechanism for large scale chain segment rotations is proposed.
Monolayer adsorption of noble gases on graphene
NASA Astrophysics Data System (ADS)
Maiga, Sidi M.; Gatica, Silvina M.
2018-02-01
We report our results of simulations of the adsorption of noble gases (Kr, Ar, Xe) on graphene. For Kr, we consider two configurations: supported and free-standing graphene, where atoms are adsorbed only on one or two sides of the graphene. For Ar and Xe, we studied only the case of supported graphene. For the single-side adsorption, we calculated the two-dimensional gas-liquid critical temperature for each adsorbate. We determined the different phases of the monolayers and constructed the phase diagrams. We found two-dimensional incommensurate solid phases for krypton, argon and xenon, and a two-dimensional commensurate solid phase for krypton. For double side adsorption of Kr, we do not see evidence of an ordering transition driven by the interlayer forces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weese, Randall K.
In order to calculate the kinetic parameters from DSC data, we have used the generally accepted methods of Bershtein [13]. We have calculated the rate constants for 4 temperatures and the activation energy based on the shift in the transition temperature, β→δ for HMX. The values of E a from this work is 402 kJ/mol compared to previous results by Brill [9] of 204 kJ/mol. Brill and associates measured the phase transition of HMX using FTIR, sodium chloride plates and silicon oil. Given the differences in technique between FTIR and DSC the results found in this work are reasonable. Inmore » this investigation a large sample set (16) proved to be statistically valid for the determinations of k. Linear regressions were performed, observed and good fits were obtained, for each temperature. The enthalpy determination of ΔH o, for the β→δ phase transition was reproducible with in 3 parts in 100 over the range of this experiment. Thus, the data derived from this experiment k, E a, and ΔH o are valid parameters for the solid-solid phase transition. Obtaining pure β phase HMX was very important for this investigation. Related to the phase change is the particle size distribution and is presented in Figure 3. Compared to previous work on HMX, this study utilized very pure β phase material. In addition, the particle size was controlled more rigorously at about 160 μm, giving a more consistent result for α. Thus, these kinetic results should have less scatter than results with less control of HMX purity and particle size. The kinetic basis of the polymorphic conversion is due to the cohesive forces in the HMX crystal lattice [21]. The energy required to bring about change from chair to chair-chair conformation has been reported by Brill [21] as ring torsion and is essentially a normal mode of the molecule that requires about 4 kJ mol -1. For the purpose of this investigation the energy of activation found in this work relates to the disruption of the intermolecular interactions with in the crystal lattice of β phase HMX and is much larger (100X) than that of simple conformational changes. The evidence of a straightforward one step mechanism is not supported by this research. Solid-solid phase transition kinetics is very complexed. There are many factors that contribute to an overall reaction mechanism. The initial assumptions that were chosen to allow simple manipulation of the HMX phase transition data prove to be too limiting. The rate constant by definition should in fact be constant, however, our data reflects it is not (refer to k vs time plot in Appendix 2). The assumption of a first order, simple single step reaction is a good starting point for the study of HMX phase transition kinetics, but further analysis should be done with other reaction orders and multiple step mechanisms. Understanding the kinetics of β phase HMX will clearly help the custodian understand the limitations of storage and use of this compound.« less
Localized diffusive motion on two different time scales in solid alkane nanoparticles
NASA Astrophysics Data System (ADS)
Wang, S.-K.; Mamontov, E.; Bai, M.; Hansen, F. Y.; Taub, H.; Copley, J. R. D.; García Sakai, V.; Gasparovic, G.; Jenkins, T.; Tyagi, M.; Herwig, K. W.; Neumann, D. A.; Montfrooij, W.; Volkmann, U. G.
2010-09-01
High-energy-resolution quasielastic neutron scattering on three complementary spectrometers has been used to investigate molecular diffusive motion in solid nano- to bulk-sized particles of the alkane n-C32H66. The crystalline-to-plastic and plastic-to-fluid phase transition temperatures are observed to decrease as the particle size decreases. In all samples, localized molecular diffusive motion in the plastic phase occurs on two different time scales: a "fast" motion corresponding to uniaxial rotation about the long molecular axis; and a "slow" motion attributed to conformational changes of the molecule. Contrary to the conventional interpretation in bulk alkanes, the fast uniaxial rotation begins in the low-temperature crystalline phase.
NASA Astrophysics Data System (ADS)
Akaogi, Masaki; Ito, Eiji; Navrotsky, Alexandra
1989-11-01
The olivine(α)-modified spinel(β)-spinel (γ) transitions in the system Mg2SiO4-Fe2SiO4 were studied by high-temperature solution calorimetry. Enthalpies of the β-γ and a α-γ transitions in Mg2SiO4 at 975 K and of the α-γ transition in Fe2SiO4 at 298 K were measured. The γ solid solution showed a positive enthalpy of mixing. Phase relations at high pressures and high temperatures were calculated from these thermochemical data including correction for the effect of nonideality of α, β, and γ solid solutions. The calculated phase diagrams agree well with those determined experimentally by Katsura and Ito very recently. The α - (Mg0.89, Fe0.11)2SiO4 transforms to β through a region of α+β without passing through the α+γ phase field at around 400 km depth in the mantle with an interval of about 18(±5) km. Temperatures at 390 and 650 km depths are estimated to be about 1673 and 1873 K, respectively, assuming an adiabatic geotherm.
Global distribution of secondary organic aerosol particle phase state
NASA Astrophysics Data System (ADS)
Shiraiwa, M.; Li, Y., Sr.; Tsimpidi, A.; Karydis, V.; Berkemeier, T.; Pandis, S. N.; Lelieveld, J.; Koop, T.; Poeschl, U.
2016-12-01
Secondary organic aerosols (SOA) account for a large fraction of submicron particles in the atmosphere and play a key role in aerosol effects on climate, air quality and public health. The formation and aging of SOA proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of SOA evolution in atmospheric aerosol models. SOA particles can adopt liquid, semi-solid and amorphous solid (glassy) phase states depending on chemical composition, relative humidity and temperature. The particle phase state is crucial for various atmospheric gas-particle interactions, including SOA formation, heterogeneous and multiphase reactions and ice nucleation. We found that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. Based on the concept of molecular corridors, we develop a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, which is a key property for determination of particle phase state. We use the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the atmospheric SOA phase state. For the planetary boundary layer, global simulations indicate that SOA is mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes, and solid over dry lands. We find that in the middle and upper troposphere (>500 hPa) SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants, and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded within SOA.
Electric-field induced phase transitions of dielectric colloids: Impact of multiparticle effects
NASA Astrophysics Data System (ADS)
Wood, Jeffery A.; Docoslis, Aristides
2012-05-01
The thermodynamic framework for predicting the electric-field induced fluid like-solid like phase transition of dielectric colloids developed by Khusid and Acrivos [Phys. Rev. E. 54, 5428 (1996)] is extended to examine the impact of multiscattering/multiparticle effects on the resulting phase diagrams. This was accomplished using effective permittivity models suitable both over the entire composition region for hard spheres (0≤c
Emission and excitation spectra of IF in solid argon at 12 K
NASA Astrophysics Data System (ADS)
Miller, John C.; Andrews, Lester
1980-03-01
The interhalogen, IF, has been synthesized by vacuum ultraviolet photolysis of CHF 2I and CHFI 2 and subsequently trapped in solid argon at 12 K. The B 3π 0+-X 1Σ transition was observed in emission and dye laser excitation experiments with the origin near 18 688 cm -1 and average ground- and excited-state spacings of 573 and 380 cm -1, respectively. These data are compared to the gas phase results.
1977-01-01
topography of the state of knowledge on the thermal expansion of nonmetallic solids. We believe there is also much food for reflec- West Lafayette...34 Lithium Silicates ......... 713 209 Magnesium Metasilicate MgSiO. .. ......... 715 210 Magnesium Orthosilicate Mg2 SiO . . . . . . . . . . . . 718 211...Antiferromagnetism of Praseodymium," Phys. Rev. Letters, 12(20), 553-5, 1964. 66. Goode, J.M., "Phase Transition Temperature of Polonium ,"J. Chem. Phys., 26(5), 1269
Influence of Sn doping in BaSnxTi1-xO3 ceramics on microstructural and dielectric properties
NASA Astrophysics Data System (ADS)
Ansari, Mohd. Azaj; Sreenivas, K.
2018-05-01
BaSnxTi1-x O3 solid solutions with varying Sn content (x = 0.00, 0.05, 0.15, 0.25) prepared by solid state reaction method have been studied for their structural and dielectric properties. X-ray diffraction and Raman spectroscopic analysis show composition induced modifications in the crystallographic structure, and with increasing Sn content the structure changes from tetragonal to cubic structure. The tetragonal distortion decreases with increasing Sn, and the structure becomes purely cubic for x =0.25. Changes in the structure are reflected in the temperature dependent dielectric properties. For increasing Sn content the peak dielectric constant is found to increase and the phase transition temperature (Tc) decreases to lower temperature. The purely cubic structure with x=0.25 shows a diffused phased transition.
Diffusive and martensitic nucleation kinetics in solid-solid transitions of colloidal crystals
NASA Astrophysics Data System (ADS)
Peng, Yi; Li, Wei; Wang, Feng; Still, Tim; Yodh, Arjun G.; Han, Yilong
2017-05-01
Solid-solid transitions between crystals follow diffusive nucleation, or various diffusionless transitions, but these kinetics are difficult to predict and observe. Here we observed the rich kinetics of transitions from square lattices to triangular lattices in tunable colloidal thin films with single-particle dynamics by video microscopy. Applying a small pressure gradient in defect-free regions or near dislocations markedly transform the diffusive nucleation with an intermediate-stage liquid into a martensitic generation and oscillation of dislocation pairs followed by a diffusive nucleus growth. This transformation is neither purely diffusive nor purely martensitic as conventionally assumed but a combination thereof, and thus presents new challenges to both theory and the empirical criterion of martensitic transformations. We studied how pressure, density, grain boundary, triple junction and interface coherency affect the nucleus growth, shape and kinetic pathways. These novel microscopic kinetics cast new light on control solid-solid transitions and microstructural evolutions in polycrystals.
2016-01-01
Several “Beyond Li-Ion Battery” concepts such as all solid-state batteries and hybrid liquid/solid systems envision the use of a solid electrolyte to protect Li-metal anodes. These configurations are very attractive due to the possibility of exceptionally high energy densities and high (dis)charge rates, but they are far from being realized practically due to a number of issues including high interfacial resistance and difficulties associated with fabrication. One of the most promising solid electrolyte systems for these applications is Al or Ga stabilized Li7La3Zr2O12 (LLZO) based on high ionic conductivities and apparent stability against reduction by Li metal. Nevertheless, the fabrication of dense LLZO membranes with high ionic conductivity and low interfacial resistances remains challenging; it definitely requires a better understanding of the structural and electrochemical properties. In this study, the phase transition from garnet (Ia3̅d, No. 230) to “non-garnet” (I4̅3d, No. 220) space group as a function of composition and the different sintering behavior of Ga and Al stabilized LLZO are identified as important factors in determining the electrochemical properties. The phase transition was located at an Al:Ga substitution ratio of 0.05:0.15 and is accompanied by a significant lowering of the activation energy for Li-ion transport to 0.26 eV. The phase transition combined with microstructural changes concomitant with an increase of the Ga/Al ratio continuously improves the Li-ion conductivity from 2.6 × 10–4 S cm–1 to 1.2 × 10–3 S cm–1, which is close to the calculated maximum for garnet-type materials. The increase in Ga content is also associated with better densification and smaller grains and is accompanied by a change in the area specific resistance (ASR) from 78 to 24 Ω cm2, the lowest reported value for LLZO so far. These results illustrate that understanding the structure–properties relationships in this class of materials allows practical obstacles to its utilization to be readily overcome. PMID:27110064
Rettenwander, Daniel; Redhammer, Günther; Preishuber-Pflügl, Florian; Cheng, Lei; Miara, Lincoln; Wagner, Reinhard; Welzl, Andreas; Suard, Emmanuelle; Doeff, Marca M; Wilkening, Martin; Fleig, Jürgen; Amthauer, Georg
2016-04-12
Several "Beyond Li-Ion Battery" concepts such as all solid-state batteries and hybrid liquid/solid systems envision the use of a solid electrolyte to protect Li-metal anodes. These configurations are very attractive due to the possibility of exceptionally high energy densities and high (dis)charge rates, but they are far from being realized practically due to a number of issues including high interfacial resistance and difficulties associated with fabrication. One of the most promising solid electrolyte systems for these applications is Al or Ga stabilized Li 7 La 3 Zr 2 O 12 (LLZO) based on high ionic conductivities and apparent stability against reduction by Li metal. Nevertheless, the fabrication of dense LLZO membranes with high ionic conductivity and low interfacial resistances remains challenging; it definitely requires a better understanding of the structural and electrochemical properties. In this study, the phase transition from garnet ( Ia 3̅ d , No. 230) to "non-garnet" ( I 4̅3 d , No. 220) space group as a function of composition and the different sintering behavior of Ga and Al stabilized LLZO are identified as important factors in determining the electrochemical properties. The phase transition was located at an Al:Ga substitution ratio of 0.05:0.15 and is accompanied by a significant lowering of the activation energy for Li-ion transport to 0.26 eV. The phase transition combined with microstructural changes concomitant with an increase of the Ga/Al ratio continuously improves the Li-ion conductivity from 2.6 × 10 -4 S cm -1 to 1.2 × 10 -3 S cm -1 , which is close to the calculated maximum for garnet-type materials. The increase in Ga content is also associated with better densification and smaller grains and is accompanied by a change in the area specific resistance (ASR) from 78 to 24 Ω cm 2 , the lowest reported value for LLZO so far. These results illustrate that understanding the structure-properties relationships in this class of materials allows practical obstacles to its utilization to be readily overcome.
Crystallization of soft matter under confinement at interfaces and in wedges
NASA Astrophysics Data System (ADS)
Archer, Andrew J.; Malijevský, Alexandr
2016-06-01
The surface freezing and surface melting transitions that are exhibited by a model two-dimensional soft matter system are studied. The behaviour when confined within a wedge is also considered. The system consists of particles interacting via a soft purely repulsive pair potential. Density functional theory (DFT) is used to calculate density profiles and thermodynamic quantities. The external potential due to the confining walls is modelled via a hard wall with an additional repulsive Yukawa potential. The surface phase behaviour depends on the range and strength of this repulsion: when the repulsion is weak, the wall promotes freezing at the surface of the wall. The thickness of this frozen layer grows logarithmically as the bulk liquid-solid phase coexistence is approached. Our mean-field DFT predicts that this crystalline layer at the wall must be nucleated (i.e. there is a free energy barrier) and its formation is necessarily a first-order transition, referred to as ‘prefreezing’, by analogy with the prewetting transition. However, in contrast to the latter, prefreezing cannot terminate in a critical point, since the phase transition involves a change in symmetry. If the wall-fluid interaction is sufficiently long ranged and the repulsion is strong enough, surface melting can occur instead. Then the interface between the wall and the bulk crystalline solid is wetted by the liquid phase as the chemical potential is decreased towards the value at liquid-solid coexistence. It is observed that the finite thickness fluid film at the wall has a broken translational symmetry due to its proximity to the bulk crystal, and so the nucleation of the wetting film can be either first order or continuous. Our mean-field theory predicts that for certain wall potentials there is a premelting critical point analogous to the surface critical point for the prewetting transition. When the fluid is confined within a linear wedge, this can strongly promote freezing when the opening angle of the wedge is commensurate with the crystal lattice.
NASA Astrophysics Data System (ADS)
Shulenburger, Luke
2015-11-01
MgO is a major constituent of Earth's mantle, the rocky cores of gas giants and is a likely component of the interiors of many exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine MgO under extreme conditions using experimental and theoretical methods to determine the phase diagram and transport properties. Using plate impact experiments on Sandia's Z facility a low entropy solid-solid phase transition from B1 to B2 is clearly determined. The melting transition, on the other hand, is subtle, involving little to no signal in us-up space. Theoretical work utilizing density functional theory (DFT) provides a complementary picture of the phase diagram. The solid-solid phase transition is identified through a series of quasi-harmonic phonon calculations and thermodynamic integration, while the melt boundary is found using phase coexistence calculations. The calculation of reflectivity along the Hugoniot and the influence of the ionic structure on the transport properties requires particular care because of the underestimation of the band gap and attendant overestimation of transport properties due to the use of semi-local density functional theory. We will explore the impact of this theoretical challenge and its potential solutions in this talk. Finally, understanding the behavior of MgO as the pressure releases from the Hugoniot state is a key ingredient to modeling giant impact events. We explore this regime both through additional DFT calculations and by observing the release state of the MgO into lower impedance materials. The integrated use of DFT simulations and high-accuracy shock experiments together provide a comprehensive understanding of MgO under extreme conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Neutron and X-ray Scattering Study of Structure and Dynamics of Condensed Matters
NASA Astrophysics Data System (ADS)
Fujii, Yasuhiko
In this article, I have reviewed a series of research on a various phase transitions such as (1) structural phase transitions of perovskite compounds driven by soft phonons, (2) pressure-induced molecular dissociation and metallization observed in solid halogens, and (3) the “Devil's Flower” type phase diagram observed in two compounds with frustrating interactions. Also commented is on the so-called “Small Science at Large Facility” typically symbolized by neutron and synchrotron radiation experiments like the present research.
Modes of surface premelting in colloidal crystals composed of attractive particles
NASA Astrophysics Data System (ADS)
Li, Bo; Wang, Feng; Zhou, Di; Peng, Yi; Ni, Ran; Han, Yilong
2016-03-01
Crystal surfaces typically melt into a thin liquid layer at temperatures slightly below the melting point of the crystal. Such surface premelting is prevalent in all classes of solids and is important in a variety of metallurgical, geological and meteorological phenomena. Premelting has been studied using X-ray diffraction and differential scanning calorimetry, but the lack of single-particle resolution makes it hard to elucidate the underlying mechanisms. Colloids are good model systems for studying phase transitions because the thermal motions of individual micrometre-sized particles can be tracked directly using optical microscopy. Here we use colloidal spheres with tunable attractions to form equilibrium crystal-vapour interfaces, and study their surface premelting behaviour at the single-particle level. We find that monolayer colloidal crystals exhibit incomplete premelting at their perimeter, with a constant liquid-layer thickness. In contrast, two- and three-layer crystals exhibit conventional complete melting, with the thickness of the surface liquid diverging as the melting point is approached. The microstructures of the surface liquids differ in certain aspects from what would be predicted by conventional premelting theories. Incomplete premelting in the monolayer crystals is triggered by a bulk isostructural solid-solid transition and truncated by a mechanical instability that separately induces homogeneous melting within the bulk. This finding is in contrast to the conventional assumption that two-dimensional crystals melt heterogeneously from their free surfaces (that is, at the solid-vapour interface). The unexpected bulk melting that we observe for the monolayer crystals is accompanied by the formation of grain boundaries, which supports a previously proposed grain-boundary-mediated two-dimensional melting theory. The observed interplay between surface premelting, bulk melting and solid-solid transitions challenges existing theories of surface premelting and two-dimensional melting.
Study of liquid?liquid demixing from drug solution
NASA Astrophysics Data System (ADS)
Lafferrère, Laurent; Hoff, Christian; Veesler, Stéphane
2004-09-01
In pharmaceutical industry, a deep understanding of the phase diagram is required in design of crystallization processes. We have investigated the phase diagram of a pharmaceutical compound (C 35H 41Cl 2N 3O 2) in a mixture of ethanol/water. This phase diagram exhibits a solid-solid (polymorphism) and a liquid-liquid-phase separation (LLPS) as a function of temperature and drug substance concentration. This study focuses on the LLPS which is metastable with respect to the crystallization of the two polymorphs FI and FII of C 35H 41Cl 2N 3O 2 in an ethanol/water mixture. The LLPS is metastable towards the solubility curve on the whole solvent-solute concentrations and temperature range studied. The LLPS occurred within the metastable zone for crystallization. In our experiments the liquid-liquid-phase transition prevented the drug from crystallizing, while it changed the medium and the conditions of crystallization, which consequently affected the process. The coexistence curves for the liquid phases, also named TL-L boundary, and the spinodal line were measured for a ternary mixture of water-drug-ethanol at atmospheric pressure over a temperature range of 10-50°C. This temperature range corresponds to that used in the crystallization process. Static Light Scattering, HPLC measurements and Karl-Fischer titration were applied to investigate the drug-phase diagram. The isoplethe section of the phase diagram exhibits four regions: one homogeneous (one liquid) and three two-phases (two regions with one liquid+one solid and one region with two liquids), the two solids phases being two polymorphs.
Liquid-vapor transition on patterned solid surfaces in a shear flow
NASA Astrophysics Data System (ADS)
Yao, Wenqi; Ren, Weiqing
2015-12-01
Liquids on a solid surface patterned with microstructures can exhibit the Cassie-Baxter (Cassie) state and the wetted Wenzel state. The transitions between the two states and the effects of surface topography, surface chemistry as well as the geometry of the microstructures on the transitions have been extensively studied in earlier work. However, most of these work focused on the study of the free energy landscape and the energy barriers. In the current work, we consider the transitions in the presence of a shear flow. We compute the minimum action path between the Wenzel and Cassie states using the minimum action method [W. E, W. Ren, and E. Vanden-Eijnden, Commun. Pure Appl. Math. 57, 637 (2004)]. Numerical results are obtained for transitions on a surface patterned with straight pillars. It is found that the shear flow facilitates the transition from the Wenzel state to the Cassie state, while it inhibits the transition backwards. The Wenzel state becomes unstable when the shear rate reaches a certain critical value. Two different scenarios for the Wenzel-Cassie transition are observed. At low shear rate, the transition happens via nucleation of the vapor phase at the bottom of the groove followed by its growth. At high shear rate, in contrary, the nucleation of the vapor phase occurs at the top corner of a pillar. The vapor phase grows in the direction of the flow, and the system goes through an intermediate metastable state before reaching the Cassie state.
Quantum phase transition between cluster and antiferromagnetic states
NASA Astrophysics Data System (ADS)
Son, W.; Amico, L.; Fazio, R.; Hamma, A.; Pascazio, S.; Vedral, V.
2011-09-01
We study a Hamiltonian system describing a three-spin-1/2 cluster-like interaction competing with an Ising-like exchange. We show that the ground state in the cluster phase possesses symmetry protected topological order. A continuous quantum phase transition occurs as result of the competition between the cluster and Ising terms. At the critical point the Hamiltonian is self-dual. The geometric entanglement is also studied and used to investigate the quantum phase transition. Our findings in one dimension corroborate the analysis of the two-dimensional generalization of the system, indicating, at a mean-field level, the presence of a direct transition between an antiferromagnetic and a valence bond solid ground state.
Févotte, G; Calas, J; Puel, F; Hoff, C
2004-04-01
Fiber-optic near infrared (NIR) spectroscopy was used to investigate several key features of the polymorphic transitions observed during the crystallization and the filtration of SaC, an Active Pharmaceutical Ingredient (API) produced by Sanofi-Synthelabo. Using few samples, the spectroscopic data were calibrated to provide measurements of the polymorphic composition of the solid product which is likely to appear in two crystalline forms or in the amorphous state. Both qualitative and quantitative methods were successfully evaluated to characterize the API. The NIR spectroscopy measurement was then applied to investigate the kinetic behavior of the phase transition phenomena against various operating conditions. From the viewpoint of industrial process development several applications are presented. The effects of temperature and seed crystal habits on the rate of transition of filtration cakes are briefly investigated; and a study of the effect of residual water in the solvent on the transition occurring during filtration is more deeply analyzed. The experimental results demonstrate that highly valuable information can be provided by the NIR spectroscopy measurements, when one aims at understanding more deeply and optimizing the consequences of various and complex phenomena involved during the solid processing chain.
Shear-induced criticality near a liquid-solid transition of colloidal suspensions
NASA Astrophysics Data System (ADS)
Miyama, Masamichi J.; Sasa, Shin-Ichi
2011-02-01
We investigate colloidal suspensions under shear flow through numerical experiments. By measuring the time-correlation function of a bond-orientational order parameter, we find a divergent time scale near a transition point from a disordered fluid phase to an ordered fluid phase, where the order is characterized by a nonzero value of the bond-orientational order parameter. We also present a phase diagram in the (ρ,γ˙ex) plane, where ρ is the density of the colloidal particles and γ˙ex is the shear rate of the solvent. The transition line in the phase diagram terminates at the equilibrium transition point, while a critical region near the transition line vanishes continuously as γ˙ex→0.
Berezinskii-Kosterlitz-Thouless transition and two-dimensional melting
NASA Astrophysics Data System (ADS)
Ryzhov, V. N.; Tareyeva, E. E.; Fomin, Yu D.; Tsiok, E. N.
2017-12-01
The main aspects of the theory of phase transitions in two-dimensional degenerate systems (Berezinskii-Kosterlitz-Thouless, or BKT, transitions) are reviewed in detail, including the transition mechanism, the renormalization group as a tool for describing the transition, and how the transition scenario can possibly depend on the core energy of topological defects (in particular, in thin superconducting films). Various melting scenarios in two-dimensional systems are analyzed, and the current status of actual experiments and computer simulations in the field is examined. Whereas in three dimensions melting always occurs as a single first-order transition, in two dimensions, as shown by Halperin, Nelson, and Young, melting via two continuous BKT transitions with an intermediate hexatic phase characterized by quasi-long-range orientational order is possible. But there is also a possibility for a first-order phase transition to occur. Recently, one further melting scenario, different from that occurring in the Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young theory, has been proposed, according to which a solid can melt in two stages: a continuous BKT-type solid-hexatic transition and then a first-order hexatic-phase-isotropic-liquid phase transition. Particular attention is given to the melting scenario as a function of the potential shape and to the random pinning effect on two-dimensional melting. In particular, it is shown that random pinning can alter the melting scenario fundamentally in the case of a first-order transition. Also considered is the melting of systems with potentials having a negative curvature in the repulsion region-potentials that are successfully used in describing the anomalous properties of water in two dimensions. This review is an extended version of the report “Old and new in the physics of phase transitions” presented at the scientific session of the Physical Sciences Division of the Russian Academy of Sciences on 21 December 2016 (see Phys. Usp. 60 948-957 (2017); Usp. Fiz. Nauk 187 1021 (2017)). (Editor’s note.)
NASA Astrophysics Data System (ADS)
Bhattacharya, Jishnu
We perform first-principles investigations of thermally activated phase transitions and diffusion in solids. The atomic scale energy landscapes are evaluated with first-principles total energy calculations for different structural and configurational microstates. Effective Hamiltonians constructed from the total energies are subjected to Monte Carlo simulations to study thermodynamic and kinetic properties of the solids at finite temperatures. Cubic to tetragonal martensitic phase transitions are investigated beyond the harmonic approximation. As an example, stoichiometric TiH2 is studied where a cubic phase becomes stable at high temperature while ab-initio energy calculations predict the cubic phase to be mechanically unstable with respect to tetragonal distortions at zero Kelvin. An anharmonic Hamiltonian is used to explain the stability of the cubic phase at higher temperature. The importance of anharmonic terms is emphasized and the true nature of the high temperature phase is elucidated beyond the traditional Landau-like explanation. In Li-ion battery electrodes, phase transitions due to atomic redistribution with changes in Li concentration occur with insertion (removal) of Li-ions during discharge (charge). A comprehensive study of the thermodynamics and the non-dilute Li-diffusion mechanisms in spinel-Li1+xTi2 O4 is performed. Two distinct phases are predicted at different lithium compositions. The predicted voltage curve qualitatively matches with experimental observation. The predicted fast diffusion arises from crystallographic features unique to the spinel crystal structure elucidating the crucial role of crystal structure on Li diffusion in intercalation compounds. Effects of anion and guest species on diffusion are elucidated with Li- and Cu-diffusion in spinel-LixTiS2. We predict strong composition dependence of the diffusion coefficients. A unique feature about spinel-LixTiS2 is that the intermediate site of a Li-hop is coordinated by four Li-sites. This results in di- and triple-vacancy mechanisms at non-dilute concentrations with very different migration barriers. The strong dependence of hop mechanisms on local Li-arrangement is at the origin of large concentration dependence of the diffusion coefficients. This contrasts with spinel-Li xTiO2 where the transition states are coordinated only by the end states of the hop, thereby restricting hops to a single vacancy mechanism. Cu ions are predicted to have much slower diffusion rate in TiS 2 host compared to Li ions.
On a viscous critical-stress model of martensitic phase transitions
NASA Astrophysics Data System (ADS)
Weatherwax, John; Vaynblat, Dimitri; Bruno, Oscar; Rosales, Ruben
2007-09-01
The solid-to-solid phase transitions that result from shock loading of certain materials, such as the graphite-to-diamond transition and the α-ɛ transition in iron, have long been subjects of a substantial theoretical and experimental literature. Recently a model for such transitions was introduced which, based on a CS condition (CS) and without use of fitting parameters, accounts quantitatively for existing observations in a number of systems [Bruno and Vaynblat, Proc. R. Soc. London, Ser. A 457, 2871 (2001)]. While the results of the CS model match the main features of the available experimental data, disagreements in some details between the predictions of this model and experiment, attributable to an ideal character of the CS model, do exist. In this article we present a version of the CS model, the viscous CS model (vCS), as well as a numerical method for its solution. This model and the corresponding solver results in a much improved overall CS modeling capability. The innovations we introduce include: (1) Enhancement of the model by inclusion of viscous phase-transition effects; as well as a numerical solver that allows for a fully rigorous treatment of both, the (2) Rarefaction fans (which had previously been approximated by "rarefaction discontinuities"), and (3) viscous phase-transition effects, that are part of the vCS model. In particular we show that the vCS model accounts accurately for well known "gradual" rises in the α-ɛ transition which, in the original CS model, were somewhat crudely approximated as jump discontinuities.
Ion adsorption-induced wetting transition in oil-water-mineral systems.
Mugele, Frieder; Bera, Bijoyendra; Cavalli, Andrea; Siretanu, Igor; Maestro, Armando; Duits, Michel; Cohen-Stuart, Martien; van den Ende, Dirk; Stocker, Isabella; Collins, Ian
2015-05-27
The relative wettability of oil and water on solid surfaces is generally governed by a complex competition of molecular interaction forces acting in such three-phase systems. Herein, we experimentally demonstrate how the adsorption of in nature abundant divalent Ca(2+) cations to solid-liquid interfaces induces a macroscopic wetting transition from finite contact angles (≈ 10°) with to near-zero contact angles without divalent cations. We developed a quantitative model based on DLVO theory to demonstrate that this transition, which is observed on model clay surfaces, mica, but not on silica surfaces nor for monovalent K(+) and Na(+) cations is driven by charge reversal of the solid-liquid interface. Small amounts of a polar hydrocarbon, stearic acid, added to the ambient decane synergistically enhance the effect and lead to water contact angles up to 70° in the presence of Ca(2+). Our results imply that it is the removal of divalent cations that makes reservoir rocks more hydrophilic, suggesting a generalizable strategy to control wettability and an explanation for the success of so-called low salinity water flooding, a recent enhanced oil recovery technology.
NASA Astrophysics Data System (ADS)
McMillan, Paul F.; Gryko, Jan; Bull, Craig; Arledge, Richard; Kenyon, Anthony J.; Cressey, Barbara A.
2005-03-01
A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr 2) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300 °C. Syntheses at higher temperatures gave rise to microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.
Properties of solid and gaseous hydrogen, based upon anisotropic pair interactions
NASA Technical Reports Server (NTRS)
Etters, R. D.; Danilowicz, R.; England, W.
1975-01-01
Properties of H2 are studied on the basis of an analytic anisotropic potential deduced from atomic orbital and perturbation calculations. The low-pressure solid results are based on a spherical average of the anisotropic potential. The ground state energy and the pressure-volume relation are calculated. The metal-insulator phase transition pressure is predicted. Second virial coefficients are calculated for H2 and D2, as is the difference in second virial coefficients between ortho and para H2 and D2.
Method and apparatus for nucleating the crystallization of undercooled materials
Benson, David K.; Barret, Peter F.
1989-01-01
A method of storing and controlling a release of latent heat of transition of a phase-change material is disclosed. The method comprises trapping a crystallite of the material between two solid objects and retaining it there under high pressure by applying a force to press the two solid objects tightly together. A crystallite of the material is exposed to a quantity of the material that is in a supercooled condition to nucleate the crystallization of the supercooled material.
Thermal conductivity of solid monohydroxyl alcohols in polyamorphous states
NASA Astrophysics Data System (ADS)
Krivchikov, A. I.; Korolyuk, O. A.; Sharapova, I. V.
2012-01-01
New measurements of the thermal conductivity of solid ethyl alcohol C2H5OH in the interval from 2 K to the melting temperature are presented. An annealing effect in the thermal conductivity of the orientationally ordered phase of the alcohol has been observed over a wide range of temperatures. This phase was obtained as a result of an irreversible first-order phase transition from an orientationally disordered crystal with a cubic structure at T = 109 K. The thermal conductivity was observed to increase as the monoclinic lattice changed from a less stable phase to a more stable one. The growth may be due to the improved quality of the completely ordered crystal. A comparative analysis of the temperature dependences of the thermal conductivity κ(T) is made for the solid monohydroxyl alcohols CH3OH, C2H5OH, С2D5OD, C3H7OH, and C4H9OH in their disordered orientational and structural states. At low temperatures the thermal conductivity of the series of monohydroxyl structural glasses of the alcohols increases linearly with the mass of the alcohol molecule.
Global distribution of particle phase state in atmospheric secondary organic aerosols
NASA Astrophysics Data System (ADS)
Shiraiwa, Manabu; Li, Ying; Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Berkemeier, Thomas; Pandis, Spyros N.; Lelieveld, Jos; Koop, Thomas; Pöschl, Ulrich
2017-04-01
Secondary organic aerosols (SOA) are a large source of uncertainty in our current understanding of climate change and air pollution. The phase state of SOA is important for quantifying their effects on climate and air quality, but its global distribution is poorly characterized. We developed a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, and we used the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the phase state of atmospheric SOA. For the planetary boundary layer, global simulations indicate that SOA are mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes and solid over dry lands. We find that in the middle and upper troposphere SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded in SOA.
Global distribution of particle phase state in atmospheric secondary organic aerosols.
Shiraiwa, Manabu; Li, Ying; Tsimpidi, Alexandra P; Karydis, Vlassis A; Berkemeier, Thomas; Pandis, Spyros N; Lelieveld, Jos; Koop, Thomas; Pöschl, Ulrich
2017-04-21
Secondary organic aerosols (SOA) are a large source of uncertainty in our current understanding of climate change and air pollution. The phase state of SOA is important for quantifying their effects on climate and air quality, but its global distribution is poorly characterized. We developed a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, and we used the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the phase state of atmospheric SOA. For the planetary boundary layer, global simulations indicate that SOA are mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes and solid over dry lands. We find that in the middle and upper troposphere SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded in SOA.
Global distribution of particle phase state in atmospheric secondary organic aerosols
Shiraiwa, Manabu; Li, Ying; Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Berkemeier, Thomas; Pandis, Spyros N.; Lelieveld, Jos; Koop, Thomas; Pöschl, Ulrich
2017-01-01
Secondary organic aerosols (SOA) are a large source of uncertainty in our current understanding of climate change and air pollution. The phase state of SOA is important for quantifying their effects on climate and air quality, but its global distribution is poorly characterized. We developed a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, and we used the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the phase state of atmospheric SOA. For the planetary boundary layer, global simulations indicate that SOA are mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes and solid over dry lands. We find that in the middle and upper troposphere SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants and organic molecules could kinetically limit gas–particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded in SOA. PMID:28429776
High-pressure NaCl-phase of tetrahedral compounds
NASA Astrophysics Data System (ADS)
Soma, T.; -Matsuo Kagaya, H.
1984-04-01
The phase transition of tetrahedral compounds such as GaP, InP, ZnS, ZnSe, ZnTe and CdTe under pressure is investigated from the electronic theory of solids by using our recently presented binding force, which includes mainly covalent interactions in the pseudopotential formalism and partially ionic interactions. The partially ionic forces give the important contributions to the high-pressure phase and stabilize the NaCl-type structure for the high-pressure phase of these compounds, although not reported for GaP experimentally. Then, the numerical results such as the transition pressure, the volume-discontinuity, the transition heat with respect to the pressure-induced phase transition from the zinc-blende-to the NaCl-type lattice are obtained theoretically.
Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry
Abdeljawad, Fadi; Foiles, Stephen M.
2016-05-04
The study of materials interfaces dates back over a century. In solid systems and from an engineering perspective, free surfaces and internal (grain and/or phase) boundaries influence a wide range of properties, such as thermal, electrical and optical transport, and mechanical ones. The properties and the role of interfaces has been discussed extensively in various reviews such as by Sutton and Balluffi. As the characteristic feature size of a materials system (i.e., grain size) is decreased to the nanometer scale, interface-driven physics is expected to dominate due to the increased density of such planar defects. Moreover, interfacial attributes, thermodynamics, andmore » mobility play a key role in phase transformations, such as solidification dynamics and structural transitions in solids, and in homogenization and microstructural evolution processes, such as grain growth, coarsening, and recrystallization. In summary, the set of articles published in this special topic titled: “Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry” covers topics related to microstructure evolution, segregation/adsorption phenomena and interface interactions with other materials defects.« less
Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdeljawad, Fadi; Foiles, Stephen M.
The study of materials interfaces dates back over a century. In solid systems and from an engineering perspective, free surfaces and internal (grain and/or phase) boundaries influence a wide range of properties, such as thermal, electrical and optical transport, and mechanical ones. The properties and the role of interfaces has been discussed extensively in various reviews such as by Sutton and Balluffi. As the characteristic feature size of a materials system (i.e., grain size) is decreased to the nanometer scale, interface-driven physics is expected to dominate due to the increased density of such planar defects. Moreover, interfacial attributes, thermodynamics, andmore » mobility play a key role in phase transformations, such as solidification dynamics and structural transitions in solids, and in homogenization and microstructural evolution processes, such as grain growth, coarsening, and recrystallization. In summary, the set of articles published in this special topic titled: “Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry” covers topics related to microstructure evolution, segregation/adsorption phenomena and interface interactions with other materials defects.« less
Nonstoichiometry of ZnGeP 2 crystals probed by static tensimetric method
NASA Astrophysics Data System (ADS)
Vasilyeva, I. G.; Nikolaev, R. E.; Verozubova, G. A.
2010-09-01
The nonstoichiometry of ZnGeP 2 has been determined based on the p-T dependences measured above ZnP 2-Ge samples in the temperature range of 980-1225 K by a high-sensitive and precise tensimetric static method with a quartz Bourdon gauge. Scanning of the compositional range 49-51 mol% ZnP 2 in the closed system and construction of the p-T dependences were possible due to incongruent evaporation of ZnGeP 2 and formation of volatile species Zn(g), P 4(g) and P 2(g). The maximum homogeneity range of the solid ZnGeP 2 was determined between 50.03 and 49.61 mol% ZnP 2 at a temperature of 1128 K, based on the inflection points on the p-T dependences, corresponding to transitions of the three-phase (solid-solid-vapor) equilibrium to a two-phase (solid-vapor) one and vice visa. The nonstoichiometry as the overall concentration of defects is considered to gain a better insight into the defect chemistry of ZnGeP 2.
Amini, Abbas; Cheng, Chun; Naebe, Minoo; Church, Jeffrey S; Hameed, Nishar; Asgari, Alireza; Will, Frank
2013-07-21
The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ∼3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ∼3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.
Tajima, Shogo; Koda, Kenji
2015-01-01
A limited number of pulmonary adenocarcinoma cases with morule-like components have been described to date, and the most frequent histological subtype is papillary-predominant adenocarcinoma. Occasionally, this type of adenocarcinoma is associated with solid-predominant adenocarcinoma. EGFR mutations are predominant in adenocarcinoma with morule-like components, followed by ALK rearrangements. Herein, we present 2 cases of solid-predominant adenocarcinoma with morule-like components harboring either an EGFR or KRAS mutation. This KRAS-mutant case is the first to be associated with morule-like components, to the best of our knowledge. Both cases showed transition between micropapillary and morule-like components. Transition between morule-like and solid components was also observed in both cases. Although a few cases of solid-predominant adenocarcinoma have been shown to harbor morule-like components, this type of transition has not been previously well described. We surmised that the solid components of some EGFR-mutant adenocarcinomas might be derived from morule-like components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urtiew, P A; Forbes, J W; Tarver, C M
LX-04 is a widely used HMX-based plastic bonded explosive, which contains 85 weight % HMX and 15 weight % Viton binder. The sensitivity of LX-04 to a single stimulus such as heat, impact, and shock has been previously studied. However, hazard scenarios can involve multiple stimuli, such as heating to temperatures close to thermal explosion conditions followed by fragment impact, producing a shock in the hot explosive. The sensitivity of HMX at elevated temperatures is further complicated by the beta to delta solid-state phase transition, which occurs at approximately 165 C. This paper presents the results of shock initiation experimentsmore » conducted with LX-04 preheated to 190 C, as well as density measurements and small scale safety test results of the {delta} phase HMX at room temperature. This work shows that LX-04 at 190 C is more shock sensitive than LX-04 at 150 C or 170 C due to the volume increase during the {beta} to {delta} solid phase transition, which creates more hot spots, and the faster growth of reaction during shock compression.« less
The viscous to brittle transition in eruptions of clay suspensions
NASA Astrophysics Data System (ADS)
Schmid, Diana; Scheu, Bettina; Wadsworth, Fabian B.; Kennedy, Ben; Jolly, Art; Dingwell, Donald B.
2017-04-01
The research is motivated by the early 2013 activity of White Island, New Zealand, which was characterized by frequent small phreatic activity through a fine grained mud rich shallow crater lake. Field observations demonstrate that the small eruptions were driven by bubble-burst events. Additionally, during the ongoing eruption, water vigorously evaporated, causing a shift in rheology of the crater lake liquid-solid suspension. Yet, the effect of water content on the eruptive behaviour of clay-bearing liquid suspensions is poorly understood. Here we investigate the influence of the solid to water ratio of the clay material erupted on the eruption characteristics. Kaolin was used as an analogue for the clay and was mixed with water in different proportions. We conducted experiments with different kaolin/water mixtures held at 120°C, in which they were decompressed from 2-4 bars to ambient conditions in a few milliseconds. During an experimental eruption, the velocity of the ejected material decreased, resulting in shifts in behaviour. Based on our experimental observations we established five different regimes that depend on the particle velocity relative to the gas velocity, and on the kaolin to water ratio of the mixture. In all experiments and for all kaolin to water ratios, regime 1 is one in which particles are ejected rapidly in an expanding high velocity gas jet. In the liquid-dominated system (low kaolin to water ratios), the jet phase evolves to the ejection of elongate fluidal structures (regime 2) and then to discrete droplets (regime 3) as the ejection velocity wanes. Contrastingly, in the solid-dominated system, the jet phase (regime 1) transitions to a mixed solid-fluid structures (regime 4) and then to individual angular ejecta (regime 5). On the basis of high speed image analysis, we establish a phase diagram separating these regimes based on kaolin/water mixing rations and the ejecta velocities observed. The dominant transition between fluidal and solid-like behaviour is a viscous to brittle transition and occurs between a kaolin mass fraction of 0.48 and 0.65, which is consistent with previous observations of the liquid and plastic rheological limits, respectively. We find that a Stokes' number balances the timescale of flow with the timescale of particle motion opposing flow. We suggest that the transition from regime 1 to regime 2 occurs when the relative velocity between the ejected material and the gas phase increases and the Stokes' number exceeds 1, leading to decoupling and shear-stresses at the ejected fluid interfaces. A capillary number characterizes the transition from elongated liquid structures (regime 2) to individual droplets (regime 3) in the liquid-dominated system when the relative velocity drops to a value at which surface tension can restore the droplets to spherical. Our results emphasize that the different rheology of muddy material exhibit different characteristic eruption styles and offers a way to classify them.
Exposing high-energy surfaces by rapid-anneal solid phase epitaxy
Wang, Y.; Song, Y.; Peng, R.; ...
2017-08-08
The functional design of nanoscale transition metal oxide heterostructures depends critically on the growth of atomically flat epitaxial thin films. Much of the time, improved functionality is expected for heterostructures and surfaces with orientations that do not have the lowest surface free energy. For example, crystal faces with a high surface free energy, such as rutile (001) planes, frequently exhibit higher catalytic activities but are correspondingly harder to synthesize due to energy-lowering faceting transitions. We propose a broadly applicable rapid-anneal solid phase epitaxial synthesis approach for the creation of atomically flat, high surface free energy oxide heterostructures. We also demonstratemore » its efficacy via the synthesis of atomically flat, epitaxial RuO 2(001) films with a superior oxygen evolution activity, quantified by their lower onset potential and higher current density, relative to that of more common RuO 2(110) films.« less
Amorphous ices explained in terms of nonequilibrium phase transitions in supercooled water
NASA Astrophysics Data System (ADS)
Limmer, David; Chandler, David
2013-03-01
We analyze the phase diagram of supercooled water out-of-equilibrium using concepts from space-time thermodynamics and the dynamic facilitation theory of the glass transition, together with molecular dynamics simulations. We find that when water is driven out-of-equilibrium, it can exist in multiple amorphous states. In contrast, we find that when water is at equilibrium, it can exist in only one liquid state. The amorphous non-equilibrium states are solids, distinguished from the liquid by their lack of mobility, and distinguished from each other by their different densities and local structure. This finding explains the experimentally observed polyamorphism of water as a class of nonequilibrium phenomena involving glasses of different densities. While the amorphous solids can be long lived, they are thermodynamically unstable. When allowed to relax to equilibrium, they crystallize with pathways that pass first through liquid state configurations and then to ordered ice.
Morphology of supercooled droplets freezing on solid surfaces
NASA Astrophysics Data System (ADS)
La, Shiren; Huang, Zhiting; Liu, Cong; Zhang, Xingyi
2018-05-01
Supercooled droplets freezing on solid surfaces are ubiquitous in nature. This letter investigates the influences of droplet viscosity on freezing velocity and frosting formation. Several experiments were conducted for three kinds of sessile droplets (water, silicone oil and oil) on two types of substrates (copper and iron) with different surface roughness at various temperatures. The results show that the water droplets exhibit obvious phase transition lines and their freezing speeds increase when the temperature of substrates decreases. It is found that the freezing speed is independent of the thermal conductivities of the substrates. Notably, the water droplets develop prominent bulges after freezing and subsequently nucleate to frost. In contrast, the high viscosity oil and silicone oil do not manifest an obvious phase transition line. Besides, no bulges are observed in these two kinds of droplets, suggesting that these frosting forms are of different mechanisms compared with water droplets.
Acoustic levitation of liquid drops: Dynamics, manipulation and phase transitions.
Zang, Duyang; Yu, Yinkai; Chen, Zhen; Li, Xiaoguang; Wu, Hongjing; Geng, Xingguo
2017-05-01
The technique of acoustic levitation normally produces a standing wave and the potential well of the sound field can be used to trap small objects. Since no solid surface is involved it has been widely applied for the study of fluid physics, nucleation, bio/chemical processes, and various forms of soft matter. In this article, we survey the works on drop dynamics in acoustic levitation, focus on how the dynamic behavior is related to the rheological properties and discuss the possibility to develop a novel rheometer based on this technique. We review the methods and applications of acoustic levitation for the manipulation of both liquid and solid samples and emphasize the important progress made in the study of phase transitions and bio-chemical analysis. We also highlight the possible open areas for future research. Copyright © 2017 Elsevier B.V. All rights reserved.
Metastability at the Yield-Stress Transition in Soft Glasses
NASA Astrophysics Data System (ADS)
Lulli, Matteo; Benzi, Roberto; Sbragaglia, Mauro
2018-04-01
We study the solid-to-liquid transition in a two-dimensional fully periodic soft-glassy model with an imposed spatially heterogeneous stress. The model we consider consists of droplets of a dispersed phase jammed together in a continuous phase. When the peak value of the stress gets close to the yield stress of the material, we find that the whole system intermittently tunnels to a metastable "fluidized" state, which relaxes back to a metastable "solid" state by means of an elastic-wave dissipation. This macroscopic scenario is studied through the microscopic displacement field of the droplets, whose time statistics displays a remarkable bimodality. Metastability is rooted in the existence, in a given stress range, of two distinct stable rheological branches, as well as long-range correlations (e.g., large dynamic heterogeneity) developed in the system. Finally, we show that a similar behavior holds for a pressure-driven flow, thus suggesting possible experimental tests.
Magnetic properties of solid oxygen under pressure (Review Article)
NASA Astrophysics Data System (ADS)
Freiman, Yu. A.
2015-11-01
Solid oxygen is a unique crystal combining properties of a simple molecular solid and a magnet. Unlike ordinary magnets, the exchange interaction in solid oxygen acts on a background of weak Van der Waals forces, providing a significant part of the total lattice energy. Therefore, the magnetic and lattice properties of solid oxygen are very closely related. This manifests itself in a very rich phase diagram and numerous anomalies of thermal, magnetic and optical properties. Low-temperature low-pressure α-O2 is a two-sublattice collinear Neel antiferromagnet. At a pressure of ˜6 GPa, α-O2 is transformed into δ-O2, in which three different magnetic structures are realized upon increasing temperature. At ˜8 GPa δ-O2 is transformed into ɛ-O2. In this transition, O2 molecules combine into four-molecule clusters (O2)4. This transformation is accompanied by a magnetic collapse. This review describes the evolution of the magnetic structure with increasing pressure, and analyzes the causes behind this behavior.
Mixed-order phase transition in a colloidal crystal
Tierno, Pietro; Casademunt, Jaume
2017-01-01
Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid–solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field H. At the transition field Hs, the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length ξ∝|H2−Hs2|−1/2. Mean-field critical exponents are predicted, since the upper critical dimension of the transition is du=2. Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions. PMID:29158388
Acoustic Emission from Organic Martensites.
Panda, Manas K; Etter, Martin; Dinnebier, Robert E; Naumov, Panče
2017-07-03
In salient effects, still crystals of solids that switch between phases acquire a momentum and are autonomously propelled because of rapid release of elastic energy accrued during a latent structural transition induced by heat, light, or mechanical stimulation. When mechanical reconfiguration is induced by change of temperature in thermosalient crystals, bursts of detectable acoustic waves are generated prior to self-actuation. These observations provide compelling evidence that the thermosalient transitions in organic and organic-containing crystals are molecular analogues of the martensitic transitions in some metals, and metal alloys such as steel and shape-memory alloys. Within a broader context, these results reveal that, akin to metallic bonding, the intermolecular interactions in molecular solids are capable of gradual accrual and sudden release of a substantial amount of strain during anisotropic thermal expansion, followed by a rapid transformation of the crystal packing in a diffusionless, non-displacive transition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Continuous Easy-Plane Deconfined Phase Transition on the Kagome Lattice
NASA Astrophysics Data System (ADS)
Zhang, Xue-Feng; He, Yin-Chen; Eggert, Sebastian; Moessner, Roderich; Pollmann, Frank
2018-03-01
We use large scale quantum Monte Carlo simulations to study an extended Hubbard model of hard core bosons on the kagome lattice. In the limit of strong nearest-neighbor interactions at 1 /3 filling, the interplay between frustration and quantum fluctuations leads to a valence bond solid ground state. The system undergoes a quantum phase transition to a superfluid phase as the interaction strength is decreased. It is still under debate whether the transition is weakly first order or represents an unconventional continuous phase transition. We present a theory in terms of an easy plane noncompact C P1 gauge theory describing the phase transition at 1 /3 filling. Utilizing large scale quantum Monte Carlo simulations with parallel tempering in the canonical ensemble up to 15552 spins, we provide evidence that the phase transition is continuous at exactly 1 /3 filling. A careful finite size scaling analysis reveals an unconventional scaling behavior hinting at deconfined quantum criticality.
Samuel L. Zelinka; Michael J. Lambrecht; Samuel V. Glass; Alex C. Wiedenhoeft; Daniel J. Yelle
2012-01-01
This paper examines phase transformations of water in wood and isolated wood cell wall components using differential scanning calorimetry with the purpose of better understanding "Type II water" or "freezable bound water" that has been reported for cellulose and other hydrophilic polymers. Solid loblolly pine (Pinus taeda...
NASA Astrophysics Data System (ADS)
Małolepsza, Edyta; Kim, Jaegil; Keyes, Tom
2015-05-01
Metastable β ice holds small guest molecules in stable gas hydrates, so its solid-liquid equilibrium is of interest. However, aqueous crystal-liquid transitions are very difficult to simulate. A new molecular dynamics algorithm generates trajectories in a generalized N P T ensemble and equilibrates states of coexisting phases with a selectable enthalpy. With replicas spanning the range between β ice and liquid water, we find the statistical temperature from the enthalpy histograms and characterize the transition by the entropy, introducing a general computational procedure for first-order transitions.
Malolepsza, Edyta; Kim, Jaegil; Keyes, Tom
2015-04-28
Metastable β ice holds small guest molecules in stable gas hydrates, so its solid/liquid equilibrium is of interest. However, aqueous crystal/liquid transitions are very difficult to simulate. A new MD algorithm generates trajectories in a generalized NPT ensemble and equilibrates states of coexisting phases with a selectable enthalpy. Furthermore, with replicas spanning the range between β ice and liquid water we find the statistical temperature from the enthalpy histograms and characterize the transition by the entropy, introducing a general computational procedure for first-order transitions.
Modified sedimentation-dispersion model for solids in a three-phase slurry column
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.N.; Ruether, J.A.; Shah, Y.T.
1986-03-01
Solids distribution data for a three-phase, batch-fluidized slurry bubble column (SBC) are presented, using air as the gas phase, pure liquids and solutions as the liquid phase, and glass beads and carborundum catalyst powder as the solid phase. Solids distribution data for the three-phase SBC operated in a continuous mode of operation are also presented, using nitrogen as the gas phase, water as the liquid phase, and glass beads as the solid phase. A new model to provide a reasonable approach to predict solids concentration distributions for systems containing polydispersed solids is presented. The model is a modification of standardmore » sedimentation-dispersion model published earlier. Empirical correlations for prediction of hindered settling velocity and solids dispersion coefficient for systems containing polydispersed solids are presented. A new method of evaluating critical gas velocity (CGV) from concentrations of the sample withdrawn at the same port of the SBC is presented. Also presented is a new mapping for CGV which separates the two regimes in the SBC, namely, incomplete fluidization and complete fluidization.« less
NASA Astrophysics Data System (ADS)
Hirakawa, Satoru; Morimoto, Yoshiaki; Honda, Hisashi
2015-04-01
Electrical conductivity ( σ), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) measurements of n-C x H (2 x+1) OSO 3Li ( x= 12, 14, 16, 18, and 20) crystals were performed as a function of temperature. In addition, σ, DSC, and XRD observations of n-C x H (2 x+1) OSO 3Na and n-C x H (2 x+1) OSO 3K ( x= 12, 14, 16, 18, and 20) crystals were carried out for comparison. DSC results of the salts revealed several solid-solid phase transitions with large entropy changes (Δ S). For n-C 18 H 37 OSO 3Li and n-C 20 H 41 OSO 3Li salts, each melting point produced a small Δ S mp value compared with the total entropy change in the solid phases (Δ S tr1+Δ S tr2). Additionally, Li + ion diffusion was detected in the highest temperature solid phases. For K salts, larger σ values were detected for potassium alkylsulfates compared with those reported for alkyl carboxylate. 7Li NMR spectra of n-C 18 H 37 OSO 3Li crystals recorded in the low-temperature phase showed large asymmetry parameters, suggesting the Li + ions are localized at asymmetric sites in the crystals.
Zhang, Lei; Jiang, Sheng-Li; Yu, Yi; Long, Yao; Zhao, Han-Yue; Peng, Li-Juan; Chen, Jun
2016-11-10
The first-principles method is challenged by accurate prediction of van der Waals interactions, which are ubiquitous in nature and crucial for determining the structure of molecules and condensed matter. We have contributed to this by constructing a set of pseudopotentials and pseudoatomic orbital basis specialized for molecular systems consisting of C/H/N/O elements. The reliability of the present method is verified from the interaction energies of 45 kinds of complexes (comparing with CCSD(T)) and the crystalline structures of 23 kinds of typical explosive solids (comparing with experiments). Using this method, we have studied the phase transition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) under static compression up to 50 GPa. Kinetically, intramolecular deformation has priority in the competition with intermolecular packing deformation by ∼87%. A possible γ → β phase transition is found at around 2.10 GPa, and the migration of H 2 O has an effect of kinetically pushing this process. We make it clear that no β → δ/ε → δ phase transition occurs at 27 GPa, which has long been a hot debate in experiments. In addition, the P-V relation, bulk modulus, and acoustic velocity are also predicted for α-, δ-, and γ-HMX, which are experimentally unavailable.
NASA Astrophysics Data System (ADS)
Ritter, Nils C.; Sowa, Roman; Schauer, Jan C.; Gruber, Daniel; Goehler, Thomas; Rettig, Ralf; Povoden-Karadeniz, Erwin; Koerner, Carolin; Singer, Robert F.
2018-06-01
We prepared 41 different superalloy compositions by an arc melting, casting, and heat treatment process. Alloy solid solution strengthening elements were added in graded amounts, and we measured the solidus, liquidus, and γ'-solvus temperatures of the samples by DSC. The γ'-phase fraction increased as the W, Mo, and Re contents were increased, and W showed the most pronounced effect. Ru decreased the γ'-phase fraction. Melting temperatures (i.e., solidus and liquidus) were increased by addition of Re, W, and Ru (the effect increased in that order). Addition of Mo decreased the melting temperature. W was effective as a strengthening element because it acted as a solid solution strengthener and increased the fraction of fine γ'-precipitates, thus improving precipitation strengthening. Experimentally determined values were compared with calculated values based on the CALPHAD software tools Thermo-Calc (databases: TTNI8 and TCNI6) and MatCalc (database ME-NI). The ME-NI database, which was specially adapted to the present investigation, showed good agreement. TTNI8 also showed good results. The TCNI6 database is suitable for computational design of complex nickel-based superalloys. However, a large deviation remained between the experiment results and calculations based on this database. It also erroneously predicted γ'-phase separations and failed to describe the Ru-effect on transition temperatures.
ERIC Educational Resources Information Center
Gilbert, George L., Ed.
1983-01-01
Describes a lecture demonstration of a solid state phase transition using a thermodynamic material which changes state at room temperature. Also describes a demonstration on kinetics using a "Big Bang" (trade mark) calcium carbide cannon. Indicates that the cannon is safe to use. (JN)
Xiao, Guoliang; Wang, Siwei; Lin, Ye; Zhang, Yanxiang; An, Ke; Chen, Fanglin
2014-11-26
Donor-doped perovskite-type SrTiO3 experiences stoichiometric changes at high temperatures in different Po2 involving the formation of Sr or Ti-rich impurities. NiO is incorporated into the stoichiometric strontium titanate, SrTi0.8Nb0.2O3-δ (STN), to form an A-site deficient perovskite material, (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 (Ni-STN), for balancing the phase transition. Metallic Ni nanoparticles can be released upon reduction instead of forming undesired secondary phases. This material design introduces a simple catalytic modification method with good compositional control of the ceramic backbones, by which transport property and durability of solid oxide fuel cell anodes are largely determined. Using Ni-STN as anodes for solid oxide fuel cells, enhanced catalytic activity and remarkable stability in redox cycling have been achieved. Electrolyte-supported cells with the cell configuration of Ni-STN-SDC anode, La0.8Sr0.2Ga0.87Mg0.13O3 (LSGM) electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode produce peak power densities of 612, 794, and 922 mW cm(-2) at 800, 850, and 900 °C, respectively, using H2 as the fuel and air as the oxidant. Minor degradation in fuel cell performance resulted from redox cycling can be recovered upon operating the fuel cells in H2. Such property makes Ni-STN a promising regenerative anode candidate for solid oxide fuel cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aromí, G.; Beavers, C. M.; Sánchez Costa, J.
Crystal-to-crystal transformations have been crucial in the understanding of solid-state processes, since these may be studied in detail by means of single crystal X-ray diffraction (SCXRD) techniques. The description of the mechanisms and potential intermediates of those processes remains very challenging. In fact, solid-state transient states have rarely been observed, at least to a sufficient level of detail. We have investigated the process of guest extrusion from the non-porous molecular material [Fe(bpp)(H 2L)](ClO 4) 2·1.5C 3H 6O (bpp = 2,6-bis(pyrazol-3-yl)pyridine; H 2L = 2,6-bis(5-(2-methoxyphenyl)-pyrazol-3-yl)pyridine; C 3H 6O = acetone), which occurs through ordered diffusion of acetone in a crystal-to-crystal manner,more » leading to dramatic structural changes. The slow kinetics of the transition allows thermal trapping of the system at various intermediate stages. The transiting single crystal can be then examined at these points through synchrotron SCXRD, offering a window upon the mechanism of the transformation at the molecular scale. These experiments have unveiled the development of an ordered intermediate phase, distinct from the initial and the final states, coexisting as the process advances with either of these two phases or, at a certain moment with both of them. The new intermediate phase has been structurally characterized in full detail by SCXRD, providing insights into the mechanism of this diffusion triggered solid-state phenomenon. Lastly, the process has been also followed by calorimetry, optical microscopy, local Raman spectroscopy and powder X-ray diffraction. The discovery and description of an intermediate ordered state in a molecular solid-state transformation is of great interest and will help to understand the mechanistic details and reaction pathways underlying these transformations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, Paul F.; Gryko, Jan; Bull, Craig
A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr{sub 2}) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300{sup o}C. Syntheses at higher temperatures gave rise tomore » microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.« less
NASA Astrophysics Data System (ADS)
Oswald, Linda; Grosser, Steffen; Smith, David M.; Käs, Josef A.
2017-12-01
The traditional picture of tissues, where they are treated as liquids defined by properties such as surface tension or viscosity has been redefined during the last few decades by the more fundamental question: under which conditions do tissues display liquid-like or solid-like behaviour? As a result, basic concepts arising from the treatment of tissues as solid matter, such as cellular jamming and glassy tissues, have shifted into the current focus of biophysical research. Here, we review recent works examining the phase states of tissue with an emphasis on jamming transitions in cancer. When metastasis occurs, cells gain the ability to leave the primary tumour and infiltrate other parts of the body. Recent studies have shown that a linkage between an unjamming transition and tumour progression indeed exists, which could be of importance when designing surgery and treatment approaches for cancer patients.
Calahan, Julie L; Azali, Stephanie C; Munson, Eric J; Nagapudi, Karthik
2015-11-02
Intimate phase mixing between the drug and the polymer is considered a prerequisite to achieve good physical stability for amorphous solid dispersions. In this article, spray dried amorphous dispersions (ASDs) of AMG 517 and HPMC-as were studied by differential scanning calorimetry (DSC), solid-state NMR (SSNMR), and solution calorimetry. DSC analysis showed a weakly asymmetric (ΔTg ≈ 13.5) system with a single glass transition for blends of different compositions indicating phase mixing. The Tg-composition data was modeled using the BKCV equation to accommodate the observed negative deviation from ideality. Proton spin-lattice relaxation times in the laboratory and rotating frames ((1)H T1 and T1ρ), as measured by SSNMR, were consistent with the observation that the components of the dispersion were in intimate contact over a 10-20 nm length scale. Based on the heat of mixing calculated from solution calorimetry and the entropy of mixing calculated from the Flory-Huggins theory, the free energy of mixing was calculated. The free energy of mixing was found to be positive for all ASDs, indicating that the drug and polymer are thermodynamically predisposed to phase separation at 25 °C. This suggests that miscibility measured by DSC and SSNMR is achieved kinetically as the result of intimate mixing between drug and polymer during the spray drying process. This kinetic phase mixing is responsible for the physical stability of the ASD.
Nonlinear dynamics of mushy layers induced by external stochastic fluctuations.
Alexandrov, Dmitri V; Bashkirtseva, Irina A; Ryashko, Lev B
2018-02-28
The time-dependent process of directional crystallization in the presence of a mushy layer is considered with allowance for arbitrary fluctuations in the atmospheric temperature and friction velocity. A nonlinear set of mushy layer equations and boundary conditions is solved analytically when the heat and mass fluxes at the boundary between the mushy layer and liquid phase are induced by turbulent motion in the liquid and, as a result, have the corresponding convective form. Namely, the 'solid phase-mushy layer' and 'mushy layer-liquid phase' phase transition boundaries as well as the solid fraction, temperature and concentration (salinity) distributions are found. If the atmospheric temperature and friction velocity are constant, the analytical solution takes a parametric form. In the more common case when they represent arbitrary functions of time, the analytical solution is given by means of the standard Cauchy problem. The deterministic and stochastic behaviour of the phase transition process is analysed on the basis of the obtained analytical solutions. In the case of stochastic fluctuations in the atmospheric temperature and friction velocity, the phase transition interfaces (mushy layer boundaries) move faster than in the deterministic case. A cumulative effect of these noise contributions is revealed as well. In other words, when the atmospheric temperature and friction velocity fluctuate simultaneously due to the influence of different external processes and phenomena, the phase transition boundaries move even faster. This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'. © 2018 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moussa, C.; El Sayah, Z.; Chajewski, G.
The phase relations within the U-Al-Ge ternary system were studied for two isothermal sections, at 673 K for the whole Gibbs triangle and at 1173 K for the concentration range 25–100 at% U. The identification of the phases, their composition ranges and stability were determined by x-ray powder diffraction, scanning electron microscopy coupled to energy dispersive spectroscopy and differential thermal analysis. The tie-lines and the solubility domains were determined for the U-Ge and U-Al binaries, the UAl{sub 3}-UGe{sub 3} solid-solution and for the unique ternary intermediate phase U{sub 3}Al{sub 2−x}Ge{sub 3+x}. The experimental isopleth section of the pseudo-binary UAl{sub 3}-UGe{submore » 3} reveals an isomorphous solid solution based on the Cu{sub 3}Au-type below the solidus. The U{sub 3}Al{sub 2−x}Ge{sub 3+x} solid solution extends for −0.1≤x≤1.35 and −0.2≤x≤1.5 at 673 K and 1173 K respectively. It crystallizes in the I-centered tetragonal symmetry. The reciprocal lattice of several compositions of the U{sub 3}Al{sub 2−x}Ge{sub 3+x} solid solution was examined by electron diffraction at room temperature, revealing the presence of a c-glide plane. Their crystal structure was refined by single crystal x-ray diffraction suggesting an isomorphous solid solution best described with the non-centrosymmetric space group I4cm in the paramagnetic domain. The magnetic measurements confirm the ferromagnetic ordering of the solid solution U{sub 3}Al{sub 2−x}Ge{sub 3+x} with an increase of Tc with the Al content. The thermal variation of the specific heat bear out the magnetic transitions with some delocalized character of the uranium 5f electrons. - Graphical abstract: The phase relations within the U-Al-Ge ternary system were experimentally assessed for two isothermal sections, at 673 K for the whole Gibbs triangle and at 1173 K for the concentration range 25–100 at% U. A complete UAl{sub 3}-UGe{sub 3} solid-solution based on the Cu{sub 3}Au-type forms below the solidus. A unique ternary phase showing a large homogeneity domain, U{sub 3}Al{sub 2−x}Ge{sub 3+x} for −0.1≤x≤1.35 and −0.2≤x≤1.5 at 673 K and 1173 K respectively has been evidenced. It is best described with the non-centrosymmetric space group I4cm above room temperature. A linear increase of the ferromagnetic ordering is observed with the Al content. - Highlights: • Isothermal sections of the U-Al-Ge system were investigated for 673 K and 1173 K. • An isomorphous solid-solution UAl{sub 3}-UGe{sub 3} forms for the whole composition range. • U{sub 3}Al{sub 2−x}Ge{sub 3+x} the unique ternary phase to form exists for a large homogeneity domain. • U{sub 3}Al{sub 2−x}Ge{sub 3+x} is best described in I4cm space group above room temperature. • The ferromagnetic transition of U{sub 3}Al{sub 2−x}Ge{sub 3+x} linearly increases with the Al content.« less
Target design for materials processing very far from equilibrium
NASA Astrophysics Data System (ADS)
Barnard, John J.; Schenkel, Thomas
2016-10-01
Local heating and electronic excitations can trigger phase transitions or novel material states that can be stabilized by rapid quenching. An example on the few nanometer scale are phase transitions induced by the passage of swift heavy ions in solids where nitrogen-vacancy color centers form locally in diamonds when ions heat the diamond matrix to warm dense matter conditions at 0.5 eV. We optimize mask geometries for target materials such as silicon and diamond to induce phase transitions by intense ion pulses (e. g. from NDCX-II or from laser-plasma acceleration). The goal is to rapidly heat a solid target volumetrically and to trigger a phase transition or local lattice reconstruction followed by rapid cooling. The stabilized phase can then be studied ex situ. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of crystal targets with micro-structured masks. A simple analytical model, that includes ion heating and radial, diffusive cooling, was developed that agrees closely with the HYDRA simulations. The model gives scaling laws that can guide the design of targets over a wide range of parameters including those for NDCX-II and the proposed BELLA-i. This work was performed under the auspices of the U.S. DOE under contracts DE-AC52-07NA27344 (LLNL), DE-AC02-05CH11231 (LBNL) and was supported by the US DOE Office of Science, Fusion Energy Sciences. LLNL-ABS-697271.
Persistent Infrared Spectral Hole-Burning for Impurity Vibrational Modes in Solids.
1986-09-30
infrared vibrational transitions of impurity molecules in solids. Examples include 1,2- difluoroethane in rare gas matrices, perrhenate ions in alkali...observed consists of infrared vibrational transitions of impurity molecules in solids. Examples include 1,2- difluoroethane in rare gas matrices...solids. Examples include 1,2- difluoroethane in rare gas matrices, perrhenate ions in alkali halide crystals, and most recently, cyanide and nitrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Veerendra K.; Mamontov, Eugene; Anunciado, Divina B.
Antimicrobial peptides are universal in all forms of life and are well known for their strong interaction with the cell membrane. This makes them a popular target for investigation of peptide-lipid interactions. Here we report the effect of melittin, an important antimicrobial peptide, on the dynamics of membranes based on 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid in both the solid gel and fluid phases. To probe the phase transition, elastic neutron intensity temperature scans have been carried out on DMPC-based unilamellar vesicles (ULV) with and without melittin. We have found that addition of a small amount (0.2 mol%) melittin eliminates the steep fallmore » in the elastic intensity at 296 K associated with the solid gel to fluid phase transition, which is observed for pure DMPC vesicles. Quasielastic neutron scattering (QENS) experiments have been carried out on DMPC ULV in the solid gel and fluid phases with and without 0.2 mol % melittin. The data analysis invariably shows the presence of lateral and internal motions of the DMPC molecule. We found that melittin does have a profound effect on the dynamics of lipid molecules, especially on the lateral motion, and affects it in a different way, depending on the phase of the bilayers. In the solid gel phase, it acts as a plasticizer, enhancing the lateral motion of DMPC. However, in the fluid phase it acts as a stiffening agent, restricting the lateral motion of the lipid molecules. These observations are consistent with the mean squared displacements extracted from the elastic intensity temperature scans. Cholesterol is a vital component of eukaryotic membrane, which is a natural target for melittin. To investigate the effect of melittin on vesicles supplemented with cholesterol, QENS experiments have also been carried out on DMPC ULV with 20 mol% cholesterol in the presence and absence of 0.2 mol% melittin. Remarkably, the effects of melittin on the membrane dynamics disappear in the presence of 20 mol % cholesterol. Thus, our measurements indicate that the destabilizing effect of the peptide melittin on membranes can be mitigated by the presence of cholesterol.« less
Sharma, Veerendra K.; Mamontov, Eugene; Anunciado, Divina B.; ...
2015-06-24
Antimicrobial peptides are universal in all forms of life and are well known for their strong interaction with the cell membrane. This makes them a popular target for investigation of peptide-lipid interactions. Here we report the effect of melittin, an important antimicrobial peptide, on the dynamics of membranes based on 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid in both the solid gel and fluid phases. To probe the phase transition, elastic neutron intensity temperature scans have been carried out on DMPC-based unilamellar vesicles (ULV) with and without melittin. We have found that addition of a small amount (0.2 mol%) melittin eliminates the steep fallmore » in the elastic intensity at 296 K associated with the solid gel to fluid phase transition, which is observed for pure DMPC vesicles. Quasielastic neutron scattering (QENS) experiments have been carried out on DMPC ULV in the solid gel and fluid phases with and without 0.2 mol % melittin. The data analysis invariably shows the presence of lateral and internal motions of the DMPC molecule. We found that melittin does have a profound effect on the dynamics of lipid molecules, especially on the lateral motion, and affects it in a different way, depending on the phase of the bilayers. In the solid gel phase, it acts as a plasticizer, enhancing the lateral motion of DMPC. However, in the fluid phase it acts as a stiffening agent, restricting the lateral motion of the lipid molecules. These observations are consistent with the mean squared displacements extracted from the elastic intensity temperature scans. Cholesterol is a vital component of eukaryotic membrane, which is a natural target for melittin. To investigate the effect of melittin on vesicles supplemented with cholesterol, QENS experiments have also been carried out on DMPC ULV with 20 mol% cholesterol in the presence and absence of 0.2 mol% melittin. Remarkably, the effects of melittin on the membrane dynamics disappear in the presence of 20 mol % cholesterol. Thus, our measurements indicate that the destabilizing effect of the peptide melittin on membranes can be mitigated by the presence of cholesterol.« less
Conventional empirical law reverses in the phase transitions of 122-type iron-based superconductors
Yu, Zhenhai; Wang, Lin; Wang, Luhong; ...
2014-11-24
Phase transition of solid-state materials is a fundamental research topic in condensed matter physics, materials science and geophysics. It has been well accepted and widely proven that isostructural compounds containing different cations undergo same pressure-induced phase transitions but at progressively lower pressures as the cation radii increases. However, we discovered that this conventional law reverses in the structural transitions in 122-type iron-based superconductors. In this report, a combined low temperature and high pressure X-ray diffraction (XRD) measurement has identified the phase transition curves among the tetragonal (T), orthorhombic (O) and the collapsed-tetragonal (cT) phases in the structural phase diagram ofmore » the iron-based superconductor AFe 2As 2 (A = Ca, Sr, Eu, and Ba). As a result, the cation radii dependence of the phase transition pressure (T → cT) shows an opposite trend in which the compounds with larger ambient radii cations have a higher transition pressure.« less
The transition to the metallic state in low density hydrogen
McMinis, Jeremy; Morales, Miguel A.; Ceperley, David M.; ...
2015-11-18
Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work we use diffusion quantum Monte Carlo to benchmark the transition between the paramagnetic and anti-ferromagnetic phases of ground state body centered cubic atomic hydrogen. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transitionmore » order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of r s = 2.27(3)a 0. As a result, we compare our results to previously reported density functional theory, Hedin s GW approximation, and dynamical mean field theory results.« less
NASA Astrophysics Data System (ADS)
Drezet, Jean-Marie; Mireux, Bastien; Kurtuldu, Güven; Magdysyuk, Oxana; Drakopoulos, Michael
2015-09-01
During solidification of metallic alloys, coalescence leads to the formation of solid bridges between grains or grain clusters when both solid and liquid phases are percolated. As such, it represents a key transition with respect to the mechanical behavior of solidifying alloys and to the prediction of solidification cracking. Coalescence starts at the coherency point when the grains begin to touch each other, but are unable to sustain any tensile loads. It ends up at mechanical coherency when the solid phase is sufficiently coalesced to transmit macroscopic tensile strains and stresses. Temperature at mechanical coherency is a major input parameter in numerical modeling of solidification processes as it defines the point at which thermally induced deformations start to generate internal stresses in a casting. This temperature has been determined for Al-Zn alloys using in situ X-ray diffraction during casting in a dog-bone-shaped mold. This setup allows the sample to build up internal stress naturally as its contraction is prevented. The cooling on both extremities of the mold induces a hot spot at the middle of the sample which is irradiated by X-ray. Diffraction patterns were recorded every 0.5 seconds using a detector covering a 426 × 426 mm2 area. The change of diffraction angles allowed measuring the general decrease of the lattice parameter of the fcc aluminum phase. At high solid volume fraction, a succession of strain/stress build up and release is explained by the formation of hot tears. Mechanical coherency temperatures, 829 K to 866 K (556 °C to 593 °C), and solid volume fractions, ca. 98 pct, are shown to depend on solidification time for grain refined Al-6.2 wt pct Zn alloys.
On the dielectric susceptibility calculation in the incommensurate phase of K2SeO4
NASA Astrophysics Data System (ADS)
Aslanyan, T. A.
2010-10-01
It is shown that the thermodynamic potential of the domain-like incommensurate (IC) phase of the K2SeO4crystal (viewed as a model for the IC-C transition) should be supplemented with a term, taking into account the local, Lorentz electric field. The latter qualitatively changes the result of calculation of the dielectric susceptibility for this IC structure by Nattermann and Trimper, J. Phys. C: Solid State Phys. 14, 1603, (1981), and gives phase transition to the ferroelectric IC phase obtained by Aslanyan, Phys. Rev. B 70, 024102, (2004).
Sesé, Luis M; Bailey, Lorna E
2007-04-28
The structural features of the quantum hard-sphere system in the region of the fluid-face-centered-cubic-solid transition, for reduced number densities 0.45
Xu, Jun; Lucier, Bryan E G; Sinelnikov, Regina; Terskikh, Victor V; Staroverov, Viktor N; Huang, Yining
2015-10-05
The paraelectric-ferroelectric phase transition in two isostructural metal-organic frameworks (MOFs) [NH4 ][M(HCOO)3 ] (M=Mg, Zn) was investigated by in situ variable-temperature (25) Mg, (67) Zn, (14) N, and (13) C solid-state NMR (SSNMR) spectroscopy. With decreasing temperature, a disorder-order transition of NH4 (+) cations causes a change in dielectric properties. It is thought that [NH4 ][Mg(HCOO)3 ] exhibits a higher transition temperature than [NH4 ][Zn(HCOO)3 ] due to stronger hydrogen-bonding interactions between NH4 (+) ions and framework oxygen atoms. (25) Mg and (67) Zn NMR parameters are very sensitive to temperature-induced changes in structure, dynamics, and dielectric behavior; stark spectral differences across the paraelectric-ferroelectric phase transition are intimately related to subtle changes in the local environment of the metal center. Although (25) Mg and (67) Zn are challenging nuclei for SSNMR experiments, the highly spherically symmetric metal-atom environments in [NH4 ][M(HCOO)3 ] give rise to relatively narrow spectra that can be acquired in 30-60 min at a low magnetic field of 9.4 T. Complementary (14) N and (13) C SSNMR experiments were performed to probe the role of NH4 (+) -framework hydrogen bonding in the paraelectric-ferroelectric phase transition. This multinuclear SSNMR approach yields new physical insights into the [NH4 ][M(HCOO)3 ] system and shows great potential for molecular-level studies on electric phenomena in a wide variety of MOFs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An experimental investigation of n-hexane at high temperature and pressure.
Qiao, Erwei; Zheng, Haifei
2018-10-05
At present, no high temperature experiments on phase change are reported. In this study, we have measured the Raman bands ν s (CH 3 ), ν s (CH 2 ), ν as (CH 3 ), and ν as (CH 2 ) of n-hexane in a hydrothermal diamond cell up to 588 K. We determined that the liquid-solid phase transition pressure of n-hexane is 1.17 GPa, and we also gave a number of high temperatures and pressures data on phase change which are not reported previously. In addition, we defined the solidus of n-hexane which can be represented by the equation P = 8.581T-1550.16, and the relation dP/dT = 8.581 which can be used to calculate the thermodynamic parameters for n-hexane in the liquid-solid phase transition. For all we know, the above two equations are presented here for the first time. Furthermore, it is the first report here in a graphic way on high-temperature phase change in n-hexane, and it is also the first to be shown in the 3-D figure. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Robertson, P. C.
1978-01-01
Abstracts of 25 papers relating to condensation processes in the early solar system are presented. Special emphasis is given to the transition of an initial vapor phase in the space medium, the characterization of condensation environments, and condensation processes in the space medium. The question of whether some fraction of the solar system solids (particularly exemplified by meteoritic solids) may be interstellar grains that gathered in the region of the proto-sun, rather than being products of local condensation is addressed.
Quantum melting of a two-dimensional Wigner crystal
NASA Astrophysics Data System (ADS)
Dolgopolov, V. T.
2017-10-01
The paper reviews theoretical predictions about the behavior of two-dimensional low-density electron systems at nearly absolute zero temperatures, including the formation of an electron (Wigner) crystal, crystal melting at a critical electron density, and transitions between crystal modifications in more complex (for example, two-layer) systems. The paper presents experimental results obtained from real two-dimensional systems in which the nonconducting (solid) state of the electronic system with indications of collective localization is actually realized. Experimental methods for detecting a quantum liquid-solid phase interface are discussed.
A porous flow approach to model thermal non-equilibrium applicable to melt migration
NASA Astrophysics Data System (ADS)
Schmeling, Harro; Marquart, Gabriele; Grebe, Michael
2018-01-01
We develop an approach for heat exchange between a fluid and a solid phase of a porous medium where the temperatures of the fluid and matrix are not in thermal equilibrium. The formulation considers moving of the fluid within a resting or deforming porous matrix in an Eulerian coordinate system. The approach can be applied, for example, to partially molten systems or to brine transport in porous rocks. We start from an existing theory for heat exchange where the energy conservation equations for the fluid and the solid phases are separated and coupled by a heat exchange term. This term is extended to account for the full history of heat exchange. It depends on the microscopic geometry of the fluid phase. For the case of solid containing hot, fluid-filled channels, we derive an expression based on a time-dependent Fourier approach for periodic half-waves. On the macroscopic scale, the temporal evolution of the heat exchange leads to a convolution integral along the flow path of the solid, which simplifies considerably in case of a resting matrix. The evolution of the temperature in both phases with time is derived by inserting the heat exchange term into the energy equations. We explore the effects of thermal non-equilibrium between fluid and solid by considering simple cases with sudden temperature differences between fluid and solid as initial or boundary conditions, and by varying the fluid velocity with respect to the resting porous solid. Our results agree well with an analytical solution for non-moving fluid and solid. The temperature difference between solid and fluid depends on the Peclet number based on the Darcy velocity. For Peclet numbers larger than 1, the temperature difference after one diffusion time reaches 5 per cent of \\tilde{T} or more (\\tilde{T} is a scaling temperature, e.g. the initial temperature difference). Thus, our results imply that thermal non-equilibrium can play an important role for melt migration through partially molten systems where melt focuses into melt channels near the transition to melt ascent by dykes. Our method is based on solving the convolution integration for the heat exchange over the full flow history, which is numerically expensive. We tested to replace the heat exchange term by an instantaneous, approximate term. We found considerable errors on the short timescale, but a good agreement on the long timescale if appropriate parameters for the approximate terms are used. We derived these parameters which may be implemented in fully dynamical two-phase flow formulations of melt migration in the Earth.
Pressure-induced orientational glass phase in molecular para-hydrogen.
Schelkacheva, T I; Tareyeva, E E; Chtchelkatchev, N M
2009-02-01
We propose a theoretical description of a possible orientational glass transition in solid molecular para-hydrogen and ortho-deuterium under pressure supposing that they are mixtures of J=0 and J=2 states of molecules. The theory uses the basic concepts and methods of standard spin-glass theory. We expect our orientational glass to correspond to the II' phase of the high-pressure hydrogen phase diagram.
Teichert, Gregory H.; Gunda, N. S. Harsha; Rudraraju, Shiva; ...
2016-12-18
Free energies play a central role in many descriptions of equilibrium and non-equilibrium properties of solids. Continuum partial differential equations (PDEs) of atomic transport, phase transformations and mechanics often rely on first and second derivatives of a free energy function. The stability, accuracy and robustness of numerical methods to solve these PDEs are sensitive to the particular functional representations of the free energy. In this communication we investigate the influence of different representations of thermodynamic data on phase field computations of diffusion and two-phase reactions in the solid state. First-principles statistical mechanics methods were used to generate realistic free energymore » data for HCP titanium with interstitially dissolved oxygen. While Redlich-Kister polynomials have formed the mainstay of thermodynamic descriptions of multi-component solids, they require high order terms to fit oscillations in chemical potentials around phase transitions. Here, we demonstrate that high fidelity fits to rapidly fluctuating free energy functions are obtained with spline functions. As a result, spline functions that are many degrees lower than Redlich-Kister polynomials provide equal or superior fits to chemical potential data and, when used in phase field computations, result in solution times approaching an order of magnitude speed up relative to the use of Redlich-Kister polynomials.« less
Mei, Guang-Quan; Zhang, Han-Yue; Liao, Wei-Qiang
2016-09-25
An organic-inorganic hybrid compound, [NH3(CH2)5NH3]SbCl5, exhibits a switchable second harmonic generation (SHG) effect between SHG-OFF and SHG-ON states and tunable dielectric behaviors between high and low dielectric states, connected with the changes in the dynamics of 1,5-pentanediammonium cations during its centrosymmetric-to-noncentrosymmetric symmetry breaking phase transition at 365.4 K.
(U) Equation of State and Compaction Modeling for CeO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredenburg, David A.; Chisolm, Eric D.
2014-10-20
Recent efforts have focused on developing a solid-liquid and three-phase equation of state (EOS) for CeO 2, while parallel experimental efforts have focused on obtaining high-fidelity Hugoniot measurements on CeO 2 in the porous state. The current work examines the robustness of two CeO 2 SESAME equations of state, a solid-liquid EOS, 96170, and a three-phase EOS, 96171, by validating the EOS against a suite of high-pressure shock compression experiments on initially porous CeO 2. At lower pressures compaction is considered by incorporating a two-term exponential form of the P-compaction model, using three separate definitions for α(P). Simulations are executedmore » spanning the partially compacted and fully compacted EOS regimes over the pressure range 0.5 - 109 GPa. Comparison of calculated Hugoniot results with those obtained experimentally indicate good agreement for all definitions of α(P) with both the solid-liquid and three-phase EOS in the low-pressure compaction regime. At higher pressures the three-phase EOS does a better job at predicting the measured Hugoniot response, though at the highest pressures EOS 96171 predicts a less compliant response than is observed experimentally. Measured material velocity profiles of the shock-wave after it has transmitted through the powder are also compared with those simulated using with solid-liquid and three-phase EOS. Profiles lend insight into limits of the current experimental design, as well as the threshold conditions for the shock-induced phase transition in CeO 2.« less
Vibrational investigations of CO2-H2O, CO2-(H2O)2, and (CO2)2-H2O complexes isolated in solid neon.
Soulard, P; Tremblay, B
2015-12-14
The van der Waals complex of H2O with CO2 has attracted considerable theoretical interest as a typical example of a weak binding complex with a dissociation energy less than 3 kcal/mol. Up to now, experimental vibrational data are sparse. We have studied by FTIR the complexes involving CO2 and water molecules in solid neon. Many new absorption bands close to the well known monomers fundamentals give evidence for at least three (CO2)n-(H2O)m complexes, noted n:m. Concentration effects combined with a detailed vibrational analysis allow for the identification of sixteen, twelve, and five transitions for the 1:1, 1:2, and 2:1 complexes, respectively. Careful examination of the far infrared spectral region allows the assignment of several 1:1 and 1:2 intermolecular modes, confirmed by the observation of combinations of intra + intermolecular transitions, and anharmonic coupling constants have been derived. Our results demonstrate the high sensibility of the solid neon isolation to investigate the hydrogen-bonded complexes in contrast with the gas phase experiments for which two quanta transitions cannot be easily observed.
Tang, Wan Si; Unemoto, Atsushi; Zhou, Wei; ...
2015-10-08
Solid electrolytes with sufficiently high conductivities and stabilities are the elusive answer to the inherent shortcomings of organic liquid electrolytes prevalent in today's rechargeable batteries. We recently revealed a novel fast-ion-conducting sodium salt, Na 2B 12H 12, which contains large, icosahedral, divalent B 12H 12 2– anions that enable impressive superionic conductivity, albeit only above its 529 K phase transition. Its lithium congener, Li 2B 12H 12, possesses an even more technologically prohibitive transition temperature above 600 K. Here we show that the chemically related LiCB 11H 12 and NaCB 11H 12 salts, which contain icosahedral, monovalent CB 11H 12–more » anions, both exhibit much lower transition temperatures near 400 K and 380 K, respectively, and truly stellar ionic conductivities (>0.1 S cm –1) unmatched by any other known polycrystalline materials at these temperatures. Furthermore with proper modifications, we are confident that room-temperature-stabilized superionic salts incorporating such large polyhedral anion building blocks are attainable, thus enhancing their future prospects as practical electrolyte materials in next-generation, all-solid-state batteries.« less
Six, Karel; Berghmans, Hugo; Leuner, Christian; Dressman, Jennifer; Van Werde, Kristof; Mullens, Jules; Benoist, Luc; Thimon, Mireille; Meublat, Laurent; Verreck, Geert; Peeters, Jef; Brewster, Marcus; Van den Mooter, Guy
2003-07-01
This study was done to elucidate the physical and pharmaceutical properties of itraconazole-HPMC dispersions and the influence of water on the phase separation. Extrudates were prepared using a corotating twin-screw hot-stage extruder with fixed process parameters. Modulated-temperature differential scanning calorimetry (MTDSC) and DSC 111 were used to examine the mixing behavior of itraconazole and the carrier by evaluation of the glass transition region. High temperature diffuse reflectance infrared transform spectroscopy (HT-DRIFT) was performed to reveal interactions between itraconazole and HPMC. Dissolution was performed to investigate the pharmaceutical performance of the dispersions. Although the dissolution rate of itraconazole significantly increased, we found that the solid dispersions do not form a homogeneous system. A different picture was obtained depending on the way MTDSC analysis was performed, i.e., using open or closed sample pans. Water can evaporate in open pans, which allows itraconazole to interact with HPMC and leads to a partially mixed phase. Analysis in hermetically closed pans revealed a further phase separation as water remains on the sample and impedes the interaction between drug and polymer. Solid dispersions of itraconazole and HPMC do not form a homogeneous phase.
Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide
NASA Astrophysics Data System (ADS)
Song, Zhibo; Wang, Qixing; Li, Ming-Yang; Li, Lain-Jong; Zheng, Yu Jie; Wang, Zhuo; Lin, Tingting; Chi, Dongzhi; Ding, Zijing; Huang, Yu Li; Thye Shen Wee, Andrew
2018-04-01
Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48 ) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.
Lyophilization -Solid Waste Treatment
NASA Technical Reports Server (NTRS)
Litwiller, Eric; Flynn, Michael; Fisher, John; Reinhard, Martin
2004-01-01
This paper discusses the development of a solid waste treatment system that has been designed for a Mars transit exploration mission. The technology described is an energy-efficient lyophilization technique that is designed to recover water from spacecraft solid wastes. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain free water. The system is designed to operate as a stand-alone process or to be integrated into the International Space Station Waste Collection System. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. The sublimed water is then condensed in a solid ice phase and then melted to generate a liquid product. In the subject system the waste solids are contained within a 0.2 micron bio-guard bag and after drying are removed from the system and stored in a secondary container. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. The system is designed to minimize power consumption through the use of thermoelectric heat pumps. The results of preliminary testing of a prototype system and testing of the final configuration are provided. A mathematical model of the system is also described.
The high-pressure phase transitions of hydroxides
NASA Astrophysics Data System (ADS)
Nishi, M.; Kuwayama, Y.; Tsuchiya, J.; Tsuchiya, T.; Irifune, T.
2017-12-01
The discovery of new high-pressure hydrous minerals has important implications for understanding the structure, dynamics, and evolution of the Earth, since hydrogen significantly affects the physical properties and stabilities of Earth's constituent minerals. Whereas hydrous minerals commonly dehydrate under pressures of around a few tens of gigapascals (GPa) and at temperature around 1,500 K, those with CaCl2-type crystal structure, MgSiO4H2 phase H, δ-AlOOH and ɛ-FeOOH, are known to be stable at pressures corresponding to the lower mantle. However, although the CaCl2-type hydroxides were suggested to form a solid solution owing to their similar crystal structure, there are few experimental studies on the stability of the hydroxide in such multicomponent. Moreover, ab initio calculations have predicted that some CaCl2-type hydroxides transform to pyrite-type structure at higher pressures. Here, we conducted high pressure-temperature experiments on pure AlOOH, FeOOH, and their solid solutions, with the aid of these first-principles predictions. We use in situ X-ray measurements in conjunction with a multi-anvil apparatus to study the high-pressure behaviour of hydroxides in the multicomponent system under middle lower mantle conditions. Solid solutions in wide compositional ranges between CaCl2-type δ-AlOOH and ɛ-FeOOH were recognized from X-ray diffraction patterns. Also, unit cell volume of FeOOH and (Al,Fe)OOH significantly decreased accompanied with the spin transition of iron at 50 GPa. Thus, the wide compositional ranges in CaCl2-type hydroxide are maintained beyond the depth of the middle lower mantle, where the spin transition of iron occurs. We used a laser-heated diamond anvil cell in order to study the stability of AlOOH and FeOOH at higher pressures above 70 GPa. We observed that ɛ-FeOOH transforms to the pyrite-type structure at above 80 GPa, which is consistent with the theoretical prediction. At conditions above 190 GPa and 2,500 K, we observed the phase transition of δ-AlOOH to its higher pressure phase at above 170 GPa although further experimental study should be required to determine the precise structure. Based on these experimental and theoretical results, the stability and phase transitions of hydrous phases in the lower mantle will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasilyeva, I.G., E-mail: kamarz@niic.nsc.r; Nikolaev, R.E.; Verozubova, G.A.
Abstracts: The nonstoichiometry of ZnGeP{sub 2} has been determined based on the p-T dependences measured above ZnP{sub 2}-Ge samples in the temperature range of 980-1225 K by a high-sensitive and precise tensimetric static method with a quartz Bourdon gauge. Scanning of the compositional range 49-51 mol% ZnP{sub 2} in the closed system and construction of the p-T dependences were possible due to incongruent evaporation of ZnGeP{sub 2} and formation of volatile species Zn(g), P{sub 4}(g) and P{sub 2}(g). The maximum homogeneity range of the solid ZnGeP{sub 2} was determined between 50.03 and 49.61 mol% ZnP{sub 2} at a temperature ofmore » 1128 K, based on the inflection points on the p-T dependences, corresponding to transitions of the three-phase (solid-solid-vapor) equilibrium to a two-phase (solid-vapor) one and vice visa. The nonstoichiometry as the overall concentration of defects is considered to gain a better insight into the defect chemistry of ZnGeP{sub 2}. - Graphical abstract: The nonstoichiometry of ZnGeP{sub 2} on the T-x diagram of the ZnP{sub 2}-Ge system.« less
DiNunzio, James C; Brough, Chris; Miller, Dave A; Williams, Robert O; McGinity, James W
2010-03-01
KinetiSol Dispersing (KSD) is a novel high energy manufacturing process investigated here for the production of pharmaceutical solid dispersions. Solid dispersions of itraconazole (ITZ) and hypromellose were produced by KSD and compared to identical formulations produced by hot melt extrusion (HME). Materials were characterized for solid state properties by modulated differential scanning calorimetry and X-ray diffraction. Dissolution behavior was studied under supersaturated conditions. Oral bioavailability was determined using a Sprague-Dawley rat model. Results showed that KSD was able to produce amorphous solid dispersions in under 15 s while production by HME required over 300 s. Dispersions produced by KSD exhibited single phase solid state behavior indicated by a single glass transition temperature (T(g)) whereas compositions produced by HME exhibited two T(g)s. Increased dissolution rates for compositions manufactured by KSD were also observed compared to HME processed material. Near complete supersaturation was observed for solid dispersions produced by either manufacturing processes. Oral bioavailability from both processes showed enhanced AUC compared to crystalline ITZ. Based on the results presented from this study, KSD was shown to be a viable manufacturing process for the production of pharmaceutical solid dispersions, providing benefits over conventional techniques including: enhanced mixing for improved homogeneity and reduced processing times. 2009 Wiley-Liss, Inc. and the American Pharmacists Association
A reversible transition in liquid Bi under pressure.
Emuna, M; Matityahu, S; Yahel, E; Makov, G; Greenberg, Y
2018-01-21
The electrical resistance of solid and liquid Bi has been measured at high pressures and temperatures using a novel experimental design for high sensitivity measurements utilizing a "Paris-Edinburgh" toroid large volume press. An anomalous sharp decrease in resistivity with increasing temperature at constant pressures was observed in the region beyond melting which implies a possible novel transition in the melt. The proposed transition was observed across a range of pressures both in heating and cooling cycles of the sample demonstrating its reversibility. From the measurements it was possible to determine a "phase-line" of this transition on the Bi pressure-temperature phase diagram terminating at the melting curve.
40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.
Code of Federal Regulations, 2010 CFR
2010-07-01
... solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... obtained above prior to centrifugation and filtration. The solid phase includes all material settling to...
40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.
Code of Federal Regulations, 2011 CFR
2011-07-01
... solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... obtained above prior to centrifugation and filtration. The solid phase includes all material settling to...
2016-03-23
Urinary Bladder Neoplasms; Carcinoma, Transitional Cell; Ovarian Neoplasms; Fallopian Tube Neoplasms; Peritoneal Neoplasms; Carcinoma, Non-Small-Cell Lung; Carcinoma, Pancreatic Ductal; Tumor Virus Infections
Zheng, Ruiting; Gao, Jinwei; Wang, Jianjian; Chen, Gang
2011-01-01
Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce a general strategy to achieve large contrasts in electrical and thermal conductivities using first-order phase transitions in percolated composite materials. Internal stress generated during a phase transition modulates the electrical and thermal contact resistances, leading to large contrasts in the electrical and thermal conductivities at the phase transition temperature. With graphite/hexadecane suspensions, the electrical conductivity changes 2 orders of magnitude and the thermal conductivity varies up to 3.2 times near 18 °C. The generality of the approach is also demonstrated in other materials such as graphite/water and carbon nanotube/hexadecane suspensions. PMID:21505445
Zheng, Ruiting; Gao, Jinwei; Wang, Jianjian; Chen, Gang
2011-01-01
Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce a general strategy to achieve large contrasts in electrical and thermal conductivities using first-order phase transitions in percolated composite materials. Internal stress generated during a phase transition modulates the electrical and thermal contact resistances, leading to large contrasts in the electrical and thermal conductivities at the phase transition temperature. With graphite/hexadecane suspensions, the electrical conductivity changes 2 orders of magnitude and the thermal conductivity varies up to 3.2 times near 18 °C. The generality of the approach is also demonstrated in other materials such as graphite/water and carbon nanotube/hexadecane suspensions.
Atomically thin gallium layers from solid-melt exfoliation
Kochat, Vidya; Samanta, Atanu; Zhang, Yuan; Bhowmick, Sanjit; Manimunda, Praveena; Asif, Syed Asif S.; Stender, Anthony S.; Vajtai, Robert; Singh, Abhishek K.; Tiwary, Chandra S.; Ajayan, Pulickel M.
2018-01-01
Among the large number of promising two-dimensional (2D) atomic layer crystals, true metallic layers are rare. Using combined theoretical and experimental approaches, we report on the stability and successful exfoliation of atomically thin “gallenene” sheets on a silicon substrate, which has two distinct atomic arrangements along crystallographic twin directions of the parent α-gallium. With a weak interface between solid and molten phases of gallium, a solid-melt interface exfoliation technique is developed to extract these layers. Phonon dispersion calculations show that gallenene can be stabilized with bulk gallium lattice parameters. The electronic band structure of gallenene shows a combination of partially filled Dirac cone and the nonlinear dispersive band near the Fermi level, suggesting that gallenene should behave as a metallic layer. Furthermore, it is observed that the strong interaction of gallenene with other 2D semiconductors induces semiconducting to metallic phase transitions in the latter, paving the way for using gallenene as promising metallic contacts in 2D devices. PMID:29536039
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.
A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid–solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. Themore » decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure–temperature region similar to where the supercooled liquid Bi is observed. Finally, akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.« less
Materials research for passive solar systems: Solid-state phase-change materials
NASA Astrophysics Data System (ADS)
Benson, D. K.; Webb, J. D.; Burrows, R. W.; McFadden, J. D. O.; Christensen, C.
1985-03-01
A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C5H12O4), pentaglycerinve (C5H12O3), and neopentyl glycol (C5H12O2). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature between 25 C and 188 C, and have latent heats of transformation etween 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier.
Electromechanical properties of Na0.5Bi0.5TiO3-SrTiO3-PbTiO3 solid solutions
NASA Astrophysics Data System (ADS)
Svirskas, Šarūnas; Dunce, Marija; Birks, Eriks; Sternberg, Andris; Banys, Jūras
2018-03-01
Thorough studies of electric field-induced strain are presented in 0.4Na1/2Bi1/2TiO3-(0.6-x)SrTiO3-xPbTiO3 (NBT-ST-PT) ternary solid solutions. The increase of concentration of lead x induces crossover from relaxor to ferroelectric. Strain in a relaxor state can be described by electrostrictive behavior. The electrostrictive coefficients correspond to other well-known relaxor ferroelectrics. The concentration region with a stable ferroelectric phase revealed that the polarization dependence of strain does not exhibit nonlinearity, although they are inherent to the electric field dependence of strain. In this case, electric field dependence of strain is described in terms of the Rayleigh law and the role of domain wall contribution is extracted. Finally, the character of strain at the electric field-induced phase transition between the nonpolar and the ferroelectric states is studied. The data shows that in the vicinity of the electric field induced phase transition the strain vs. electric field displays electrostrictive character.
NASA Astrophysics Data System (ADS)
Putri, Widya A.; Fahmi, Zulfikar; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.
2016-08-01
The high consumption of electric energy for room air conditioning (AC) system in Indonesia has driven the research of potential thermal energy storage system as a passive temperature controller. The application of coconut oil (CO) as the potential candidate for this purpose has been motivated since its working temperature just around the human thermal comfort zone in the tropical area as Indonesia. In this research we report the time-dependent temperature data of CO, which is adopting the T-history method. The analysis of the data revealed a set of thermophysical parameters, consist of the mean specific heats of the solid and liquid, as well as the latent heat of fusion for the phase change transition. The performance of CO to decrease the air temperature was measured in the thermal chamber. From the results it is shown that the latent phase of CO related to the solid-liquid phase transition show the highest capability in heat absorption, directly showing the potential application of CO as thermal energy storage system in Indonesia.
Role of Dynamically Frustrated Bond Disorder in a Li + Superionic Solid Electrolyte
Adelstein, Nicole; Wood, Brandon C.
2016-09-16
Inorganic lithium solid electrolytes are critical components in next-generation solid-state batteries, yet the fundamental nature of the cation-anion interactions and their relevance for ionic conductivity in these materials remains enigmatic. Here, we employ first-principles molecular dynamics simulations to explore the interplay between chemistry, structure, and functionality of a highly conductive Li + solid electrolyte, Li3InBr6. Using local-orbital projections to dynamically track the evolution of the electronic charge density, the simulations reveal rapid, correlated fluctuations between cation-anion interactions with different degrees of directional covalent character. These chemical bond dynamics are shown to correlate with Li + mobility, and are enabled thermallymore » by intrinsic frustration between the preferred geometries of chemical bonding and lattice symmetry. We suggest that the fluctuating chemical environment from the polarizable anions functions similar to a solvent, contributing to the superionic behavior of Li 3InBr 6 by temporarily stabilizing configurations favorable for migrating Li +. The generality of these conclusions for understanding solid electrolytes and key factors governing the superionic phase transition is discussed.« less
Shock driven melting and resolidification upon release in cerium
NASA Astrophysics Data System (ADS)
Bolme, Cindy; Bronkhorst, Curt; Brown, Don; Cherne, Frank; Cooley, Jason; Furlanetto, Michael; Gleason, Arianna; Jensen, Brian; Owens, Charles; Ali, Suzanne; Fratanduono, Dayne; Galtier, Eric; Granados, Eduardo; Lee, Hae Ja; Nagler, Bob
2017-06-01
The temperature rise due to increasing entropy during shock compression and the corresponding temperature decrease due to isentropic expansion upon release cause the physics of melting and solidification under dynamic pressure changes to differ fundamentally from the more common liquid-solid transitions governed by thermal diffusion. We investigated laser shock driven melting and resolidification during release in cerium to examine the dynamics of these processes. Cerium was selected as the material of study due to the low pressure at which γ-cerium melts along the principle Hugoniot and due to cerium's anomalous melt boundary at low pressure, which facilitates its transition from liquid to solid during isentropic release. The structural phase of cerium was probed with X-ray diffraction using the LCLS X-ray free electron laser, which provided in situ measurements of the transition dynamics. The experimental results will be presented showing the resolidification occurring over 10s of ns.
c -Axis Dimer and Its Electronic Breakup: The Insulator-to-Metal Transition in Ti2 O3
NASA Astrophysics Data System (ADS)
Chang, C. F.; Koethe, T. C.; Hu, Z.; Weinen, J.; Agrestini, S.; Zhao, L.; Gegner, J.; Ott, H.; Panaccione, G.; Wu, Hua; Haverkort, M. W.; Roth, H.; Komarek, A. C.; Offi, F.; Monaco, G.; Liao, Y.-F.; Tsuei, K.-D.; Lin, H.-J.; Chen, C. T.; Tanaka, A.; Tjeng, L. H.
2018-04-01
We report on our investigation of the electronic structure of Ti2 O3 using (hard) x-ray photoelectron and soft x-ray absorption spectroscopy. From the distinct satellite structures in the spectra, we have been able to establish unambiguously that the Ti-Ti c -axis dimer in the corundum crystal structure is electronically present and forms an a1 ga1 g molecular singlet in the low-temperature insulating phase. Upon heating, we observe a considerable spectral weight transfer to lower energies with orbital reconstruction. The insulator-metal transition may be viewed as a transition from a solid of isolated Ti-Ti molecules into a solid of electronically partially broken dimers, where the Ti ions acquire additional hopping in the a -b plane via the egπ channel, the opening of which requires consideration of the multiplet structure of the on-site Coulomb interaction.
Thermodynamic properties of small aggregates of rare-gas atoms
NASA Technical Reports Server (NTRS)
Etters, R. D.; Kaelberer, J.
1975-01-01
The present work reports on the equilibrium thermodynamic properties of small clusters of xenon, krypton, and argon atoms, determined from a biased random-walk Monte Carlo procedure. Cluster sizes ranged from 3 to 13 atoms. Each cluster was found to have an abrupt liquid-gas phase transition at a temperature much less than for the bulk material. An abrupt solid-liquid transition is observed for thirteen- and eleven-particle clusters. For cluster sizes smaller than 11, a gradual transition from solid to liquid occurred over a fairly broad range of temperatures. Distribution of number of bond lengths as a function of bond length was calculated for several systems at various temperatures. The effects of box boundary conditions are discussed. Results show the importance of a correct description of boundary conditions. A surprising result is the slow rate at which system properties approach bulk behavior as cluster size is increased.
NASA Astrophysics Data System (ADS)
Gladkov, Svyatoslav; Kochmann, Julian; Reese, Stefanie; Hütter, Markus; Svendsen, Bob
2016-04-01
The purpose of the current work is the comparison of thermodynamic model formulations for chemically and structurally inhomogeneous solids at finite deformation based on "standard" non-equilibrium thermodynamics [SNET: e. g. S. de Groot and P. Mazur, Non-equilibrium Thermodynamics, North Holland, 1962] and the general equation for non-equilibrium reversible-irreversible coupling (GENERIC) [H. C. Öttinger, Beyond Equilibrium Thermodynamics, Wiley Interscience, 2005]. In the process, non-isothermal generalizations of standard isothermal conservative [e. g. J. W. Cahn and J. E. Hilliard, Free energy of a non-uniform system. I. Interfacial energy. J. Chem. Phys. 28 (1958), 258-267] and non-conservative [e. g. S. M. Allen and J. W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979), 1085-1095; A. G. Khachaturyan, Theory of Structural Transformations in Solids, Wiley, New York, 1983] diffuse interface or "phase-field" models [e. g. P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Modern Phys. 49 (1977), 435-479; N. Provatas and K. Elder, Phase Field Methods in Material Science and Engineering, Wiley-VCH, 2010.] for solids are obtained. The current treatment is consistent with, and includes, previous works [e. g. O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Phys. D 43 (1990), 44-62; O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a "thermodynamically consistent" phase-field model. Phys. D 69 (1993), 107-113] on non-isothermal systems as a special case. In the context of no-flux boundary conditions, the SNET- and GENERIC-based approaches are shown to be completely consistent with each other and result in equivalent temperature evolution relations.
NASA Astrophysics Data System (ADS)
Cassidy, Daniel H.; Irvine, Robert L.
1995-10-01
Both slurry-phase and solid-phase bioremediation are effective ex situ soil decontamination methods. Slurrying is energy intensive relative to solid-phase treatment, but provides homogenization and uniform nutrient distribution. Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rates and renders solid phase bioremediation more cost effective than complete treatment in a bio-slurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. A biological treatment system consisting of slurrying followed by aeration in solid phase bioreactors was developed and tested in the laboratory using a silty clay loam contaminated with diesel fuel. The first set of experiments was designed to determine the impact of the water content and mixing time during slurrying on the rate an extent of contaminant removal in continuously aerated solid phase bioreactors. The second set of experiments compared the volatile and total diesel fuel removal in solid phase bioreactors using periodic and continuous aeration strategies. Results showed that slurrying for 1.5 hours at a water content less than saturation markedly increased the rate and extent of contaminant biodegradation in the solid phase bioreactors compared with soil having no slurry pretreatment. Slurrying the soil at or above its saturation moisture content resulted in lengthy dewatering times which prohibited aeration, thereby delaying the onset of biological treatment in the solid phase bioreactors. Results also showed that properly operated periodic aeration can provide less volatile contaminant removal and a grater fraction of biological contaminant removal than continuous aeration.
Gómez-Pérez, Alejandro; Hoelzel, Markus; Muñoz-Noval, Álvaro; García-Alvarado, Flaviano; Amador, Ulises
2016-12-19
The symmetry of the room-temperature (RT) structure of title compounds La 2-x Sr x CoTiO 6-δ changes with x, from P2 1 /n (0 ≤ x ≤ 0.2) to Pnma (0.3 ≤ x ≤ 0.5) and to R3̅c (0.6 ≤ x ≤ 1). For x = 1 the three pseudocubic cell parameters become very close suggesting a transition to a cubic structure for higher Sr contents. Similar phase transitions were expected to occur on heating, paralleling the effect of internal pressure induced by substitution of La 3+ by Sr 2+ . However, only some of these aforementioned transitions have been thermally induced. The symmetry-adapted modes formalism is used in the structural refinements and fitting of neutron diffraction data recorded from RT to 1273 K. Thus, for x = 1, the out-of-phase tilting of the BO 6 octahedra vanishes progressively on heating, and a cubic structure with Pm3̅m symmetry is found at 1073 K. For lower Sr contents this transition is predicted to occur far above the temperature limit of common experimental setups. The analysis of the evolution of the perovskite tolerance factor, t-factor, with both Sr content and temperature indicates that temperature has a limited ability to release structural stress and thus to enable transitions to more symmetric phases. This is particularly true when compared to the effect of internal pressure induced by substitution of La by Sr. The existence of phase transitions in materials for solid oxide fuel cells that are usually exposed to heating-cooling cycles may have a detrimental effect. This work suggests strategies to stabilize the high-symmetry high-temperature phase of perovskite oxides through internal-pressure chemically induced.
NASA Astrophysics Data System (ADS)
Pashos, G.; Kokkoris, G.; Papathanasiou, A. G.; Boudouvis, A. G.
2016-01-01
The Minimum Energy Paths (MEPs) of wetting transitions on pillared surfaces are computed with the Young-Laplace equation, augmented with a pressure term that accounts for liquid-solid interactions. The interactions are smoothed over a short range from the solid phase, therefore facilitating the numerical solution of problems concerning wetting on complex surface patterns. The patterns may include abrupt geometric features, e.g., arrays of rectangular pillars, where the application of the unmodified Young-Laplace is not practical. The MEPs are obtained by coupling the augmented Young-Laplace with the modified string method from which the energy barriers of wetting transitions are eventually extracted. We demonstrate the method on a wetting transition that is associated with the breakdown of superhydrophobic behavior, i.e., the transition from the Cassie-Baxter state to the Wenzel state, taking place on a superhydrophobic pillared surface. The computed energy barriers quantify the resistance of the system to these transitions and therefore, they can be used to evaluate superhydrophobic performance or provide guidelines for optimal pattern design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Hanzheng; Randall, Clive A., E-mail: car4@psu.edu; Shimizu, Hiroyuki
2015-09-14
Hot-stage in situ transmission electron microscopy was employed to investigate the temperature-induced complex sequence of phase transitions in NaNbO{sub 3} polycrystalline. In addition to the commonly recognized P (Pbma) → R (Pmnm) → S (Pnmm) phase transitions, incommensurate phases were observed to exist in P and R phase regions. The former (in the P → R transition region) is coincident with a diffused dielectric peak appearing at ∼170 °C, and the latter (in the R → S transition region) serves as an intermediate structure to bridge the two sub-phases in the R phase region. The incommensurate phase in the P phasemore » region can be inferred from the polarization current density and differential dielectric permittivity anomalies, and it provides the bridge structure during the electric field-induced polarization reversal and antiferroelectric-to-ferroelectric transition in NaNbO{sub 3} solid solutions.« less
Liquid-solid phase transition alloy as reversible and rapid molding bone cement.
Yi, Liting; Jin, Chao; Wang, Lei; Liu, Jing
2014-12-01
Acrylic bone cement has been an essential non-metallic implant used as fixing agent in the cemented total joint arthroplasty (THA). However, the currently available materials based mainly on polymethylmethacrylate (PMMA) still encounter certain limitations, such as time-consuming polymerization, thermal and chemical necrosis and troublesome revision procedure. Here from an alternative way, we proposed for the first time to adopt the injectable alloy cement to address such tough issues through introducing its unique liquid-solid phase transition mechanism. A typical cement along this way is thus made of an alloy Bi/In/Sn/Zn with a specifically designed low melting point 57.5 °C, which enables its rapid molding into various desired shapes with high plasticity and ultimate metallic behaviors. The fundamental characteristics including the mechanical strength, biocompatibility and phase transition-induced thermal effects have been clarified to demonstrate the importance of such alloy as unconventional cement with favorable merits. In addition, we also disclosed its advantage as an excellent contrast agent for radiation imaging on the bone interior structure which is highly beneficial for guiding the surgery and monitoring the therapeutic effects. Particularly, the proposed alloy cement with reversible phase transition feature significantly simplifies the revision of the cement and prosthesis. This study opens the way for employing the injectable alloy materials as reversible bone cement to fulfill diverse clinical needs in the coming time. Copyright © 2014 Elsevier Ltd. All rights reserved.
The gabbro-eclogite phase transition and the elevation of mountain belts on Venus
NASA Astrophysics Data System (ADS)
Namiki, Noriyuki; Solomon, Sean C.
1992-12-01
Among the four mountain belts surrounding Lakshmi Planum, Maxwell Montes is the highest and stands up to 11 km above the mean planetary radius and 7 km above Lakshmi Planum. The bulk composition and radioactive heat production of the crust on Venus, where measured, are similar to those of terrestrial tholeiitic basalt. Because the thickness of the low-density crust may be limited by the gabbro-garnet granulite-eclogite phase transitions, the 7-11 km maximum elevation of Maxwell Montes is difficult to understand except in the unlikely situation that the crust contains a large volume of magma. A possible explanation is that the base of the crust is not in phase equilibrium. It has been suggested that under completely dry conditions, the gabbro-eclogite phase transition takes place by solid-state diffusion and may require a geologically significant time to run to completion. Solid-state diffusion is a strongly temperature-dependent process. In this paper we solve the thermal evolution of the mountain belt to attempt to constrain the depth of the gabbro-eclogite transition and thus to assess this hypothesis quantitatively. The one-dimensional heat equation is solved numerically by a finite difference approximation. The deformation of the horizontally shortening crustal and mantle portions of the thermal boundary layer is assumed to occur by pure shear, and therefore the vertical velocity is given by the product of the horizontal strain rate and depth.
The gabbro-eclogite phase transition and the elevation of mountain belts on Venus
NASA Technical Reports Server (NTRS)
Namiki, Noriyuki; Solomon, Sean C.
1992-01-01
Among the four mountain belts surrounding Lakshmi Planum, Maxwell Montes is the highest and stands up to 11 km above the mean planetary radius and 7 km above Lakshmi Planum. The bulk composition and radioactive heat production of the crust on Venus, where measured, are similar to those of terrestrial tholeiitic basalt. Because the thickness of the low-density crust may be limited by the gabbro-garnet granulite-eclogite phase transitions, the 7-11 km maximum elevation of Maxwell Montes is difficult to understand except in the unlikely situation that the crust contains a large volume of magma. A possible explanation is that the base of the crust is not in phase equilibrium. It has been suggested that under completely dry conditions, the gabbro-eclogite phase transition takes place by solid-state diffusion and may require a geologically significant time to run to completion. Solid-state diffusion is a strongly temperature-dependent process. In this paper we solve the thermal evolution of the mountain belt to attempt to constrain the depth of the gabbro-eclogite transition and thus to assess this hypothesis quantitatively. The one-dimensional heat equation is solved numerically by a finite difference approximation. The deformation of the horizontally shortening crustal and mantle portions of the thermal boundary layer is assumed to occur by pure shear, and therefore the vertical velocity is given by the product of the horizontal strain rate and depth.
New transformations between crystalline and amorphous ice
NASA Technical Reports Server (NTRS)
Hemley, R. J.; Chen, L. C.; Mao, H. K.
1989-01-01
High-pressure optical and spectroscopic techniques were used to obtain directly the ice I(h) - hda-ice transformation in a diamond-anvil cell, and the stability of the amorphous form is examined as functions of pressure and temperature. It is demonstrated that hda-ice transforms abruptly at 4 GPa and 77 K to a crystalline phase close in structure to orientationally disordered ice-VII and to a more highly ordered, ice-VIII-like structure at higher temperatures. This is the first time that an amorphous solid is observed to convert to a crystalline solid at low temperatures by compression alone. Phase transitions of this type may be relevant on icy planetary satellites, and there may also be implications for the high-pressure behavior of silica.
Early Days of Superfluid ^3He: An Experimenter's View
NASA Astrophysics Data System (ADS)
Lee, David
2010-03-01
The formulation of the BCS theory led theorists to investigate possible non-S-wave pairing in liquid ^3He. Unfortunately as time went on, estimates for the pairing temperature became unattainably low. Nevertheless, the push to lower temperatures by experimentalists continued and was facilitated by the invention of the dilution refrigerator. Nuclear adiabatic demagnetization could then be used to cool liquid ^3He to ˜1 mK as demonstrated by Goodkind. An alternate approach, suggested by Pomeranchuk, involved adiabatic compression of liquid ^3He into the solid phase. Efforts to develop this technique at the Kapitza Institute, La Jolla and Cornell achieved success in demonstrating cooling of mixtures of liquid and solid ^3He to ˜ 1 mK following dilution refrigerator pre-cooling. Although there was great pessimism regarding the possible observation of pairing in liquid ^3He, the unsettled problem of magnetic ordering in solid ^3He beckoned. Ultimately two phase transition along the melting curve were observed by Osheroff et al at Cornell. Although first associated with solid ^3He, extensive NMR studies showed them to be two new phases of liquid ^3He. A brief history of experiments at various laboratories following the discovery is given, along with early interpretations given by Anderson and Morel and Balian and Werthamer. The key role of Leggett's spin dynamics is also discussed.
Ab initio molecular crystal structures, spectra, and phase diagrams.
Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni
2014-09-16
Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling illustrations of their unprecedented power in addressing some of the outstanding problems of solid-state chemistry, high-pressure chemistry, or geochemistry. They are the structure and spectra of ice Ih, in particular, the origin of two peaks in the hydrogen-bond-stretching region of its inelastic neutron scattering spectra, a solid-solid phase transition from CO2-I to elusive, metastable CO2-III, pressure tuning of Fermi resonance in solid CO2, and the structure and spectra of solid formic acid, all at the level of second-order Møller-Plesset perturbation theory or higher.
Structural and ferroelectric phase evolution in [KNbO3]1-x[BaNi1/2Nb1/2O3-δ]x (x = 0, 0.1)
NASA Astrophysics Data System (ADS)
Hawley, Christopher; Wu, Liyan; Xiao, Geoffrey; Grinberg, Ilya; Rappe, Andrew; Davies, Peter; Spanier, Jonathan
The phase transition evolution for [KNbO3]1-x[BaNi1/2Nb1/2O3-δ]x (x=0, 0.1) is determined via complementary dielectric constant and Raman scattering measurements. Raman scattering by optical phonons over the range of 100-1000 cm-1 for -190°C < T < 600°C reveals six discernible zone-center optical phonon modes. They are assigned to structural and ferroelectric phases in the solid solution x = 0.1 and compared with those for end member x = 0 and with the results of temperature-dependent dielectric permittivity. Rigorous peak fitting analyses of spectra collected from the solid solution and end member indicate structural and ferroelectric phase transition temperatures that are quite close to those for the KNbO3 end member. Remarkably, despite the inclusion of 5 atomic Work supported by US ARO under W911NF-14-1-0500, NSF 1123696, and DoE BES under DE-FG02-07ER46431. Equipment acquisitions and computational support under DURIP and DoE NERSCC.
Titanium α-ω phase transformation pathway and a predicted metastable structure
Zarkevich, Nickolai A.; Johnson, Duane D.
2016-01-15
A titanium is a highly utilized metal for structural lightweighting and its phases, transformation pathways (transition states), and structures have scientific and industrial importance. Using a proper solid-state nudged elastic band method employing two climbing images combined with density functional theory DFT + U methods for accurate energetics, we detail the pressure-induced α (ductile) to ω (brittle) transformation at the coexistence pressure. We also find two transition states along the minimal-enthalpy path and discover a metastable body-centered orthorhombic structure, with stable phonons, a lower density than the end-point phases, and decreasing stability with increasing pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willey, Trevor M.; Lauderbach, Lisa; Gagliardi, Franco
HMX-based explosives LX-10 and PBX-9501 were heated through the β-δ phase transition. Ultra-small angle x-ray scattering (USAXS) and molecular diffraction were simultaneously recorded as the HMX was heated. Mesoscale voids and structure dramatically change promptly with the β-δ phase transition, rather than with other thermal effects. Also, x-ray induced damage, observed in the USAXS, occurs more readily at elevated temperatures; as such, the dose was reduced to mitigate this effect. Optical microscopy performed during a similar heating cycle gives an indication of changes on longer length scales, while x-ray microtomography, performed before and after heating, shows the character of extensivemore » microstructural damage resulting from the temperature cycle and solid-state phase transition.« less
Spin-injection optical pumping of molten cesium salt and its NMR diagnosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, Kiyoshi
2015-07-15
Nuclear spin polarization of cesium ions in the salt was enhanced during optical pumping of cesium vapor at high magnetic field. Significant motional narrowing and frequency shift of NMR signals were observed by intense laser heating of the salt. When the hyperpolarized salt was cooled by blocking the heating laser, the signal width and frequency changed during cooling and presented the phase transition from liquid to solid. Hence, we find that the signal enhancement is mostly due to the molten salt and nuclear spin polarization is injected into the salt efficiently in the liquid phase. We also show that opticalmore » pumping similarly induces line narrowing in the solid phase. The use of powdered salt provided an increase in effective surface area and signal amplitude without glass wool in the glass cells.« less
Effect of boundary heat flux on columnar formation in binary alloys: A phase-field study
NASA Astrophysics Data System (ADS)
Du, Lifei; Zhang, Peng; Yang, Shaomei; Chen, Jie; Du, Huiling
2018-02-01
A non-isothermal phase-field model was employed to simulate the columnar formation during rapid solidification in binary Ni-Cu alloy. Heat flux at different boundaries was applied to investigate the temperature gradient effect on the morphology, concentration and temperature distributions during directional solidifications. With the heat flux input/extraction from boundaries, coupling with latent heat release and initial temperature gradient, temperature distributions are significantly changed, leading to solute diffusion changes during the phase-transition. Thus, irregular columnar structures are formed during the directional solidification, and the concentration distribution in solid columnar arms could also be changed due to the different growing speeds and temperature distributions at the solid-liquid interfaces. Therefore, applying specific heat conditions at the solidifying boundaries could be an efficient way to control the microstructure during solidifications.
Effects of the interaction range on structural phases of flexible polymers.
Gross, J; Neuhaus, T; Vogel, T; Bachmann, M
2013-02-21
We systematically investigate how the range of interaction between non-bonded monomers influences the formation of structural phases of elastic, flexible polymers. Massively parallel replica-exchange simulations of a generic, coarse-grained model, performed partly on graphics processing units and in multiple-gaussian modified ensembles, pave the way for the construction of the structural phase diagram, parametrized by interaction range and temperature. Conformational transitions between gas-like, liquid, and diverse solid (pseudo) phases are identified by microcanonical statistical inflection-point analysis. We find evidence for finite-size effects that cause the crossover of "collapse" and "freezing" transitions for very short interaction ranges.
The global phase diagram of the Gay-Berne model
NASA Astrophysics Data System (ADS)
de Miguel, Enrique; Vega, Carlos
2002-10-01
The phase diagram of the Gay-Berne model with anisotropy parameters κ=3, κ'=5 has been evaluated by means of computer simulations. For a number of temperatures, NPT simulations were performed for the solid phase leading to the determination of the free energy of the solid at a reference density. Using the equation of state and free energies of the isotropic and nematic phases available in the existing literature the fluid-solid equilibrium was calculated for the temperatures selected. Taking these fluid-solid equilibrium results as the starting points, the fluid-solid equilibrium curve was determined for a wide range of temperatures using Gibbs-Duhem integration. At high temperatures the sequence of phases encountered on compression is isotropic to nematic, and then nematic to solid. For reduced temperatures below T=0.85 the sequence is from the isotropic phase directly to the solid state. In view of this we locate the isotropic-nematic-solid triple point at TINS=0.85. The present results suggest that the high-density phase designated smectic B in previous simulations of the model is in fact a molecular solid and not a smectic liquid crystal. It seems that no thermodynamically stable smectic phase appears for the Gay-Berne model with the choice of parameters used in this work. We locate the vapor-isotropic liquid-solid triple point at a temperature TVIS=0.445. Considering that the critical temperatures is Tc=0.473, the Gay-Berne model used in this work presents vapor-liquid separation over a rather narrow range of temperatures. It is suggested that the strong lateral attractive interactions present in the Gay-Berne model stabilizes the layers found in the solid phase. The large stability of the solid phase, particularly at low temperatures, would explain the unexpectedly small liquid range observed in the vapor-liquid region.
Olson, Angela C.; Keith, Jason M.; Batista, Enrique R.; Boland, Kevin S.; Daly, Scott R.; Kozimor, Stosh A.; MacInnes, Molly M.; Martin, Richard L.; Scott, Brian L.
2014-01-01
Herein, we have evaluated relative changes in M–S electronic structure and orbital mixing in Group 6 MS42- dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t2* electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as 1A1 → 1T2 transitions. For MoS42-, both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS42-, solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t2* orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO42- dianions, which allowed M–S and M–O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M–E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M–S bonds, but increased appreciably for M–O interactions. For the t2* orbitals (σ* + π*), mixing decreased slightly for M–S bonding and increased only slightly for the M–O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME42- (E = O, S) dianions. PMID:25311904
Olson, Angela C; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Daly, Scott R; Kozimor, Stosh A; MacInnes, Molly M; Martin, Richard L; Scott, Brian L
2014-12-14
Herein, we have evaluated relative changes in M-S electronic structure and orbital mixing in Group 6 MS4(2-) dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as (1)A1 → (1)T2 transitions. For MoS4(2-), both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS4(2-), solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO4(2-) dianions, which allowed M-S and M-O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M-E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M-S bonds, but increased appreciably for M-O interactions. For the t orbitals (σ* + π*), mixing decreased slightly for M-S bonding and increased only slightly for the M-O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME4(2-) (E = O, S) dianions.
Solidification and solid-state transformation sciences in metals additive manufacturing
Kirka, Michael M.; Nandwana, Peeyush; Lee, Yousub; ...
2017-02-11
Additive manufacturing (AM) of metals is rapidly emerging as an established manufacturing process for metal components. Unlike traditional metals fabrication processes, metals fabricated via AM undergo localized thermal cycles during fabrication. As a result, AM presents the opportunity to control the liquid-solid phase transformation, i.e. material texture. But, thermal cycling presents challenges from the standpoint of solid-solid phase transformations. We will discuss the opportunities and challenges in metals AM in the context of texture control and associated solid-solid phase transformations in Ti-6Al-4V and Inconel 718.
Seasonal multiphase equilibria in the atmospheres of Titan and Pluto
NASA Astrophysics Data System (ADS)
Tan, S. P.; Kargel, J. S.
2017-12-01
At the extremely low temperatures in Titan's upper troposphere and on Pluto's surface, the atmospheres as a whole are subject to freeze into solid solutions, not pure ices. The presence of the solid phases introduces conditions with rich phase equilibria upon seasonal changes, even if the temperature undergoes only small changes. For the first time, the profile of atmospheric methane in Titan's troposphere will be reproduced complete with the solid solutions. This means that the freezing point, i.e. the altitude where the first solid phase appears, is determined. The seasonal change will also be evaluated both at the equator and the northern polar region. For Pluto, also for the first time, the seasonal solid-vapor equilibria will be evaluated. The fate of the two solid phases, the methane-rich and carbon-monoxide-rich solid solutions, will be analyzed upon temperature and pressure changes. Such investigations are enabled by the development of a molecular-based thermodynamic model for cryogenic chemical systems, referred to as CRYOCHEM, which includes solid solutions in its phase-equilibria calculations. The atmospheres of Titan and Pluto are modeled as ternary gas mixtures: nitrogen-methane-ethane and nitrogen-methane-carbon monoxide, respectively. Calculations using CRYOCHEM can provide us with compositions not only in two-phase equilibria, but also that in three-phase equilibria. Densities of all phases involved will also be calculated. For Titan, density inversion between liquid and solid phases will be identified and presented. In the inversion, the density of solid phase is less than that in the liquid phase. The method and results of this work will be useful for further investigations and modeling on the atmospheres of Titan, Pluto, and other bodies with similar conditions in the Solar System and beyond.
Liquid-like cationic sub-lattice in copper selenide clusters
NASA Astrophysics Data System (ADS)
White, Sarah L.; Banerjee, Progna; Jain, Prashant K.
2017-02-01
Super-ionic solids, which exhibit ion mobilities as high as those in liquids or molten salts, have been employed as solid-state electrolytes in batteries, improved thermoelectrics and fast-ion conductors in super-capacitors and fuel cells. Fast-ion transport in many of these solids is supported by a disordered, `liquid-like' sub-lattice of cations mobile within a rigid anionic sub-lattice, often achieved at high temperatures or pressures via a phase transition. Here we show that ultrasmall clusters of copper selenide exhibit a disordered cationic sub-lattice under ambient conditions unlike larger nanocrystals, where Cu+ ions and vacancies form an ordered super-structure similar to the bulk solid. The clusters exhibit an unusual cationic sub-lattice arrangement wherein octahedral sites, which serve as bridges for cation migration, are stabilized by compressive strain. The room-temperature liquid-like nature of the Cu+ sub-lattice combined with the actively tunable plasmonic properties of the Cu2Se clusters make them suitable as fast electro-optic switches.
Sharma, Kamendra P; Zhang, Yixiong; Thomas, Michael R; Brogan, Alex P S; Perriman, Adam W; Mann, Stephen
2014-10-02
An anisotropic glucose oxidase-polymer surfactant nanoconjugate is synthesized and shown to exhibit complex temperature-dependent phase behavior in the solvent-free state. At close to room temperature, the nanoconjugate crystallizes as a mesolamellar soft solid with an expanded interlayer spacing of ca. 12 nm and interchain correlation lengths consistent with alkyl tail-tail and PEO-PEO ordering. The soft solid displays a birefringent spherulitic texture and melts at 40 °C to produce a solvent-free liquid protein without loss of enzyme secondary structure. The nanoconjugate melt exhibits a birefringent dendritic texture below the conformation transition temperature (Tc) of glucose oxidase (58 °C) and retains interchain PEO-PEO ordering. Our results indicate that the shape anisotropy of the protein-polymer surfactant globular building block plays a key role in directing mesolamellar formation in the solvent-free solid and suggests that the microstructure observed in the solvent-free liquid protein below Tc is associated with restrictions in the intramolecular motions of the protein core of the nanoconjugate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chezhina, N.V., E-mail: chezhina@nc2490.spb.edu; Korolev, D.A.; Zhuk, N.A.
On the basis of the results of magnetic susceptibility and ESR studies of the Bi{sub 3}Nb{sub 1−x}Fe{sub x}O{sub 7−δ} solid solutions iron atoms in the solid solutions of cubic modification of bismuth niobate were found to exist as Fe(III) monomers and exchange bound Fe(III)-O-Fe(III) dimers with antiferro- and ferromagnetic type of superexchange. The exchange parameters and the distribution of monomers and dimers in the solid solutions were calculated as a function of paramagnetic atom content. - Graphical abstract: The study of the Bi{sub 3}Nb{sub 1−x}Fe{sub x}O{sub 7−δ} solid solutions showed that the introduction of iron atoms into the structure ofmore » Bi{sub 3}NbO{sub 7} stabilizes the cubic structure of bismuth niobate making the phase transition tetragonal ↔ cubic structure irreversible. In the Bi{sub 3}Nb{sub 1−x}Fe{sub x}O{sub 7−δ} solid solutions we observe the formation of dimers with antiferro- and ferromagnetic exchange. Such clusters are partially retained even at the infinite dilution of the solid solution, which testifies for their rigidity. A sufficiently high parameter of ferromagnetic exchange in a dimer (+53 cm{sup −1}) seems to result from iron atoms being located in the vicinity of oxygen vacancy. - Highlights: • The reversible transition cubic – tetragonal modifications in Bi{sub 3}NbO{sub 7} becomes irreversible. • Only cubic modification of Bi{sub 3}Nb{sub 1-x}Fe{sub x}O{sub 7-δ} is stable due to clusters of Fe atoms. • These clusters are sufficiently strong and retained even at the infinite dilution. • The calculations of magnetic susceptibility give the distribution of the clusters and single atoms.« less
Iron Cycling in Sediment of the North Atlantic: Preliminary Results from R/V Knorr Expedition 223
NASA Astrophysics Data System (ADS)
Anderson, C. H.; Estes, E. R.; Dyar, M. D.; Murray, R. W.; Spivack, A. J.; Sauvage, J.; McKinley, C. C.; Present, T. M.; Homola, K.; Pockalny, R. A.; D'Hondt, S.
2015-12-01
Iron (Fe) in marine sediments is a significant microbial electron acceptor [Fe(III)] in suboxic conditions and is an electron donor [Fe(II)] in oxic conditions. In the transition from oxic to suboxic sediment, a portion of solid Fe is reduced and mobilized as soluble Fe(II) into interstitial water during the oxidation of organic matter. The presence of Fe and its oxidation state in oxic sediment provides insight into an important metabolic and mineral reaction pathway in subseafloor sediment. We recovered bulk sediment and interstitial water at western North Atlantic sites during Expedition 223 on the R/V Knorr in November, 2014. The expedition targeted regions with predominantly oxic sediment and regions with predominantly anoxic sediment, ideal for investigating redox Fe cycling between solid and aqueous phases. At Site 10 (14.4008N, 50.6209W, 4455m water depth), interstitial dissolved oxygen is depleted within the upper few meters of sediment. At Site 12 (29.6767N, 58.3285W, 5637m water depth), interstitial dissolved oxygen is present throughout the cored sediment column (10s of meters). Here we present total solid Fe concentration for 45 bulk sediment samples and total aqueous Fe and Mn concentrations for 50 interstitial water samples analyzed via ICP-ES. We additionally present Fe(II) and Fe(III) speciation results from 10 solid sediment samples determined by Mossbauer spectroscopy. We trace downcore fluctuations in Fe in solid and aqueous phases to understand Fe cycling in oxic, suboxic, and transitional regimes. Our preliminary data indicate that solid Fe concentration ranges from 4-6 wt % at the oxic site; aqueous Fe ranges from below detection to 20μM and aqueous Mn ranges from 1 to 125 μM at the anoxic site. In the anoxic sediment (Site 10), 86-90% of the total Fe is oxidized [Fe(III)] and 10-14% as reduced [Fe(II)], compared to 3-6% as reduced [Fe(II)] at the oxic site (Site 12), even in sediment as old as 25 million years.
Solid electrolyte-electrode system for an electrochemical cell
Tuller, Harry L.; Kramer, Steve A.; Spears, Marlene A.
1995-01-01
An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is also provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willey, Trevor M., E-mail: willey1@llnl.gov; Lauderbach, Lisa; Gagliardi, Franco
HMX-based explosives LX-10 and PBX-9501 were heated through the β-δ phase transition. Ultra-small angle x-ray scattering (USAXS) and molecular diffraction were simultaneously recorded as the HMX was heated. Mesoscale voids and structure dramatically change promptly with the β-δ phase transition, rather than with other thermal effects. Also, x-ray induced damage, observed in the USAXS, occurs more readily at elevated temperatures; as such, the dose was reduced to mitigate this effect. Optical microscopy performed during a similar heating cycle gives an indication of changes on longer length scales, while x-ray microtomography, performed before and after heating, shows the character of extensivemore » microstructural damage resulting from the temperature cycle and solid-state phase transition.« less
Willey, Trevor M.; Lauderbach, Lisa; Gagliardi, Franco; ...
2015-08-07
HMX-based explosives LX-10 and PBX-9501 were heated through the β-δ phase transition. Ultra-small angle x-ray scattering (USAXS) and molecular diffraction were simultaneously recorded as the HMX was heated. Mesoscale voids and structure dramatically change promptly with the β-δ phase transition, rather than with other thermal effects. Also, x-ray induced damage, observed in the USAXS, occurs more readily at elevated temperatures; as such, the dose was reduced to mitigate this effect. Optical microscopy performed during a similar heating cycle gives an indication of changes on longer length scales, while x-ray microtomography, performed before and after heating, shows the character of extensivemore » microstructural damage resulting from the temperature cycle and solid-state phase transition.« less
Development of diapiric structures in the upper mantle due to phase transitions
NASA Technical Reports Server (NTRS)
Liu, M.; Yuen, D. A.; Zhao, W.; Honda, S.
1991-01-01
Solid-state phase transition in time-dependent mantle convection can induce diapiric flows in the upper mantle. When a deep mantle plume rises toward phase boundaries in the upper mantle, the changes in the local thermal buoyancy, local heat capacity, and latent heat associated with the phase change at a depth of 670 kilometers tend to pinch off the plume head from the feeding stem and form a diapir. This mechanism may explain episodic hot spot volcanism. The nature of the multiple phase boundaries at the boundary between the upper and lower mantle may control the fate of deep mantle plumes, allowing hot plumes to go through and retarding the tepid ones.
Variational transition state theory: theoretical framework and recent developments.
Bao, Junwei Lucas; Truhlar, Donald G
2017-12-11
This article reviews the fundamentals of variational transition state theory (VTST), its recent theoretical development, and some modern applications. The theoretical methods reviewed here include multidimensional quantum mechanical tunneling, multistructural VTST (MS-VTST), multi-path VTST (MP-VTST), both reaction-path VTST (RP-VTST) and variable reaction coordinate VTST (VRC-VTST), system-specific quantum Rice-Ramsperger-Kassel theory (SS-QRRK) for predicting pressure-dependent rate constants, and VTST in the solid phase, liquid phase, and enzymes. We also provide some perspectives regarding the general applicability of VTST.
Phase Transformation of Droplets into Particles and Nucleation in Atmospheric Pressure Discharges
NASA Astrophysics Data System (ADS)
Iqbal, M. M.; Stallard, C. P.; Dowling, D. P.; Turner, M. M.
2013-09-01
We investigate the mechanism of phase transformation of liquid precursor droplets into nano-particulates in an atmospheric pressure discharge (APD). This phase transformation is possible when the solid to a liquid mass ratio of slurry droplet reaches a threshold value. The behaviour of phase transformation of a single slurry droplet of HMDSO is described by developing a numerical model under the saturation condition of evaporation. It is observed from the temporal evolution of inner radius (Ri) of a single slurry droplet that its value approaches zero before the entire shifting of a liquid phase and which explains with an expansion in the crust thickness (Ro - Ri) . The solid traces of nano-particles are observed experimentally on the surface coating depositions because the time for transferring the slurry droplet of HMDSO into solid state is amplified with an increment in the radii of droplets and the entire phase transition occurs within residence time for the nano-sized liquid droplets. The GDE coupled with discharge plasma is numerically solved to describe the mechanism of nucleation of nano-sized particles in APD plasma under similar conditions of the experiment. The growth of nucleation in APD plasma depends on the type of liquid precursor, such as HMDSO, TEOS and water, which is verified with a sharp peak in the nucleation rate and saturation ratio. Science Foundation Ireland under Grant No. 08/SRC/I1411.
Numerical modelling of biomass combustion: Solid conversion processes in a fixed bed furnace
NASA Astrophysics Data System (ADS)
Karim, Md. Rezwanul; Naser, Jamal
2017-06-01
Increasing demand for energy and rising concerns over global warming has urged the use of renewable energy sources to carry a sustainable development of the world. Bio mass is a renewable energy which has become an important fuel to produce thermal energy or electricity. It is an eco-friendly source of energy as it reduces carbon dioxide emissions. Combustion of solid biomass is a complex phenomenon due to its large varieties and physical structures. Among various systems, fixed bed combustion is the most commonly used technique for thermal conversion of solid biomass. But inadequate knowledge on complex solid conversion processes has limited the development of such combustion system. Numerical modelling of this combustion system has some advantages over experimental analysis. Many important system parameters (e.g. temperature, density, solid fraction) can be estimated inside the entire domain under different working conditions. In this work, a complete numerical model is used for solid conversion processes of biomass combustion in a fixed bed furnace. The combustion system is divided in to solid and gas phase. This model includes several sub models to characterize the solid phase of the combustion with several variables. User defined subroutines are used to introduce solid phase variables in commercial CFD code. Gas phase of combustion is resolved using built-in module of CFD code. Heat transfer model is modified to predict the temperature of solid and gas phases with special radiation heat transfer solution for considering the high absorptivity of the medium. Considering all solid conversion processes the solid phase variables are evaluated. Results obtained are discussed with reference from an experimental burner.
NASA Astrophysics Data System (ADS)
Na, Suok-Min; Yoo, Jin-Hyeong; Lambert, Paul K.; Jones, Nicholas J.
2018-05-01
High-entropy alloys (HEAs) containing multiple principle alloying elements exhibit unique properties so they are currently receiving great attention for developing innovative alloy designs. In FeCoNi-based HEAs, magnetic behaviors strongly depend on the addition of alloying elements, usually accompanied by structural changes. In this work, the effect of non-magnetic components on the ferromagnetic transition and magnetic behaviors in equiatomic FeCoNiCrX (X=Al, Ga, Mn and Sn) HEAs was investigated. Alloy ingots of nominal compositions of HEAs were prepared by arc melting and the button ingots were cut into discs for magnetic measurements as functions of magnetic field and temperature. The HEAs of FeCoNiCrMn and FeCoNiCrSn show typical paramagnetic behaviors, composed of solid solution FCC matrix, while the additions of Ga and Al in FeCoNiCr exhibit ferromagnetic behaviors, along with the coexistence of FCC and BCC phases due to spinodal decomposition. The partial phase transition in both HEAs with the additions of Ga and Al would enhance ferromagnetic properties due to the addition of the BCC phase. The saturation magnetization for the base alloy FeCoNiCr is 0.5 emu/g at the applied field of 20 kOe (TC = 104 K). For the HEAs of FeCoNiCrGa and FeCoNiCrAl, the saturation magnetization significantly increased to 38 emu/g (TC = 703 K) and 25 emu/g (TC = 277 K), respectively. To evaluate the possibility of solid solution FCC and BCC phases in FeCoNiCr-type HEAs, we introduced a parameter of valence electron concentration (VEC). The proposed rule for solid solution formation by the VEC was matched with FeCoNiCr-type HEAs.
Heat transfer across the interface between nanoscale solids and gas.
Cheng, Chun; Fan, Wen; Cao, Jinbo; Ryu, Sang-Gil; Ji, Jie; Grigoropoulos, Costas P; Wu, Junqiao
2011-12-27
When solid materials and devices scale down in size, heat transfer from the active region to the gas environment becomes increasingly significant. We show that the heat transfer coefficient across the solid-gas interface behaves very differently when the size of the solid is reduced to the nanoscale, such as that of a single nanowire. Unlike for macroscopic solids, the coefficient is strongly pressure dependent above ∼10 Torr, and at lower pressures it is much higher than predictions of the kinetic gas theory. The heat transfer coefficient was measured between a single, free-standing VO(2) nanowire and surrounding air using laser thermography, where the temperature distribution along the VO(2) nanowire was determined by imaging its domain structure of metal-insulator phase transition. The one-dimensional domain structure along the nanowire results from the balance between heat generation by the focused laser and heat dissipation to the substrate as well as to the surrounding gas, and thus serves as a nanoscale power-meter and thermometer. We quantified the heat loss rate across the nanowire-air interface, and found that it dominates over all other heat dissipation channels for small-diameter nanowires near ambient pressure. As the heat transfer across the solid-gas interface is nearly independent of the chemical identity of the solid, the results reveal a general scaling relationship for gaseous heat dissipation from nanostructures of all solid materials, which is applicable to nanoscale electronic and thermal devices exposed to gaseous environments.
Mott transition in the π -flux S U (4 ) Hubbard model on a square lattice
NASA Astrophysics Data System (ADS)
Zhou, Zhichao; Wu, Congjun; Wang, Yu
2018-05-01
With increasing repulsive interaction, we show that a Mott transition occurs from the semimetal to the valence bond solid, accompanied by the Z4 discrete symmetry breaking. Our simulations demonstrate the existence of a second-order phase transition, which confirms the Ginzburg-Landau analysis. The phase transition point and the critical exponent η are also estimated. To account for the effect of a π flux on the ordering in the strong-coupling regime, we analytically derive by the perturbation theory the ring-exchange term, which is the leading-order term that can reflect the difference between the π -flux and zero-flux S U (4 ) Hubbard models.
Shock Compression Response of Calcium Fluoride (CaF2)
NASA Astrophysics Data System (ADS)
Root, Seth
2017-06-01
The fluorite crystal structure is a textbook lattice that is observed for many systems, such as CaF2, Mg2 Si, and CeO2. Specifically, CaF2 is a useful material for studying the fluorite system because it is readily available as a single crystal. Under static compression, CaF2 is known to have at least three solid phases: fluorite, cotunnite, and a Ni2 In phase. Along the Hugoniot CaF2 undergoes a fluorite to cotunnite phase transition, however, at higher shock pressures it is unknown whether CaF2 undergoes another solid phase transition or melts directly from the cotunnite phase. In this work, we conducted planar shock compression experiments on CaF2 using Sandia's Z-machine and a two-stage light gun up to 900 GPa. In addition, we use density functional theory (DFT) based quantum molecular dynamics (QMD) simulations to provide insight into the CaF2 state along the Hugoniot. In collaboration with: Michael Desjarlais, Ray Lemke, Patricia Kalita, Scott Alexander, Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL850.
Vargeese, Anuj A; Joshi, Satyawati S; Krishnamurthy, V N
2010-08-15
Ammonium nitrate (AN) is an inorganic crystalline compound used as a solid propellant oxidizer and as a nitrogenous fertilizer. The practical use of AN as solid propellant oxidizer is restricted due to the near room temperature polymorphic phase transition and hygroscopicity. A good deal of effort has been expended for last many years to stabilize the polymorphic transitions of AN, so as to minimize the storage difficulties of AN based fertilizers and to achieve more environmentally benign propellant systems. Also, particles with aspect ratio nearer to one are a vital requirement in fertilizer and propellant industries. In the present study AN is crystallized in presence of trace amount of potassium ferrocyanide (K(4)Fe(CN)(6)) crystal habit modifier and kept for different time intervals. And the effect of K(4)Fe(CN)(6) on the habit and phase modification of AN was studied. Phase modified ammonium nitrate (PMAN) with a particle aspect ratio nearer to one was obtained by this method and the reasons for this modifications are discussed. The morphology changes were studied by SEM, the phase modifications were studied by DSC and the structural properties were studied by powder XRD. Copyright 2010 Elsevier B.V. All rights reserved.
Parents' perspectives on caring for children after solid organ transplant.
Lerret, Stacee M; Johnson, Norah L; Haglund, Kristin A
2017-07-01
To explore parents' experiences of the transition from hospital to home and complex chronic illness management following their children's solid organ transplant (SOT). Qualitative component of a larger mixed methods longitudinal study. Parents of SOT recipients were interviewed three times following hospital discharge from five major pediatric transplant hospitals in the United States. Analysis of parent interviews (N = 48) resulted in three themes that characterized the phases of transition to home and complex chronic illness care. Three themes, corresponding to the three time periods of data collection, included "getting back to normal" at 3 weeks, "becoming routine" at 3 months, and "facing a future" at 6 months. Challenges families experienced over the course of their transition are also described. The transition from hospital to home and complex chronic condition care is challenging and changes over time. Nurses are called upon to prepare parents to become knowledgeable and confident to care for the child after hospital discharge. Nurses can best support families in transition after SOT by anticipating and understanding their dynamic challenging complex care needs. © 2017 Wiley Periodicals, Inc.
Renormalization group study of the melting of a two-dimensional system of collapsing hard disks
NASA Astrophysics Data System (ADS)
Ryzhov, V. N.; Tareyeva, E. E.; Fomin, Yu. D.; Tsiok, E. N.; Chumakov, E. S.
2017-06-01
We consider the melting of a two-dimensional system of collapsing hard disks (a system with a hard-disk potential to which a repulsive step is added) for different values of the repulsive-step width. We calculate the system phase diagram by the method of the density functional in crystallization theory using equations of the Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young theory to determine the lines of stability with respect to the dissociation of dislocation pairs, which corresponds to the continuous transition from the solid to the hexatic phase. We show that the crystal phase can melt via a continuous transition at low densities (the transition to the hexatic phase) with a subsequent transition from the hexatic phase to the isotropic liquid and via a first-order transition. Using the solution of renormalization group equations with the presence of singular defects (dislocations) in the system taken into account, we consider the influence of the renormalization of the elastic moduli on the form of the phase diagram.
Equations of state for hydrogen and deuterium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerley, Gerald Irwin
2003-12-01
This report describes the complete revision of a deuterium equation of state (EOS) model published in 1972. It uses the same general approach as the 1972 EOS, i.e., the so-called 'chemical model,' but incorporates a number of theoretical advances that have taken place during the past thirty years. Three phases are included: a molecular solid, an atomic solid, and a fluid phase consisting of both molecular and atomic species. Ionization and the insulator-metal transition are also included. The most important improvements are in the liquid perturbation theory, the treatment of molecular vibrations and rotations, and the ionization equilibrium and mixturemore » models. In addition, new experimental data and theoretical calculations are used to calibrate certain model parameters, notably the zero-Kelvin isotherms for the molecular and atomic solids, and the quantum corrections to the liquid phase. The report gives a general overview of the model, followed by detailed discussions of the most important theoretical issues and extensive comparisons with the many experimental data that have been obtained during the last thirty years. Questions about the validity of the chemical model are also considered. Implications for modeling the 'giant planets' are also discussed.« less
Infrared spectra of molecules and materials of astrophysical interest
NASA Technical Reports Server (NTRS)
Durig, J. R.
1978-01-01
The Raman spectra of gaseous, liquid and solid, and infrared spectra of gaseous and solid isopropylamine-d sub 0 and -d sub 2 was investigated between 4000 and 50 cm superscript -1. Differences between the spectrum of the solid phase and that of the fluid phases were interpreted in terms of an equilibrium between low energy s-trans and high energy gauche conformers, and a complete vibrational assignment was proposed for the s-trans conformer. The far infrared spectra of the gaseous compounds contained bands due to the asymmetric amino and coupled methyl torsions; the assignment of these bands was aided by observation of a number of two quantum transitions for each vibrational mode. The asymmetric potential functions were calculated, which resulted in values for the enthalpy differences between conformers in the gaseous phase of 446 and 523 callmole for the sub 0 -d and -d sub 2 compounds, respectively. The methyl torsional potential function of isopropylamine-d sub 0 was calculated which led to a value for the barrier height to internal rotation of the methyl rotors of 4.23 + or - 0.06 kcal/mole. Values for the ideal gas thermodynamic functions were calculated over a range of temperatures.
Perovskite-like fluorides and oxyfluorides: Phase transitions and caloric effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flerov, I. N., E-mail: flerov@iph.krasn.ru; Gorev, M. V., E-mail: gorev@iph.krasn.ru; Tressaud, A.
2011-01-15
An analysis of the effect that chemical and hydrostatic pressures have on the thermodynamic properties of perovskite-like fluorine-oxygen compounds A{sub 2}A Prime MeO{sub x}F{sub 6-x} has revealed that materials under-going order-disorder transitions and having significant external-pressure compliance have the highest caloric efficiency. Some of the fluorides and oxyfluorides under study can be considered promising solid coolants.
NASA Astrophysics Data System (ADS)
Dolz, M. I.; Fasano, Y.; Cejas Bolecek, N. R.; Pastoriza, H.; Mosser, V.; Li, M.; Konczykowski, M.
2015-09-01
We detect the persistence of the solidification and order-disorder first-order transition lines in the phase diagram of nanocrystalline Bi2 Sr2 CaCu2 O8 vortex matter down to a system size of less than one hundred vortices. The temperature location of the vortex solidification transition line is not altered by decreasing the sample size although there is a depletion of the entropy jump at the transition with respect to macroscopic vortex matter. The solid order-disorder phase transition field moves upward on decreasing the system size due to the increase of the surface-to-volume ratio of vortices entailing a decrease on the average vortex binding energy.
Dolz, M I; Fasano, Y; Cejas Bolecek, N R; Pastoriza, H; Mosser, V; Li, M; Konczykowski, M
2015-09-25
We detect the persistence of the solidification and order-disorder first-order transition lines in the phase diagram of nanocrystalline Bi_{2}Sr_{2}CaCu_{2}O_{8} vortex matter down to a system size of less than one hundred vortices. The temperature location of the vortex solidification transition line is not altered by decreasing the sample size although there is a depletion of the entropy jump at the transition with respect to macroscopic vortex matter. The solid order-disorder phase transition field moves upward on decreasing the system size due to the increase of the surface-to-volume ratio of vortices entailing a decrease on the average vortex binding energy.
Huergo-Zapico, Leticia; Parodi, Monica; Pedrazzi, Marco; Mingari, Maria Cristina; Sparatore, Bianca; Gonzalez, Segundo; Olive, Daniel; Bottino, Cristina
2016-01-01
Several evidences suggest that NK cells can patrol the body and eliminate tumors in their initial phases but may hardly control established solid tumors. Multiple factors, including the transition of tumor cells towards a proinvasive/prometastatic phenotype, the immunosuppressive effect of the tumor microenvironment, and the tumor structure complexity, may account for limited NK cell efficacy. Several putative mechanisms of NK cell suppression have been defined in these last years; conversely, the cross talk between NK cells and tumor cells undergoing different transitional phases remains poorly explored. Nevertheless, recent in vitro studies and immunohistochemical analyses on tumor biopsies suggest that NK cells could not only kill tumor cells but also influence their evolution. Indeed, NK cells may induce tumor cells to change the expression of HLA-I, PD-L1, or NKG2D-L and modulate their susceptibility to the immune response. Moreover, NK cells may be preferentially located in the borders of tumor masses, where, indeed, tumor cells can undergo Epithelial-to-Mesenchymal Transition (EMT) acquiring prometastatic phenotype. Finally, the recently highlighted role of HMGB1 both in EMT and in amplifying the recruitment of NK cells provides further hints on a possible effect of NK cells on tumor progression and fosters new studies on this issue. PMID:27294158
Solid electrolyte-electrode system for an electrochemical cell
Tuller, H.L.; Kramer, S.A.; Spears, M.A.
1995-04-04
An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is also provided. 17 figures.
Solid-solid phase change thermal storage application to space-suit battery pack
NASA Astrophysics Data System (ADS)
Son, Chang H.; Morehouse, Jeffrey H.
1989-01-01
High cell temperatures are seen as the primary safety problem in the Li-BCX space battery. The exothermic heat from the chemical reactions could raise the temperature of the lithium electrode above the melting temperature. Also, high temperature causes the cell efficiency to decrease. Solid-solid phase-change materials were used as a thermal storage medium to lower this battery cell temperature by utilizing their phase-change (latent heat storage) characteristics. Solid-solid phase-change materials focused on in this study are neopentyl glycol and pentaglycerine. Because of their favorable phase-change characteristics, these materials appear appropriate for space-suit battery pack use. The results of testing various materials are reported as thermophysical property values, and the space-suit battery operating temperature is discussed in terms of these property results.
Diffusive and martensitic nucleation kinetics in solid-solid transitions of colloidal crystals
Peng, Yi; Li, Wei; Wang, Feng; Still, Tim; Yodh, Arjun G.; Han, Yilong
2017-01-01
Solid–solid transitions between crystals follow diffusive nucleation, or various diffusionless transitions, but these kinetics are difficult to predict and observe. Here we observed the rich kinetics of transitions from square lattices to triangular lattices in tunable colloidal thin films with single-particle dynamics by video microscopy. Applying a small pressure gradient in defect-free regions or near dislocations markedly transform the diffusive nucleation with an intermediate-stage liquid into a martensitic generation and oscillation of dislocation pairs followed by a diffusive nucleus growth. This transformation is neither purely diffusive nor purely martensitic as conventionally assumed but a combination thereof, and thus presents new challenges to both theory and the empirical criterion of martensitic transformations. We studied how pressure, density, grain boundary, triple junction and interface coherency affect the nucleus growth, shape and kinetic pathways. These novel microscopic kinetics cast new light on control solid–solid transitions and microstructural evolutions in polycrystals. PMID:28504246
Optical Properties in Nonequilibrium Phase Transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ao, T.; Lee, E.; Tam, H.
An open question about the dynamical behavior of materials is how phase transition occurs in highly nonequilibrium systems. One important class of study is the excitation of a solid by an ultrafast, intense laser. The preferential heating of electrons by the laser field gives rise to initial states dominated by hot electrons in a cold lattice. Using a femtosecond laser pump-probe approach, we have followed the temporal evolution of the optical properties of such a system. The results show interesting correlation to nonthermal melting and lattice disordering processes. They also reveal a liquid-plasma transition when the lattice energy density reachesmore » a critical value.« less
Optical Properties in Non-equilibrium Phase Transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ao, T; Ping, Y; Widmann, K
An open question about the dynamical behavior of materials is how phase transition occurs in highly non-equilibrium systems. One important class of study is the excitation of a solid by an ultrafast, intense laser. The preferential heating of electrons by the laser field gives rise to initial states dominated by hot electrons in a cold lattice. Using a femtosecond laser pump-probe approach, we have followed the temporal evolution of the optical properties of such a system. The results show interesting correlation to non-thermal melting and lattice disordering processes. They also reveal a liquid-plasma transition when the lattice energy density reachesmore » a critical value.« less
Anim-Danso, Emmanuel; Zhang, Yu; Dhinojwala, Ali
2013-06-12
Understanding the freezing of salt solutions near solid surfaces is important in many scientific fields. Here we use sum frequency generation (SFG) spectroscopy to study the freezing of a NaCl solution next to a sapphire substrate. During cooling we observe two transitions. The first corresponds to segregation of concentrated brine next to the sapphire surface as we cool the system down to the region where ice and brine phases coexist. At this transition, the intensity of the ice-like peak decreases, suggesting the disruption of hydrogen-bonding by sodium ions. The second transition corresponds to the formation of NaCl hydrates with abrupt changes in both the SFG intensity and the sharpness of spectral peaks. The similarity in the position of the SFG peaks with those observed using IR and Raman spectroscopy indicates the formation of NaCl·2H2O crystals next to the sapphire substrate. The melting temperatures of the hydrates are very similar to those reported for bulk NaCl·2H2O. This study enhances our understanding of nucleation and freezing of salt solutions on solid surfaces and the effects of salt ions on the structure of interfacial ice.
Correa, Alfredo A; Bonev, Stanimir A; Galli, Giulia
2006-01-31
At high pressure and temperature, the phase diagram of elemental carbon is poorly known. We present predictions of diamond and BC8 melting lines and their phase boundary in the solid phase, as obtained from first-principles calculations. Maxima are found in both melting lines, with a triple point located at approximately 850 GPa and approximately 7,400 K. Our results show that hot, compressed diamond is a semiconductor that undergoes metalization upon melting. In contrast, in the stability range of BC8, an insulator to metal transition is likely to occur in the solid phase. Close to the diamond/liquid and BC8/liquid boundaries, molten carbon is a low-coordinated metal retaining some covalent character in its bonding up to extreme pressures. Our results provide constraints on the carbon equation of state, which is of critical importance for devising models of Neptune, Uranus, and white dwarf stars, as well as of extrasolar carbon-rich planets.
NASA Technical Reports Server (NTRS)
Singh, Jag J.; Shen, Chih-Ping; Sprinkle, Danny R.
1992-01-01
As part of a study to demonstrate the suitability of an X-ray or gamma ray probe for monitoring the quality and flow rate of slush hydrogen, mass attenuation coefficients for Cd-109 X- and gamma radiation in five chemical compounds were measured. The Ag-109 K rays were used for water and acetic acid, whereas E3 transition from the first excited state at 87.7 keV in Ag-109 provided the probe radiation for bromobenzene, alpha (exp 2) chloroisodurene, and cetyl bromide. Measurements were made for a single phase (gas, liquid, solid) as well as mixed phases (liquid plus solid) in all cases. It was shown that the mass attenuation coefficient for the selected radiations is independent of the phase of the test fluids or phase ratios in the case of mixed phase fluids. Described here are the procedure and the results for the five fluid systems investigated.
RNA buffers the phase separation behavior of prion-like RNA binding proteins.
Maharana, Shovamayee; Wang, Jie; Papadopoulos, Dimitrios K; Richter, Doris; Pozniakovsky, Andrey; Poser, Ina; Bickle, Marc; Rizk, Sandra; Guillén-Boixet, Jordina; Franzmann, Titus M; Jahnel, Marcus; Marrone, Lara; Chang, Young-Tae; Sterneckert, Jared; Tomancak, Pavel; Hyman, Anthony A; Alberti, Simon
2018-05-25
Prion-like RNA binding proteins (RBPs) such as TDP43 and FUS are largely soluble in the nucleus but form solid pathological aggregates when mislocalized to the cytoplasm. What keeps these proteins soluble in the nucleus and promotes aggregation in the cytoplasm is still unknown. We report here that RNA critically regulates the phase behavior of prion-like RBPs. Low RNA/protein ratios promote phase separation into liquid droplets, whereas high ratios prevent droplet formation in vitro. Reduction of nuclear RNA levels or genetic ablation of RNA binding causes excessive phase separation and the formation of cytotoxic solid-like assemblies in cells. We propose that the nucleus is a buffered system in which high RNA concentrations keep RBPs soluble. Changes in RNA levels or RNA binding abilities of RBPs cause aberrant phase transitions. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Correa, Alfredo A.; Bonev, Stanimir A.; Galli, Giulia
2006-01-23
At high pressure and temperature, the phase diagram of elemental carbon is poorly known. We present predictions of diamond and BC8 melting lines and their phase boundary in the solid phase, as obtained from first-principles calculations. Maxima are found in both melting lines, with a triple point located at ≈ 850 GPa and ≈ 7,400 K. Our results show that hot, compressed diamond is a semiconductor that undergoes metalization upon melting. In contrast, in the stability range of BC8, an insulator to metal transition is likely to occur in the solid phase. Close to the diamond/liquid and BC8/liquid boundaries, moltenmore » carbon is a low-coordinated metal retaining some covalent character in its bonding up to extreme pressures. Lastly, our results provide constraints on the carbon equation of state, which is of critical importance for devising models of Neptune, Uranus, and white dwarf stars, as well as of extrasolar carbon-rich planets.« less
Fixed Packed Bed Reactors in Reduced Gravity
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro; McCready, Mark J.
2004-01-01
We present experimental data on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid flow through packed columns in microgravity. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under microgravity conditions compared to 1-g and the widely used Talmor map in 1-g is not applicable for predicting the transition boundaries. A new transition criterion between bubble and pulse flow in microgravity is proposed and tested using the data. Since there is no static head in microgravity, the pressure drop measured is the true frictional pressure drop. The pressure drop data, which has much smaller scatter than most reported 1-g data clearly shows that capillary effects can enhance the pressure drop (especially in the bubble flow regime) as much as 200% compared to that predicted by the single phase Ergun equation. The pressure drop data are correlated in terms of a two-phase friction factor and its dependence on the gas and liquid Reynolds numbers and the Suratman number. The influence of gravity on the pulse amplitude and frequency is also discussed and compared to that under normal gravity conditions. Experimental work is planned to determine the gas-liquid and liquid-solid mass transfer coefficients. Because of enhanced interfacial effects, we expect the gas-liquid transfer coefficients kLa and kGa (where a is the gas-liquid interfacial area) to be higher in microgravity than in normal gravity at the same flow conditions. This will be verified by gas absorption experiments, with and without reaction in the liquid phase, using oxygen, carbon dioxide, water and dilute aqueous amine solutions. The liquid-solid mass transfer coefficient will also be determined in the bubble as well as the pulse flow regimes using solid benzoic acid particles in the packing and measuring their rate of dissolution. The mass transfer coefficients in microgravity will be compared to those in normal gravity cocurrent flow to determine the mass transfer enhancement and propose new mass transfer correlations for two-phase gas-liquid flows through packed beds in microgravity.
Extinguishment of a Diffusion Flame Over a PMMA Cylinder by Depressurization in Reduced-Gravity
NASA Technical Reports Server (NTRS)
Goldmeer, Jeffrey Scott
1996-01-01
Extinction of a diffusion flame burning over horizontal PMMA (Polymethyl methacrylate) cylinders in low-gravity was examined experimentally and via numerical simulations. Low-gravity conditions were obtained using the NASA Lewis Research Center's reduced-gravity aircraft. The effects of velocity and pressure on the visible flame were examined. The flammability of the burning solid was examined as a function of pressure and the solid-phase centerline temperature. As the solid temperature increased, the extinction pressure decreased, and with a centerline temperature of 525 K, the flame was sustained to 0.1 atmospheres before extinguishing. The numerical simulation iteratively coupled a two-dimensional quasi-steady, gas-phase model with a transient solid-phase model which included conductive heat transfer and surface regression. This model employed an energy balance at the gas/solid interface that included the energy conducted by the gas-phase to the gas/solid interface, Arrhenius pyrolysis kinetics, surface radiation, and the energy conducted into the solid. The ratio of the solid and gas-phase conductive fluxes Phi was a boundary condition for the gas-phase model at the solid-surface. Initial simulations modeled conditions similar to the low-gravity experiments and predicted low-pressure extinction limits consistent with the experimental limits. Other simulations examined the effects of velocity, depressurization rate and Phi on extinction.
Pressure dependence of the monoclinic phase in (1–x)Pb(Mg 1/3Nb 2/3)O 3-xPbTiO₃ solid solutions
Ahart, Muhtar; Sinogeikin, Stanislav; Shebanova, Olga; ...
2012-12-26
We combine high-pressure x-ray diffraction, high-pressure Raman scattering, and optical microscopy to investigate a series of (1–x)Pb(Mg 1/3Nb 2/3)O 3-xPbTiO₃ (PMN-xPT) solid solutions (x=0.2, 0.3, 0.33, 0.35, 0.37, 0.4) in diamond anvil cells up to 20 GPa at 300 K. The Raman spectra show a peak centered at 380 cm⁻¹ starting above 6 GPa for all samples, in agreement with previous observations. X-ray diffraction measurements are consistent with this spectral change indicating a structural phase transition; we find that the triplet at the pseudocubic (220) Bragg peak merges into a doublet above 6 GPa. Our results indicate that the morphotropicmore » phase boundary region (x=0.33–0.37) with the presence of monoclinic symmetry persists up to 7 GPa. The pressure dependence of ferroelectric domains in PMN-0.32PT single crystals was observed using a polarizing optical microscope. The domain wall density decreases with pressure and the domains disappear at a modest pressure of 3 GPa. We propose a pressure-composition phase diagram for PMN-xPT solid solutions.« less
MacDonald, A; Baxter, J N; Bessent, R G; Gray, H W; Finlay, I G
1997-08-01
Idiopathic slow transit constipation (ISTC) is considered to be a heterogeneous condition in which patients have varying sites and degrees of delayed gastrointestinal transit. The majority of patients have pancolonic disease, and colectomy with ileocolorectal anastomosis has been the mainstay of surgical treatment. Severe constipation following traumatic childbirth is now being recognized and this subgroup of patients may have delayed transit confined to the rectosigmoid colon. In theory, proximal transit in these patients should be normal. Gastric emptying was studied in patients with constipation following childbirth or ISTC and in controls. After an overnight fast, both patients and controls received breakfast, which consisted of cornflakes, sugar and milk. The liquid marker 111In-labelled di-ethylene tri-amine penta-acetic acid (DTPA) was added to the milk. A solid marker, 99mTc-labelled colloid, was impregnated on to paper and sealed with cellulose. The t1/2 for gastric emptying was calculated. Liquid phase emptying was normal in both constipation following childbirth and ISTC. Solid phase emptying was delayed significantly in ISTC compared with that in patients with constipation following childbirth and controls. In addition, half the patients with ISTC had delayed transit through the small bowel and proximal colon. Small bowel and colonic transit were normal in patients with constipation following childbirth. Patients with constipation following childbirth represent a distinct subgroup with normal proximal gastrointestinal function. Gastric emptying studies may be helpful in selecting patients for surgical management of severe constipation.
NASA Astrophysics Data System (ADS)
Lahoz, F.; Villacampa, B.; Alcalá, R.; Marquina, C.; Ibarra, M. R.
1997-04-01
The influence of crystal mixing on the structural phase transitions in Rb1-xCsxCaF3 (0
Sterner, S.M.; Chou, I.-Ming; Downs, R.T.; Pitzer, Kenneth S.
1992-01-01
The Gibbs energies of mixing for NaCl-KCl binary solids and liquids and solid-saturated NaCl-KCl-H2O ternary liquids were modeled using asymmetric Margules treatments. The coefficients of the expressions were calibrated using an extensive array of binary solvus and solidus data, and both binary and ternary liquidus data. Over the PTX range considered, the system exhibits complete liquid miscibility among all three components and extensive solid solution along the anhydrous binary. Solid-liquid and solid-solid phase equilibria were calculated by using the resulting equations and invoking the equality of chemical potentials of NaCl and KCl between appropriate phases at equilibrium. The equations reproduce the ternary liquidus and predict activity coefficients for NaCl and KCl components in the aqueous liquid under solid-saturation conditions between 673 and 1200 K from vapor saturation up to 5 kbar. In the NaCl-KCl anhydrous binary system, the equations describe phase equilibria and predict activity coefficients of the salt components for all stable compositions of solid and liquid phases between room temperature and 1200 K and from 1 bar to 5 kbar. ?? 1992.
A New Class of Ternary Compound for Lithium-Ion Battery: from Composite to Solid Solution.
Wang, Jiali; Wu, Hailong; Cui, Yanhua; Liu, Shengzhou; Tian, Xiaoqing; Cui, Yixiu; Liu, Xiaojiang; Yang, Yin
2018-02-14
Searching for high-performance cathode materials is a crucial task to develop advanced lithium-ion batteries (LIBs) with high-energy densities for electrical vehicles (EVs). As a promising lithium-rich material, Li 2 MnO 3 delivers high capacity over 200 mAh g -1 but suffers from poor structural stability and electronic conductivity. Replacing Mn 4+ ions by relatively larger Sn 4+ ions is regarded as a possible strategy to improve structural stability and thus cycling performance of Li 2 MnO 3 material. However, large difference in ionic radii of Mn 4+ and Sn 4+ ions leads to phase separation of Li 2 MnO 3 and Li 2 SnO 3 during high-temperature synthesis. To prepare solid-solution phase of Li 2 MnO 3 -Li 2 SnO 3 , a buffer agent of Ru 4+ , whose ionic radius is in between that of Mn 4+ and Sn 4+ ions, is introduced to assist the formation of a single solid-solution phase. The results show that the Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system evolves from mixed composite phases into a single solid-solution phase with increasing Ru content. Meanwhile, discharge capacity of this ternary system shows significantly increase at the transformation point which is ascribed to the improvement of Li + /e - transportation kinetics and anionic redox chemistry for solid-solution phase. The role of Mn/Sn molar ratio of Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system has also been studied. It is revealed that higher Sn content benefits cycling stability of the system because Sn 4+ ions with larger sizes could partially block the migration of Mn 4+ and Ru 4+ from transition metal layer to Li layer, thus suppressing structural transformation of the system from layered-to-spinel phase. These findings may enable a new route for exploring ternary or even quaternary lithium-rich cathode materials for LIBs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirka, Michael M.; Nandwana, Peeyush; Lee, Yousub
Additive manufacturing (AM) of metals is rapidly emerging as an established manufacturing process for metal components. Unlike traditional metals fabrication processes, metals fabricated via AM undergo localized thermal cycles during fabrication. As a result, AM presents the opportunity to control the liquid-solid phase transformation, i.e. material texture. But, thermal cycling presents challenges from the standpoint of solid-solid phase transformations. We will discuss the opportunities and challenges in metals AM in the context of texture control and associated solid-solid phase transformations in Ti-6Al-4V and Inconel 718.
Fracture and healing of elastomers: A phase-transition theory and numerical implementation
NASA Astrophysics Data System (ADS)
Kumar, Aditya; Francfort, Gilles A.; Lopez-Pamies, Oscar
2018-03-01
A macroscopic theory is proposed to describe, explain, and predict the nucleation and propagation of fracture and healing in elastomers undergoing arbitrarily large quasistatic deformations. The theory, which can be viewed as a natural generalization of the phase-field approximation of the variational theory of brittle fracture of Francfort and Marigo (1998) to account for physical attributes innate to elastomers that have been recently unveiled by experiments at high spatio-temporal resolution, rests on two central ideas. The first one is to view elastomers as solids capable to undergo finite elastic deformations and capable also to phase transition to another solid of vanishingly small stiffness: the forward phase transition serves to model the nucleation and propagation of fracture while the reverse phase transition models the possible healing. The second central idea is to take the phase transition to be driven by the competition between a combination of strain energy and hydrostatic stress concentration in the bulk and surface energy on the created/healed new surfaces in the elastomer. From an applications point of view, the proposed theory amounts to solving a system of two coupled and nonlinear PDEs for the deformation field and an order parameter, or phase field. A numerical scheme is presented to generate solutions for these PDEs in N = 2 and 3 space dimensions. This is based on an efficient non-conforming finite-element discretization, which remains stable for large deformations and elastomers of any compressibility, together with an implicit gradient flow solver, which is able to deal with the large changes in the deformation field that can ensue locally in space and time from the nucleation of fracture. The last part of this paper is devoted to presenting sample simulations of the so-called Gent-Park experiment. Those are confronted with recent experimental results for various types of silicone elastomers.
Rothfuss, Nicholas E; Petters, Markus D
2017-03-01
Atmospheric aerosols can exist in amorphous semi-solid or glassy phase states. These states are determined by the temperature (T) and relative humidity (RH). New measurements of viscosity for amorphous semi-solid nanometer size sucrose particles as a function of T and RH are reported. Viscosity is measured by inducing coagulation between two particles and probing the thermodynamic states that induce the particle to relax into a sphere. It is shown that the glass transition temperature can be obtained by extrapolation to 10 12 Pa s from the measured temperature-dependent viscosity in the 10 6 to 10 7 Pa s range. The experimental methodology was refined to allow isothermal probing of RH dependence and to increase the range of temperatures over which the dry temperature dependence can be studied. Several experiments where one monomer was sodium dodecyl sulfate (SDS), which remains solid at high RH, are also reported. These sucrose-SDS dimers were observed to relax into a sphere at T and RH similar to those observed in sucrose-sucrose dimers, suggesting that amorphous sucrose will flow over an insoluble particle at a viscosity similar to that characteristic of coalescence between two sucrose particles. Possible physical and analytical implications of this observation are considered. The data reported here suggest that semi-solid viscosity between 10 4 and 10 12 Pa s can be modelled over a wide range of T and RH using an adapted Vogel-Fulcher-Tammann equation and the Gordon-Taylor mixing rule. Sensitivity of modelled viscosity to variations in dry glass transition temperature, Gordon-Taylor constant, and aerosol hygroscopicity are explored, along with implications for atmospheric processes such as ice nucleation of glassy organic aerosols in the upper free troposphere. The reported measurement and modelling framework provides a template for characterizing the phase diagram of other amorphous aerosol systems, including secondary organic aerosols.
Mashiko, Hiroki; Yamaguchi, Tomohiko; Oguri, Katsuya; Suda, Akira; Gotoh, Hideki
2014-01-01
In many atomic, molecular and solid systems, Lorentzian and Fano profiles are commonly observed in a broad research fields throughout a variety of spectroscopies. As the profile structure is related to the phase of the time-dependent dipole moment, it plays an important role in the study of quantum properties. Here we determine the dipole phase in the inner-shell transition using spectral phase interferometry for direct electric-field reconstruction (SPIDER) with isolated attosecond pulses (IAPs). In addition, we propose a scheme for pulse generation and compression by manipulating the inner-shell transition. The electromagnetic radiation generated by the transition is temporally compressed to a few femtoseconds in the extreme ultraviolet (XUV) region. The proposed pulse-compression scheme may provide an alternative route to producing attosecond pulses of light. PMID:25510971
Coupling between crystal structure and magnetism in transition-metal oxides
NASA Astrophysics Data System (ADS)
Barton, Phillip Thomas
Transition-metal oxides exhibit a fascinating array of phenomena ranging from superconductivity to negative thermal expansion to catalysis. This dissertation focuses on magnetism, which is integral to engineering applications such as data storage, electric motors/generators, and transformers. The investigative approach follows structure-property relationships from materials science and draws on intuition from solid-state chemistry. The interplay between crystal structure and magnetic properties is studied experimentally in order to enhance the understanding of magnetostructural coupling mechanisms and provide insight into avenues for tuning behavior. A combination of diffraction and physical property measurements were used to study structural and magnetic phase transitions as a function of chemical composition, temperature, and magnetic field. The systems examined are of importance in Li-ion battery electrochemistry, condensed-matter physics, solid-state chemistry, and p-type transparent conducting oxides. The materials were prepared by solid-state reaction of powder reagents at high temperatures for periods lasting tens of hours. The first project discussed is of a solid solution between NiO, a correlated insulator, and LiNiO2, a layered battery cathode. Despite the deceptive structural and compositional simplicity of this system, a complete understanding of its complex magnetic properties has remained elusive. This study shows that nanoscale domains of chemical order form at intermediate compositions, creating interfaces between antiferromagnetism and ferrimagnetism that give rise to magnetic exchange bias. A simple model of the magnetism is presented along with a comprehensive phase diagram. The second set of investigations focus on the Ge-Co-O system where the spin-orbit coupling of Co(II) plays a significant role. GeCo2O 4 is reported to exhibit unusual magnetic behavior that arises from Ising spin in its spinel crystal structure. Studies by variable-temperature synchrotron X-ray diffraction reveal a magnetostructural transition and capacitance measurements show evidence for magnetodielectric behavior. The above work uncovered a Co10Ge3O16 phase that had a known structure but whose physical properties were largely uncharacterized. This project examined its metamagnetic properties using detailed magnetometry experiments. Upon the application of a magnetic field, this material goes through a first-order phase transition from a noncollinear antiferromagnet to an unknown ferrimagnetic state. Lastly, this thesis explored the chemical dilution of magnetism in some perovskite and delafossite solid solutions. In the perovskite structure, compositions intermediate to the endmembers SrRuO3, a ferromagnetic metal, and LaRhO3, a diamagnetic semiconductor, were investigated. While the magnetism of this system is poised between localized and itinerant behavior, a compositionally-driven metal to insulator transition, revealed by electrical resistivity measurements, did not strongly impact the magnetic properties. Instead, both octahedral tilting and magnetic dilution had strong effects, and comparison of this characterization to Sr1-- x CaxRuO3 reinforces the important role of structural distortions in determining magnetic ground state. The final materials studied were of composition CuAl1-- xCrxO2 (0 < x < 1) in the delafossite structure. The primary interest was the geometric frustration of antiferromagnetism in CuCrO 2 and significant short-range correlations were observed above TN. The analysis found that reducing the number of degenerate states through Al substitution did not enhance magnetic ordering because of the weakening of magnetic exchange.
Line tension effects on the wetting of nanostructures: an energy method
NASA Astrophysics Data System (ADS)
Guo, Hao-Yuan; Li, Bo; Feng, Xi-Qiao
2017-09-01
The superhydrophobicity and self-cleaning property of micro/nano-structured solid surfaces require a stable Cassie-Baxter (CB) wetting state at the liquid-solid interface. We present an energy method to investigate how the three-phase line tension affects the CB wetting state on nanostructured materials. For some nanostructures, the line tension may engender a distinct energy barrier, which restricts the position of the three-phase contact line and affects the stability of the CB wetting state. We ascertain the upper and lower limits of the critical pressure at the CB-Wenzel transition. Our results suggest that superhydrophobicity on nanostructures can be modulated by tailoring the line tension and harnessing the curvature effect. This study also provides new insights into the sinking phenomena observed in the nanoparticle-floating experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, J.; Cease, H.; Jaskierny, W. F.
2014-10-23
We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. We observed a reduced amount of photons in solid phase compared to that in liquid phase. We used amore » conventional time projection chamber system to measure the electron drift time in a kilogram of solid xenon and observed faster electron drift speed in the solid phase xenon compared to that in the liquid phase.« less
Lavine, B K; Brzozowski, D M; Ritter, J; Moores, A J; Mayfield, H T
2001-12-01
The water-soluble fraction of aviation jet fuels is examined using solid-phase extraction and solid-phase microextraction. Gas chromatographic profiles of solid-phase extracts and solid-phase microextracts of the water-soluble fraction of kerosene- and nonkerosene-based jet fuels reveal that each jet fuel possesses a unique profile. Pattern recognition analysis reveals fingerprint patterns within the data characteristic of fuel type. By using a novel genetic algorithm (GA) that emulates human pattern recognition through machine learning, it is possible to identify features characteristic of the chromatographic profile of each fuel class. The pattern recognition GA identifies a set of features that optimize the separation of the fuel classes in a plot of the two largest principal components of the data. Because principal components maximize variance, the bulk of the information encoded by the selected features is primarily about the differences between the fuel classes.
Effects of Coulomb Repulsion on the Phase Diagram of the Asakura-Oosawa Model
NASA Astrophysics Data System (ADS)
Haaga, Jason; Pemberton, Elizabeth; Gunton, James; Rickman, Jeffrey
We investigate the effect of adding a screened Coulomb charge to a model colloidal system interacting via the Asakura-Oosawa depletion potential. This model has previously been used to study the early stages of amelogenin self-assembly, a crucial process in the formation of dental enamel, by Li et al (BiophysicalJournal 101, 2502 (2011). By employing Monte Carlo simulations, we explore the role of interaction strengths and ranges on phase behavior. We find that charge strength and range have a strong influence on the stable, in the case of long range depletion potential, or metastable, in the case of short range depletion, fluid-fluid phase separation. Coulomb repulsion narrows and flattens the coexistence curve with increasing charge. This talk will also discuss solid-solid transitions present for certain interaction ranges. This work is supported by the G. Harold and Leila Y. Mathers Foundation.
Effect of solid-meal caloric content on gastric emptying kinetics of solids and liquids.
Urbain, J L; Siegel, J A; Mortelmans, L; van Cutsem, E; van den Maegdenbergh, V; de Roo, M
1989-08-01
In this study, we have evaluated the effect of the caloric content of a physiological test meal on the gastric emptying kinetics of solids and liquids. 22 healthy male volunteers were studied in two groups matched for age. After an overnight fast, each volunteer underwent the same test procedure; in the first group (G I), 10 volunteers received a meal consisting of bread, 111In-DTPA water and 1 scrambled egg labeled with 99mTc-labelled sulphur colloid; in the second group (G II) 12 volunteers were given the same meal but with 2 labeled eggs in order to increase the caloric content of the solid phase meal. Simultaneous anterior and posterior images were recorded using a dual-headed gamma camera. Solid and liquid geometric mean data were analyzed to determine the lag phase, the emptying rate and the half-emptying time for both solids and liquids. Solid and liquid gastric half-emptying times were significantly prolonged in G II compared to G I volunteers. For the solid phased, the delay was accounted for by a longer lag phase and a decrease in the equilibrium emptying rate. The emptying rate of the liquid phase was significantly decreased in G II compared to G I. Within each group, no statistically significant difference was observed between solid and liquid emptying rates. We conclude that the caloric content of the solid portion of a meal not only alters the emptying of the solid phase but also affects the emptying of the liquid component of the meal.
Yield stress in amorphous solids: A mode-coupling-theory analysis
NASA Astrophysics Data System (ADS)
Ikeda, Atsushi; Berthier, Ludovic
2013-11-01
The yield stress is a defining feature of amorphous materials which is difficult to analyze theoretically, because it stems from the strongly nonlinear response of an arrested solid to an applied deformation. Mode-coupling theory predicts the flow curves of materials undergoing a glass transition and thus offers predictions for the yield stress of amorphous solids. We use this approach to analyze several classes of disordered solids, using simple models of hard-sphere glasses, soft glasses, and metallic glasses for which the mode-coupling predictions can be directly compared to the outcome of numerical measurements. The theory correctly describes the emergence of a yield stress of entropic nature in hard-sphere glasses, and its rapid growth as density approaches random close packing at qualitative level. By contrast, the emergence of solid behavior in soft and metallic glasses, which originates from direct particle interactions is not well described by the theory. We show that similar shortcomings arise in the description of the caging dynamics of the glass phase at rest. We discuss the range of applicability of mode-coupling theory to understand the yield stress and nonlinear rheology of amorphous materials.
Gong, Yue; Zhang, Jienan; Jiang, Liwei; Shi, Jin-An; Zhang, Qinghua; Yang, Zhenzhong; Zou, Dongli; Wang, Jiangyong; Yu, Xiqian; Xiao, Ruijuan; Hu, Yong-Sheng; Gu, Lin; Li, Hong; Chen, Liquan
2017-03-29
We report a method for in situ atomic-scale observation of electrochemical delithiation in a working all-solid-state battery using a state-of-the-art chip based in situ transmission electron microscopy (TEM) holder and focused ion beam milling to prepare an all-solid-state lithium-ion battery sample. A battery consisting of LiCoO 2 cathode, LLZO solid state electrolyte and gold anode was constructed, delithiated and observed in an aberration corrected scanning transmission electron microscope at atomic scale. We found that the pristine single crystal LiCoO 2 became nanosized polycrystal connected by coherent twin boundaries and antiphase domain boundaries after high voltage delithiation. This is different from liquid electrolyte batteries, where a series of phase transitions take place at LiCoO 2 cathode during delithiation. Both grain boundaries become more energy favorable along with extraction of lithium ions through theoretical calculation. We also proposed a lithium migration pathway before and after polycrystallization. This new methodology could stimulate atomic scale in situ scanning/TEM studies of battery materials and provide important mechanistic insight for designing better all-solid-state battery.
Xu, Kailin; Xiong, Xinnuo; Guo, Liuqi; Wang, Lili; Li, Shanshan; Tang, Peixiao; Yan, Jin; Wu, Di; Li, Hui
2015-12-01
Levetiracetam (LEV) crystals were prepared using different solvents at different temperatures. The LEV crystals were systematically characterized by X-ray powder diffraction (XRPD) and morphological analysis. The results indicated that many kinds of crystal habits exist in a solid form of LEV. To investigate the effects of LEV concentration, crystallization temperature, and crystallization type on crystallization and solid phase transformation of LEV, multiple methods were performed for LEV aqueous solution to determine if a new solid form exists in solid-state LEV. However, XRPD data demonstrate that the LEV solid forms possess same spatial arrangements that are similar to the original solid form. This result indicates that the LEV concentration, crystallization temperature, and crystallization type in aqueous solution have no influence on the crystallization and solid phase transformation of LEV. Moreover, crystallization by sublimation, melt cooling, and quench cooling, as well as mechanical effect, did not result in the formation of new LEV solid state. During melt cooling, the transformation of solid form LEV is a direct process from melting amorphous phase to the original LEV crystal phase, and the conversion rate is very quick. In addition, stability investigation manifested that LEV solid state is very stable under various conditions. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Semenycheva, Alexandra V.; Chuvil'deev, Vladimir N.; Nokhrin, Aleksey V.
2018-05-01
The paper offers a model describing the process of grain boundary self-diffusion in metals with phase transitions in the solid state. The model is based on ideas and approaches found in the theory of non-equilibrium grain boundaries. The range of application of basic relations contained in this theory is shown to expand, as they can be used to calculate the parameters of grain boundary self-diffusion in high-temperature and low-temperature phases of metals with a phase transition. The model constructed is used to calculate grain boundary self-diffusion activation energy in titanium and zirconium and an explanation is provided as to their abnormally low values in the low-temperature phase. The values of grain boundary self-diffusion activation energy are in good agreement with the experiment.
NASA Astrophysics Data System (ADS)
Xie, Dongjin; Xu, Jing; Cheng, Haifeng; Wang, Nannan; Zhou, Qun
2018-06-01
Thermochromic compound [(C2H5)2NH2]2CuCl4 displays a solid-solid phase transition at 52 °C apparent with color changing from green to yellow, induced by the geometry of [CuCl4]2- anion (regarded as chromophore of the compound) ranging from square-planar to flattened tetrahedral structure. Fourier transform infrared (FTIR) spectroscopy and two-dimensional correlation (2D-COS) analysis have been applied to study the role played by the amine and ethyl group of the ammonium cation during the phase transition process in heating and cooling process. With temperature increasing, strength weakening of the N-H…Cl H-bond and thermal disordering of the alkyl chain both occur in the phase transition. 2D-COS analysis reveals the N-H…Cl H-bond responds to increasing temperature in the first place, and may the dominating driving force for the structure variation of [CuCl4]2- anion. Although the thermochromic process of [(C2H5)2NH2]2CuCl4 is a reversible process, the sequential order of the variation of NH2+ and alkyl group of [(C2H5)2NH2]2CuCl4 derived by 2D-COS analysis during heating and cooling process are reverse, indicating the dynamic process of the phase transition is not perfect reversible. The existence of undercooling phenomenon in the cooling process has been revealed by 2D-COS analysis.
Microwave spectroscopic observation of distinct electron solid phases in wide quantum wells
NASA Astrophysics Data System (ADS)
Hatke, A. T.; Liu, Yang; Magill, B. A.; Moon, B. H.; Engel, L. W.; Shayegan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.
2014-06-01
In high magnetic fields, two-dimensional electron systems can form a number of phases in which interelectron repulsion plays the central role, since the kinetic energy is frozen out by Landau quantization. These phases include the well-known liquids of the fractional quantum Hall effect, as well as solid phases with broken spatial symmetry and crystalline order. Solids can occur at the low Landau-filling termination of the fractional quantum Hall effect series but also within integer quantum Hall effects. Here we present microwave spectroscopy studies of wide quantum wells that clearly reveal two distinct solid phases, hidden within what in d.c. transport would be the zero diagonal conductivity of an integer quantum-Hall-effect state. Explanation of these solids is not possible with the simple picture of a Wigner solid of ordinary (quasi) electrons or holes.
Phase transitions in mixed gas hydrates: experimental observations versus calculated data.
Schicks, Judith M; Naumann, Rudolf; Erzinger, Jörg; Hester, Keith C; Koh, Carolyn A; Sloan, E Dendy
2006-06-15
This paper presents the phase behavior of multicomponent gas hydrate systems formed from primarily methane with small amounts of ethane and propane. Experimental conditions were typically in a pressure range between 1 and 6 MPa, and the temperature range was between 260 and 290 K. These multicomponent systems have been investigated using a variety of techniques including microscopic observations, Raman spectroscopy, and X-ray diffraction. These techniques, used in combination, allowed for measurement of the hydrate structure and composition, while observing the morphology of the hydrate crystals measured. The hydrate formed immediately below the three-phase line (V-L --> V-L-H) and contained crystals that were both light and dark in appearance. The light crystals, which visually were a single solid phase, showed a spectroscopic indication for the presence of occluded free gas in the hydrate. In contrast, the dark crystals were measured to be structure II (sII) without the presence of these occluded phases. Along with hydrate measurements near the decomposition line, an unexpected transformation process was visually observed at P-T-conditions in the stability field of the hydrates. Larger crystallites transformed into a foamy solid upon cooling over this transition line (between 5 and 10 K below the decomposition temperature). Below the transition line, a mixture of sI and sII was detected. This is the first time that these multicomponent systems have been investigated at these pressure and temperature conditions using both visual and spectroscopic techniques. These techniques enabled us to observe and measure the unexpected transformation process showing coexistence of different gas hydrate phases.
NASA Astrophysics Data System (ADS)
Engelmann, Yannick; Bogaerts, Annemie; Neyts, Erik C.
2014-09-01
Using reactive molecular dynamics simulations, the melting behavior of nickel-carbon nanoclusters is examined. The phase diagrams of icosahedral and Wulff polyhedron clusters are determined using both the Lindemann index and the potential energy. Formulae are derived for calculating the equilibrium constants and the solid and liquid fractions during a phase transition, allowing more rational determination of the melting temperature with respect to the arbitrary Lindemann value. These results give more insight into the properties of nickel-carbon nanoclusters in general and can specifically be very useful for a better understanding of the synthesis of carbon nanotubes using the catalytic chemical vapor deposition method.
Ab initio molecular dynamic study of solid-state transitions of ammonium nitrate
Yu, Hongyu; Duan, Defang; Liu, Hanyu; Yang, Ting; Tian, Fubo; Bao, Kuo; Li, Da; Zhao, Zhonglong; Liu, Bingbing; Cui, Tian
2016-01-01
High-pressure polymorphism and phase transitions have wide ranging consequences on the basic properties of ammonium nitrate. However, the phase diagram of ammonium nitrate at high pressure and high temperature is still under debate. This study systematically investigates the phase transitions and structural properties of ammonium nitrate at a pressure range of 5–60 GPa and temperature range of 250–400 K by ab initio molecular dynamics simulations. Two new phases are identified: one corresponds to the experimentally observed phase IV’ and the other is named AN-X. Simultaneously, the lattice strains play a significant role in the formation and stabilization of phase IV’, providing a reasonable explanation for experimental observation of phase IV-IV’ transition which only appears under nonhydrostatic pressure. In addition, 12 O atoms neighboring the NH (N atom in ammonium cation) atom are selected as reference system to clearly display the tanglesome rotation of ammonium cation. PMID:26754622
Precipitation in Al–Mg solid solution prepared by solidification under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jie, J.C., E-mail: jiejc@dlut.edu.cn; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001; Wang, H.W.
2014-01-15
The precipitation in Al–Mg solid solution containing 21.6 at.% Mg prepared by solidification under 2 GPa was investigated. The results show that the γ-Al{sub 12}Mg{sub 17} phase is formed and the β′ phase cannot be observed in the solid solution during ageing process. The precipitation of γ and β phases takes place in a non-uniform manner during heating process, i.e. the γ and β phases are first formed in the interdendritic region, which is caused by the inhomogeneous distribution of Mg atoms in the solid solution solidified under high pressure. Peak splitting of X-ray diffraction patterns of Al(Mg) solid solutionmore » appears, and then disappears when the samples are aged at 423 K for different times, due to the non-uniform precipitation in Al–Mg solid solution. The direct transformation from the γ to β phase is observed after ageing at 423 K for 24 h. It is considered that the β phase is formed through a peritectoid reaction of α + γ → β which needs the diffusion of Mg atoms across the interface of α/γ phases. - Highlights: • The γ phase is formed and the β′ phase is be observed in Al(Mg) solid solution. • Peak splitting of XRD pattern of Al(Mg) solid solution appears during aged at 150 °C. • The β phase is formed through a peritectoid reaction of α + γ → β.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Chandan K.; Singh, Jayant K., E-mail: jayantks@iitk.ac.in
The solid-liquid coexistence of a Lennard-Jones fluid confined in slit pores of variable pore size, H, is studied using molecular dynamics simulations. Three-stage pseudo-supercritical transformation path of Grochola [J. Chem. Phys. 120(5), 2122 (2004)] and multiple histogram reweighting are employed for the confined system, for various pore sizes ranging from 20 to 5 molecular diameters, to compute the solid-liquid coexistence. The Gibbs free energy difference is evaluated using thermodynamic integration method by connecting solid-liquid phases under confinement via one or more intermediate states without any first order phase transition among them. Thermodynamic melting temperature is found to oscillate with wallmore » separation, which is in agreement with the behavior seen for kinetic melting temperature evaluated in an earlier study. However, thermodynamic melting temperature for almost all wall separations is higher than the bulk case, which is contrary to the behavior seen for the kinetic melting temperature. The oscillation founds to decay at around H = 12, and beyond that pore size dependency of the shift in melting point is well represented by the Gibbs-Thompson equation.« less
Physico-Chemical Properties and Phase Behaviour of Pyrrolidinium-Based Ionic Liquids
Domańska, Urszula
2010-01-01
A review of the relevant literature on 1-alkyl-1-methylpyrrolidinium-based ionic liquids has been presented. The phase diagrams for the binary systems of {1-ethyl-1-methylpyrrolidinium trifluoromethanesulfonate (triflate) [EMPYR][CF3SO3] + water, or + 1-butanol} and for the binary systems of {1-propyl-1-methylpyrrolidinium trifluoromethanesulfonate (triflate) [PMPYR][CF3SO3] + water, or + an alcohol (1-butanol, 1-hexanol, 1-octanol, 1-decanol)} have been determined at atmospheric pressure using a dynamic method. The influence of alcohol chain length was discussed for the [PMPYR][CF3SO3]. A systematic decrease in the solubility was observed with an increase of the alkyl chain length of an alcohol. (Solid + liquid) phase equilibria with complete miscibility in the liquid phase region were observed for the systems involving water and alcohols. The solubility of the ionic liquid increases as the alkyl chain length on the pyrrolidinium cation increases. The correlation of the experimental data has been carried out using the Wilson, UNIQUAC and the NRTL equations. The phase diagrams reported here have been compared to the systems published earlier with the 1-alkyl-1-methylpyrrolidinium-based ionic liquids. The influence of the cation and anion on the phase behaviour has been discussed. The basic thermal properties of pure ILs, i.e., melting temperature and the enthalpy of fusion, the solid-solid phase transition temperature and enthalpy have been measured using a differential scanning microcalorimetry technique. PMID:20480044
NASA Astrophysics Data System (ADS)
Bakovets, V. V.; Zolotova, E. S.; Antonova, O. V.; Korol'kov, I. V.; Yushina, I. V.
2016-12-01
The specific features of the photoluminescence of [ nCaWO4-(1- n)CaMoO4]:Eu3+ solid solutions with the scheelite structure are examined using X-ray phase analysis and photoluminescence, Raman scattering, and diffuse reflectance spectroscopy. The studied features are associated with a change in the long- and short-range orders of the crystal lattice upon variations in the composition of solutions in the range n = 0-1.0 (with a pitch of 0.2) at a concentration of red photoluminescence activator Eu3+ of 2 mol %. The mechanism of the modification of photoluminescence of solid solutions upon variations in their composition has been discussed. Anomalies in the variations in parameters of the crystal lattice, its short-range order, and luminescence spectra have been observed in the transition from pure compounds CaMoO4:Eu3+ and CaWO4:Eu3+ to solutions; the concentration of Eu3+ ions in the centrosymmetric localization increases (decreases) in the transition from the molybdate (tungstate). It has been demonstrated that the spectral radiant emittance of solid solution [0.4CaWO4-0.6CaMoO4]:Eu3+ (2 mol %) is the closest to that of an incandescent lamp.
Preparation and characterization of novel anion phase change heat storage materials.
Hong, Wei; Lil, Qingshan; Sun, Jing; Di, Youbo; Zhao, Zhou; Yu, Wei'an; Qu, Yuan; Jiao, TiFeng; Wang, Guowei; Xing, Guangzhong
2013-10-01
In this paper, polyurethane phase change material was successfully prepared with TDI with BDO for hard segments and PEG for soft segments. Moreover, based on this the solid-solid phase change material, A-PCM1030 which can release anions was prepared with the successful addition of anion additives A1030 for the first time. Then the test of the above material was conducted utilizing FT-IR, DSC, TEM, WAXD and Air Ion Detector. The Results indicated that the polyurethane phase change material possesses excellent thermal stability since there was no appearance of liquid leakage and phase separation after 50 times warming-cooling thermal cycles. It also presented reversibility on absorbing and releasing heat. In addition, adding a little A1030 can increase the thermal stability and reduce phase transition temperatures, as well as reduce the undercooling of the polyurethane phase change material. In addition, the anion test results suggested that the supreme amount of anion released by A-PCM1030 could reach 2510 anions/cm3 under dynamic conditions, which is beneficial for human health.
Ren, Jie; Liu, Guang-Hua; You, Wen-Long
2015-03-18
We study the fidelity susceptibility in an antiferromagnetic spin-1 XXZ chain numerically. By using the density-matrix renormalization group method, the effects of the alternating single-site anisotropy D on fidelity susceptibility are investigated. Its relation with the quantum phase transition is analyzed. It is found that the quantum phase transition from the Haldane spin liquid to periodic Néel spin solid can be well characterized by the fidelity. Finite size scaling of fidelity susceptibility shows a power-law divergence at criticality, which indicates the quantum phase transition is of second order. The results are confirmed by the second derivative of the ground-state energy. We also study the relationship between the entanglement entropy, the Schmidt gap and quantum phase transitions. Conclusions drawn from these quantum information observables agree well with each other.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Yuhua; Luebke, David; Pennline, Henry
2012-01-01
It is generally accepted that current technologies for capturing CO{sub 2} are still too energy intensive. Hence, there is a critical need for development of new materials that can capture CO{sub 2} reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO{sub 2} capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO{sub 2} sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculatedmore » thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO{sub 2} adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO{sub 2} capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. These CO{sub 2} sorbent candidates were further considered for experimental validations. In this presentation, we first introduce our screening methodology with validating by solid dataset of alkali and alkaline metal oxides, hydroxides and bicarbonates which thermodynamic properties are available. Then, by studying a series of lithium silicates, we found that by increasing the Li{sub 2}O/SiO{sub 2} ratio in the lithium silicates their corresponding turnover temperatures for CO{sub 2} capture reactions can be increased. Compared to anhydrous K{sub 2}CO{sub 3}, the dehydrated K{sub 2}CO{sub 3}1.5H{sub 2}O can only be applied for post-combustion CO{sub 2} capture technology at temperatures lower than its phase transition (to anhydrous phase) temperature, which depends on the CO{sub 2} pressure and the steam pressure with the best range being PH{sub 2}O≤1.0 bar. Above the phase-transition temperature, the sorbent will be regenerated into anhydrous K{sub 2}CO{sub 3}. Our theoretical investigations on Na-promoted MgO sorbents revealed that the sorption process takes place through formation of the Na{sub 2}Mg(CO{sub 3}){sub 2} double carbonate with better reaction kinetics over porous MgO, that of pure MgO sorbent. The experimental sorption tests also indicated that the Na-promoted MgO sorbent has high reactivity and capacity towards CO{sub 2} sorption and can be easily regenerated either through pressure or temperature swing processes.« less
Method for making an electrochemical cell
Tuller, Harry L.; Kramer, Steve A.; Spears, Marlene A.; Pal, Uday B.
1996-01-01
An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is provided.
Phase and structural behavior of SmAlO{sub 3}–RAlO{sub 3} (R = Eu, Gd) systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohon, N.; Vasylechko, L., E-mail: crystal-lov@polynet.lviv.ua; Prots, Yu.
2014-02-01
Highlights: • Continuous solid solutions exist in the SmAlO{sub 3}–RAlO{sub 3} (R = Eu, Gd) systems. • Lattice parameter crossover was found in solid solutions Sm{sub 1−x}R{sub x}AlO{sub 3} (R = Eu, Gd). • Thermally induced lattice crossovers occur in Sm{sub 0.9}R{sub 0.1}AlO{sub 3} at elevated temperatures. • First-order structural phase transition Pbnm↔R3{sup ¯}c was found in Sm{sub 1−x}R{sub x}AlO{sub 3} (R = Eu, Gd). • Phase diagram of the systems SmAlO{sub 3}–EuAlO{sub 3} and SmAlO{sub 3}–GdAlO{sub 3} has been constructed. - Abstract: Phase and structural behavior in the SmAlO{sub 3}–RAlO{sub 3} (R = Eu, Gd) systems has been studiedmore » in a whole concentration range by means of laboratory X-ray diffraction, in situ synchrotron powder diffraction and differential thermal analysis techniques. Continuous solid solutions with orthorhombic perovskite structure have been found in both systems. Peculiarity of the solid solutions of Sm{sub 1−x}Eu{sub x}AlO{sub 3} and Sm{sub 1−x}Gd{sub x}AlO{sub 3} is the existence of two lattice parameter crossovers in each system occurred at x{sub Eu} = 0.07 and 0.62 and at x{sub Gd} = 0.04 and 0.33, respectively. The temperature induced lattice crossovers in the Sm{sub 0.9}Eu{sub 0.1}AlO{sub 3} and Sm{sub 0.9}Gd{sub 0.1}AlO{sub 3} samples have been found at 387 and 922 K and at 501 and 894 K. First-order reversible structural phase transformations Pbnm↔R3{sup ¯}c have been detected in both systems at the elevated temperatures. The temperatures of these transitions increase linearly with the decreasing of the samarium content. Phase diagrams of the pseudo-binary systems SmAlO{sub 3}–EuAlO{sub 3} and SmAlO{sub 3}–GdAlO{sub 3} have been constructed.« less
Electron drift in a large scale solid xenon
Yoo, J.; Jaskierny, W. F.
2015-08-21
A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Furthermore, it is demonstrated that a factor twomore » faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.« less
Polster, Christopher S; Wu, Sy-Juen; Gueorguieva, Ivelina; Sperry, David C
2015-04-06
An artificial stomach duodenum (ASD) model has been used to demonstrate the performance difference between two formulations of LY2300559, a low-solubility acidic developmental drug. The two formulations investigated were a conventional high-shear wet granulation (HSWG) formulation and a solid dispersion formulation. A pharmacokinetic study in humans demonstrated the enhanced performance of the solid dispersion formulation relative to the HSWG formulation. The Cmax and AUC of the solid dispersion was 2.6 and 1.9 times greater, respectively, compared to the HSWG formulation. In the ASD, the solid dispersion formulation performance was characterized by three main phases: (1) rapid release in the stomach, creating a supersaturated concentration of drug, (2) precipitation in the stomach, and (3) rapid redissolution of the precipitate in the duodenum to concentration levels that are supersaturated relative to crystalline drug. A series of complementary experiments were employed to describe this performance behavior mechanistically. Imaging experiments with a pH indicating dye showed that local pH gradients from meglumine in the solid dispersion formulation were responsible for creating a high initial supersaturation concentration in the stomach. Upon dissipation of meglumine, the drug precipitated in the stomach as an amorphous solid. Because the precipitated drug is in an amorphous form, it can then rapidly redissolve as it transits to the more neutral environment of the duodenum. This unexpected sequence of physical state changes gives a mechanistic explanation for the enhanced in vivo performance of the solid dispersion formulation relative to the HSWG formulation.
Equation of State and Viscosity of Tantalum and Iron from First Principles
NASA Astrophysics Data System (ADS)
Miljacic, Ljubomir; Demers, Steven; van de Walle, Axel
2011-03-01
To understand and model at continuum level the high-energy-density dynamic response in transition metals like Tantalum and Iron, as it arises in hypervelocity impact experiments, an accurate prediction of the underlying thermodynamic and kinetic properties for a range of temperatures and pressures is of critical importance. The relevant time scale of atomic motion in a dense gas, liquid, and solid is accessible with ab-initio Molecular Dynamics (MD) simulations. We calculate EoS for Ta and Fe via Thermodynamical Integration in 2D (V,T) phase space throughout different single and two-component phases. To reduce the ab-initio demand in selected regions of the space, we fit available gas-liquid data to the Peng-Robinson model and treat the solid phase within the Boxed-quasi-harmonic approximation. In the fluid part of the 2D phase space, we calculate shear viscosity via Green-Kubo relations, as time integration of the stress autocorrelation function.
NASA Astrophysics Data System (ADS)
Dwivedi, Akansha
Two new bismuth and lead oxide based perovskite ternary solid solutions, namely xBi(Zn1/2Ti1/2)O3-yPbZrO3-zPbTiO3 [xBZT-yPZ-zPT] and xBi(Mg1/2Ti1/2)O3-yBi(Zn 1/2Ti1/2)O3-zPbTiO3 [xBMT-yBZT-zPT] have been developed and their structural and electrical properties have been determined. Various characterization techniques such as X-ray diffraction, calorimetery, electron microscopy, dielectric and piezoelectric measurements have been performed to determine the details of the phase diagram, crystal structure, and domain structure. The selection of these materials is based on the hypothesis that the presence of BZT-PT (Case I ferroelectric (FE)) will increase the transition temperature of MPB systems BMT-PT (Case II FE), and PZ-PT (Case III FE), and subsequently a MPB will be observed in the ternary phase diagrams. The Case I, II, and III classification has been outlined by Stringer et al., is on the basis of the transition temperatures (TC) behavior with composition in the Bi and Pb oxide based binary systems. Several pseudobinary lines have been investigated across the xBZT-yPZ-zPT ternary phase diagram which exhibit varied TC behavior with composition, showing both Case I- and Case III-like TC trends in different regions. A MPB between rhombohedral to tetragonal phases has been located on a pseudobinary line 0.1BZT-0.9[xPT-(1-x)PZ]. Compositions near MPB exhibit mainly soft PZT-like properties with the TC around 60°C lower than the unmodified PZT near its MPB. Electrical properties are reported for the MPB composition, TC = 325°C, Pr = 35 microC/cm2, d33 = 300 pC/N and kP =0.45. Rhombohedral compositions show diffuse phase transition with small frequency dispersion, similar to relaxors. Two transition peaks in the permittivity as well as in the latent heat has been observed in some compositions near the BZT-PT binary. This leads to the speculation for the existence of miscibility gap in the solid solutions in these regions. Transmission electron microscopy (TEM) performed on these compositions show subdomain modulation contrast suggesting the presence of localized and correlated spatial fluctuations in the spontaneous strain. In the xBMT-yBZT-zPT system, very small rhombohedral region in the room temperature phase diagram has been observed. Owing to the limited solid solubility, only a part of the phase diagram could be explored. Compositions on pseudobinary xPT-(1-x)[0.9BMT-0.1BZT] has been successfully fabricated and characterized. High c/a ratio of 1.04 has been observed for a surprisingly low tolerance factor of 0.9732. Transition temperature trends have been established from DSC and dielectric data along this pseudobinary line. The following trend in the TC has been observed with the increase in non PT end member that has been divided into three zones: in Zone I TC increases, in Zone II it decreases, and in the Zone III, two transition temperatures are observed. From the TEM investigation, it has been noted that these compositions exhibit subdomain modulations which reflects the presence of spontaneous strain. These modulations increase with the increase in non PT end member, and at certain composition along pseudobinary, both macro and micro domains structure can be observed. Compositions in the rhombohedral phase of xBMT-yBZT-zPT show dramatic changes in dielectric and piezoelectric properties when quenched from high temperature. Samples quenched from temperature range 650°C-900°C show classical ferroelectric switching behavior, which is not observed on either side of this temperature range. These quenched states are however, unstable in nature and lose their ferroelectric properties when heated to a temperature as low as 400°C. Structural analysis by TEM shows varied domain structures for samples quenched from different temperatures. Evidences of tilt transitions and intermediate phases have also been observed in the TEM study. New insights into solid solution development and defect metastability are gained and discussed in relation to relaxor based ferroelectric phenomena. Complex domains and intermediate displacive phase transitions are all considered to consistently account for the structure-property-process relations in these novel systems.
NASA Astrophysics Data System (ADS)
Matsuura, Hiroyuki; Hamano, Tasuku; Zhong, Ming; Gao, Xu; Yang, Xiao; Tsukihashi, Fumitaka
2014-09-01
An increase in the utilization efficiency of CaO, one of the major fluxing agents used in various steelmaking processes, is required to reduce the amount of discharged slag and energy consumption of the process. The authors have intensively focused on the development of innovative dephosphorization process by using so called "multi-phase flux" composed of solid and liquid phases. This article summarizes the research on the above topic done by the authors, in which the formation mechanisms of P2O5-containing phase during CaO or 2CaO·SiO2 dissolution into molten slag, the phase relationship between solid and liquid phases at equilibrium, and thermodynamic properties of P2O5-containing phase have been clarified. The reactions between solid CaO or 2CaO·SiO2 and molten CaO-FeO x -SiO2-P2O5 slag were observed by dipping solid specimen in the synthesized slag at 1573 K or 1673 K. The formation of the CaO-FeO layer and dual-phase layer of solid 2CaO·SiO2 and FeO x -rich liquid phase was observed around the interface from the solid CaO side toward the bulk slag phase side. Condensation of P2O5 into 2CaO·SiO2 phase as 2CaO·SiO2-3CaO·P2O5 solid solution was observed in both cases of CaO and 2CaO·SiO2 as solid specimens. Measurement of the phase relationship for the CaO-FeO x -SiO2-P2O5 system confirmed the condensation of P2O5 in solid phase at low oxygen partial pressure. The thermodynamics of 2CaO·SiO2-3CaO·P2O5 solid solution are to be clarified to quantitatively simulate the dephosphorization process, and the current results are also introduced. Based on the above results, the reduction of CaO consumption, the discharged slag curtailment, and energy-saving effects have been discussed.
Garg, Uttam; Munar, Ada; Frazee, Clinton; Scott, David
2012-09-01
Vitamin D plays a vital role not only in bone health but also in pathophysiology of many other body functions. In recent years, there has been significant increase in testing of 25-hydroxyvitamin D (25-OH vitamin D), a marker of vitamin D deficiency. The most commonly used methods for the measurement of 25-OH vitamin D are immunoassays and liquid chromatography tandem mass spectrometry (LC-MS-MS). Since immunoassays suffer from inaccuracies and interferences, LC-MS-MS is a preferred method. In LC-MS-MS methods, 25-OH vitamin D is extracted from serum or plasma by solid-phase or liquid-phase extraction. Because these extraction methods are time consuming, we developed an easy method that uses simple protein precipitation followed by injection of the supernatant to LC-MS-MS. Several mass-to-charge (m/z) ratio transitions, including commonly used transitions based on water loss, were evaluated and several tube types were tested. The optimal transitions for 25-OH vitamin D2 and D3 were 395.5 > 269.5 and 383.4 > 257.3, respectively. The reportable range of the method was 1-100 ng/mL, and repeatability (within-run) and within-laboratory imprecision were <4% and <6%, respectively. The method agreed well with the solid-phase extraction methods. © 2012 Wiley Periodicals, Inc.
Syntax diagrams for body wave nomenclature, with generalizations for terrestrial planets
NASA Astrophysics Data System (ADS)
Knapmeyer, M.
2003-04-01
The Apollo network on the Moon constitutes the beginning of planetary seismology. In the next few decades, we may see seismometers deployed on the Moon again, on Mars, and perhaps on other terrestrial planets or satellites. Any seismological software for computation of body wave travel times on other planets should be highly versatile and be prepared for a huge variety of velocity distributions and internal structures. A suite of trial models for a planet might, for example, contain models with and without solid inner cores. It would then be useful if the software could detect physically meaningless phase names automatically without actually carrying out any computation. It would also be useful if the program were prepared to deal with features like fully solid cores, internal oceans, and varying depths of mineralogical phase changes like the olivine-spinel transition. Syntax diagrams are a standard method to describe the syntax of programming languages. They represent a graphical way to define which letter or phrase is allowed to follow a given sequence of letters. Syntax diagrams may be stored in data structures that allow automatic evaluation of a given letter sequence. Such diagrams are presented here for a generalized body wave nomenclature. Generalizations are made to overcome earth-specific notations which incorporate discontinuity depths into phase names or to distinguish olivine transitions from ice-ice transitions (as expected on the Galilean Satellites).
Phase Transitions in Model Active Systems
NASA Astrophysics Data System (ADS)
Redner, Gabriel S.
The amazing collective behaviors of active systems such as bird flocks, schools of fish, and colonies of microorganisms have long amazed scientists and laypeople alike. Understanding the physics of such systems is challenging due to their far-from-equilibrium dynamics, as well as the extreme diversity in their ingredients, relevant time- and length-scales, and emergent phenomenology. To make progress, one can categorize active systems by the symmetries of their constituent particles, as well as how activity is expressed. In this work, we examine two categories of active systems, and explore their phase behavior in detail. First, we study systems of self-propelled spherical particles moving in two dimensions. Despite the absence of an aligning interaction, this system displays complex emergent dynamics, including phase separation into a dense active solid and dilute gas. Using simulations and analytic modeling, we quantify the phase diagram and separation kinetics. We show that this nonequilibrium phase transition is analogous to an equilibrium vapor-liquid system, with binodal and spinodal curves and a critical point. We also characterize the dense active solid phase, a unique material which exhibits the structural signatures of a crystalline solid near the crystal-hexatic transition point, as well as anomalous dynamics including superdiffusive motion on intermediate timescales. We also explore the role of interparticle attraction in this system. We demonstrate that attraction drastically changes the phase diagram, which contains two distinct phase-separated regions and is reentrant as a function of propulsion speed. We interpret this complex situation with a simple kinetic model, which builds from the observed microdynamics of individual particles to a full description of the macroscopic phase behavior. We also study active nematics, liquid crystals driven out of equilibrium by energy-dissipating active stresses. The equilibrium nematic state is unstable in these materials, leading to beautiful and surprising behaviors including the spontaneous generation of topological defect pairs which stream through the system and later annihilate, yielding a complex, seemingly chaotic dynamical steady-state. Here, we describe the emergence of order from this chaos in the form of previously unknown broken-symmetry phases in which the topological defects themselves undergo orientational ordering. We have identified these defect-ordered phases in two realizations of an active nematic: first, a suspension of extensile bundles of microtubules and molecular motor proteins, and second, a computational model of extending hard rods. We will describe the defect-stabilized phases that manifest in these systems, our current understanding of their origins, and discuss whether such phases may be a general feature of extensile active nematics.
NASA Astrophysics Data System (ADS)
Zarkevich, Nikolai A.; Johnson, Duane D.
2015-03-01
Materials under pressure may exhibit critical electronic and structural transitions that affect equation of states, as known for superconductors and the magneto-structural transformations of iron with both geophysical and planetary implications. While experiments often use constant-pressure (diamond-anvil cell, DAC) measurements, many theoretical results address a constant-volume transitions, which avoid issues with magnetic collapse but cannot be directly compared to experiment. We establish a modified solid-state nudge elastic band (MSS-NEB) method to handle magnetic systems that may exhibit moment (and volume) collapse during transformation. We apply it to the pressure-induced transformation in iron between the low-pressure body-centered cubic (bcc) and the high-pressure hexagonal close-packed (hcp) phases, find the bcc-hcp equilibrium coexistence pressure and a transitional pathway, and compare to shock and DAC experiments. We use methods developed with support by the U.S. Department of Energy (DE-FG02-03ER46026 and DE-AC02-07CH11358). Ames Laboratory is operated for the DOE by Iowa State University under contract DE-AC02-07CH11358.
On the correlation between hydrogen bonding and melting points in the inositols
Bekö, Sándor L.; Alig, Edith; Schmidt, Martin U.; van de Streek, Jacco
2014-01-01
Inositol, 1,2,3,4,5,6-hexahydroxycyclohexane, exists in nine stereoisomers with different crystal structures and melting points. In a previous paper on the relationship between the melting points of the inositols and the hydrogen-bonding patterns in their crystal structures [Simperler et al. (2006 ▶). CrystEngComm 8, 589], it was noted that although all inositol crystal structures known at that time contained 12 hydrogen bonds per molecule, their melting points span a large range of about 170 °C. Our preliminary investigations suggested that the highest melting point must be corrected for the effect of molecular symmetry, and that the three lowest melting points may need to be revised. This prompted a full investigation, with additional experiments on six of the nine inositols. Thirteen new phases were discovered; for all of these their crystal structures were examined. The crystal structures of eight ordered phases could be determined, of which seven were obtained from laboratory X-ray powder diffraction data. Five additional phases turned out to be rotator phases and only their unit cells could be determined. Two previously unknown melting points were measured, as well as most enthalpies of melting. Several previously reported melting points were shown to be solid-to-solid phase transitions or decomposition points. Our experiments have revealed a complex picture of phases, rotator phases and phase transitions, in which a simple correlation between melting points and hydrogen-bonding patterns is not feasible. PMID:25075320
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Sow-Hsin; Wang, Zhe; Kolesnikov, Alexander I
2013-01-01
It has been conjectured that a 1st order liquid-to-liquid (L-L) phase transition (LLPT) between high density liquid (HDL) and low density liquid (LDL) in supercooled water may exist, as a thermodynamic extension to the liquid phase of the 1st order transition established between the two bulk solid phases of amorphous ice, the high density amorphous ice (HDA) and the low density amorphous ice (LDA). In this paper, we first recall our previous attempts to establish the existence of the 1st order L-L phase transition through the use of two neutron scattering techniques: a constant Q elastic diffraction study of isobaricmore » temperature scan of the D2O density, namely, the equation of state (EOS) measurements. A pronounced density hysteresis phenomenon in the temperature scan of the density above P = 1500 bar is observed which gives a plausible evidence of crossing the 1st order L-L phase transition line above this pressure; an incoherent quasi-elastic scattering measurements of temperature-dependence of the alpha-relaxation time of H2O at a series of pressures, namely, the study of the Fragile-to-Strong dynamic crossover (FSC) phenomenon as a function of pressure which we interpreted as the results of crossing the Widom line in the one-phase region. In this new experiment, we used incoherent inelastic neutron scattering (INS) to measure the density of states (DOS) of H atoms in H2O molecules in confined water as function of temperature and pressure, through which we may be able to follow the emergence of the LDL and HDL phases at supercooled temperature and high pressures. We here report for the first time the differences of librational and translational DOSs between the hypothetical HDL and LDL phases, which are similar to the corresponding differences between the well-established HDA and LDA ices. This is plausible evidence that the HDL and LDL phases are the thermodynamic extensions of the corresponding amorphous solid water HDA and LDA ices.« less
NASA Astrophysics Data System (ADS)
Chen, Sow-Hsin; Wang, Zhe; Kolesnikov, Alexander I.; Zhang, Yang; Liu, Kao-Hsiang
2013-02-01
It has been conjectured that a 1st order liquid-to-liquid (L-L) phase transition (LLPT) between high density liquid (HDL) and low density liquid (LDL) in supercooled water may exist, as a thermodynamic extension to the liquid phase of the 1st order transition established between the two bulk solid phases of amorphous ice, the high density amorphous ice (HDA) and the low density amorphous ice (LDA). In this paper, we first recall our previous attempts to establish the existence of the 1st order L-L phase transition through the use of two neutron scattering techniques: a constant Q elastic diffraction study of isobaric temperature scan of the D2O density, namely, the equation of state (EOS) measurements. A pronounced density hysteresis phenomenon in the temperature scan of the density above P = 1500 bar is observed which gives a plausible evidence of crossing the 1st order L-L phase transition line above this pressure; an incoherent quasi-elastic scattering measurements of temperature-dependence of the α-relaxation time of H2O at a series of pressures, namely, the study of the Fragile-to-Strong dynamic crossover (FSC) phenomenon as a function of pressure which we interpreted as the results of crossing the Widom line in the one-phase region. In this new experiment, we used incoherent inelastic neutron scattering (INS) to measure the density of states (DOS) of H atoms in H2O molecules in confined water as function of temperature and pressure, through which we may be able to follow the emergence of the LDL and HDL phases at supercooled temperature and high pressures. We here report for the first time the differences of librational and translational DOSs between the hypothetical HDL and LDL phases, which are similar to the corresponding differences between the well-established HDA and LDA ices. This is plausible evidence that the HDL and LDL phases are the thermodynamic extensions of the corresponding amorphous solid water HDA and LDA ices.
NASA Astrophysics Data System (ADS)
Zheng, Y.; Liu, Q.; Li, Y.
2012-03-01
Solids moving with a gas stream in a pipeline can be found in many industrial processes, such as power generation, chemical, pharmaceutical, food and commodity transfer processes. A mass flow rate of the solids is important characteristic that is often required to be measured (and controlled) to achieve efficient utilization of energy and raw materials in pneumatic conveying systems. The methods of measuring the mass flow rate of solids in a pneumatic pipeline can be divided into direct and indirect (inferential) measurements. A thermal solids' mass flow-meter, in principle, should ideally provide a direct measurement of solids flow rate, regardless of inhomogeneities in solids' distribution and environmental impacts. One key issue in developing a thermal solids' mass flow-meter is to characterize the heat transfer between the hot pipe wall and the gas-solids dense phase flow. The Eulerian continuum modeling with gas-solid two phases is the most common method for pneumatic transport. To model a gas-solid dense phase flow passing through a heated region, the gas phase is described as a continuous phase and the particles as the second phase. This study aims to describe the heat transfer characteristics between the hot wall and the gas-solids dense phase flow in pneumatic pipelines by modeling a turbulence gas-solid plug passing through the heated region which involves several actual and crucial issues: selections of interphase exchange coefficient, near-wall region functions and different wall surface temperatures. A sensitivity analysis was discussed to identify the influence on the heat transfer characteristics by selecting different interphase exchange coefficient models and different boundary conditions. Simulation results suggest that sensitivity analysis in the choice of models is very significant. The simulation results appear to show that a combination of choosing the Syamlal-O'Brien interphase exchange coefficient model and the standard k-ɛ model along with the standard wall function model might be the best approach, by which, the simulation data seems to be closest to the experimental results.
Dan, Nily
2014-11-25
Emulsions, solid lipid nanoparticles (SLN), and nanostructured lipid carriers (NLC) containing a mix of liquid and solid domains are of interest as encapsulation vehicles for hydrophobic compounds. Studies of the release rate from these particles yield contradictory results: Some find that increasing the fraction of solid phase increases the rate of release and others the opposite. In this paper we study the release of encapsulated materials from lipid-based nanoparticles using Monte Carlo simulations. We find that, quite surprisingly, the release rate is largely insensitive to the size of solid domains or the fraction of solid phase. However, the distribution of the domains significantly affects the rate of release: Solid domains located at the interface with the surrounding solution inhibit transport, while nanoparticles where the solid domains are concentrated in the center enhance it. The latter can lead to release rates in NLCs that are faster than in the equivalent emulsions. We conclude that controlling the release rate from NLCs requires the ability to determine the location and distribution of the solid phase, which may be achieved through choice of the surfactants stabilizing the particles, incorporation of nucleation sites, and/or the cooling rates and temperatures.
Materials research at Stanford University. [composite materials, crystal structure, acoustics
NASA Technical Reports Server (NTRS)
1975-01-01
Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.
Wetting in a Colloidal Liquid-Gas System
NASA Astrophysics Data System (ADS)
Wijting, W. K.; Besseling, N. A.; Stuart, M. A.
2003-05-01
We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.
Wetting in a colloidal liquid-gas system.
Wijting, W K; Besseling, N A M; Stuart, M A Cohen
2003-05-16
We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica-cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.
Zhou, Hongwei; Xue, Changguo; Weis, Philipp; Suzuki, Yasuhito; Huang, Shilin; Koynov, Kaloian; Auernhammer, Günter K; Berger, Rüdiger; Butt, Hans-Jürgen; Wu, Si
2017-02-01
The development of polymers with switchable glass transition temperatures (T g ) can address scientific challenges such as the healing of cracks in high-T g polymers and the processing of hard polymers at room temperature without using plasticizing solvents. Here, we demonstrate that light can switch the T g of azobenzene-containing polymers (azopolymers) and induce reversible solid-to-liquid transitions of the polymers. The azobenzene groups in the polymers exhibit reversible cis-trans photoisomerization abilities. Trans azopolymers are solids with T g above room temperature, whereas cis azopolymers are liquids with T g below room temperature. Because of the photoinduced solid-to-liquid transitions of these polymers, light can reduce the surface roughness of azopolymer films by almost 600%, repeatedly heal cracks in azopolymers, and control the adhesion of azopolymers for transfer printing. The photoswitching of T g provides a new strategy for designing healable polymers with high T g and allows for control over the mechanical properties of polymers with high spatiotemporal resolution.
Contribution to study of interfaces instabilities in plane, cylindrical and spherical geometry
NASA Astrophysics Data System (ADS)
Toque, Nathalie
1996-12-01
This thesis proposes several experiments of hydrodynamical instabilities which are studied, numerically and theoretically. The experiments are in plane and cylindrical geometry. Their X-ray radiographies show the evolution of an interface between two solid media crossed by a detonation wave. These materials are initially solid. They become liquide under shock wave or stay between two phases, solid and liquid. The numerical study aims at simulating with the codes EAD and Ouranos, the interfaces instabilities which appear in the experiments. The experimental radiographies and the numerical pictures are in quite good agreement. The theoretical study suggests to modelise a spatio-temporal part of the experiments to obtain the quantitative development of perturbations at the interfaces and in the flows. The models are linear and in plane, cylindrical and spherical geometry. They preceed the inoming study of transition between linear and non linear development of instabilities in multifluids flows crossed by shock waves.
NASA Astrophysics Data System (ADS)
Matsukage, K. N.; Nishihara, Y.
2015-12-01
We experimentally discovered a new hydrous phase in the system FeOOH-TiO2 at pressures of 10-16 GPa and temperatures of 1000-1600°C which corresponds to conditions of the deep upper mantle and the Earth's mantle transition zone. Seven different compositions in the FeOOH-TiO2 system having molar ratios of x = Ti/(Fe + Ti) = 0, 0.125, 0.25, 0.375, 0.5, 0.75 that were prepared by mixing reagent grade a-FeOOH (goethite) and TiO2 (anatase) powders were used as starting materials. High-pressure and high-temperature experiments were carried out using Kawai-type multi-anvil apparatus (Orange-1000 at Ehime University and SPI-1000 at Tokyo Institute of Technology). In this system, we identified two stable iron-titanium oxyhydroxide phases whose estimated composition is expressed by (FeH)1 - xTixO2 . One is the Fe-rich solid solution (x < 0.23) with e-FeOOH type crystal structure (e-phase, orthorhombic, P21nm) that was described by the previous studies (e.g., Suzuki 2010), and the other is the more Ti-rich solid solution (x > 0.35) with a-PbO2 type structure (a-phase, orthorhombic, Pbcn). The a-phase is stable up to 1500ºC for a composition of x = 0.5 and at least to 1600ºC for x = 0.75. Our result means that this phase is stable at average mantle temperature in the Earth's mantle transition zone. The Iron-titanium-rich hydrous phases was possible to stable in basalt + H2O system (e.g., Hashimoto and Matsukage 2013). Therefore our findings suggest that water transport in the Earth's deep interior is probably much more efficient than had been previously thought.
Glass/Jamming Transition in Colloidal Aggregation
NASA Technical Reports Server (NTRS)
Segre, Philip N.; Prasad, Vikram; Weitz, David A.; Rose, M. Franklin (Technical Monitor)
2000-01-01
We have studied colloidal aggregation in a model colloid plus polymer system with short-range attractive interactions. By varying the colloid concentration and the strength of the attraction, we explored regions where the equilibrium phase is expected to consist of colloidal crystallites in coexistance with colloidal gas (i.e. monomers). This occurs for moderate values of the potential depth, U approximately equal to 2-5 kT. Crystallization was not always observed. Rather, over an extended sub-region two new metastable phases appear, one fluid-like and one solid-like. These were examined in detail with light scattering and microscopy techniques. Both phases consist of a near uniform distribution of small irregular shaped clusters of colloidal particles. The dynamical and structural characteristics of the ergodic-nonergodic transition between the two phases share much in common with the colloidal hard sphere glass transition.
Temperature effects on the universal equation of state of solids
NASA Technical Reports Server (NTRS)
Vinet, P.; Ferrante, J.; Smith, J. R.; Rose, J. H.
1986-01-01
Recently it has been argued based on theoretical calculations and experimental data that there is a universal form for the equation of state of solids. This observation was restricted to the range of temperatures and pressures such that there are no phase transitions. The use of this universal relation to estimate pressure-volume relations (i.e., isotherms) required three input parameters at each fixed temperature. It is shown that for many solids the input data needed to predict high temperature thermodynamical properties can be dramatically reduced. In particular, only four numbers are needed: (1) the zero pressure (P=0) isothermal bulk modulus; (2)it P=0 pressure derivative; (3) the P=0 volume; and (4) the P=0 thermal expansion; all evaluated at a single (reference) temperature. Explicit predictions are made for the high temperature isotherms, the thermal expansion as a function of temperature, and the temperature variation of the isothermal bulk modulus and its pressure derivative. These predictions are tested using experimental data for three representative solids: gold, sodium chloride, and xenon. Good agreement between theory and experiment is found.
Temperature effects on the universal equation of state of solids
NASA Technical Reports Server (NTRS)
Vinet, Pascal; Ferrante, John; Smith, John R.; Rose, James H.
1987-01-01
Recently it has been argued based on theoretical calculations and experimental data that there is a universal form for the equation of state of solids. This observation was restricted to the range of temperatures and pressures such that there are no phase transitions. The use of this universal relation to estimate pressure-volume relations (i.e., isotherms) required three input parameters at each fixed temperature. It is shown that for many solids the input data needed to predict high temperature thermodynamical properties can be dramatically reduced. In particular, only four numbers are needed: (1) the zero pressure (P = 0) isothermal bulk modulus; (2) its P = 0 pressure derivative; (3) the P = 0 volume; and (4) the P = 0 thermal expansion; all evaluated at a single (reference) temperature. Explicit predictions are made for the high temperature isotherms, the thermal expansion as a function of temperature, and the temperature variation of the isothermal bulk modulus and its pressure derivative. These predictions are tested using experimental data for three representative solids: gold, sodium chloride, and xenon. Good agreement between theory and experiment is found.
Thermophysical Properties of Solid and Liquid Ti-6Al-4V (TA6V) Alloy
NASA Astrophysics Data System (ADS)
Boivineau, M.; Cagran, C.; Doytier, D.; Eyraud, V.; Nadal, M.-H.; Wilthan, B.; Pottlacher, G.
2006-03-01
Ti-6Al-4V (TA6V) titanium alloy is widely used in industrial applications such as aeronautic and aerospace due to its good mechanical properties at high temperatures. Experiments on two different resistive pulse heating devices (CEA Valduc and TU-Graz) have been carried out in order to study thermophysical properties (such as electrical resistivity, volume expansion, heat of fusion, heat capacity, normal spectral emissivity, thermal diffusivity, and thermal conductivity) of both solid and liquid Ti-6Al-4V. Fast time-resolved measurements of current, voltage, and surface radiation and shadowgraphs of the volume have been undertaken. At TU-Graz, a fast laser polarimeter has been used for determining the emissivity of liquid Ti-6Al-4V at 684.5 nm and a differential scanning calorimeter (DSC) for measuring the heat capacity of solid Ti-6Al-4V. This study deals with the specific behavior of the different solid phase transitions (effect of heating rate) and the melting region, and emphasizes the liquid state ( T > 2000 K).
NASA Astrophysics Data System (ADS)
Levcenco, S.; Dumcenco, D.; Wang, Y. P.; Huang, Y. S.; Ho, C. H.; Arushanov, E.; Tezlevan, V.; Tiong, K. K.
2012-06-01
Single crystals of Cu2ZnSn(SxSe1-x)4 (CZTSSe) solid solutions were grown by chemical vapor transport technique using iodine trichloride as a transport agent. As confirmed by X-ray investigations, the as-grown CZTSSe solid solutions are single phase and crystallized in kesterite structure. The lattice parameters of CZTSSe were determined and the S contents of the obtained crystals were estimated by Vegard's law. The composition dependent band gaps of CZTSSe solid solutions were studied by electrolyte electroreflectance (EER) measurements at room temperature. From a detailed lineshape fit of the EER spectra, the band gaps of CZTSSe were determined accurately and were found to decrease almost linearly with the increase of Se content, which agreed well with the recent theoretical first-principle calculations by S. Chen, A. Walsh, J.H. Yang, X.G. Gong, L. Sun, P. X. Yang, J.H. Chu, S.H. Wei, Phys. Rev. B 83 (2011) 125201 (5pp).
A solid solution series of atacamite type Ni{sub 2x}Mg{sub 2−2x}Cl(OH){sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bette, Sebastian; Dinnebier, Robert E.; Röder, Christian
2015-08-15
For the first time a complete solid solution series Ni{sub 2x}Mg{sub 2−2x}Cl(OH){sub 3} of an atacamite type alkaline main group metal chloride, Mg{sub 2}Cl(OH){sub 3}, and a transition group metal chloride, Ni{sub 2}Cl(OH){sub 3}, was prepared and characterized by chemical and thermal analysis as well as by Raman and IR spectroscopy, and high resolution laboratory X-ray powder diffraction. All members of the solid solution series crystallize in space group Pnam (62). The main building units of these crystal structures are distorted, edge-linked Ni/MgO{sub 4}Cl{sub 2} and Ni/MgO{sub 5}Cl octahedra. The distribution of Ni{sup 2+}- and Mg{sup 2+}-ions among these twomore » metal-sites within the solid solution series is discussed in detail. The crystallization of the solid solution phases occurs via an intermediate solid solution series, (Ni/Mg)Cl{sub 2x}(OH){sub 2−2x}, with variable Cl: OH ratio up to the 1:3 ratio according to the formula Ni{sub 2x}Mg{sub 2−2x} Cl(OH){sub 3}. For one isolated intermediate solid solution member, Ni{sub 0.70}Mg{sub 0.30}Cl{sub 0.58}(OH){sub 1.42}, the formation and crystal structure is presented as well. - Graphical abstract: For the first time a complete solid solution series, Ni{sub 2x}Mg{sub 2−2x} Cl(OH){sub 3}, was synthesized and characterized. Structure solution by revealed that Ni{sup 2+} prefers to occupy the Jahn–Teller-like distorted hole, out of two available cation sites. Substitution of Ni{sup 2+} by Mg{sup 2+} in atacamite type Ni{sub 2}Cl(OH){sub 3} results in systematic band shifts in Raman and IR spectra as well as in systematic changes in thermal properties. The α-polymorphs M{sub 2}Cl(OH){sub 3} with M=Mg{sup 2+}, Ni{sup 2+} and other divalent transition metal ions, as described in literature, were identified as separate compounds. - Highlights: • First synthesis of solid solution series between main and transition metal chloride. • Ni{sup 2+} prefers to occupy Jahn–Teller-like distorted octahedral holes. • Substitution of Ni{sup 2+} by Mg{sup 2+} results in systematic Raman and IR band shifts. • α-Polymorphs M{sub 2}Cl(OH){sub 3} with M=Mg{sup 2+}, Ni{sup 2+}, … as described in literature do not exist.« less
NASA Astrophysics Data System (ADS)
Kumar, Arvind; Walker, Mike J.; Sundarraj, Suresh; Dutta, Pradip
2011-08-01
In this article, a single-phase, one-domain macroscopic model is developed for studying binary alloy solidification with moving equiaxed solid phase, along with the associated transport phenomena. In this model, issues such as thermosolutal convection, motion of solid phase relative to liquid and viscosity variations of the solid-liquid mixture with solid fraction in the mobile zone are taken into account. Using the model, the associated transport phenomena during solidification of Al-Cu alloys in a rectangular cavity are predicted. The results for temperature variation, segregation patterns, and eutectic fraction distribution are compared with data from in-house experiments. The model predictions compare well with the experimental results. To highlight the influence of solid phase movement on convection and final macrosegregation, the results of the current model are also compared with those obtained from the conventional solidification model with stationary solid phase. By including the independent movement of the solid phase into the fluid transport model, better predictions of macrosegregation, microstructure, and even shrinkage locations were obtained. Mechanical property prediction models based on microstructure will benefit from the improved accuracy of this model.
Effects of Shock-Breakout Pressure on Ejection of Micron-Scale Material from Shocked Tin Surfaces
NASA Astrophysics Data System (ADS)
Zellner, Michael; Hammerberg, James; Hixson, Robert; Morley, Kevin; Obst, Andrew; Olson, Russell; Payton, Jeremy; Rigg, Paulo; Buttler, William; Grover, Michael; Iverson, Adam; Macrum, Gregory; Stevens, Gerald; Turley, William; Veeser, Lynn; Routley, Nathan
2007-06-01
Los Alamos National Lab (LANL) is actively engaged in the development of a model to predict the formation of micron-scale fragments ejected (ejecta) from shocked metal surfaces. The LANL ejecta model considers that the amount of ejecta is mainly related to the material's phase on shock release at the free-surface. This effort investigates the relation between ejecta production and shock-breakout pressure for Sn shocked with high explosives to pressures near the solid-on-release/partial-liquid-on-release phase transition region. We found that the amount of ejecta produced for shock-breakout pressures that resulted in partial-liquid-on-release increased significantly compared to that which resulted in solid-on-release. Additionally, we found that the amount of ejecta remained relatively constant within the partial-liquid-on-release, regardless of shock-breakout pressure.
Pressure Effects on the Ejection of Material from Shocked Tin Surfaces
NASA Astrophysics Data System (ADS)
Zellner, M. B.; Grover, M.; Hammerberg, J. E.; Hixson, R. S.; Iverson, A. J.; Macrum, G. S.; Morley, K. B.; Obst, A. W.; Olson, R. T.; Payton, J. R.; Rigg, P. A.; Routley, N.; Stevens, G. D.; Turley, W. D.; Veeser, L.; Buttler, W. T.
2007-12-01
Los Alamos National Lab (LANL) is actively engaged in the development of a model to predict the formation of micron-scale fragments ejected (ejecta) from shocked metals that have surface defects. The LANL ejecta model considers that the amount of ejecta is mainly related to the material's phase on shock release at the free-surface. This effort investigates the relation between ejecta production and shock-breakout pressure for Sn shocked with high explosives to pressures near the solid-on-release/partial-liquid-on-release phase transition region. We found that the amount of ejecta produced for shock-breakout pressures that resulted in partial-liquid-on-release increased significantly compared to that which resulted in solid-on-release. Additionally, we found that the amount of ejecta remained relatively constant within the partial-liquid-on-release, regardless of shock-breakout pressure.
The use of solid-liquid phase transfer catalysis has an advantage of carrying out reaction between two immiscible substrates, one in solid phase and the other in liquid phase, with high selectivity and at relatively low temperatures. In this study we investigated the synthesis ci...
NASA Astrophysics Data System (ADS)
Moreira, Roberto L.; Lobo, Ricardo P. S. M.; Ramos, Sérgio L. L. M.; Sebastian, Mailadil T.; Matinaga, Franklin M.; Righi, Ariete; Dias, Anderson
2018-05-01
The low-temperature vibrational properties of B a2ZnTe O6 double-perovskite ceramics obtained by the solid-state route were investigated by Raman scattering and Fourier-transform infrared reflectivity. We found that this material undergoes a reversible ferroelastic phase transition at around 140 K, well compatible with a recently proposed rhombohedral-to-monoclinic structural change that would occur below 165 K. Complementary calorimetric measurements showed that the phase transition has a first-order character, with an entropy jump compatible with a displacive mechanism. The vibrational spectra show clearly the splitting of the doubly degenerate E modes into nondegenerate representations of the low-symmetry phase. In particular, the lowest-frequency Raman mode presents soft-mode behavior and splits below the critical temperature, confirming the in-plane ferroelastic deformation in the low-temperature phase.
NASA Astrophysics Data System (ADS)
Gagniere, Emilie; Mangin, Denis; Puel, François; Valour, Jean-Pierre; Klein, Jean-Paul; Monnier, Olivier
2011-02-01
The purpose of this work was to assess the possibility of inducing solution mediated phase transition (SMPT) by manipulating the amount of the cocrystallizing agent. The cocrystal, composed of an active pharmaceutical ingredient (carbamazepine, CBZ) and its cocrystallizing agent (a vitamin—nicotinamide, NCT), was selected as a model compound. Batch experiments were performed in a stirred vessel. The solute concentrations of both CBZ and NCT were monitored using in situ ATR-FTIR spectroscopy. The introduction of NCT in dry form allowed a shift in the phase diagram, leading to an SMPT from CBZ crystals toward cocrystals. The concentration profiles gave information on the phase transition kinetics, i.e., the kinetics of nucleation, growth and dissolution mechanisms of the solid phases involved. Several situations were analyzed. This procedure could also be used to correct a process deviation that led to CBZ crystals instead of cocrystals.
On the existence of vapor-liquid phase transition in dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, M.; Sen, A.; Ganesh, R.
2014-10-15
The phenomenon of phase transition in a dusty-plasma system (DPS) has attracted some attention in the past. Earlier Farouki and Hamaguchi [J. Chem. Phys. 101, 9876 (1994)] have demonstrated the existence of a liquid to solid transition in DPS where the dust particles interact through a Yukawa potential. However, the question of the existence of a vapor-liquid (VL) transition in such a system remains unanswered and relatively unexplored so far. We have investigated this problem by performing extensive molecular dynamics simulations which show that the VL transition does not have a critical curve in the pressure versus volume diagram formore » a large range of the Yukawa screening parameter κ and the Coulomb coupling parameter Γ. Thus, the VL phase transition is found to be super-critical, meaning that this transition is continuous in the dusty plasma model given by Farouki and Hamaguchi. We provide an approximate analytic explanation of this finding by means of a simple model calculation.« less
Liu, Fanghui; Zargarzadeh, Leila; Chung, Hyun-Joong; Elliott, Janet A W
2017-10-12
Thermodynamic phase behavior is affected by curved interfaces in micro- and nanoscale systems. For example, capillary freezing point depression is associated with the pressure difference between the solid and liquid phases caused by interface curvature. In this study, the thermal, mechanical, and chemical equilibrium conditions are derived for binary solid-liquid equilibrium with a curved solid-liquid interface due to confinement in a capillary. This derivation shows the equivalence of the most general forms of the Gibbs-Thomson and Ostwald-Freundlich equations. As an example, the effect of curvature on solid-liquid equilibrium is explained quantitatively for the water/glycerol system. Considering the effect of a curved solid-liquid interface, a complete solid-liquid phase diagram is developed over a range of concentrations for the water/glycerol system (including the freezing of pure water or precipitation of pure glycerol depending on the concentration of the solution). This phase diagram is compared with the traditional phase diagram in which the assumption of a flat solid-liquid interface is made. We show the extent to which nanoscale interface curvature can affect the composition-dependent freezing and precipitating processes, as well as the change in the eutectic point temperature and concentration with interface curvature. Understanding the effect of curvature on solid-liquid equilibrium in nanoscale capillaries has applications in the food industry, soil science, cryobiology, nanoporous materials, and various nanoscience fields.
Wang, Hailiang; Sapi, Andras; Thompson, Christopher M; Liu, Fudong; Zherebetskyy, Danylo; Krier, James M; Carl, Lindsay M; Cai, Xiaojun; Wang, Lin-Wang; Somorjai, Gabor A
2014-07-23
We synthesize platinum nanoparticles with controlled average sizes of 2, 4, 6, and 8 nm and use them as model catalysts to study isopropanol oxidation to acetone in both the liquid and gas phases at 60 °C. The reaction at the solid/liquid interface is 2 orders of magnitude slower than that at the solid/gas interface, while catalytic activity increases with the size of platinum nanoparticles for both the liquid-phase and gas-phase reactions. The activation energy of the gas-phase reaction decreases with the platinum nanoparticle size and is in general much higher than that of the liquid-phase reaction which is largely insensitive to the size of catalyst nanoparticles. Water substantially promotes isopropanol oxidation in the liquid phase. However, it inhibits the reaction in the gas phase. The kinetic results suggest different mechanisms between the liquid-phase and gas-phase reactions, correlating well with different orientations of IPA species at the solid/liquid interface vs the solid/gas interface as probed by sum frequency generation vibrational spectroscopy under reaction conditions and simulated by computational calculations.
Li, Zejun; Wu, Jiajing; Hu, Zhenpeng; Lin, Yue; Chen, Qi; Guo, Yuqiao; Liu, Yuhua; Zhao, Yingcheng; Peng, Jing; Chu, Wangsheng; Wu, Changzheng; Xie, Yi
2017-01-01
In correlated systems, intermediate states usually appear transiently across phase transitions even at the femtosecond scale. It therefore remains an open question how to determine these intermediate states—a critical issue for understanding the origin of their correlated behaviour. Here we report a surface coordination route to successfully stabilize and directly image an intermediate state in the metal-insulator transition of vanadium dioxide. As a prototype metal-insulator transition material, we capture an unusual metal-like monoclinic phase at room temperature that has long been predicted. Coordinate bonding of L-ascorbic acid molecules with vanadium dioxide nanobeams induces charge-carrier density reorganization and stabilizes metallic monoclinic vanadium dioxide, unravelling orbital-selective Mott correlation for gap opening of the vanadium dioxide metal–insulator transition. Our study contributes to completing phase-evolution pathways in the metal-insulator transition process, and we anticipate that coordination chemistry may be a powerful tool for engineering properties of low-dimensional correlated solids. PMID:28613281
Elastic and Mechanical Properties of the MAX Phases
NASA Astrophysics Data System (ADS)
Barsoum, Michel W.; Radovic, Miladin
2011-08-01
The more than 60 ternary carbides and nitrides, with the general formula Mn+1AXn—where n = 1, 2, or 3; M is an early transition metal; A is an A-group element (a subset of groups 13-16); and X is C and/or N—represent a new class of layered solids, where Mn+1Xn layers are interleaved with pure A-group element layers. The growing interest in the Mn+1AXn phases lies in their unusual, and sometimes unique, set of properties that can be traced back to their layered nature and the fact that basal dislocations multiply and are mobile at room temperature. Because of their chemical and structural similarities, the MAX phases and their corresponding MX phases share many physical and chemical properties. In this paper we review our current understanding of the elastic and mechanical properties of bulk MAX phases where they differ significantly from their MX counterparts. Elastically the MAX phases are in general quite stiff and elastically isotropic. The MAX phases are relatively soft (2-8 GPa), are most readily machinable, and are damage tolerant. Some of them are also lightweight and resistant to thermal shock, oxidation, fatigue, and creep. In addition, they behave as nonlinear elastic solids, dissipating 25% of the mechanical energy during compressive cycling loading of up to 1 GPa at room temperature. At higher temperatures, they undergo a brittle-to-plastic transition, and their mechanical behavior is a strong function of deformation rate.
Shape transition in nano-pits after solid-phase etching of SiO{sub 2} by Si islands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leroy, F.; Curiotto, S.; Cheynis, F.
2015-05-11
We study the nano-pits formed during the etching of a SiO{sub 2} film by reactive Si islands at T≈1000 °C. Combining low energy electron microscopy, atomic force microscopy, kinetic Monte Carlo simulations, and an analytic model based on reaction and diffusion at the solid interface, we show that the shape of the nanopits depend on the ratio R/x{sub s} with R the Si island radius and x{sub s} the oxygen diffusion-length at the Si/SiO{sub 2} interface. For small R/x{sub s}, nanopits exhibit a single-well V-shape, while a double-well W-shape is found for larger R/x{sub s}. The analysis of the transition revealsmore » that x{sub s}∼60 nm at T≈1000 °C.« less
NASA Astrophysics Data System (ADS)
Züleyha, Artuç; Ziya, Merdan; Selçuk, Yeşiltaş; Kemal, Öztürk M.; Mesut, Tez
2017-11-01
Computational models for tumors have difficulties due to complexity of tumor nature and capacities of computational tools, however, these models provide visions to understand interactions between tumor and its micro environment. Moreover computational models have potential to develop strategies for individualized treatments for cancer. To observe a solid brain tumor, glioblastoma multiforme (GBM), we present a two dimensional Ising Model applied on Creutz cellular automaton (CCA). The aim of this study is to analyze avascular spherical solid tumor growth, considering transitions between non tumor cells and cancer cells are like phase transitions in physical system. Ising model on CCA algorithm provides a deterministic approach with discrete time steps and local interactions in position space to view tumor growth as a function of time. Our simulation results are given for fixed tumor radius and they are compatible with theoretical and clinic data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, Makoto; Mori, Shigeo; Yamada, Ikuya, E-mail: i-yamada@21c.osakafu-u.ac.jp
Magnetic properties of the quadruple perovskite solid solutions Ca{sub 1–x}Y{sub x}Cu{sub 3}Fe{sub 4}O{sub 12} and Y{sub 1–y}Ce{sub y}Cu{sub 3}Fe{sub 4}O{sub 12} are investigated. Ca{sub 1–x}Y{sub x}Cu{sub 3}Fe{sub 4}O{sub 12} shows continuous increase in the ferromagnetic transition temperature as x increases. Y{sub 1–y}Ce{sub y}Cu{sub 3}Fe{sub 4}O{sub 12} exhibits a ferromagnetic-antiferromagnetic transition in the vicinity of y = 0.5. These observations demonstrate the electron doping effect on magnetic properties of charge-disproportionated ACu{sub 3}Fe{sub 4}O{sub 12} phases.
Manual Solid-Phase Peptide Synthesis of Metallocene-Peptide Bioconjugates
ERIC Educational Resources Information Center
Kirin, Srecko I.; Noor, Fozia; Metzler-Nolte, Nils; Mier, Walter
2007-01-01
A simple and relatively inexpensive procedure for preparing a biologically active peptide using solid phase peptide synthesis (SPPS) is described. Fourth-year undergraduate students have gained firsthand experience from the solid-phase synthesis techniques and they have become familiar with modern analytical techniques based on the particular…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Ujjal; Freppon, Daniel; Men, Long
2017-07-09
The ability to produce large-scale, reversible structural changes in a variety of materials by photoexcitation of a wide variety of azobenzene derivatives has been recognized for almost two decades. Because photoexcitation of trans-azobenzene produces the cis-isomer in solution, it has generally been inferred that the macroscopic structural changes occurring in materials are also initiated by a similar large-amplitude trans-to-cis isomerization. This paper provides the first demonstration that a trans-to-cis photoisomerization occurs in polycrystalline azobenzene, and is consistent with the previously hypothesized nature of the trigger in the photoactuated mechanisms of the materials in question. It is also demonstrated that undermore » low irradiance, trans-to-cis isomerization occurs in the solid (not via a pre-melted phase); and the presence of the cis-isomer thus lowers the melting point of the sample, providing a liquid phase. A variety of experimental techniques were employed, including X-ray diffraction measurements of polycrystalline azobenzene during exposure to laser irradiation and fluorescence measurements of the solid sample. Finally, a practical consequence of this work is that it establishes trans-azobenzene as an easily obtainable and well-defined control for monitoring photoinduced structural changes in X-ray diffraction experiments, using easily accessible laser wavelengths.« less
NASA Astrophysics Data System (ADS)
Lin, Changwei; Tang, Yu; Song, Jun; Han, Lei; Yu, Jingbo; Lu, Anxian
2018-06-01
In the present study, series of garnet-type Li6.75+ x La3- x Sr x Zr1.75Nb0.25O12 solid electrolytes [LLSZN with various Sr contents ( x = 0.05-0.25)] have been prepared via conventional solid-state method. The effects of Sr contents on their phase structure and ionic conductivity have been systematically investigated on the combined measurements of X-ray diffraction and scanning electron microscopy and alter current impedance spectroscopy. Our results reveal that a phase transition from tetragonal to cubic structure occurs when both Sr and Nb elements is introduced, and such a cubic structure can be stable over the whole Sr contents variation, which is suggested to provide a beneficial impact on the performance of LLSZN. Accordingly, both relative density and total ionic conductivity exhibit a favorable tendency of increasing first and then decreasing with increased Sr contents, wherein a peak value at 93.46% and 5.09 × 10-4 S cm-1, respectively, can be well achieved. Particularly, the maximum ionic conductivity is almost twice that of the compared sample (2.93 × 10-4 S cm-1), and possess the minimum activation energy 0.30 eV. Such a modification method, featured with higher efficiency and lower cost, is expected to be helpful for the development of solid electrolyte.
Wang, Song; Cottrill, Anton L; Kunai, Yuichiro; Toland, Aubrey R; Liu, Pingwei; Wang, Wen-Jun; Strano, Michael S
2017-05-24
Thermal diodes, or devices that transport thermal energy asymmetrically, analogous to electrical diodes, hold promise for thermal energy harvesting and conservation, as well as for phononics or information processing. The junction of a phase change material and phase invariant material can form a thermal diode; however, there are limited constituent materials available for a given target temperature, particularly near ambient. In this work, we demonstrate that a micro and nanoporous polystyrene foam can house a paraffin-based phase change material, fused to PMMA, to produce mechanically robust, solid-state thermal diodes capable of ambient operation with Young's moduli larger than 11.5 MPa and 55.2 MPa above and below the melting transition point, respectively. Moreover, the composites show significant changes in thermal conductivity above and below the melting point of the constituent paraffin and rectification that is well-described by our previous theory and the Maxwell-Eucken model. Maximum thermal rectifications range from 1.18 to 1.34. We show that such devices perform reliably enough to operate in thermal diode bridges, dynamic thermal circuits capable of transforming oscillating temperature inputs into single polarity temperature differences - analogous to an electrical diode bridge with widespread implications for transient thermal energy harvesting and conservation. Overall, our approach yields mechanically robust, solid-state thermal diodes capable of engineering design from a mathematical model of phase change and thermal transport, with implications for energy harvesting.
Behaviour of solid phase ethyl cyanide in simulated conditions of Titan
NASA Astrophysics Data System (ADS)
Couturier-Tamburelli, I.; Toumi, A.; Piétri, N.; Chiavassa, T.
2018-01-01
In order to simulate different altitudes in the atmosphere of Titan, we investigated using infrared spectrometry and mass spectrometry the photochemistry of ethyl cyanide (CH3CH2CN) ices at different temperatures. Heating experiments of the solid phase until complete desorption showed up three phase transitions with a first one appearing to be approximately at the temperature of Titan's surface (94 K), measured by the Huygens probe. Ethyl cyanide, whose presence has been suggested in solid phase in Titan, can be considered as another nitrile for photochemical models of the Titan atmosphere after our first study (Toumi et al., 2016) concerning vinyl cyanide (CH2CHCN). The desorption energy of ethyl cyanide has been calculated to be 36.75 ( ± 0.55) kJ mol-1 using IRTF and mass spectroscopical techniques. High energetic photolysis (λ > 120 nm) have been performed and we identified ethyl isocyanide, vinyl cyanide, cyanoacetylene, ethylene, acetylene, cyanhydric acid and a methylketenimine form as photoproducts from ethyl cyanide. The branching ratios of the primary products were determined at characteristic temperatures of Titan thanks to the value of the νCN stretching band strength of ethyl cyanide that has been calculated to be 4.12 × 10-18 cm molecule-1. We also report here for the first time the values of the photodissociation cross sections of C2H5CN for different temperatures.